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PREFACE TO THE FIRST EDITION

Tuk theory of factorialanalysisis mathematicalinnature, but
this book has been written so thatit can,itis hoped, beread by
those who have no mathematics beyond the usual secondary
school knowledge. Readers are, however, urged to repeat
some at least of the arithmetical calculations for themselves.

It is probable that the subject-matter of this book may
seem to teachers and administrators to be far removed from
contact with the actual work of schools. I would like
therefore to explain that the incentive to the study of
factorial analysis comes in my case very largely from the
practical desire to improve the selection of children for
higher education. When I was thirteen years of age and
finishing an elementary school education, I won a “ scholar-
ship ” to a secondary school in the neighbouring town, one
of the early precursors of the present-day * free places ™
in England. T have ever since then been greatly impressed
by the influence that event has had on my life, and have
spent a great deal of time in endeavouring to improve the
methods of selecting pupils at that stage and in lessening
the part played by chance. It was inevitable that I should
be led to inquire into the use of intelligence tests for this
purpose, and inevitable in due course that the possibilities
of factorial analysis should also come under consideration.
It seemed to me that before any practical use could be
made of factorial analysis a very thoroughgoing examina-
tion of its mathematical foundations was necessary. The
present book is my attempt at this. ... It may seem remote
from school problems. But much mathematical study and
many calculations have to precede every improvement
in engineering, and it will not be otherwise in the future
with the social as well as with the physical sciences.

GoprrEy H. THomsoN
MorAy HOUSE,
UNIVERSITY OF EDINBURGH,
November 1938
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PREFACE TO THE FIFTH EDITION

IN earlier editions since the first, the chief changes in the
second edition were that the original chapter on Simple
Structure was expanded into three, to cover oblique
factors and second-order factors, while Dr. D. N. Lawley
provided a chapter on factor analysis by maximum like-
lihood, and a corresponding section in the mathematical
appendix. The main changes in the third edition con-
cerned the identity of simple structure factors after
univariate selection, and the relations between two sets of
variates. In the fourth, the principal addition was of
Lawley’s formule for the standard errors of individual
residuals, and of factor loadings, when maximum likelihood
methods have been used.

In the present (the fifth) edition it has for the first time
been possible to reset the whole book. This has permitted
more extensive alterations to be made, and the oppor-
tunity has been taken of rearranging the order of the chap-
ters and recasting several of them, as well as inserting in
their proper places in the text those pages which in former
editions had to be added as appendices. Chapters V,
VIIL and X will supply the minimum of technique, and the
remainder of Parts IT and 11T will give in addition a descrip-
tion of the methods of analysis using principal components,
using the principle of maximum likelihood, or using
Thurstone’s Simple Structure.

Ihope, however, that readers will not merely use the book
as a set of recipes on how to carry out certain computations,
bflt will study the geometrical explanations (twelve new
diagrams have been added) : and especially that they will
ponder the iI.anications of the two chapters, XVIII and
XIX, on the influence of selection on factors, and the final
two chapters. on the sampling theory and certain funda-
mental questions.

Goorrey H. Tromsox
UxN1vERsITY OF Epixsurcn, ;

April 1951
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All science starts with hypotheses—in other words,
with assumptions that are unproved, while they may be,
and often are, erroneous; but which are better than
nothing to the searcher after order in the maze of pheno-
mena.

T. H. HuxLEY

I am not insensible of the advantage which accrues to
Applied Mathematics from the co-operation of the Pure
Mathematician, and this co-operation is not infrequently
called forth by the very imperfections of writers on Applied
Mathematics.

R. A. Fisuer
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CHAPTER I
4 THE THEORY OF TWO FACTORS

1. Factor tests.—The object of this book is to give some
account of the * factorial analysis” of ability, as it is
called, In actual practice at the present day this science
is endeavouring (with what hope of success is a matter of
keen controversy) to arrive at an analysis of mind based
on the mathematical treatment of experimental data
obtained from tests of intelligence and of other qualities,
and to improve vocational and scholastic advice and
prediction by making use of this analysis in individual
cases. It is a development of the * testing ™ movement—
the movement in which experimenters endeavour to devise
tests of intelligence and other qualities in the hope of
sorting mankind, and especially children, into different
categories for various practical purposes ; educational (as
in directing children into the school courses for which they
are best suited) ; administrative (as in deciding that some
persons are so weak-minded as to need lifelong institutional
care) ; or vocational, ete.

There are many psychologists who would deny that from
the scores in such tests, or indeed from any analysis, we
can (ever) return to a full picture of the individual ; and
without entering into any discussion of the fundamental
controversy which this denial reveals, everyone who has
had anything to do with tests will readily agree that this
is certainly so at present in practice. But the tester may
be allowed to try to make his modest diagram of the
individual better, more useful, and if possible simpler.

Now, the broadest fact about the results of ** tests Sof
all sorts, when a large number of them is given to a large
number of people, is that every individual and every test
is different from every other, and yet that there are certain
rather vague similarities which run through groups of
people or groups of tests, not very well marked off from

3



4 THE FACTORIAL ANALYSIS OF HUMAN ABILITY

one another but merging imperceptibly into neighbouring
groups at their margins. To describe an individual ac-
curately and completely one would have to administer to
him all the thousand and one tests which have been or
may be devised, and record his score in each, an impossible
plan to carry out, and an unwieldy record to use even if
obtained.  Both practical necessity and the desire for
theoretical simplification lead one to seek for a few tests
which will deseribe the individual with sufficient accuracy,
and possibly with complete accuracy if the right tests can
be found. If, as has been said, there is some tendency
for the tests to fall into groups, perhaps one test from each
group may suffice. Such a set of tests. might then be said
to measure the *“ factors ”* of the mind.

2. Frictitious factors.—Actually the progress of the
* factorial > movement has been rather different, and the
factors are not real but as it were fictitious tests which
represent certain aspects of the whole mind. But con-
ceivably it might have taken the more concrete form. In
that case the “factor tests” finally decided upon (by
whom, the reader will ask, and when * finally ** ?) would
be a set of standards which, like any other standards, would
have to be kept inviolate, and unchanged except at rare
intervals and for good reasons. Some tendency towards
this there has been. The Binet scale of tests is almost an
international standard, and there is a general agreement
that it must not be changed except by certain people upon
whose shoulders Binet’s mantle has fallen, and only seldom
and as little as possible even by them. But the Binet
scale is a very complex entity, and rather represents many

 groups of tests than any one test. By * factor tests ”’ one

would more naturally mean tests of a * pure *’ nature,

- differing widely from one another so as to cover the whole

personality adequately. And since actual tests always
are more or less mixed, it is understandable why ¢ factors
have come to be fictitious, not real, tests, to be each
approximated to by various combinations of real tests so
weighted that their unwanted aspects tend to cancel out,
and their desired aspects to reinforce one another, the team
approximating to a measure of the pure ‘ factor.”



THE THEORY OF TWO FACTORS 5

3

But how, the reader will ask, do we know a ‘ pure ”
factor, how are we to tell when the actual tests approximate
to it ¢ To give a preliminary answer to that question we
must go back to the pioneer work of Professor Charles
"Spearman in the early years of this century (Spearman,
1904).  The main idea which still, rightly or wrongly,
dominates factorial analysis was enunciated then by him,
and practically all that has been done since has been either
inspired or provoked by his writings. His discovery was
that the * coefficients of correlation ” between tests tend
to fall into ‘ hierarchical order,” and he saw that this
could be explained by his famous * Theory of Two Factors.”
These technical terms we must now explain.

3. Hierarchical order—A coefficient of correlation is a
number which indicates the degree of resemblance between
two sets of marks or scores.  If a schoolmaster, for example,
gives two examination papers to his class, say (1) in arith-
metic and (2) in grammar, he will have two marks for every
boy in the class. If the two sets of marks are identical
the correlation is perfect, and the correlation coefficient,
denoted by the symbol ry,, is said to be 4 1. If by some
curious chance the one list of marks is exactly like the
other one upside down (the best boy at arithmetic being
worst at grammar, and so on), the correlation is still perfect,
but negative, and r;, = — 1. If there is absolutely no
resemblance between the two lists, 7, = 0. If there is a
strong resemblance, but falling short of identity, ry, may
equal *9; and so on,/ There is a method (the Bravais-
Pearson) of caleulating such coefficients, given the list of
marks.* “ Tests ” can obviously be correlated just like

* The * product-moment formula ™ is—

sum (@,,)
12T fsum (y?) % sum (@)
where @, and @, are the scores in the two tests, measured from the
average (so that approximately half the scores are negative), and
the sums are over the persons to whom the scores apply. The
quantity—
B sum (.r,”l

number of persons
is called the variance of Test 1, and o its standard deviation. If the
scores in each test are not only measured from their average, but

gy



6 THE FACTORIAL ANALYSIS OF HUMAN ABILITY

examinations, and a convenient form in which to/write
down the intercorrelations of a number of tests is in a
square chequer board with the names of the tests (say
a, b, ¢ . .) written along the two margins, thus :

a b ¢ d e T
a 5 48 24 54 42 30
b -48 / 32 72 56 40
e 24 82 . 36 28 -20
d 54 72 36 : 63 45
e 42 56 28 63 t 35
il 30 -40 20 45 35

Totals | 198 248 140 270 224 170

It was early found that such correlations tend to be
positive, and it is of some interest to see which of a number
of tests correlates most with the others. This can be found
by adding up the columns of the chequer board, when we
see In the above example that the column referring to
Test d has the highest total (2:70). The tests can then be
rearranged and numbered in the order of these totals, thus :

1 g2 3 4 5 6

d b e a I e
1 . 72 63 54 45 -36
2 b 72 3 -56 48 -40 -32
8 e 63 56 - 42 -35 28
4 a 54 48 42 ; -30 24
Gyt 45 -40 35 -30 p -20
(et R 32 -28 24 -20

After,the tests have been thus arranged, the tendency
which Professor Spearman was the first to notice, and which

are then dividefl through by their standard deviation, they are said
to be :etandardlzed, and we represent them by z, and z,. About
two-thirds of them, then, lie between plus and minus one. With
such scores Pearson’s formula becomes-

_ sum of the products 2z,

1 — L5

number of persons p

.In theoretical work, an even larger unit is used, namely o4/p.
With thes‘e units, the sum of the squares is unity, and the sum of the
produets is the correlation coefficient. The scores are then said to

l‘)‘e nomaffzed, but z-mte that this does not mean distributed in a
normal » or Gaussian manner,
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he called ‘ hierarchical order,” is more easily seen. It is

the tendency for the coefficients in any two columns to have
a constant ratio throughout the column. Thus in our
example, if we fix our attention on Columns a and f, say,
they run (omitting the coefficients which have no partners)
thus : 1

-54 45
48 - +40
-42 35
-24 20

and every number on the right is five-sixths of its partner.
on the left.

Our example is a fictitious one, and the tendency to
hierarchical order in it has been made perfect in order to
emphasize the point. It must not be supposed that the
tendency is as clear in actual experimental data. Indeed,
at the time there were some who denied altogether the
exiStence of any such tendency in actual data. Those who
did so were, however, mistaken, although the tendency is
not as strong as Professor Spearman would seem originally
to have thought)(Spearman and Hart, 1912). The follow-
ing is a small portion of an actual table of correlation coeffi-
cients* from those days (Brown, 1910, 309). (Complete
tables must, of course, include many more tests ; in recent
work as many as 57 in one table.)

Mt 2 3 4 5 6

|
T we .45 . 27 59 80
A 48 s hBYL Y e
8 | 45 48 : 52 40 88
4 | 27 28 B2 . 41 88
b T T Y I 18
o/ ®| igp 24  oBR..-88 . AT,

* Tn this, as in other instances where data for small examples are
taken from experimental papers, neither criticism nor comment is
in any way intended. Illustrations are restricted to few tests for
economy of space and clearness of exposition, but in the experiments
from which the data are taken many more tests are employed, and
the purpose may be quite different from that of this book.
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. G saturations.—This tendency to ‘‘ hierarchical order”

as explained by Professor Spearman by the hypothesis
that all the correlations were due to one * factor " only,
present in every test, but present in largest amount in the
test at the head of the hierarchy. This factor is his famous
“#.” to which he gave only this algebrai¢ name to avoid
making any suggestions as to its nature, although in some
papers and in The Abilities of Man he permitted himself
to surmise what that nature might be. Each test had also
a second factor present in it (but not to be found elsewhere,
except indeed in very similar varieties of the same test),
whence the name, ““ Theory of Two Factors ”—really one
general factor, and innumerable second or specific factors.
It will be proved in the Mathematical Appendix* that
this arrangement would actually give rise to *“ hierarchical
order.” Meanwhile this can at least be made plausible.
For if Test d has that column of correlations (the first
in our table) with the other tests solely because it is
saturated with so-and-so much g; and if Test b has less g
in it than d has, it seems likely enough that b’s eolumn of
correlations will all be smaller in that same proportion.
. We _can, moreover, find what these *“ saturations ** with g
are. For on the theory, each of our six tests contains the
factor g, and another part which has nothing to do with
causing correlation. Moreover, the higher the test is in
the hierarchical ranking, the more it is ** saturated > with g.
Imagine now a fictitious test which had no specifie, a test
for g and for nothing else, whose saturation with g1s 100 per
cent., or 1-0, This fictitious test would, of course, stand
gt the head of the hierarchy, above our six real tests, and
its row of correlations with each of those tests (their
*“ saturations ) would each be larger than any other in the
same column. What values would these saturations take ?
.Before we answer this, let us direct our attention to the
diagonal cells of the “matrix ” of correlations (as it is
called——g,_ matrix is just a square or oblong set of numbers),
cells which we have up to the present left blank. Since
each number in our matrix represents the correlation of the
two tests in whose column and row it stands, there should
* Para. 8: and see also Chapter xviii, end of Section 6, page 283,
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| 1 2 3 4 5 6
Sl e g e g T
1 T i 2 08 5 45 -36
2 Toy 72 - -56 48 40 32
3 ‘ Ty, 63 56 ; 42 -35 28
4 s 54 -48 -42 = 30 24
5 | s 45 -40 85 -30 . 20
6 | 4 36 -32 28 24 20

be inserted in each diagonal cell the number wnity, repre-

senting the correlation of a test with its own identical self.

In these self-correlations, however, the specific factor of

each test, of course, plays its part. These self-correlations

of unity are the only correlations in the whole table in

which specifies do play any part. These unities,” there-

fore, do not conform to the hierarchical rule of propor- |
tionality between the columns.

But the case is different with the fictitious test of pure g.
Tt has no specific, and its self-correlation of unity should
conform to the hierarchy. If, therefore, we call the
« gaturations  of the other tests 7y, Yo Tags Tags 75 80 Tgg
we see that we must have, as we come down the first two
columns within the matrix—

Yy, 72 63 54 A5 36

1 my Ty Ty Tw Te
and similar equations: for each other column with the g
column, which together indicate that the six  saturations ”’

i " I AR i TR
Furthermore, each correlation in the table is the product
of two of these saturations. Thus—
W2=01X 48
0 G
Tag = Ty X Ty
The six tests can now be expressed in the form of

equations : 2 = -9g -+ 4868,
2y = '8¢ -+ +6008,

2g =g 4+ 7148
z4 = '6g + 8003,
25 = 5g + '86685
2g = 4g + 917sg

F.A—]1*
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Herein, each z represents the score of some person in the
test indicated by the subscript, a score made up of that
person’s g and specific in the proportions indicated by the
coefficients. The scores are supposed measured from the
average of all persons, being reckoned plus if above the
ayverage and minus if below ; and so too are the factors g
and the specifics. And each of them, tests and factors, is
*“ standardized,” i.e. measured in such units that the sum
of the squares of all the scores equals the number of
persons. - This is achieved by dividing the raw scores by the
“standard deviation.” The saturations of the specifics
are such that the sum of the squares of both saturations
comes in each test to unity, the whole variance of that test.

i 486 = 4/(1 — -97)

5. A weighted battery.—This brief outline of the Theory
of Two Factors must for the moment suffice. It is
enough to enable the question to be answered which at the
end of our Section 2 led to the digression. (* How,” the
reader asked, *“ do we know a pure factor, how are we to
tell when the actual tests approximate to it 7 In the
Two-factor Theory the important pure factor was g itself,
and a test approximated to it the more, the higher it stood
%ﬂ the hierarchy. Its accuracy of measurement of g was
Indicated by its “saturation.” And a battery of hier-
archical tests could be weighted so as to have a combined
saturation higher than that of any one member, each test
for this purpose being weighted (as will be shown in Chapter

XV) by a number proportional to —T“’*, where 7,, is the
. o z r£g2

g satur‘a.tlon of Test i (dbilities, p. xix). The battery

saturation or multiple correlation with g is then—

JS
1+8

where S = ¥

Tert
PEE
Although g remained a fiction, yet a complex test, made up
of a weighted battery of tests which were hierarchical,

could approach nearer and nearer to measuring it exactly,

f
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as more tests were added to the hierarchy. Each test added
would have to conform to the rule of proportionality in its
correlations with the pre-existing battery. If it did not
do so it would have to be rejected. The battery at any
stage would form a kind of definition of g, which it ap-
proached although never reached. And a man’s weighted
score in such a battery would be an estimate of his amount
of g, his general intelligence. The factorial deseription of
a man was at this period confined to one factor, since the
specific factors were useless as description of any man.
For one thing, they were innumerable ; and for another,
being specific; they were only able to indicate how the man
would perform in the very tests in which, as a matter of
fact, we knew exactly how he had performed.}

\ 6. Oval diagrams.—It is convenient at this point to
introduce a diagrammatic illus-
tration which will be useful in the

less technical part of this book, %

although/like all illustrations i =

must be taken only as such, and the i
Figure 1.

analogy must not be pushed too far.
If we represent the two abilities, =
which are measured by tests, by ,?/,
two overlapping ovals as in %

Figure 1, then the amount of the

overlap can be made to represent

the degree to which these tests are 1.
correlated. If we call the whole
area of each oval the “ variance ”’
of that ability, we shall be intro-
ducing the reader to another
technical term (of which a de-
finition was given in the footnote
to page 5). Here it need mean
nothing more than the whole
“ gmount > of the ability. The
overlap we shall call the * covariance.” If the two
variances are each equal to unity, then the covariance is
the correlation coefficient. To make the diagram quantita-
tive, we can indicate in figures the contents of each part of

Figure 3,
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the variance, as in the instance shown, which gives a
correlation of &, or ‘6. If the separate parts of each
variance (i.e. of each oval) do not add up to the same
quantity, but to v; and v,, say, then the covariance (the
amount in the overlap) must be divided by /0,7, in order
to give the correlation. Thus, Figure 2 represents a
correlation of 8 -~ 4/(4 x 9) = -5." No attempt is made
in the diagrams to make the actual areas proportional to the
parts of the variance, it is the numbers written in each cell
which matter.

The four abilities represented by four tests can clearly
overlap in a complicated way, as in Figure 8, which shows
one part of the variance (marked g) common to all four of
the tests ; four parts (left unshaded) each common to three
tests ; six parts (shaded) each common to two tests ; and
four outer parts (marked s) each specific to one test onlys
The early Theory of Two Factors adopted the hypothesis
that, except for very similar varieties of the one test, none
of the cells of such a diagram had any contents save those
marked g and s, the general and the specific factors. The
“ variance ” of each ability was in that theory completely
accounted for by the variance due to g, and the variance
due to s.

/ 7. Tetrad-differences.—In Section 8 it was explained that
the discovery made by Professor Spearman was that the
(correlation coefficients in two columns tend to be in the
same ratio as we go up and down the pair of columns.
That is to say, if we take the columns belonging to Tests
b and f, and fix our attention on the correlations which

b and f make with d and e, we have :

il N

d 72 45

e 56 35
where 12 = _59
-45 35

This may be written—

T2 X85 — 45 X 56 = 0
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and in this form is called a  tetrad-difference.” 1In
symbols this one is—
Taley — Taffs = 0

Spearman’s discovery may therefore be put thus : “ The
tetrad-differences are, or tend to be, zero.”” It is clear that
this will be so if, as we said was the case in the Theory of
Two Factors, each correlation is the product of two cor-
relations with g. For then the above tetrad-difference

becomes— e
Tag"sg ey — TagTss e 0 )

which is identically zero. The present-day test for hier-
archical order in a correlation matrix is to calculate all the
tetrad-differences (always avoiding the main diagonal) and
see if they are sufficiently small. If they are, then the
correlations can be explained by a diagram of the same
nature as Figure 3, by one general factor and specifics. It
is, of course, not to be expected in actual experimenting
that the tetrad-differences will be exactly zero; no experi-
ment on human material can be as accurate as that. What
is required is that they shall be clustered round zero in a
narrow curve, ifalling off steadily in frequency as zero is
departed from: The number of tetrad-differences increases
very rapidly as the number of tests grows, and in an actual
experimental battery the tetrads are very numerous indeed.
In the small portion of a real correlation table given above
(page 7), with six tests, there are 45 tetrad-differences,*
and in this instance they are distributed as follows (taking
absolute values only and disregarding signs, which can be
changed by altering the order of the tests) :

From -0000 to -0999, 28 tetrad-differences.
From -1000 to 1999, 13 tetrad-differences.
From -2000 to 2796, 4 tetrad-differences.

This distribution of tetrads can be represented by a
“ histogram * like that shown in Figure 4, which explains
itself. Tt is clear that some criterion is required by which
we can know whether the distribution of tetrad-differences,
after they have been calculated, is narrow enough to justify
us in assuming the Theory of Two Factors. This criterion

* Not all independent.
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is explained in Chapter III, page 41. One form of it con-
sists in drawing a distribution curve to which, on grounds
of sampling, the tetrad-differences may be expected to con-
form. Any tetrad-differences which seem to be too large
to be accounted for by the Theory of Two Factors are then
examined, to see whether the tests giving them have any

28|28

13 13

4 4

321 0 1 2 -

Figure 4,

slight * disturbers *’

special points of resemblance,
in content, method, or other-
wise, which may explain why
they disturb the hierarchy.

V8, Group factors—As time
went' on it became clear that
the tendency to zero tetrad-
differences, though strong, was
not universal enough to permit
an explanation of all correla-
tions between tests in terms of
g and specifics, with a few

in the form of slightly overlapping

specifics. Tt became necessary to call in group factors,
which run through many though not through all tests,
to explain the deviations from strict hierarchical order.
The Spearman school of experimenters, however, tend
always to explain as much as possible by one central
factor, and to use group factors only when necessitated.
They take the point of view that a group factor must, as
it were, establish its right to existence, that the onus of
proof is on him who asserts a group factor. As a tiny
artificial illustration, a matrix of correlation coefficients :

2 3 4
5 .5 .5
. -8 5
-8 : 5
-5 5

would be examined, and its three tetrad-differences found

to be :

Z€ro
15
15



THE THEORY OF TWO FACTORS 15

Inspection shows that the correlation 7y, is the cause of’
the discrepancies from zero, and the experimenter trained
in the Two-factor school would therefore explain these
correlations by a central factor running through them all,
plus a special link joining Tests 2 and 3, as in Figure 5. (5

There are innumerable other possible ways of explaining
these same correlations. For
example, the linkages between
the tests might be as in Figure 6,
which gives exactly the same cor-
relations. This lack of unique-
ness is something which must
always be borne in mind in study-
ing factorial analysis. There are
always, as here, innumerable
possible analyses, and the final
decision between them has to be
made on some other grounds.
The decision may be psycho-
logical, as when for example in
the above case an experimenter
chooses one of the possible dia-
grams because it best agrees with
his psychological ideas about the
tests. Or the decision may be
made on the ground that we
should be parsimonious in our
invention of ¢ factors,” and that
where one general and one group factor will serve we should
not invent five group factors as required by Figure 6.
Both diagrams, however, fit the correlational facts exactly,
and so also would hundreds of other diagrams which might
be made. As has been said, the two-factor tendency is to
take the diagram with the largest general factor (and the
largest specifies also) and with as few group factors as
possible.

0, The verbal factor—In this way the Theory of Two
Factors has gradually extended the  two ”” to include, in
addition to g and specifics, a number of other group factors,
still, however, comparatively few. These group factors

Figure 6.
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bear such names as the verbal factor v, a mechanical factor
m, an arithmetic factor, perseveration, ete.) The charac-
teristic method of the Two-factor school can be well
seen, without any technical difficulties unduly obscuring
the situation, in the search for a verbal factor. | The idea
that, in addition to a man’s g (which is generally thought
of as something innate) there may be an acquired factor
of verbal facility which enables him to do well in certain
tests, is a not unnatural one. YA battery of tests can be
assembled of which half do, and half do not, employ words
in their construction or solution. The correlation matrix
will then have four quadrants, the quadrant V containing
the correlations of the verbal tests among themselves, the

| %4 G

&
\
\
J
\

G 15

|
|
|
|
|
|
|

quadrant P the correlations of the non-verbal or, say,
pictorial tests, and the quadrants C' containing the cross-
correlations of the one kind of test with the other. If the
whole table is sufficiently ‘ hierarchical,” there is no
evidence for a group factor v or a group factor piealt
either of these factors exists, there will be differences to be

noticed between the six kinds of tetrad which can be
chosen, namely :

P (i p p
v 0|l @ @ | ?
(2) (3)
v i r @ Pl =
v p v D
v @ . P wf A
(4) (5)

PRI N—
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A tetrad like 1, with two verbal tests along one margin
and two pictorial tests along the other, will be found in
quadrant C. Neither a factor common to the verbal tests
only, nor one common to the pictorial tests only, will add
anything to any of the four correlations in such a tetrad-
difference, which may be expected, therefore, to tend to be
zero. If the tetrads in C seem to do so, the other tetrads
can be examined. Tetrad 2 is taken wholly from the V
quadrant. In it the verbal factor, if any is present, will
reinforee all the four correlations, and should not therefore
disturb very much the tendency to a zero tetrad-difference.
(Reinforced correlations are marked by @ in the diagrams.)
The same is true of Tetrad 8 taken wholly from the P
quadrant. Tetrads 4 and 5 have each two of their cor-
relations reinforced, by the v factor in 4 and by the p
factor in 5, but in each case in such a way as not to change
very much the tetrad-difference. It is when we come to
tetrads like 6, which have one correlation in each of the
four quadrants, that the presence of either or both factors
should show itself strongly : for the two reinforced correla-
tions here occur on a diagonal, and inflate only the one
member of the tetrad-difference—

Tellpp — Teplpo

If, then, a verbal factor, and also a pictorial factor, are
present, the tendency for the tetrad-differences to vanish
should become less and less strong as we consider tetrads .
of the kinds 1, 2 and 8, 4 and 5, and especially 6, where
the tetrad-differences should leap up. If only the verbal
factor is present, tetrad-differences of the kind 8 should
vanish rather more than those of the kind 2. But it will
not be easy to distinguish between either suspected factor,
and both. Tetrads like 6, however, should give conclusive
evidence of the presence of one or the other, if not both.
Methods like this were employed by Miss Davey (Davey,
1926), who found a group factor, but not one running
through all the verbal tests, and by Dr. Stephenson
(Stephenson, 1981), whose results indicated the presence
of a verbal factor.*

* T, L, Kelley had already found by other methods strong evidence
of a verbal factor (Kelley, 1928, 104, 121 et passim).
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V" 10. Group-factor saturations.—Just as the g saturations
of tests can be calculated, so also can the saturation of a
test with any group factor it may contain. The general
method of the Two-factor school is first to work with
batteries of tests which give no unduly large tetrad-
differences, and which also appear to satisfy one’s general
impression that they test intelligence. From such a
battery, of which the best example is that of Brown and
Stephenson (B. and S., 1933), the g saturations can be
calculated.* Each test has, however, also its specific,
which, so long as it is in the hierarchical battery, is unique to it
and shared with no other member of the battery. A test
may now be associated with some other battery of different
tests, and with some of these. it may share a part of its
former specific, as a group factor which will increase its
correlation beyond that caused by g. The excess correla-
tion enables the saturation of the test with this group
factor to be found—the details are too technical for this
chapter—and the specific saturation correspondingly
reduced.  Finally, the tester may be able to give the
composition of a test as, let us say (to invent an example)—
T1g + 400 + -84n + -47s
where g is Spearman’s g, v is Stephenson’s verbal factor,
7 is a number factor, and s is the remaining specific of the
test. The coefficients are the * saturations ” of the test
with each of these; that is, the correlations believed to exist
between the test and these fictitious tests called factors.
The squares of these saturations represent the fractions of

the test-variance contributed by each factor, and these
squares sum to unity, thus ;

Saturation Squared
5041
1600
1156
2209

o I @

: 1-:0006
* For the sake of clarity the text here rather oversimplifies the

situation. The battery of Brown and Stephenson contains in fact
a rather large group factor as well as g and specifics,




CHAPTER II
BIFACTOR ANALYSIS AND CLUSTERS

1. The bifactor method.—Holzinger’s Bifactor Method
(Holzinger, 1935, 1987a) may be looked upon as another
natural extension of the simple Two-factor plan of analysis.
It endeavours to analyse a battery of tests into one general
factor and a number of mutually exclusive group factors.
A diagram of such an analysis looks like a *“ hollow stair-
case,”’ thus : :

Test g h k l
1 X X
2 X %
3 X X
E! B X
A e A X
B X
@ X X
8 X X
g I X

Here factor g runs through all, as is indicated by the
column of crosses. Factors b, k, and [ run through mutu-
ally exclusive groups of tests each. The saturations with
g can be calculated from sub-batteries of tests which form
perfect hierarchies, by selecting only one test from each
group (in every possible way). After these are known,
the correlation due to g can be removed, and then the
saturations due to each group factor found.

The following artificial example will illustrate some of
the points of this method. Congider these correlations,
which to save space are printed without their decimal
points :

19
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IR ARED, Sd i eed g el 80 8 10 11 12

1 67 40 45 683 683 20 28 T4 52 45 34
2 57 84 25 58 89 17 44 68 43 39 56
3 40 34 ¥8ENBT 27 59.°16 44 70 78 20
4 45 25 18 Ziaualv s D912 82 . 22 20 15
5 88. 58 “57 127 42 40 26 68 @67 63 31
6 63 89 27 51 42 18 18 50 34 30 23
r 20 17 59 09 40 18 08 22 60 64 10
8 28 44 16 12 26 18 08 85 21 18 438
9 74 68 44 382 68 50 22 35 56 50 44

56 78 25
0 78 23

4 25 2

10| 52 43 70 22 67 84 60 21 5
11 45 39 73 20 63 30 64 18 5
12| 84’ 66 20 15 381 23 10 48 4

There are two stages in a bifactor analysis. The first
problem is to decide how to group the tests so that those
are brought together which share a second or group factor.
Then the best method of calculating is needed to find the
loadings.

The grouping can partly be done subjectively by con-
sidering the nature of each test and putting together
memory tests, or tests involving number, and so on.
Holzinger uses a * coefficient of belonging,” B, to determine
the coherence of a group. B is equal to the average of the
intercorrelations of the group divided by their average
correlation with the other tests in the battery. The higher
B is, the more the group is distinguishable as a group.
He begins with a pair of tests which correlate highly with
one another, and finds their B. Then he adds a third test
and finds the B of the three. Then another and another,
until B drops too low. There is no fixed threshold for B,
but a rather sudden drop would indicate the end of a
group.

2. Tryon’s grouping.—Another plan is to make a graph
or profile of each row of correlations and compare these
(Tryon, 1989), grouping together those tests with similar

---Plv'ﬁfl]es. I find it easier to consider only the peaks of each
.+ 'Tow and compare the rows with regard to these. If we
mark, in each row. of the above, the five highest correlations

L2
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in that row, and also the diagonal cell, we get the following
set of peaks :

¥ R T B bt i ) | Y S £
1 X B .4 K
2% | X ¢ S 5 X
3 | X X e n i
4 > il ) 2% X
5 X 5 X 56 e
(A R { B30 HE B X
7 X X 'S S B
8 X Bt X > e
9 AL e e
10 X % X S = B L
11 X X a SRR
12 | MELX X e 8

We then see that, in the rows,

(a) Tests 3, 7, 10, 11 have identical peaks,

(b) 2 2’ 8! 12 2 2 bE]

((.) 23 4’ 6 2 2 2
and we take these as nuclei for three groups. There re-
main Tests 1, 5, and 9. Their average correlations with
each of the above nuclei are :

a b ¢

1 -39 40 54
5 a3 37 35
9 43 -49 41

We therefore add Test 1 to group ¢, Test 5 to group &,
and (less certainly) Test 9 to group b. We then rewrite
our matrix with the tests thus grouped (see next page) :

It will be seen that certain additions have been made in
readiness for the various methods of caleulation of the g
loadings which are then possible. If we symbolize the

table overleaf as

A D E
D B ¥ = auoATION rai\
E ¥ C ¢ ‘Pa
¢ of Extensio” g\
{ 3 <er 4.r_¢>.7 //‘ -~
D

2 bt e~
y
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85 7 1011 2 8 9 12 T
3 57 59 70 78 | 84 16 44 20 |1-14 | 40 18 27 | -85
&5 o7 40 67 63 ' | 53 26 68 31 (178 | 63 27 42 | 1-32
7 | 59 40 60 64 17 08 22 10 | 57 | 20 09 18 42
10 |70 67 60 78 ’ | 48 21 56 25 | 1445 | 52 22 34°| 1-08
11 |73 636478 | 89 18 50 23 [1:80 | 45 20 30 95
| | 624 162
2 | 34 53 17 43 39 51'86 44 68 56 | 57 25 39 | 1-21
8 |16 26 08 21 18 | -89 | 44 85 43 28 12 18 | -58
9 | 44 68 22 56 50 | 2:40 | 68 85 44 74 82 50 | 1:56
12 |20 81 10 25 23 |1-09 | 56 43 44 | 84 15 28 | 72
6-24 ‘ ‘ 4-07
1 |40 63 20 52 45 | 220 | 57 28 74 84 ‘ 193 45 63
4 | 18 27 09 22 20 | 96| 25 12 82 15 | 84|45 51
6 | 27 42 13 84 30 | 1-46 | 39 18 50 23 | 1-30 | 63 51
l4-62 407 |

all methods depend on using only the correlations in the
rectangles D, E, and F, since the suspected group factors
which increase the correlations in A, in B, and in C do not
influence D, E, and F. Each correlation in the latter
rectangles is therefore the product of two g-saturations
(see page 9). Thus :

rg = 40 = L1,
T3e = -84 =L,
le == '57 = lll2

40 X -34
57 =24, l; = 49

FRaey ) S
ep

where it should be noted that the three correlations come
from E, D, and F respectively.

But this value for the loading of Test 8 depends upon three
correlations only and would, in a real experimental set of
data, vary somewhat with our choice of the three. A
method of using all the possible correlations in these three

rectangles is needed. One such is given by Holzinger in
his Manual (19874).



BIFACTOR ANALYSIS AND CLUSTERS 23
8. Holzinger’s formula—If all possible ways of choosing

the two other tests are taken, and the fraction ?.—3;_‘7—31 formed
. 1ij
in each case ; and if the numerators of these fractions are
added together to form a global numerator, and their
denominators to form a global denominator ; it will then
be found that the fraction thus formed is equal to
, 114 x -85
Eo ST
and this time all available correlations have been used.
The rule is to multiply the two totals in the row of the
test (1-14 x -85) and divide by the grand total of the
block formed by the other tests concerned (1, 4, and 6
with 2, 8, 9, and 12, i.e. 4-07). For Test 2 this rule gives
,  1:86 x 1-21
3T 482
This Holzinger method is not difficult to extend to four
or more groups. If we symbolize a four-group matrix by
A D E G
D B F H
E F C K
G H KT T
and consider the first test, then its g-loading 1 is given by
i drebidd o

F+H+K
where d, e, and g are the sums of its row in D, E, and G.

4. Burt's formula—Another method is given by Burt
(1940, 478). For the numerator of each g loading he takes
the sum of the side totals which Holzinger multiplied.
Thus the numerators are :

for Test 8, 1-14 -+ -85 = 1-99
. 5,18 f 1:82:="8-10
, . 2,186 4+ 1:21 = 8-07
L aoang =i 8]

3 » 6, 1-46 + 1-30 = 2:76.

— 24, I; = 49

— 49, I, = *10.
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The denominators differ in group a, group b, and group e,
but all are formed from the three quantities 6-24, 462,
and 4:07. For group a the denominator is :

624 4-62
4 e s 408,
Sl {'/4-62 2 N/G-‘H}

It will be seen that the two quantities within the curly
brackets are the totals of D and E, the two rectangles
from which the numerators of group a come. By analogy
the reader can write down the denominators of group b
and group ¢—they come to 4:40 and 5-01. Dividing the
numerators by the appropriate denominators, we get for
the g loadings :

Test SERNOR RS TORTIN2E 8- 9 12 1 4 6
g Loading -49 76 ‘24 -62 -55 70 -83 -90 41 -82 -86 ‘55

The proof of Burt’s formula is surprisingly easy. If the
reader will write down, in place of the correlations in D,
E, and F, the literal symbols Ll, (for rg)—since our
hypothesis is that only g is concerned in these correlations
—and will write out the sums, ete., of the above caleulation
literally, he will find that Burt’s formula simplifies almost
immediately to one I, that of the test in question. Burt
only gives his formula for three groups. It can be extended
to the case of more groups, but becomes cumbersome and
rather unwieldy.

5. The test of correct grouping.—Now comes the test of
whether our grouping is correct, and our hypothesis valid
that groups «, b, and ¢ have nothing in common but the
factor g. Using the loadings we have found, form all the
products [, and subtract them from the experimental
correlations. All the correlations in D, E, and F should
then vanish or, in a real set of data (ours are artificial),
become insignificant. There should, however, remain
residues in A, B, and C due to the second factors running
through groups a, b, and ¢ respectively. In our example
the subtraction of the - quantities 11, gives the residues
shown at the top of page 25.

The correlations left in A, if they are due to only one
other factor (now that g has been removed), ought to show
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8 5 71011 2 8 9 12 128
g Loadings 49 76 24 62 55 70 33 90 41 82 36 55

5 49| 20 47 40 46 |
76 | 20 292 20 211
v 24| 47 22 45 51 |

10 62| 402045 44|
5

11 55| 46 21 51 44 |

2 170 \ | 236829

8 83| 23 30 14

9 90 63 80 87

12 41 | 29 14 37

1 82| | 15 18
36 | 15 8

6 5D 1 18 31

zero or very small tetrads ; and so they do. Those in B
are also hierarchical. Those in C are too few to form a
tetrad. The second factor in each of these submatrices
can now be found in the same way as g is found from a
matrix with no other factor : see page 9 and, later in this
book, pages 42 to 44. The reader should complete the
caleulation, and will find these loadings :

Factors
Test g U v w0

3 49 65
5 76 -30
/f 24 72
10 62 -62

iy 55 Tl -
2 70 : 44
8 33 . A7
9 90 s it

12 41 . 62 ;
1 -82 ; . 29
! 36 ; . -50
6 55 . . -62
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An actual set of data will not give so perfect a hollow
staircase, but at this stage the strict bifactor hypothesis
can be departed from and additional small loadings or
further factors added to perfect the analysis. Where a
bifactor pattern exists, a simple method of extracting
correlated or oblique factors has been given by Holzinger
(1944) “based on the idea that the centroid pattern
coefficients for the sections of approximately unit rank
may be interpreted as structure values for the entire
matrix.”

6. Cluster analysis.—This is connected with the bifactor
method, which is possible when clusters do not overlap.
But it is by no means rare to find two or three variables
entering into several distinct clusters. Raymond Cattell’s
article (1944a) describes four methods of determining
clusters, and gives references which will lead the interested
reader back to much of the previous work, and see also
Tryon’s work Cluster Analysis, 1939. The most naive
method of classifying tests into clusters, one needing no
mathematics whatever, is simply to put together all the
tests which intercorrelate above a certain level. We can
illustrate this adequately on the above example. Let us
collect into clusters tests which correlate with one another
at least 0-40. A routine is desirable to ease the task and
avoid overlooking any clusters. Turn to the table on
page 20 and write down from the first row all the tests
which have correlations of 0-40 or more with Test 1,
including itself.

12.8 4°5 6.9 10 11

2 5 9 10
5 9 10
9 10

Cluster A, Tests 1,2, 5,9 10.

Then consider the test next to No. 1 in this line, which
happens to be Test 2, and go along its line in the correlation
table to see which of the tests already noted also correlates
sufficiently with Test 2. They are 5, 9, and 10. The
other tests of our first line drop out, We then look along
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the line of Test 5’s correlation coefficients, and find that
Tests 9 and 10 survive this scrutiny. Finally, we note
that Tests 9 and 10 themselves correlate enough. The
cluster A is therefore (reading down the left-hand edge of
the above triangular set of notes) composed of Tests 1, 2,
5,9, and 10. At this point, to avoid missing other clusters
which may begin with Test 1, it is necessary to consider
what would have happened had Test 2 not been in the
battery. It would be tedious to describe the whole pro-
cedure here, but the reader is urged to go through it, when
he will find six clusters, shown in this diagram.

Figure 7.

7. Comparison with the bifactor groups.—If we compare
these clusters with the grouping we found by *Tryon’s
method of profiles (or peaks), we see that our present clusters
F, E, and C are those we arrived at formerly (except for the
absence of Test 9 from cluster E). And we notice also
that in our diagram these are mutually exclusive clusters.
The missing Test 9 is the one we formerly had most doubt
about classifying. The reason can be seen from the analy-
sis we have already made. It is highly saturated with the
general factor, and only very weakly with the verbal
factor which decides its bifactor group.

8. A less artificial example.—The above example was an
artificial one, made so as to * come out ”’ exactly. Let us
turn to a more realistic example where this s not the case.
The following correlations—decimal points are again
omitted—are from an actual report, but to obviate some
embarrassments in a didactic example I have made all the
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coefficients rather larger than they actually were, Th
first seven “tests ™ are examinations in school subjects,
" the next four are “non-verbal »’ tests with simple pieces
of apparatus, and the last three are special tests supposed
to be uncontaminated by any group factor other than g
v, and k (the * space factor).

ey GRS S GO T8 9 10 11 12 1338
1 Physies 76 82 68 64 40 28 44 19 16 21 45 11700
2 Chemistry . | 76 68 62 52 26 26 43 86 929 o3 38 15 18
3 Mathematics| 82 68 68 47 48 21 87 23 13 20 13 190 18
4 I'rench . | 68 62 68 45 23 84 20 2513 05 926 3400
5 Mech. Draw. | 64 50 47 45 36 17 53 55 88 21 36 07 42
6 Problems . | 40 26 48 23 36 19 51 47 20 40 47 05 86
7 Reading . | 28 96 21 34 17 19 09 07 02 17—07 88 (8
8 Koh’s Blocks| 44 43 37 29 58 51 09 81 50 50 64 43 635
9 Cube Constr.| 19 36 28 25 55 47 07 81 42 53 53 37 66
10 Form Board | 16 29 13-13 88 20 02 50 42 52 84 19 88
11 Passalong. 21 23 20 05 21 40 17 50 53 52 32 32 46
12 gtest | 45 38 43 24 36 47—07 64 53 34 32 40 57
1B otest “ . (11 15 10 84 07 05 gs 43 87 19 32 10 45
14 [ test - |10 13 18 0o 42 36 03 65 66 88 46 57 45

When by the above method we sort these tests into clus-
ters, using 0-40 as boundary line, we obtain the following
diagram :

In passing, we may note that this diagram illustrates
what Raymond Cattell (1946) calls a nuclear cluster, i.e.

clusters. Here the pair 8 and 9 are never separated,
oceur together in clusters B, C, D, and E, and are such a
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nuclear cluster. For bifactor analysis, however, we want
non-overlapping clusters.

9. A first attempt at grouping.—Searching in this diagram
for at least three non-overlapping contours, we find
clusters A, F, and either C or D. Of the alternatives let
us take D, and rewrite our table of correlations with these
clusters separated. This leaves Tests 6 and 7 out of the
picture, and further study of the diagram leads us also to
omit 5, which is linked with both F and D through cluster B.
Our table, and its calculations, then is as follows :

‘1234, 8 9 1011 12 13 14 |
— | ‘ !
1| 76 82 68 | 4419 16 21 1 1:00 | 45 11 10 | 66
2| 76 68 62 | | 43 36 20 23 | 131 | 38 15 13 | -66
8| 82 68 68 | | 87 23 13 20 | 93| 43 19 18 | -80
4| 68 62 68 ‘[ | 29 2513 05 | 46 | 26 34 00 = -60
1 370 272
8| 44 43 87 29 | 1:58 81 50 50 64 43 65 | 1-72
9| 19 86 23 25 |1:03| 81 42 53 53 87 66  1-56
10| 16 29 1313 | 45| 50 42 52 34 19 38 | 91
11| 21 23 20 05 | 69| 50 53 52 32 32 46 ‘1-10
870 | | 5-20
12| 45 88 43 26 |1-52 | 64 583 34 32 | 1-83 40 57 (
18| 11 15 19 84 | 79| 48 87 19 82 |1:81 |40 45
14| 10 13 18 00 | -41 | 65 66 38 46 | 215 | 57 45 |
| 272 5-29

From this table, by Holzinger’s formula, we obtain the
¢ loadings shown at the right of the next table. For
example : :

0-45 X 0-91
By= g = 18055, by = 388
When, using these g loadings, we remove the parts of the
correlations due to that factor, we get the following table

of residues. For example :
76 — 8353 X 404 = -62.
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On examining these residues, however, we

Residues
1 2 3 4 8 9 10 11 12 18
1 62 69 60 09 —08 02 02 14 —08
2 62 53 53 03 05 13 02 03 —06
8 69 538 59 00_——06 —02 00 10 —01
4 60 53 59 007 =22 0% 06 22 —
8 09 03 00 07 05 12 —02| —21 —09
9 —08 05 —06 o7 05 120012 —14 —04
10 02 13 —02 —22 12 12 32 00 —02
11 02 02 00 —07| —02 12 32 —14 04
12 14 03 10 06| —21 —14 00 —14 —06
18 —08 —06 —01 22| —09 —04 —02 04 06
14| —07 —07 00 —11 p B 19 20 15 19

— 07

g
14 | Load-
ings
—07 “353
404
00 | 375
11 ‘ 228
17 ‘-984
28 | 769
19 |-388
20 | 528
15 | -8B
19 | 529
488

\

see that this

time our hypothesis, that the clusters are exclusive with
regard to their second group factors, is not justified. True,
many of the residues in the side squares are very small.
But two facts strike the eye: Test 14 (the k& or space
factor test) has quite large residues with the middle or non-
verbal group, and Tests 10 and 11 (Form Board and
Passalong) have a much larger residue than the other
tests in the middle square. These facts suggest further
purging the battery of 14 and either 10 or 11. Tt is very

[l -
wmluewlpwwul

Residues

|
T et il 6 RO 12 13
57 64 52 08 —08 02| 10 —11
57 48 45 05 07 03 00 —09
64 48 52 00 —05 01 07 —04
52 45 52 —02 02 —11| —05 15
EEEE s e Ly s L TS 16
08 05 00 —o02 28 13| —06 —o01
—08 07 —05 o2 28 25 00 04
0254085 01 — 11 13 25 —04 09

L B R e D
10 00 07 —05| —08 00 —o4 13

—11 —09 —04 15| —01 04 o9 18

Load-
ings
424
455
436
368

842
633
437

835
522
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frequently necessary to “ purge » a battery before the
proper loadings of the remaining tests can be ascertained.
10. The purged battery.—When we do this (the reader
should rewrite the tables and carry out the work), we get
the loadings and residues shown at the foot of page 30.
This table is much more like our artificial model. None
of the correlation coefficients in the side squares are far
from zero—we shall learn later how to decide whether they
are, in fact, small enough to be ignored. Meanwhile, let us
assume this, and suppose, that is to say, that these three
groups of tests really are exclusive of one another in their
second group factors. Their loadings in these we could
then proceed to caleulate. This is easily done in the middle
group, where there are exactly three tests. We have :

28 X -13
my = — - = 1456, mg = 882
8 25 8
28 X 25
I = L 5884, my, = 784
‘13
25 X ~18
mhy = — Y ‘1161, my; = 841

The equations of these three tests are therefore:

2 = '842g -+ -382h + 883 s
%, — '688g | -784 -+ 246 5,
2, = -487g + -841h + 832 sy,

where the group factor common to them is given the non-
committal name h. The coefficients of the specifics are
settled by the fact that the sum of the squares of the co-
efficients of such an equation (since the factors are inde-
pendent) must equal unity. It will be noticed that Test 11
(Passalong) has here a large specific. It probably shares a
good deal of this with Test 10 (Form Board) which we
excluded from the battery meanwhile for this very reason.*
We cannot similarly calculate the group factor loadings of
the third group of tests, for there are only two of them and

_ * It should be repeated at this point that this example is purely
illustrative, and no conclusions about actual tests may be drawn
from this or from any of our examples. This is a book about
factorial methods, not results.
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three tests are necessary. We only know that the product
of their two group factor loadings is -13. This emphasizes
the necessity, in planning a bifactor battery, to have a
sufficient number of tests. There must be at least three
groups, and at least three tests in each group. ‘

The first group has four tests, and our first step should be
to see whether its tetrad-differences are zero. If they were
exactly zero, it would be immaterial which three of the
four tests we chose to calculate loadings from. Here the
tetrad-differences, though small (-0084, 0884, -0468), are
not exactly zero. We shall defer to the next chapter
(page 43) the question of how to make the best estimate
of the loadings under these circumstances, but the reader
might care to calculate them from every possible three of
the four tests and average the results. Our illustration has
served its purpose of bringing to light difficulties which do
not exist in an artificial example made to avoid raising
them,



7'“/1. Sampling error—The general idea underlying the
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CHAPTER III

SAMPLING ERROR AND THE THEORY OF TWO
FACTORS

otion of a sampling error is not a difficult one. Take, for
example, the average height of all living Englishmen who
are of full age. This could, if need be, be ascertained by the
process of measuring every living Englishman of full age.
Actually this has never been done, and when anyone makes
a statement such as * The average height of Englishmen is
67} inches,” he is basing it upon a sample only. This
sample may not be an unbiased one. Indeed,(samples of
Englishmen whose height has been officially recorded are
heavily loaded with certain classes of Englishmen—for
example, prisoners in gaol, and unemployed young men
joining the army of preconscription days. The average
height of such men may well differ from that of all English-
men. But when we speak of sampling error, we do not
mean error due to the sample being known to be a biased
one. Even if the sample of Englishmen used to find the
average height of their race were, as far as could be seen, a
perfectly fair sample, containing the proper proportion of
all classes of the community and of all adult ages, ete., it
yet would not necessarily yield an average exactly equal
to that of all Englishmen. Several apparent replicas of the
sample would yield different ayerages. It is these differ-
ences, between statistics gathered from different but
equally good samples, that we mean by sampling errors. )
It is worth while calling attention at this point to a
general fact which will be found of importance at a later
stage of this book. (The true average height of Englishmen
is only so by definition, and does not in principle differ
from the average of a sample. We had to define the popu-
lation we had in mind as “ all living Englishmen of full
age.” This is a perfectly well-marked body of men. But
F.A—2 33
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it is in Figure 9, which is the distribution of single
measurements.)

