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The genetic architecture of present-day humans is shaped by 
selection pressures in our history1. Understanding the pat-
terns of natural selection in humans can provide valuable 

insights into the mechanisms of biological processes2, the origin 
of human psychological characteristics3 and key anthropological 
events4. With regard to public health and clinical medicine, the 
study of evolution promotes knowledge of disease mechanisms 
and susceptibility5,6, and aids precision medicine by highlighting 
genetic variants7. Therefore, the explosive growth of all branches of 
anthropology, biology and medicine demands an improved under-
standing of natural selection, for both heritable diseases and non- 
disease traits.

Quantifying selection pressure, especially on human polygenic 
traits, is a complex and challenging task1. Unlike simple traits dom-
inated by a single gene or variant, selection pressure on complex 
traits often results in polygenic adaptation8, where subtle modifica-
tion of a large number of variants influences phenotypic alteration. 
Polygenic adaptation could result from different forms of selection 
such as purifying selection, balancing selection, and hard and soft 
sweeps1,8. Furthermore, revolutions of culture and productivity in 
human history have influenced selection pressures on human soci-
ety9, which have led to distinct patterns of adaptation at different 
time scales. Undoubtedly, comprehensive understanding of natural 
selection should cover all these aspects. So far, only a few studies 
have managed to generate a multi-aspect picture of selection pres-
sure for single polygenic traits, such as attention deficit hyperac-
tivity disorder10 and schizophrenia11. However, an overall picture 
covering different types of human traits is still lacking.

With the tremendous advancement of genome-wide association 
studies (GWAS)12 and various efficient analytical tools for popula-
tion genetics13, we can now study the selection pressure of human 
polygenic traits from a multi-dimensional perspective. Here, 
we leverage GWAS summary statistics of 870 traits to achieve an  

overview. As shown in Fig. 1, we focus on two primary goals. First, 
we describe the selection pressure on each trait at four differ-
ent time scales (Figs. 2–5). This is achieved using various metrics 
derived from different statistical models (Mendelian randomiza-
tion (MR), singleton density score, ancient genome analysis and so 
on), each fitting a specific timeframe or form of selection. Second, 
we integrate these metrics to explore the association among selec-
tion pressures, trait characteristics and functional genomic patterns  
(Figs. 6–8), using linear regression and unsupervised clustering.

Results
By running suitable filters (Methods) in the traitDB12 database 
combined with literature curation (Methods), we collected GWAS 
summary statistics for 870 polygenic traits with adequate power  
(N > 10,000 and single-nucleotide polymorphism (SNP)-based 
heritability (h2) > 0.01), 738 of which were carried out as part of 
the UK Biobank initiative14. These traits were defined as either 
disease (encompassing diseases such as Crohn’s disease, disorders 
such as attention deficit hyperactivity disorder, and potentially 
pathological conditions such as high cholesterol) or non-disease, 
then separated into 15 categories, such as body measurement and 
dermatology (Supplementary Table 1 and Fig. 1). To evaluate sig-
nals of selection on these traits, we adopted different evaluation 
techniques (Methods) to quantify signals of selection for four time 
scales: the present day, recent history (2,000–3,000 years ago), the 
pan-Neolithic period (the data we use for this period range from 
~45,000 to 3,400 years ago) and the time since human speciation 
(Fig. 1).

Body measurements and contemporary reproductive success. 
Our analysis started by exploring natural selection pressure at the 
present time. We hypothesized that the current natural selection 
of a trait is relevant to whether it could causally impact human 
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reproductive success (that is, number of offspring) and mating suc-
cess (for this, we used the proxy of number of overall sexual part-
ners). To quantify these causal effects, we applied MR on GWAS 
summary statistics between tested traits and reproductive success, as 
well as between tested traits and mating success. At the significance 
cutoff of |zMR| > 4 (Methods), we found that 7.4% of traits with valid 
MR results (that is, traits passing sensitivity analysis) (40 out of 539) 
had a causal effect on the number of offspring of males, whereas 
5.9% (32 out of 542) of traits with valid MR results impacted the 
number of offspring of females (Supplementary Table 2). Separating 
the traits into 15 categories (Fig. 2a,b), we observed that 52% 
(23/44) of anthropometric body measurement traits such as height 
(zMR = 8.09, P = 3.33 × 10−16 in males; zMR = 4.91, P = 4.55 × 10−7 in 
females) were causally related to the number of offspring of males. 
By contrast, only 30% (14/47) of body measurement traits were 
causally related to the number of offspring of females. In addition, 
the effect of another type of body measurement (dermatology traits 
such as skin colour) on reproductive success also exhibited sex 
specificity: 38% (5/13) of dermatology traits influenced the number 
of offspring of males, but none affected the number of offspring of 
females. However, when testing for 112 complex conditions such as 
schizophrenia11 and stroke15, polygenic risks showed no significant 
causal effect on the numbers of offspring for either males or females 
(nominal P > 0.05/112). The distribution of effect direction was also 
similar between disease and non-disease traits (Fisher P = 0.40 for 
males, P = 0.71 for females).

For mating success (Supplementary Fig. 2), body measurement 
traits also had an impact: 44% of body measurement traits impacted 
the number of sexual partners of males, compared with 12% affect-
ing the number of sexual partners of females. Interestingly, among 
all 112 tested polygenic disease traits, schizophrenia (zMR = 7.37, 
P = 8.53 × 10−14) and attention deficit hyperactivity disorder 
(zMR = 4.62, P = 1.92 × 10−6) increased the number of sexual partners 
of males, in line with previous findings that increased genetic liabil-
ity for schizophrenia does not confer a fitness advantage but does 

increase mating success16. For males, the impact on reproductive 
success of a trait was positively correlated with its impact on mat-
ing success (Supplementary Fig. 2; Pearson correlation coefficient 
(PCC) 0.47, 95% CI 0.39 to 0.55, P = 9.30 × 10−31). However, this was 
not true for females, for whom the impact on reproductive success 
of a trait was negatively correlated with its impact on mating success 
(Supplementary Fig. 2; PCC −0.10, 95% CI −0.20 to 0, P = 0.02). 
This discrepancy is consistent with the evolutionary psychology 
theory that males and females adopt distinct sexual strategies that 
shape assortative selection17.

Next, we investigated whether the trait impact on reproduc-
tive success and mating would differ between the sexes. In gen-
eral, trait impact on human reproductive success was similar 
for males and females (Fig. 2c; PCC 0.38, 95% CI 0.32 to 0.44, 
P = 6.85 × 10−31). Trait impacts of mating success were also similar 
between the sexes (Supplementary Fig. 2; PCC 0.64, 95% CI 0.58 
to 0.70, P = 9.18 × 10−106). Notably, high intelligence trait signifi-
cantly reduced the number of offspring in both females and males 
(zMR = −7.55, P = 2.18 × 10−14 in females, zMR = −5.13, P = 1.45 × 10−7 
in males), and increased the expected number of sexual partners for 
females (zMR = 7.05, P = 8.97 × 10−13) (Supplementary Fig. 1).