If a sample were made with some special end in view,
such as ascertaining whether red-headed men tend to be
tall, we would decide whether we had detected such a
tendency by calculating the probability that a mean such
as our red-headed sample showed, or a mean still farther
away from M, would occur at random. For this purpose
we would compare the deviation of our sample from M

with the standard deviation of the distribution of such [ '

samples, obtained by dividing the standard deviation of

individuals by the square root of P, the number in the

sample. The ratio of the deviation found, to the standard

deviation, is the criterion, and the larger it is the more

likely is it that red-headed men really do tend to be tall.

For many practical purposes we take a deviation of over
ice the standard deviation as * significant.’’

Sometimes the reader will find significance questions
discussed in terms of the * probable error ”* instead of the
standard deviation. The probable error is best considered
as a conventional reduction of the standard deviation (or
standard error, as it is sometimes called) to two-thirds of
its value (more exactly, to ‘67449 of its value).

Not only would the average height, or the average weight,
of the sample of red-headed men differ from sample to
sample. Statistics calculated in more complex ways from
the measurements will also vary from sample to sample,
as, for example, the variance of height, or the variance of
weight, or the correlation of height and weight. Let us
consider first the variance of the heights. In the whole
population this is caleulated by finding the mean, expres-
sing every height as a plus or minus deviation from the
mean, squaring all these deviations, and dividing the sum
by the number in the population. :

This is also how we would find the variance of the sample
if we really want the variance of the sample. But if we
want an estimate of the variance in the whole population,
and the sample is small, it is better to divide by one less
than the number in the sample. A glimpse of the reason
for this can be got by considering the case of the smallest

-
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possible sample, namely, one man. Here the mean of the
sample is the one height that we have measured, and the
deviation of that measurement from the mean of the sample
‘s zero. The formula if we divide by the number in the
sample (one) will give zero for the variance—and that is
correct for the sample. But it would be too bold to estimate
the variance of the whole population from one measurement:
if we divide by one less than the sample we get variance
— 0/0, that is, we don’t know, which is a wiser state-
ment.* -

More generally we can begin to understand the reason
for dividing by (p — 1) instead of by p by the following
considerations.

The quantity we want to estimate is the mean square
deviation of the measurements of the whole population,
the deviations being taken from the mean of that whole
population. We do not, however, know that true mean,
and therefore in a sample we are reduced to using the mean
of the sample, which except by a miracle will not exactly
coincide with the true or population mean. The conse-
quence is that the sum of the squares we obtain is smaller
than it would have been had we known and used the true
mean. For it is a property of a mean that the sum of the
squares of deviations from it is smaller than of deviations
from any other point.

* Tt is important to remember that sampling the population is not
the only source of error in the measurement of statistics, e.g. the
correlation coefficient, Al sorts of influences may disturb it. These
will ‘usually * attenuate > the correlation coefficient, i.e. tend to
bring it nearer to zero, as can be seen when we consider that a perfect
correlation only can be reduced by error. But they will not always
do so, and if the errors in the two trait measurements are themselves
correlated, they may even increase the true correlations in a majority
of cases. An estimate of the amount of variable error present can
be made from the correlation of two measurements of the same
trait on the same group, a correlation called the * reliability,” which
should be perfect if no variable errors are present. Spearman’s cor-
rection for attenuation (see Brown and Thomson, 1925, 156) is based
upon this. Like all estimates, the correction for attenuation is correct,
even if the errors are uncorrelated, only on the average and not in
each instance, and it should never be used unless it is small. If it
is large, the experiments are « unreliable ** and should be improved.
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Consider for example the numbers 2, 3, and 7. Their
mean is 4, and the sum of the squares about 4 is—

(= @E L (— 1) + 8 — 14

About any other point this sum will be greater than 14.
About 5, for example, the sum is—

(—8) 4+ (—2)* 428 =17
About 2 the sum is—
0% 4 12 + 5 — 26

It follows that the sum of the squares we obtained by
using the sample mean was as small as possible, and in the
immense majority of cases smaller than the sum about the
true mean. It is to compensate for this that we divide
by (p — 1) instead of by p.)

These elementary considerations do not of course indi-
cate just why this procedure should, in the long run, ex-
actly compensate for using the sample mean. Why not
(P — 2), one might say, or (p — 8) ? It is not possible, in
an elementary account like the present, to answer this.
Geometrical considerations, however, throw some further
light on the problem. The p measurements of the sample
may be thought of as existing in a certain space of (p — 1)
dimensions. For example, two points define a line (of one
dimension), three points define a plane (of two dimensions),
and so on. The true mean of the whole population is not
likely to be within that space, whereas the mean of the
sample ¢s. The deviations we have actually squared and
summed are therefore in a space of one dimension less than
the space containing the true mean. One degree of free-
dom ™ has been lost by the fact that we have forced the
lines We are squaring to exist in a space bf (p — 1) di-
mensions instead of permitting them to project into a
p-space. Hence the division by (p — 1) instead of p.

This principle goes farther. For each statistic which we
caleulate from the sample itself and use in our subsequent
caleulations, we lose a * degree of freedom.”

\ The standard error of a variance v, if the parent popula-
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tion from which the samples are drawn is normally distri-
buted, is estimated as—
04/2
Vip—1)
where p is the number of persons in the sample. The
standard error of a correlation coefficient » is, with the

same condition, estimated as—
Li=nd
Vip—1)

The use of this standard error, however, should be dis-
continued (unless the sample is large and r small).

Fisher (1925, page 202) has pointed out that the use of the
formula for the standard error of a correlation coefficient
is valid only when the number in the sample is large and
when the true value of the correlation does not approach
1. For in small samples the distribution of 7 is. not
normal, and even in large samples it is far from normal
for high correlations. The distribution of r for samples
from a population where the correlation is zero differs
markedly from that where the correlation is, say, 0-8.
This means that the use of a standard error for testing
the significance of correlation coefficients should, except
under the above conditions, be discouraged.

To get over the difficulty Fisher transforms r into a new
variable z given by—

z = H{log,(1 + 7) — lom(1 — )}
=r 4+ 3%+t
It is not, however, necessary to use this formula, as com-
plete tables have been published for converting values
of » into the corresponding values of z. Asr goes from — 1
to -+ 1, z goes from — oo to + co,andr =0 corresponds
toz = 0.

The great advantage of using z as a variable instead of r
s that the form of the distribution of z depends very little
upon the value of the correlation in the population from
which samples are drawn. Though not strictly normal, it
tends to normality rapidly as the size of the sample is
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increased, and even for small samples the assumption
of normality is adequate for all practical purposes. The
standard deviation of & may in all cases be taken to be

1/4/p — 8, where p is the number of persons in the sample.

3.TError of a single tetrad-difference—For our discussion
of the inﬂuegce..of‘.sampﬁng on_the factorial analysis of
tests one of the most important quantities to know is the
standard error of the tetrad-difference. There has been
much debate concerning the proper formula for this. (See
Spearman and Holzinger, 1924, 1925, 1929 ; Pearson and
Moul, 1927 ; Wishart, 1928 ; Pearson, Jeffery, and Elder-
ton, 1929 ; Spearman, 1931.) ( That generally employed is
formula (16) in the Appendix to Spearman’s The Abilities
of Man :

Standard error of ryyry, — ryry, —

2 [Spearman and
71\-’;[7'2(1 —Tie— T3 + 1) + (1 — 2)s2}F  Holzinger’s

formula (16).]

where N is the number of persons in the sample, *

ris the mean of the four correlation coefficients, and
§* is their mean squared deviation (variance) from 7.

The probable error is -6745 times the above.) A worked
example will be found on page xii of Spearman’s Appendix,
using (which is all one can do) the observed values of the ’s.

It will be remembered that in Section 7 of Chapter I
we stated Spearman’s discoyery in the form * tetrad-
differences tend to be zero.”{ If tetrad-differences in the
whole population, however, were all actually zero, they
would not remain exactly zero in samples, and it is only
samples that are available to us. We are faced, therefore,
with a two-fold problem. ~(a) We have to decide, from the
size of the tetrad-differences actually found in our sample,
whether the sample is compatible with the theory that the
tetrad-differences are zero in the whole population. But
(b) we should also go on to consider whether the sample is

/ equally compatible with the opposed hypothesis that the
‘ * We use p to mean the number of persons in this book, but are

retainifig N here and in “ formula 164> below to preserve the usual
appearance of these well-known and much-used expressions,
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tetrad-differences are not zero in the whole population,
leaving a verdiet of “‘ not proven.”) (See Emmett, 1936.)

4. Distribution of a group of tetrad-differences.—The
actual calculation, for every separate tetrad-difference, of
its standard error by Spearman and Holzinger’s formula
(16) is, however, an almost impossibly laborious task. In
a table of correlations formed from n tests there are
n(n — 1)/2 correlation coefficients, and n(n — 1)(n — 2)
(n — 8)/8 different (though mnot independent) tetrad-
differences. Any one particular correlation-coefficient is
concerned in (n — 2)(n — 8) different tetrad-differences,
and any one test in (n — 1)(n — 2)(n — 8)/2 different
tetrad-differences. Thus with ten tests there are 630
tetrad-differences, and with twenty tests 14,535 tetrad-
differences. In the latter case, any one test is concerned
in 2,907. Under these circumstances, it is natural to look
for a more wholesale method than that of calculating the
standard error of each tetrad-difference. The method
adopted by Spearman is to form a table of the distribution
of the tetrad-differences, and compare this distribution
with that of a normal curve centred at zero and with
standard deviation given by—

2 [Spearman and Hol-
W[Ta(l et e o]t zinger’s formula (164).]
where N = number of persons in the sample,

r — the mean of all the 7’s in the whole table,
? — their mean squared deviation from 7.
n—4 n — 6

R = 8r. — 2r2, and
P 'n~2'ru

n = number of tests.

Numerous examples of the comparison of * histograms "’
of tetrad-differences with normal curves whose standard
deviation is found by (16a) are given in Spearman’s The
Abilities of Man. This method of establishing the hypo-
thesis, that the tetrad-differences are derived by sampling
from a population in which they are really zero, is open to
the same doubt as was explained in the simpler case of
one tetrad-difference. The comparison can prove that

F.A—2%
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the tetrad-differences observed are compatible with that

v'hypothesis. It does not in itself prove that they are
compatible with that hypothesis only ; and, as Emmett
has shown in the article already mentioned, the odds are
commonly rather against this.

The usual practice, moreover, is to purify * the battery
of tests until the actual distribution of tetrad-differences
agrees with (16a), so that in effect all that i< then proved
is that a team can be arrived at which can be described in
terms of two factors, This, although a more modest
claim than has often been made, and certainly less than
is implicitly understood by the average reader, is never-
theless a matter of some importance. Not all teams of
tests can be explained by one common factor: but it is
not very difficult to find teams which can. There js little
doubt in the minds of most workers that a tendency towards
hierarchical order actually exists among mental tests.

Q / 3. Spearman’s saturation Jormula—1It will be remem-
bered from Section 4 of Chapter I that the calculation of
the g saturation of each test forms an important part of
the Spearman process. We saw there that{in a hierarchical
matrix each correlation is the product of the two g satura-
tions of the tests, for example—

s =Ty Ty

Since this is. so, each & saturation can be calculated
from the correlations of g test with two others, and their
inter-correlation. Thus to find T, We can take Tests 2 and
8 as reference tests, when we have—

s Tagley  Tilsy !
; g g
e Too o Tay
When the matrix is really hierarchical, and there are

ho.sampling errors present, it is immaterial which two tests

we associate with Test 1 in order to find its & saturation.
We have, in fact, in that case—

{1

A s LT VR T A8 AT T
Ty eyt 1o 75

But even if the correlations, measured in the whole

population, were really exactly hierarchical, sampling

= ele.
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errors would make these fractions differ somewhat from
one another, and we are faced with the problem of deciding
which value to accept for the g saturation. The average
of all possible fractions like the above would be one very
plausible quantity to take but is laborious to compute.
Spearman therefore adopts a fraction—

Tig + T1g + Tiq « T35 + 719« 715 + elc. e

T3 + T T+ Ty + ete. el

whose numerator is the sum of the numerators, and whose
denominator is the sum of the denominators, of the single
fractions. This combined fraction he computes in a
tabular manner which we will next desecribe, by the
algebraically equivalent formula—

Y L [Spearman’s formula (21),
v 0 T p o4, Appendix, Abilities of Man.]

The quantities 4,, 4,, ete., are the sums of the rows (or
columns) of the matrix of correlations without any entries
in the diagonal cells. (The arithmetical example is con-
fined to five tests to economize space) :

1 9 3 4 e A?
1 .- 50 B4 ihggl el EEgg SREoas
2 -50 g 56 <82 15, | 158 . 2341
g -34 -56 . 13 35 ] 1-38 1-904
4 88 . 82 .18 3 20 | 107 1145
5 24 - 15, 85 29 L 108 1061
R e T — 642

T is the sum of all the 4’s, and therefore of all the
correlations in the table (where each occurs twice). A
new table is now written out, with each coefficient squared,
and its rows summed to obtain the quantities 4" :

' 3 4 5 A’
et 250 116 109 058 -533
2 ‘ 250 ¢ . 814 103 -028 689 .
3 | a16 -3l4 ’ 017 128 -570
4 | 109 -102 017 . -084 812
5 ] 058 023 123 084 . -288 .
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The calculation of all the saturations is then best per-
formed in a tabular manner, thus :

\‘ . | A2 4] B
A? AT 4t — 4’| 24 |T-24| T | Sat
| i ration

1 1-988 | 538 | 1-455 2.82 3-60 4042 66
2 | 2841 | -689 i 14652 | 3:06 | 336 4917 70
3 | 1904 | 570 | 1834 | 276 | 366 | -3645 -60
4 | 1145 | -312 838 | 214 | 4.28 1946 44
5 [ 10661 | -288 T8 | 206 | 4-86 ‘ 1778 42

where the last column is the square root of the preceding.)
The reader should calculate the six different valucs of
7y, from the original table by the formula (ryj « ra/ry)hs
for comparison with the value -66 obtained above. He
will find—
55 12 -89
-93 -48

; 52
with an average of -68.

Q.r/ 6(Resz'dues.~1f the correlations which would arise from

these saturations or loadings are caleulated, and subtracted
from the observed correlations, \we obtain the residues
which have then to be examined to see if they are small
enough to be attributable to sampling error. In the
following double table of correlations are set out the ob-
served correlations uppermost, and those calculated from
the g saturations below. The difference is the residue,
which may be plus or minus :

g Loadings | 66 70 60 44 4.2
66 . +50 34 33 24
46 40 29 28
70 50 . 56 -82 15
46 42 .81 -29
60 -84 56 A 18 85
40 42 26 95
4 83 +82 18 2 .29
3 29 81 26 ‘18
42 @24 15 35 .99 :
= 28 29 25 18
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The lower numbers are the products of the two
saturations. In this case the residues range from — -14
to - -14 and at first sight appear in many cases to be
too large to be neglected in comparison with the original
correlations.

To check this impression, consider the correlation -56
and the value 42 from which it is supposed to depart only
by sampling error, a deviation of -14. Fisher’s 2 corres-
ponding to 7 = +42 is -45, and that corresponding to r =
.56 is = — -63, so that the z deviation is -18. The standard
deviation of z for 50 cases is 1 — 4/47 = -15. The devia-
tion is little larger than one standard deviation and cannot
therefore be called significant. But as the reader will ob-
serve, this conclusion is (due more to the large size of the
standard error than to the small size of the residue.) The
residue is here atlributable to sampling error, becaiise the
latter is so large. But because the latter is large it does not
follow that the large residue is certainly due to it.

7. Reference values for detecting specific correlation.—If
after a caleulation like that deseribed, one of the residues
is found to be too large to be explicable by sampling error,
the excess of correlation over that due to g is attributed to
“ specific correlation,” meaning correlation due to a part
of their specific factors being not really unique but shared
by these two tests. In the case of our numerical example,
if the number of subjects tested had been larger, the standard
errors of the coefficients would have been smaller, and some
of the discrepancies between the experimental values and
those calculated from the g saturations would have been
too large to be overlooked, but would have had to be
attributed to specific correlation. In such a case, the g
loadings would, of course, be wrong and would have to be
recalculated from the battery after one of the tests con-
cerned in the specific correlation was removed from it.
Later, the other test could be replaced in the battery
instead of the first, and thus its g saturation found. The
difference between the experimental correlation of the
two, and the product of their g saturations, with a standard
error dependent on the size of the sample, would be then
attributed to their specific linkage.
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If two tests, v and w, are thus suspected of having a
specific link as well as that due to g, it is clear that the
smallest battery of tests which could be used in the above
manner to deteet that link would be one of fwo other tests,
a and y, say, to make up a tetrad :

and these two * reference ™' tests would have to be known
to have no specific links with each other or with the two
suspected tests, The example which gave rise to Figure 5
(see Chapter I, page 15) illustrates this. Tests 2 and 3
there are, let us suppose, those with a suspected specific
link. The tetrad-difference to be examined by means of
Spearman’s formula (16) is that which has r,, as one corner.
In such a ease, where the two reference tests 1 and 4 are
known to have no link exeept g with one another, or with
the other two tests, two of the possible tetrad-differences
ought to be larger than three times the standard error
given by formula (16), and equal to one another, while the
third tetrad-difference should be zero (or sufficiently near
to zero, in practice) (Kelley, 1928, 67).

The g saturation of each of the tests under examination
for specific correlation can be found by grouping it with
the two reference tests. Thus in the case of our Figure 5,
we have—
sy 3 X5

Ty

r“ '5
,‘~| e ru . f“ - '5 X 5 e
14 5

Therefore the correlation between 2 and 8 which is due
to g is—

f~-f.'!=‘\/'5x ‘\/'5-“—"5

and the difference between this and -8, the actual value,

is the tp:;t to be explained by the specific factor shared by

g\
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When there are several reference tests available, all
believed to have no link except g with one another or with
the two tests suspected of specifie overlap, there will be
s number of ways of picking two of them to obtain the
tetrad required to decide the matter, and the results will,
because of sampling and other errors, be discrepant. Under
these circumstances Spearman has devised an interesting
procedure for amalgamating the results into one. A
numerical example is given by him on page xxii of the
Appendix to The Abilities of Man.



CHAPTER 1V

L /THE DEFINITION OF g

1. (Any three tests define a *“ g.”—The idea of g arose out of

Professor Spearman’s acute observation that correlation
coefficients between tests tend to show hierarchical order
that is, that their tetrad-differences tend to be zero or small;
or in more technical terms still, that the rank to which a
matrix of correlation coefficients can be “ reduced ” by
suitable diagonal elements tends towards rank one. This
fundamental fact is at the basis of all those methods of
factorial analysis which magnify specific factors. In con-
sequence, correlation coefficients between a number of vari-
ables can be adequately accounted for by a few common
factors. To be adequately described by one only—a g—
the * reduced ” rank of the correlation matrix has to be
one, within the limits of sampling error.

Suppose now that we have three tests and have, in the
whole population, measured their correlation coefficients.
If, as is usually the case, these coefficients are all positive,
and if each of them is at least as large as the product of the
other two, we can explain them by assuming one g and
three specifics s;, s, and s;] There are many other ways
of explaining them, but let’ us adopt this one. We have
thereby defined a factor g mathematically (Thomson, 1935a,
260).( It is then for the psychologist to say, from a
consideration of the three tests which define it, what name
this factor shall bear and what its psychological description
is.}, The psychologist may think, after studying the tests,
that they do not seem to him to have anything in common,
or anything worth naming and treating as a factor. That
is for him to say. { Let us suppose that at any rate he does
not reject the possibility, but that he would like an oppor-
tunity of studying other tests which (mathematically
speaking) contain this factor, and have nothing else in
common, before finally deciding.

48
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In that case the experimenter must search for a fourth
test which, when added to these three, gives tetrad-
differences which are zero ; and then for a fifth and further
tests. each of which makes zero tetrad-differences with the
tests of the pre-existing battery. This extended battery
the experimenter would lay before the psychological judge,

~to obtain a ruling whether the single common factor, of

which it is the now extended but otherwise unaltered
definition, is worthy of being named as a psychological
factor.

9. The eatended or purified hierarchical battery.—Mathe-
matically, any three tests with which the experimenter
cared to begin would define ““ a ” g, if we except temporarily
the case, to which we shall later return, of three correlation
cocfficients, one of which is less than the product of the
other two. { The experimental tester, however, might in
some cases have great difficulty in finding further tests, to
add to the original three, which would give zero tetrad-
differences. Unless he could do so, it is unlikely that the
psychological judge would accept the factor as worthy of
a name and separate existence in his thoughts. It is, for
example, an experimental fact that starting with “three
tests which a general consensus of psychological opinion
would admit to have only *intelligence ” as a common
requirement, it has proved possible to extend the battery
to comprise about a score of tests without giving any
tetrad-differences which cannot be regarded as zero.*
Even that has not been accomplished without difficulty,
and without certain blemishes in the hierarchy having to be
removed by mathematical treatment. But the fact that
with these reservations it is possible, and that psychological
judgment endorses the opinion that each test of this battery
requires intelligence,” 1s the main evidence behind the
actual * existence ** of such a factor as “ g, general intelli-

* The process of making such a battery of tests to define general
intelligence (see Brown and Stephenson, 1933) has not in fact taken
the form of choosing three tests as the basal definition and then
extending the battery. Instead, a number of tests which, it was
thought from previous experience, would act in the desired way have
been taken, and the battery thus formed has then been purified by
the removal of any tests which broke the hierarchy.
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gence.”’] It must be noted that the word * existence ”
here does not mean that any physical entity exists which
can be identified with this g. It does mean, however, that,
as far as the experimental evidence goes, there is some
aspect of the causal background which acts “as if 7 it
were a single unitary factor in these tests.

The important point to note is that the experimenter has
produced a battery of tests which is, he elaims, hierarchical;
that the mathematician assures him that such a battery
acts “ as if ” it had only one factor in common (though it
can also be explained in many other ways), and that the
psychologist _agrees that psychologically the existence of
such a factor as the sole link in this battery seems a reason-
able hypothesis.

3./ Different hierarchies with two lests in common.—Now,
it must be remembered that, starting with three other
tests, which may contain two of the former set, it may
very well be possible to build up a different hierarchy.
Only experiment could sHow whether this were possible in
each case, there is no mathematical difficulty in the way.
Such a hierarchy would also define “ a ™ g, but this would
be usually a different factor from the former g. If there
were three tests common to the two hierarchies, then the
two g's could be identified with one another (sampling
errors apart), and the three tests would be found to have
the same saturations with the one g as with the other. But
if only two tests were common to the two batteries this
would not in general be the case, and the different satura-
tions of these tests with the two g’s would show that the
latter were different (Thomson, 1935w, 261-2). Under
such circumstances the psychologist has to choose. He
cannot have both these g's, Both are mathematically of
equal standing, it is a psychological decision which has to
be made. When one g is accepted, the other, as a factor,
must then be rejected and a more complicated factorial
analysis of the second hierarchy has to be built up which
is consistent with this. .

4.1 A test measuring * pure g.”—Although the hierarchical
battery defines a g, it does not enable it to be measured
exactly (but only to be estimated) unless either it contains

—
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an infinite number of tests, or a test.can be found which |

conforms to the hierarchy and has a g saturation of unity.*
In the latter case this test which is © pure g ” is such that
when it is considered along with any other two tests of its
hierarchy, its correlations with them, multiplied together,
give the intercorrelation of those two with one another :
if k is the *“ pure ” test, then—

- " . w
Tl = Ty

its ¢ saturation being—

J Tielie 1
Tii

No such  pure ” test of the g which is defined by the
Brown-Stephenson hierarchy of nineteen tests has yet been
found. Such a pure test, with full g saturation, must not
be confused with tests which are sometimes called tests of
pure g because they do not contain certain other factors,
in particular the verbal factor. Thus the * SET
(Spearman Visual Perception) tests are referred to by
Dr. Alexander (1935, 48) as a “‘pure measure of g”; but
their saturations with g are given by him (page 107) as
757, 701, and +736 respectively, so that in each case only
about half the variance is “ g~ and half is a specific.

5. The Heywood case—Consider the case where three
tests are such that—

Yol = Tij o

In such a case the g saturation of the test k, if we caleu-
late it, is greater than unity, which is impossible. Yet it
is possible, in theory at least, to add tests to such a triplet
to form an extended hierarchy with zero tetrad-differences.
There can be one such case (but only one) in a hierarchy.
We shall call them Heywood cases, as this possibility was
first pointed out by him (Heywood, 1981). As an artificial
example, consider these correlations :

* Tt is understood, of course, that even such a test would give
different measures of a man’s g from day to day, if the man’s per-
formance in it varied (as it undoubtedly would) from day to day.
By measuring with exactness is meant, in this part of the text,
measurement free from the uncertainty due to the factors f)ut-
numbering the tests. We are assuming sampling eIrors to be nil.
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case of pure g will leave one of the rows of the above sum
non-zero. To make the whole sum zero, one case must be
a Heywood case, giving—

. 2 1V
1 — 7r,? negative,

It would seem, therefore, that by the time we have
added hierarchical tests to make them equal in number to
the persons, we will necessarily have added a Heywood
hierarchical case (of which there can be only one in a
hierarchy). But we have agreed that the discovery of a
Heywood case will cause us to abandon the hierarchy as
a definition of g !

The case where the number of tests is increased to equal
the number of persons may seem to the reader to be an
academic case only. But the case of reducing the number
of persons until they equal the number of tests is one which
could easily be realized in practice, and presents equal
theoretical difficulties. This draws attention to the
dependence of any definition of factors on the sample of
persons tested. If we have a perfect hierarchy of, say,
50 tests, in a population of, say, 1,000 persons, a sample of
fifty persons from the above thousand, if it gives hier-
archical order, will give a Heywood case, and its g will be
impossible.

If the g corresponding to the original analysis on the
thousand persons were anything real, such as a given
quantity of mental energy available in each person, then
it ought always to be possible, one might erroneously
think, to find fifty persons and fifty tests to give a hierarchy,
without a Heywood case. But that cannot be easily said.
It is impossible, from the correlations alone, to distinguish
a real g from one imitated by a fortuitous coincidence of
specifics. Even if g were a reality, a sample of persons
equal in number to the tests could not give a hierarchy
without a Heywood case, and their apparent g would be
fortuitous,

Now the case of a test of pure g is on the border line of
the Heywood cases. Tt is clear then that it will be suspect,

as being probably only fortuitous, if the number of persons
does not far exceed the number of tests,
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v/ 1. Singly conforming tests.—There remains one (other
conceivable method of measuring g exactly,* by the use
of certain tests which, when they are all present, destroy
the hierarchy, although any one of them can enter the
battery without marring it—* singly conforming ”’ tests)
(Thomson, 19345 ; and 19354, 253-6). It will be shown
in later chapters on factor estimation that the reason
factors cannot i)c measured exactly, but have to be esti-
mated only, is that theLQ}anllmbﬂL_thQ__tQ_St_s-. Every
new test which conforms to a hierarchy adds a new specific
(unless it is pure g), and thus continues the excess of factors
over tests. It can occur, however, that the correlation of
two tests with each other breaks a hierarchy, although
either of them alone conforms otherwise. Such a case
oceurs in the Brown-Stephenson battery, for example, one
of whose correlation coefficients has to be suppressed before
the hierarchy is acceptable.

(In such a case, if the psychologist 1s prepared to accept
cither test as a member of the battery, the erring correlation
coefficient must be due to these two tests sharing some
portion of their specifies with one another) 1f, as may
happen (apart from error which we are supposing absent),
(their intercorrelation <hows that they have only one specific
factor between them, and differ only in their saturations,
then they enable the estimate of g to be turned into accurate
measurement.) For example, consider the following matrix

of correlations :

) 2 3 4 5 6

—

s i —

4669 592 458 335 251

-669 : -566 438 870 240
592 566 . 387 283 212
458 -438 387 210 164

335 -870 283 219 120

251 240 212 164 120

czcx-pa:w,-‘;

This is a perfect hierarchy except for the correlation—
795 = 870
* By * exactly ” is meant, with the same exactness as the test
scores, without the additional indeterminacy due to an excess of
factors over tests.
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Every tetrad-difference, which does not contain  this
correlation, is zero. If either Test 2 or Test 5 is removed
from the battery, there remains a perfect hierarchy. If
Test 5 is removed, we can calculate from the remaining
battery the g saturations :

Test { 1 2 3 4 6

gsaturation | 8837 800 707 548  -300

If we remove Test 2 and restore Test 5, we get the fol-
lowing :
Test 1 3 4 5 6

g saturation

‘887 707 -548 400 300

From either hierarchy we can estimate g. The correla-
tion of our estimates with * true 2" will be—

S
S+1
saturation®

where S=2 -.
1 — saturation?

and we find for the two hierarchies the g correlations of
92 and -90. :

From the two Tests 2 and 5 alone, however, we can ob-
tain a g correlation of unity. :

The reason for this is that the correlation of Tests 2
and 5 is such as to show that their specifics are identical,
the two tests differing only in their loadings. Their
equations are—

% =82 + 4/(1 — -8%)s,

g =48 + /(1 — 423,
If the whole of s, is identical with the whole of 85 their
intercorrelation should be—

8 X 44 V(1 — 82)(1 — -43)'= 870
and this is its experimental value.,

We could, therefore, have seen at the beginning, if we
had tested the above fact, that these two tests would make
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a perfect battery for measuring g. We have the simul-
taneous equations—

32 = 'Sg + ‘63

25 = 4g + 917s

from which we can eliminate s.

We see, therefore, that LU_IEICI‘ certain hypothetical
circumstances, a more exact estimate of g can be obtained
from two of these ““ singly conforming ™ tests than the
hierarchy with which ‘they conform individually. Those
circumstances are, that their correlation with one another
(the correlation which breaks the hierarchy because it is

too large) should either equal—

Tilyg T V(1 — 7)1 — 13%)
or should approach this value.
_ Tt cannot in actual practice be expected to equal it, as
in our artificial example. For we have disregarded errors,
which are sure in some measure to be present. At what
stage will the pair of singly conforming tests cease to be
a better measure of g than the better of the two hierarchies
made by deleting either the one or the other ? If in our
example the correlation -870 of Tests 2 and 5 be imagined
to sink little by little, the correlation of their estimate
with g will sink from unity. The better of the two hier-
archies gives a multiple correlation of -922. When the
correlation 7,5 has sunk from -870 to -847, these two singly
conforming tests will give the same multiple correlation,
.992. If this defect from the full :870 is due entirely to
error, then a fall to -847 corresponds to reliabilities of the
two tests of the order of magnitude of ‘98, if they are
equally reliable. This is a very high reliability, seldom
attained, so that in a case like our example quite a small
admixture of error would make the singly conforming
tests no better at estimating g than the hierarchy. We
are here, however, neglecting the fact that error would also
diminish the efficiency of the hierarchy. Nevertheless, the
chance of finding a pair of singly conforming tests, highly
reliable, and having no specifics except that which they
share, seems small, as small as the chance of finding a test
of pure g, perhaps. It might possibly turn out, however,

A
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that a matrix of several (say ?) singly conforming tests
would be practicable. Such a set would measure g exactly
if among them they added only ¢ — 1 new specifics to the
hierarchy. Their saturations would be found by placing
them one at a time in the hierarchy, and then their regres-
sion on g calculated by Aitken’s method (see Chapter XIV).
The necessity for the hierarchy in the background, in all
this, is clear : it is there to assure us that each singly con-
forming test is compatible with the definition of g, and to
enable its g saturation to be calculated.

8. The danger of ** reifying * factors.—The orthodox view
of psychologists trained in the Spearman school is that g is,
of all the factors of the mind, the most ubiquitous. “ All
abilities involve more or less g, Spearman said, although
in some the other factors are ““ so preponderant that, for
most purposes, the g factor can be neglected.” With
this view, the present author has always agreed, provided
that g is interpreted as a mathematical entity only, and
judgment is suspended as to whether it is anything more
than that.

The suggestion, however, that g is *“ mental energy,” of
which there is only a limited amount available, but avail-
able in any direction, and that the other factors are the
neural machines, is one to be considered with caution.
The word energy has a definite physical meaning. * Mental
energy ' may convey the meaning that the energy spoken
of is the same as physical energy, though devoted to mental
uses. If that meaning is accepted, innumerable difficulties
follow, not the least being the insoluble questions of the
connexion of body and mind, and of freewill versus
determinism. A less obscure difficulty is that there seems
to be no easily conceivable way in which the * energy
of the whole brain can be used in any direction indifferently,
except by the * neural engines > also all taking part. The
energy of a neurone seems to reside in it, and the passage
of a merve impulse along a neurone seems to resemble
rather the burning of a very rapid fuse, than the conduction
of electricity, say, by a wire.

/" If *“ mental energy > does not mean physical energy at
.all, but is only a term coined by analogy to indicate that

T~ ———
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the mental phenomena take place as'if ’ there were such
a thing as mental energy, these objections largely disappear.
Even in physical or biological science, the things which are
discussed and which appear to have a very real existence
to the scientist, such as energy,” * electron,” “ neulron,”
““ gene,” are recognized by the really capable experimenter
as being only manners of speech, easy ways of putting into
comparatively conerete terms what are really very abstract
ideas. With the bulk of those studying science there exists
always the danger that this may be taken too literally, but
this danger does not justify us in ceasing to use such terms.
In the same way, if terms like mental energy ”’ prove to
be useful, and can be kept in their proper place, they may
be justified by their utility. The danger of * reifying ™
such terms, or such factors as g, v, ete., is, however, very
great.






CHAPTER V
THE CENTROID METHOD

1. Need of group factors.—The two-factor method of
analysis, described in an earlier chapter, began with the idea
that a matrix of correlations would ordinarily show perfeet
hierarchical order if care was taken to avoid tests which
were “ unduly similar,’] i.e. very similar indeed to one
another. © If such were found coexisting in the team of
tests, the team had to be  purified by the rejection of
one or other of the two. Later it became clear that this
process involves the experimenter in great difficulty, for it
subjects him to the temptation to discover ** undue simi-
larity 7’ between tests after he has found that their correla-
tion breaks the hierarchy. Moreover, whole groups of
tests were found to fail to conform ; and so group factors
were admitted, though always, by the experimenter trained
in that school, with reluctance and in as small a number as
possible. [ It had, however, become quite clear that the
Theory of Two Factors in its original form had been super-
seded by a theory of many factors, although the method
of two factors remained as an analytical device for
indicating their presence and for isolating them in com-
parative purity.’

Under these circumstances it is not surprising that some
workers turned their attention to the possibility of a method
of multiple-factor analysis, by which any matrix of test
correlations could be analysed direct into its factors
(Garnett, 1919a and b). It was Professor Thurstone of
Chicago who saw that one solution to this problem could
be reached by a generalization of Spearman’s idea of zero
tetrad-differences.

2. Rank of a matriz and number of factors.—We saw that
when all the tetrad differences are zero, the correlations
can all be explained by one general factor, a tetrad being

63
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formed of the intercorrelations of two tests with two other
tests, thus :

1* 8 4
1 ‘ T13 T14
2 | 1y Tog

and the tetrad-difference being—

F1aT2q — Toglyy

Thurstone’s idea, though rather differently expressed by
him, can be based on a second, third, fourth . . . caleu-
lation of certain tetrad-differences of tetrad-diﬂbrenccs.‘,
{ To explain this, let us consider the correlation co-
efficients which three tests make with three others :

4 5 6
1 714 715 T16
2 Tos Ta5 Tog
3 T34 T35 T3¢

This arrangement of nine correlation coefficients might
have been called a “ nonad,” by analogy with the tetrad.
Actually, by mathematicians, it is called a * minor deter-
minant of order three ” or more briefly a three-rowed
minor ; a tetrad is in this nomenclature a  minor of order
two.”

We can now, on the above three-rowed determinant,
perform the following calculation. Choose the top left
coefficient as ““ pivot,” and calculate the four tetrad-
differences of which it forms part, namely :

(14725 — Ta4Ty5) (714726 — 794"16)
(14735 — 734715) (714736 — T34716)

These four tetrad-differences now themselves form a
tetrad which can be evaluated. If it is zero, we say that
the three-rowed determinant with which we started
* vanishes.”

Exactly the same repeated process can be carried on with
larger minor determinants.) For example, the minor of
order four here shown vanishes :
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(-26) 32 38 34

42 36 62 T2

44 62 66 - 46

45 -58 63 60
for its pivotal (— :0408) 0016 0444
t.d.’s are 0204 0044 —-0300
‘0068 — +0072 0030

and then (— -00021216) 00081824

00028288 — 00042432

and finally Zero

This process of continually calculating tetrads is called
““ pivotal condensation.™ The reader should be given a
word of warning here, that the end-result of this form of
caleulation, if not zero, has to be divided by the product of
certain powers of the pivots, to give the value of the deter-
minant we began with.) A routine method (Aitken, 1937a)
of carrying out pivotal condensation, including division
by the pivot at each step, is deseribed in Chapter XIV,
pages 201{[.* .

(We can in this way examine the minors of orders two,
three, four (and so on) of a correlation matrix, always
ayoiding those diagonal cells which correspond to_the
correlation of & test with itself.  We may come to a point
at which all the minors of that order vanish. Suppose these
minors which all vanish are the minors of order five. We
then say that the ““ rank * of the correlation matrix is four
(with the exception of the diagonal cells). There then
exists the possibility that the * rank * of the whole corre-
lation matrix can be reduced to four by inserting suitable
quantities in the diagonal cells (see next section). The
« rank 7 of a matrix is the order of its largestt non-vanish-

P —————— SRS DU e

* If the process gives, at an earlier stage than the end, a matrix
entirely composed of zeros, the rank of the original determinant is\
correspondingly less, being equal to the number of condensations

needed to give zeros.
t ¢ Largest  refers to the number of rows, not to the numerical

value.
F.A.—3
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ing minor. The tests ean then be analysed into as many
common factors as the above reduced rank of their corre-
lation matrix—the rank, that is to say, apart from the diag-
onal cells—plus a specific in each test.

3. Thurstone’s method used on a hierarchy.— Thurstone’s
rule about the rank includes Spearman’s hierarchy as a
special case, for in a hierarchy the tetrads—that is, the
minors of order fwo—vanish. The rank is therefore one,
and a hierarchical set of tests can be analysed into one
common factor plus a specific in each. A simple way of
introducing the reader to Thurstone’s hypothesis and also
to his * centroid " method* of finding a set of factor satura-
tions will be to use it first of all on the perfect Spearman
hierarchy ‘which we cited as an artificial example in our
first cha

Tests 3 2 3 4 5 6
1 - 2 63 54 45 36
2 T2 . 56 48 40 32
3 63 56 : 42 35 28
4 54 48 42 i 30 24
5 45 40 35 30 . 20
6 36 32 28 24 20

| The first step in Thurstone’s method, after the rank has
been found, is to place in the blank diagonal cells numbers
which will cause these cells also to partake of the same rank
as the rest of the matrix, numbers which, for a reason which
will become clear later, lare called cdmmunalities.” In
our present Spearman example that rank is one, i.e. the
tetrads vanish. The communalities, therefore, must be
such numbers as will make also those tetrads vanish which
include a diagonal cell : this enables them to be calculated.
Let us, for example, fix our attention on the communality
of the first test, which we will designate h,? ' (the reason for
the *square” will become apparent Iafer) Then the
tetrad formed by Tests 1 and 2 with Tests 1 and 8 is :

* We shall see why it is called the * centroid ” method in the
next chapter,
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1) 3

2 72 56
and the tetrad-difference has to vanish. Therefore—
56h,® — 72 X 68 =0
o byt =81

Similarly all the communalities can be calculated, and

found to be—

81 64 49 36 25 -16
(The observant reader will notice that they are the squares
of the “ saturations ” of our first chapter ; but let us con-
tinue as though we had not noticed this.)

The method of finding the saturations of each test with
the first common factor is then to insert the communalities
in the diagonal cells and add up the columns* of the
matrix, thus :

Original Correlation Mairiz

(-81) 72 63 54 45 36
72 (-64) 56 48 40 -32
63 56 (-49) 42 35 28
54 48 42 (-86) 80 24
A5 -40 -35 30 (-25) 20
36 32 28 24 20 (-16)

3-51 3-12 273 2:34 1-95 1-56 1521

The column totals are then themselves added together
(15-21) and the square root taken (3:90). The “ satura-
tions ”* of the first (and here the only) common factor
are then the columnar totals divided by this square root,
namely—

3-51 3:12 273 2:34 1-95 1:56
390 3:90 3:90 390 3:90 390
or 9 ‘8 L 6 *b 4

* This, the * centroid *’ method of finding a set of loadings, is not in ' {
any way bound up with Thurstone’s theorem about the rank and |
the number of common factors. It can be used, for example, with |
unity in each diagonal cell, in which case it will give as many common {
factors as there are tests, and no specific factors. .
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as in the present instance we already know them to be,
(Very often in multiple-factor analysis the “ saturation ™
of o test with a factor is called the * lmgj_mg,'jmul this is
a convenient place to introduce the new term.)

As applied to the hierarchical case, this method of
finding the saturations or loadings had been devised and
employed many years previously by Cyril Burt, though it
is not quite clear how he would have filled in the blank
diagonal cells (Burt, 1917, 58, footnote, and 1940, 415, 162),
It should be explained that in actual practice/ Thurstone
and his followers do not ealeulate the minor determinants
to find the rank and the communality, for that would be
too laborious. Instead they adopt various approximations,
of which the simplest is to insert in each diagonal cell the
largest correlation coefficient of the column)(see Scetion
10). - il

4£Th¢ second stage of the ** centroid " method.— 1f there is
more than one common factor, the process goes on to
another stage. Even with our example we can show the
beginning of this second stage, which consists in forming
that matrix of correlations which the first factor alone
would produce. This is done by writing the loadings
along the two sides of a chequer board and filling every cell
of the chequer board with the product of the loading of
that row with the loading of that column, thus :

Pirst-factor Matriz

L] o 7 0 5 4
9 ! Ml L 03 B A3 B
4 | 72 o4 50 e - a2
I | -4 R <40 42 85 28
4 | 54 B 42 6 80 24
5 F A5 My a5 80 25 20
* | a0 82 28 24 20 16

This is the * first-factor matrix ** which gives the parts of
the correlations due to the first factor. This matrix has now
to be subtracted from the original matrix to find the resi-
dues which must be explained by further common factors.

In our present example the first-factor matrix is identical
with the original matrix and the residues are all zero.  Ounly
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the one common factor is therefore required, (Of course,
the reader will understand that in a real experimental
matrix the residues ean never be expeeted to be eractly
sero 1 one is content when they are near enough to zero to
be due to chance experimental error.) Had the rank of
our original matrix of correlations been, however,

than one, there would have been a matrix of residues,

Let us now make an artificial example with a
pumber of common factors, say three, which we ean after-
wards use to illustrate the further stages of Thurstone's
method, We ean do this in an illuminating manner by
the aid of the oval diagrams deseribed in Chapter 1.

5. A three-factor cxample.—In Figure 10, a diagram of the
overlapping variances of four tests, lot us insert three
common factors and specifies to
complete the variance of each test
to 10 (to make our arithmetical
work easy). No factor here is
common to all the four tests,  The
factor with a variance of 4 runs
through Tests 1, 2, and 8, That
with u variance 8 runs through
Tests 2, 8, and 4. That with a
variance 2 runs through Tests 1
and 4 The other factors are
specifies, The four test variances bolng each 10, the
correlation coefMiclents are written down from the overlaps

by inspection as :

1 2 n 4
1 (6) R} + 2
2 4 (M a n
a

T A R
4 2 a a (3)

Moreover, we oan pul into our matrix the communalities

mnnpuulhutnmd&pm l-:‘h%
fact, that fraction of the varance A test
. 'l'buniofllwnrhdeullh”nmﬂl."

-Cmﬂ@u“@" In this way we bave the

o
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matrix above, with communalities inserted. We can now
pretend that it is an experimental matrix, ready for the
application of Thurstone’s method, as follows :

(+6) 4 4 -2

4 (+7) 7 -3 Original

4 7 (*7) 3 experimental
2 3 3 (-5) matrix.

1:6 2:1 2:1 1-3 = 71 = 2:6646%

1st Loadings | -6005 ‘7881 7881 4879 = 2-6646%

6005 (-3606) -4733 4733 2030

7881 47338 (+6211) 6211 ‘3845  First-factor
7881 4733 6211  (+6211) -3845 matrix.
4879 2930  -3845 3845  (-2380)

Here it is seen that the loadings of the first factor, when
cross-multiplied in a chequer board, give a first-factor
matrix which is not identical with the original experimental
matrix, unlike the case of the former, hierarchical, matrix.
Here (as we who made the matrix know) one factor will
not suffice. We subtract the first-factor matrix from the
original experimental matrix to see how much of the
correlations still has to be explained, and how much of the

. * communalities ” or communal variances. The latter
were—

6 7 slfs -5
and of these amounts the first factor has explained—
3606 6211 6211 +2380

If we subtract the first-factor matrix, element by element,

from the original experimental matrix, we get the residual
matrix :

(*2394) — 0733 — 0783 — +0930
— 0783 (-0789) +0789 — 0845 First residual
— 0733 ‘0789 - (-0789) — 0845 matrix.
— 0830  — 0845  — -0845 (-2620)

* This check should always be applied. To avoid complication
it is not printed in the later tables. It applies to the loadings with
their temporary signs (see page 72).
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To this matrix we are now going to apply exactly the same
procedure as we applied to the original experimental
matrix, in order to find the loadings of the second factor.
But we meet at once with a difficulty. (The columns of the
residual matrix add up exactly* to zero! This always
happens, and is indeed a useful check on our arithmetical
work up to this point, but it seems to stop our further
progress.

To get over this difficulty we change temporarily the signs
of some of the lests in order to make a majority of the cells
of each column of the matrix positive. The best plan is to
change the sign of the test with most minuses in its column
and row, and so on until there is a large majority of plus
signs. Copy the signs on a separate paper, omitting the
diagonal signs,ﬂ_vghdi(&_gljjﬁz,ghﬂllge.' Since some signs
will change twice or thrice, use the” convention that a
plus surrounded by a ring means minus, and if then
covered by an X means plus again. Near the end, watch
the actual numbers, for the minus signs in a column may
be very small. The object is to make the grand total
a maximum, and thus take out maximum variance with
each factor. = We shall here, however, for simplicity adopt
an easier rule, i.e. to_seek out the column whose total
regardless of signs is the largest, and then ) temporarily change
the signs of variables so as to make all the signs in that

column positive. )

The sums of the residual columns, regardless of sign, are—

4790 3156 3156 5240

and therefore we must change the signs of tests so as to
make all the signs in Column 4 positive ; that is, we must
change the signs of the first three tests.t Since we change
the three row signs, as well as the three column signs, this

will leave a block o_f_m§_ig§§j£}£l}augé@1_g ‘will make
the last column and the last row all positive. . We can
then proceed as shown overleaf. o

* When enough decimals have been retained. In practice there

may be a discrepancy in the last decimal place.
+ Changing the sign of Test 4 would here have the same result,
but for uniformity of routine we stick to the letter of the rule.
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2394  — 0733 — -0733 (—)-0930
— 0733 ‘0789 ‘0789 (—)-0845 Tirst residual
— 0733 ‘0789 ‘0789 (—)-0845 matrix with
(—)0930 (—)0845 (—)-0845 2620 changed signs.
‘1858 1690 1690 5240 = 1-0478
= 1-0236*
2nd 1815 1651 1651 5119 With temporary
Loadings signs.
<1815 0329 0300 ‘0300 0929
1651 0300 0273 0273 ‘0845 Second-factor
1651 0300 0273 0273 ‘0845 matrix.
5119 <0929 ‘0845 ‘0845 2620
2065 — 1033 — -1033 0001
— 1033 0516 ‘0516 3 Second residual
— 1033 ‘0516 ‘0516 A matrix.
0001

On the matrix with these temporarily changed signs we
then operate exactly as we did on the original experimental
matrix, and obtain second-factor loadings which (with
temporary signs) are—

-1815 <1651 1651 5119

The second-factor matrix, that is, the matrix showing
how much correlation is due to the second factor, is then
made on a chequer hoard still using the temporary signs,
and subtracted from the previous matrix of residues (with
its temporary signs, not with its first signs) to find the
residues still remaining, to be explained by further factors.
In the present instance we see that the whole variance of
the fourth test entirely disappears, and also all the correla-
tions in which that test is concerned.* This test, therefore,
is fully explained by the two factors already extracted.
Only the first three test variances remain unexhausted,
and their correlations. Again the columns of the residual
matrix sum exactly to zero. Following our rule, the signs
of Tests 2 and 8 have to be temporarily changed before
the process can continue. After these changes of sign the

* When enough decimals are retained. We shall treat the
*0001 as zero,
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second residual matrix is as follows, and the same operation
as before is again performed on it :

2065 (—)1033 (—)1083 . Second residual
(—):1033 ‘0516 0516 . matrix with signs
(—)-1033 ‘0516 ‘0516 . temporarily
: changed.
4131 2065 2065 . = 8261 = -9089*
3rd Loadings -4545 2272 2272 . with temporary
signs.