In addition, we applied causal analysis using summary effect esti-
mates18 to all MR results to analyse the role of genetic correlation. 
We found that most of the results were explained mainly by causal 
effects instead of genetic correlation. Using another GWAS19 dataset 
and applying MR bias estimation20, we again showed that our results 
were not explained by GWAS sample overlap (‘MR analysis details’ 
in Supplementary Information).

Widespread polygenic adaptation in the past 2,000–3,000 years. 
Next, we extended our analysis to recent human history (2,000–
3,000 years ago to the current time, Fig. 3a–c). We calculated the 
Spearman correlation between the P value of SNP–trait associa-
tion and trait-enhancing singleton density scores (tSDS), defined 
as ρSDS, developed by Field et al.21 (Methods), to infer the recent 

870 traits from
15 categories

GWAS summary statistics

Selection pressure
at different time scales

10,000 years before present:
polygenic burden on ancient humans

around Neolithic period

Since speciation:
heritability partition

derived allele enrichment

Integration analysis

Are ancient selection
pressures linked to

recent selection
pressures?

E
nh

an
ce

r
su

pe
rE

nh
an

ce
r

w
ea

kE
nh

an
ce

r
P

ro
m

ot
er

T
F

B
S

T
S

S
Tr

an
sc

rip
t

C
od

in
g

In
tr

on
H

3K
27

ac
Q

T
L

H
3K

27
ac

H
3K

4m
e1

H
3K

4m
e3

H
3K

9a
c

C
T

C
F

D
H

S
fe

ta
ID

H
S

G
E

R
P

_R
S

D
G

F
C

pG
R

ep
re

ss
ed

Is functional enrichment
linked to selection

pressures?

2,000–3,000 years to present:
singleton density score (SDS)

distribution

Present:
Mendelian randomization on

fertility and mating

Fig. 1 | Flowchart of the study. Icons created by W.S.
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polygenic adaptation. High tSDS for an SNP would indicate that the 
trait-enhancing allele of this SNP had an elevated frequency dur-
ing the evaluated years. Theoretically, if one trait were favoured by 
recent natural selection, SNPs with low GWAS P values for this trait 
would have high tSDS. Thus, their ρSDS score would be greater than 
zero (Fig. 3c). As expected, the forward simulation (Methods and 
Supplementary Fig. 3) supported this concept: under neutral demo-
graphic history, including population stratification and genetic drift, 
tSDS generally had no association with GWAS P values (median 
ρSDS z score 0.19, P = 0.42). However, when polygenic adaptation 
was added, ρSDS deviated from zero (median z score −2.18, P = 0.01, 
Supplementary Fig. 4). Thus, a significant non-zero ρSDS confirmed 
the existence of selection pressure and would not support the pos-
sibility of neutral evolution or impacts of population stratification.

At the significance threshold of P < (0.05/870 = 5.7 × 10−5), we 
found that 88% (761/870) of polygenic traits had a significant cor-
relation between the GWAS P value and tSDS (ρSDS; Supplementary 
Table 3). Previous analysis has found that population stratification 
of UK Biobank might bias the estimated polygenic adaptation22. 
Thus, to exclude this potential confound in our analyses, we applied 
another method with a different statistical model, which involves 
reconstructing the history of polygenic scores (RHPS)23, based on 
RELATE24 (RHPS-RELATE, Methods). We set the reference panel 
as all European participants of 1000 Genomes to avoid population 
stratification. As shown in Supplementary Table 3, the polygenic 
risk score (PRS) alteration in the past 100 generations (roughly 
equivalent to 2,800 years (ref. 24)) was mostly in accordance with ρSDS 
(PCC 0.25, 95% CI 0.18 to 0.32, P = 3.96 × 10−13). Among 755 traits 
with significant non-zero ρSDS, 13.8% (104/755) showed a consistent 
significant alteration of PRS (P for ‘Tx test’ from RHPS < 0.05/870, 
Methods), and 26.1% (197/755) showed a nominally significant 
alteration (P for Tx test <0.05). Notably, our RHPS-RELATE results 
also highlighted those traits with the highest ρSDS, such as ease of skin 
tanning (P for ρSDS <10−100; P for Tx test <10−100) and raw vegetable 

intake (P for ρSDS <10−100; P for Tx test 2.69 × 10−51) (Supplementary 
Table 3). In general, the results of RHPS-RELATE were consistent 
with the ρSDS analysis, albeit at lower statistical power. Thus, we con-
clude that the ρSDS results are credible and can truly reflect recent 
adaptation prevalence. In the next section, we continue to treat ρSDS 
as the main result.

When analysing all traits, we observed that dermatology traits 
generally showed the most significant selection signals (median 
|ρSDS| = 0.69, Fig. 3a,b), followed by nutrition intake (median |ρSDS| 
= 0.48; Supplementary Fig. 4) and reproduction-related traits 
(median |ρSDS| = 0.30; Supplementary Fig. 4). Ease of skin tan-
ning was the trait with the most significant adaptation (ρSDS = 0.96,  
P < 10−100; Fig. 3c). Ever been drinkers (ρSDS = −0.82, P < 10−100) 
and sitting height (ρSDS = 0.84, P < 10−100) were also among traits 
with an extreme adaptation signal (|ρSDS| > 0.8), which made up 
3.3% of all traits (Supplementary Fig. 4). Neurological traits such 
as brain structures exhibited the least polygenic adaptation (median  
|ρ| = 0.05).

In contrast to non-disease traits, the adaptative pressure on poly-
genic disease traits was generally negative (median ρSDS = −0.08; per-
mutation P = 3.22 × 10−6), especially for early-onset conditions such 
as autism spectrum disorder (median ρSDS = −0.12; Supplementary 
Fig. 5). The greatest evidence of negative adaptation was found for 
high cholesterol (ρSDS = −0.66, P < 10−100; Supplementary Fig. 5). 
Still, we found evidence of positive adaptation for a few diseases 
such as skin cancer and inflammatory bowel disease (ρSDS > 0.2,  
P < 10−100; Supplementary Fig. 5), and even some early-onset condi-
tions such as attention deficit hyperactivity disorder (ρSDS = 0.20,  
P < 2.16 × 10−24) and anorexia nervosa (ρSDS = 0.16, P = 1.24 × 10−19) 
(Supplementary Table 3). This result suggested that some of the dis-
ease traits might be by-products of other positive selection events.