With these third-factor loadings we can now caleulate the
variances and correlations due to the third factor : and we .
find these are exactly equal to the second residual matrix.
On subtracting, the third residual matrix we obtain is
entirely composed of zeros. (In a practical example we
should be content if it was sufficiently small.) We thus
find (as our construction of the artificial tests entitled us to
expect) that the matrix of correlations can be completely
explained by three common factors.

After the analysis has been completed, some care is
needed in returning from the temporary signs of the load-
ings to the correct signs. )The only safe plan is to write
dowin first of all the loadings with their temporary signs
as they came out in the analysis. In our present example
these happen to be all positive, though that will not
always occur.

Loadings with Temporary Signs
Test | I II 111

1 6005 1815 4545
2 7881 1651 2272
3 7881 ‘1651 2272
4 ;

4879 *5119
a

e
Now, in obtaining Loadings 11 the signs of Tests 1, 2, and

3 were changed. We must, therefore, in the above table
reverse the signs of the loadings of these three tests in
Column II and each later column. Then in obtaining

Toadings I1I the signs of Test 2 and 8 were changed ; that -

F.A—3%
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is, in_our case changed back to positive. The loadings

with their proper signs are therefore as shown in the first
three columns of this table :

Laadmgs of the Factors' (Stgrcs Replaced)
Rehtsl o |
1 Ir ]II Specific
1 6005 — -1815 — 4545 | 6324
2 ‘7881 — -1651 -+ -2272 l‘ . HATT ,
3 ‘7881 — -1651 - -2272 ; 5477 v
4 | 4879 5119 ‘ 7071

In this table each column of loadings, for the common
factors after the first, adds up to zero. | The loading of the
specific is found from the fact that in eéfich row the sum nf
tEe squares must be unity, being the - whole variance of tlu-
_test. The inner product * of each pair of rows gives the

“correlation between those two _tests (Garnett, 1919a).
Thus——

4Tz = 6005 X 7881 + 1815 X 1651 — 4545 X 2272 — 4000

in agreement with the entry in the original correlation
matrix. With artificial data like the present, the analysis
results in loadings which give the correlations back exactly.

It will be seen that all the signs in any column of the
table of loadings can be reversed without making any
change in the inner products of the rows ; that is, without
altering the correlations, We would usually prefer, there-
fore, to reverse the signs of a column like our Column ITI,
50 as to make its largest member positive.

i, The amount which each factor contributes to the variance
of the test is indicated by the square of its loading in that
test. (g{hc sum of the squares of the three common-factor

loadings gives the * communality ") which we originally

”

* By the * inner product ™" of two series of numbers is meant the
sum of their products in pairs. Thus the inner product of the two
sets :

a b ¢ d
and A B C D
is ad + bB 4 ¢C 4 dD
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deduced from Figure 10 and inserted in the diagonal cells of
our original correlation matrix. These facts can be better
seen if we make a table of the squares of the above loadings :

Variance contributed by Each Factor

1 17 11 Communality l 3;’:‘“-”"' Total
L3006 0320 2005 6000 4000 1
2 | 4211 0278 0516 T000 000 1
8 6211 0278 0516 7000 “B000 1
4 2880 2020 . B0 | 5000 1
e e e el i e
Total 1-8408 <3405 8097 2:5000 i 1:5000 4

“ 6. Comparison of the analysis with the diagram.—The
reader has probably been turning from this ealeulation of
the factor loadings back to the four-oval dingram with
which we started (page 69), to detect any connexion ; and
has been disappointed to find none, The fact is that the
analysis to which the Thurstone method has led us is,
except that it too has three common factors, a different
analysis from that which the original diagram naturally
invites. That diagram gave for the variance duc to each
factor the following :

Variance contributed by Each Faclor

Test !
. Speeifie
1 11 1| Communality et Total
1 b . 3 A -4 1
2 4 i v | 7 R 1
4 4 3 sl 7 - 1
+ R 3 5 5 1
Totals 1.2 B e 2-3 1-5 4

and the factor loadings are the positive square roots of
these.
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Test =T
i 11
|
1 | 6325 :
2 | 6325 5477
3 6325 . 5477
4 | 2 5477

ANALYSIS OF HUMAN ABILITY

| Lomhw,gs of the Factors

Ir Specifics
4472 {6324 .
5477 .
. 3 3 0477 .
4472 - g 3 7071

The only points in common between the two analyses are
that they both have the same communalities (and therefore
the same specific variances) and the same number of com-
mon factors. The Thurstone analysis has two general
factors (running through all four tests), while the diagram
had none : and thelThurstone analysis has several negative
loadings,)while the diagram had none. We shall see later

tha.t[I‘ rstone after

arriving at this first analysis, en-

deavours to convert it into an analyslb more like that of

our diagram, with no negative loadings and no completely

general factors?) This is one of the most difficult yet
essential parts of his method.

7. Analysis into two common factors.—When we began

/ our analysis of the matrix of correlations corresponding to

Figure 10, we simply put the communalities suggested by

. that figure into the blank diagonal cells. That served to

illustrate the fact that the Thurstone method of calculation

will bring out as many factors as correspond to the com-

munalities used, here

three factors. But it disregarded

(intentionally for the purpose of the above illustration) a
cardinal point of Thurstone’s theory that we must seek
or the communalities which make the rank of the matrix a

mlmmumLand therefore the number of common faétois a

minimum.) We simply accepted the communalities sug-
gested by  the diagram. Let us now repair our omission
and see if there is not a possible analysis of these tests into
fewer than three common factors. There is no hope of
reducing the rank to one, for the original correlations give
two of the three tetrads different from zero, and we may
(in an artificial example) assume that there are no experi-

mental or other errors.

But there is nothing in the experi-
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mental correlations to make it certain that rank 2
cannot be attained. - With only four tests (far too few, be
it remembered, for an actual experiment) there is no minor
of order three entirely composed of experimentally obtained
correlations. It may then be the case that communalities
can be found which reduce the rank to 2. Indeed, as we
shall see presently, many sets of communalities will do so,
of which one is shown here :

(+26) 4 4 2 ,
4 (1) o .3 K/
4 -7 (7) -8
2 -3 3 (-15)

These communalities -26, 7, 7, and -15 make every
three-rowed minor exactly zero. For example, the minor

(+26) 4 -2
4 (-7) 3
.2 3 (15)

3

becomes by  pivotal condensation ” :

026 0
0 0
and finally 0

It must, . therefore, be possible to make a four-oval
diagram, showing only two common factors, and indeed

(5

49,
Figure 11.

more than one such diagram can be found. One is shown
in Figure 11,
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This gives exactly the same correlations. For example—
12 + 2 14

7'23=—'

T34

12

V(20 % 80) 40

e =

V(20 x 20) 20

12

It also gives the communalities -26, -7, 7, 15. For
example, in Test 1, variance to the amount of 12 out of
45 is communal, and 12/45 = -26,

The insertion of these communalities, therefore, in the
matrix of correlations ought to give a matrix which only
two applications of Thurstone’s calculation should com-
The reader is advised to carry out the

pletely exhaust.

calculation as an exercise.

loadings—

5000

1291

the loading) contributed by each factor to each test is then '

in this analysis :

8290

and if in the first residual matrix, following our rule, he
changes temporarily the signs of Tests 2 and 8, the second-
factor loadings will be—
— 1128

The second residual matrix will be found to be exactly
zero in each of its sixteen cells. The variance (square of

He will find for the first-factor

8290 3750

— 1128 ‘0968

Variance contributed by Each Factor

Test T TR e

I I Communality | 5P | Total
| Variance

1 2500 0167 ) 2667 7333 1

2 6873 0127 | 7000 3000 1

3 6873 0127 | 7000 *3000 1

4 1406 +0094 ‘ 1500 8500 1

'\

Totals | 1:7652 0515 ‘ 1-8167 2:1833 4

| | =

If we now compare these analyses, we see that the three
common factors. of the previous analysis * took out,” as
the factorial worker says, a variance of 2-5 of the total 4,
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leaving 1-5 for the specifics. The present analysis leaves
2-1833 for the specifics, which here form a larger part of
the four tests.

-’\\L_‘/ 8. Alexander’s rotation.—We saw in Section 6 that the
Thurstone method there led to an analysis which was
different from the analysis corresponding to the diagram
with which we began. That is also the case with the
present analysis into two common factors—the very fact
that it gives the second factor two negative loadings shows
this, for the diagram (Figure 11) corresponds to positive
loadings only. We said, too, in Section 6 that a difficult
part of /Thurstone’s method was the conversion of the
loadings into new and equivalent loadings which are all
positive. ) This will form the subject of a later and more
technical chapter ; but a simple illustration of one method
of conversion (or * rotation ” as it is called, for a reason
which will become clear later) can be given from our present
example. Tt is a method which can be used only if we have
reason to think that one of our tests contains only one
common factor (Alexander, 1935, 144). Let us suppose in
our present case that from other sources we know this fact
about Test 1. The centroid analysis has given us the
loadings shown in the first two columns of this table :

Unrolated Rotaled Rotated
Test Loadings Communcality Loadings Loadings
1] Ir I* Ir* Y £ B I b
I +5000 -1291 26067 5164 ¥ 4781 1952
2 -8290 — 1128 7000 - 7746 -3162 | 8367
3 82900 — -1128 7000 7746 8162 | ‘8367 <
4 -3750 0968 <1500 3873 . 3586 1464

The communalities are also shown ; they are the sums of
the squares of the loadings. If now we know or decide to
assume that Test 1 has really only one common factor, and
if we want to preserve the communalities shown, then the
loading of factor I* in Test 1 must be the square root of
2667, namely -5164.

The loadings of factor I* in the other three tests can
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now be found from the fact that they must give the corre-
lations of those tests with Test 1, since Test 1 has no
second factor to contribute. The loadings shown in
column I* are found in this way : for example, 7746 is
the quotient of -5164 divided into ry, (-4), and -8873 is
similarly »,, (-2) divided by -5164.

The contributions of factor I* to the communalities are
obtained by squaring these loadings. In Test 1, we
already know that factor I* exhausts the communality, for
that is how we found its loading. We discover that in
Test 4, factor I* likewise exhausts the communality, for
the square of 83878 is :1500. The other two tests, however,
have each an amount of communality remaining equal to
‘1000 (i.e. 7000 — -7746%). The square root of -1000,
therefore (-3162), must be the loading of factor II* in
Tests 2 and 8. The double column of loadings ought now
to give all the correlations of the original correlation
matrix, and we find that it does so. Thus, e.g.—

Yoy = “T7T46 X -T746 + 8162 X -3162 = -7000
and 7, = 7746 X -3878 = -3000

Moreover, the analysis into factors I* and II* corre-
sponds exactly to Figure 11. For example, the loading of
factor IT* in Test 2 in that diagram is the square root of
2/20 (-8162) ; and the loading of factor I* in Test 4 is the
square root of 12/80 (-8873).

If, however, the experimenter
had reasons for thinking that Test
2 (not Test 1) was free from the
second common factor, his *‘ rota-
tion ” of the loadings would have
given a different result, shown in
the table on page 79 in column I**
and II**. This set of loadings
also gives the correct commu-

Figure 12. nalities and the experimental corre-
lations, but does not correspond

to Figure 11. A diagram can, however, be constructed to
agree with it (Figure 12) and the reader is advised to check
the agreement by calculating from the diagram the load-
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ings of each factor, the communalities of each test, and the
correlations.

We have had, in Figures 10, 11, and 12, three different
analyses of the same matrix of correlations. If with
Thurstone we decide that analyses must always use the
minimal number of common factors, we will reject Figure 10.
Between Figures 11 and 12, however, this prineiple makes
no choice. Much of the later and more technical part of
Thurstone’s method is taken up with his endeavours to
l? down conditions which will make the analysis unique.

9. Unique communalities—The first requirement for a
unique analysis is that the set of communalities which gives
the lowest rank should be unique, and this is not the case
with a battery of only four tests and minimal rank 2, like
our example. There are many different sets of com-
munalities, all of which reduce the matrix of correlations
of our four tests to rank 2. If, for example, we fix the
first communality arbitrarily, say at -5, we can condense
the determinant to one of order 3 by using -5 as a pivot
(as on page 65) except that the diagonal of the smaller
matrix will be blank :

(-5) -4 4 2
4 ; 7 3
4 7 : 3
2 3 3
: 19 07
19 J 07
07 07

We can then fill the diagonal of the smaller matrix with
numbers which will make each of its tetrads zero, namely—

19 19 {0258

and then, working back to the original matrix, find the
communalities—

5 it I ‘1316

which make its rank exactly 2. We can similarly insert
different numbers for the first communality and calculate
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different sets of communalities, any one set of which will
reduce the rank to 2. In this way we can go from 10
down to 0-22951 for the first communality without obtain-
ing inadmissible magnitudes for the others. Some sets
are given in the following table * :

1 2 3 4 Sum
10 7 7 12963 2:52963
5 v 7 13158 | 2-08158
3 7 7 14 1-84
26 B 7 15 1-816
25 7 7 16 1-816
24 g 7 20 1:84
22051 7 7 1:0 2-62951

If, however, we search for and find a fifth test to add to
the four, which will still permit the rank to be reduced to
2, this fifth test will fix the communalities at some point

or other within the above range. Suppose that this test.

gave the correlations shown in the last row and column :

1 2 3 -+ 5
‘| . -4 4 2 5883
2 4 . 7 3 2852
3 4 o . 3 2852
4 2 3 -3 . 1480
5 | -5883 2852 2852 1480 .

If we now try to find communalities to reduce this
matrix to rank 2 (as can be done), we find only the one
set—

L i =i, -13030 5

The reader can try this by assigning an arbitrary value for
the first one,} and then condensing the matrix on the lines

* The circumstance that the communalities of Tests 2 and 8
remain fixed and alike is due to these tests being identical except for
their specific. This lightens the arithmetic, but would not occur
in practice.

T Alternatively, the communalities (which are now unique) can
be found by equating to zero those three-rowed minors which have
only one element in common with the diagonal. In this connexion
see Ledermann, 1937a.
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employed above, when he will always find some obstacle
in the way unless he chooses -7. Try, for example, -5 for
the first communality :

(5) 4 4 2 5883
4 ; T 3 2852
4 & : 3 2852
2 3 3 : 1480
-5883 2852 2852 1480

() 19 07 — 09272

19 ! 07 — 09272

07 07 ; — -04366
— 09272  — 09272  — -04366

Now, if the upper matrix is to be of rank 2, the
second condensation must give only zeros (see footnote,
page 65). But if we fix our attention on different tetrads
in the lower matrix which contain the pivot @, we see that
they give, if they have to be zero, incompatible values for
@. Thus from one tetrad we get @ = -19, from another
» — -14866. With -5 as first communality, rank 2
cannot be attained. With five tests (or more), if rank 2
can be attained at all, it can be by only one unique set of
communalities. Just as it took three tests to enable the
saturations with Spearman’s g to be caleulated, so it takes
five tests to _enable communalities due to two common
factors to be cal_culgte_cl.‘l For larger numbers of common
factors, the number of tests required to make the set of
communalities unique is shown in the following table
(Vectors, 77). The lower numbers* are given by the

¢/ formula—

R +2\/(8r +1)

r Factors | 20 o TR YT R S S SO (e S © i

n Tests g mgT g g 100 128 18 04 G LT s

* With six tests the communalities which reduce to rank 3 are
not necessarily unique, for there are, or there may be, two sets of
them. See Wilson and Worcester, 1939.

I think the ambiguity, which is not practically important, only
occurs when 7 is exactly equal to the formula, e.g. when r = 8, 6,
10, ete.
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If we were actually confronted with the matrix of correla-
tions shown on page 69, and asked what the communalities
were which reduced it to the lowest possible rank, we would
find it very unsatisfactory to have to guess at random and
try each set ; and our embarrassment would be still greater
if there were more tests in the battery, as would actually be
the case in practice. There would also be sampling error
(which in this our preliminary description of Thurstone’s
method we are assuming to be non-existent). Under these
circumstances, devices for arriving rapidly at approximate
values of the communalities are very desirable.

/' 10. Method of approximating lo the communalities.— Thur-
stone has deseribed many ways of estimating the com-
munalities, and articles still issue from his laboratory on
this subject. (He points out, however, that if the number
of tests is fairly large, an exact estimate is not very import-
ant, and can in any case be improved by iteration, using
the sums of squares of the loadings for a new estimate.

The simplest plan is to use as an applomm.mf( com-

munality thc_vlal‘gp_gjrc_ogh.\tl_gn’cocfﬁcmnt in the ¢ olumn
That this is plausible can be seen from a consideration of the

case where there is only one factor, when the communality
of Test 1 would be 7y, . ry3/ry, which is likely to be roughly
equal to either 7, or ry, if these tests correlate highly with
Test 1 and probably therefore with each other.

We shall illustrate this, the easiest, method on the same
example as we used above, for the sake of comparison and
for ease in arithmetical computation, even although that
example is really an exact and artificial one unclouded by
sampling error. Inserting then the highest coefficients in
each column we get :

(-5883) -4 4 2 5883
g4 () 7 3 2852
4 i sy ) e 2852
2 3 8 (-8)  -1480

5883 2852 -2852 -1480 (.)883)

2-1766 2 3852 2:3852 1- 24-80 1:8950 = 10-0900
3-1765°

I
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First
Loadings +6852 7509 -75090 8929 5066

The communalities which really give the minimum rank

are, as we saw on page 82—
iy o < 11308 -5

and the correct first-factor loadings obtained by their use—
7257 7564 7564 -8420 5729

With a large battery the difference between the loadings
obtained by the approximation and by the correct com-
munalities would be much less. For the ** centroid " method
depends on the relative totals of the columns of the correla-
tion matrix ; and when there are twenty or more tests,
these relative totals will not be seriously changed by the
exact value given to the communality in the column.
When the number of tests is large, the influence of the one
communality in each column is swamped by the influence
of the numerous correlations.

The process now goes on as on page 71, and the residuals
left after subtraction of the first-factor matrix check by
summing in each column to zero, as there.

Before, however, proceeding any farther, in this approxi-
mate method we delete the quantities in the diagonal (the
residues of the guessed communalities) and replace them by
the largest coefficient in the column regardless of its sign,
which we change to plus in the diagonal cell if it is negative
in its own cell.* The reason for this is apparent, especially
when, as may and does happen, the existing diagonal
residues are negative, which is theoretically impossible.
For although the guessing of the first communalities does
not in a large battery make much difference to the first-
factor loadings, it may make a big difference to the diagonal
residues. If the battery is very large indeed, our first-
factor loadings would come out much the same, even if we
entered zero for every communality, but the diagonal
residues would then all be negative. In short, the diagonal
residues are much the least trustworthy part of the caleu-

* It is necessary to keep an eye on the fact that what is inserted
must not, with the squares of the previous loadings of that test,
amount to more than unity.
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lation when approximate communalities are used, and it is
better to delete them at each stage and make a new
approximation.

11. Illustrated on the example.—To make this clearer, the
whole approximate process is here set out for our small
example as far as the second residual matrix. The ex-
planations printed alongside the calculation will make
each stage clear. It is important to form the residual
matrices exactly as instructed, as otherwise the check of
the columns summing to zero will not work. In practice,
certainly if a calculating machine were being used, several
of the matrices here printed for clearness would be omitted ;
for example, with a machine one would go straight from
4 to C, while D and E would be made by actually altering

C itself :

\ (-5883) -4 & 2 -5883
‘ 4 (*7) 7 -3 -2852 | Largest 7 of
4| -4 T (*7) -3 2852 | column inserted
‘ 2 3 3 (+3) -1480 | in diagonal cell.
} ‘5883 2852 2852 1480  (-5883)
21766 23852 2:3852 12480 1-8950 = 10-0900
= 81177652
Loadings 1 6852 7509 *7509 3929 5966 = 3-1765
-6852 (+4695) <5145 <5145 2692 -4088
7500 | 5145 (5630) 5630 2050  cAdBO | oo
B| 7509 | 5145 5639 (-5639) 2950  -4480 | 'Slacto
3929 | 2692 2050 2950 (-1544) 2344 | MAUIX.
-5966 -4088 4480 4480 2844 (-3559)
(-1188) —-1145 —-1145 —-0692 1795
—-1145 (1861) 1361 -0050 —-1628 | First residual
c —1145 ‘1861 (-1361) 0050 —-1628 | matrix.
—-0692 <0050 0050  (-1456) —-0864 | 4 — B
<1795 —-1628 —-1628 —-0864 (-2324)
‘0001 —-0001 —-0001  -0000 —-0001 | Columns check
to zero.
(-1795) —-1145 —-1145 —-0692 1795 Lnrgestrol‘caeh
—-1145 (-1628) 1361 «0050 —-1628 | column (regard-
D —+1145 1361  (-1628) 0050 —-1628 |less of sign) in-
—:0692  -0050 0050 (-0864) —-0864  serted in each
1795 —-1628 —-1628 —-0864 (-1795) diagonal cell.
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6572 -5812 +5812 2520 7710 | Sum disregard-
ing signs.

(-1795) 1145 1145 0692  -1795 | Signs of Tests 2,
1145 (-1628) -1361  -0050 1628 | 3,and 4 changed
41145 1361  (-1628) -0050  -1628 | to make largest
0692 -0050 0050 (+0864) 0864 | column (-7710)
1795 1628 +1628 0864 (+1795)| all positive.

Sum 65672 5812 -5812 2520 710 = 2:8426

— 1-6860°

LoadingsII| -3898  -3447 3447 1495 4573 (With temporary

signs.)
3898 | (-1519) <1344 <1344  -0583 1783
83447 1844 (-1188) 1188 0515  -1576 Second-factor
3447 1344 1188 (-1188) -0515  -1576 | matrix, using
1495 0583 0515 -0515 (-0124) -0683 | temporary signs.
4578 1783 1576 <1576 -0683  (-2091)

(-0276) —-0199 —-0199  -0109 -0012
0109 (-0440) -0178 —:0465 0052 Second residual
0199 0178  (-0440) —-0465 0052  matrix.

0109 —-0465 —-0465 (-0640) -0180 | E — F

-0012 0052 -0052 0180 (—-0296)

0001 —-0001 0000 | Columns check
to zero.

—0001 —-0001

Notes.—It is fortuitous that all the entries in I are positive.
Usually some will be negative.

In the check for the residual matrices, a discrepancy from zero
in the last figure is often to be expected, even of three or four units
in a large matrix.

Note the negative value oceurring in a diagonal cell in G.

Further stages would be carried on in the same way.
But at each stage the residues will be examined to see if
further analysis is worth while, by methods indicated later.
Meanwhile let us assume in the present example that no
more factors need be extracted.

The matrix of loadings of common factors thus arrived
at is, after we have replaced the proper signs in Load-
ings II, shown at the top of the next page.

The communalities 6214, ete., are the sums of the
squares of the two loadings. For comparison with the
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: Approxvimate Method True Values
Test|— T :
I ‘ 11 | Communality | Communalily
1 6852 | "3898 6214 | 7000
2 ‘ 509 | — 8447 ‘ G827 7000
3 T509 | — B44T 6827 7000
4 3920 | — 1495 1767 11303
5 5966 4573 5651 5000
| St St - - ==
! 2:7286 2:7303

approximate communalities thus obtained there are shown
the true values, which in this artificial case are known to
us (see Section 9). This is for instructional purposes
only—the comparison is not intended as any criticism of
Thurstone’s method of approximation. As has been
explained, this method is used only on large batteries, and
it is a very severe test indeed to employ it on a battery of
only five tests,

V 12. Iteration of the process to improve the communalities.—
We might now go back and begin our whole calculation
again, using the communalities -6214, ete., arrived at by
the first approximation. This does not seem often to be
done in practice, most workers being content with the
approximation first arrived at. If we repeat the calcula-
tion again and again with our present example, on each
oceasion using as communalities the sum of the squares of
the loadings given by the preceding calculation, we get the
following sets of closer and closer approximation to the
true communalities* :

B 8 i S I (R P hg®
First trial commu- ‘ “ l
nalities 5883 | 7000 | 7000 ‘ 3000 | -5883
Next approximation | 6214 6827 | 6827 1767 I 5651
Next approximation <6381 [ 6970 ‘ 6970 a477 | 5892
Next approximation | 6535 | 7043 | -7048 | -1397 | 5253
True values 7000 | 7000 | 7000 | 1308 | 3000

* In these repetitions we do not, as in the case of the first guess,
alter the diagonal cells in each matrix of residues: we retain the
diagonal residues without change.
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The example has served to show how to work the
iterative method of approximating to the communalities.
Being an artificial example, and not overlaid with sampling
error, it has had the advantage of allowing us to compare
the approximations with the true values. But it must be
remembered that a real experimental matrix is not likely
to have an exact low rank to which approximation can
converge as here. In that case the approximations will
presumably give an indication of the low rank which the
matrix nearly has, which it might be made to have by small
adjustments in its elements.

It should be pointed out that iteration of each factor
extraction separately will not give the same result. By
iteration of the factors one by one we mean that after the
loadings of the first factor are obtained they are squared
and put into the diagonal cells as new communalities, and
this is repeated again and again until the communalities
remain unchanged. When this point is reached, the orig-
inal matrix of correlations has been reduced as nearly to
rank one as is possible.

If the residues, after removal of the first factor, are then
(after sign-changing) treated in the same way, they in
turn will be reduced as mearly as possible to rank one.
And so with successive residues, each matrix of residues
being in succession reduced as nearly as possible to rank
one by iteration of the one summation only. This process,
although much easier than reiterating the whole process,
and to that extent excusable, will not give the lowest pos-
sible rank for the whole. Consider, for example, the
correlations of the five tests used above on page 82. When
communalities are reiterated with the first factor only,
they settle down rapidly (the reader should check this) to—

4571 5421 5421 -1261 2729
When the residues then left are taken, and a factor taken out
and iterated, the communalities settle down to—

1677 -1003 -1003 0113 -1680
The sum of these first-factor and second-factor sets is the

set—
6248 6424 -6424 1374 4409
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These, however, if inserted in the diagonal cells of the
original matrix, do not reduce it exactly to rank fwo, as
can be done by the true communalities—

7000 7000 ‘7000 1303 5000

Iteration over two factors, as shown in the table on page 88,
produces with four repetitions the approximations—

6585 7043 7043 1397 5253

and (since in-this artificial example rank fwo can be exactly
reached) would ultimately converge to the above true
values, though at the expense of much labour, for the
convergenceisslow. Theiteration of eachfactorseparately,
however, would never converge to the true values. The
above values (-6248, ete.) are final, and yet do not give
rank fwo.

18. Other methods of assessing the communalities.—The
labour of finding the minimum communalities by iteration
is so great that methods of improving the first guess are
desirable. Medland (Pmka. 1947, 12, 101-10) has tried
nine such methods on a correlation matrix with 63 vari-
ables. A method entitled Centroid No. 1 method seemed
to be best. A sub-group is chosen of from three to five
tests which correlate most highly with the test whose
communality is wanted. The highest correlation ¢ in each
column of the sub-group is inserted in the diagonal cell,
and the columns summed. The grand total is also found.
Then the estimate of A} is—

()t
2r + Xt
where the numerator is the square of the column total,

and the denominator is the grand total. Thus if the cor-
relations of the sub-group were—

(\72) T2 63 24
72 (472) 47 -59
63 47 (-63) 41
24 -59 41 (+59)

2-31 2:50 2:14 1-83 = 878
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the estimate of % would be—
2:31%
8-78

= «608

Clearly the same sub-group will usually serve for more than
one of its members. Thus from the above example 7
can be estimated to be -712.

A graphical method, for which the reader is referred to
Medland’s article, was about equally accurate but more
laborious. Rosner (Pmka. 1948, 13, 181-4) gives an alge-
braic solution for the communalities depending upon the
Cayley-Hamilton theorem that any square matrix satisfies
its own characteristic equation, but adds that the method
“is not at all suited for practical purposes. The com-
putational labour is prohibitive.” It is, however, interest-
ing theoretically and may suggest new advances.



CHAPTER VI
WETHE GEOMETRICAL PICTURE

¥ 1. The scatter-diagram of two tests.—A well-known way
of representing correlation, and that used by Sir Francis
Galton who devised correlation coefficients, is by a scatter-
diagram. The scores in two tests are used as rectangular
abscissee and ordinates, and each person represented by a

TEST 2

Figure 13.

dot. Thus, if a person makes a score of X = 72in a Test 1
and of ¥ = 59 in a Test 2, he is represented by the point P.
The two tests are represented by the rectangular axes.
_ If a large number of persons take the two tests, their points
form the “scatter-diagram,” looking like a lot of shots at a
target. The dots are most densely crowded togethel near
a point whose ordinates are the average scores in the two
tests. If there is no correlation between the two tests,
and suitable units are used, the dots will thin out equally
in all directions, forming a circular-shaped group. If, on
the other hand, there is correlation, the group of dots will
be elliptical in appearance, with an axis slanting-wise
inclined to the test lines ; and more and more elliptical—
92
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the closer the resemblance of the scores, the higher, that
is, the correlation. If we have first standardized the scores,
the test lines will pass through the centre of the group, the
average, and the axis of the ellipse will be equally inclined
to both tests. In Figure 14 it is indicated how the ellip-
tical group of dots narrows in the one direction, and
lengthens in the other, with increasing correlation. The
circle corresponds to zero correlation, the fat ellipse to

TEST2

TEST |

Figure 14,

r — -5, the long thin one to r = 9. In perfect correlation
all the dots would be on a line. In negative correlation
the ellipse would be slanting the other way. These
ellipses must not be looked upon as bounding the group of
dots, which thins out to an indefinite distance. They are
like contours of a hill, being, in fact, “econtours” of the
density of the dots. ’
v 2. Three tests—When we have three tests we need
+’ three rectangular axes, like the three lines which meet in
the corner of a room. A person’s three scores, measured
along these lines, define a point in solid space, a point in
the room. The points thus representing a large number
of persons will form a swarm in the room, congregated
most thickly round the man who is average in all three
tests, like a swarm of bees round the queen. If there is no
correlation between any of the tests and suitable units are
used, the swarm will be globular, but if there is correlation
it will lengthen into an ellipsoidal shape like a Rugby
football or a Zeppelin, though its waistline need not be
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circular. In place of the ellipses of the two-dimensional
figure, we now have ellipsoidal shells of equal density of the
dots representing persons. One such is shown in Figure
15, which the reader can imagine as being the room in
which he is seated, the test lines, in their positive halves,
being represented by the three edges of floor and walls

TEST 2

TESTI

Figure 15,

which meet in a corner, where the point representing the
average man is placed. The ellipsoidal swarm is then
partly in the room, partly outside and below it. The part
of the swarm in the room (in the positive octant, that is) is
composed of persons scoring above the average in all three
tests. The end of the major axis of the ellipsoid, that is,
the longest line that can be drawn in it, ls shown pI‘O_]eCt—

the elhpsmd pro;ected at nght angles on to a wall or the
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floor of the room, will be a correlational ellipse due to the
two tests edging that wall, or edging the floor. These
three silhouettes will in general be different, depending on
the adiposity, as it were, of the ellipsoid.

When we have more than three tests we cannot make or
easily imagine a similar model, for we know in real life
only space of three dimensions. But mathematically we
still can conceive of as many rectangular axes as there are
tests, in a * space” of more dimensions, of as many
dimensions, indeed, as the number of tests. And we still
speak of the * ellipsoidal ** shape of the swarm of persons. .

3. The four quadrants.—Let us now return to the case
of two tests. If the persons tested are numerous it will,

b a

a b

with most tests, be found that the numbers in the two
quadrants marked a are approximately equal (the axes
being drawn, it is understood, through the average score
of each test) and, similarly, the numbers in the two quad-
rants marked b in the figure.

A portion a of the crowd of persons, that is, get scores
above the average in each test, and an equal portion @ are
below the average in each. These people add to the
correlation between the tests, whereas the others, in the
b quadrants, are all good in one but bad in the other test

~4_datrge T

ERRATA (Firrn Epition)

The last complete sentence on page 94 and the last
sentence of section 5 on page 97 are incorrect and should
be deleted. The major axis is not equally inelined, in
general, to the orthogonal test lines.
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then
7 = cos 6§ = cos L] X 180° = cos 60° = 05
3000

Actual correlation tables will, of eourse, not show such
complete equality in the opposite quadrants, and, more-
over, the reader must beware of applying this formula
unless the dividing lines are drawn through the means.

v 4. Making the crowd circular.—We are next going to
make a change in our model by rotating the two test
vectors, hitherto at right angles, towards one another until
the angle between them is the above angle 0, whose cosine
is the correlation. coefficient. A person’s point P will still
be located at the point where the two perpendiculars from
his scores meet. The rotation of the test lines towards one
another, pivoted on the average man at the point where
they eross, will, however, move the dots representing per-
sons, and move them in such a way that the elliptical

The presence of correlation is not now shown by the con-
figuration of the crowd, but by the angle between the test
lines. The cosine of t_his angle is the correlation coefficient.

If we guide the eye by drawing a dotted line at right
angles to each test line, we see that our former quadrants
a and b are now represented by sectors of the circular
crowd. Perpendiculars from any point in the white sectors
a on to the test lines both fall on the same side of the




THE GEOMETRICAL PICTURE 97

average : all persons situated in these sectors are either
above the average in both tests (like ) or below in both.
Anyone, on the other hand, whose point is in the shaded
sector b is above the average in one of the tests and below
in the other. Those in @ add to the correlation, those in b
diminish it. If correlation is perfect, the two test lines
must be brought together until they coincide : and then
the dotted lines will also coincide and the sector b will
disappear. If, on the other hand, the correlation is low,
the test lines will have to be farther apart, and the sector b
will increase, until, when correlation is zero, the test lines
are at right angles and the sectors ¢ and b are equal
and balance one another, the pros equal to the cons.
For negative correlation the angle 6 between the test
lines becomes obtuse, and the sectors b larger than the
sectors a.

" 5. Ellipsoid into sphere—With three tests we saw that
the solid * scatter-diagram,” made with the test lines at
right angles to one another, was ellipsoidal in form. Just
as we converted the elliptical two-dimensional scatter-
diagram into a circular crowd of dots by bringing the test
lines closer together, until the cosine of the angle between
them equalled the correlation coefficient, so with the ellip-
soidal swarm of dots when we have three tests. If we take
hold of the three test lines and swivel them nearer to each
other, until the angle between each pair represents their cor-
relatlon coeflicient by its cosme, we then find that the ellip-

6. A wire model —Let us suppose we want to make a
wire model of this arrangement of three test lines, supposing
that we have calculated by the usual product-moment
formula the three correlation coefficients. Choosing any
two of the tests, we find from a table of cosines what angle
has a cosine equal to their correlation coefficient, and we
lay two straight wires on the table crossing one another at

F.A—4
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this angle, like an X. Imagine them soldered together at
the point where they cross, which represents the man
average in each test.

Now consider the third test, and look up the angles
whose cosines equal its correlation coefficients with Tests
1 and 2. The wire for this third test must be so placed as
to make these angles with the first two wires—and we find
that it will not lie flat on the table but sticks up at an angle,
and its negative half has to go through the table and stick
out below it. If we solder the three wires together where
they cross (at the point representing the man who gets
the average score in each of the three tests) and pick them
up, they form a double tripod.

7. Two kinds of space.~-It will be seen that we have
described two geometrical ways of representing correlation
using two different spaces. In the.one kind of space, the
test lines are at right angles to one another, or orthogonal,
and the presence of correlation is shown by the fact that
the swarm of dots representing persons is not spherical but
ellipsoidal. ;

In the other kind of space, the crowd of dots representing
persons is spherical and the presence of correlation is
shown by the test lines not being orthogonal but at angles
with one another whose cosines equal the correlation
coefficients.

In both kinds of space, a person’s scores in the tests are

' found by dropping perpendiculars from his point on to the
test lines. The distances of the feet of these perpendiculars
from the origin—that is, from the point where the test lines
. cross—are his scores in the tests. )
__If the test lines in this second kind of space are swivelled
back into orthogonality, the person-points will move, will
cease to be spherical in contour; and become ellipsoidal.
All this is true, not only for three-dimensional space, when
we have only three tests, but for multi-dimensional space
needed to represent many tests and their inter-correlations.
The algebra is exactly the same for any number of dimen-
sions, and we continue, in the larger spaces, to use by
analogy the terms we are accustomed to in real space, such
as sphere, ellipsoid, ete. -

R
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8. A still larger space—Another way of arriving at the
second of the above two kinds of space—the spherical one,
in which the cosines equal the correlation coeflicients—is
to begin with a much larger space, of as many dimensions
as there are persons, who are therein represented by
orthogonal axes. If along each person’s axis we set off
the score he gets in a given test, say Test 1, these abscissa
will define a point in the space representing that test. In
the same way each test can be represented by a point. It
is a scatter-diagram with the usual roles of tests and persons
exchanged.

These test points will usually be much less numerous than
the persons, and they define a sub-space of dimensions
equal to the number of tests. This sub-space, if the test
scores have been normalized,* is the same as our spherical
space, and the lines joining the origin to the test points are
our former lines, separated by angles whose cosines equal
the correlation coefficients.
~9. Factor aves.—The problem of factorial analysis is to
decide upon a set of axes to use in the space in which the
test lines exist. Let us explain
this first of all in the simplest case, X Ay
that of two tests, represented by
their lines in a plane, at the angle
corresponding to their correlation. (o)

In this case, the most natural B
way of drawing orthogonal axes
on the paper is to place one of
them (see Figure 17) half-way
between the test vectors, and the Bigite 17,
other, of course, at right angles to
the first. Of these two factor axes, 04 is as near as it can
be to both test lines. .

We pictured, before, a swarm of ten thousand dots on
the paper, each representing a person by his scores in the
two tests, found by dropping perpendiculars from his dot
to the two vectors. Instead of describing each point (each
person, that is) by the two test scores, it is clear that we
could describe it by the two factor scores—the feet of

* See footnote, page 6.
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perpendiculars on to the factor axes. It is also clear
that, as far as this purpose goes, we might have taken
our factor axes anywhere, and not necessarily in the posi-
tions 04 and OB, provided they went through the point O
and were at right angles. In other words, we can “ rotate ”
04 and OB round the point 0, and any position is equally
good for describing the crowd of persons. Either of the
tests, indeed, might be made one of the factors. The
positions shown in Figure 17 are advantageous only if we
want to use only one of our factors and discard the other,
in which case obviously 04 is the one to keep, as it lies
as near as possible to both test axes. The scores along 04
are the best possible single deseription of the two test
results.

v lO.CSpcarman axes for two tests—The orthogonal axes
chosen by Spearman for his factors are, however, none of
the positions to which 04 and OB can be rotated in the
plane of the paper. Besides, Spearman has three factors,
and therefore three axes, for two tests, namely the general
factor and the two specific factors, and we cannot have
three orthogonal axes or factor vectors on a sheet of paper.
The Spearman factors must, for two tests, lie in three-
dimensional space, like the three lines which meet in the
corner of a room.  If we rotate the 04 and OB of Figure 17
out of the plane of the paper (say, pushing 4 below the
surface of the paper, and, say, raising B above it), we shall
clearly have to add a third axis, at right angles to 04 and
OB, to enable us to deseribe the tests and the persons who
remain on the paper. There are now three axes to rotate ;
and they must rotate rigidly, remaining at right angles to
one another. The point at which Spearman stops the
rotation, and decides that the lines then represent the
“ hest ** factors, is a position in which one of the axes is
at right angles to Test X, and another is at right angles to
Test ¥. The third axis then represents g.

v 11. Spearman axes for four tests.—We are accustomed to
depicting three dimensions on a flat sheet of paper, and
so we can, in Figure 18, represent the Spearman axes g, 5,
and s, for two tests. And since we have begun to depict
other dimensions, by means of perspective, on a flat sheet,
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let us continue the process and by a kind of super-per-
spective imagine that the lines s3, s;, and any others we
may care to add, represent axes sticking out into a fourth,
a fifth, and higher dimensions. Figure 18 thus represents
the five Spearman axes for four tests, of which only the
line of the first test is shown (in its positive half only).

All the five lines g, s, 8,, 83, and s, must be imagined as
being each at right angles to all
the others in five-dimensional
space. The line of Test 1, shown
in the diagram, lies in the plane
or wall edged by g and s;. It
forms acute angles with g and
with s, the cosines of which
angles are its saturations with g
and s; respectively. If it had
been highly saturated with g, it
would have leaned nearer to g Figure 18.
and farther away from s;.

The other three axes, s, sy, and s,, are all at right angles
to the wall or plane in which Test 1 lies. They have,
therefore, no correlation with Test 1, no share in its
composition. Test line 2 similarly lies in the wall edged
by g and s,, test line 8 in that edged by g and s;. The
axis g forms a common edge to all these planes. If the
battery of tests is hierarchical—that is, if the tetrad-
differences are all zero—then all the tests of the battery
can be depicted in this way, each in its own plane at right
angles to all the other p]anes, no test line being in the
spaces between the * walls.”

The four test lines themselves, of course, are only in
a four-dimensional space (a 4-space we shall say, for
brevity). Just as, when we were discussing Figure 17, we
said that Spearman used three axes which were all out of
the plane of the paper, so here in Figure 18, with four test
lines (only one shown) in a 4-space,. Spearman uses five
axes in a space of one dimension higher than the number
of tests. For n hierarchical tests, Spearman’s factors are
in an (n + 1)-space.

If along each test line we measure the same distance




V4

/

102 THE FACTORIAL ANALYSIS OF HUMAN ABILITY

as a unit, then perpendiculars from these points* on to the
g axis will give the saturations of the tests with g as fractions
of this unit distance. The four dots on the g axis in Figure
18 may thus be taken as representing the test vectors }
projected on to the ““ common-factor space,” which is here
a line, a space of one dimension only. Thurstone’s system
is like Spearman’s except that the common-factor space is\I
of more dimensions, as many as there are common factors. “
Figure 19 shows the Thurstone axes for four tests whose|
matrix of correlation coefficients can be reduced to rank 2.[
v 12. A common-factor space of two dimensions.—Here there
are two common factors, @ and b, and four specifics, s,
8y, 83, and s, All the six axes representing these factors
in the figure are to be imagined as existing in a 6-space,
each at right angles to all the
others. The common-factor
space is here two-dimensional,
the plane or wall edged by a
and b—to make it stand out
in the figure, a door and a
window have been sketched
upon it.

In Spearman’s Figure 18,
each test line lay in a plane
defined by g and one of the
specific axes. Here in Figure
19, each test line lies in a different. 3-space. These different
3-spaces have nothing in common with one another except
the plane ab, the wall with the door and window in the
diagram. In Figure 18 the projections of the unit test
veetors on to the common-factor space were lines which all
coincided in direction (though they were of different
lengths), for there the common-factor space was a line.
Here the common-factor space is a plane, and the pro-

jecttoﬁ{gf?;he four test vectors on to that plane are shown

Figure 19.

* These points are then the same as those arrived at by the process
described in Section 8 (page 99).

1 A vector is a direction with a magnitude, and now that we have
measured unit distance along each test line, we may speak of unit
test vectors.
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in the figure by the numbered lines on the “ wall.”” These
lines, if they are all projections of vectors of unit length,
will by their lengths on the wall represent the square roots
of the communalities.
~18. The common-factor space in general.—When there are
» common factors, the common-factor space is of » dimen-
sions, and the whole factor space (including the specifics) is
of (n -+ r) dimensions. Thetest vectors themselvesareinan
n-space ; their projections on to the common-factor space
are crowded into an r-space, and are naturally at smaller
angles with one another than the actual test vectors are.
These angles between the projected test vectors do not,
therefore, represent by their cosines the correlations be-
tween the tests. The angles are too small for that, and
the cosines, therefore, too large. But if we multiply the
cosine of such an angle by the lengths of the two projections
which it lies between, we again arrive at the correlation.
Thus in Figure 19, the angle between the lines 1 and 3
on the wall is less than the angle between the actual test
vectors 1 and 8 out in the 6-space, of which the lines on
the wall are the projections. But the lengths of the lines 1
and 8 on the wall are less than the unit length we marked
off on the actual vectors, being, in fact, the roots of the com-
munalities. If we call these lengths on the wall h; and hs,
then the product hihy times the cosine of the projected
angle again gives the correlation coefficient.
“ 14. Rotations.—It will be remembered that Thurstone,
after obtaining a set of loadings for the common factors
by his method of analysis of the matrix of correlations,
“rotates 7’ the axes until the loadings are all positive—
and he also likes to make as many of them as possible zero.
It is instructive to look at this procedure in the light of our
geometrical picture from which the phrase * rotating the
factors ”’ is taken. It should be emphasized first of all
that such rotation of the common-factor axes in Thur-
stone’s system must take place entirely within the com-
mon-factor space, and the common-factor axes must not
leave that space and encroach upon the specifics. In
Figure 18, therefore, no rotation, in Thurstone’s sense, of
the 8 axis can be made (since the common-factor space is a
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line), except, indeed, reversing its direction and measuring
stupidity instead of intelligence.

In Figure 19 the common-factor space is a plane, and
the axes a and b can be rotated in this plane, like the hands
of a clock fixed permanently at right angles to one another.
When the positive directions of @ and & enclose all the
vector projections, as they do in our figure, then all the
loadings are positive. The position shown would, there-
fore, fulfil this desire of Thurstone’s. Moreover, one of
the loadings could be made zero, by rotating a and b until
a coincides with line 1 (when b will have no loading in
Test 1), or until b coincides with line 4 (when a will have
no loading in Test 4).

When there are three common factors, the common-
factor space is an ordinary 8-space. The three common-
factor axes divide this space into eight octants. Rotating
them until all the loadings are positive means until all the
projections of the test vectors are within the positive
octant. This will always be nearly possible if the corre-
lations are all positive. Moreover, it is clear that we can
always make at any rate some loadings zero. In the
common-factor 8-space we can move one of the axes until
it is at right angles to two of the test projections, in which
tests that factor will then have no loading. Keeping that
axis fixed, we can then rotate the other two axes round it,
seeking for a position where one of them is at right angles
to some test. The number of zero loadings obtainable
will clearly be limited unless the configuration of the test
vectors happens to lend itself to many zeros. We shall see
later that Thurstone seeks for teams of tests which do this.

Although Thurstone makes his rotations exclusively
within the common-factor space, keeping the specifics
sacrosanct at their maximum variance, there is, of course,
nothing to prevent anyone who does not hold his views
from rotating the common-factor axes into a wider space,
and increasing the numbe on-factor axes at the

“expense of the specific variance,until ultimately we reach as

many common factors as we have tests, and no specifics.
v [15. The geomelrical picture of centroid analysis. —Think

" of a sheaf of lines representing a number of tests, with
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angles corresponding to the correlations. Centroid analysis
means (if unities are used in the diagonal cells) finding a
line in the middle of this sheaf—at the centroid or resultant
—something like the stick in the middle of the ribs of a
slightly opened umbrella, except that our test lines are not
regularly spaced like thoseribs.

All this is in a space of as
many dimensions as there are
tests, and it is not possible to
make a drawing. But if the
reader will be tolerant, we
can make one of our * super-
perspective ” drawings show-
ing a sheaf of test lines (see
Figure 20) which must be
imagined as being in a multi-
dimensional space. The cen-
troid line OC is the line along
which the point O would move
if each test line were a force
—all equal—pulling 0. It is
exactly like the parallelogram
of forces on a multi-dimen-
sional scale. 'The dots on the
test lines are at unit distance
from 0. (They have been
joined by lines only in order
to make the figure look more
*solid.) The loadings of the Figure 20.
tests in the first centroid
factor are the projections of these unit distances on to 0C—
this is when unities are used in the diagonal cells. The
summation process gives, arithmetically, these projected
distances along OC.

The next part of the arithmetical process consisted in
removing that part of the correlation coefficients explained
by the first factor loadings. This means, in our space
diagram, that the dimension parallel to OC is abolished,
and all the test lines are projected on to a space at right
angles to OC and of one dimension less than the original,

F.A—4%
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(n — 1) dimensions instead of n, if n be the number of
tests.

We have had perforce to draw our diagram as though
it were in a three-fold instead of an n-fold space : and for
this new (n — 1)-fold space we have drawn an ordinary
plane, like a drawing-board, at right angles to OC, and
projected the five test lines on to it. The next thing is to
find the centroid of these five directed lines, these vectors,
on the drawing-board. But we find at once that they are
in equilibrium. If they were forces, the point O would
not move. That is because OC is indeed the centroid of
the original lines. This fact of equilibrium corresponds to
the fact that the columns of residues add up to zero.

To get over this, in the arithmetie, we changed the signs
of some rows and corresponding columns, till, if possible,
all cells were positive. (These cells of the residues are the
cosines of the angles on the drawing-board, some of which
are clearly obtuse, with negative cosines.) This reversal of
signs in the arithmetic corresponds, in our diagram, to
reversing some of the vectors on the drawing-board, till
they again form a sheaf, as close as possible. Two are
shown as reversed in our figure, and most of the angles are
now acute, most of the cosines positive. It is desirable to
make the sheaf as compact as possible, corresponding to
making as many cells positive as possible.