Hunter–gatherer ancestry impacted selection around Neolithic. 
To quantify the selection pressure during the pan-Neolithic period25, 
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we downloaded three ancient human genome datasets (Neolithic 
(8,000–4,200 years ago)26, pre-Neolithic (~45,000–7,000 years ago)27 
and Near East farmer (~14,000–3,400 years ago)28; Supplementary 
Table 4) and calculated the polygenic burden (measured by both 
allele counts and polygenic scores; Methods and Supplementary  
Fig. 6) for each of 870 traits on all individuals10. If one trait went 
through polygenic adaptation, its polygenic burden would alter 
over time. Consequently, when we regressed the polygenic burden 
against samples’ age, we expected to obtain significant regression 
coefficients for such traits. Additionally, the per cent of hunter–gath-
erer ancestry was also included in the regression due to its profound 
impact on human evolution. With forward simulation (Methods 
and Supplementary Fig. 3), we showed that such linear regressions 
did not introduce false-positive results under population heteroge-
neity or technical covariates (median regression t = 0.04 under neu-
tral evolution, P = 0.97), and could accurately capture the effects of 
polygenic adaptation (median regression t = −5.58, P = 1.20 × 10−8 
under polygenic adaptation; Supplementary Fig. 6).

As shown in Fig. 4a and Supplementary Table 5, after control-
ling for covariances (for example, latitude, longitude and genotyp-
ing coverage) and multiple tests, the polygenic burden of 78 traits 
was significantly associated with the percentage of hunter–gatherer 
ancestry (%HG). By contrast, another six traits, such as denture 
usage, were associated with time in at least one of three datasets. 
Seven of 13 dermatology traits were most predominantly associated 
with %HG (Fig. 4a), with ‘ease of skin tanning’ as the most signifi-
cant example (regression tHG = 20.3, P = 1.74 × 10−38; Fig. 4b). In 
the Near East dataset, we observed that signals of selection on skin 

tanning varied by latitude (Fig. 4c), with signals of positive selec-
tion observed in regions of low latitude (latitude < 50°; t = 4.12,  
P = 1.91 × 10−5), but signals of negative selection observed at 
high latitudes (t = 4.95, P = 3.80 × 10−7). After controlling for the 
impact of latitude, we observed a general ascending trend for ‘ease 
of skin tanning’ for the Near East dataset, suggesting overall posi-
tive selection (regression tNearEast = 5.81, P = 2.29 × 10−8; Fig. 4c). 
We also found a nominally significant increment for ease of skin 
tanning in the pre-Neolithic period (regression tpre-Neolithic = 4.25,  
P = 1.11 × 10−5), but not in the Neolithic period (regression tNeolithic = 
0.92, P = 0.18; Supplementary Fig. 7).

When analysing the regression t statistics for all traits (Fig. 4d), 
we found that regression tHG was positively associated with regres-
sion tNearEast (PCC 0.55, 95% CI 0.49 to 0.61, P = 6.27 × 10−69) and 
regression tpre-Neolithic (PCC 0.61, 95% CI 0.55 to 0.67, P = 4.59 × 10−89), 
but was negatively correlated with regression tNeolithic (PCC −0.29,  
P = 1.50 × 10−17). This result suggested that traits related to 
hunter–gatherer ancestry were favoured by natural selection in the 
pre-Neolithic period and Near East farming societies but were sup-
pressed by natural selection during the Neolithic period. This trend 
was also observed for polygenic disease traits, albeit with inconsis-
tent statistical power (PCC 0.18, 0.48 and −0.23; 95% CI −0.08 to 
0.38, 0.31 to 0.63 and −0.38 to −0.02; P = 0.06, 3.62 × 10−6 and 0.01 
for the three periods, respectively; green points and texts in Fig. 4d). 
As shown in the diagonal plots in Fig. 4d, we also found that poly-
genic disease traits generally show evidence of more negative selec-
tion pressure than non-disease traits. This was most significant in 
Near East farming societies (median tNearEast = −0.66, permutation 
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P = 4.31 × 10−5) and the pre-Neolithic period (median tpre-Neolithic = 
−0.42, permutation P = 0.004), but not significant in the Neolithic 
period (median tNeolithic = −0.17, permutation P = 0.34). However, 
we still observed that 13 disease traits showed signals of positive 
selection in the pan-Neolithic period (that is, tNearEast, tpre-Neolithic or 
tNeolithic > 0 and P < 0.05), including immunological diseases such 
as Crohn’s disease (tpre-Neolithic = 2.86, P = 0.013), atopic dermatitis  
(tNeolithic = 2.61, P = 0.01) and periodontitis (tpre-Neolithic = 2.48,  
P = 0.029) (Supplementary Fig. 7).

Heritability enrichment around genomic selection signals. To 
expand our analysis to a more ancient time scale, we annotated the 
genomic regions undergoing different forms of selection at differ-
ent times using multiple statistical models11,29–33, including aver-
age ascertained sequentially Markovian coalescent (ASMCavg), 
mutation-sensitive genes, and conserved regions. Then, we applied 
linkage disequilibrium (LD) score regression (LDSC)34 to see 
whether the heritability of each trait was enriched in any of the 
annotated genomic regions mentioned above (after controlling the 
effects of every other region; Methods and Supplementary Fig. 8), 
which was considered an indicator that the trait has undergone 
natural selection11.

As shown in Fig. 5a and Supplementary Table 6, we detected 
widespread heritability enrichment in genomic regions with low 
ASMCavg, indicating background selection across genomic regions 
during the past hundreds of thousands of years. The P value by LDSC 
was significantly increased compared with the null distribution  
(P < 10−100; Fig. 5b). We also observed heritability enrichment around 
mutation-sensitive genes, in regions with low LD and regions with 
high conservation34. We observed that traits showing the highest  

enrichment in low-ASMCavg regions included body water mass  
(z = −7.32, P = 1.24 × 10−13), intelligence (z = −5.65, P = 1.24 × 10−13) 
and schizophrenia (z = −5.55, P = 1.43 × 10−8) (Fig. 5c). Similar 
trait heritability enrichment, such as for schizophrenia (z = 6.23, 
P = 2.33 × 10−10) (Supplementary Fig. 9), was also observed around 
mutation-sensitive genes. Consistent with the background selec-
tion explained above, variants with high deleteriousness (measured 
by Combined Annotation Dependent Depletion (CADD)) were 
also significantly associated with polygenic traits (Supplementary 
Fig. 9). We found that the heritability for traits such as large artery 
strokes (z = 8.84, P = 4.79 × 10−19) and ever been drinkers (z = 7.68, 
P = 7.95 × 10−15) were explained mostly by high-CADD variants 
whose alternative alleles enhanced the traits (namely, CADD_trait-
Enh variants) (Supplementary Fig. 9). We also analysed other forms 
of selection (Methods and Supplementary Table 6), and found that 
the heritability of large artery strokes was significantly enriched in 
regions undergoing a soft sweep (z = 4.08, P = 2.25 × 10−5). By con-
trast, the heritability of beer intake was enriched in genomic regions 
influenced by balancing selection (z = 3.83, P = 6.41 × 10−5).