The centroid of the resulting sheaf of vectors (or forces)
is the second factor. Its dimension is next abolished,
by projection on to a space of (n — 2) dimensions, and so
on, and so on. Our possibility of following this in a draw-
ing is beyond delineation,but if the reader will in imagina-
tion conceive of our first sheaf of test lines being in n
dimensions, and being step by step projected on to spaces
of (n — 1), (n — 2) and lesser dimensions, he will have a
picture corresponding to the arithmetical summation pro-
cess and the sign reversals in the residues.

For simplicity we have above supposed that unities

were being left in the diagonal cells, in which case as many

common factors would emerge as there were tests, and
there would be no specifics. If communalities are inserted
and the rank of the matrix of correlations reduced, there

e
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will be fewer common factors. Our diagram would then
be in the common-factor space and, indeed, can still serve,
if we suppose the distances from O to the dots on the test
lines to be not unity, but the square roots of the commun-
alities, and the angles to be the projections of those between
the full test lines. With that change, our diagram would
be one for the communal parts of five tests with three
common factors, represented by OC, by the resultant of
the vectors on the drawing-board (after the reversals to
destroy the equilibrium), and by a third line also on the
drawing-board, at right angles again.

16. Principal components.—The objéct of using centroids
as axes in the above process is to obtain axes in diminishing
order of importance as describers of the test lines. In the
current jargon, they each “ take out ”” as much variance as
possible at each step—or rather, not quite as much as
possible, though nearly so. There is another set of lines
which actually do take out as much as possible. They are
the lines corresponding to the axes of the ellipsoid of
Figure 15, or the more general ellipsoids of higher dimen-
sions, The centroid OC in our Figure 20 is in such a
position that the sum of the squares of the vertical distances
of the test dots to it is very small, nearly as small as
possible. Another line, however, quite close to OC and
corresponding to the major axis of the ellipsoid, makes this
sum of squares an absolute minimum, and the sum of
squares of the loadings of the factor a maximum.

Sqma
ad

In Section 5 above we spoke of converting the ellipsoid :

of our Figure 15 into a sphere by swivelling the three test
lines nearer to each other till the cosines of their angles
correspond to the correlation coefficients, and the test lines
take up positions such as they have in our Figure 20.
When this is done, the major axis of the ellipsoid takes up
a position among the test lines, quite near to the centroid
but not qulte c01nc1d1ng, and with the property of maxi-
mizing the * variance taken out. ) Similarly, the other
principal axes of the ellipsoid, whelqA the change is made in
the space, replace for the better the later centroids of the
simpler process. The arithmetical method of caleulating
their loadings is explained in our next chapter.



CHAPTER VII

"PRINCIPAL COMPONENTS

Jl. A historical accident.—By a historical accident, the

-~

method of principal components is associated in the minds
of psychologists with analyses in which unities, and not
communalities, are used in the diagonal cells of the square
table of correlations. The centroid method can, however,
equally well be used on such a table, giving the centroids of
the complete test vectors in the whole test space : and the
principal components of the communality vectors, in the
common-factor space, can be found, using communalities in
the diagonal cells, by the same iterative process as we are
about to describe. As, however, this method was originally
used on unit entries, we shall first make a principal com-
ponents analysis of the whole tests of the example already
used for the centroid process. Later we shall analyse the
communality vectors by the same process (page 118).

v 2.0 A calculation.—The actual calculation of the loadings
of principal components requires, for its complete under-
standing, a grasp of the method of finding algebraically the

1-0 4 4 2 8B 15
4 1-0 7 3 10 1:00 1000
4 7 10 3 10 100 1000
-2 3 3 1-0 7 65 -637
80 32 82 16
40 1:00 70 -30
40 70 1:00 -30 '
14 21 21 70

174 2:23 2-23 1-46

780 312 312 156

400 700 1:000 300
130 -195 <195 650

1710 2-207 2207 1406

108
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principal axes of an ellipsoid,/a problem which will be
found dealt with in three dimensions in any text-book on
solid geometry. We give an account of this, for n» dimen-
sions, in the Appendix. Here we shall only explain
Hotelling’s (1933) ingenious iterative method of doing this
arithmetically, by means of an example, for which we shall
use the matrix of correlations already employed in Chapter
V to illustrate the centroid method (see page 108).

Hotelling’s arithmetical process then begins with a guess
at the proportionate loadings of the first principal com-
ponent. Practically any guess will do—a bad guess will
only make the arithmetic longer. We have guessed -8, 1,
1, -7, the numbers to be seen on the right of the matrix,
because these numbers are roughly proportional to the
sums of the four columns, and such numbers usually give
a good first guess.

Each row of the matrix is then multiplied by the guessed
number on its right, giving the matrix below the first one,
beginning with -80. We then take, as our second guess,
numbers proportional to the sums of the columns of this
matrix,* namely—

1-74 2:23 2:23 1-46
giving 78 1 1 65

That is, we divide the sums of the columns by their largest
member, and use the results as new multipliers. They
are seen placed farther on the right of the original matrix.
It is unusual for two of them to be of the same size—that
is a peculiarity of our example.

It is always the original matrix whose rows are multiplied
by each improved set of multipliers. The above set gives
the next matrix shown, that beginning with 780, and the
sums of its columns—

1-710 2:207 2:207 1-406
give a third guess at the multipliers, namely—
775 1 1 637

* When a calculating machine is being used, this matrix will not
be actually written down—the column sums will be arrived at on the
machine.
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And so the reiteration goes on, and the reader, who is
advised to carry it a stage farther at least, would find if he
persevered that the multipliers would change less and less.
If he went on long enough, he would reach this point
(usually, however, far fewer decimals are suflicient) :

1:0 4 -4 2 TT2865
4 1-0 7 3 1-000000
. "4 7 1-0 3 1-:000000
2 -3 3 1:0 620811

772865 -300146 30914 154578

400000  1:000000 700000 300000
400000 700000  1-000000  -B300000
-125962 (1889043 1889043 629811

1:698827 2198089 2:198089 1-384384
giving 772865 1 . 1 620813

that is, totals in exactly the same proportion as the multi-
pliers. These final multipliers (or earlier ones if the experi-
menter is content with less exact values) are then propor-
tionate to the loadings of the first principal component in
the four tests. They have, however, to be reduced until
the sum of their squares equals the largest total, 2198089,
which is called the t *latent root” of the original
matrix. This is done by dividing them by the square root

of the sum of their squares and multiplying them by the |

square root of the latent root. They then become—
-662 857 -857 540

The next step in Hotelling’s process is similar to one
with which we have already become familiar in Thur-
stone’s method. The parts of the variances and correla-
tions due to this first component are calculated and sub-
tracted from the original experimental matrix. These
variances and correlations due to the first component
are shown at the top of the opposite page.

The residual matrix is then treated in exactly the same
way as the original matrix, the beginnings of the process
being shown opposite. There is no need, in this process, for
sign-changing. The guessed multipliers, proportional to
the sums of the columns, are not so near the truth this
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4 : -662 857 857 540
662 439 567 -567 -:;57 B s
iy 857 | 567 T34 784 462 Matrix due to
857 | 567 T34 784 462 first principal
540 357 462 462 291 component.
| 561 — 167 — 167 — -157 -3 18
Residual; — 167 266 — -034 — -162 — 4 — -38
matrix IF o 167 — 034 266 — +162 — 4 — -38
— B C1620 162 709 | 1:0 100
168 — <050 — 050 — 047
, 067 — -106 018 065
: ' 067 013 — -106 065
‘i — 57 — 162 — 162 709
‘ 45 — 305 — -305 792

time, for the first one, which we have guessed at -3, and
4 which reduces after one operation to -18, goes on reducing

until it becomes negative, the final values of these second
| loadings being as shown in the appropriate column of the
| following table, which also gwes the loadings of the third
‘ and fourth factors, obtained in the same way. The vari-
| ances and correlations due to each factor in turn are
subtracted from the preceding residual matrix and the new
residual matrix analysed for the next factor :

e o ‘
Factor | I I L e S
" | | Squares
| Test1 | -662218 | — 323324  -675967 ‘ 1
| ; . 2 | 856836 | — ‘135197 — 312332 — -387298| . 1
| , 8 | 856836 | — -185197|— 312332 387298 1
o 4 -5BD645 826092 mzszs‘ 1
Sum of | i i 1
squares * | 2198090 | 823526 | 678383 | -300000 | &
Percentages | 55:0 | 206 16-9 75 | 100

* These four quantities are, in the Hotelling process, what are
called the * latent roots ” of the matrix. Their product gives the
value, ‘8684, of the determinant of the matrix of correlation co-

efficients.
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due to Kelley. is to deal with the variables two at l im
The pair first chosen are rotated in their plane until the

are uncorrelated. Then the same is done to another pall

and so on, the new uncorrelated varinbles being in

paired with others, until finally all correlations are zero,

(Kelley, 1985, Chapters I and VL) A chief advantage |
that the components are obtained pari passu, and nof
successively ; also, in certain eircumstances where Hotel
ling’s process converges very slowly, Kelley's is q
The end-results are the same.

BLAmkraﬁon by powering the matriz.—In o later p
Hotelling pointed out that his process of finding the lo

ings of the principal components ean be much expedit

by analysing, not the matrix of correlations’ itself, b
square, or fourth, eighth, or sixteenth power, got by
repeated uqunrinE)(l!atclling. 10855).
metrical matrix is'a s)
(see Chnptcr X, Section 4, page 145) :
the ** inner products ” (see footnote, page 74) of each pair o

rows, including each row with itself, and sctting the

results down in order. Applying this to the corre

matrix :

we see that the inner product of the first row with itself
is 1-86; of the first row with the second, 1-14; and 86
on. Setting these down in order, we get for the mate

squared :

Squaring o

weeinl ease of matrix multiplieat

114
174
1-65

80

114
1-65
174

-89

it is done by find '

B4

140

R4l
‘80
1-22
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| 10878 14067 14067 88-54
| 140-67 18203  182:03 11461

140-67  182:08  182:08  114:61
‘ 88-54 114-61 114-61 72-38

“and the square roots of its diagonal members are—
10-429 13:492 13:492 8:508
which are in the ratio—
‘7730 1 1 6306
very near indeed to the Hotelling final multipliers—
772865 1 1 629811

Hotelling gives a method of finding the residues, for the

purpose of calculating the next factor loadings, from the .

* powered ”’ matrix. But it may be so nearly perfectly
hierarchical that this fails unless an enormous number of
decimals have been retained, and it is in practice best to
go back to the original matrix and obtain the residues
from it. Their matrix can in turn be squared, and so on.
Other and very powerful methods of acceleration will
be found deseribed in Aitken, 19875.
v & Properties of the loadings.—If all the principal com-
ponents are caleulated accurately, and if unities were used
in the diagonal cells, their loadings ought completely to
exhaust the variance of each test ; that is, the sum of the
squares of the loadings in each row should be unity. The
sum of the squares of the loadings in each column equals
the “ latent root » corresponding to that column, and the
sum of the four latent roots is exactly equal to the number
of tests. Each latent root represents the part of the whole
variance of all the tests which has been ‘ taken out ” by
that factor. Thus the first factor * takes out™ 55 per
cent., the first two factors together 75'6 per cent., of the
variance of the original scores. The four factors account
for all the variance. ‘

The correlations which correspond to the loadings given
in the table on page 111 are obtained by finding the

{_
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“ inner product ** of each pair of rows. Applying this to
the table we find the correlation ry, say, to be—

.856836 X -589645 — :185197 X 826092 — :312332
x +162328 — 387298 X zero = 300000

In this way the loadings of the four principal com-
ponents will exactly reproduce the correlations we began
with. TIf, however, we have stopped the analysis after we
have found only two principal components (or factors),
these two would have reproduced the correlations only
approximately. For example, for ry we should only
have—

856836 X :589645 — 185197 X 826092
— -850702 instead of -300000

Before we leave the table of loadings, we may note that
the signs of any column of the loadings can be reversed
without changing either the variances or the correlations.
Reversing the signs in a column merely means that we
measure that factor from the opposite end, as we might
rank people either for intelligence or stupidity and get the
same order, but reversed. We will usually desire to call
that direction of a factor positive which most conforms
with the positive direction of the tests themselves, and
therefore we will usually make the largest-loading in each
column positive.

All the loadings of the first principal factor are, in an

ordinary set of tests, positive. Of the other loadings,
about half are negative. '
5. Caleulation of a man’s principal components.—
Factors obtained by using unities, and not communalities,
in the diagonal cells have an important advantage. They
can be calculated exactly from a man’s scores, whereas
communality factors can only be estimated. This is
because the former are never more numerous than the tests,
whereas the latter, including the specifics, are always more
numerous than the tests, For the former, therefore, we
always have just the same number of equations as un-
knowns, whereas we have more unknowns than equations
when communalities are used.

We have hitherto given the analysis of tests into factors
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in the form of tables of loadings. But we can alternatively

write them out as “ specification equations,” as we shall
call them. Thus the table on page 111 would be written—

%, = 662218y, — 328824y, + 675067y,
z, = ‘856836y, — 185197y, — 312332y, — 387298y,
2, = ‘856886y, — 185197y, — 312832y, | -387208y,
2, = 539645y, + 826092y, + 162323y,

Here z,, 2,, 23, and z, stand for the scores in the four
tests, measured in standard units ; that is, measured from
the mean in units of standard deviation. The factors
Y1» Ya» Ys» and y4 are also supposed to be measured in such
units. These specification equations enable us to calculate
any man’s standard score in each test if we know his
factors, and since there are just as many equations as
factors, they can be solved for the y’s and enable us to
caleulate, conversely, any man’s factors if we know his
scores in the tests. The solution to these Hotelling equa-
tions for the y’s happens to be peculiarly simple, as we
shall prove in the Appendix, Section 7. It is as follows—

y, = (6622182, + ‘856836z, 1 ‘8568362, + '580645z,) < 2:198090
ve = (— 328824z, — 185197z, — '1851972, - -826092%,) < -823526
vy = (6759672, — -312332z, — ‘312882z, + +162323z,) - 678383
ye=( " — 387298z, 1 ‘387208z, ) = -300000

The table on page 111, therefore, serves a double purpose.
Read horizontally it gives the composition of each test in
terms of factors. Read vertically it gives the composition
of each factor in terms of tests, if we divide the result by
the root at the foot of the column.*

Suppose, for example, that a man or child has the fol-
lowing scores in the four tests—

1-29 36 72 1-03

This is evidently a person above the average in eacl} test,
since the scores are all positive. His factors will be

* If the analysis has been performed with * reliabilities ’j in the
diagonal cells instead of units, the statement in the text still holds
(Hotelling, 1933, 498). If on correlations corrected for ** attenua-
tion,” the matter is more complicated (ibid. 499-502).
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obtained by substituting these scores for the z’s in the
above equations, with the result—

11 = 1:062504
Yo = 849441
v = 1:034624
vy = -A64T5T )

(Of course, in practical work six decimal places would be
absurd. They are given here because we are using this
artificial example to illustrate theoretical points, in place
of doing algebraic transformations, and they need, there-
fore, to be exact.)

If these values for the factors are now inserted in the
specification equations opposite, the scores z in the test
will be reproduced exactly (1-29, -36, 72, and 1-03).

Notice, too, that if we have stopped our analysis at less
than the full number of principal components using unities
in the diagonal cells, we can nevertheless calculate these
factors for any person exactly. As soon as we have the
first column of the table on page 111, we can caleulate vy, for
anyone whose scores ¥ we know.

Had we done this with the person whose scores are given
above, we should have summarized his ability in these four
tests by the one statement—

v, = 1:062504

This would have been an incomplete statement, but it
is the best single statement that can be arrived at.

(L , 6. Principal components in the common-factor space.—
ﬁxactly the same iterative Hotelling process for finding the
principal components, the principal axes, of the ellipsoids
of density of the person-points can be applied to the table
of correlations with communalities in the diagonal cells.
The ellipsoidal swarm of person-points, in the full test space
with. orthogonal axes for the tests, remains an ellipsoidal
swarm (though one of fewer dimensions) when projected
on to the common-factor space. The mathematical reader
will know this, or can work it out. The non-mathematical
reader knows it well enough in the number of dimensions
he is personally acquainted with : e.g. an egg, which is an
ellipsoid of three dimensions, throws a shadow on a wall
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which is an ellipse, i.e. an ellipsoid of two dimensions. We
shall now analyse the same set of correlation coefficients
using the communalities -26, -7, -7, -15, which we know,
from Chapter V, page 77, reduce the rank of the matrix
to fwo, and give an analysis with only two common factors.
We found on page 78 the two centroid common factors.
We shall now find the two principal components and find
them very similar,
7. Caleulation with communalities

2667 4 4 2 [ i e et SRR o1
4 i d Girid e i ! Lo S NN |

-4 i § AR el et |

2 3 3 15 5 45 . . 4435 -

1-0867 1-83 1-83 -815

Taking ‘7, 1, 1, -5 as a first guess at the multipliers, we find
the weighted sums of the columns to be as shown, and on
dividing through by 1:83 we get the next set of multipliers
.59, 1, 1, -45. Continuing in this way, we arrive quite
soon at -5913, 1, 1, 4485, which, when used as weights,
reproduce themselves. When reduced until the sum of
their squares equals 1-7696 (the largest column total with
these weights), the loadings are—

4929 8336 -8336 8697

Subtracting the cross-producté of these from the original
matrix, and operating on the residues in exactly the same
iterative way, we get for the second factor loadings—

1540 — 0712 — 0712 -1158, and no residues.*

If we compare these principal component loadings with the
centroid loadings (page 78) obtained with the same com-
munalities, we see that they are very similar. But the
sum of squares of the loadings of the first principal com-
ponent (1-7694) is slightly larger than the same sum for the
first centroid loadings (17652). The principal compon-

* The sums of squares of the loadings (1:7694 and -0471) are the
two first latent roots of the matrix with communalities. The other
two latent roots are zero. The sum of the latent roots equals the
sum of the communalities, the * trace *’ of the matrix as it is called.

A T R e TN
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ents take out at each stage the maximum possible variance
(sum of squares of loadings). The centroids nearly do
so if the sign-changing is carefully done, but not quite.
The centroids can best be looked at as approximations to the
principal components, more easily calculated. In a bat-
tery of many tests, say two dozen, and with any given
communalities, the principal component process (** weighted
summation ”’) will take out more variance in, say, six
factors, and leave smaller residues, than will centroid
factors.* But with the kind of data available in psychology,
this advantage does not outweigh the disadvantage of
longer calculation.

&, 8.1 terative methods.—Both in the above Hotelling cal-
culation, and in our discussion of communalities on page
88, we have seen examples of iterative processes, where a
first guess at certain constants gives results which can be
used as a better guess, which gives results which can be
used as a still better guess, which gives . . . and so on
and so on, until the stage is reached where the same con-
stants emerge as were put in. This sort of process, where
repetition after repetition converges to a steady result
giving some maximum or minimum value to some quantity,
is not uncommon in mathematies and is rather mysterious
and magical to the layman. An analogy will perhaps
assist understanding. Robinson Crusoe wants to make a
lathe, but he has no wheels and spindles, and to make
wheels and spindles he needs a lathe! He can, however,
whittle erude makeshift wooden wheels, ete., with a knife,
and make a crude lathe with them, with which lathe he can
make somewhat better wheels and therefore a somewhat
better lathe, with which he can make still better wheels
. . . and so on, till he reaches perfection. | :

* If the Hotelling process is used with guessed communalities, and
the whole is iterated (as was done with centroids on page 88) the
communalities will converge to a set minimizing the sum of squares

of the residuals for a given number of factors. The maximum likeli-
hood method of Chapter IX arrives at communalities (I understand
from Dr. Lawley) which minimize a weighted sum of squares of the
residuals, each weight being the product of the reciprocals of the two
specific variances concerned.



CHAPTER VIII
TESTING RESIDUES FOR SIGNIFICANCE

o+ 1. The object of factorial analysis.—As was said in the first
section of Chapter I, the objects of factorial analysis are
both practical and theoretical. The practical desire is to
reduce the description of a man’s mind* to a comparatively
few quantitative statements, instead of an unwieldy record
of innumerable test scores, with a view to giving vocational
or educational advice. The hope, on the theoretical side,
is that the * factors ”” found may form the structure of a
theory of mind : and there are some who hope that physio-
logical or neurological bases may be found for them. Our
concern in this chapter is with the first point: how to
reduce the number of * factors” without sacrificing any
significant fraction of the information. The insertion of
communalities in the diagonal cells of a table of correla-
tions is by many looked upon as one way of doing this,
since it reduces the number of common factors. Simul-
taneously, however, it creates and maximizes the influence
ascribed to specific factors, and the total number of factors
is increased, not diminished. This will not be discussed
in the present chapter, which is concerned with another
way of reducing the number of factors, applicable whether
communalities or full variances are analysed. If the idea
of communalities and specifics had never occurred to any-
one, it would still have been possible to reduce the number
of significant common factors to a number less than the
number of tests. Each principal component, found as
described in Chapter VII, causes the remaining residues to
be as small as can be : and the centroid factors of Chapter
V are nearly as good, if the sign-changing is done properly.
If, after a few such factors have been extracted, the
residues are so small as to be statistically negligible, we
* Or of other objects of study, say in agriculture or in engineering.

See Chapter XII, Section 7.
120
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might as well stop the analysis, content with the few factors
extracted. We need, therefore, some test of statistical
significance, applicable to such residual correlations, to
know if they are negligible.

2. The general idea of significance—The general prin-
ciple of such a test of significance is this, that if the residues
we have found, or in practice some function of them, could
only rarely have been produced by the action of chance
sampling, we will assume that they are not due to sampling
but to another factor. How we define “ rarely ”’ depends
on circumstances. Usually in psychology * once in twenty
times  (the 5 per cent. point as it is called) is rare enough
to justify taking out another factor. The principle is
straightforward enough, the mathematical difficulty of
finding formule for calculating the chances, however, very
great, even for principal components with full variances,
and insuperable when the centroid method is used with
guessed communalities. In consequence, a number of
rule-of-thumb criteria have been put forward, to decide
when to stop factorizing.

3. Empirical rules for the number of Sfactors.—Thurstone
(1938a, 65 et seq.) discusses some of the earlier ones. A cri-
terion which appeals to common sense is based simply on the
algebraic sum of the residuals (excluding the diagonal cells)
after as many as possible of their signs have been made
positive by the process described in Chapter V (page 71).
As Tong as this sum goes on sinking, factorization is con-
tinued. When it flattens, the last factor taken out is
rejected and the process stopped. Mosier (1939) found this
the best of five plans he tried, though none was wholly
satisfactory. :

Ledyard Tucker’s criterion is that the ratio of the sums
of the absolute values of the residuals, including the
diagonal used, just after and just before the extraction of
a factor must be less than (n — 1)/(n 4 1) where n is the
number of tests.

Coombs’ criterion depends upon the number of negative
signs left among the residuals after everything has been
done to reduce them by sign-changing, in the centroid
process. If they are few, another factor may be extracted.
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More exactly, the permissible number is given in this
table :

Number of tests 20 15 20- 25 =56
Negative signs . . 81 79 149 242 858
Standard error . b T | R

A fuller table is given in Coombs’ article (1941).

An example of the use of these two will be found in
Blakey (1940, 126).

Quinn MeNemar (1942), who considers both of the
above inadequate, gives a formula which includes N the
size of the sample. He takes out factors until o, reaches

or falls below 1/4/N, where

op = o8 (1 — M),
o, = st.'dev. of the residuals after s factors,
M. = mean communality for s factors.

Others go on until the distribution of the residuals
ceases to be significantly skew (Swineford, 1941, 378).
Reyburn and Taylor (1989) divide the residuals by the
probable errors of the.original coefficients, and plot 2
distribution of the results disregarding signs. If it is
significantly different from a normal curve of the same area
and with standard deviation 1-4825, they take out more
factors. Swineford (1941, 3877) finds the correlation
between the original correlations and the corresponding
residuals and takes out factors till it is not significant.

Another method is based on the sinking of the factor
loadings with each successive factor instead of on the dying
away of the residuals. Guilford and Lacey (1947 in a
U.S. Air Force report) stop factorizing when the product
of the two highest factor-loadings falls below 1/v/N.

P. E. Vernon, in a privately circulated manuscript, has
tested some two dozen methods, as applied when the
centroid or simple summation method of analysis is used
with communalities, on two analyses of actual data, on
645 and 994 cases respectively (Vernon, 1947). His final
advice is to use the methods of Guilford and Lacey (pro-
duct of the two highest factor loadings) and of Mosier
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(sum of the residuals), together with Burt’s empirical
formula for the standard error of each factor loading—

i —#va
VN(n — s AT

where I = loading, N = number of persons, n = number of
tests, s = the ordinal number of the factor. If half the
loadings of a factor fall below twice their standard errors
thus found, Vernon recommends rejection of the factor.

If these three methods do not agree, Vernon would
proceed to calculate McNemar’s oy (opposite), and would
decide on the evidence of the four criteria, taking out another
factor if doubtful.

4. More ewxact methods.—The earliest method was to
compare each residue with the standard error of the origingl>~
correlation coefficient and cease factorizing when thwe o
residues all sank below twice these standard errors. But (S
the use of the formula for the standard error of r is now
frowned upon because of the skewness of the distri-
bution.

Moreover, sampling errors in the correlation coeflicients, :
being themselves correlated, produce further factors ;3 and R
the above-mentioned test tended to stop the analysis too
soon (Wilson and Worcester, 1939). These further factors
must be taken out in order to give elbow room for rotation
of the axes to some psychologically significant position.
For the error factors are not concentrated in the last
factors taken out, but have been entangled with all.
Usually more factors have to be taken out than can be
expected, on rotation, to yield meaningful psychological
factors, but all the dimensions are required nevertheless for
the rotations. In geometrical terms, some of the dimen-
sions of the common factor space will be due to sampling
error, but not the particular dimensions indicated by the
directions of the last factors to be extracted. In terms of
Hotelling’s plan, the whole ellipsoid is distorted ; its small
major axes are not necessarily due entirely to sampling, nor
its large ones free fromit. A 4*method is described by Wilson
and Worcester (1939, 139) which is, however, laborious
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when the number of tests is large. See also Burt (1940,
338-40). Lawley (1940, 76 et seq.) repeated Wilson and
Worcester’s criticism and developed an accurate criterion
described in the next chapter. This is probably the best
plan to use in any research where great accuracy is necessary.
And it is for the case where communalities are employed.
It is, however, only legitimate when the factor loadings
have been found by Lawley’s application of the method of
maximum likelihood.

Principal components lend themselves to exact treat-
ment when full unities are used, i.e. there are no specifics
assumed. Hotelling himself (1983, 437-41) discusses the
matter of the number which are significant. Davis (1945)
shows how to find the reliability of each principal compon-
ent from the reliabilities of the tests, and finds that it may
happen that a later component is more reliable than an

arlier one.

5. M. S. Bartlett’s test of significance for principal com-
ponents.—Recently (Bartlett, 1950) a method has been
described for deciding the significance of principal com-
ponent factors which, while it is unlikely, in its present
form at least, to be usable in any ordinary cases, ought
to be briefly described here. It is highly desirable that
exact methods, or methods where the assumptions made
and the approximations permitted are clearly realized and
set out, should gradually replace those based on experience
only. Bartlett’s method depends upon the latent roots of
the matrix of correlation coefficients with unity in each
diagonal cell—it is not applicable to communalities.

Latent roots have been mentioned on page 111, where
they appear as the sums of squares of the loadings of the
tests in each principal component. In the example there
used, their values are—

)y = 2:198
= 824
Ay = 678
Ay = +300

They are equal in number to the tests, and their sum also
is exactly 4. Bartlett forms quantities R; as follows :
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1
R, =% X — =1 log R
M
m =)
= il e Y =0
T ooy 8506 0-16182
G e )
= APyl —————— = 7734 — 0-25696
3 M\, e 1 A,
R, = A)gha0, = 8684 | — 0-99858

and of these we require the natural logarithms, which are
2-3026 times the usual logarithms to the base ten. They
are given above. These logarithms, multiplied by a certain
coefficient, are an approximation to x* for the successive
factors. The coefficient is—

2p 45
6

2k

= 5 3
where n is the number of persons tested less one, p is the
number of latent roots, i.e. of tests, and k is the number of
factors already dealt with, i.e. it takes in turn the values
0,1,2 ...

In our example p = 4. If we assume that the number of
persons tested was 20, so that Bartlett’s n = 19, we can
make this table :

5 per cent.

level
e DS B S e e e R
08 +2+1 — 16833 x (— 99858) = 16-8095 | 12:59
1 241 — 16167 X (— '25696) = 4-1542 7-82
2 3:84

‘ il — 15-500 x (— :16182) = 2:5082

The quantities in the last column are to be obtained from
a y? table, entered with the number of degrees of freedom
(d.f.) shown. Only the first factor is significant (16-8095
being greater than 12-59).

If we had assumed 29 children (n = 28) we should have
been puzzled by a peculiar result. The three values of %*
are then 25-80, 6:47, and 8:96, so that it looks as though the
first factor and the third factor are significant, with the
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factor in between not significant!* But Bartlett warns
(1950, 78) that this x* test is only valid if the roots
already removed are significant. As soon as we come
to a non-significant factor, the later factors are also non-
significant. The last factor of all is not dealt with.
** Merely the correlation structure of the variables is being
investigated in its relation to variance,” says Bartlett
(page 80). *“ For this reason no significance can ever be
attached to the last root, for it would be equivalent to
asking for the correlation structure of a single variable.”}

* Compare the report by Davis (19435) that a later component may
be more reliable than an earlier one.

t In a later paper (B.J.P. Statist, 4, p. 1) Bartlett warns that
after one or more significant components have been eliminated it is
safer to take as the number of degrees of freedom

} (p—k—1) (p—k+2)

i (p—k) (p—k-1)
as used above, This would increase the degrees of freedom in the
second line of the analysis on page 125 from 3 to 5, and in the
third line from 1 to 2, and raise the 5 per cent. level.

instead of




CHAPTER IX

THE MAXIMUM LIKELIHOOD METHOD OF
ESTIMATING FACTOR LOADINGS *

(by D. N. Lawley)

1. Basis of statistical estimation.—In recent times attempts
have been made to introduce into factorial analysis statis-
tical methods developed in other fields of research. In
particular the method of statistical estimation put forward
by Fisher (1921, page 828 et seq.), and termed the method of
maximum likelihood, has been applied by Lawley (1940,
1941, 1943) to the problem of estimating factor loadings.
This method has the property of using the largest amount
of available information contained in the data and gives
“ officient ”’ estimates, where such exist, of all unknown
parameters, i.e. estimates which, roughly speaking, are on
the average nearer the true values than those obtained by
other, “ inefficient,” methods of estimation.

Before using the maximum likelihood method for esti-
mating factor loadings it is necessary to make certain
initial assumptions. We assume that both the test scores
and the factors, of which they are linear functions, are
normally distributed throughout the population of indi-
viduals to be tested. This assumption of normality has
been the subject of some eriticism, but in practice it would
appear that departure from strict normality of distribution
is not very serious. It is also necessary to make some
hypothesis concerning the number of general factors
which are present in addition to specifics. We shall later
on show how this hypothesis may be tested, and how it
may be determined whether the number assumed is, in fact,

sufficient to account for the data. ;
2. A numerical example—In order to illustrate the calcu-

* For a detailed exposition of the arithmetical procedure of
Lawley’s method, with checks, see Emmett (1949).
127



128 THE FACTORIAL ANALYSIS OF HUMAN ABILITY

lations needed we shall reproduce an example used by
Lawley (1943b), where eight tests were given to 443 indi-
viduals. The table below gives the correlations between
the eight tests, unities having been placed in the diagonal

cells. In this example the hypothesis made is that two
general factors, together with specifics, are sufficient to
account for the observed correlations.

1 2 3 4 5 6 7 8

1 \ 1:000 -812 405 -457 500 -850 -521 664
312 1-000 -460 -316 -279 173 339 288

405  -460 1:000 -894 380 -258 -433 323
457  -316 -394 1:000 460 222 -516 486
500 279 -880 460 1:000 -289 -441 417
350 178 258 222 239 1:000 -302 262
+521 339 480 516 441 -802 1:000 547
-664 288  -32¢ 486 417 262 547 1:000

oS BN U )

The method of estimation about to be described is one
of successive approximations. Each successive step in the -

calculations gives a set of factor loadings which are nearer

to the final values than those of the previous set. To.
start the process it is only necessary to guess or to find by

some means (e.g. by a centroid analysis) first approx'imx'z-
tions to the factor loadings. Any set of figures within
reason will serve the purpose, though, of course, the better

the approximation the fewer steps in the calculation will -

be needed. For illustration we shall take as first approxi-
mations to the factor loadings the set of values given below :

Tests
Tl'inl -~ A ~ Y
loading in 1 2 3 4 5 6 v 8
Factor I 73 50 66 66 62 40 78 70
Factor II A7 —27 —-A7 -08 06 02 10 29
Specific

variance -4382 6771 -3435 -5580 6120 -8396 -4571 4259

Under the loadings are written the corresponding first
approximations to the specific variances (the total variance
of each test being taken to be unity). They are as usual
found by subtracting from unity the sums of squares of
the loadings for each test.
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The calculations necessary for obtaining second approxi-
mations to the loadings in factor I may now be set out as
follows :

(a) 1-666 738 1:921 1-183 1:018 476 1-507 1-644

(b) 5647 3-895 5132 5-120 4:830 8:100 5:647 5:412

(¢) 4917 8:395 4472 4-469 4210 2700 4:917 4712
ht = 45724 - 1fhy=0-14789

(d) 727 502 661 661 -628 899 727 697

The first row of figures, row (a), is found by dividing the
trial loadings in factor 1 by the corresponding specific
variances. The figures in row (b) are then given by the
inner products (see footnote, page 74) of row (a) with the
successive rows (or columns) of the correlation table
printed above, and row (c) is obtained by subtracting
from the figures in row (b) the corresponding loadings in
factor I. The quantity A} is given by the inner product
of rows (a) and (c), and hence, taking the square root of the
reciprocal of this quantity, we find 1/h,. Finally, row (d)
is obtained by multiplying the figures m row (¢) by 1/,
or -14789. The resulting numbers are then second
approximations to the loadings of the tests in factor L.

The most direct way of obtaining second approximations
to the loadings in factor II is to find the residual matrix
which results from removing the effect of factor I, and t_o
treat it in the same way as the original matrix, using this
time the trial loadings in factor IL. A less direct but con-
siderably shorter method may, however, be obtained by using
once more the original matrix and modifying the process
slightly. The necessary calculations are as shown below :

(¢) -388 —-399 —1-368 -143 -098 <024 219 681
(f) 380 —-560 —-980 -150 -113 088 190 580

P = —:0234
(¢) 177 —278 —-495 -085 068 027 107 306
k2 = 1:1080 1/ky = +9500

(h) 168 —-264 —-470 -081 -065 026 102 201

Row (e) is found by dividing the trial loadings in factor l:I
by the corresponding specific variances (thus, 388 is
*17/-4382), while the numbers in row (f) are given by the

F.A—D
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inner products of row (¢) with the rows of the correlation
table.

The step by which row (g) is obtained from row (f) is
a little more complicated than the corresponding step in
the calculations for the first-factor loadings. From each
number in row (f) we subtract not only the corresponding
trial loading in factor II, but also a correction which
eliminates the effect of factor I; this correction consists
of the corresponding number in row (d) multiplied by
— 0234, the inner product of rows (¢) and (d). Thus, for
example, the number ‘177 in row (g) is equal to

‘880 — 170 — 727 X (— -0284)
In general, where more than two factors are assumed to be
present and where further approximations are being calcu-
lated for the loadings in the rth factor, there will be (r — 1)
such corrections to be subtracted, one for each of the
preceding factors.

Having found row (g) the quantity %} is now given by the
inner product of rows (e) and (g), from which, taking the
square root of the reciprocal, we derive 1/k,. Row (h)
is then obtained by multiplying the figures in row (g) by
1/ky, or -9500.  We have thus found second approximations
to the loadings in factor II.

The whole cycle of calculations may now be repeated
over and over again until the required degree of accuracy
is reached. In practice, provided that the initial trial
loadings are not too far out, one repetition of the process
will usually be found sufficient. In our example the final
estimates (with possible slight errors in the last decimal
place) were as follows :

Tests
r A =
Loading in 1 2 8 4 5 6 7 8
Factor 1 7725  +503  -664 -661 -623 -399 -726 694
Factor 1T 172 —-261 —-468 087 069 -027 -106 291

Specific
variance 445 679 -840 -556 -607 -840 462 -434

Having obtained these figures, there is, of course, no
objection to rotating the factors as desired in order to
reach a psychologically acceptable position.
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3. Testing significance.—A difficulty in most systems of
factorial analysis is to know how many factors it is worth-
while to * take out,” and to decide how many of them may
be considered significant. From a statistical point of
view objections can be raised against the majority of
methods at present in use for this purpose. When, how-
ever, the number of individuals tested is fairly large, the
maximum likelihood method provides a satisfactory means
of testing whether the factors fitted can be considered
sufficient to account for the data.

To illustrate this let us return to the example of the
previous section. It is first of all necessary to calculate
the matrix of residuals obtained when the effect of both
factors is removed from the original correlation matrix.
For this purpose we use the final estimates of the loadings
as already given. The residual matrix, with the specific
variances inserted in the diagonal cells, is as follows :

Pt 2 3 4 ERESED 6 7 8

(+445) —-008  -004 —-087 -036  -056 —-:024 011
—.008 (-679) -004 006 —-016 —021  -001 015
004  -004 (-340) —-004 —-001 006  -001 —:002

_.037 006 —-004 (-556) -042 —-044 027 002
036 —016 —-001 042 (-607) —011 —-019 —035

| 056 —-021 006 —-044 —-011 (-840) -009 —:023
| —:024 001 001 027 —.019 -009 (462) -012
011 -015 —-002 002 —-035 —023 012 (-434)

(IS - S SR U

We are now able to calculate a criterion, which we shall
denote by w, for deciding whether the hypothesis that only
two general factors are present should be accepted or
rejected. Each of the above residuals is squared and
divided by the product of the numbers in the corresponding
diagonal cells. Thus, for example, the residual for
Tests 4 and 7 is squared and divided by the product of
the fourth and seventh diagonal elements, giving the result

(027 502888

556 X 462
There are altogether 28 such terms, one for each residual,
and w is obtained by forming the sum of these terms and -
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multiplying it by 443, the number in the sample. The
result is found to be 20-1.

When the number in the sample is fairly large w is
distributed approximately as z* with degrees of freedom
given by

K —m) —n — m}

where n is the number of tests and m is the assumed num-
ber of factors. To test whether the above value of w is
gignificant we now use a »* table such as is given by
Fisher and Yates (1938, page 27). In our case, putting
n = 8 and m = 2, the number of degrees of freedom is 13.
Entering the z* table with 18 degrees of freedom, we find
that the 1 per cent. significance level is 27-7. This means
that if our hypothesis that only two general factors are
present is correct, then the chance of getting a value of w
greater than 27-7 is only 1 in 100. If, therefore, we had
obtained a value of w greater than 977 we should have
been justified in rejecting the above hypothesis and in
assuming the existence of more than two general factors.
In our case, however, the value of w is only 20°1, well below
the 1 per cent. significance level. We have thus no
grounds for rejection, and although we cannot state that
only two general factors are present, we have no reason to
assume the existence of more than two.

It must be emphasized that the method described above

is not applicable if other, inefficient, estimates of the’

loadings are substituted for the maximumn likelihood
estimates. For the value of y* would in that case be
greatly exaggerated, causing us to over-estimate its
significance. For this reason we cannot, for example,
use the method for testing the significance of the re-
siduals left when factors have been fitted by the centroid
method.

4. The standard errors of individual residuals—A method
has now* been developed for finding the standard errors
of individual residuals. This should be useful when a few
of the residuals are very large, while the rest are small.
In such a case one or more of the residuals may be highly

* Lawley in the Proe. Roy. Soc., Edin., 1949.




MAXIMUM LIKELIHOOD METHOD 138

significant, when tested individually, even though the
value of x? does not attain significance. The method
ignores errors of estimation of the specific variances, which
are not, however, likely to be very large provided that the
number of tests in the battery is not too small.

Let us denote by [, m; the estimated loadings of the "
test in the first and second factors respectively (assuming
the existence of only two factors). Let v; be the specific
variance of the i test, and let us write—

Then the standard error of the residual for the i* and j*
tests (i = j) is given oy==

1, S8 LI e ,77:_

I @ m’

where lyp ey e —
h ke

LI, mm

and e _‘hl 5 __}_J
b

This formula may, of course, be easily extended to take

into account any number of factors.
Let us illustrate the use of the above formula with the

same numerical example as before. If we wish to test the
significance of the residual for the first and fourth tests
after removing two factors, we have—

= 1258 mq= 172 v, = 44479

I, = 601 My =0T e 55551

h = 67185 k = 10528

Hence e, = 33845 €y = 48829 €4 = — 08554

I

1 :
and J (g Cin — &7 ) — 0196
143 11t44 14

Thus the residual in question has a value o.f 037 with a
standard error of 020, Itis clearly not significant.
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5. The standard errors of factor loadings.—When maxi-
mum likelihood estimation has been used, we are able to
find the standard errors of not only the residuals but also
the estimated factor loadings. Using the same notation as
in the preceding section, the sampling variance of I, the
loading of the i" test in the first factor is (assuming the test
to be standardized)—

MeeD (e

and the standard error is the square root of this.
The covariance between any two first factor loadings [;
and [ is given by—

oD a6

The formulae for the variances and covariances of the

subsequent factor loadings are more complex. Thus the
variance of m,, the loading of the i* test in the second
factor, is—

JI\}(I 7 ;) {1 = (1 + ,%) B %(1 +2);fz,z}

while the covariance between m; and m; is

)| i § e 1
(D - (47~ (1 a)}

The results for the general case, where more than two
factors have been assumed present, may be written down
without difficulty. Each factor will give rise to one more
term within the curly brackets than the preceding factor.
It should be noted that the last of such terms, and that
alone, is multiplied by .

The variances and covariances of loadings in any factor
are those for given values of the loadings in all preceding
factors.

It must be stressed that all the above results are applie-
able only to the unrotated loadings.

In our numerical example, we find—
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1
14 T 1-14884

1
1 -+ - = 1-9498
k

Hence the variance of [, for example, is

1-14884
i {1 — } X 1-14884 X -7252} = -001810
while that of m, is—
1-9498
e {1 —1-14884 X 7252 —} X 1-9498 X 1172=} — 001617

Thus the loading of test 1 in the first factor is 725, witha
standard error of—

V001810 = -043
and its loading in the second factor is -172, with a standard
error of—

6. Advantages and disadvantages.—To sum up : the
chief advantage of the maximum likelihood method of
estimating factor loadings is that it does lead to efficient
estimates and does provide a means of deciding how many
factors may be considered necessary. It unfortunately
takes, however, much longer to perform than a centroid
analysis, particularly when the battery of tests is a large
one and when several factors are to be fitted. The chief
labour of the process lies in the calculation of the various
inner products ; although in this respect it does not differ
greatly from Hotelling’s method of finding  principal
components.” The maximum likelihood method is thus
likely to be most useful in cases where accurate estimation
is desirable and where it is proposed to make a test of
significance. :

The method also possesses the advantage of being
independent of the units in which the test scores are
measured. The same system of factors is therefore
obtained whether the correlation or the covariance matrix
is analysed. The loadings in the one case are directly
proportional to those in the other,






CHAPTER X
~~THE ROTATION OF FACTORS

1. Is rotation necessary ?—The factors or axes arrived at
by the centroid process (or as principal components) are
not at all the same sort of things as the Spearman system
and its extensions gave. The Spearman factors, though
mathematical devices are used in calculating their loadings,
have psychological meaning from the first. Their names
indicate this—general intelligence, the verbal factor, ete.
There is no need for rotating them.

With the other kind of factor, the case is different. As
first obtained, they make no claim to have psychological
meaning. Their virtue is a purely mathematical virtue—
they each explain, in turn, as much as possible of the vari-
ance of the tests, and arrive with as few common factors
as possible at negligible residues. The loadings of the
first centroid* factor are usually all positive, and it runs as
a positive factor through all the tests. But it is not as a
rule identical with Spearman’s g. The succeeding cen-
troid factors have each negative loadings in about half the
tests, and are often referred to as bipolar factors. They
may be looked upon as repeatedly classifying the tests into
subgroups, and this classification may be expressed by a
kind of family tree :

Factor 1 All loadings positive
I

(T | -
Factor 11 Positive loadings Negative loadings
|
\ [ 1t
Positive  Negative Positive Positive
loadings  loadings  loadings loadings

Not infrequently the sub-families into which this bipolar
classification analyses the tests will have something psycho-
* This is the most convenient name, to avoid verbosity. But
unless it is otherwise stated, may it be understood that principal

components are equally referred to.
139
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logical in common, and to that extent these factors in such
cases may claim to have psychological meaning. Much
depends on how the battery of tests is made up.  And
such bipolar classification is more natural in tests of tem-
perament and character, where common speech has many
bipolar phrases (as brave-cowardly, modest-cheeky, ctc.),
than in tests of an intellectual nature, though there too
bipolar pairs of words are found, like clever-stupid.

Many psychologists, however, especially if they tend to
look upon factors as real mental entities, even perhaps wil h
physiological causes, find it difficult to admit all those
negative loadings. A mental ability or factor, they argue,
is on the whole something which helps us to do things, not
hinders. A few negative loadings they can understand :
but not so many as half the loadings. So they wish to
turn_the centroid axes into positions where most of the
loadings will be positive, and moreover positions to which
they can give psychological meaning, and which will be
found and be recognizable in different batteries of tests.

| For this purpose the factor-analyst must be instructed in
methods of rotating the centroid factors into new positions.
Q 2. Methods of rotation.—One method, Alexander’s, has
already been described earlier in this book on pages 79
to 80. It was used by Alexander himself with excellent
effect (Alexander, 1935), but involves assuming () that the
communality of a certain test is entirely due to one factor ;
(b) that the communality of a second test is entirely due
to this factor and one other ; (c) and so on for r — 1 tests,
where 7 is the number of factors. The criterion of success
with this method is to see whgiiliér, when these assumptions
are made, negative loadings disappear ; and whether the
consequent, loadings of those tests about which no assump-
tions are made are compatible with the psychologist’s
psychological analysis of them. Alexander’s assumptions,
however, cannot generally be made in a usual battery of
tests, and other methods of rotation are required. The
simplest plan is to rotate the factors two at a time in their
__own plane. An example will best explain this.
| W 3. Two-by-two rotation.—Let us suppose that we have
o the following set of loadings in eight tests for three factors :
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‘ Ty III” h?
1 1 -4 ) -1 | .33
I G §  R—— ) T4
3 G e L e 62
4 9 —F -3 91
5 | -5 e -33
6 | 8u —-4 ‘1 -81
78 B 52 65
8 | 5 —8 -4 -50

Suppose further that we want to rotate to positions of the
three axes where there will be no negative loadings, or at
least only few, and those small.

We shall do this taking

the axes two by two, and rotating each pair in its own plane.
Take first axes I, and II,,

where the subseripts indicate
has yet
Draw a dia-
gram, using the loadings on
I, and 11, as co-ordinate axes
We can see at
once that if we rotate the e,
axes to new positions I; and s |
11, they will enclose all the Al
test points in their positive . ;
quadrant, and all the load-
ings on these two axes will
The position is,

that no
taken place.

(Figure 21).

be positive.

rotation

I,

however, not unique, for we
could have rotated a little
farther, or a little less, than 0 and still enclosed all the
points. I have taken 6 a._s_i’¢7°, with sine 0 = -6 and cosine

Bi="=8:

Figure 21.

Cons}der now the point 5. Its co-ordinates on the former
axes were +5 and -2, and clearly its new co-ordinates are— 3

and

.5 cos O — 2 sin O =28
5 sin 0 4 -2 cos 0 = +46

These can be checked approximately on the diagram, and
this should always be done, at least by eye if not by

(
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measurement.

The new loadings of each of the tests can

be calculated in the same way, giving—

W -3 O Ov = O D = |

I
08
38
68
78
28
88
18
58

56
66
26
46
46
16
76
06

y il & | Sum of squares

-32
58
‘ .53
- -82
‘ 29
‘ -80
61
-84

At this point two checks should be made: (1) The sum
M__m,;of the squares of the loadings of any test in these two factors
should not have altered, Thus -08* 4 -56° is the same as

(2) The inner product of any

42 4 +4® for the first test.
e pair of rows should not have altered.

two tests

and

Thus, for the first

‘4 X T 44 X B =40
08 X ‘38 + 56 X 66 = +4000

It is sufficient to check only adjacent rows.

1T,
<0,
7
’
.
’
.
) P
-
J \ = 4
v
> ’
N P
S .
A IJ/
\, ”
I’ \\\
7% N
. .
.
27 7-.\ 5
\‘ l3
\
>2
N
\
R Y
\
\Iz

T,

Our three axes are now
I;, 1L, and III,, and III,
still has negative loadings.
We must therefore rotate it
with one of the others,
which will have its loadings
further changed. Let us
choose I, and 111, and with
their loadings make this
diagram (Figure 22).