By comparing the number of traits reaching the significance 
threshold for each genomic annotation between disease and non- 
disease traits (Supplementary Fig. 10), we found that CADD_trait-
Enh variants were predominantly associated with polygenic disease 
traits (OR 9.58, 95% CI 5.53 to 16.61, P = 5.69 × 10−6). CADD_
traitEnh variants’ z scores for disease traits were also generally 
greater than those for non-disease traits (permutation P = 0.0002,  
Supplementary Fig. 10). Surprisingly, conditions such as atrial  
fibrillation (z = 3.45, P = 0.0003), anorexia nervosa (z = 3.35, 
P = 0.0004) and rheumatoid arthritis (z = 3.16, P = 0.0008) showed 
heritability enrichment in deleterious variants whose alternative 
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alleles weakened the disease traits, named CADD_traitWeak variants 
(Supplementary Table 6). This result suggested that the risks of these 
three conditions might be increased by negative selection through 
elimination of their protective alleles. Additionally, we found that 
conserved regions (permutation P = 0.003, Supplementary Fig. 10) 
and low-ASMCavg regions (permutation P = 0.07, Supplementary 
Fig. 10) tended to contribute to the non-disease traits.

Facial shape shows selection signal since human speciation. 
Finally, to analyse overall selection pressure since human specia-
tion, we followed Esteller-Cucala et al.10 and calculated the percent-
age of trait-enhancing derived alleles in all trait-associated SNP, 
named traitEnhDA%. Specifically, if one trait was favoured by natu-
ral selection, newly emerged alleles that enhance this trait would 
have a better chance to survive and spread throughout the popula-
tion. Thus, traitEnhDA% would be larger than 50% (random expec-
tation). As expected, our forward simulation results supported this 
hypothesis (median traitEnhDA% of 61% under adaptation versus 
49.9% under neutral evolution; Supplementary Fig. 11).

Among all 870 tested traits, facial shape measurements showed 
the most significant signals (Fig. 5d and Supplementary Table 7):  
11 out of 17 facial shape measurements had significantly larger  

traitEnhDA% than expected (binomial P < 0.05/870). Specifically, 
the distance between the lower lip margin, known as labiale infer-
ius, and three nose landmarks had the highest traitEnhDA% of all  
traits (Fig. 5d; traitEnhDA% > 60%, binomial P < 10−25). It is worth 
noting that other distances between face landmarks also had trait-
EnhDA% > 50%, albeit at lower statistical significance. This result 
suggests that natural selection tended to enhance distance among 
facial landmarks. Aside from facial measurements, there were 
another 17 traits where traitEnhDA% differed significantly from 
50% (Fig. 5e), such as pigmentation-related traits which were sig-
nificantly suppressed by selection (such as ease of skin tanning with 
traitEnhDA% of 45% and black hair with traitEnhDA% of 46%).

Selection pressure was associated with ancient selection. Having 
quantified signals of selection pressure at different time scales using 
different evaluation metrics, we attempted to assess the potential 
factors impacting natural selection measurements. We first ana-
lysed whether basic GWAS covariates significantly influenced the 
16 selection metrics that we calculated in different human devel-
opment times (Fig. 6a). We regressed the absolute value of these 
16 metrics against the following measurements: trait heritabil-
ity (h2), the natural log of GWAS sample size (lg(N)), enrichment 
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in brain-expressed genes (named ‘brain’), whether GWAS was a 
meta-analysis of multiple populations (named ‘meta’) and the pro-
portion of cases (named ‘prop’; only for binary traits). As shown in 
Fig. 6a,b, metrics on GWAS with a larger sample size N generally 
had a larger magnitude (regression t for lg(N) of −2.7 to 16.2; 78% 
of t > 0). This was also true for binary-value traits with a higher pro-
portion of cases (94% of t for ‘prop’ > 0) and quantitative traits with 
higher heritability (75% of t for h2 >0). Among all metrics, zASMC 
was impacted mostly by these covariates (R2 = 0.43 and 0.24 for 
quantitative and binary-value traits, P < 0.001). Since the influence 
of covariates was not neglectable, we adjusted all metrics prior to all 
downstream analyses (Methods).

We then applied linear regression on the scaled and adjusted 
selection metrics (Supplementary Tables 8–10) to analyse the 
associations between them. We reasoned that, if environmental 
pressure were identical throughout human history, the strength 
of selection at a later time would be associated with that at ear-
lier times. As shown in Fig. 6c, as expected, ρSDS was associated 
mostly with ancient selection metrics (R2 = 0.54, F test P < 10−100), 
especially on HG% (regression P = 1.50 × 10−29) and tNearEast (regres-
sion P = 2.69 × 10−22). R2 for the other six metrics was moderate 
(R2 = 0.11–0.22, F test P < 2.2 × 10−16). However, zncm and zncf were 
negatively associated with traitEnhDA% (regression t = −3.20 and 
−1.12), whereas all other metrics had a positive association with 
traitEnhDA% (t = 1.48–6.81). Since traitEnhDA% represented over-
all selection since human speciation, we consequently hypothesized 
that, while selection pressure might be undergoing some kind of 
alteration at the present time, it is generally associated with a more 
ancient selection.

To test this hypothesis and gain a continuous view of adap-
tation trajectories, we applied RHPS-RELATE to infer the 
population-mean PRS trajectory of each trait, then applied time 
series hierarchical clustering on dynamic time warping35 to eluci-
date its pattern. As shown in Fig. 7 and Supplementary Table 11, 
the trajectories of 434 and 308 traits were grouped into clusters 1 
and 2, respectively, which generally showed accelerating mono-
tonic increasing or decreasing trends from about 500 generations 
ago. Typical examples were raw vegetable intake (Supplementary 
Fig. 12, P by Tx test23 between 496 and 96 generations <10−100) 
and atopic dermatitis (Supplementary Fig. 12, P by Tx test 
between 496 and 96 generations <10−100). On the other hand, 13 
and 10 traits were grouped into cluster 3 and 4, respectively, char-
acterized by a sharp turnover of adaptation directions around 133 

generations ago (Fig. 5d). These traits included intelligence and 
insomnia (Supplementary Fig. 12). Taken together, most of the 
tested traits experienced consistent selection pressure in the past, 
and only a few exceptions had undergone alteration of selection 
direction.

Functional genomic architectures impact selection pressure. 
Besides the impacts of ancient selection on recent selection, we 
were also interested in the impact of genetic architectures on selec-
tion pressure. Thus, we applied step-wise linear regression on each 
selection pressure metric to explore whether the genetic charac-
teristics (for example, functional genomics enrichment or variant 
deleteriousness) could influence the selection pressure of the trait. 
We found that functional genomic patterns explained 3% (trait-
EnhDA%) and ~20% (zASMC) of the variance in selection pressure 
(R2 = 0.03–0.20; Fig. 8a). Adding conservation annotations (anno-
tations directly related to natural selection such as LLD and allele 
age34) into the model increased R2 by up to 0.3 (ρSDS). This incre-
ment was mainly driven by the inclusion of CADD_traitEnh and 
CADD_traitWeak variants; for the model of ρSDS, CADD_traitEnh 
and CADD_traitWeak variants increased R2 by 0.29.

Finally, we analysed the contribution of each functional genomic 
annotation to selection pressure (Supplementary Table 12). As 
expected, the regression coefficient of CADD_traitEnh variants was 
negative at P < 0.05/16 in 9 out of 16 linear models (that is, traits 
promoted by high-CADD variants were negatively selected; Fig. 8a), 
especially for ρSDS (t for CADD_traitEnh = −10.6, P = 1.49 × 10−26; 
Fig. 8b) and tNearEast (t = −9.4, P = 2.73 × 10−21). Trait heritability in 
regions undergoing background selection, as measured by zASMC, 
was significantly impacted by its heritability enrichment pat-
tern on allele age (t = −9.70, P = 2.73 × 10−21), nucleotide diversity 
(t = −10.20, P = 9.91 × 10−25; Fig. 8c) and CpG island (t = −6.97, 
P = 1.58 × 10−12; Fig. 8d). Functional genomic regions such as 
H3K27 QTL, enhancer, and intron had a non-zero contribution to 
eight selection metrics, which were the largest among all functional 
genomic annotations (Supplementary Fig. 13).

Discussion
We quantified signals of selection on human polygenic traits at four 
different time scales across human evolution using MR, single-
ton density score, ancient genome analysis and heritability parti-
tion. We examined the characteristics of signals of selection, such 
as their prevalence and strength, uneven distribution among time 
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points and trait categories as well as their association with genetic 
architectures.

By analysing the tSDS correlation and PRS trajectory, we showed 
evidence consistent with widespread recent polygenic adaptation 
among different kinds of traits. The observation that polygenic 
adaptation was common among complex traits has often been 
questioned by researchers8 because (1) population stratification 
is known22 to inflate the signal of ρSDS and (2) existing studies on 
polygenic adaptation usually focus on single traits36,37. In our study, 
the forward simulation and the use of RHPS-RELATE provide evi-
dence to inform this debate. First of all, by utilizing simulations of 
genetic drift and demographic isolation strategies, our results sug-
gest that population stratification did not drive a systematic bias 
on ρSDS. We consequently propose that the observed bias on height 
might not represent the majority of traits. Second, false-positive ρSDS 
findings were mainly driven by a large number of SNPs with small 
effects22,24, whereas RHPS-RELATE only analysed top loci with large 
effects23,24. Third, we included various European populations from 
1000 Genomes38 in RHPS-RELATE instead of using only a UK sam-
ple21 and applied a different statistical test (Tx test from RHPS) to 
analyse the significance of adaptation. Because ρSDS, forward simula-
tion and RHPS-RELATE all gave convergent results, we suggest that 
widespread recent polygenic adaptation is plausible.

One of our most interesting results was the finding that pig-
mentation, body measurement and dietary traits were continu-
ously under intense selection pressure across various human 
development time scales. Pigmentation is one of the most thor-
oughly studied examples of human evolution. The tremendous 
spatiotemporal variations of skin colour reflect the complex bal-
ancing between ultraviolet damage, vitamin D requirements and 
heat regulation39. With the ease of skin tanning as an example, our 
results also revealed a complex evolutionary history of pigmenta-
tion: we find evidence for selection for dark skin both before the 
Neolithic period and in recent history but inconsistent selection 
during the Neolithic period. Body size and dietary habits, on the 
other hand, were mostly shaped by trade-offs among energy allo-
cations to growth, maintenance, digestion and other functions40,41. 
Our result also suggested that, among other factors that might 
impact energy allocation, such as ecology, climate and migration, 
genetic factors influenced the evolution of body measurement 
and nutrition intake traits.

Another question we investigated was why polygenic disease 
traits were not eliminated by natural selection. Conditions includ-
ing anorexia nervosa and inflammatory bowel disease showed a 
signal of positive adaptation across human history. In other liter-
ature, researchers have suggested that foraging for food is typical  
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behaviour when facing the threat of starvation and thus will be 
favoured by selection during periods of food supply shortage, 
and this is one evolutionary hypothesis for anorexia nervosa42. 
For inflammatory bowel disease, researchers have suggested that 
disease vulnerability may be associated with high defence against 
pathogens, which may have provided survival advantages in ancient 
societies with poor sanitary conditions43. These results highlight 
the potential role of balancing selection in human history: when 
survival advantage was accompanied by high disease burden, the 
antagonistic force of selection may have pulled associated genetic 
variants to an optimal midpoint.

However, despite the few cases of disease presented in our study, 
our results suggest that the majority of the disease genetic burden 
was indeed being suppressed by natural selection yet persisted in the 
human gene pool. Several hypotheses could explain this. One the-
ory, the reproductive advantage theory16, suggests that high-risk but 
no-onset individuals might have a reproductive advantage and raise 
more offspring, which might prevent the elimination of risk alleles 
in the population. However, after P value adjustment for multiple 
testing, our MR analysis found no significant association between 
reproductive success and disease genetic risks. Another theory, the 
Hill–Robertson effect44, proposes that genomic features, such as low 
allele age and low recombination rate45, promote the spread of risk 
alleles during genetic drift11. Although our analysis confirmed that 
disease heritability was indeed enriched in these genomic annota-
tions, the extent of enrichment was not significantly greater than 
that of non-disease traits. Consequently, although all the above pos-
sibilities explained a proportion of disease heritability, there is still 
room for another ‘trivial explanation’: natural selection was indeed 
eliminating the risk alleles but simply not fast enough, due to the 
small effect of each allele and the small effective population size at 
the risk loci8,46.

An important limitation of this work is that, because of the 
composition of currently available large-scale GWAS, which pre-
dominantly include European participants47, especially in the case 
of UK Biobank14, we did not use data from wider, more exten-
sive multi-ethnic GWAS-based genetic studies. Thus, our results 
had insufficient statistical power to dissect Mainland Europe’s 
sub-population, and even less for a broader population investiga-
tion into the rest of the world. The reliance on UK Biobank GWAS 
might also lead to bias due to imprecise phenotype definition based 
on self-report questionnaire. In addition, the power to explore 
more ancient history (more than 100,000 years ago) is also limited 
since the available tools suitable for such a long time scale could 
only detect a few sweeps at a single locus1. In the future, the fur-
ther development of multi-ethnic GWAS, ancient human genome 
analysis, and analytical tools for extended time scales and variable 
effective population size will help to further uncover the landscape 
of human evolution.