A little trial with a square
corner of a piece of paper
shows us that we cannot
rotate the axes to a position
which will completely en-
close all the points, though
we very nearly can. We
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finally decide to make I, go exactly through point 2, whose
co-ordinates in this diagram are -38 and — -4. The sine
and cosine of 6 are therefore :

4 38
Virr e 0 Ve
“or 725 and 689
(check that -725? 4 -689* = unity)
The loadings of the point 5, for example, are then :

689 X 28 — 725 X (— 2) =-888 on I,
and 725 X 28 + 689 X (— +2) = -065 on III,

as can be approximately checked by a look at the diagram.
In the same way the other loadings on I, and III, can be
found, giving the complete table :

I, () SR 0 h?

1 — 017 -560 127 3300
2 552 660 000 ‘7403
3 ‘686 -260 286 +6200
4 320 460 772 -9100
5 338 460 ‘065 -3301
6 534 160 707 -8106
7 269 760  — 007 -6500
8 ‘110 ‘060 ‘696 -5001

The sums of squares of each row ought to give the same
values for h* as did the original table in I,, II,, and T
And the inner product of any pair of rows ought to be
identical also. For example, taking the last pair (it is
sufficient to check adjacent rows), we have from this table :

269 X -110 -+ 760 X 060 — 007 X 696 = 0703
and from the other :
6 X 5 — 5 X 8—2X4="07

We have now succeeded in replacing our origir.la.l analysis,
which had many negative loadings, by one \vh{ch has o_nly
positive loadings (except for the two loadings which,
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although negative, are nearly zero), and gives the same
correlations and communalities.

Q 4. An orthogonal rotating matrie.—If the reader will, in
imagination, picture in his mind those original axes I, 11,
and I1T, as three lines at right angles to each other (ortho-
gonal, as we say), he can further imagine them being
turned bodily, using their common meeting-place as the
swivelling-point and keeping them orthogonal, into their
final positions I,, IT;, and I1I;. Actually we did it in two
steps, but imagine it happening as one complex movement.

Arithmetically, this one movement can be imitated by
“ post-multiplying the original table of loadings by an
orthogonal matrix,” a piece of jargon we must hasten to
explain. And the reader may miss this section out on
first reading. A matrix, in mathematics, is an oblong or
square set of numbers, to be used as an operator on other
quantities. In our case it is to be used to rotate the original
loadings to new positions. And since we want the axes to
remain orthogonal, we have to use an orthogonal matrix,
i.e. one in which the sum of the squares of any column or
row is unity, and the inner product of any pair of rows or
of columns is zero. Actually the orthogonal matrix which
performs the rotation of the above section 3 is.:

| 5512 6000 5800 |

| — 4184 -8000 — 4350
— 7250 0000 6890 |

(The reader can check the sum of squares of any column or
row, and any inner product of a pair.) Before explaining
how these numbers are arrived at, let us first perform the
post-multiplication of the table of original loadings (itself an
oblong matrix) by this rotating matrix—

[ i d o1 \ 5512 6000 5800 | — 017 -560 127 |
‘ e o — 4134 -8000 —4350 | ~ | 552 .660 -000 |
o .g| ' —+7250 -0000 6890 | ‘686 260 286 |
| :i o 1) _:3 | = 320 460 772 |
7 _1 ; | 338 460 065 ‘
oo 584 4160 707
L 269 760 —-007

‘T 4 ‘

|

e 110 060 696 |

el
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We have to say post-multiplication because in matrix
algebra the product 4B is not the same as the product BA.
Matrix multiplication is performed by finding the inner
product of each row of the first matrix with each column of
the second matrix. Thus—
4 X 5512 — 4 X +4184 — 1 X 7250 = — 0174 or — 017
the first item in the product matrix above. Similarly, the
quantity 707, which appears in the sixth row and third

column of the product matrix, is the inner product of the
sixth row of the first matrix and the third column of the

second—

-8 X -5800 -+ 4 X 4850 + -1 X -6890 = 7069 or 707
The reader can similarly check the other entries in the
product matrix.

When we performed the first of our previous two-by-two
rotations we were in effect post-multiplying the loadings by
the rotating matrix—

] 8 6 0
s 8 0
L 0 0 1|

which will leave the column IIT, unchanged because of the
nature of the third column of this rotating matrix. The
inner product of 0, 0, and 1 with any row of the centroid
loadings will give a column of loadings identical with III,.

When we performed the second two-by-two rotation, of
I, and III,, we were in effect multiplying by the matrix—

689 0 725 ]
000 1 <000

ey 725 0 689 ‘
which clearly does not alter the middle axis. And the
rotating matrix which would have done these two opera-

tions simultaneously is—

8 6 ()7 : -689 0 725 5512 -6000 5800
—6 8 0] X 000 1 000 = | —-4134 8000 —-4350
O 0sRL —725 0 689 —-7250 -0000 6890

L
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5. Reyburn and Taylor’s method.—These South African
psychologists have proposed to let psychological insight
alone guide the rotations to which axes are subjected.
They do not necessarily insist on a g (see their 19414, pages
258, 254, 258, ete.). Their plan is to choose a group of
tests which their psychological knowledge, and a study of
all that is previously known, leads them to consider to be
clustered round a factor. They therefore cause one of their
axes to pass through the centroid of this cluster, keeping all
axes orthogonal. This factor axis they do not subse-
quently move. They then formulate a hypothesis about
a second factor and select a second group of tests, through
whose centroid (retaining orthogonality) they pass their
second factor axis. And so on. There is some aflinity
between this and Alexander’s method of rotation (sce
page 79).

The arithmetical details of their method are as follows.
They first obtain a table of centroid loadings in the usual
way. Then, having chosen a group of tests which they
think form, psychologically, a cluster, they add together
the rows of the centroid table which refer to those tests,
thus obtaining numbers proportional to the loadings of
their centroid. These, after being normalized, form the
first column of their rotating matrix. For example,
consider this (imaginary and invented) table of loadings :

Loadings

7 R 1 h?

1 4 3 1 26
2 5 =8 —.¢ 70
3 6 —3 —_.3 54,
4 5 2 -1 .30
5 4 4 —9 -36
6 o5 i—aifl 9 45
T8 2 —a 30
8 T -4 S 66
GG =2 S g 60
10 G —-y o4 .68
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Reyburn and Taylor now decide, let us suppose, that Tests
9 and 10 are, in their psychological view, very strongly
impregnated with a verbal factor, and determine to rotate
their original factors until one of them passes through the
centroid of these two tests. They extract their rows, add
them together, and normalize the three totals thus :

(9) LS
(10) 6 —4 4
1-3 —6 7 Sum of squares 2-54 = 1-594°

.816 —-376 439 obtained by dividing by 1-594

If the columns of the original table are multiplied by these
three numbers and the rows added, the result is the first
column of the rotated factor loadings in the table below.
To get the other two columns we must complete the rotating
matrix in such a manner that the axes remain orthogonal.
How this is done will be explained separately later.
Meanwhile, consider the matrix—

816 399 417

| —-376 —183 909
| 439 —-898

Its first column is composed of the above numbers. It is
orthogonal, for the sum of the squares of any row or column
is unity, and the inner product of any two is zero. When
the original table of loadings is post-multiplied by this we
get the rotated table :

Rotated Loadings h?
258 015  +440 -260
| 9257 793 —-064 -699

471 564 —-022 -540

877 078 890 -300
~ .088 266 530 859
| 646 093 —-155 450
| 289 253 -390 -300
\ 465 116 656 | -660

O3S Gt R

778 047 -110 -620
.816 —-047 —°113 | -681

et
(=]
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At this point the usual two checks must be made, of h? and
of the inner products of consecutive rows.

The first factor now goes through the centroid of Tests
9 and 10, and we scan the loadings it has in the other
tests to see if these are consistent with their psychological
nature. For instance, Test 5 has practically no loading on
this verbal factor—is this consistent with our psychological
opinion of this test ?

If this serutiny is satisfactory, the psychologist using
this method then proceeds to consider where he will place
his second factor ; for the second and third columns of the
above loadings have still no necessary psychological mean-
ing as they stand. Exactly the same procedure is carried
out with them, the first column being left unaltered.
Suppose the psychologist decided on Tests 5, 7, 8 as being
a cluster round (say) a numerical factor. He adds their
rOwWs—

(5) 266  -530
(7) -258 -390
(8) 116 656

‘635 1:576
374 928 when normalized

and uses their normalized totals as the first column of a
matrix to rotate these last two columns. The matrix
must be orthogonal, and it is in fact—

B e |
928 374

Whel.l t.he second and third columns are rotated by post-
r?ultlphcation by this, the final result is given opposite.
(The same checks must now be repeated.) The psycho-
logist now scans column two to see if the loadings of his
numerical factor agree reasonably with his idea of each
test, and is rather sorry to see two negative loadings, but
consoles himself by thinking that they are small. He
must finally try to name his third factor, present to an
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Final Rotated Loadings

1| 258 414 —151
2 | 257 237 760
8 | ARl 191 -532
4 \ 877 880 —-078
5 088 591  -049
6 ‘ 646 —-109  -144
7 289 457 089
8 | +465 652 —'188
9 | 778 . 120 002
10 | -816 —-122 —-001

appreciable extent only in tests 2 and 3. If he thinks he
recognizes it, he is content.

6. Special orthogonal matrices—To carry out the
above process the reader needs to have at his disposal
orthogonal matrices of various sizes, such that he can give
the first column any desired values. The following will
serve his purpose. Except for the first one, they are not
unique, and alternatives can be made.

Order 2 U o)
ut =1
v —u |’ +

Order 3 —mlg iné; mlw , B+ mr= 1}
o

P

It was from this formula that the matrix used in the last
section, with first column of -816, —-376, -439, was made.
For if we set

p — '439

we have ¢ = 898
and from mgq = 816
we have m= 909
and thence [ = 417
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e N

Order 4 ‘a Das=—p '—

b —a d —o |
¢ d a b |
d —ec —2b a |

|

This one was used by Reyburn and Taylor in their 1939
article (page 159).

Similar matrices of higher order can be made by a
recipe given by them, viz. multiplying together two or
more of the above, suitably extended by ones and zeros.
For example, a matrix orthogonal and with arbitrary first
column, of order 5, can be made by multiplying together :

pp —Ap 7 ‘ niq —Igq P
urn —Ar  —¢ ‘ mp —Ip —q
: u . x| 1 m g
ST B T | : 1
1 . 1

where I 4 m? = p2 4 g2 — 30 | pt =m 4 ot =1,

7. Principles deciding where to stop rotation.—We have
mentioned two principles, (a) the desire to rotate to posi-
tions where there will he few, if any, negative loadings
—but usually this is insufficient to define a final position
uniquely, and (b) Reyburn and Taylor’s plan of following
their psychological intuition in placing the axes. They
too aceept the need for mainly positive loadings, and they
keep their axes at right angles. We turn now, in our next
CI}EPtel‘_, to a prineiple (Simple Structure) which is accepted
widely in America, though hardly at all in Great Britain.



CHAPTER XI
/ ORTHOGONAL SIMPLE STRUCTURE

1. Agreement of mathematics and psychology.—It is clear
that the whole process of multifactor analysis is one by
which a definition of the primary factors is arrived at by
satisfying simultaneously eertain mathematical principles
and certain psychological intuitions. When these two
sides of the process click into agreement, the worker has a
sense of having made a definite step forward. The two
support one another. Obviously the goal to be hoped for
along this line of advance will be the discovery of some
mathematical process which always leads to a unique set of
factors mainly acceptable to the psychologist. If such
could be discovered and found to produce a few factors
over and above those recognized as already known by other
means, the new factors would stand a good chance of
acceptance on the strength of their mathematical descent
only. And no doubt the psychologist would be prepared
to make a few concessions and changes in his previous ideas
to fit in with any mathematical scheme which already gave
much satisfaction and was objective and unique in its
results.

It is here that Thurstone’s notion of * simple structure
is offered as a solution ( Vectors, Chapters 6-8). This idea is
that the axes are to be rotated until as many as possible of
them are at right angles to as many as possible of the
original test vectors ; and that the battery is not suitable
for defining factors unless such a rotation is uniquely
possible, a rotation which will leave every axis at right
angles to at least as many tests as there are factors, and
every test at right angles to at least one axis.

When the vectors of a test and a factor are at right
angles, the loading of the factor in that test is zero.
Thurstone’s * simple structure ” is therefore indicated by
a large number of zeros in the matrix of loadings, so large

151
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that there will be only one position of the axes (if any)
which satisfies the requirement. His search, be it repeated,
is for a set of conditions which will make the solution
unique. We have seen him approaching this goal by
stages. Unless the battery is large, so that

(2r +1) + /(8 + 1)

n= 5

(see Chapter V, Section 9), the communalities are not
unique. Even when the battery is large enough, the axes
representing factors may be rotated to positions among
which there is no one specially marked out. Then comes
the demand that there be this large number of zero loadings.
Most batteries of tests will not allow this demand to be
satisfied, but with some it can just be attained. Only
these last, it is Thurstone’s conviction, are suitable for
defining primary factors, and it is his faith that the factors
thus mathematically defined will be found to be acceptable
as psychologically separable unitary traits.

2. An example of siv tests of rank 3.—To make our
remarks more definite and concrete, let us suppose that
we have a battery of six tests whose matrix of correlations
can be reduced to rank 3. In practice, of course, six tests
are far too few, and more than three factors quite likely.
The matrix of loadings given by the * centroid » system

contains at first negative quantities. Thus from the
correlations ;

1 2 3 4 5 6

' 5625 -000 -000 448 G600
525 f 098 306 -349 <000
<000 098 133 314 504

000 306  -133 ?
448 4349 314 000 .
000 000 504 .00  -307

000 000
307

c:ou:wwv-‘}

with the communalities—
674 ‘634 -558 415 490 493

we get by the “ centroid * process the matrix of loadings :



ORTHOGONAL SIMPLE STRUCTURE 153
/4 I 111
542 612 074

1

5 2 629 342 —-848
3 529 —-492 191
4 281 —-182 —-550
5 628 148 274
6 429 — 424 -359

It is the factor axes indicated by these loadings that
Thurstone wishes to rotate until there are no negative
loadings and enough zero loadings to make the position
uniquely defined. For this last purpose he finds, empiri-
cally, that it is necessary to require—

s(a) At least one zero loading in each row ;

~(b) At least as many zero Joadings in each column as
there are columns (here three)¥™“and

/ (¢) At least as many XO or OX entries in each pair
of columns as there are columns. By an XO entry is
meant a loading in the one column opposite a zero in the
other.

“ At least one zero loading in each row.” This means
that no tést may contain all the common factors. In
making up the battery, then, the experimenter, with some
idea in his mind as to what the factors are, will endeavour
to ensure that they are not all present in any one test.
This would, for example, exclude from a Thurstone battery
(except as an extra) any very mixed group test, or a mixed
test like the Binet-Simon which is itself a whole battery
of varied items.

“ At least as many zeros in each column as there are
~ columns,” that is, as there are common factors. This

means that in a Thurstone battery no factor may be general,
but must be missing in several tests.

The requirement as to the number of X0 or 0X entries
is intended to ensure that the tests are qualitatively
distinet from one another.

Now, these requirements cannot generally be met by a
matrix of loadings. It will in general be impossibles to
rotate the axes (keeping them orthogonal) until every
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axis is at right angles to r test vectors. The above a. 5]
example has, however, been constructed so that th.l_'l
be done. i

. . o]
The correlations were in fact made from the loading

Lol B c
1 821
2 ; 475 639
8 | 7118 206
i 644
5 | 438 : 546
6 702

and the centroid loadings must therefore be capable of
being rotated rigidly into this form, retaining ortho-
gonality.
8. Two-by-two rotation to simple structure.—The problem
“for the experimenter, however, is to discover this © simple
structure,” if it exists ; he is not, like us, in the position of
knowing that it does exist, and what it is. Thurstone’s
original method was to use two-by-two rotations, in each
- rotation endeavouring to obtain some
zero loadings. Let us illustrate by our
artificial example, taking first the centroid
factors T and II. Using their centroid
loadings as co-ordinates, we obtain Figure
23. At once we notice that the test
points 8, 4, and 6 are almost collinear
on a radius from the origin, and that
if we rotate the axes clockwise through
about 42° the new position of I, labelled
L, in the diagram, will almost pass
Figure 23, through these test points, while the new
; axis II; will almost pass through test
point 1. On these new axes, therefore, Tests 8, 4, and 6
;Ell he;]ve hardly any pFojecf:ions on axis II, ; that is, will
ave hardly any loadings in a factor along II,. From

tables we find sin 42° — 669, ang ey Ve
have then ; » 8nd cos 42° = -743, We
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. Old loadings New loadings

\ I YL 15 1L,
1 -542 612 | —-007 817
2 -629 342 | -239 675
3 589 —-492 | w22 —:012
4 281 —-182 331 ‘053
5 628 143 | 371 526
6 429 —-424 | 602 —-028

multipliers 743 669 for I, loadings,

. 669 743 for II, loadings.

We have now obtained our desired three zero (or near zero)
loadings in factor II. Accepting the approximations to
zero as good enough for the present,
we next make Figure 24 from the
loadings of I, and III in the same
way as we made the former figure.
In this, Test 1 falls quite near the 6
origin. Tests 5 and 6 are approxi- | 53
mately on one radius, and Tests 2 I
and 4 on another, and these radii
are at right angles to one another.
If we rotate the axes I; and III
rigidly through a clockwise turn : I,
of about 49° they will pass almost
through these radial groups and
nearly zero projections will result.* Using sin 49° = ‘755
and cos 49° — -656 we perform a similar calculation to the
preceding, using the loadings I, and 111 as starting-point and
obtaining loadings on I, and III, (the subseript indicating
the number of rotations that axis has undergone). We
have finally, putting our results together, the table of
loadings overleaf FA.f

I

Figure 24,

* The rotation might with advantage have been carried a little
further.

+ The matrix symbols, using Thurstone’s notation, are given for
the convenience of mathematical readers. Others should ignore
them. When the tests are many and the centroids few, a saving can
be effected by picking tests equal in number to the factors and per-
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1, TE AT

—-060 817 ‘043
420 675 —-048
329 «=—.012 670
632 a8 —1 11
037 526 460
124 —-028 690

O:Utlihwwl—“

Clearly, this is an approximation to the loadings of the
factors 4, B, and C which we who are in the secret (as a
real experimenter is not) know to have been used in making
the correlations : III, here is 4, I, here is B, and 11, is C.
The small loadings are not quite zero, and the other Joad-
ings not quite the same, but a further set of rotations
would refine the results and bring them nearer to the
4 B C values.

4. New rotational method.—When this two-by-two rota-
tional method is used on a large battery of tests, with
perhaps six or seven factors instead of three, it is not
only laborious but somewhat difficult to follow. Thur-
stone has, however, devised a method of rotation which
takes the factors three at a time, and to this we now turn,
still using our small artificial example as illustration. In
this example, since there are only three factors, this new
method leads to a complete solution at once. With more
factors the matter would be more complicated.

If the reader will think of the three centroid factors as
represented by imaginary lines in the room in which he is
sitting (Figure 25), he will be aided in following the
explanation of this new method. Imagine the first
centroid axis to be vertically in the middle of the rooni,
and the other two centroid axes on the carpet, at right
.:mgles to the first and to each other. The test points are
In various positions in the room space, if we take their three
centroid los_n_iings as co-ordinates and treat the distance from
floor to ceiling as unity. Imagine each test point joined
_furming two-by-two rotations on their loadings F,. Let the result-
ing loadings be ¥,. Then R = F -1 V, can be used as a rotating

matrix on the whole table F of centroid loadings. The tests chosen
to form F, should represent different clusters.
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by a line to the origin (in the middle of the carpet, where
the axes cross). The lengths of these lines are the square
roots of the communalities, and the loadings on the first
centroid factor are their projections on to the vertical axis,
the height, that is, of each test point above the floor.

Figure 25 (not to scale).

Thurstone now imagines each of these lines or €Om-
munality vectors produced until it hits the ceiling, making
a pattern of dots on the ceiling. These extended vectors
now all have unit projection on the first centroid axis,
for we agreed to call the distance from floor t0 ceiling
unity. Their y and 2 co-ordinates on the ceiling will be
correspondingly larger than their loadings on the second
and third centroid factors, and can be obtained by dividing
each row of the centroid loadings by the first loading. In
our case this gives us the following table, obtained in the
manner just mentioned from the table on page 153.

Eatended centroid projections

W e Fs it
12 g T,

1 | 1000 1120 187
2 X 544 — 558
8 | ., —980 86l
it RS Ey
5 i 298 436
6 .,  —-988  -887
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The second and third columns are now the co-ordinates
of these dots on the ceiling of which we spoke. A diagram
of the ceiling, seen from above, is given in Figure 26 and

the important point about

g it is that the dots form a

S triangle.
"u‘*\_\ If the reader will now
R picture this triangle as
| e drawn on the ceiling of
' g le his room, and remember
‘: ,,.':; that the origin, where the
| o centroid axes crossed, is in
: i the middle of the carpet,
'lll," he can next imagine an
v inverted three-cornered
A pyramid, with the triangle
on the ceiling as its base,

Figure 26, the origin in the middle of

the carpet as its apex and

the communality vectors 1, 4, and 6 as its edges. The

vector 5 lies on one of the faces of this pyramid ; vector

2 ll-es on another; vector 8 lies on the remaining face, all
sprmgil'lg from the origin and going up to the ceiling.

5,: E@nding the new awes—1If now we choose for new
axes (in place of the centroid axes) three lines at right
angles respectively to the three plane faces of our pyramid,
the test projections on these axes will clearly have the
zeros we desire.) The three vectors 1, 2, and 4 all lie in
one face, and will have zero projections on the axis A’
at right a.ngle.s to that face. The vectors 1, 5, and 6 will
have zero projections on the line B’ at right angles to their
fa’ce. T%le vectors 8, 4, and 6 will have zero projections on
C_ at. right angles to their face. The reader should
visualize these new axes in his room. It remains to be
shown how the other, non-zero, projections are to be
caleulated, and to inquire whether these new axes are
orthogonal, and whether they can be identified with the
original 4, B, and C. The first step is to obtain the equa-
tions of the three sides of the triangle in the diacram.
Where there are many tests and the dots are not per?'ectly
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collinear, one plan is to draw a line through them by eye,
and measure the distances a and b it cuts off on the axes,
then using the equation—

Mo diee
kil

Or we can write down the equations of the lines joining
points at the corners, either actual test points, or the places
where our lines intersect, using the equation—

(v —mu) +(m —ov)y+ uw—0)z=
when [, m are the co-ordinates of one corner, and u, v of
another. We obtain in our case—

— 2121 + 2094y — 1-777z = 0 for line 1, 2, 4
— 1:080 4+ 700y + 2117z = I o [ e
2476 + 2794y + 340z = 05 5 s 886

where 3 means the extended 11, and = the extended III.
Before we go further we have to divide each equation
through by the root of the sum of the squares of its
coeflicients, so that the new coefficients sum to unity when
squared—this is called normalizing and is necessary in
order to keep the communalities right and for other reasons.
The equations then are :
— 611 + 608y — 512z =0 (1)
— 436 + 283y + 854z =0 (2)
.660 - 745y + 091z =0 (3)
and it is clear, from the way in which they have been
reached, that these equations will be satisfied by the ex-
tended co-ordinates of certain of the rows in the table on
page 158. Consider the first equation and write its co-

—.611 608 —-512 | Weighted
(Y Y 3 | sum

S Qv WD
()
(o'2]
v
S e e
> |
(5]
|
(%11
<t
(=}
(=
(=]
(=]
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efficients above the columns of that table, placing 611
over the first column, as shown at the foot of page 159.
If we multiply each column by the multiplier above it

and add the rows we get the quantities shown on the right
for comparison with page 154, The zeros are in the right

places for factor 4. The other loadings are, however,
negative, but that can be easily put right by changing all
the signs of the multipliers, which we are at liberty to do.

Similarly, using eqns. (2) and (8) we get the loadings of

factors B and C exactly, except for an occasional difference
due to rounding off at the third decimal place. We have,
indeed, found the matrix product FA,

542 612 -(m| 611 486 660

—ih B ‘ 821
629 842 —848 | | —-608 —-288 745 ., 475 639
529 —-492 101 | 512 —854 091 718 -206
281 —-182 —550 | | T
628  -143 274 488 . 546
429 —-424 350 | | 702
e | ‘

except, as has been already said, for occasional dis-
crepancies in the third decimal place. The procedure we
have described has enabled us to discover this last matrix,
with which, in fact, we began. And by analogy (is the
deduction sound ?) an experimenter with experimental
data who follows this procedure and reaches simple
structure concludes that that is how his correlations were
made. Certainly that is how they may have been made.
The matrix A beginning with 611 is the rotating
n.latrix which turns the axes I, II, III into the new posi-
tions 4, B, C. Tts columns are the direction-cosines of
4, B, and C with reference to the orthogonal system
L IL III. Are 4, B, and C orthogonal ? The cosines of
the angles between them ecan by a well-known rule. be
found by premultiplying the rotating matrix by its
transpose. When we do so we find A’A — B viZ. : .

611 —603  -512 611 436 660 | | 1
436 —-283 — .54 —608 —-283 745
660 745 001 512 854 ~091| B 2
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(again allowing for third decimal place discrepancies).
That is to say, the angles between 4, B, and C have zero
cosines, they are right angles.

The axes A, B, and C were drawn at right angles to the
three planes which form the pyramid mentioned above, and
therefore these three planes are also at right angles to one
another. (Our rough sketch in Figure 25 made the pyra-
mid too acute.) Tt follows that 4, B, and C are actually
the edges of the pyramid. In our example (though this
need not be the case) they happen to pass each through a
test point in the room, 4 through Test 6, B through Test 4,
and C through Test 1. These tests are not identical with
the factors, for each test contains a specific element, not in
the common-factor space, but at right angles to it. What
we have called a test point is the end of the unit test vector
projected on to the common-factor space. The complete
test vectors are out in a space of more dimensions, of
which the three-dimensional common-factor space is a
subspace.

6. Landahl preliminary rotations.—When there are more
than three centroid factors, the calculations are not so
simple. If the common-factor space is, for example,
four-dimensional, then the table of extended vectors, in
addition to its first column of unities, will have three other
columns. The two-dimensional ceiling of our room, in our
former analogy, has here become three-dimensional, a
hyper-plane at right angles to the first centroid axis. On
paper its dimensions can only be graphed two at a time,
and no complete triangle will be visible among the dots.
But sets of dots will be seen to be collinear, lines can be
drawn through them, and a procedure similar to that out-
lined above followed. This will become clearer when we
work a four-dimensional example. First, however, it is
desirable to explain, on our simple three-dimensional
example, a device which facilitates the work on higher
dimensional problems, called the Landahl rotation. It is
unnecessary in the three-dimensional case, and we are
using it only to explain it for use with more than three
dimensions.

A Landahl rotation turns the centroid axes solidly

F.A—6
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to a position where each of them is equally inclined to the
original first centroid axis. In our imagined room the first
eentroid axis ran vertically from the middle of the floor
to the middle of the ceiling, while the other two were
drawn on the floor itself. Imagine all three (retaining
their orthogonality) to be moved, on the origin as pivot,
until they are equally inclined to the vertical so that they
enclose the inverted pyramid of Figure 25. That is a
Landahl rotation. The lines through the test points have
not moved. They remain where they were, and still hit
the ceiling in the same pattern of dots. The projections of
the extended vectors on to the original first centroid
axis all still remain unity. But for the next step in this
method we need their projections on to the Landahl axes.
We obtain these by post-multiplying the matrix of cen-
troid extended loadings by a Landahl matrix, an orthogonal

matrix with each element in its first row equal to -,
¢

where ¢ is the order of the matrix ; that is, its number of
rows or columns (Landahl, 1988). We need a Landahl
matrix of order 3, for example :

WYY BT - 81T
‘816 —:408 —-408 |
000 707 —707 |

|

The element 577 is the cosine of the angle which each axis
makes, after rotation, with the original position of the first
centroid axis. -

W.hen the table of extended veector projections on page
157 is post-multiplied by the above matrix, the table on
page 163 results, giving the projections of the extended
vectors on to the Landahl axes L, M, N.

From this table three diagrams LM, LN, and MN can
be made, and the reader is advised to draw them. Each
o'f them shows a triangular distribution of dots and in this
simple three-dimensional example only one of them is
needed. But in a multi-dimensional problem several are

—

S ———
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Projections on Landahl axves*

‘I L M N
1§ 1-498 -213 ‘020
2 1:021 —-066 746
3 —-182 1-212 701
4 ‘048 —+542 2:225
5 760 792 176
6 —-229 1-572 388

needed, and as a rule only one line is used on each diagram -
employed. Here, from the LN diagram we find the
equations of the three sides of the triangle to be :

—92.205] — 1-450n + 3:832 = 0
8681 - 172Tn — +586 = 0
1-8871 — -277n + 528 =0

We want to make these homogeneous in I, m, and =, and so
we add, after each of the numerical terms, the factor
577 (I + m + n), which equals unity. The equations
then are :

—-282]  1-928m + -473n =0
030l — -838m + 1-389n = 0
2-142] + -305m + -028n =0

* After a Landahl adjustment the axes are not infrequently
already near simple structure, as here. It is sometimes worth while
to rotate them slowly round the original first centroid, like spinning
an umbrella, to improve the approximation to zero entries, This
can be done by an orthogonal matrix whose columns sum to unity,
as e.g.

9900 —-0946 1046
1046 9900 —-0946
0946 1046 9900

or its transpose : and the rotation will be the slower, the nearer the
diagonal elements are to unity.
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After normalizing, these become :

—-1411 + -961m + -236n = 0
‘0211 — -236m | 971n =0
9901 + -141m + 018n = 0
Writing the coefficients as columns in a matrix, and
premultiplying by Landahl’s matrix (since at an earlier
stage we post-multiplied by it) we obtain :

609 436 660 |

—-608 —.283 745
| 518 —-858 090

the same matrix A as we arrived at (page 160) without the
use of Landahl’s rotation. The advantage of using a
Landahl rotation appears only in problems with more
than three common factors. The reader can readily make
a Landahl matrix of any required order, say 5. Fill the
first row with the root reciprocal of 5, -447. Complete
the first column by putting in the second place -894
(because -447* 4 8942 = 1), and below that zeros. The
second row must then be completed with equal elements,
all negative, such that the row sums to zero. Then the
second column is completed in a similar way, and the third
row, and so on. The reader should finish it. There are
alternative forms possible, one of which is used below.
An unfinished Landahl matrix :

\-447 44T 44T a4y -44*7'
894 —224 —-224 _.294 _.994
000 866 —-289 _.280 _.289
000 000
000 000

|

7. A four-dimensional evample.—The following example
of a problem with four common factors is only partly
worked out, so that the reader can finish it as an exercise.
It also is an artificial example, and orthogonal simple
structure can be arrived at. The centroid analysis gave

four centroid factors with the loadings shown in this table :
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Centroid loadings F
1 a1 I11 A%

127 <517 ‘094 <126
575 105 558 049
810 289 246 —+246
588 417 —-367 —-382
524 —-583 —+450 1183
549 —-435 308 —-013
-624 —:318 —-187 —-254
594 —-551 +239 1084
626 252 —-169 +562
10 1645 -307 —-357 —-109
After these have been “ extended ” (i.e. divided in each

row by the first loading) they were post-multiplied by a
Landahl matrix, one of the alternative forms, viz. :

© 0TS U Y

5 -5 -5 5 |
.5 .5 ,_.5 _.5
5 —5 “5 —5 |
5 —5 —-5 -5

and the resulting projections on the Landahl axes were
thus found to be :
L M N P

1.007 704 122  -166
1 1-115 068  -848 —-080
| .79 678 625  -018
| 218 1.492 158 = -182
. 311 199 458  1-660

6 \ 455 —-247 1270  -522
1
|

7 107 -598 808 701
8 308 —-235  1:094 -833
9 1:015 887 —-285 -883

10 | 376  1:099 070 454

Six diagrams can be made, and it is advisable to draw
them all, though not all are necessary. The LN diagram
is shown in Figure 27. We scan it for collinear points
(not necessarily radial) which have all or nearly all the other
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points on one side of their line, and note the line 5, 4, 10, 9.
Its equation is readily found to be approximately :

788l + 1-8327Tn — 871 = 0.

We make this homogeneous by substituting for unity, after
the numerical term -871, the quantity 5 (I + m + n  p),
for -5 is the cosine of the angle each of the Landahl axes
makes with the original first centroid axis. This gives us
the equation (not yet normalized) :

*5581 — -185m + 1-141n — -185p = 0.

Three more equations are needed, and one of them can
indeed be obtained from the same diagram, on which
points 5, 7, 8, 6 are very nearly collinear. The reader is
advised to draw the remaining diagrams and complete the
caleulations following the steps of our previous example.
The above equation refers to a line which makes a fairly
big angle with N. 1t is desirable to look for the remaining
three lines making large angles (approaching right angles)
with L, M, and P.

It will be remembered that in our earlier example the
sign of one equation had to be changed at the end of the
caleulation because large negative values were appearing
in the final matrix of loadings. This can be obviated
by attending to the following rule. If the other test-points
are on the same side of the line as the origin the numerical

term must be positive in the

N *6 equation ; if they are on the

< side remote from the origin
70 .2 the numerical term must be

~od *3 negative. In the adjacent
e diagram, the origin and the
10 other points are on opposite
- L sides of the line through

T 5, 4, 10, 9 and therefore

>~. the numerical term must be

Figure 27, negative, as it is (—-371).
; Had it been positive all the
signs of the equation would have required to be changed.

8. Ledermann’s method of reaching simple structure.—
Ledermann has pointed out that when simple structure
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can be attained (whether orthogonal or oblique) then as
many r-rowed principal minors of the reduced correlation’
matrix must vanish as there are common factors; and
that it follows that the same number of vanishing deter-
minants must be discoverable in the table of centroid
loadings. Thus, for example, in the table of centroid
loadings on page 153 the three determinants composed
respectively of rows 1, 2, and 4; of rows 1, 5, and 6 ; and
of rows 8, 4, and 6 all vanish, and these rows are where the
zeros come in the three columns of the simple structure.
This gives an alternative method of reaching simple
structure. Test every possible r-rowed determinant in
the centroid table of r factors. If r of them are discovered
to vanish, then simple structure may be and probably is
possible. Each of these vanishing determinants will
provide a column of the rotating matrix A, for which pur-
pose we delete any one of its rows and calculate all the r—1
rowed minors from what is left. The column has then to
be normalized. This process works equally well for
oblique simple structure (see next Chapter). Its draw-
back, when the number of factors is large, is the necessity
of calculating so many determinants to discover those that
vanish.

9. Limits to the extent of factors.*—Orthogonal simple
structure requires that no factor shall extend through many
tests, and it is possible to decide beforehand, from the
correlations, whether factors running through not more
than s tests each are adequate to give the measured correla-
tions, leaving n — s zeros. They will not as a rule be able
to do so if the average correlation exceeds (s — 1)/(n — 1) :
more exactly, not if the largest latent root of the matrix
is larger than s. If these rules are to be applied when
communalities are used, as is the case when testing whether
orthogonal simple structure is possible, the matrix should
first be “ corrected for communality,” i.c. each » must be
divided by the square root of the product of the two com-
munalities concerned. Approximations to the largest
latent root of a matrix of correlations, when the entries are
all positive, are—

* A brief summary of a chapter with this title in previous editions.
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sum of the whole matrix

n
or more acceurately—

sum of the squares of the column totals
sum of the whole matrix

An exact test for the possibility of orthogonal simple
structure has been given (Ledermann, 1986) and is des-
cribed in the Appendix, page 867, but it requires a pro-
hibitive amount of calculation.

Even, however, when orthogonal simple structure cannot
be attained with orthogonal factors, it may be possible to
reach it with oblique factors.

10. Leading to oblique factors—In this chapter we have
kept our factors orthogonal; that is, independent, un-
correlated with one another. Tt is natural to desire them
to be different qualities, and convenient statistically. In
describing a man, or an occupation, it would seem to be
both confusing and uneconomical to use factors which,
as it were, overlapped. Yet in situations where more
familiar entities are dealt with, we do not hesitate to use
correlated measures in describing a man. For instance,
we give a man’s height and weight, although these are
correlated qualities.

Often, moreover, a battery of tests which will not
permit simple structure to be reached if orthogonal
factors are insisted on will nevertheless do so if the factors
are allowed to sag away a little from strict orthogonality.
Even as early as in Vectors of Mind, Thurstone expressly
permitted this. It can clearly be defended on the ground
that even if the factors were uncorrelated in the whole
population, they might well be correlated to some extent in
the sample of people actually tested. T was at one time
under the impression that this comparatively slight de-
parture from orthogonality was all that was contemplated
by Thurstone. But he and his fellow-workers now have
- the courage of their convictions, and permit factors to

d'epart from orthogonality as much as is necessary to attain
simple structure, even if they are then found to be quite
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highly correlated. A chapter on these oblique factors* is
therefore necessary, and out of them arise Thurstone’s
“ second order factors.”

11. Parallel proportional profiles—A method which, like
Thurstone’s simple structure, is meant to enable us to
arrive at factors which are real entities, or to check
whether our hypotheses about the factor composition of
tests are correct, has been put forward by R. B. Cattell
(1944b, 1946), and has interesting possibilities which its
author will no doubt develop. The essence of his idea
is that “if a factor is one which corresponds to a ftrue
functional unity, it will be increased or decreased ‘as a
whole’,” and therefore if the same tests are given under
two different sets of cireumstance, which favour a certain
factor more in one case and less in the other, the loadings
of the tests in that factor should all change in the same pro-
portion. Experimental trials of this principle may be ex-
pected soon from its author. Among  different circum-
stances ” he mentions different samples of subjects, differ-
ing, say, in age or sex, and different methods of scoring, or
different associated tests in the battery. But he prefers
another kind of change of circumstance ; namely a change
“ from measures of static, inter-individual differences to
measures from other sources of differences in the same
variables.” He instances, among his examples, inter-
correlating changes in scores of individuals with time, or
intercorrelating differences of scores in twins. We may
thus have two, or several, centroid analyses, and the mathe-
matical problem is to find rotations which will leave the
profile of loadings of a certain factor similar in all the factor
matrices. It may even be that the profiles of several fac-
tors could be made similar. These factors would then
satisfy Cattell's requirement as corresponding to “true
functional unities.” The necessary modes of calculation
to perform these rotations have not yet been more than
adumbrated, however.

* It must be clearly understood that this obliquity or correlation
of factors is quite a different matter from the correlation of estimales,
even of orthogonal factors, due to the excess of factors over tests
described on pages 237 to 242.

F.A—0%



CHAPTER XIT
OBLIQUE FACTORS

Y. Pattern and  structure.—So long as the factors are
orthogonal, the loadings in the matrix of loadings are also
the correlations between the factor and the tests, but this
ceases to be the case when the factors are correlated. The
word “loading ”* continues to be used for the coefficients
such as I, m, and n in equations like—

g =lo +mp 4 ny

and the matrix or table of these is called a pattern, while
the matrix of correlations between tests and factors is
called a structure. The entries in a structure are pro-
jections from a point on to certain axes. The entries in a
paltern are the oblique co-ordinates of that point along
those axes. The two are only identical if the axes are
orthogonal.

Moreover, as soon as the factors become oblique, it
becomes necessary to distinguish between “ reference
vectors ” and * primary factors.” The reference vectors
are the positions to which the centroid axes have been
rotated so that the test-projections on to them include a
number of zeros. Each reference vector is at right angles
to a hyperplane containing a _number of communality
vectors. A hyperplane is a space of one dimension less
than the common-factor space. In our first example in
Chapter XI the hyperplanes were ordinary planes, the
faces of the three-cornered pyramid there referred to (see
page 157) and each reference vector was at right angles to
one of those faces.

The primary factor corresponding to a given reference
vector is the line of intersection of all the other hyper-
planes, excluding, that is, the hyperplane at right angies to
the reference vector. In our three-dimensional common-
factor space the primary factor was the edge of the pyra-

170
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mid where those two faces met, excluding that face to
which the reference vector was orthogonal.

Now, when the reference vectors turn out to be at right
angles to each other, as they did in that example, each
reference vector is identical with its own primary factor.
But not when the reference vectors turn out to be oblique.
In Chapter XI we did not distinguish them, and called their
common line the * factor.” But in this chapter the dis-
tinction must be kept clearly in mind. It is the primary
factors Thurstone wants. The reference vectors are only
a means to an end.

Thurstone’s second method of rotation described in
Chapter XI, the method in which the communality
vectors are ““ extended,” and lines drawn on the diagrams
which are not necessarily radial lines, will not keep the
axes orthogonal, but seeks for the axes on which a number
of projections are zero, regardless of whether the resulting
directions are orthogonal or oblique. In general they will
be oblique, and the examples worked in Chapter XI only
gave orthogonal simple structure because they had been
devised so as to do so. The test of orthogonality is that
the matrix of rotation, premultiplied by its transpose,
gives the unit matrix (see page 160). Or in other words,
that the inner products of the columns of the rotating
matrix are all zero. They are the cosines of the angles
between the reference vectors, and the cosine of 90° is
ZETO,

2. Three oblique factors.—To illustrate Thurstone’s
method when the resulting factors are oblique we shall
next work an example devised to give three oblique
common factors. Consider this matrix of correlations :

1 2 3 4 5 6 7

126

1 728 167 872 -153 <105
95215 28 696 -583 651 347 638
3 167 696 857 175 709 740
4 372 583 -857 548 797 -A73
| 158 -651 775 543 504 -828
105 847 709 797 504 438

¥ & On

126 -638 740 473 -828 433
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which, with guessed communalities, gives these centroid
loadings :

F
1 Vi 111
i1 449 —-682 ‘165
2 825 —-478 —-129
3 906 336 1020
4 846 133 457
5 808 208 —-412
L] 697 336 335
7 67 ‘178 —+468

When these projections on the centroid axes are “ex-
tended,” that is, when each row is divided by the first
loading in that row, we obtain this table :

Eiaiy
1 1:000 —1-519
2 ”» =579
3 5 371
4 7 157
5 o+ 257
6 e 482
7 -, 226

11T

e

367
—+156
‘022
540
=010
481
—+610

The columns II, and III, in this table represent the co-

5
4 1/
______________ L

i 4

\.\ |
= J3

\2\!\ 0 "l .H
\\\\ ;
TS
! V-
Figure 28,

ordinates. of the * dots
on the ceiling” in our
analogy of Chapter XI,
p-157. When we make
a diagram of them we
obtain Figure 28. We see
that a triangular forma-
tion is present, and we
draw the dotted lines
shown.

It is not essential, it
may be remarked in pass-
ing, that there be no
points elsewhere than on
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the lines, provided they are additional to those required to
fix the simple structure. Had it not been for the desirability
of keeping the example small we would have increased the
number of tests, and not only arranged for further points
to fall on these lines, but also included some whose dots
fell inside the triangle, representing tests which involve all
three factors.

We find the equations of these lines to be approximately

475 + 50y + 952 =0 (linel, 2, 7)
1-113 + -183y — 2:119z = O (line 1, 4, 6)
408 — 1-091y + -256z = O (line 7, 5, 3, 6)

The coefficients of each equation have to be “norma-
lized,” that is, reduced proportionately so that the sum of
their squares is unity (for they are to be direction cosines).
These normalized coefficients are then written as columns
in a matrix as follows :

405 464 338 ‘
426 076 —916 | = A
809 —-883 '215J

The table of centroid loadings on page 172 must now be
post-multiplied by this rotating matrix to obtain the
projections of the tests on the three reference vectors which
are at right angles to the planes defined by the dotted lines
in our diagram. We obtain this table :

Vi=EA
(Simple) Structure on the Reference Vectors

‘ L' B’ D’
025 011 812
1026 460 689
526 428 ‘003
769 —:001 262
083 755 —:006
-696 ‘053 000
‘006 782 000

qc:mns-cumn—l|
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We have labelled the columns L', B’, and D’ for a reason
which will become apparent later, when we explain how
the correlations were, in fact, made. This table is a simple
strueture, formed by the projections on the reference
vectors, It has a zero (or near-zero) in each row, and
three or more in each column, in the positions to be
anticipated from Figure 28; for example, tests 3, 5, 6,
and 7, which are collinear in the figure, have zeros in
column D'.

Now let us test the angles between the reference vectors.
To do this we premultiply the rotating matrix by its
transpose

NENT=(
1:~4-05 426 -809‘» 1--1'03 464 -338 1 — 494 —+079
[-464 -076 —-883| |-426 076 —916| — —-494 1 —+103
‘-809 —+883 215 —079 —-108 1

338 —-916  -215 |

This gives the cosines of the angles between the reference
vectors and we see that they are obtuse. The angles are
approximately :

{

; 120° 95°
120° : 96°
| 95° 96°

|

As soon as we know that the reference vectors are not
orthogonal, we have to take account of the fact that the
primary factors are not identical with them. Each prim-
ary factor is the line in which the hyperplanes intersect,
excluding that hyperplane to which the corresponding
reference vector is orthogonal. In a three-dimensional
common-factor space like ours the primary factors lie
along the edges of the pyramid which the extended vectors
form.

Let us return to our mental picture, which the reader
can pla.ce in the room in which he is sitting. The origin,
immediately below the point O in Figure 28, is in the middle
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of the carpet. Figure 28 itself is on the ceiling, seen from
above as though translucent. The radial lines with
arrowheads are the projections of the primary factors on
to the ceiling. The projections of the reference vectors
are not drawn, to avoid confusion in the figure. They
are near, but not identical with, the primary factors.

The reader should not be misled by the fact that two of
the primary factors lie along the same lines as Tests 1
and 7. It was necessary to allow this in devising an ex-
ample with very few tests in it (to avoid much calculation
and printing large tables). But with a large number of
tests the lines of the triangle could have been defined
without any test being actually at a corner.

3. Primary factors and reference vectors.—At about this
stage a disturbing thought may have occurred to the
reader. We have sought for, and obtained, simple
structure on the reference vectors. That is to say, we
have found three vectors, three imaginary tests, which are
uncorrelated each with a group of the actual tests, namely
where there are zeros in the table on page 173. The entries
in that table are the projections of the actual tests on the
reference vectors.

But the primary factors are different from the reference
vectors. The projections of the tests on to the primary
factors will be different and will not show these zeros.
Those projections are, in fact, given in this table (never
mind for the moment how it is arrived at) :

F(A)'D
Structure on the Primary Factors
L B D

1 | 160  -162 . -882

2 | <408 | 666 | 798
3 | -866  -800  -176
PO b T e Y |

[ 541 927 -152
842 472 132
468 915 150

=3 S Gt
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Score in Test 1 = -826d + Specific

e 0ld
EDREY) » 8 =612 { -499b 4 )
s snal . ogEd -
TR 5 8 = 880D S 3
R T 22
Y s = *912b i L

4. Behind the scenes.—It is now time to divulge what
these “tests ” really are and how the * scores” were
made whose correlations we have been analysing, and to
compare our analysis with the reality. The example is a
simpler and shorter variety of a device used by Thurstone
and published in April 1940 in the Psychological Bulletin.
The measurements behind the correlations were not made
on a number of persons, but were made on a number of
boxes—only eight boxes, to keep down the amount of
calculation and printing. These boxes were of the follow-
ing dimensions :

Length Breadth Depth
1 2 2 1
2 3 2 3
3 3 2 2
4 6 3 2
5 4 4 2
6 5 3 1]
7 5 4 3
8 4 & 2
Sum | 32 24 16
Mean 4 3 2

The * tests ™ were seven functions of these dimensions,
and are shown in the next table, which also shows the
score each box (or ““ person ) would achieve in that test.
It is as though someone was unable for some reason to
measure the primary length, breadth, and depth of these
boxes (as we are unable to measure the primary factors
of the mind directly) but was able to measure these more
complex quantities like LB, or V(L* 4+ D) (as we are
able to measure scores in complex tests)
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Bowxes = Persons
’I'c.s-li Formula | 1 2 8 4. &5 6 7 8 ‘ Sum .D’Ie(m

| |
1 3 ;B MERE, BN T T TR T S IR 36 | 4:500
2| - BD DN et i ) e ok Uy e B b 49 | 6125
3 | LB 4 6 6 18 16 15 20 16| 101 |12-625
4 /(L4 D?) 2:24 4-24 3-61 6:32 447 510 5-83 4-47 36-28 | 4:535
5 L+B* | 6 7 7 15 20 14 21 20| 110 13750
6 I:4+D | 5 12 11 38 18 26 28 18 | 156 |19-500
w | B - |ig ieiia Sa a8 a4l 2S00

With these scores the sums of squares and products of
deviations from the mean are :

“ 1 2 3 4 5 6 il

1 \ 66 50-5 225 102 25 29 3
| 505 72:9 98:4 168 112:3 100:5 16

3 ‘ 992.5 084 2739 479 2592 398:5 36
102 168 479 114 870 913 47

5 25 1123 2592 387-0 2835 288 41
6 | 29 100-5 3985 91:3 288 800 36
alEgey 16 36 7 41 36 6

From these the correlations could be calculated by dividing
cach row and column by the square root of the diagonal
cell entry. But that would make no allowance for specific
factors, which in all actual psychological tests play a
considerable part. In the example devised by Thurstone
on which this is modelled there are no specific factors, but
it was decided to introduce them here into Tests 5, 6, and 7,
by increasing their sums of squares. In addition, by an
arithmetical slip, a small group factor was added to these
three tests, and this was not discovered for some time. It
was decided to leave it, for in a way it makes the example
more realistic, and may be taken to represent an experi-
mental error of some sort running through these three tests.

With these changes, the correlations are found, and are
those with which we began this chapter and which we have
already analysed into three oblique factors L, B, and D.
Let us now compare that analysis with the formule which
we now know to represent the tests. The pattern on
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page 177, for example, shows that Test 2 depends only on
factors B and D : and that is correct, for it was, in fact,
their product BD, and L did not enter into it. The
analysis gives the test score as a linear function of B and D,

5860 + 701d

whereas it was really a product. But the analysis was
correct in omitting L. Similarly, the analyses into the
other factors can be compared with the actual formule,
and in almost every case the factorial analysis, except for
being linear, is in agreement with the actual facts. Tests 5
and 6, true, appear in the analysis to omit factors L and D
respectively, although these dimensions figured in their
formule. But it would appear that they were swamped
by reason of the other dimension in the formulx being
squared ; and also possibly the specific and error factors
we added did something towards obscuring smaller details.
Also the process of * guessing *’ communalities, though
innocuous in a battery of many tests, is a source of con-
siderable inaccuracy when, as here, the tests are few.

5. Bow dimensions as factors.—We can now explain the
particular reason for selecting the primary factors, and not
the reference vectors, as our fundamental entities. The
fundamental entities in the present example can reason-
ably be said to be the length, breadth, and depth of the
boxes, given in the table on page 178. Now, the columns
of that table are correlated with one another, as the reader
can readily check, the correlation coefficients being—

L with B, -589
] R D R I
B ,, D, 204

These correlations are due to the fact that a long box
naturally tends to be large in all its dimensions. It could,
of course, be very, very shallow, but usually it is deep and
broad.

The reference vectors were, it is true, correlated, but
negatively. They were at obtuse angles with one another
(see page 174) and obtuse angles have negative cosines
corresponding to negative correlations. So the reference
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vectors do not correspond to the fundamental dimensions
length, breadth, and depth.

What, then, are the angles—and hence the correlations—
between the primary factors? We shall find that they
are acute angles, and their cosines agree reasonably well
with the above correlations between the length, breadth,
and depth. The algebraic method of finding these angles
is given in the mathematical appendix, but it is perhaps
desirable to give a less technical account of it here. We
need the direction-cosines of the primary factors, that is,
the cosines of the angles they make with the orthogonal
centroid axes. Each primary factor is the intersection
of n — 1 hyperplanes—in our simple case is the intersection
of two planes.

In n-dimensional geometry a linear equation defines a
hyperplane of n — 1 dimensions. For example, in a plane
of two dimensions a linear equation is a line (of one dimen-
sion)—hence the name linear. But in a space of three
dimensions a ‘ linear ”’ equation like ax + by + ¢ = d
is a plane. Two such equations define the line which is
the intersection of two planes. :

Now, the equations of the three planes which form the
triangular pyramid of which we have previously spoken
are just those equations we have already obtained and
used in our example, viz. :

4052 + 426y -+ 809z =
-464a + 076y — 883z =
-888x — 916y + 2152 =0

These equations taken two at a time define the three
edges of the pyramid, which are our primary factors, and
if we express each pair in the form—

2y R
R

a0

then the direction cosines are proportional to a, b, and ¢,
which only require normalizing to be the direction cosines.
When the direction cosines are found in this way, and
written in columns to form a matrix, they prove to have

the values—
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07 835 -503}

400 187 —-843 | — (A')D)

453 —-517 192 |
This is the rotating matrix to obtain the projections, i.e.
the structure, on the primary factors, and if the centroid
loadings on page 172 are post-multiplied by this there
results the table we have already quoted on page 175.

The above matrix, premultiplied by its transpose, gives
the cosines of the angles between the primary factors.  We
obtain—

1 506 <150 |

506 1 164 |= DCD

150 164 1 |

Compare these with the correlations between the columns
of dimensions of the boxes, viz. :

i} 589 ‘144

589 1 204
144 204 1

The resemblance is quite good, and shows that it is the
primary factors, and not the reference vectors, which
represent those fundamental although correlated dimen-
sions of length, breadth, and depth in the boxes.

6. Criticisms of simple structure.—Thurstone’s argument
is then, of course, that as this process of analysis leads to
fundamental real entities in the case of the boxes (and
also in his “ trapezium » example, Thurstone, 1944a,
page 84, with four oblique factors), it may be presumed to
give us fundamental entities when it is applied to mental
measurements. And I confess that the argument is very
strong.

My fears or doubts arise from the possibility that the
argument cannot legitimately be reversed in this way.
Tl}ere is no doubt that if artificial test scores are made up
with a eertain number of common factors, simple structure
(oblique if necessary) can be reached and the factors
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identified. But are there other ways in which the test
scores could have been made ? Spearman’s argument was
a similar reversal. If test scores are made with only one
common factor, then zero tetrad-differences result. But
zero tetrad-differences can be approached as closely as we
like by samples of a large number of small factors, with
very few indeed common to all the tests.

However, Thurstone’s simple structure is a much more
complex phenomenon than Spearman’s hierarchical order,
and yet he seems to have had no great difficulty in finding
batteries of tests which give simple structure to a reason-
able approximation. I am not sceptical, merely cautious,
and admittedly much impressed by Thurstone’s ability
both in the mathematical treatment and in the devising
of experiments.

Thurstone might, I think, put his case in this way. He
assembles a battery of tests which to his psychological
intuition appear to contain such and such psychological
factors, some being memory tests, some numerical, ete.,
ete., no test, however, containing (to his mind) all these
expected factors. He then submits their correlations to
his caleulations, reaches oblique simple structure, and
compares this analysis with his psychological expectation.
If there is agreement, he feels confirmed both in his psy-
chology and in the efficacy of his method of finding factors
mathematically, Usually there will not be complete
agreement, and he is led to modify his psychological ideas
somewhat, in a certain direction. To test the truth of these
further ideas he again makes and analyses a battery.
Especially he looks to see if the same factors turn up in
various batteries. He uses his analyses as guides to
modifications of his psychological hypotheses, or as con-
firmation of them. In Great Britain Thurstone’s hypo-
thesis of simple structure has been, I think it is correct to
say, rather ignored than criticized. Most British psycho-
logists have imbibed during their education a belief in and
a partiality for  Spearman’s g’ a factor apparently
abolished by Thurstone. Since his work on second-order
factors rehabilitates g, this objection may disappear.
Reyburn and Taylor of South Africa have, however,
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criticized simple structure shrewdly (1948a, and a later
paper by Reyburn and Raath, 1949) even although they
themselves do not insist on a g (see 1941a, pages 253, 254,
258).

An early form of response to Thurstone’s work was to
show that his batteries could also be analysed after Spear-
man’s fashion. Holzinger and Harman (1988), using the
Bifactor method, reanalysed the data of Thurstone’s
Primary Mental Abilities and found an important general
factor due, as they truly say, “to our hypothesis of its
existence and the essentially positive correlations through-
out.”” Spearman (1989a) in a paper entitled Thurstone’s
Work Reworked reached much the same analysis, and raised
certain practical or experimental objections, claiming that
his g had merely been submerged in a sea of error. But
there is more in it than that, As I said in my contribution
to the Reading University Symposium (1939) Thurstone
could correct all the blemishes pointed out by Spearman
and would still be able to attain simple structure. I said
on that occasion that however juries in America and in
Britain might differ at present, the larger jury of the future
would decide by noting whether Spearman’s or Thurstone’s
system had proved most useful in the hands of the prac-
tising psychologist. T now think that they will certainly
also consider which set of factors has proved most invariant
and most real. Very likely the two criteria may lead to
the same verdict. But for the present the two rival claims
are in the position deseribed by the Scottish legal phrase,
“ taken ad avizandum.”

7. Application of multiple-factor analysis to industrial test
data.—Dr. R, Harper, with various co-workers, has applied
these methods of factor analysis, begun in connexion with
psychological tests, to tests of a physical kind on various
substances during their manufacture. In Nafure of
November 20th, 1948, Harper and Baron wrote: “In
industrial physics there are occasions when empirical tests
are employed the exact meaning of which is not fully under-
stood, and where the interrelationships between the tests
could_ profitably be studied by similar means ” to those
used in psychology, and they described a centroid analysis,
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without rotation, of rheological measurements on cheese.
" In the British Journal of Applied Physics of January, 1950,
Harper, Kent, and Blair gave an account of the factorial
analysis of ten tests (seven rheological and three electrical)
on a group of plastics (polyvinyl-chloride-plasticizer mixes).
They made a centroid analysis, with four iterations, took
out  three factors, and rotated them orthogonally to
maximize the number of near-zero loadings. They tried
also other rotations, including one to an approximate
oblique simple structure, and suggest interpretations of the
factors arrived at.



CHAPTER XIII
SECOND-ORDER FACTORS

1. A second-order general factor.—The reason why the
factors arrived at in the “ box ” example were corrclated
was that large boxes tend to have all their dimensions
large. There is a typical shape for a box, often departed
from, yet seldom to an extreme degree. Therefore the
length, breadth, and depth of a series of boxes are corre-
lated, and so also are Thurstone’s primary factors in such
a ecase. There is a size factor in boxes, a general factor
which does not appear as a first-order factor (those we
have been dealing with) in Thurstone’s analysis, but
causes these primary factors to be correlated. Possibly,
therefore, when oblique factors appear in the factorial
analysis of psychological tests, there is a hidden general
factor causing the obliquity. This factor or factors (for
there might be more than one) can be arrived at by analys-
ing the first-order factors, into what Thurstone calls
second-order factors, factors of the factors.

Of course, whether such a procedure could be justified
by the reliability of the original experimental data is very
doubtful in most psychological experiments. The super-
structure of theory and caleulation raised upon those data
is already, many would urge, perhaps rather top-heavy, and
to add a second storey unwise. But we should not, I think,
let ‘this practical question deter us from examining what is
undoubtedly a very interesting and illuminating suggestion,
Yvhich may turn out to be the means of reconciling and
integrating various theories of the structure of the mind.

If we take the primary factors of our * box *’ example of
Chapter XII, they were correlated as shown in this matrix :

1 -506 150
506 j | 164
150 164 1

186
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If we analyse these in their turn into a general factor
and specifics we obtain, using the formula—

. Taplac k
g saturation =\ ——"/>

be

the saturations of the primary factors with a second-order
g as +680, ‘744, and +220; and each primary factor will
also have a factor specific. We have now replaced the
analysis of the original tests into three oblique factors by
an analysis into four orthogonal factors, one of them
general to the oblique factors and presumably also general
to the original tests, though that we have still to inquire
into. We must also inquire into the relationship of the
specifics of the original tests to these second-order factors,
which are no longer in the original three-dimensional
common-factor space, but in a new space of four dimen-
sions. Are the original test-specifics orthogonal to this
new space ?

With only three oblique factors, an analysis into one g
is always possible (except in the Heywood case, which will
often oceur among oblique factors). If there had been
four or more oblique factors, we would have had to use more
second-order general factors unless the tetrad-differences
were zero. Thurstone’s trapezium ”’ example already
referred to had four oblique factors, and his article should
be consulted by the interested.

9. Iis correlations with the tests—Let us turn now to the
question what the correlations are between the seven
original tests and the above second-order g. To obtain
these Thurstone uses an argument equivalent to the fol-
lowing :

We may first note that cach reference vector makes an
acute angle with its own primary factor, but is at right
angles to every other primary . factor, for these are all
contained in the hyperplane to which it is orthogonal.
The cosines of the angles can be obtained by premulti-
plying the rotation matrix of the reference vectors by
the transpose of the rotation matrix of thé primary
factors,
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Correlations between Primary Factors and Reference Vectors

DAt x A=D
79T 400 453 405 464 838 860
835 187 —-517 426 -076 —-016 | =| . -858

503 —843 192 | | -809 —-883 215 T

These cosines in the diagonal of the matrix D give us the
angles 81°, 81°, and 11° which we have already mentioned
on page 177 as the angles between each primary factor and
its own reference vector.

Each row of the first of the above matrices represents
the projections of the primary factor on to the orthogonal
centroid axes. These are, in fact, the loadings of the prim-
ary factors, thought of as imaginary or possible tests,
in the orthogonal centroid factors I, IT, and ITI. Following
Thurstone, we add these three rows below the seven rows of
our original seven real tests, extending the matrix F in

length thus :
H
T '

' 1 Homary

‘449 —-682 ‘165 211
‘825 —-478 —.129 574
‘906 -336 ‘020 T87
‘846 . -133 457 ‘666 rwanted
‘808 208 —-412 719
697 336 335 597
767 ‘173 —-468 ‘683
A7 400 458 680
‘835 187 —517 744 }knmvn
508 —-843 192 «220

gwuqmmpwmu'

This lengthened matrix we want to post-multiply by
a column vector (§ in Thurstone’s notation) to give the
correlations of the tests, including the imaginary tests
L, B, and D, with the second-order g. In other words, we
want to know by what weights each column must be mul-
tiplied so that the weighted sum of each row is the correla-
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tion of that test with g. Suppose these weights are u, v,
and w. Since we already know from our second-order
analysis what 7, is for each of the primaries L, B, and D,
we have three equations for u, v, and w, the solution of
which gives us their values. We have—
797w + 4000 -+ 453w = 680
-835u -+ 1870 — 517w = 744
-508u — +848v <+ 192w = -220
and these equations can be solved in the usual way, if
the reader wishes. The values are -798, 198, and —-077.
A closer examination of them, however, which can be
most readily expressed in matrix notation, leads to an
easier plan—especially desirable if the number of primary
factors were greater. In matrix form the above equations
arc—:
Ty =1,
whence ¢ =T"7,
and since T is merely a short notation for DA™ we have—
Y = (DAY,
= APy,
That is to say, the centroid loadings F of the seven tests
have to be post-multiplied by this, giving a matrix (a
single column)—
Fy = FAD™r,
But FA we already know. It is (see page 173) the simple
structure V on the reference vectors. So we merely have
to multiply the columns of V by D™z, and add the rows to
get the correlation of each test with g. These multipliers
are, that is to say :
680 - 860 = 791
744 — -858 = ‘867
220 — -983 = 224
The results are the same as by the former method, except
for discrepancies due to rounding off decimals, and are
given to the right of the preceding table.
3. A g plus an orthogonal simple structure.—In his own
examples, Thurstone has not caleulated the loadings of the
original tests with the other orthogonal second-order

I
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factors, the factor specifics. This can, however, clearly be
done by the same method as above. Since the correlations
of the general factor with the three oblique factors are
*680, ‘744, and -220, the correlations of each factor specific
with its own oblique factor are -788, 668, and -975. For
example, 733* =1 — -680°. The second-order analysis
therefore is :

680 733 . ¢

744 ; -668 ; —=
220 ; : 975 !

Dividing the rows by the divisors already mentioned, viz.
-860, -858, and ‘983, we obtain the matrix :
| 791 853 . .
867 : i) v — PE,
| 224 : . -992

and when the matrix V is post-multiplied by this we
obtain the following analysis of the original seven tests

into a general factor plus an orthogonal simple structure
of three factors :

General Factor plus Simple Structure

S VDR
g A B 5
1 211 021 009 -805
2 574 022 ‘358 683

3 787 449 333 —-006
666 656 —-001 260
719 071 588 —-006
597 593 041 -000
683 ‘005 +609 ‘000

The zero or very small entries in A, B, and & are in the
same places as they are for L', B’, and D’ in the oblique
Slmple- structure V (see page 173). What we have now
done is to analyse the box data into four orthogonal

S S S
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factors corresponding to size, and ratios of length, breadth,
and depth. In terms of our pyramidal geometrical
analogy we have * taken out a general factor” by depress-
ing the ceiling of our room, squashing the pyramid down
until its three plane sides are at right angles to each other.

The above structure, being on orthogonal factors, is also
a pattern, so that the inner products of its rows ought to
give the correlation cocfficients with the same accuracy, it
we have kept enough decimal places in our calculations, as
do the rows of the centroid analysis F: and so they do.
For example, the correlation between Tests 1 and 2 is,
from F, -

-449 % -825 - -682 x 478 — -165 X -129 = 675
and from G it is—
211 X -574 4 021 x 022 - -009 X -358 -+ :805 x 683 =675

The * experimental ” value was -728, the difference of
053 being due to the inaccuracy of the guessed com-
munalities, or in an actual experimental set of data to
sampling error and to the rank of the matrix not being
exactly three.

We can see here a distinct step towards a reconciliation
between the analyses of the Spearman school and those
of Thurstone using oblique factors. But we must not
forget that if the oblique factors are not oblique enough,
the Heywood embarrassment will occur, and a second-
order g be impossible. The orthogonal factors of G are
more convenient to work with statistically, but it is possible
that the oblique factors of V are more realistic both in our
artificial box example and in psychology. They corre-
sponded in our case to the actual length, breadth, and
depth of the boxes. The factors 2, B, and & of matrix G
correspond to these dimensions after the boxes have all
been equalized in * size.”
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PART 1V
THE ESTIMATION OF FACTORS *

* This use of the word * estimation” has been criticized. By
statisticians the word is restricted to mean the estimation of un-
known parameters from a sample, a process of inference from
sample to parent population. Here the word is used to mean the
“ estimation” of a man’s scores in a test (or voeation or examina-
tion) to which he has not been subjected, from a knowledge of his
behaviour in other tests. Factors are imaginary tests and a man’s
score in them can be “estimated ” in the same way. I would use
another word if T could, but ¢ estimation ™ seems the natural ex-
pression. Besides, I think the two meanings are fundamentally
alike.

F.A—T



CHAPTER XIV

REGRESSION AND MULTIPLE CORRELATION

o

1. Correlation coefficient as estimation coefficient.—A corre-
lation coefficient indicates the degree of resemblance
between two lists of marks : and therefore it also indicates
the confidence with which we can estimate a man’s position
in one such list 2 if we know his position in the other y.
If the correlation between two lists is perfect (r =1),
we know that his standardized score* in the one list is
exactly the same as in the other (z = y).

If the correlation between the two lists is zero (r = 0),
then the knowledge of a man’s position in the one list tells
us nothing whatever about his position in the other list.
If we are compelled to make an estimate of that, we can
only fall back on our knowledge that most men are near
the average and few men are very good or very bad in any
quality. We have, therefore, most chance of being correct
if we guess that this man is average in the unknown test.
(x = 0. The average mark we have agreed to call.zero ;
marks above average, positive; marks below average,
negative.)

In the first case, when r» = 1, we are justified in equating
his unknown score @ to his known score y—

=1y

In the second case, when r = 0, we are compelled by our
ignorance to take refuge in—

@ = 0 or average.

Both these statements can be summed up in the one
statement— ,
&=ty
where the circumflex mark over the @ is meant to indicate
that this is an estimated, not a measured, value. If, now,

* A test score in what follows always means a standardized score
unless the contrary is stated. But estimates are not in standard

measure in general.
196
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we consider a case between these, where the correlation is
neither perfeet nor zero, it can be shown that this equation
still holds, provided each score is measured in standard
deviation units. Since » is always a fraction, this means
that we always estimate his unknown @ score as being
nearer the average than his known y score. That is
because we know that men tend to be average men. If
this man’s y score is high, say—
Yy =2

(two standard deviations above the average), and if the
correlation between the qualities @ and ¥ is known to be
r = 5, we guess his position in the @ test as being—

=7y =0'X 2=1
i.e. only one standard deviation above the average. This
is a guess influenced by our two pieces of knowledge,
(1) that he did very well in Test y, which is correlated with
Test @, and (2) that most men get round about an average
score (zero). It is a compromise, an estimate. It will
often be wrong ; indeed, very seldom will it be exactly
right. But it will be right on the average, it will as often
be an underestimate as an overestimate, in each array
of men who are alike in y. The correlation coefficient,
' then, is an estimation coefficient for tests measured in
standard deviation units.

2. Three tests.—Suppose now that we have three tests
whose intercorrelations are known, and that a man’s scores
on two of them, y and z, are known. We wish to estimate
what his score will most probably be in the other test, .
@ need not be a test in the ordinary sense of the word, but
may be an occupatlon for which the man is a candidate
or_entrant. According as we use his known y or his
known z score, we shall have two estimates for his 2 score.
To fix our ideas, let us take definite values for the correla-
tions, say :
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The two estimates for his @ are then—

L — '7y
57

= B

I

and of these we shall have rather more confidence in the
estimate associated with the higher correlation. But we
ought to have still more confidence in an estimate derived
from both v and z. Such an estimate could use not only
the knowledge that y and z are correlated with @, but also
the knowledge that they are correlated to an extent of
r — 8 with each other. Just to take the average of the
above two separate estimates will not utilize this knowledge,
nor will it utilize the fact that the estimate from y (r = *7)
is more worthy of confidence than the estimate from
A=

What we want is to know how to combine the two scores
y and z into a weighted total—

(by + ¢2)

which will have the highest possible correlation with .
Such a correlation of a best-weighted total with another
test is called a multiple correlation. From such a weighted
total of his two known scores we could then estimate the/
man’s @ score more accurately than from either the y or
the = score alone. It must use all the information we have,
including our information that y and z correlate to an’
amount r = 3.

- 8. The straight sum and the pooling square.—In order to
answer this question, we shall first consider the problem
of finding the correlation of the straight unweighted sum
of the scores 7 + 2 with @. This is the simplest form of a
problem to which a general answer was given by Professor
Spearman (Spearman, 1913). .

We shall put his formula into a very simple form, which
we may call a pooling square. In our present instance we
want to find the correlation of y + z with @ (all of these
being, we are assuming, measured in standard deviation
units). We divide the matrix of correlations by lines
separating the “ criterion ” @ from the * battery ” y + 2
thus :
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b Y p-

@ 1:0 7 5

R T |
5 8 1.0

o

In each of the quadrants of this pooling square (with
unities in the diagonal, be it noted) we are going to form
the sum of all the numbers, and we shall indicate these
sums by the letters :

A (5
i Siwe iy o

C B

(where C is the sum of the Cross-correlations between the
battery y -+ z and the criterion @, which can be regarded
as a second battery of one test only).

Then the correlation of z with y + z is equal to—

C
v VAB
which in our present example is—
N+ 5 1-2

e = = 744
Vi) x(1+-8+-8+1) V26"

so that the battery (y + 2) has a rather better correlation

(*744) with 2 than has either of its members (-7 and -5).

From the straight sum of the man’s scores in the two tests

y and z we can therefore in this case get a better estimate

of his score in # than we could get from either alone.

4. The pooling square with weights.—We want, however,
to know whether a weighted sum of y and z will give a still
higher combined correlation with @. With sufficient
patience, we could answer this by trial and error, for the
pooling square enables us to find almost as easily the
correlation of a weighted battery with the criterion.* Let
us, for example, try the battery 8y 4 z. For this purpose

* The pooling square can also be used to find the correlations or
covariances of weighted batteries with one another. Elegant
developments are Hotelling’s ideas of the most predictable criterion
(1985a) and of vector correlation (1936).
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we write the weights along both margins of the pooling
square :

e TE 1
1-0 \ 7 -5
3 7 | 10 3
1 5 8 10

and multiply both the rows and the columns by these weights
before forming the sums A, B, and C. The result of the
multiplications in our case is :

T O

‘ . 2. .5
B ek 10 | 26

2:6 11-8

| 21 | 90 -9 &
5.0 9 10

and we therefore have—

: 2:6
correlation = ——— = 757
4/11-8
a higher value than ‘744 given by the simple sum. So we
have improved our estimation of the man’s @ score, and
estimates made by taking 8y + z would correlate 757
with the measured values of @.

5. Regression coefficients and multiple ~ correlation.—
Similarly we could try other weights for y and z and search
by trial and error for the best. There is, however, a general
answer to this question, namely that the best weights for
y and = are proportional to cerlain minor determinants of
the correlation matriz. The weight for y is proportional to
the minor left when we cross out the criterion column and
the y row, the weight for = is proportional to minus the
minor left when we similarly cross out the criterion column
and the z row. The matrix of correlations with the
criterion column deleted being :
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the weight for y is therefore proportional to :

T 5
%o inare s G s
and that for z is proportional to :
M
b i g

that is, they are as *55:-29. To make these weights not
merely proportional but absolute values we must divide
each of them by the minor left when the row and column
concerned with the * criterion ”’ @ are deleted, namely :
1-0 3
G Ry
so that these absolute best weights, for which the technical

. — .91

name is “ regression coeflicients,” are—
55 29
—1 2
01! T

or 6044y + 31872

We are inviting the reader to take this method of calculat-
ing the regression coefficients on trust ; but he can at least
satisfy himself that when applied to the pooling square they
give a higher correlation of battery with criterion than any
other weights do. The result of multiplying the y column
and row by 6044, and the z column and row by -3187, is
the following :

6044 3187

0551 O e S | | 1:0000 | 4281 <1593

£ O R SRR 4231 | 3653 0578
8187 | -5 | 8 10

1593 0578 1015

1:0000 | -5824
5824 | 5824
5824
/5824
is higher than any other weighting will produce, if the reader

cares to try others. Notice the peculiarity of the pooling
square with regression coefficients as weights, that ¢ = B

Multiple correlation = = 7638 = r,, say, which
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(-5824 = -5824). We can deduce that the inner product of
the regression coefficients with the correlation coefficients
gives the square of the multiple correlation—

604 X T + 819 X -5 = 588 = 1,,?

Indeed, we can take this as forming one reason for using
.604 and +319, and not any other numbers proportional to
them, although the latter would give the same order of
merit. We want our estimates of @ not merely to be as
highly correlated with the true values of @ as is possible,
but also to be equal to them on the average in the long
run, in the sense that our overestimations will, in each
array of men who have the same ¥ and 2, be as numerous
as our underestimations, and this is achieved by using not
merely -55 and -29 as weights, but -55 = -91, and 29 — -91.

6. Aitken’s method of pivotal condensation.—When there
are more than two tests y and z in the battery, the applica-
tion of the above rules becomes increasingly laborious. It
is desirable, therefore,{to have a routine method of calcu-
lating regression coefficients which will give the result as
easily as possible even in the case of a team of many tests.
The method we shall adopt (Aitken, 1937a) is based upon
the calculation of tetrads, as already used in our Chapter V.
We shall first calculate the above regression coefficients
again by this method. Delete the criterion column in the
matrix of correlations, transfer the eriterion row to the bottom,
and write the resulting oblong matrix in the top left-hand
corner of the sheet of calculations, preferably on paper
ruled in squares :

Check
Column
| (o) 8 | -1 3
7 Pl R A % 1 3
B | 12
B (-01) ‘ 3 Ly | 21
| 100 | 8207 —10989 | 2308
20 T ! .99
(058 | 604 -319 | -923
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On the right of the oblong matrix of correlation coeffi-
cients we rule a middle block of columns of the same
number, here fwo, and on the right of all a check column.
The columns of the middle block we fill with a pattern
of minus ones diagonally as shown, leaving the other cells
empty,* including the bottom row. In the check column
we write the sum of each row. The top left-hand number
of all we mark as the “ pivot.” Slab B of the calculation
is then formed from slab 4 by writing down, in order as
they come, all the tetrad-differences of which the pivot in
4 is one corner. Thus the first row of slab B is calculated
thus—

e [ =g BI=" .01
1'X 0 —8x%x (=)= -8
I X (=1)—="8 X 0= —1
1X 8 —-8% 8= 21

and the row is checked by noting that -21 is the sum of the
others. Immediately below this first row a second version
of it is written, with every member divided by the first
(+91). This is to facilitate the calculation of slab C by
having unity again as a pivot. The second row of slab B is
then formed, beginning with—

o eh = Dcags— -9

Throughout the whole calculation, except for the division
of the first row, only one operation needs to be performed,
namely the computing of tetrad-differences, beginning with
the pivot.

The same operation is then repeated to give slab C,
using the modified first row of B, with pivot unity.

This procedure goes on, slab after slab, until no numbers
remain in the left-hand block. There being only three
tests in all in our example, this happens at slab €. The
middle block then gives the regression coefficients -604 and
*319, with their proper signs, all ready for use. Throughout
the calculation the check column detects any blunder in
each row.) The check, let me repeat, for I often find this
misunderstood, consists in seeing that the appropriate

* The dots represent zeros.
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tetrad from the sums in the previous slab agrees with the
sum of the new row. Thus -99 is both the sum of its row,
and also the tetrad—

1%x12—7x8
from slab 4.

‘When the number of tests in the battery is large, the
calculation of the regression coefficients is a laborious
business, but probably less so by this method than by
any other. It will be clear to the reader that so long a
caleulation is not worth performing unless the accuracy of
the original correlation coefficients is high. Only very
accurate values can stand such repeated multiplication,
ete., without giving untrustworthy results. In other
words, regression coefficients have a rather high standard
error.*

7. A larger ewample.—Next we give in full the calculation
of the regression coefficients in a slightly larger example,
though one still much smaller than a practical scheme of
vocational advice would involve. Here 2, is the “ occu-
pation,” and 2, %, % and z, are tests. To give the
example an air of reality, these and their intercorrelations
are taken from Dr. W. P. Alexander’s experimental study,
Intelligence, Concrete and Abstract (Alexander, 1935).
They were T :

z, Stanford-Binet test ;

z, A picture-completion test ;

zy Thorndike reading test ;

Spearman’s analogies test in geometrical figures.

* Regression weights obtained from one set of data, applied to a
subsequent set, will not usually give a correlation with the criterion
as high as that predicted. The probable defect in its square will
be (Wherry, 1931)—

(1 = sz)(M Ty 1)/(N e M)’
where N is the number of persons and M the number of tests.

+ In this, as in other instances where data for small examples are
taken from experimental papers, neither criticism nor comment is
in any way intended. Ilustrations are restricted to few tests for
economy of space and clearness of exposition, but in the experiments
from which the data are taken many more tests are employed, and
the purpose may be quite different from that of this book.
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But the occupation is a pure invention, for purposes of this
illustration only. The correlation matrix is :

2 % % 23 )

% |1.00 72 88 58 41
z | 72 100 39 69 49
% | 63 ':30 100 19  -27
% | 58 69 19 100  -38
Zg | 41 49 27 38 1-00

The fact that we possess these correlations means that we
have given these tests to a sufficiently large number of
persons whose ability in the occupation is also known.
The occupation can be looked upon as another test, in
which marks can be scored. In an actual experiment,
obtaining marks for these persons’ abilities in the occupa-
tion is in fact one of the most difficult parts of the work.
We can now find by Aitken’s method the best weights for
Tests z; to z; to make their weighted sum correlate as
highly as possible with z;,, For a reason which will be
explained later, I have numbered the tests in the order of
their correlations with the criterion. To make the arith-
metic as easy as possible to follow in an illustration, the
original correlation coefficients are given to two places of
decimals only, and only three places of decimals are kept
at each stage of the calculation. The previous explanation
ought to enable the reader to follow. As an additional
help, take the explanation of the value -454 in the middle of
slab C. It is obtained thus from slab B-—

1 X 490 — 079 X 460 = -454

and is typical of all the others. Except for the division
of each first row, only one kind of operation is required
through the whole calculation, which becomes quite
mechanical. The numbers shown on the left in brackets
are the reciprocals of ‘848, -517, -748, used as multipliers
instead of dividing by the latter numbers, in obtaining the
modified first rows. The process continues until the left-
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hand block is empty, when the regression coefficients
appear in the middle block.*

The result is that we find that the best predlctlon of a
man’s probable success in this occupation is given by the

regression equation—
— -390z, +

481z, 4 2222, -} ‘018z,

We give a candidate the four tests, reduce his scores

CompUTATION OF REGRESSION COEFFICIENTS
Aitken’s Modified Method with Each Pivot converted to Unity

| (1) -89 69 -49 |
89 1 19 2%
Al 69 g, A EnBe
49 27 38 1
72 68 ' 58 -4l
(1:179) ( 848) — 079 079 |
1000 —093 -093
gl —0T0 524 042 ‘
079 042 760
349  -083 057
(1:936) (517) 049
1:000 096
(] 049 753 |
116 025
SRS P ol AN R )
(1:337) ( 74-8)1
1-000 |
D 014 |
E |

Check

= 3 1:57

! —1 . -85

—1 5 1-26

. —1 1-14

2-34
390 —1 . 238
460 —1-179 . . 281
-690 —1 3 3 b
490 —1 -371
720 | 1:209
726 —-093 —1 199
1-406 —-180 —1-936 . 386
454 _ 093 —1 349
[550| [-412| . 1-112
384 1102 095 —1 829
514 186 128 —1:337| 441
[so7] [438] [Z2] . |1068
390 431 222 018 | 1061

I‘mal Regucsswn Cacﬂ"cwnts

* The product of all the unconverted pivots, 1 x -848 X -517 X
7748, is the value 328 of the determinant :

1-00
-39
69
49

39 .69 49
1.00 -19 27 |

19 100 38 |

.27 88 1.00 |

If this alone were wanted, the middle block, and the criterion row,

would, of course, be unnece

SSAry.
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to standard measure by dividing by the known standard
deviation of each test, insert these standard scores into
this equation, and obtain an estimated score for him in
the occupation. Thus the following three young men
could be placed in their probable order of efficiency in this
occupation from their test scores :

Standard Scores in

’ 1 ~3 ~3 =4 =0

P Tom ! 7 0 P et 31
Dick | —4 —8 1 8 | — 4T
Harry | 2 1-3 -8 6 83

The multiple correlation of such estimates £, with the
true values would be obtained by inserting the four
correlation coefficients—

T2 63 58 41
instead of the 2’s in the regression equation, and taking
the square root, thus—

V' 800 X ‘72 4 481 X 68 + +222 X -58 - -018 X -41
— 68847 =1 3
ey Rl
Finally, we can, as we did in the former example, use

the regression weights on a pooling square and see if we
obtain this same multiple correlation of r,, = -83:

I

390 431 222 018

100 | 72 63 58 41

390 | 72 | 1-00 39 69 49

431 | 63 39 1-00 -19 27
222 | 58 69 19 100 -38

018 41 49 27 38 1:00

It will be remembered that we have to multiply each
row and column by its appropriate weight, and then sum
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all the numbers in each quadrant. The easiest way of

doing this in large pooling squares is to multiply the rows

first, then add the columns and multiply the totals by the

column weights, finally adding these products, thus :
Multiply the rows :

= = — ot e lfll, e 4 N =

Sums <6885

-390 431 229 -018
10000 72 63 58 41 ‘
2808 3900 1521 -2691 1911 1
2715 1681 4310 0819 1164 1
1288 1532 0422 2220 <0844
0074 | -0088 0049 {0068 0180
|
!
\

7201 +6302 5798 4093 ‘

If we had kept all decimals these columnar sums would,
since we are using regression coefficients as weights, have
been exactly equal to the top row. With the actual figures
shown, on multiplying the column totals and adding them,
we find that the pooling square condenses to :

10000 | -6885

6885 | -6885
6885
"~ 4/+6885

8. Using fewer tests.—There is a tendency, which com-
mon sense finds natural, for the regression coefficients of the
tests of a battery to be in the same order of magnitude as
their correlations with the criterion. But this is not in-
variably the case, and in the present example, if we com-
pare the two sets—

correlations with criterion -72 63 58 41

and regression coefficients. -390 431  -222 -018,
we see that Test 2 has a higher regression coefficient than
Test 1, although a lower criterion correlation. The reason
lies in the high correlation of Test 1 with Test 3, -69.
They measure to that extent the same thing, and when

— -83 as before.

T
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Test 8 is introduced into the battery it begins to some extent
to put Test 1’s *“ nose out of joint.”

The boxed numbers in the calculation on page 205 are
all regression coefficients. If only Test 1 is used, its
regression coefficient is -72. If Tests 1 and 2 are used,
their regression coefficients are -559 and 412, If Tests 1,
2, and 3 are used, their regression coefficients are -397,
488, and -224. And if all four Tests are used, the four
final numbers are the regression coefficients.

The addition of each test raises the multiple correlation

Tmarr VVE have—

fpteel
Test 1 T2 X 72 5184
Tests 1 and 2 T2 X +559 4 68 X 412 = 6622

Tests 1,2,and 8 72 X 897 4 ‘63 X 483 + 58 x 224 = -G882
Tests 1,2,3,and 4 72 X -390 - 68 X 481 4 58 x -222
4 41 X 018 = -6885

Although the addition of each test raises the multiple
correlation, some do so only very little ; and our caution
in ordering the tests in accordance with the magnitude of
the criterion correlation makes it probable, though not
certain, that the comparatively useless tests will be the later
ones. We can at each stage of the calculation pause and sce
whether the test we have just added makes a significant
addition to the multiple correlation. We do this by an
analysis of variance (see Lindquist, 1940, Chapter V, or
other text-book). Consider, for example, the rise in the
squared multiple correlation from -6622 to -6882. Is the
rise statistically significant ? To decide this we must know
the number of persons tested, say N = 105.

| Degrees of ‘ Jm(m

Tests T imaz i Freedom ) Square | el
land2 ., .| -6622 | g0
Increment on add- | ‘ |
ing 8 f « | 0260 | i | 0260 0260 —-0031 =77

Residue x 1 -3118‘ 101 | -0081
| ‘

| |
Total . . |1.0000 iN—1=104§ :
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The caleulation is carried out in the above form, and the
decision whether the increment of 7%, is statistically
significant depends on the size of the ratio F. If it is large
enough, the increase is significant. To decide how large,
consult Table V in Fisher and Yates’s Statistical Tables,
where we find that, with degrees of freedom 1 and 101, a
ratio of 6-88 would be significant at the 1 per cent. point,
i.e. quite highly significant, and 7-7 is even larger than this.
So the increase due to the addition of Test 8 is well worth
while. A similar calculation for the further addition of
Test 4, producing a rise of -0008 in 7%,,,,, shows, as might be
expected, that this is not significant, for F is now less than
unity, and Tests 1, 2, and 38 are (with 105 cases) as good
as the whole battery.

= I A D
Tests |t Degrees of | Mean |

Freedom | Square | Raito .2
R - DA el W Tl a0 R e p e, 2 e T
1,2,and 8 . ‘6882 | 3
Increment on add- \ ; ‘
ing 4 . . | *0003 | 1 «0008 | Less than unity.
Residue 2 = 3115 | 100 | 0031
Total . . |1:0000 | 104

|

9. Caleulation of a reciprocal matriz—A somewhat longer
method of calculating regression coefficients has two
advantages : it permits the easy calculation of regression
coefficients for any criterion (or many) when once the main
part of the computation is completed, and, what is of great
importance, it enables the standard errors of the coefficients,
and of their differences, to be found quickly.

The method referred to is to find first of all the reci-
procal of the matrix of correlations of the tests. This is
done by pivotal condensation also, as illustrated in the
table overleaf. The matrix whose reciprocal is required
appears in the top left-hand corner, with a diagonal array
of minus ones on its right, and a diagonal of plus ones
below it. The whole is condensed in the manner already
described on page 205, and the required reciprocal matrix
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and also that nearly half the numbers can be written down
from symmetry.

The regression coefficients for any criterion are then
obtained by multiplying the rows of the reciprocal by the
criterion correlations and then adding the columns. In
the example of page 205 we multiply the first row of the
reciprocal by -72, the second by -63, and so on. The
addition of the columns then gives the same regression
coeflicients as were found on page 205.

10. Variances and covariances of regression cocfficients.—
The most important advantage of this method is that
whatever the criterion, the variances and covariances of the
regressign coeflicients are proportional to the cells of the
above reciprocal matrix (Fisher, 1925, 15 and 1922, 611).
This enables their absolute values for any given criterion
to be obtained by multiplying by 1 — 7%, (the defect of
the square of the multiple correlation from unity), and
dividing by the number of “degrees of freedom ” which
is for full correlations N — p — 1 where N is the number
of persons tested, and p the number of tests. For partial
correlations the degrees of freedom are reduced by the
number of variables * partialled out.”

Thus in our example, where p = 4, if N had been 105,
N — p — 1 would be 100. The multiple correlation was-
.88, and 1 — 7%, = -812 (see page 206). The variances and
covariances of our four regression coefficients are in this
case equal to the reciprocal matrix multiplied by -00312.

0075 —:0017 —:0042 —-0016
—-0017 -0038 ‘0006 —-0004
— 0042 -0006 0061 —-0004
—+0016 —-0004 —-0004 0042
The standard errors of the regression coefficients are the
square roots of the diagonal elements :
Regression coefficients -390 481 222 018
Standard errors 087 062 -078 065
Significant ? Yes Yes 1 No

The correlations of the regression coefficients will be got
by dividing each row and column by the square root of
the diagonal element. We obtain :
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1000 —81 —-62 —-28
—:31 * 1-00 s 2=l {)
— 62 2R 00N —08
== 28— ()= ()8 5" 1:00

We can now calculate the standard error of the difference
between any pair of the regression coefficients and sce
whether they differ significantly. Take, for example, those
for Test 1 (-890) and Test 2 (-431). The difference is -041.
Its standard error is the square root of’

‘0075 -+ -0038 .2 X -81 X 087 X 062 = 0146
.. standard error of -041 is -121

The difference is therefore not significant when N = 105.
Had N been larger it might have been.

11. The geometrical picture of regression.—Before we close
this chapter it will be illuminating to consider what re-
gression and estimation mean in terms of the geometrical
picture of Chapter VI. Consider the illustration used in
the earlier pages of the present chapter, with the matrix :

‘ i) Y 2
|

@ ‘ 1-0 tr g 5

Y ST A 3

o =5 3 1-0

Here @ is the criterion, y and z are the tests. Each of
them can be represented by a directed line, as explained in
Chapter VI, with angles between these lines such that
their cosines are the above correlations. The three lines
will then be in an ordinary space of three dimensions.

The two tests y and z themselves have, of course, lines
which lie in a plane: any two lines springing from the
same point as origin lie in a plane. The criterion line
15 not in this plane (say, the table top, on which we may
imagine lines y and z to lie), but makes an angle with it.
The problem of regression and multiple correlation is, in
terms of this geometrical picture, to find the line in the plane
of y and z which makes the smallest possible angle with the
line @ : for the smallest possible angle corresponds to the
largest possible correlation. Clearly this desired line is the
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line which is the projection of the line  on to the yz plane,
the shadow thrown by @ on the table with the sun right
overhead. In Figure 29 it is the line OB, where B is verti-
cally below a point 4 on the test line 2.

The regression coefficients are numbers which express
the proportions in which the tests y and z have to be com-
bined to give this line OB. Tt is just like the parallelogram

L xi =)
5 ;
(2 = ER

Figure 29.

of foreces, If from B we draw parallels to the two test lines,
we obtain OY and OZ as the distances to be measured along
the two test lines to give a resultant along OB, which is as
near as we can come to 04. (No combination of y and z
can give a line out of their plane.) If the distance OA is
taken as unily, the distances OY and 0Z are the actual
regression coefficients. If a wire model like Figure 29 were
made with the proper angles with cosines @ with y equal to
-7, @ with z equal to -5, and y with z equal to -3, the distances
0Y and 0Z would be found to be 6044 and -3187. And
the cosine of the angle BOA would be -763, the value we
found for the multiple, or highest possible, correlation of
the two-test battery with @ in Section 5 of this chapter,
page 200,

12. Estimation the same as projection.—Let us now con-
sider a man P whose two scores in the Tests y and z we
know, and whose probable score in Test # we wish to
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estimate. His two scores OM and ON in y and = cnable
us to assign to this man a point P on the yz plane, a point
so chosen that its projections on to the y and z vectors
give the scores made by him in those tests (see Figure 30).
But we cannot say that this is his point in the three-dimensional
space of @, y, and z.  His point in that space may be any-
where on a line P’PP" at right angles to the plane yz. For

p!

Figure 30,

from anywhere on that line, projections on to y and z fall
on the points M and N. Yet the projection on to the
vector @, which gives his score in the criterion test z,
depends very much on the position of his point on the line
P’PP".  All the people represented by points on that line
have the same scores in y and z but different scores in a,
and our man may be any one of them. Before deciding
what to do in these circumstances, let us consider this set
of people P'PP” in more detail.

It will be remembered that the whole population of
persons is represented by a spherical swarm of points,
crowded together most closely round about the origin 0,
and falling off in density equally in all directions from
that point. Every test line is a diameter of this sphere,
and the plane containing any two test vectors divides the
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spherical swarm into equal hemispheres. It follows that
a line like P’PP" is a chord of the sphere at right angles to
a diameter (the line OP), and consequently that it is
peopled symmetrically on both sides of P, both upwards
along PP’ in our figure, and downwards along PP, the
men on the line being most crowded near the point P itself.
The average man of the array of men P’PP" (who are all
alike in their scores in the two tests y and z) is therefore
the man at P, and since we do not know exactly where
our candidate’s point is along P’PP’, we take refuge in
guessing that he is the average man of his group and is at
the point P itself. From P, therefore, we drop a perpen-
dicular on to the vector x, and take the distance OL as
representing his estimated score in that test. This geo-
metrical procedure corresponds exactly to the calculation
we made, as a little solid trigonometry will show the
mathematical reader. The non-mathematical reader must
take it on trust, but the model may illuminate the calcula-
tion. OL is the average of all the different scores  that a
person with scores OM and ON can have. The estimate
will only be certain if the line itself is on the table; it
will be less and less certain, the more the line @ is inclined
to the table.

Tt should be noted that the angles which three test
vectors make with each other are impossible angles, if the
determinant of the matrix of correlations becomes negative.
Ordinarily, that determinant is positive. In our present
example we have, for example :

e A
|7 10 8 |—88
| 5 8 10 |

Such a determinant, however, though it cannot be
negative, can be zero, namely in the cases where the two
smaller angles exactly equal the largest. In that case the
three vectors lie in one plane—the criterion line has
sunk until it too lies on the table. In that case alone,
when the determinant is zero, the * estimation ” is certain,
and all the people in the line P’PP" have not only the same
scores in y and 2, but also the same scores in @. The
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vanishing of the above determinant therefore shows {hat
this is so. And in more than three dimensions. although
we can no longer make a model, the vanishing of the
determinant :

: 1 Tm Too Toz . Ton
| Ty 1 T1a T . Tin
Toz AT} 1 Tag . Ton | _ i
Tog ria Tag 1 . T3, 7
J rOn rlﬂ r2n T3n L 1

shows that the eriterion z, can be exactly estimated from
the team %, 2, . . . z,. In fact, the multiple correlation
Tmy Which we have already learned to calculate in another
way, can also be calculated as—

A
rszl__
Lo

where A is the whole determinant, and 4., is the minor
left after deleting the criterion row and column. This
expression clearly becomes equal to unity when A = 0.
In our small example @, y, 2, we have

Aon =01

A =88
‘38 53
T = 1 —— = _— = +5824 — 763
S T T T »/-91 B 7

as we already know it to be from page 200.

7 1. The * centroid  method and the pooling square.—The
pooling square, which we have learned to use in this
chapter, enables us to see in another light the nature of the
factors first arrived at by the * centroid * method.

Equal Weights

& % 5% cT 2
&F ‘ 1 1 Tia T1a T1a
B Py l 1 1 T2 Tia 14
q'ual % | Tia T1z 1 Tas Taq
Weights 2, ‘ Tz | Tig Tag 1 T34
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Let us suppose that the tests 2, 2y, 23, and z;, have the
correlations shown, and let us by the aid of a pooling square
find the correlation of each of them with the average of all.
This means giving each test an equal weight in pooling it.

The correlation of z with the average of all is then
obtained from the above pooling square (see previous page),
which condenses to :

\ 1 | 1475+ 73+ T

+ 7 | Sum of all the cells
ezl of the table of corre-
| e | lations.

|

1 5 ’
|

:

and the correlation coefficient is—

1471 + 713 + 74
1v/above sum

This, however, is exactly the centroid or simple sum-
mation process applied to a table with full communalities of
unity. The first centroid factor obtained from such a table
is simply for each individual the average of his four test
scores, and the method is called the * centroid ”’ method,
because  centroid ” is the multi-dimensional name for an
average (Vectors, Chapter III; and see Kelley, 1935, 59).
The line in our geometrical picture, which represents the
first centroid factor, is in the midst of the radiating lines
which represent the tests, like the stick of a half-opened
umbrella among the ribs. It does not, however, make
equal angles with the test lines unless these all make
equal angles with each other. If several of them are
clustered together, and the others spread more widely,
the factor will lean nearer to the cluster.

In the foregoing explanation the communalities have
been taken as unity, and the factor axis was pictured in
the midst of the test lines. If smaller communalities
are used, the only difference is that a specific component
of each test is discarded, and the first-factor axis must be
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pictured as in the midst of the lines representing the other
components of the tests. It can be shown that when
communalities less than unity are used, if we bear in mind
that the communal components of the tests are not then
standardized, the pooling square gives the correlations
exactly as before, if we use communalities instead of units
in the diagonal.

The first centroid factor is the average of the communal
parts of the tests.

The later factors in their turn are, in a sense, averages
of the residues. There are, however, some complications,
the first being that the average of the residues just as they
stand is zero. The manner in which Thurstone circum-
vents this has already been described in Chapter V.

14. The most predictable criterion.—Often a criterion is
also composed of parts, just as a battery of tests is. If it is
success in an occupation, the journeyman may be judged
for skill, for regularity of attendance, for his manner in
dealing with colleagues or customers, ete. Some of these
items will consciously or unconsciously be weighted more
heavily than others in an adjudicator’s assessment of the
man ; and so too in the assessment of a boy’s success in a
secondary school. If the weights are thus decided by
employer, or by headmaster, the criterion score becomes
again one number, the sum of the arbitrarily weighted
parts. -

Hotelling, however, raised and solved the question of
how to weight the parts of a criterion so that it would
correlate most highly with a given battery of tests, also
weighted in its best way (Hotelling, 19354, and see Thomson
1947, 1948, and M. S. Bartlett, 1948). There are, then,
indeed two weighted batteries. In terms of our geo-
metrical analogy, the criterion is now no longer a line, as in
Figures 29 and 80, but a space, and the problem is to find
a line in the criterion space, and one in the battery space,
which will be as near to each other as possible, both spring-
ing from an origin 0 common to both spaces. This tech-
nique, which the reader will find illustrated by an
arithmetical example in Thomson (1947, 1948), would, for
instance, enable weights to be given to the tests in two
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different batteries to make these agree with one another as
much as possible.