It should be noted that the findings we report here are also limited 
by the inherent nature of GWAS, which cannot distinguish causality 
from association, nor find rare variants that may have large effect 
sizes, and only explains a limited amount of phenotypic variation.

Nevertheless, we provide an overview of natural selection on 
human polygenic traits and their characteristics across human evo-
lution, which could serve as a foundation for future studies regard-
ing human genetics and evolution.

Methods
GWAS filtration and preprocessing. We downloaded all GWAS summary 
statistics from traitDB12 release 1 (access date April 2020) and retained those 
conducted solely in cohorts of European ancestry. Since traitDB was released in 
November 2019, we additionally conducted a literature search for all GWAS of 
European ancestry published between October 2019 and April 2020. All these 
GWAS were filtered according to the following criteria: sample size >10,000, 
SNP-based heritability (h2) calculated by LDSC >0.01 and z score of h2 > 4. 
No statistical methods were used to pre-determine sample sizes since this was 

determined by the original GWAS. For all included polygenic disease traits, we 
additionally separated them according to onset age: disease traits that preliminarily 
onset before reproductive age (18 years old) were labelled ‘early’, disease traits that 
preliminarily onset after reproductive age (50 years old) were labelled ‘late’ and the 
remaining disease traits were labelled ‘lifetime’. Allele frequency for all variants was 
estimated using all 1000 Genome phase 3 (ref. 38) from the European population. 
Details of data selection and reformatting are provided in ‘Choice and reformatting 
of GWAS included’ section of Supplementary Information.

Mendelian randomization. To measure human reproductive success and mating 
success, we downloaded the GWAS summary statistics of the number of offspring 
of males and females and the number of male and female sexual partners for both 
sexes from the Benjamin Neale Lab (http://www.nealelab.is/uk-biobank). For each 
of the 870 traits, we selected SNPs with P < 5 × 10−8 as the instruments. We retained 
all instruments presented in the outcome GWAS, then pruned at the threshold of 
LD > 0.01 in 1000 Genomes. The data harmonization was applied separately for 
each exposure–outcome pair using the R package TwoSampleMR v0.5.4 (ref. 48).

For each exposure–outcome pair, we first calculated the per-instrument MR 
effects by Wald ratio, then meta-analysed the results for all instruments using three 
methods: (1) Inverse variance weighted (IVW), which was considered the primary 
result; (2) the weighted median (WM) method49, which was relatively robust when 
some of the instruments were invalid; (3) Egger regression50, which allowed for 
non-zero directional pleiotropy.

Adjustment of pleiotropy and genetic correlation for MR. To get rid of the 
influence of outliers and pleiotropy in a uniform manner, we applied a step-wise 
outlier removal test for each exposure–outcome pair. Specifically, we first applied 
three sensitivity tests (Cochran’s Q test, Rucker’s Q test and Egger intercept test)51 
on all instruments. If P values of any of these tests were <0.05, we applied the 
MR-PRESSO (‘Mendelian Randomization Pleiotropy RESidual Sum and Outlier’) 
outlier test52 to calculate the observed residual sum of squares (RSSobs) for all 
instruments and ranked them in descending order of RSSobs. We removed the 
topmost instrument and repeated the three MR analyses and three sensitivity 
analyses on the remaining instruments. If P values of any sensitivity tests were still 
<0.05, we repeated this procedure by removing the top two, top three, up to top 
(n − 3) instruments until all sensitivity tests had P values >0.05 (leftmost black 
point in Supplementary Fig. 13). The MR results at this stage were considered 
the final result. If P values of any sensitivity tests were <0.05 throughout the 
procedure, we denoted the MR results for this exposure–outcome pair as NA. For 
exposure–outcome pairs with fewer than three instruments, we provide the MR 
results (Wald ratio or IVW) in Supplementary Table 2 but did not consider them 
in the downstream analysis. After obtaining outlier-free MR results for all pairs, we 
defined the significant causal effect as following: a z score of IVW estimation >4 
or < −4, and estimates of IVW, WM and Egger regressions that were all in the same 
direction. Those results not reaching the significance criteria were still included in 
the correlation analysis (Fig. 2c). We also applied causal analysis using summary 
effect estimates18 to distinguish causality from genetic correlation (see ‘MR analysis 
detail’ section of Supplementary Information).

tSDS analysis. The tSDS21 is a metric that measures the density of singleton 
mutations around a tested SNP. Based on the assumption that positive selection 
distorts the ancestral genealogy of haplotype and leads to shorter terminal 
branches for the favoured allele, tSDS > 0 indicates that the trait-enhancing 
allele of the tested SNP has an increased frequency in recent history (about 100 
generations)21.

We ranked all SNPs with derived allele frequency between 0.05 and 0.95 in 
UK10K data in the ascending order of their GWAS P value and grouped them 
into consecutive bins of 1,000 SNPs each. We calculated ρSDS as the Spearman 
correlation coefficients between the median tSDS for each bin and the order of 
bins. We applied a jackknife procedure to estimate the confidence interval and 
statistical significance of ρSDS (‘tSDS analysis’ of Supplementary Information).

Polygenic burden of ancient humans. To analyse the pan-Neolithic trajectory of 
the polygenic burden for each trait, we downloaded ancient human genotype data 
for three studies, following Esteller-Cucala et al.10: pre-Neolithic27 (51 individuals), 
Neolithic26 (180 individuals) and Near East farmers28 (281 individuals). The 
genotype data were transformed into ped and bim files using EIGENSOFT v6.1.453 
and plink v1.0754, with only SNPs that had retained an rs ID. For each trait and 
each ancient dataset, we retrieved all SNPs with GWAS P < 0.01 and applied LD 
pruning in the ancient dataset using plink with the parameter ‘–indep 50 5 2’ to 
obtain a list of independent trait-associated SNPs (tSNP). We excluded individuals 
with >90% missing information on the tSNP. Similar to the work of Esteller-Cucala 
et al.10, we calculated the scaled polygenic susceptibility f for each individual as 
follows:

f = Number of copies of trait increasing alleles
2 × Number of genotyped tSNP ,

where f is a metric between 0 and 1 that measures the percentage of a polygenic 
burden an individual carried (f = 1 indicates that the individual had homozygous 
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trait-enhancing alleles on all non-missing tSNP). As a positive control, we also 
replaced the allele counts with the polygenic risk scores and repeated the entire 
analysis (see ‘Analysis of ancient human genome’ in Supplementary Information).