15. Weighting for battery reliability.—A special case
arises when the two batteries are composed of alternative
forms of the same tests, when the correlation between the
two batteries is the battery reliability, which can be
enhanced by suitable weighting.

Thomson (1940) described how to find the best weights
for battery reliability, as a special case of Hotelling’s
“ most predictable criterion,” and Peel (1947) has given a
simpler formula than Thomson’s (see page 853 in the
Mathematical Appendix, Section 9a). If there are only
two tests in the battery, with reliabilities 7y, 7o and
correlating with one another 7, then Peel’s formula gives
as the maximum attainable reliability the largest root p. of
the equation.

Ty — & 7y (1~ 1h) —0
l"'u(l_l‘«) Top — X

that is p2(1 — ry,?) — @t + 7 — 2r15?) + (ruree— 712%) =0
If, for example, 71, = 5, 7y = 7, and ry =8, the quadratic
has roots ‘843 and -490, and a battery reliability of 843
is attainable by using weights proportional to either row of
the above determinant with p. = 843, taken reversed and
with alternate signs, that is -0785 and -1431

or -0431 and -0785

or 1 and 1-8 approximately.
If as a check we set out a pooling square for the two bat-
teries it will be—

1 18 1 1-8

— 1 i

i Tl el 5 | / B
1-8 | 5 10 5 -8 “
. - |

1 \ i 5 . 10 5 |

l

and if we multiply the rows and columns by the weights
shown, and add together the quadrants, this reduces to—
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6:04 | 5092
5002 604

giving a battery self-correlation or reliability of—

5:092
—— = 843 as expected.
6-04
When there are more than two tests, the solution of the

above determinantal equation becomes laborious and diffi-
cult. Green (1950) has given a transformation of the
equation which enables an iterative process to be used in
its solution, making it more practicable (see the Mathe-
matical Appendix, page 353).

Clearly the weights making a battery as reliable as
possible will not be the same as those making it most valid
in predicting a given criterion. There is here a conflict
of aims, for we want a battery to be both as valid and as
reliable as possible. It is very desirable that some reason-
ably simple form of caleulation should be devised to find
those weights which should be given to the tests of a battery
which, for a given criterion, would make the best com-
promise, making reliability equal to validity and both as
great as possible (see Thomson 1940, pages 364 to 365).



CHAPTER XV
THE ESTIMATION OF A MAN’S FACTORS

V1. Estimating a man’s *“g.”—So far, our discussion of
estimation in Chapter XIV has had nothing immediate to
do with factorial analysis. We are next, however, going
to apply these principles of estimation to the problem of
estimating a man’s factors, given his test scores. As we
have already explained in Chapter VI there is no need to
“ estimate” factors when unity is retained in each diagonal
cell ; they can be calculated without any loss of exactness
EEEausc’thef are equal in number to the tests : and even
if we analyse out only a few of them, they can be exactly
caleulated for a man from his test scores. When we say
exactly here, we mean that the factors are known with the
same exactness as the test scores which are our data.

When communalities are used, however, factors are
more numerous _than the tests, and can therefore only be

“estimated.” Two men with the same set of test scores
may have different factors. All we can do is to estimate
them, and since the test scores of the two men are the
same, our estimates of their most probable factors will
be the same. The problem does not differ essentially
from the estimation of occupational success or of ability in
“any © criterion ” test. The loadings of a factor in each
test give the z, row and column of the correlation matrix.
TLet us first consider the case of a hierarchical battery of
tests, and the estimation of g taking for our example
the first four tests of the Spearman battery used as illustra-
tion in Chapter I, with these correlations :
2y Ry %3 24

% |100 72 63 .54

% | 72 100 56 48

s | €3 56 100  -42

54 48 42 100
221
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These correspond, in the analogy with the ordinary cases
of estimation of the first chapter of this part, to the tests
given to a candidate. In those cases, however, there was
a real criterion whose correlations with the team of tests
were known, and formed the z; row and column of the
matrix. Here the * criterion” is g, and it cannot be
measured directly ; it can only be estimated in the manner
we are now about to describe. We have here, therefore,
no row and column of experimentally measured correlations
for the criterion z; or ¢ in the present case (Thomson,
B.J.P. 25, 94). From the hierarchical matrix of inter-
correlations of the tests, however, we can calculate the
*“ saturation ” or “loading ” of each test with the hypo-
thetical g, and use these for our criterion column and row
of correlations. These saturations are the correlation co-
efficients which would be found between each test and a test
of pure g with no specific. We thus arrive at the matrix :

~

) 2 % %3 %y

% [100 90 80 70  -60
% | 90 100 -72 63 54
% | 80 72 100 56 48
2, | 70 68 56 1.00 42
74 | 60 54 48 42 100

and we want to know the best-weighted combination of
the test scores z; to 2, in order to correlate most highly
with 2, = g. The problem is now the same as one of
ordinary estimation of ability in an occupation, and the
mathematical answer is the same. We can, for example,
use Aitken’s method of finding the regression coefficients,
although in this case, because of the hierarchical qualities
of the matrix, there is, as we shall shortly see, an easier
method. It is, however, illuminating for the student
actually to work out the regression coefficients as in an
ordinary case of estimation, as shown on the next page.
If, therefore, we know the scores 2, 2,, 23, and z, which

a man has made in these four tests, we can estimate his g
by the equation—

v & = 5581z + +2595z, 4 1602z 4 10952,
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(1-00) 72 63 54 [—1-00 : : . |189
72 1-00 56 48 —1-00 176
63 56 1-00 42 —1-:00 . 161
54 48 42 1-00 —1:00 |1-44
90 80 70 60 | . 800
(2:0764)(-4816) 1064 0912 | 72 —1-00 -3092
1:0000 -2209 -1894 | 1:495 —2:0764 . 8289
1064 -6031 -0798 -63 —1-00 5 4193
0912 0798 7084 | . 54 —1-00 4190
<1520 -1330 -1140 ‘ 90 1:2994
(1-7253) (-5796) -0596 | 4709  -2209 —1-00 ; 3311
1-0000 -1028 8124 3811 —1-7253 v 5712
0597 6911 4037 1894 —1-00 3438
<0994 0852 6728 3156 1-1730
= P e N e
(1-4599) (-6850) 3552 1666 1030 —1:00 3097
1-0000 -5186 2432 1504 —1-4599 | 4521
<0750 -5920 20T 1715 11162
! 5531 2595 -1602 1095 | 1-:0823
| Regression Coefficients |

The multiple correlation of such estimates in a large
number of cases with the true values of g will be by analogy
with our former case given by—

Ty = 940

1t = 5581 X -90 - 2595 X ‘80

+ 1602 X -70 + 1095 X -60 = -883

We must remember, however, that such a correlation here
is rather a fiction. We had in the former case the possi-

bility of comparing our estimates with the candidate’s
eventual performance ~in_the occupation or criterion 2.
Here we have no way of knowing g; we » only have the
estimates.

As before, we can check the whole calculation by a
pooling square (see page 200).

Estimating g from a hierarchical battery is therefore,
mathematically, exactly the same problem as estimating

any criterion, and can be done arithmetically in the same
way. Because of the special nature of the hierarchical
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matrix of correlations, however, with its zero tetrad-
differences, there is an easier way of (alcul.xtmg the éstimate
of g, due to Professor Spearman Tmsclf'( Abilities, xviii).
For its equivalence mathematically to the above see
Appendix, paragraph 10.

Meanwhile we shall illustrate it by an example which
will at least show that it is cqulvalcnt in this instance.
The calculation is best carrled out in abular form, and is
based entlrely on_the sat saturations or loadings of the tests
with g, g, which are also @Mﬁ_élatlonq with g.

‘ ‘ { Regression
Coefficients
T, 2 — 4
est| 1, Tig ’1 a ‘ P Tlvﬂ ‘ T ,.‘v k.}* % Y
| 148" 1-— .r',.“ﬂ
Pl o o Vo ot BN Pl | |
1| 0 | 81 | a9 | 42632 J 47368 5533
2 8 | -64 86 | 17778 | 2.2222 2506
3 7 | -49 51 9608 | 13725 1603
4 6 ’ 36 | 64 5625 | 9875 1095

S = 75643
1+ 8 = 85643
m= -1168
The result, with much less calculatlonLls ‘the same.
The qua.ntlty S is of some importance in this formula. It
is formed in the fourth column of the the table, from w lnch
it w111 be seen that—

2 7. e 8

e e oy e

! St I e e = %
It is clear that S will become larger and larger as the

n\_x_nghgr of tests is increased.
Now, we saw that the square of the multiple correlation
n 1S obtained when we multiply each of the w elghts by i

and sum the produets. That is to say—
& 7t = X (weight X saturation)

1 )
e e
(1+S l—rigxr)
i | Bl At S

z =
1+8 “1—r2 148

oy

e

P vt
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This fraction will be the nearer to unity, the larger S is ;
and we can make S larger and larger by adding more and
more (hierarchical) tests to the team. Thus in theory we

can make a team to give as high a multiple correlation
@Hgm‘) be noticed, however,
from our table that the tests with high g saturation make
much the largest contribution to S, and therefore to the
multiple correlation._

« 2. Estimating two factors simultaneously.—We have seen
in the preceding section how to estimate a man’s ¢ from
his scores in a hierarchical team of tests, and in this we
shall consider the broader question of estimating factors in
general, Thus in Chapter V the four tests with corre-

lations :

1 2 3 4

1 A A 2
2 4 ; 7 8
3 4 7 R
4 2 3 8

were analysed into two common factors and four specifics
with the loadings (see Chapter V, page 79).

Common Factors }

l I 0l Specific Factors
1 | 5164 . | -85eB .
2 \ 7746 3162 SATT -
8 ATAG 43162 5477
4 \ -3873 ! . 9220

Any one column of these loadings can be used as the
criterion row in the calculation by Aitken’s method, and
the regression coefficients caleulated with which to weight
a man’s test scores in order to estimate that factor for
him. If, as is probable, we want to estimate both common
factors, we can do the two calculations together, as shown
on the next page. Both arrays of loadings are written
below the matrix of intercorrelations, and then pivotal
condensation automatically gives both sets of regression

F.A—8
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coefficients, with only one extra row in each slab of the
calculation :

(0) 4. 4 2 |

4 10 w7 8 |

4 7 10 4 |

2 8 8 10 |
5164 7746 774G 3873
8162 3162 |

(*84) 54 22 ’

100 6420 -2019:

B4 84 2|

22 .22 .96 |

5680 -5680 -2840 |

3162 3162 . |

(-4928) -0786 f

1-0000 1595

0786 9024

2028 1852
11290828

(-8899)

1:0000

1029

—+1008

—1:0 .
—1-0
—1-0
40 —1:0
4762 —1-1905 .
40 —1:0
20
5164
1429 6429 —1-0
2000 1-3046 —2-0292
0952 2619
2459 6762
—+1506 3764
0724 *1594 1594
‘0814 1791 1791
11871 4116 4116
—+1833 12291 2291
1787 3932 3932
—1751 2472 2472

—1:0

—1-0000

—1-0000

—1-1237

‘1156
—-1133

Regression Coefficients

=

|3

b Ot 00 & i

=]
=)
5
-

1-0

1-1905
1:0
-6
1-9365
6324
3671
7246
-3881

2603
-2560

—

-2811

-3159
1134
1742

[

10809
2060

If, therefore, we have a man’s scores (in standard
measure) in these four tests, our estimate of his Factor I

will be—

Tn® = 1787 X 5164 4 -8982 X -7746 + 3932 X -7746

1787z -+ 3982z, -+ -8982z, + 11562,

and estimates made in this way will have a multiple
correlation r, with the * true ” values of the factor, in a
number of different candidates, given by—

+ 1156 X -3878 = 7462

oTw

= 864
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Similarly, the multiple correlation of the estimate of the
second factor with the “ true ** values can be found to be—

T8 —=2:805

The two factors are not, therefore, estimated with equal
accuracy by the team. As before, the whole calculation
can be checked by a pooling square.

We have now found the regression equations for esti-
mating the two common factors by treating each in turn
as a  criterion.” It is also possible to estimate a man’s
specific factors in the same way. Indeed, we might have
written the loadings of the specific factors as four more
rows below the common-factor loadings in the first slab
and caleulated their regression coefficients all in the one
caleulation. But it is easier to obtain the estimate of a
man’s specific by subtraction (compare Abilities, 1932
edition, page xviii, line 10). For example, we know that
the second test score is made up as follows—

%, = “TT46f, - -8162f, + 54775,

where f; and f; are the man’s common factors and s, his
specific. We have estimated his f; and f;, and we know
his 2,; so we can estimate his s, from this equation. The
estimates of all a man’s factors, to be consistent with the
experimental data, must satisfy this equation and similar
equations for the other tests. If the estimate of the
specific is actually made by a regression equation, just like
the other factors, it will be found to satisfy this require-
ment.* From the estimates of all a man’s factors, there-~
fore, including any specifics, we can reconstruct his scores
in the tests exactly. From only a few factors, however,
even from all the common factors, we cannot reproduce
the scores exactly, but only approximately.

3. An arithmetical short cut (Ledermann, 19384, 1939b).—
If the number of tests is appreciably greater than the
number of common factors, the following scheme for

# Tt is interesting to note that we know the best relative loadings
of the tests to estimate a specific by regression without needing to
know how many common factors there are, or whether indeed any
specific exists or not. (Wilson, 1934. For the same fact in more
familiar notation, see Thomson, 1936a, 43.)
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computing the regression coefficients will involve less
arithmetical labour than the general formule expounded
in Chapter XIV and applied to the factor problem in this
chapter.®

For illustration, we shall use the data of the preceding
section (page 225), although in that example the number
of tests (four) exceeds the number of common factors (two)
only by two, which is too small an amount to demonstrate
fully the advantages of the present method. The common-
factor loadings and the specifics of the four tests form a
4 X 2 matrix and a 4 X 4 matrix respectively, thus :

5164 | 8568

M, = | 7746 8162 . 5 _ !‘ B4TT
746 -3162 5477
3878 . l 9220 |

the matrix M, being identical with the first two columns,
and the matrix M, with the last four columns of the table
on page 225. Before the data are subjected to the com-
putational routine process, which will again consist in the
pivotal condensation of a certain array of numbers, some
preliminary steps have to be taken: (i) the loadings of
each test are divided by the square of its specific, and the
modified values are then listed in a new 4 X 2 matrix :

7042 e
M. | 25820  1.0540
T 95820 10540 |
4556
e.g. 2:5820 = (-7746) = (-5477)*

1:0540 — (-8162) = (-5477)?
(ii) Next, the inner products (see footnote on page 74) of
every column of M, in turn with every column of M, are
calculated and arranged in a 2 x 2 matrix :

* This short cut, in the form here given, is only applicable to
orthogonal factors. For oblique factors, which are described in
Chapter XII, modifications are necessary in Ledermann’s formule,
for which see Thomson (1949) and the later part of Section 19 of the
Mathematical Appendix, page 365.
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; 45401 1-6329
MMt [1-6329 -6665]

If there had been » common factors the matrix J would
have been an r X r matrix. The arithmetic is simplified
by the fact that J is always symmetrical about its diagonal,
so that only the entries on and above (below) the diagonal
need be calculated. (iii) Finally, each element on the
diagonal of J is augmented by unity, giving, in the notation
of matrix calculus, the matrix :

55401  1-6829 |
T aes 4
|

1-6329 1-666

This matrix is now * bordered ” below by the matrix
M,,, and on the right-hand side by a block of minus ones
and seros in the usual way. The process of pivotal
condensation then yields the same regression coefficients
as were obtained on page 226.

55401  1:6329 —1:0000 . 61730
1-0000 2047 —-1805 i 1-1142
1-6329  1:6665 . —1-0000 2-2994
<7042 . 7042
2:5820  1:0540 3-6360
2:5820  1:0540 3-6360
4556 . 4556
1-1853 -2047 —1:0000 4800

1-0000 2486 —8437 4050

—-2075 1271 —+0804

2931 4661 7591

2931 4661 7591

—+1843 0822 —+0520

1787 —-1751 -0036

Regression Coefficients 3932 2473 16404
3932 2473 6404

1156 —+1133 0023

" 4. Reproducing the original scores—Let us imagine a
man who in each of the four tests in our example obtains
a score of -+ 1; that is, one standard deviation above the
average. We choose this set of scores merely to make the
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With this table of loadings in our possession we might
have given vocational advice to a man in a roundabout
way. (Instead of inserting his scores in 2, %5 %, and 2, in
the equation for £, we might have estimated his factors
&, v, and F from his scores in the four tests, and then
inserted these estimated factors in the specification equa-
tion of the occupation—

% = 558 + +450 + -60F + -87s,

(ignoring the specific s, which cannot be estimated from
R1y %, 2, and 24). Had we done so, we should have arrived
at exactly the same numerical estimate of his z, as by the
direct method (Thomson, 1936a, 49 and 50).)

The actual estimation of the factors g, v, and F from
the four tests will form a good arithmetical exercise for the
student. The beginning and end of the caleulation of the
regression coefficients is shown here, following exactly
the lines of the smaller example on page 226 of this chapter :

Check

100 39 69 .49 -1 3 = 5 1:57
39 100 19 .27 2 —1 5 . 126
69 19 100 38 | . . —1 - 1-14
49 27 .88 1:00 [ . ’ g == 85
‘66 -87' 52 74 | g y - i 2-29
52 & 66 : I . 1 g . | 1'18
21 71 S 3 | A s . o -2

This reduces by pivotal condensation step by step to the
three sets of regression coefficients :

for g 800 095 095 532 |
for ¢ ‘858 — -158  -581 — -352 |
for I 121 747 — 148 — 206 ‘

The result is to give us three equations for estimating
& 0, and F from a man’s scores in the four tests, viz.—

§ = '300% + 095z, - 095z, + -532z,
¥ = 358z — 158z, -+ 5812, — 3523,
P = 1213 + 1472, — ‘148z, — -206z,

(Now let us assume a set of scores 2z, 2,, %, %, for a man,
and see what the estimate of his occupational ability is by
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the two methods, the one direct without using factors, the
other by way of factors. Suppose his four scores are—
Ry 22 <3 By
-2 -6 — 4 .7
The estimates of his factors g, v, and F will therefore be—

£ = 800 X 2 4+ 095 X 6 + 095 X (— 4) + 582 X 7T = 451
f — 853 X 2 — <153 X *6 -+ 581 X (— +4) — 352 X 7 = — -500
P — 121 X 2 + 747 X -6 — 148 X (— 4) — 208 X = 387

If now we insert these estimates of his factors into
the specification equation of the occupation, ignoring its
specific, we get for our estimate of his occupational success :

8, — 55 X 451 4 45 X (— +500) + -60 X :887 = 255
that is, we estimate that he will be about a quarter of a
standard deviation better than the average workman.
This by the indirect method using factors.

By the direct method, without using factors at all, we
simply insert his test scores into the equation—

2, = ‘3903, + 481z, + -222%; + ‘0187,
and obtain—
8, — 890 X -2 + 481 X ‘6 + 222 X (— -4) + ‘018 X 7

= -260
exactly the same estimate as before—for the difference in
the third decimal place is entirely due to rounding off ”’
during the calculations. The third decimal place of the
direct calculation is more likely to be correct, sinee it is
so much shorter.

6. Why, then, use factors at all ?2—The reader may now
ask, “ What, then, is the use of estimating a man’s factors
at all?” Well, in a case analogous to that of the present
example it is quite unnecessary to use factors at all, and
there is no doubt that{a great many experimenters have
rushed to factorial analysis with quite unjustifiable hopes
of somehow getting more out of it than ordinary methods
of vocational and educational advice can give without
mentioning factors. But we must not go to the other
extreme and * throw out the baby with the bath-water.”
There may be other reasons for using factors, apart from
voeational advice. And even in giving such advice, which

F.A—8*
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tests and occupations into factors, still more the calculation

o-f"qug_titfig_a_t_ivg estimates of these factors, are as yet very

inaccurate, and perhaps are inherently subject to uncer-
A . . .

tanty. A fluctuating and doubtful coinage can be a

positive hindrance to trade, and barter may be preferable

in such ecirecumstances
We showed in Section 5 above that{a direct regression
estimate of a man’s ability in an occupation gives identically

the same result as an estimate via the roundaboul path of

factors, so that at least when the direct regression estimate
is possible there can be no quantitative advantage in using
factors.) When, however, is the direct regression estimate
possible, and when is it impossible ? ’
(To make the direct regression estimate we require the
complete table of correlations of the tests with one another
and with the occupation, and we have to know the candidate’s
scores in the tests. This implies that these same tests have
been given to a number of workers whose proficiency in the
occupation is known, for otherwise we would not know the
correlations of the tests with the occupation. Under these
ideal circumstances any talk of factors is certainly unneces-
sary so far as obtaining a quantitative estimate is concerned.

But suppose these ideal conditions do not hold! These

tests which we have given to the candidate have never
been given, at any rate as a battery, to workers in the
occupation, and their correlations with the occupation are
unknown ! This situation is particularly likely to arise
in vocational advice or guidance as distinguished from
vocational selection. In the latter we are, usually on
behalf of the employer, selecting men for a particular job,
and we_are practically certain to have tried our tests on
people already in the job, and to be in a position to make
a_direct estimation without factors. But in vocational
guidance we wish to gauge the young person’s ability in
Very many occupations, and it is unlikely that just this
!:)a:j;ﬁqu of tests that we are using has been given to workers
In all these different jobs. In that case we cannot make
a direct regression estimate of our candidate’s probable
pro_ﬁciency in every occupation. Can we, then, obtain an
estimate in any other way ?
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Other ways are conceivable, but it must at the outset
be emphasized that they are bound to be less accurale than
the direct estimate without factors. Although this battery
of tests has not been given to workers in the occupation,
perhaps other tests have, and by the aid of that other
battery a factor analysis of the occupation has perhaps
been made. If our tests enable the same factors to be
estimated, we can gauge the man’s factors and thence
indirectly his occupational proficiency. Unfortunately,
the “if ” is a rather big one.)) Are factors obtained by
the analysis of different batteri€s of tests the same factors ;
may they not be different even though given the same
name ?  We shall discuss this very important point later,
but meanwhile/let us suppose that we have reasonable
confidence in the identity of factors called by the same
name by different workers with different battcries} Then
the probable course of events would be something like this.
An experimenter, using whatever tests he thinks practicable
and suitable, analyses an occupation into factors. Another
experimenter, at a different time and place, is asked to
give advice to a candidate for that occupation. Using
whatever tests he in his turn has available, he assesses in
this candidate the factors which the previous experimenter’s
work leads him to think are necessary in the occupation,
and gives his advice accordingly. The factors have played
their part as a go-between, like a coihage. All depends on
the confidence we have in the identity of the factors) We
shall see later that there is only too much reason to think
that the possibility of this confidence being misplaced has
hardly been sufficiently realized by many over-enthusiastic
factorists. | And even if the common factors are identical,
there remains the danger that the “specific ” of the occu-
pation may be correlated with some of the  specifics ™
of the tests, a fact which cannot be known unless the same
tests have been given to workers in the occupation.

7. Caleulation of correlation between estimates—We said
above that even although we make our analysis of the tests
we use into uncorrelated factors, the estimates of these
factors will be correlated, if we use communalities and thus
have more factors than tests. Arithmetically, these
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correlations are easily caleulated from the inner produets
of (b), the loadings of the estimated factors with the tests
(page 282), with (a), the loadings of the tests with the
factors (page 231).

The matrix of loadings of the four tests with the three
common factors is (page 281) :

} 66 52 21
87 ; 71
o [ R

T4

and the matrix of the loadings of the three estimated
factors with the four tests is (page 232) :

l 300 095 095 +532
N = 858 —-158 581 —-352
{ <121 747 —-148 —-206
Then the matrix of variances and covariances of the

estimated factors is—
K=NM

Performing the matrix multiplications as explained in
Chapter X, Section 4, page 145, we obtain :

300 095 095 582 | | -66

52 21
NM = | -358 —153 581 —g52 | | ‘87 . 71
121 747 —148 —206 | | 52 66 .

o i VA T

676 219 130 |
=| 218 567 —084 | = K
127 —085 556 |
If our arithmetic throughout the whole calculation of
these loadings had been perfectly accurate, the matrix K
would have been perfectly symmetrical about its diagonal.
The actual discrepancies (as -127 and -130) are a measure

of the degree of arithmetical accuracy attained.

The matrix K thus arrived at gives by its diagonal
elements -676, 567, and 556, the variances of the three
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estimated factors (that is, the squares of their standard
deviations), and by its other elements their covariances in
pairs (that is, their overlap with one another). The
correlation of any two estimated factors is equal to (see
Chapter I, Figure 2)—

IS covariance ()

Y 4/variance (i) X variance (j)

From K we can therefore form the matrix of correlation

of the estimated factors. It is:

1-000 353 212
353  1:000 —:061
212 —-061  1:000

wherein -858, for example, is -219 =+ 4/(-676 X -567).
Although, therefore, the “ true * factors ¢ and v are un-
correlated, their estimates § and ¢ are correlated to an
amount -358. The ‘ true ” factors g, v, and F arein standard
measure, but their estimates £, 9, and F have variances of
only 676, -567, and +556 instead of unity. These variances,
be it noted in passing, are equal also to the squares of the
correlations between g and ¢, v and 9, F and F.

Not only are the estimates of the common factors
correlated among themselves ; they are correlated with
the specifics, so that the estimales of the specifics are not
strietly specific. As a numerical illustration we may take
the hierarchical matrix used in Section 1, pages 221 i

‘ % ) 2 2y
5 | 100 72 63 54
& | 712 100 56 48
5 | 68 56 100 42
2 | b4 48 42 100

-

The regression estimate of ¢ from this battery is, as we
found on page 223)—
§ = 5582, -+ 259%, + -160z; + 109z
The regression estimates for the four specifics can also
be found, either by a full calculation like that of page
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226, or by the simpler method of subtraction of page
227. Thus, to estimate s, in our present example we

know that—
2 =92+ V1 — 9%g
= -9g -+ 4365,
Also we know that the estimates § and § will satisfy the
same equation—
% = 9f + 4364,
that is—
% — 9%
ST
On inserting the expression for § into this we get —
§ = 1152 — -585z, — 888z, — -2252,
and similarly—

& = — 787z + 1:818z, — 215z, — 145z,
8y = — 5423 — 258z, + 1:242z, — 1063,
8y = — 4153 — 1942, — 121z, + 1-1692,

We have now both N, the matrix of loadings of the
estimated factors g, §, &, &, §, with the four tests, and
M, which we already know, the matrix of loadings of the
four tests with the five factors g, s,, 8y, 55, and s,, namely : =

9 436 .
A -8 . 600 .
i . g 714
-6 . : . 800

From their product NM we obtain the matrix K of
variances and covariances of the estimated factors, namely

553 250 -161  -109 0
14152 — -585 — B33 — 225 mo :
— 787 1-813 — 215 — -145 P ; 714
— 542 — 258 1:242 — 106 | 6
— 415 — 194 — 121 1-169 y -
’ B80 241 155 115 087 |
241 D02 — 321 — 238 — 180 |
‘150 — 321 788 — 154 — 116 |
116 — 286 — 152 887 — 085
‘088 — <181 — +116 — 086 -035 J

= K




THE ESTIMATION OF A MAN'S FACTORS 241

Again, we have a check on the accuracy of our arith-
metie, for K will, if we have been accurate, be exactly
symmetrical about its principal diagonal, i.c. its diagonal
running from north-west to south-cast. The largest dis-
crepancy in our case is between <150 and +155. Moreover,
since in this case K ineludes all the factors, we have another
check which was not available when we calculated a K for
common factors only : the sum of the elements in the
principal diagonal (called the * trace,” or in German the
“ Spur ) here must come out equal to the number of tests,
In our case we have—

-880 + 502 + 788 4 887 4 035 = 3902

and there are four tests, These elements which form the
trace of K are, it will be remembered, the variances of the
estimates §, &, 8, &5, and &, So that we see that the total
variances of the five factors is no greater than the total
variance (viz. 4) of the four tests in standard measure.
This is only another instance of the general law that we
cannot get more out of anything than we put into it (at
any rate, not in the long run).

From K we can at once caleulate the correlation of the
estimated factors. Adjusting the slight arithmetical de-
partures from symmetry, we get :

“ & & &y & eA

|
§ 1000 862 184 181 096
4 | 862 1000 — 510 — 354 — 263
4 | 184 — 510 1-000 — 188 — ‘135
dy 181 — 854 — 188 1000 — 004
4, 000 — 268 — 185 — 004 1000

from which we see that g is correlated with each of the
estimated specifics positively, while the latter are correlated
negatively among themselves, in this (n hierarchical)
example. .

We have then this result, that although we set out to
analyse our battery of tests into independent uncorrelated
factors, the estimates which we make of these factors are
correlated with one another, and instead of being in
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standard measure have variances, and therefore standard
deviations, less than unity. We could, of course, make
them unity by dividing all our estimates by their calculated
standard deviation. But that would make no change in
their correlations.

The cause of all this is the excess of factors over tests,
and consequently this drawback—the correlation of the
estimates—depends upon the ratio of the number of factors
to the number of tests. The extra factors are the common
factors, for there is a specific to each test, and therefore
with the same number of common factors the correlation
between the estimates will decrease as the number of tests
in the battery increases. Just as in the hierarchical case
one of the tasks of the experimenter is to find tests to add
to the number in his battery without destroying its hier-
archical nature, so in the case of a battery which can be
reduced to rank 2, 8, 4 . . . or 7, a task will be to add
tests to the battery which with suitable communalities will
leave the rank unchanged and the pre-existing com-
munalities unaltered, in order that the common factors
may be the more accurately estimated, and the estimates
be more nearly uncorrelated.

8. Bartlett’s method of estimation.—M. S. Bartlett (1935,
1937a, 1988) has proposed to estimate the common factors,
not by the ordinary regression method used above, but by
a method which minimizes the sum of the squares of a
man’s specific factors (already, however, maximized by
the principle of using as few common factors as possible).

The way in which Bartlett’s estimates differ from
regression estimates of factors can be very clearly seen by
thinking in terms of the geometrical picture already used
in earlier chapters. When the factors outnumber the tests,
the vectors representing the former are in a space of higher
dimensions than the test space.

The individual person is represented in the test space
by a point, namely that point P whose projections on to
the test vectors give his test scores. We do not know a
representative point for this individual in the complete
factor space, however. His representative point @ may
be, for all we know, anywhere in the subspace which is
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perpendicular to the test space and intersects with it at
P. In these circumstances the regression method takes
refuge in the assumption that this individual is average
in all qualities of which we know nothing ; that is, in
all qualities orthogonal to- our test space. It therefore
assumes P to be his point also in the factor space, and
projects P on to the factor axes to get the estimates of his
factors.

Bartlett’s method is equivalent to a different assumption
about the position of the point Q. Within the complete
factor space there is a subspace which contains the comimon
factors. Of all the positions open to the point @, Bartlett’s
method chooses that one which is nearest to the common-
factor space, and from thence projects on to the common-

" factor vectors. This is equivalent to making the assump-
tion that this man is not average in the qualities about which
we know nothing, but instead possesses in those unknown
qualities just those degrees of excellence which bring his
representative point to the chosen point Q. Because men
are most frequently near the average, the regression assump-
tion is more likely.

9. The geomelrical interpretation of Bartletl’s methad.—
All this can be most clearly seen (because a perspective
diagram can be made) in the case of estimating one genera
factor g only, the hierarchical case. A figure like Figure 30
will illustrate this case, if we take y and z there to be two
tests and @ to be the g vector (see page 214).

The man’s representative point in the yz plane is P.
But we do not know his representative point @ in solid
three-dimensional space, only that it is somewhere on the
line P'PP". The regression method assumes that it is
actually at P, the average, and projects P itself on to the g
line to get the estimate OL of g. Bartlett’s method, on the
other hand, assumes that @ is at that point on P'PP" where
it most nearly approaches the g line, that is, somewhere
near the position @ in our diagram. Bartlett’s estimate of
g is then represented by OL'.

Now, any point on the line P'PP’, when projected on to
the test vectors y and =z, gives the same two test scores.
There is, in general, no point on the line g which does this
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exactly. But clearly L', of all the points on g, will be the
point whose projections most nearly fall on Y and Z, for
X' is as near as possible to the line P'PP”. That is, the
projection of X’ on to the plane of the tests falls as near
to the point P as is possible. In other words, if we ignore
the specifics entirely and use only the estimated g in the
specification of y and 2, Bartlett’s estimate comes as near
as is possible to giving us back the full scores OM and ON.
If the regression estimate OL is projected on to the lines
y and z, it will obviously give a worse approximation.

The regression method, in order to recover as much as
possible of the original scores, would have to make a
second estimate of them. For the estimates of g repre-
sented by quantities like OL are not in standard measure.
Before projecting the point L on to the lines y and z,
therefore, to recover the original scores as far as possible,
the regression method would alter the scale of its space
along the g vector until the quantities like OL were in
standard measure. This would not only change the posi-
tion of L on the line, it would change the angles which
the lines in the figure make with one another ; and would
change them exactly in such a manner that, in the new space,
the projection of OL on to y and 7 would fall exactly where
the Bartlett projections from L' fall in the present space
(Thomson, 1938a).

There is, therefore, no final difference in excellence
between the two methods in the matter of restoring the
original scores as fully as possible, but the regression
method takes two bites at the cherry. On the other hand,
the regression estimates can be put straight into the speci-
fication equation of an oceupation which is known to
require just these common factors, whereas here it is the
Bartlett method which has to have a second shot.

Both methods have to change their estimate of g when
a new test is added to the battery. For the man is not
very likely to have, in the specific of this new test, either
the average value previously assumed by the regression
method, or the special value assumed by the Bartlett
method. But he is more likely to have the former than
the latter, so the Bartlett estimates will change more
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than do the regression estimates as the battery grows.
Ultimately, when the number of tests becomes infinite, the
two forms of estimate will agree.

In the case of estimates of one general factor g from a
hierarchical battery, the Bartlett estimates differ from the
regression estimates only in scale. They put the candidates
in the same order of merit for g as do the regression esti-
mates, but give them a greater scatter, making the high
#’s higher and the low g’s lower. The formula is—

1

8§51 — 7t

ey
Tig Si

instead of Spearman’s—

1 Vi By
-1_—|_——b_' i—iy‘?:; (SEC page 224)

With more than one common factor, the connexion
between the two kinds of estimate is not so simple (Appen-
dix, Section 13). The mathematical reader will be able to
caleulate the Bartlett factor estimates from the matrix
formule given in the Appendix.

10. Estimation of oblique factors—In applying the
method of Section 2 to oblique factors, it is important to
note that we must use, below the matrix of correlations of
the tests, in a calculation like that on page 226, the matrix
of correlations of the primary factors with the tests.
These are the elements of the structure on the primary
factors, F(A)'D, transposed so that columns become rows
and wvice versa. 1t would not do to use the structure on the
reference vectors, which is all that most experimenters
content themselves with calculating.

Ledermann’s short cut (Section 3 above) requires con-
siderable modification in the case of oblique factors. See
Thomson (1949) and the later part of Section 19 of the
Mathematical Appendix, page 365.






CHAPTER XVI
REVERSING THE ROLES*

1. Eachanging the roles of persons and tests.—In all the
previous chapters the correlations considered have been
correlations between tests, and the experiments envisaged
were experiments in which comparatively few tests were
administered to a large number of persons. For each test
there would, therefore, be a long list of marks. The whole
<et of marks would make an oblong matrix, with a few
rows for the tests, and a very large number of columns for
the persons—we will choose that way of writing it, of the
two possibilities.

From such a set of marks we then calculated the
correlation coefficients for each pair of tests, and our
analysis of the tests into factors was based upon these.
In the process of calculating a correlation coefficient we do
such things to the row of marks in each test as finding its
average, and finding its standard deviation. We quite
naturally assume that we can legitimately carry out these
operations. We assume, that is, that in the row of marks
for one test these marks are comparable magnitudes which
at any rate rise and fall with some mental quality even
if they do not strictly speaking measure it in units, like
feet or ounces.

The question we are going to ask in this part of this
book is whether, in the above procedure, the rdles of persons
and of tests can be exchanged (Thomson, 1935b, 75,
Equation 17), and if so what light this throws upon
factorial analysis. Instead of comparatively few tests

* The first explicit reference to correlations between persons in
connexion with factor technique seem to have been made inde-
pendently and almost simultaneously by Thomson (1935b, July) and
Stephenson (1935, August), the former being pessimistic, the latter
optimistic. But such correlations had actually been used much
earlier by Burt and by Thomson, and almost certainly by others,
See Burt and Davies, Journ. Exper. Pedag., 1912, 1, 251.

249
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(perhaps two or three dozen) and a very large number of
persons, suppose we have comparatively few persons, and
a large number of tests, and find the correlations between
the persons. In that case our matrix of marks would be
oblong in the other direction, with a large number of
rows for the tests, and a small number of columns for
the persons, and each correlation, instead of being as
before between two rows, would be between two columns.
Taking only small numbers for purposes of an explanatory
table, we would have in the ordinary kind of corrclations
a table of marks like this :

Persons
X X X X X
Testz . X 5. X X X
X X X X 4

while for correlations between persons we would have a
table of marks like this :

Persons
X X X
X X 4
2 e x
Tests X X X
o X 5
X X X
X X X

But we meet at once with a serious difficulty as soon as
we attempt to calculate a correlation coefficient between
two persons from the second kind of matrix. To do so,
we must find the average of each column, just as previously
we found the average of each row for the other kind of
correlation. But to find the average of each column (by
adding all the marks in that column together and dividing
by their number) is to assume that these marks are in
some sense commensurable up and down the column,
although each entry is a mark for a different test, on a
scoring system which is wholly arbitrary in each test
(Thomson, 1935b, 75-6).

=
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To make this difficulty more obvious, let us suppose
that the first four tests are :

1. A form-board test ;

2. A dotting test ;

3. An absurdities test ;

4. An analogies test.

In each of these the experimenter has devised some
kind of scoring system. Perhaps in the form-board test
he gives a maximum of 20 points, and in the dotting test
the score may be the number of dots made in half a minute.
But to find the average of such different things as this is
palpably absurd, and the whole operation can be entirely
altered by an arbitrary change like taking the number of
seconds to solve the form board instead of giving points.

2. Ranking pictures, essays, or moods.—This is a very
fundamental difficulty which will probably make correla-
tions between persons in the general case impossible to
calculate. In certain situations, however, it does not arise,
namely where each person can put the “ tests 7 in an
order of preference according to some criterion or judg-
ment (Stephenson, 1985), and it is with cases of this kind
that we shall deal in the first place. Usually the * tests s
here are not really different tests like those named above,
but are perhaps a number of children’s essays which have
to be placed in order of merit, or a number of pictures in
order of msthetic preference, or a number of moods which
the subject has to number, indicating the frequency of
their occurrence in himself. Indeed, the subject might not
only give an order of preference to, say, the essays, but
might give them actual marks, and there would be no
absurdity in averaging the column of such marks, or in
correlating two such columns, made by different persons.

Such a correlation coefficient would show the degree of
resemblance between the two lists of marks given to the
children, or given to a set of pictures according to their
westhetic value. It would indicate, therefore, a resemblance
between the minds of the two persons who marked the
essays or judged the pictures. A matrix of correlations
between several such persons might look exactly like the
matrices of correlations between tests, and could be
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analysed in any of the same ways. What would the
“ factors  which resulted from such an analysis mean when
the correlations were between persons ? Take an imagin-
ary hierarchical case first.

8. The two sets of equations.—In test analysis the common
factor found was taken to be something called into play
by each test, the different tests being differently loaded
with it. The test was represented by an equation such
as—

%, = 6g | ‘8s,

For each of the numerous persons who formed the sub-
jects of the testing, an estimate was made of his g, and
another estimate could be made of his s;. The different
tests were combined into a weighted battery for this
purpose of estimating a man’s amount of g. His score in
Test 4 would then be made up of his g and s, inserted in
the above specification equation.

Bgeg = *6gy + 884

would be the score of the ninth person in Test 4.

By analogy, when we analyse a matrix consisting of
correlations between persons, we arrive at a set of equations
describing the persons in terms of common and specific
factors. Corresponding to a hierarchical battery of tests,
we could conceivably have a hierarchical team of persons,
from which we would exclude any person too similar to
one already included. Each person in the hierarchical
team would then be made up of a factor he shared with
everyone else in the team, and a specific factor which was
his own idiosyncrasy. An equation like—

29 = *4g’ + ‘9175,

would now specify the composition of the ninth person.
g’ is something all the persons have, s, is peculiar to
Person 9. The loadings now describe the person, and the
amount of g’ “ possessed ” or demanded by each test can
be estimated by exactly the same techniques employed in
Chapter XV. The score which Test 4 would elicit from
Person 9 would be obtained by inserting the g’ and sy
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““ possessed ”’ by that test into the specification equation
of Person 9, giving— 4
Zgrq = 48y + 91755,
This equation is to be compared with the former equation—
%4 = 68y 1 *85a:9

Both equations ultimately describe the same score, but
%54 is not identical with 2y.q. The raw score X is the same,
but the one standardized z is measured from a different
zero, and in different units, from the other. Disregarding
this for the moment, we see that with the exchange of
rbles of tests and persons, the loadings and the factors have
also changed roles. Formerly, persons possessed different
amounts of g, and tests were differently loaded with it.
Now, tests possess different amounts of g/, and persons are
differently loaded with it. We feel impelled to inquire
further into the relationships of these complementary
factors and loadings.

The test which is most highly saturated with g is that
one which, in terms of Spearman’s imagery, requires most
expenditure of general mental energy, and is least depen-
dent upon specific neural engines. It correlates more
with its fellow-members of the hierarchical battery than
any other test among them does. It represents best what
is common to them all.

The man, in a hierarchical team of men, who is most
highly saturated with g is that man who is most like all
the others. His correlations with them are higher than is
the case for any other man in the team. He is the indi-
vidual who best represents the type. But a nearer ap-
proach to the type can be made by a weighted team of men,
just as formerly we weighted a battery of tests to estimate
their common factor.

4. Weighting examiners like a Spearman battery.—Corre-
lations of this kind between persons were used long before
any idea of what Stephenson has called * inverted factorial
analysis *’ was present. The author and a colleague found
in the winter of 1924-5 a number of correlations between
experienced teachers who marked the essays written by
fifty schoolboys upon ¢ Ships ” (Thomson and Bailes,
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1926). One table or matrix of such correlations between
the class teacher and six experienced head masters who
marked the essays independently of one another, was as
follows :

Te A B e D 105 P
Te - 630 GO 56 69 G 67
4 | 60 } -5t 50 54 55 68
B ] 69 53 : 60 65 06 ‘G4
& 56 50 60 - 67 67 65
D ’ 69 54 65 07 3 54 69
E 63 55 66 67 54 . 6O
Fr | 67 68 G4 65 69 GO

In the article in question, these different markers were
compared by correlating each with the pool of all the rest.
These correlations are shown in the first row of the table
below.

Purely as an illustrative example, let us make also an
approximate analysis of this matrix, and take out at any
rate its chief common factor. On the assumption that it
is roughly hierarchical, we can use Spearman’s formula—

At — A)*
Saturati :J{ __}
aturation T = 2[[

More easily we can insert its largest correlation coefficient
as an approximate communality for each test, and find
Thurstone’s approximate first-factor loadings (see Chapter
V, page 70). We get for the saturations or loadings the
second and third rows of this table :

FepaEn ¢ D R T

Correlation with pool of rest | 77 67 76 78 ; 76 75 -82
Spearman saturations | 814 704 796 766 798 788 ‘861
Thurstone method | 81 78 -80 -78 80 ‘80 -85

We see that F' is the most typical  examiner of these
essays, in the sense that he is more highly saturated with
what is common to all of them ; while 4 conforms least
to the herd.

With the same formula which on page 224 we used to esti-
mate a man’s g from his test scores, we could here estimate

* See Chapter III, page 43.
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an essay’s g’ from its examiner scores. That is to say, the

marks given by the different examiners would be weighted

in proportion to the quantities— '
Saturation with g’

1 — saturation?

where ¢’ is that quality of an essay which makes a common*
appeal to all these examiners. Their marks (after being
standardized) would therefore be weighted in the propor-
tions -814/(1 — -8142), etc., that is:

Te A B C D E I
241 140 217 1:85 220 2:08 3833
or 72 42 65 56 66 63 1-00

to make global marks for the essays, which could then be
reduced to any convenient scale. If this were done, the
result would be the * best ” estimate* of that aspect or
set of aspects of the essay which all these examiners are
taking into account, disregarding all that can possibly
be regarded as idiosyncrasies of individual examiners.
Whether we think it the best estimate in other senses is a
matter of subjective opinion. We may wish the * idiosyn-
crasies ”’ (the specific, that is) of a certain examiner to be
given great weight. It clearly would not do, for example,
to exclude Examiner 4 from the above team merely because
.he is the most different from the common opinion of the
team, without some further knowledge of the men and the
purpose of the examination. The * different > member in
a team might, for example, be the only artist on a ecom-
mittee judging pictures, or the only Democrat in a court
judging legal issues, or the only woman on a jury trying
an accused girl. But in non-controversial matters, if all
are of about equal experience, it is probable that this
system of weighting, restricting itself to what is certainly
common to all, will be most generally acceptable as
fairest.

* Best whether we adopt the regression principle or Bartlett’s.
For if only one * common factor™ is estimated, the difference is
one of unit only, and the weighting in the text is the * best ™ on
both systems.
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5. Example from ** The Marks of Ezaminers.”—This
form of weighting examiners’ marks has probably never
yet been used in practice. But it has been employed, by
Cyril Burt, in an inquiry into the marks given by examiners
(Burt, 1986). As an example, we take the marks given
independently by six examiners to the answer papers of
fifteen candidates aged about 16, in an examination in
Latin. (The example is somewhat unusual, inasmuch as
these candidates were a qu'iullv selected lot who had all
been adjudged equal by a previous examiner, but it will
serve as an illustration if the reader will llht('g:ll(l that
fact.) The marks were (op. cit., 20) :

Cand.| A B C D E I Eaxaminers
1 30 43 52 37 43 40
2 39 4k 50 43 43 46
3 44 51 55 47 46 46
4 37 46 43 4k 40 43
5 38 47 55 35 43 45
6 45 50 54 45 45 49
i 42 52 51 45 41 46
8 43 49 53 47 46 46
9 32 42 49 34 36 38

10 37 40 48 37 39 42
U | 38 42 47 39 36 39
12 40 44 50 41 36 42
13 38 43 50 36 34 41
14 35 45 49 37 40 40
15 32 38 41 28 34 34

The correlations between the examiners calculated from
this table are (the examiner with the highest total correla-
tion leading) :

F A B E D c

1
L 86 84 82 84 71
A i -86 : -80 T4 -85 71
B l -84, 80 8 80 81 67
E 1 -82 T4 -80 . 72 -69
D | -84 85 81 72 . 48
c| m+ ¢n 67 69 48 :

I, .aSSuming this table to be hierarchical, we find each
examiner’s saturation with the common factor by Spear-
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man’s formula, we obtain (with Professor Burt, op. cit.,
294) :

F A B E D (64

95 02 91 -87 -84 72

In the sense, therefore, of being most typical, F is here
the best examiner. The proportionate weights to be given
to each examiner, in making up that global mark for the
candidate which will best agree with the common factor of
the team of examiners, are, as before—

Saturation
1 — saturation?®

provided the marks have first been standardized. The
resulting weights, giving F' the weight unity, are:

F A B E D C
1:00 -61 54 37 29 -15

(If the weights are to be applied to the raw or unstan-
dardized marks, they must each be divided by that
examiner’s standard deviation.)

The marks thus obtained are only an estimate of the
“ tpue ? common-factor mark for each child, just as was
the case in estimating Spearman’s g ; and the correlation
of these estimates with the “ true ” (but otherwise undis-
coverable) mark will be, as there (Chapter XV, page 224)—

_J S
o ST

where § is the sum of all the six quantities—

Saturation®
1 — saturation®
In our case this gives—
Ty = 98

The best examiner’s marking itself correlated with the
hypothetical * true ” mark to the amount -95, so that
the improvement is not worth the trouble of weighting,
especially as the simple average of the team of examiners
gives -97. But in some circumstances the additional

F.A—9
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labour might be worth while, and there is an interest in
knowing which examiners conform least and which most
to the team, and having a measure of this.

After the saturation of each examiner with the hypothet-
ical common factor has been found, the correlations due
to that factor can be removed from the table exactly as
in analysing tests. The residues, as there, may show
the presence of other factors; and “specific” resem-
blances or antagonisms between pairs of examiners, or
minor faetors running through groups of examiners, may
be detected and estimated.

In short, all the methods used on correlations between
tests may be employed on correlations between examiners.
The tests have come alive and are called examiners, that
is all. But since the child’s performance, judged by
the different examiners differently, is here nevertheless
the same identical performance, our interpretation of the
results is different. The two cases throw light on one
another. - A Spearman hierarchical battery of tests may
estimate each child’s general intelligence, which is there
something in common among the tests. The examiners
may have been instructed to mark exclusively for what
they think is general intelligence. In that case their
weighted team will estimate for each child a general
intelligence, which is something in common among the
somewhat discrepant ideas the examiners hold on this
matter.