In each dataset, we fitted a linear model to test for the relation between f and 
time to the present day, which reflected the polygenic adaptation on the traits. 
We collected data from the Reich lab and included latitude, longitude, genotyping 
technique, sex, whether damage restrict was performed on the sample, genotyping 
coverage, the mixture time of hunter–gatherer and farmer ancestry inferred in 
the Neolithic dataset, number of SNPs genotyped and the fraction of the library 
as covariates (some of the covariates were not provided in particular datasets, 
see ‘Analysis of ancient human genome’ of Supplementary Information). For the 
Neolithic dataset, the percentage of hunter–gatherer ancestry (%HG) was also 
included as a predictive variable. From the regression results, we retrieved the t 
statistics for time to present (tpre-Neolithic, tNearEast and tNeolithic, respectively) and %HG 
(tHG) as well as their P values as the measurements of polygenic adaptation. We 
also applied Pearson correlation analysis among these four matrices using the R 
package GGally v2.0 (ref. 55).

Heritability partition on genomic regions exhibiting different levels of evidence 
for natural selection. We adopted a strategy similar to Pardiñas et al.11, which first 
identified genomic regions under different selection pressures then partitioned the 
heritability of each trait to these regions by LDSC v1.0.1 (ref. 34). We obtained and 
reformatted the following genomic annotations from the literature (under hg19 
position):

	1.	 B2 (ref. 33), a metric of a set of composite likelihood-ratio test statistics that 
are based on a mixture model. Regions with high B2 statistics were under bal-
ancing selection in about 10,000 generations. We downloaded the B2 statistics 
calculated by BalLerMix v1.0 (ref. 33) on the 1000 Genomes CEU population38 
and annotated each SNP according to the B2 statistics of the region that 
covered it.

	2.	 Combined Annotation Dependent Depletion (CADD)7. We downloaded 
CADD v1.3 for all 1000 Genomes single-nucleotide variants and indels 
and dichotomized all variants at the threshold of CADD-phred score >20. 
We further generated trait-specific annotations (CADD_traitEnh and 
CADD_traitWeak) according to the effect of alternative alleles, thus variants 
whose alternative alleles enhanced the trait and had CADD-phred >20 were 
annotated ‘1’ for CADD_traitEnh, whereas all other variants were annotated 
‘0’. Similarly, variants whose alternative alleles weakened the trait and had 
CADD-phred >20 were annotated ‘1’ for CADD_traitWeak.

	3.	 Composites of multiple signals (cms)31. cms integrated signals of several 
previous methods for detection of positive selection and could detect positive 
selection in the last few tens of thousands of years at high resolution. We 
directly downloaded the genomic regions with significantly high cms from 
Grossman et al.31 and generated trait-specific dichotomized annotations 
(cms+ and cms−).

	4.	 Hard and soft sweep predicted by Trendsetter v1.032. Trendsetter applied a 
penalized regression framework that took statistics at adjacent regions into 
account and predicted whether each genomic region had undergone a hard 
sweep, soft sweep or neutral alteration. We downloaded the prediction results 
of the CEU population and labelled each genomic region by the label with 
the highest probability, and generated trait-specific annotations according to 
these labels (hard+, hard−, soft+ and soft−).

	5.	 Neanderthal introgressions29. We downloaded the average posterior probabil-
ity scores of being a Neanderthal haplotype from Sankararaman et al.29 and 
dichotomized at the top 0.01 probability score.

	6.	 pLi56. We curated the gene list of pLi >0.9 as mutation-intolerant genes and 
generated the annotation of the physical position of these genes and the 
flanking regions of 100 kb at both 3′ and 5′ ends.

We generated these annotations for each trait and added them to the updated 
baseline annotations of LDSC34 to apply a heritability partition. We retrieved 
the z score for the LDSC coefficient τc for each annotation as the main results, 
which measured the heritability enrichment in each annotation on the condition 
of all other annotations. Some of the annotations from the baseline model that 
also measured some aspects of natural selection were retrieved (ASMCavg30, B 
statistics57, recombination rate34, conserved regions57, etc.; see ‘Choice of LDSC 
annotations’ information in Supplementary Information).

Analysis of derived allele distribution. We calculated the proportion of included 
SNPs for which the derived allele had a trait-enhancing effect (traitEnhDA%) and 
calculated its corresponding P value with two-sided binomial tests assuming a 
random proportion of 50%. To achieve this, we first obtained the derived allele of 
about four million SNPs provided by 1000 Genomes phase 1 (ref. 38) curated by 
Field et al.21. For each trait, we included in our analysis SNPs meeting the following 
criteria: having a derived allele annotation, a derived allele frequency between 0.05 
and 0.95 in 1000 Genomes European participants, and a GWAS z score >3 or <−3. 
These SNPs were LD pruned by plink54 with the parameters ‘–indep 50 5 2’ and 
1000 Genomes EUR as reference panels.

Another hypothesis is that purifying selection tended to suppress the 
alleles with a large effect on traits to a low frequency58, thus the proportion of 

genetic variance explained would be enriched in SNPs with a lower derived 
allele frequency. We calculated an S statistic to depict this rule, but the forward 
simulation did not confirm its power (‘Definition of S statistics’ in Supplementary 
Information). Thus, we did not include this as part of our main results.

Simulation analysis. To verify that these statistics were not inflated by population 
stratification or genetic drift, and properly reject neutral evolution during human 
history, we generated a forward genetic simulation using Slim 3 (ref. 59). As shown 
in Supplementary Fig. 3, we simulated a pair of 10-MB chromosomes under 
Gravel’s model60 of human evolution embedded in Slim, with a recombination 
rate of 1 × 10−8 and mutation rate of 2.36 × 10−8. De novo mutations had 4.5% 
probability of having a non-zero selection coefficient following a normal 
distribution and 0.5% probability of being quantitative trait loci (QTL). Details of 
the method and results of forward simulation can be found in ‘Simulation detail’ 
section of Supplementary Information.

Integrative analysis of all selection pressures. We first analysed the impact of the 
following variables on the magnitude of detected selection pressure:

	1.	 h2 estimated by LDSC.
	2.	 lg(N), where N denotes the sample size of GWAS.
	3.	 Trait heritability enrichment in brain-preferentially expressed genes. 

Specifically, we downloaded the genomic annotation of ‘SNP around GTEx 
cortex-specific genes’, ‘SNP around all coding genes’, and their corresponding 
LD scores from the LDSC ftp site. (https://alkesgroup.broadinstitute.org/LD-
SCORE/). We ran LDSC on these annotations using the default LDSC setting 
as above and defined the coefficient z score for cortex genes as the metric of 
brain expression enrichment.

	4.	 ‘meta’: whether the GWAS was derived from the meta-analysis (that is, at least 
two cohorts of different ancestry contributed at least 10% of participants).

	5.	 ‘prop’: for binary traits, the proportion of minor cases.

We regressed the absolute value of each selection metric against these 
variables and summarized the t statistics to quantify their impact. Since h2 and 
brain enrichment were the inner characteristics of the trait, whereas lg(N), ‘meta’ 
and ‘prop’ were technical GWAS covariates, we decided to adjust all metrics for 
the latter three variables. Specifically, we first divided all traits according to (1) 
lg(N) > 5.2, (2) is ‘meta’ and (3) ‘prop’ >0.2 (binary traits only). These thresholds 
were chosen based on the density plots (not shown). In each subgroup, we 
calculated the z score of the absolute value of each metric (following the  
positive half of the standard normal distribution) and retained the sign of the 
original metric.

For each of the seven selection pressure matrices with a definite time scale 
(zncm, zncf, ρSDS, tNeolithic, tNearEast, tpre-Neolithic and tHG), we applied linear regression 
that included all matrices whose time scales were more ancient than it (‘Linear 
models for each selection metric’ of Supplementary Information). The regression 
was run on all traits with reliable results of the corresponding response variables 
(for example, traits without homogeneous MR results were not included in the 
regression of zncm and zncf).

Reconstructing the History of Polygenic Scores (RHPS) and RELATE. To 
estimate the trajectory of population-mean PRS for each trait, we applied the Relate 
Reconstructing the History of Polygenic Scores (RHPS) v1.0 method proposed by 
Edge et al.23, which utilized local coalescent trees at GWAS locus to estimate the 
population-mean PRS of a trait. As suggested by Edge et al.23, for each GWAS we 
calculated the Bayesian factor (BF) for each SNP as

BF =

√

1 − r

e
(

−z2 r
2

) , r = 0.1
0.1 + s.e.2 ,

where z and s.e. are the GWAS statistics for this SNP. Next, we partitioned all SNPs 
into 1,702 consecutive and independent blocks provided by Pickrell et al.61, and 
chose the SNP with the largest BF from each block. To maximize the computational 
efficiency, we retained SNPs with BF > 10,000. The population-mean PRS at 
ancient time t was estimated as

PRS (t) = 2
∑

i∈G
βipi (t),

where G denotes all SNPs retained, βi denotes the GWAS effect size of SNP i and 
pi(t) is the population frequency of SNP i for time t. To estimate pi(t), we applied 
RELATE (ref. 24) to each of the retained SNPs. Specifically, we retrieved all variants 
within the ±100 kb windows around the target SNP from the European population 
of 1000 Genomes38, and transferred into the .haps format required by RELATE v1.0. 
The ancestral genome sequence, genetic map of recombination rate and genetic 
distance, and genome mask of GRCh37 were downloaded from 1000 Genomes 
resource. We ran RELATE on the variant data to estimate the focal tree in the 
200 kb windows with parameters ‘–m 1.25 × 10−8 and –N 30000’. The branch length 
and population size were re-normalized by the EstimatePopulationSize function 
with three iterations and a threshold of 0.7. The frequency of target SNP was 
estimated by using the DetectSelection function. We divided the output frequency 
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by 808 (404 non-Finnish European individuals × 2) to obtain the population 
frequency per chromosome. To estimate the significance of polygenic adaptation 
during a time course, we applied the Tx test (‘Tx test of RHPS’ in Supplementary 
Information) proposed by Edge et al.23 to calculate the P value for PRS alteration in 
a specific time window. For the analysis of recent history, we applied Tx test on the 
last five time points (96 generations ago to the present).

Time course clustering of PRS trajectory. Time course clustering was conducted by 
using the R packaged twclust (ref. 35). For all traits with PRS trajectory results from 
RHPS-RELATE (that is, with frequency trajectory available for at least three SNPs), 
we retained the result of the last 12 time points (958 generations ago to present; 
detailed information of each time point is recorded in Supplementary Table 11), since 
the result at earlier time points was sparse. We z scored the trajectory of each trait, 
calculated the similarity among traits by Dynamic time warping62 and partitioned 
the traits by hierarchical clustering. We chose the number of clusters as k = 4 by 
comparing the silhouette coefficient for clustering results with k = 2 to 10.

Impacts of genetic architectures on selection pressures. Despite the genomic 
annotations that directly measured selection pressure, we were also interested 
in whether heritability enrichment in other annotations could impact natural 
selection. These annotations were roughly divided into three groups (columns of 
Fig. 6a): those that are associated with selection, termed ‘conservative annotations’, 
and those without evidence of direct association with selection, termed ‘functional 
genomic annotations’, and CADD-related annotations. The annotations of 
minor allele frequency bin were discarded. For each of the selection pressure 
metrics (Fig. 6a), we first fitted a full linear model including LDSC z scores of all 
conservative and functional genomic annotations, then applied a bi-directional 
step-wise regression aiming at maximization of Akaike information criterion to 
obtain a simplified model. Full results for all simplified models can be found in 
Supplementary Table 12.

To analyse the contribution of different groups of annotations, we subtracted 
three sub-models from each simplified model: (1) a model containing only 
functional genomic annotations, (2) a model containing functional genomic 
annotations and CADD annotations and (3) a model containing all annotations. 
We applied each of these models to generate predicted values for each selection 
metric and calculated corresponding R2 values for these precited values.

Statistical analysis. For all comparisons of metrics among groups, we applied a 
two-sided Fisher–Pitman permutation test by oneway_test from the R package 
coin v1.3.1 (ref. 63). For all comparisons between two metrics, we applied Pearson 
correlation analysis. For comparisons between two distributions, we applied 
the two-sided Kolmogorov–Smirnov test. The significance threshold was set at 
P < 0.05/870 unless otherwise specified.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All GWAS summary statistics analysed in the current study could be downloaded 
from the public domain. All data generated in the current study could be obtained 
from the Supplementary Information.

Code availability
Scripts used for this study is available at https://github.com/WeiCSong/selection.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code
Policy information about availability of computer code

Data collection Scripts used for this study is available at https://github.com/WeiCSong/selection.

Data analysis Scripts used for this study is available at https://github.com/WeiCSong/selection.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We collected public GWAS summary statistics and applied various statistical algorithms on them to quantify the signal of natural 
selection of each trait.

Research sample We analyzed public GWAS sample of European ancestry.

Sampling strategy Not applicable.

Data collection All data were downloaded from public domian.

Timing and spatial scale The ancient genome covered around 10,000 years to 4,000 years. All other analysis are based on current population.

Data exclusions We excluded GWAS with sample size <10,000.

Reproducibility Not applicable.

Randomization Not applicable.

Blinding Not applicable.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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