6. Preferences for school subjects.—In the previous sec-
tions we have discussed correlations between examiners
who all mark the same examination papers. The purpose
of their marking these papers is to award prizes, distinc-
tions, passes, and failures to the candidates. The exam-
iners are a means to this end ; the reason for employing
several of them is to obtain a list of successes and failures
in which we can have greater confidence. The technique
described is one which enables us to combine their marks,
on certain assumptions, to greatest advantage. But it
can, as in the inquiries described in The Marks of Exzaminers,
be turned to compare individual examiners, and to evaluate
the whole process of examining.
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It is only a step to another, very similar, experiment in
which objects evaluated by the *“ examiners ” are not the
works of candidates in an examination, but are objects
chosen for the express purpose of gaining an insight into
the minds of those asked to judge them. Thus we might
ask several persons each to evaluate on some scale the
wsthetic appeal of forty or fifty works of art (Stephenson,
1986b, 353), or ask a number of school pupils each to place
in order of interest a list of school subjects.

Stephenson (1986a) asked forty boys and forty girls
attending a higher school in Surrey, England, thus to
place in order of their preference twelve school subjects
represented by sixty examination papers, and calculated
for about half these pupils the correlation coefficients
between them. To explain the kind of outcome that may
be expected from such an experiment it will be sufficient
for us to quote his data for a smaller number of pupils,
say eight girls, avoiding anomalous cases for simplicity in
a first consideration. Fhe correlations between them were
as follows (op. cit., 50):

Girl| 3 4 5 AR | O ey e
R 59 .81 26 —02 —-16 —38 —-85
R 75 42 —23 —01 —66 —03
5| 81 5 . 65 —20 —02 —-18 —-08
7| 26 42 65 R BTN T e T RE

17| —02 —23 —290 —-50 ; 60 52 12
18| —16 —01 —02 —15 60 . 00 79
19 | —-88 —66 —-18 —-54 52 09 ; 40

20 | —385 —03 —08 —-17 72 79 40

This table at once suggests that these girls fall into two
types. Girls 3, 4, 5, and 7 correlate positively among
themselves ; they have somewhat similar preferences
among school subjects. Girls 17, 18, 19, and 20 correlate
positively among themselves. But the two groups correlate
negatively with one another. The two types were different
in their order of preference, Type I tending, for example,
to put English and French higher, and Physics and
Chemistry lower, than Type II (though both were agreed
that Latin was about the least lovable of their studies!).
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7. A parallel with a previous experiment.—This experi-
ment, it will be seen, forms a parallel to that inquiry (also
by Stephenson) described in Chapter I, Section 9, where
tests fell into two types, verbal and pictorial, with correla-
tions falling there as here into four quadrants. If we call
the two types of school pupil here the linguistic (L) and
the scientific (5), and again use C for the cross-correlations,
the diagram corresponding to that on page 16 of Chapter I
is :

The chief difference between the two cases is that there
the cross-correlations, though smaller than hierarchical
order in the whole table would demand, were nevertheless
positive. Here, however, the cross-correlations are
actually negative.

It is true that the signs of all the correlations in the C
quadrants can in either case be reversed, by reversing the
order of the lists either of all the earlier or all the later
variables (there tests, here pupils). But that is not really
permissible in either case. We have no doubt which is
the top and which the bottom end of a list of marks,
whether in a verbal test or a pictorial test ; and to reverse
the order of preference given by either the linguistic or the
scientific pupils would be simply to stultify the inquiry.
There is, therefore, a real difference between the cases.
In the present set of correlations something is acting as an
*“ interference factor.”

In Chapter I we explained the correlations and their
tetrad-differences by the hypothesis of three uncorrelated
factors g, v, and p required in various proportions by the
tests, and possessed in various amounts by the children.
The loadings which indicated the proportions of the factors
in each test we tacitly assumed to be all positive. Thur-
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stone expressly says that it is contrary to psychological
expectation to have more than oceasional negative loadings.

8. Negative loadings—Let us endeavour to make at least
a qualitative scheme of factors to express the correlations
between the pupils, factors possessed in various amounts
by the subjects of the school curriculum, and demanded
in various proportions by each pupil before he will call
the subject interesting. One type of pupil weights heavily
the linguistic factor in a subject in evaluating its interest
to him. The other type weights heavily the scientific
factor in a subject in judging its attraction for him. But
to explain actual negative correlations between pupils we
must assume that some of the loadings are negative,
assume, that is, that some of the children are actively
repelled by factors which attract others. Common sense
does not think thus. Common sense says that two children
may put the subjects in opposite orders, even though they
both like them all, provided they don’t like them equally
well. But then common sense is not anxious to analyse
‘the children into wncorrelated additive factors. If each
child is thus expressed as the weighted sum of various
factors, two children can correlate negatively only if some
of the loadings are negative in the one child and positive
in the other, for the correlation is the inner product of the
loadings. Since Stephenson has found numerous nega-
tive correlations between persons, and since few negative
correlations are reported between tests, we seem here to
have an experimental difference between the two kinds of
correlation, and if ever correlations between persons come
to be analysed as minutely and painstakingly as correla-
tions between tests, it would seem that the free admission
of negative loadings would be necessary.* The present
matrix can in fact be roughly analysed into two general
factors, one of which has positive loadings in all pupils,
while the other is positively loaded in the one type,
negatively loaded in the other.

9. An analysis of moods.—A still more ingenious appli-
cation by Stephenson of correlations between persons is in
an experiment in which for each person a “ population *

* See Stephenson, 1936b, 349.
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li"k
4

of thirty moods, such as * irascible,” * cheerfu sunny,”
were rated for their prevalence and intensity for each of
ten patients in a mental hospital, and for six normal
persons (Stephenson, 1986¢, 863). This time the correla-
tion table indicated three types, corresponding to the
manic-depressives, the schizophrenes, and the normal
persons, each type correlating positively within itself, but
negatively or very little with the other types. These
experiments were only illustrative, and it remains to be
seen whether factors which will prove acceptable psycho-
logically will be isolated in persons in the same manner as g,
and the verbal factor, have been isolated in tests. The
parallel between the two kinds of correlation and analysis
is, however, certainly likely to throw light on the nature of
factors of both kinds.




CHAPTER XVII

THE RELATION BETWEEN TEST FACTORS
AND PERSON FACTORS

1. Burt's example, centred both by rows and by columns,—In
the examples we have just considered, there is no doubt
that correlations between persons can be ealeulated without
absurdity. In the matrix of marks given by & number of ex-
aminers (marking the same paper) to a number of candidates,
cither two candidates ean be correlated or two examiners,
The heterogeneity of marks referred to in Chapter XV,
Seetion 1, does not enter as a difieulty, Still keeping to
wuch material, let us ask ourselves what the relation is
between factors found in the one way, and factors found in
the other. Qualitatively, we have already suggested that
fuctors and loadings change rbles in some manner. The
most determined attempt to find an exact relationship has
been that made by Cyril Burt, who concludes that, if the
initial units have been suitably chosen, the factors of the
one kind of analysis are identical with the loadings of the
other, and vice versa (Burt, 10875), The present writer,
while agrecing that this is so in the very special ciroum-
stances assumed by Burt, is of opinion that his is a very
narrow case, and that the factors considered by Burt are
not typical of those in actual use in experimental psycho-
logy. Theoretically, however, Burt 's paper is of very great
interest. It can be presented to the general reader best
by using Burt's own small numerical example, based on &
matrix of marks for four persons in three tests :

Persons a b e d

1 -6 2 o0 &

Tents 2 a ] =1 =8

a 8 —8 1 =1
ltwillhenouceduutlhhmtdxafmubkdmdy

centred both ways. The rows add up to zero, and so do
263
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the columns. The test scores have been measured from
their means, and then thereafter the columns of personal
scores have been measured from their means; or it can
be done persons first, tests second, the end-result being
the same. Burt does not give the matrix of raw scores
from which the above matrix comes.

If we take the doubly centred matrix as he gives it, the
matrices of variances and covariances formed from it are :

Test Covariances

1 2 3
1 56 — 28 — 28
2 |— 28 20 8
8 |— 28 8 20

Person Covartances
[ o kR b ¢ d
I« Bg=5 8 0 — 36
|—18 14 —4 8
\ 0 —4 2 2

\[—36 8 2 26

QU O oa

Notice that in both these matrices the columns add to
zero, just as they do in the matrices of residues in the
*“ eentroid * process.

2. dnalysis of the covariances.—Burt next proceeds to
analyse each of these by Hotelling’s method. It seems
clear that there will exist some relation between the two
analyses, since the primary origin of each matrix is the
same table of raw marks, and to show that relation most
clearly Burt analyses the covariances direct, and not the
correlations which could be made from each table (by
dividing each covariance by the square root of the product
of the two variances concerned). For the two Hotelling
analyses he obtains (and the centroid factors before
rotation would here be the same) :




|

|
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Analysis of the Tests

Py = 24/14y

Ty = —m‘h i \/é”{z

¥ = —V 1y, — Véy,
Analysis of the Persons

6 = —8Vef;

bi= '\/éf1 i 2'\/§fz

= L

d=" 2Vefi—V2f
In both cases two factors are sufficient (there will always
be fewer Hotelling or centroid factors than tests with
a doubly centred matrix of marks, for a mathematical
reason). The reader can check that the inner products
give the covariances, e.g.—
covariance (bd) = 1/6 X 24/6 —24/2 X /2 =12 —4 =8
The method of finding Hotelling loadings was described
in Chapter VII, and the reader can readily check that the
coefficients of vy, for example, do act as required by that
method. For if we use numbers proportional to 24/14,
— 4/14, and — /14, namely 1, — 4, — 4, as Hotelling
multipliers we get :
56 — 28 — 28 1
B ge 90 8 et
— 28 g 20 |—%

56 — 28 — 28
14 —10 — 4
14 —4 —10

84 — 42 — 42

proportional to 1 —3%  — } as required.

The largest total (84) is the first “ latent root,” and the
multipliers 1, — 4, — 4, have to be divided, according to
Chapter VIL, by the square root of the sum of their squares,
and multiplied by the square root of 84, giving—

2414 —4/14 —4/14

P.A—O*
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8. Factors possessed by each person and by cach test.—
Burt then goes on to “ estimate,” by * regression equa-
tions,” the amount of the factors y possessed by the
persons, and the amount of the factors f possessed by the
tests. There is a misuse of terms here, for with these

factors there is no need to “ estimate " : they can be
accurately caleulated : but that is a small point. The first
three equations can be solved for the y's— there is indeed
one equation too many, but it is consistent. And the four

equations of the second group can be solved for the f's—
again they are consistent. Since the equations are con-
sistent, we can choose the easiest pair in each casc to solve
for the two unknowns. Choosing the two equations for
@, and 2, we obtain—

1
5 ey mf’h
_ntin

Yz v6

For the other set of factors we naturally choose the
equations in @ and ¢, and have—

a
c
h=—-7

Now, since we are very liable to confusion in this dis-
cussion, let us remind ourselves what these factors v and
these factors f are. The factors v are factors into which
each test has been analysed. They do not vary in amount
from test to test, but each test is differently loaded with
them. They vary in amount from person to person.

The factors f are factors into which each person has been
analysed. These do not vary in amount from person to
person, but from test to test. Each person is differently
loaded with them, that is, made up of them in different
proportions. The y’s are uncorrelated fictitious tests : the
f’s are uncorrelated fictitious persons.

{
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Now, from the equations—

k|
Y1 —maﬁ
@, + 31
Ye =‘76—‘

we can find the amount of each factor y, and y, possessed
by each person, by inserting his scores @, and @, in these
equations, scores which are given in the matrix : '

|5 =a b et

1 |—6 2 0 4
2 3 1 —1 —38
3 8 —3 1 =1

Thus the first person possesses y; in an amount
— 6/24/14, because his #; is — 6. For the four persons
and the two factors we find the amounts of these factors
possessed by each person to be:

Factors Y1 Ya
a — - 0
4/14
b 1 2
: V14 4/6
¢ 0 L
1/6
2 i1
d eIt Wi
4/14 4/6

4. Reciprocity of loadings and factors—These are the
amounts of the factors y possessed by the four persons. If
now the reader will compare them with the loadings of
the factors [ in the second set of equations on page 265,
he will see a resemblance. The signs are the same, and
the zeros are in the same places. Moreover, the resemblance
becomes identity if we destandardize the factors f; and f,
measuring the former in units /84 times as large, and the
latter in units 4/12 times as large, 84 and 12 being the
non-zero latent roots of both matrices. In these units let us
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use ¢, and g, for them. The equations on page 265 giving
the analysis of the persons then become

o = _jgf (V84f) = — ‘\73,' i

b= Vo (VE)+ %‘%(Vl_?fg) = gn g
¢ = W ://]22 (V12f,) = : ‘\}—6%
d= 20 (V) — YD (VI =

It will be seen that the loadings of o, and g, are identical
with the amounts of v, and vy, in the table on page 267.
A similar calculation could be made comparing the amounts
of f, and f, possessed by the tests with the loadings of 1
and y, (suitably destandardized) in the analysis of the
tests. As we said at the outset, if suitable units are chosen
for the marks and the factors, the loadings of the personal
equations are the factors of the test equations, and the
factors of the personal equations are the loadings of the
test equations. But only for doubly centred matrices of
marks. It would be wrong to conclude in general that
loadings and factors are reciprocal in persons and tests.

Indeed, even for doubly centred matrices of marks, this
simple reciprocity holds only for the analysis of the
covariances and not for analyses of the matrices of corre-
lations. Except by pure accident (and as it happens,
Burt’s example is in the case of test correlations such an
accident), the saturations of the correlation analysis will not
be any simple function of the loadings of the covariance
analysis.

5. Special features of a doubly centred matriz.—But in
any case, a matrix of marks which has been centred both
ways is one in which only a very special kind of residual
association between the variables is present. Most of what
we commonly call the association or resemblance between
either tests or persons, the amount of which we gauge by
the correlation coefficient, is due to something over and
above this. We can write down an infinity of possibly raw
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matrices from which Burt’s doubly centred matrix might
have come. To the rows of the latter matrix we can add
any quantities we like without in the slightest altering the
correlations between the tests, but making enormous
changes in the correlations between the persons. Let us,
for example, add 10 to the top row, 13 to the middle row,
and 16 to the bottom row. There results the matrix :

a b ¢ d

1 T T T
g | a6 4 Az A0)
P e T

This gives as correlations between the persons :

i a b c d
o R e
b | w5 100 28 — 76
¢ 84 28 100 42
d | —14 —76 -42 100

Next, without changing this matrix of correlations
between persons in the slightest, we can add any quantities
we like to the columns of the matrix of marks, and produce
an infinity of different matrices of correlations between
tests. If, for example, we add 5, 2, 8, and 9 to the four
columns, we have a matrix of raw marks :

‘ a b c d

g R
21 "16. 20 ;. 719 ()
| 24 15 25 24

[V~ A

This has the same correlations between persons, but the
correlations between tests are now :
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Or instead, by adding suitable numbers to the cqumns
and to the rows, we might have arrived at the matrix :

a b ¢ d -

44 48 18 10 -
63 57 27 18 (C)
58 48 24 10

8 -

or equally well
a b o d

g ost iuE 37 | 48 :
2 | 84 3 2 2 (D) ‘
Bl s0. 28 28 i

The order of merit of the persons in each test is quiteg'.‘
different in each of these matrices. The order of difficulty =
of the tests for each person is quite different in each. If =
we consider the ordma.ry correlation between Tests 1 and 2, 'i _
we find that it is negative in (B), zero in (D) and positive 2
in (C), yet all of these matrices reduce to Burt’s matrix
when centred both ways. It is clear that they contain
factors of correlation whlch are absent in the doubly =
centred matrix. e

The averages of the rows and the columns of (C) are as |
follows :

a b & d | Average

1 44 48 18 10 30 .
2 63 57 27 13 40
3 58 48 24 10 35

Average | 55 51 23 11

The correlation between two tests is clearly influenced
very much by the fact that here the person a is so much
cleverer than the person d. Similarly, the correlation
between two persons is influenced by the fact that Test 1 =
is more difficult than Test 2. As soon as the matrix is
centred both ways, all the correlation due to these and
similar influences is almost extinguished. Centred by rows,
(C) becomes :
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14 18 —12 —20
23 17 — 18 —27
23 18 —11 —25

and all the tests are equally difficult on the average.
Centred by columns as well, it becomes :

— 6 2 0 4
3 AT
8 —8 T =il

and not only are all the tests equally difficult on the average,
but all the persons are equally clever on the average. It
is to the covariances still remaining that Burt’s theorem
about the reciprocity of factors and loadings applies. It
does not apply to the full covariances of the matrix centred
only one way, in the manner usually meant when we speak
of covariances or of correlations.

6. An actual experiment.—In Part III of Burt’s The
Factors of the Mind (London, 1940) his principle of reci-
procity of tests and persons is seen in an actual illustrative
experiment on the distribution of temperamental types.

This experiment was on twelve women students,
selected because the temperamental assessments made by
various judges on them were more unanimous than in the
case of the other students. KEach, therefore, was a well-
marked temperamental type. They were assessed for the
eleven traits seen in the table below. The assessments
over each trait were standardized, i.e. measured in such
units and from such an origin that their sum was zero and
the sum of their squares twelve, the number of persons,
so that the group was (artificially) made equal in an
average of sociability, sex, ete. The correlations between
the traits were then calculated and centroid factors taken
out, the first two of which I shall call by the Roman letters
w and 0. These two are possessed in some amount by
each of the persons and required, in degrees indicated by
the saturation coefficients, by each of the traits. These
saturation coefficients have been found by analysis of the

correlations between the traits.
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Now according to the reciprocity principle, if we analyse
instead the correlations between the persons, find factors
which we may indicate by Greek letters, and measure the
amounts of these possessed by the eleven traits, these
amounts ought to be the same as the saturation coeflicients
of the Roman factors u, v, ete.

Burt therefore further standardizes the assessments,
by persons this time, and finds the total scores on each
trait, which are, by a property of centroid factors (see
page 217) proportional to the amounts of a centroid Greek
factor possessed by the eleven traits ; and the test of the
reciprocity hypothesis is to see whether these totals are
similar to the saturations of a Roman factor. The figures
(from Burt’s page 405) are given in the table below :

Saturations of the | Amounts of the

Roman factors | Greek factor

u “ | o
Sociability . . . | -671 ‘ 508 587
Sex . - ; . : 878 | 213 J -489
Assertiveness . 3 R 827 | 483 | 878
Joy. . . . .| 98 | 288 | 297
Anger . : B L 824 | 241 280
Curiosity . ; . - 780 | — -268 { 001
Fear . < . . 898 | — -159 ‘ — 089
Sorrow . . ; . 259 | — 104 — 887
Tenderness - : - 564 — 667 [ — 447
Disgust . : . 5 830 | — -490 ; — 489
Submissiveness . : . 412 — 85 | — 525

Clearly the amounts of « do not correspond to the
saturations of w; not should they, for a general factor
has already been eliminated by the double standardization.
They do, however, agree reasonably well with the satura-
tions of the second Roman factor v, and confirm Burt’s
prediction that, even in this sample, and with factors
which are not exactly principal components, the reci-
procity principle would still hold approximately.







CHAPTER XVIII

THE INFLUENCE OF UNIVARIATE SELECTION
ON FACTORIAL ANALYSIS*

1. Univariate selection.—All workers with intelligence
tests know, or ought to know, that the correlations found
between tests, or between tests and outside criteria, depend
to a very great extent indeed upon the homogeneity or
heterogeneity of the sample in which the correlations were
measured. If, to take the usual illustration, we measure
the correlation between height and weight in a sample of
the population which includes babies, children, and grown-
ups, we shall obviously get a very high result. If we
confine our measurement to young people in their “teens,
we shall usually get a smaller value for the coefficient of
correlation. If we make the group more homogeneous
still, taking, say, only boys, and all of the same race and
exactly the same age, the correlation of height and weight
will be still less.t Through all these changes towards
greater homogeneity in age, the standard deviation (or its
square, the variance) of height has also been sinking, and
the standard deviation of weight also. The formule which
describe these changes were given in 1902 by Professor
Karl Pearson,i and when the selection of the persons
forming the sample is made on the basis of one quality
only, these formule can be put into the following very

simple form.
Let the standard deviations of (say) four qualities be

* Thomson, 1987 and 19380.

1 Greater homogeneity need not necessarily, in the mathematical
sense, decrease correlation, and occasionally it does not do so in
actual psychological experiments. But it almost always does s0.

i These formule are not, as was once thought, only applicable if
all distributions are normal (see Lawley, 1943¢, where the necessary
conditions are stated). They have been found by trial to give good
results even when the sample has been made by cutting off a tail, or
both tails, of the distribution.

275
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in the complete population—we must, of course, in each
case define what we mean by the complete population, as
for example all living adults who were born in Scotland—
given by X,, ¥,, ¥;, and I;, and their correlations by
Ry, Ry ete. Now let a selection of persons be made who
are more homogeneous in the first quality—say, in an
intelligence test which has been given to them all-—so that
its standard deviation in the sample is only &, and write—

The smaller p, is, the more homogeneous the group is in
intelligence-test score. If we write

=01 —p?)
¢, will be larger, the greater the shrinkage in intelligence
score-scatter from X, to 5;. We shall call ¢, the *“ shrink-
age ” of the quality No. 1 in the sample.
The other qualities 2, 8, and 4, being correlated with the
first, will tend to shrink with it, and their expected shrink-
ages ¢, ¢3 and ¢, can be calculated from the formula—

¢ = qy;

For the sort of reason indicated earlier in this paragraph,
the correlations of the four qualities—which we are for
simplicity in exposition assuming to be positively correlated
in the whole population—will also alter, according to the
formula—

3 Ry — q.9;
Pip;

2. Elementary proof—This formula can be readily
proved, for the case where the average is unchanged, by
using our geometrical model of correlation, in which tests
or other variables are represented by lines all crossing each
other at the *“average man,” and at angles with one
another whose cosines equal the correlation coefficients
between the tests (see Chapter VI).

In this perspective figure let 0.4, OB, and OC be three
lines in three-fold space representing three tests. The
triangle 4BC is in a plane at right angles to 04. Write—

T‘j

7 W TV — " ]

kel o
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cos o = cos BOA = Ry,

cos B =cos CO4 = Ry

cos y = cos BOC = Ry
Take the distance 04 as unity. Each test is standard-
ized, so that its standard deviation is unity. Now let the
standard deviation of Test 1 be reduced so that it becomes
p, = OD. This means, in our geometrical model, that the

whole three-fold space in
which our lines 04, OB,
and OC exist is compressed
from 4 towards O, and
every line parallel to this is
shortened in the same way.
The point B moves up to
E, and the point C to F.
The whole triangle 4BC is
lifted up, remaining at
right angles to the line 04,
to a new position DEF.
The test lines OB and OC
become OE and OF. The
angle y = BOC has become
the angle y' = EOF, and
cos y' represents the new
correlation coefficient be-

Figure 31.

tween Tests 2 and 8. Our object is to find cos ¥’ in terms
of the known quantities «, B, y, and p. One method is to
express BC* in terms of the triangle BOC, and EF* in terms

of the triangle EOF, and equate them,

First note that

since BC = EI.

OB — O = 04* — 0D =1 —p* =4

and similarly

C)(JI‘2 = OI“2 — gli

Also p, = OE/OB, and ps = OF/oC

Further, ¢ =1—p

and similarly
Now, since

Rlr= 2
0B*—OB'_ 1 op,

g3 = ,%/0C*

BC: = OB + 0C* — 20B.0C cos y
and  EF* = OE* 4+ OF* — 20E.OF cos Y
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we have, subtracting,

0=(0B*— 0E*)+(0C*—~0F*)—20B.0C cos y+20E.OF cos y’
= Q. S Q° —20B.0C cos y+20E.OF cos y'

whence

OB.OC cos y — q,*

008 ' = OF.OF

S N
o ocC
OF OF
OB OC
g a1
PaPs
or Pog = R%;E:”q“

8. A numerical example.—Let us define our * whole
population ”* as all the eleven-year-old children in Mas-
sachusetts, and let us suppose (the numbers are entirely
fictitious) that the standard deviations of all their scores
in four tests are :

cos y —

1. Stanford-Binet test 16:5 = X,,
2. The X reading test 249 = %,,
8. The Y arithmetic test 27:8 = X,,
4. The Z drawing scale 142 =X,

while the correlations between these four, in a State-wide
survey, are (these are the R correlations) :

1 2 3 4
1 . 69 75 32
2 69 s 54 -18
3 75 54 - -06
4 32 ‘18 06

Now let a sample of Massachusetts eleven-year-olds be
taken who are less widely scattered in intelligence, with
a standard deviation in their Stanford-Binet scores of
only 10-2. How will all the other quantities listed above
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tend to alter in this sample ? We have, using the formule
quoted, the following—

¢ = /(1 — +618%) = 786

and from ¢, = @Ry we have the other shrinkages ¢, and
thence the coefficients p and the new standard deviations
c=pZ:

1 2 3 4
q 786 542 590 252
P 618 -840 -808 ‘968

c 102 209 221 137

The formula for r; then enables us at once to calculate
the correlations to be expected in the sample, namely :

licha ki, 2 3 4
1 i . 509 574 204
2 |- -509 ! 825 054
8 | 574 825 o e il
4 |

204  -054 — 113 -

The greater homogeneity in the sample has made all the
correlation coefficients smaller, and has indeed made 734
become negative.

The reader should note that these standard deviations
and correlations are what result from selecting on the Stan-
ford-Binet test, letting the other changes happen in con-
sequence. It would be quite a different matter to select on
the X reading test. Even if we did so, so as to reduce the
reading test standard deviation from 24-9 to 209 as
happened above, the other changes would be quite differ-
ent. The Stanford-Binet standard deviation would, for
example, not be reduced to 10-2 but only to 15:3. And 755
would not be -574, but -722. The difference, in terms of
our Figure 81, is that whereas selecting the Stanford-Binet
corresponded to shortening the line 04 and with it all
parallel distances in the space, selecting the reading test
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corresponds to shortening OB and all distances parallel
it : quite a different distortion of the space.

4. From sample to population.—In the above numerieal =
example we supposed that the standard deviations and
correlation coefficients were known in the whole popu
tion of Massachusetts eleven-year-old children, and asked
what they would become in a sample with a smaller scat
in the Stanford-Binet score. The problem might, howev
be reversed, in which case, with a little care, the sam
formula can be used. :

Let us suppose that we know from experiment the above
facts about the sample—the standard deviations 10-2,
20-9, 22-1, 137, and all the correlation coefficients in the
table :509, -574, etc.—and that we know further that th
standard deviation of Stanford-Binet scores in the whol
population in question is 16:5. The sample we hawv
worked with is obviously a biased one, restricted in rang
of Stanford-Binet scores, and we wish to estimate what
correlation coefficients would have been if we had teste
all Massachusetts eleven-year-olds, or, at least, an un-
biased sample. We want, indeed, to work the abovi
example backwards.

The quantity p, is, in this direction, greater than unity
namely—

16-5/10:2 = 1-618 gt
and et = — 1817

Il

The quantity ¢, is therefore the square root of a minus_:?l_*;
quantity, which we express as— g #
¢ = 4/(1-617)i = 1-272i, where i = v/ — 1

The other ¢’s can be got from ¢, by the same formula as
before, namely ¢; = ¢,Ry;, where R now means a correlation
coefficient in the sample. Thus— :

¢ = Ry = 12721 X <509 = 6477
g3 = Ry = 1-272¢ X ‘574 — 7804

Il

Then—

PP =1—g?=1+4-647* (for i*=—1)=1419 ; p,=1-191
and similarly p, = 1-238.



THE INFLUENCE OF UNIVARIATE SELECTION 281

We then have—
Ry — qogs 825 — 6478 X 7301

Yoq =— o=
ey PaPs 1191 x 1-238
825 + 472
ST

as in the table for the population. In this way that table
can be completely reconstituted. It is then, of course,
only an estimate and, moreover, an estimate based on the
assumption that our sample differs from the population
only by reason of one of the four variables—namely, the
Stanford-Binet score—being restricted, deliberately or
accidentally, the other restrictions being supposed to have
followed sympathetically by reason of the correlations.
In few practical examples can we be sure of the mode of
selection.

5. Variance of differences between scores—Our numerical
example enables us to illustrate a very useful fact, that the
variance of the differences between the scores in two tests
is independent of the amount of selection if both tests have
been equally shrunk, and is reasonably constant when this
condition is not too much departed from.

For example, o* for the differences between the scores in
Tests 2 and 8 would be, by the formula—

gyl = 6p° + 05" — 210,03
equal in the population to—
24:92 4 27-32 — 2 X 249 X 27-3 X 54 = 63115

and in the sample to—

20:92 1 2212 — 2 X 20-9 X 22:1 X 325 = 6250
that is, almost the same, although p, does not quite equal
pg. This fact gives another method of estimating a popu-
lation correlation if the sample correlation between
differences can be calculated, and if the standard devia-
tions in the population are known or can be guessed. For
example, suppose a worker with the sample calculated
from his data the value—

o= 680
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and had reason to think that in the population, or in some
other sample, the standard deviations were 25 and 27 (as
they nearly are in our example), he could estimate the
unknown correlation as—
2 X 25 X 27 — 625 _
2 X2 x37
Actually it was ‘54. But this method would fail badly if
the quantities p; and p; were markedly different (Emmett,
1951, B.J.P.Statist., 4, (1)).
6. Selection and partial correlation.—1If a sample is made
completely homogeneous in the Stanford-Binet test, clearly
7 =0and ¢ =1. The same formule then give us:

I3 2 3 4
g1 69 75 82
p | o 524 488  -004

[ 0" 180 119 12-8

and the resulting correlation coeflicients, which in this case
are called * coefficients of partial correlation for constant
Stanford-Binet score,” are, by the same formula :

1 2 3 4
1 : : .
e 098 — 086 -
3 1098 . — 455
4 | . — 086 — 455

The correlations of the Stanford-Binet test with the
others are given by the formula as 0/0, that is, indeter-
minate. That they are really zero is seen from the fact
that when p, is taken as not quite zero, but very small,
these correlations come out by the formula as very small.
They vanish with p,.

In this special case of partial correlation,” where the
directly selected test is so stringently selected that everyone
in the sample has exactly the same score in it, our formula—

Rij — §i4;
Pip;

r‘j _—
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has a more familiar form. For since—

0 = @il

and gii=1

in this case of complete shrinkage we have—
g = By

and pi =1 — By)

so that our formula becomes—

ry s g Rl 8

Vv — By) V(1 — RByY)
the usual form of a partial correlation coefficient. Its
more conventional notation is, calling the test which is

made constant Test k instead of Test 1—
s Sy ~Tg T TR et
Y V(1 —1?) V(1 — 7i’)

If the “ test” which is held constant is the factor g,

this becomes—
Ty = Tl

900 = 1 — 1) V(1)
which is called the * specific correlation ” between i and j.
Its numerator is the “ residue” left after removing the
correlation due to g. If g is the sole cause of correlation,
holding g constant will destroy the correlation and we shall
have—
Ty = Tigljg
as we already saw from another point of view was the case
in a hierarchical battery, in Section 4 of Chapter I.
7. Effect on communalities—The formula—

el L
pip;

is thus a very useful formula, including partial correlation
as a special case. If the original variances are each taken
as unity, the numerator Ry — ¢4 for ¢ + j gives the new
covariances, while p; and p;* are the new variances.

It also includes as a special case the formula known as
the Otis-Kelley formula, which is applicable when two
variates have both shrunk to the same extent (a restriction
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not always recognized). If we put ¢, = ¢; and therefore
Py = pj it becomes—

pry=Ry—q* =Ry — 1+ p*

Pl —ry) =1— Rt‘j

1—R, . kg
——— = p' = — = _L the Otis-Kelley formula.
1—ry P zp Ip o

It has a still further application (Thomson, 19380, 456),
for if a matrix of correlations in the wider population has
been analysed by Thurstone's process, this same formula
gives the new communalities (with one exception) to be
expected in the sample, if we put { = j and understand by
Ry, the communality in the wider population, by r;, the
communality in the sample (and not a reliability coeflicient,
which is the usual meaning of this symbol). Writing the
usual symbol %* for communality we have the formula in
the form—

The exception is the new communality of the trait or
quality which has been directly selected, in our example
No. 1 the Stanford-Binet scores. For the directly selected
trait the new communality is given by—

bt = - ptH? A

1 — q*H,?

(Thomson, 1938b, 455; and see also Ledermann, 1938b).
With these formule we can see what is likely to happen
to a whole factorial analysis when the persons who are the
subjects of the tests are only a sample of the wider popula-
tion in which the analysis was first made.

8. Hierarchical numerical example.—We shall take, in
the first place, the perfectly hierarchical example of our
Chapter I. But to save space in the tables we shall con-
sider only the first four tests. Their matrix of correlations,
with the one common factor and the four specifics added,

and with communalities inserted in the diagonal cells, was
as follows :
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1 2 3 A el SRR S 83 83 8y
1 | (81) 72 <68 54 | 90 4 .
2 | 72 (64) 56 48 | 8O . 60 .
3 68 56 (49) -42 ‘ No R :
4 54 48 42 (36) | 60 . : i)

{

g | 9 80 70 +60 | 1:00 :
8 A4 . : R e e )
8y R g 5 . 100 2
8 ; o A e : L
e [ : 3 80 | . 4 . . 100

The bottom right-hand quadrant shows, by its zero
entries, that the factors are all uncorrelated with one
another, that is, orthogonal. The tests expressed as linear
functions of the factors are—

z, = 94 + 4368,
2y = '8¢ -+ +600s,
%y = 72 + *T1483
z, = 6g + 80054

These equations are only another way of expressing the
same facts as are shown in the north-east, or the south-
west, quadrant of the matrix (where only two places of
decimals are used for the specific loadings, to keep the
printing regular).

Let us now suppose that this matrix and these equations
refer to a wide and defined population, e.g. all Massa-
chusetts eleven-year-olds, and let us ask what will be the
most likely matrix of correlations between these tests and
factors to be found in a sample chosen by their scores in
Test 1 so as to be more homogeneous. The variance of
Test 1 in the wider population being taken as unity, let
us take that in the more homogeneous select sample as
: _ .86, We then have, using ¢; = Gfti» and

I

being p;
treating g and the specifics just like tests, the following
table :
| 1 2 3 4 ‘ g S 8 8 %
q .80 576 504 432 720 -349 o
.60 817 864 902 694 037 1 "1°1
813 482 878 1 1 1

P
p? (variance) | 36 668 746
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For the correlations and communalities, using our
formula—

Ry — 94,
DiP;
we get (again printing only two decimal places) :
| 1 2 3 4 8 8 Sy 8, 8,
1 1 (‘61) -58 44 36 ‘ 78 28 .
2 53 (-46) 38 31 | ‘68 —26 73 .
3 44 38 (82) 26 | 56 —22 . T e
4 86 81 26 (-21) 48 —18+ . S (e
g | 78 68 56 46 | 100 —39
8 | 28 —26 —22 —18 | —39 100 .
8y ‘ 78 : x 1:00
Sy H ‘83 2 ‘ s . . 1:00 :
8 ’ o1y e 8 : . . 1-00

In the more homogeneous sample, therefore, the
correlations and the communalities of all the tests have
sunk. The g column shows what the new correlations of g
are with the tests; and on examination of the matrix we
see that these, when cross-multiplied with one another,
still give the rest of the matrix. Thus—

78 X 46 = -86 (ry,)
682 = 46 (h,?)
The test matrix is still of rank 1 (Thomson, 1938, 453),
and these g-column entries can become the diminished
loadings of the single common factor required by rank 1.

The columns for the specifics s,, s, (and later specifics
also) still show only one entry. In the bottom right-hand
quadrant, zero entries show that these specifies are still
uncorrelated with one another and with g, that is, g, . $a
and s, are still orthogonal.

But something has happened to the specific s;. It has
become correlated with g, and with all the tests. It has
become an oblique factor, orthogonal still to the other
specifics, but inclined to g and the tests. It leans further
away from Test 1 than it formerly did, and makes obtuse
angles (negative correlation) with the other tests and with g,
to which it was originally orthogonal.
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But since, as we have already pointed out, the test matrix
with the reduced communalities is still of rank 1, it is
clear that a fresh analysis could be made of the tests into
one common factor and specifics, thus—

%' = ‘778g" + -628s,’

' — 679" + “784s,
2, = -562g" + ‘827,
7, = -462g' + -887s,

o2
|

In these equations the factors g', s, 8, 83 and s, are
again orthogonal (uncorrelated), and the loadings shown
give the correlations and give unit variances. This is the
analysis which an experimenter would make who began
with the sample and knew nothing about any test measure-
ments in the whole population.

The reader, comparing the loadings in these equations
with the correlations in the matrix of the sample, will
rightly conclude that the specifics from s, onward have not
changed. In the matrix it is clear that they are still
orthogonal, and their correlations with the tests, in the
matrix, are the same as their loadings in the equations.
The tests are, in the sample, more heavily loaded with these
specifics than they were in the population, but the specifies
are the same in themselves.

The new specific s," the reader will readily agree to be
different from s, The latter became oblique in the
sample, whereas s’ is orthogonal. What now is to be said
about the common factors g (in the population) and g’ (in
the sample) ? From the fact that the loadings of g’, in the
sample equations, are identical with the correlations in
the sample matrix of the original g with the tests, one is
tempted to imagine g’ and g to be identical in nature. But
that is not so certain.

If we go back to the equations of the tests in the popu-
lation, we can rewrite them in the following form—

’

7 = -467g' + 800g" + 8775
%, = *bbbg’ + 576" + 600,
7y = +485g" + 504g" + "T14s;
%, = 417g" + 482" + 8005,
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with two common factors g’ and g” instead of one common

factor g. These equations still give the same correlations. =

For example—
1y = 467 X 417 4 -800 X -482 = -540 as before.

In these equations the specifics s,, 83, §, are the same, and

the communalities of Tests 2, 8, and 4 are the same. All

that we have done in these three tests is to divide the :
common factor g into two components. The ratio of the
loading of g” to the loading of g’ is the same in each of

them. The loadings of g” we have made identical with the

shrinkages ¢ in the table on page 285. EY

In Test 1 also we have made the loading of g” equal to
the shrinkage ¢, = '8. But in this test g” cannot be looked
upon merely as a component of g. To give the correct

correlations, the loading of g’ has to be -467 as shown, and
the communality of Test 1 has been raised from its former =

value (-81) to—
4672 -+ -800* = ‘858

while the loading of the specific has correspondingly sunk.

The factors g’, g, and s’ are a totally new analysis of =

Test 1 in the population. Part of the former specific has
been incorporated in the common factors. :
Now let the factor g” be abolished, i.e. held constant, so
that the tests (now of less than unit variance, so we write

them with @« instead of z) are—

Variances
@, = 467’ + 8775 -860
@, = 5554 + -600s,  -668
¥y = -485g' + 7l4s, 746
g = +417g' + -800s, ‘818

The reduced variances are the sum of the squares of the
surviving loadings, e.g.—

4672 + 8772 = -360

The variances, it will be een, are the p?’s of our tests
as measured in the sample. If each of the last set of
equations is divided through by the square root of its
variance, we arrive at the equations—
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%' = 178g" + -628s,’

2, = -679g" - 784s,

{ -562g" - 8275,

2,/ = 462g" - -887s,
which is the analysis already given as that of an experi-
menter who knew only the sample. As to the nature of ¢’,
we can say in Tests 2, 8, and 4 that it is possible to regard
it as a component of the g of the population. But we
cannot do so with assurance in Test 1. There its nature is
more dubious. At all events, it is not the same common
factor as in the population, and at best we can say that it

is one of its components.

9. A sample all alike in Test 1.—These phenomena are
still more striking if we consider a case where the sample
is composed of persons who are all alike in Test 1. It
would be an excellent exercise for the reader to calculate
the resulting matrix of correlations for tests and population
factors in this case. The tests act in this case as though
their original equations in the population had been—

"

&
I

&
%, = '349g" 4 “720g" 4 +600s,
%y = 8058’ -+ +630g" + Tl4s
2, = 2628" + -540g" + 8008,
and then g” had become zero, i.e. a constant with no
variance.

It perhaps helps to a further understanding of what is
happening to the factors during selection if we realize that
holding the score of Test 1 constant does not hold its factors
g and s, constant. They can vary in the sample from
man to man, but since—

2, = -9g + 4368,

remains constant, a man in the sample who has a high g
must have a low s,—that is, these factors are negatively
correlated in the sample. And because they are thus
negatively correlated, those members of the sample who
have high g's, and who will therefore tend to do well in
Tests 2, 8, and 4, will tend to have values below average
(negative values) for their s, which will be therefore
negatively correlated with these tests, in this sample.

7.A—10
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So far in our examples we have assumed the sample to
be more homogeneous than the population. But a sample
can be selected to be less homogeneous. In such a case
the same formula will serve, if we simply make the capital +
letters refer to the sample and the small to the population. :
In fact, the same tables, with their roéles reversed, can
illustrate this case. In practical life we usually know which
of two groups we would call the samplc, and which the
popula.tlon But mathematically there is no d]stmctlon, '_
the one is a distortion of the other, and which is the ““ true *
state of affairs is a question without meaning. 7

It must also throughout be remembered that all these
formule and statements refer, not to consequences which
are certain to follow, but to consequences which are to be
expected. If actual samples were made the values experi-
mentally found in them for correlations, communalities,
loadings, ete., would oscillate about those given by our
formule, violently in the case of small samples, only =
slightly in the case of large samples.

10. An example of rank.-2.—The above example has only
one common factor. We turn next to consider an example
with two. Again it is, we suppose, the first test according =
to which the sample is deliberately selected, and again
we suppose the “shrinkage ” ¢, to be -8. The matrices
of correlations and communalities, in the population and
in the sample, are then as follows, the two factors f; and fy
and the specifies being treated in the calculation exactly
as if they were tests. To economize room on the page,
we omit the later specifics :

Correlations in the Population

1 2 3 4 | o v Ta 8 Sy
1 | (65) -46 -59 -36 -41 Cr (U JGCED )[R 1R
2 46 (-87) 36 26 .28 60 10 . 79
3 59 86 (61) -32 45 50 60
4 ‘86 26 -82 (-20) -22 40 -20
5 41 28 45 22 (-84) 80 -50
i ‘70 60 50 40 -80 (1-00)
Ja 40 10 60" -20 50 . (1-00)
8 59, . ; . . . (1-00)

Sy X R R . : : ; . (1-00)
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Correlations in the Sample

‘ 1 2 3 4 B sy fa £ 83
1 \ (40) 30 40 28 26 | 51 25 40 .
2 | 80 (27) 23 A7 a2 | 61 —02 —21 88
3 | 40 28 (50) 22 85 | B2 54 —-29
4 | 28 A7 22 (13) 14 | 80 12 —-16
5 26 12 -85 14 (26) | 15 -4 —19
A [ 81 TR B S | (1-00) —-28 —-86
fo | 25 —02 54 12 44 | —23 (1-00)—18
8 ‘ 40 —21 —29 —16 —-19 | —36 —18 (1-00)
S | -85 . 5 | . : . (1-00)

We see here a new phenomenon. The two common
factors f, and f, in the population were orthogonal to one
another, as is shown by the zero correlation between them.
But in the sample they are negatively correlated (— +228) ;
that is, they are oblique. We begin to see a generalization
which can be algebraically proved, that all the factors,
common and specific, which are concerned with the directly
selected tesi(s) become oblique to each other and to all the tests,
but the specifics of the indirectly selected tests remain orthogonal
to everything, except each to its own test.

But the matria of the tests themselves is still of rank 2,
and an experimenter working only with the sample would
find this out, although he would know nothing about the
population matrix. He would therefore set to work to
analyse it into two common factors, orthogonal to one
another. A Thurstone analysis comes out in two common
factors exactly, and can be rotated until all the loadings
are positive. For example :

Test ’ 1 2 3 ! 5

Factor f;’ 570  -521 436 332  +238

Factor f, | 276 . 555 -180 452
These factors f’, however, are clearly a different pair
from the factors f in the original population. In the
sample, those original factors (f) are oblique ; these ( f)

are orthogonal.
Again the whole phenomenon is reversible. The second

matrix (with the orthogonal factors f’) might refer to the
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population, and a sample picked with a suitable increased
scatter of Variate 1. All our formul® could be worked
backwards, and we should arrive at the matrix beginning
(-65), referring now to the sample. The f* factors would
have become oblique, and a new analysis, suitably rotated,
would give us the other factors f.

It becomes evident that the orthogonal factors we obtain
by the analysis of tests depend upon the subpopulation we
have tested. They are not realities in any physical sense
of the word ; they vary and change as we pass from one
body of men to another. It is possible, and this is a hope
hinted at in Thurstone’s book The Vectors of Mind, that if
we could somehow identify a set of factors throughout all
their changes from sample to sample (in most of which
they would be oblique) as being in some way unique, we
might arrive at factors having some measure of reality
and fixity. Thurstone, in his latest book Multiple Factor
Analysis, believes that he has achieved this, and that his
oblique Simple Structure is invariant. Iis claim is con-
sidered in our next chapter. It is, in the present writer’s
opinion, justifiable only for univariate selection, not for
multivariate, which is not merely repeated univariate
selection.

11. Random selection.—These considerations deal with
the results to be expected when a sample is deliberately
selected so that the variance of one test is changed to some
desired extent. The new variances and the changed
correlations of the other tests given by our formula—

Ry — 94,
Pip;

are not the certain result of our action in selecting for Test 1.
If we selected a large number of samples of the same size,
all with the same reduced variance in Test 1, they would
not all be alike in the resulting correlations. On the con-
trary, they would all be different. . But most of them would
be like the expected set, few would depart widely from that ;
and the departures would be in both directions, some
samples lying on the one side, others on the other side,
of our expectation.

g =
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If now, instead of selecting samples which are all alike
in the variance of one nominated test, we take a large
number of random samples of the same size, what would we
find ? Among them would be a number which were alike
in the variance of Test 1, and these in the other part of
the correlation matrix would have values which varied
round about those given by our formula. We could also
pick out, instead of a set all alike in the variance of Test 1,
a different set all alike in the variance of Test 4, say;
and these would have values in the remainder of the matrix
oscillating about our formula, in which Test 4 would replace
Test 1. In short, a complex family of random samples
would show a structure among themselves such that if we
fix any one variance the average of that array of samples
obeys our formula.* Random sampling will not merely
add an “ error specific ” to existing factors, it will make
complex changes in the common factors.

W. Ledermann has since

metrika, 1939a, 30, 295-
Jtivariate selection (see

% On the author’s suggestion, Dr.
proved this conjecture analytically (Bio
804). His results cover also the case of mu

next chapter).



CHAPTER XIX

THE INFLUENCE OF MULTIVARIATE
SELECTION *

1. Altering two variances and the covariance.—In the pre-
ceding chapter we have discussed the changes which occur
in the variances and correlations of a set of tests, and in
their factors, when the sample of persons tested is chosen
according to their performance in one of the tests: we
are next going to see the results of picking our sample by
their performances in more than one of the tests, first of
all in two of them. Take again, the perfectly hierarchical
example of the last chapter. We must this time go as far
as six tests in order to see all the consequences. The matrix
of correlations of these tests and their factors will be
simply an extension of that printed on page 285.

Now let us imagine a sample picked so that the variance
of Test 1 and also that of Test 2 is intentionally altered,
and further, their covariance (and hence their correlation)
changed to some predetermined value.

It is at once clear that in these two directly selected
tests the factorial composition will in general be changed
—can indeed be changed to anything which is not incom-
patible with common sense and the laws of logic. What,
however, will be the resulting sympathetic changes in the
variances and covariances of the other tests of the battery ?

In Chapter XVIII we altered the variance of Test 1 from
unity to -86. The consequent diminution in variance to be
expected in Test 2 was, as is shown on page 2853, from
unity to -668, and the consequent change in correlation
from 72 to -58. Here, however, let us pick our sample so
that the variance of the second test is also diminished to
‘36, and so that the correlation between them, instead of
falling, rises to :833. We have, that is to say, chosen
people for our sample who tend to be rather more alike

* Thomson, 1987 ; Thomson and Ledermann, 1938.
294
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than usual in these two test scores, as well as being closely
grouped in each, an unusual but not an inconceivable
sample. Natural selection (which includes selection by the
other sex in mating) has no doubt often preferred indi-
viduals in whom two organs tended to go together, as
long legs with long arms, and the same sort of thing might
occur in mental traits. In terms of variance and covariance
we have changed the matrix :

il 2

1 (100 72 _p
Pl L 00 TR

to the matrix :

1 2
1 -36 30 i
2 -30 36 PP
30 5 . :
for ——— = — = -888, the new correlation. Notice
/(36 x -36) 6

that the diagonal entries here (unities in R, and -36, -36
in V,,) are the variances, not the communalities.

9. Aitken’s multivariate selection formula.—We shall
symbolically represent the whole original matrix of vari-

ances and covariances by :

where the subscript p refers to the directly selected or
picked tests, and the subsecript ¢ to all the other tests and
the factors. R, (and also R,) means the matrix of co-
variances of the picked tests with all the others, including
the factors. R, means the matrix of variances and co-
variances of the latter among themselves. Since at the
outset the tests and factors are all assumed to be stan-
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dardized, the variances in this whole B matrix are all
unity, and the covariances are simply coeflicients of
correlation. In our case the R matrix is:

Analysis in the Population
—J o T LT T S TS T R PR MR -

11:00 72 63 54 45 86 00 -4
2| 72 100 | 56 48 40 42 B0 . 60

| ! y
‘-08 56 100 42 -85 -28 70 . . 7

3 .
4|54 48| 42100 30 24 60 . . . 80 .

5 l 45 -40 | -85 80 1-00 20 50 . ; ; S B
636 32|28 24 20100 40 . . . i R
g 90 -80 70 60 50 40 100 . .
i [N Y 100

a,\ J= B0 5 3 ; : 5 . 1:00

S . . ‘ ) KIS : ’ : ' . 1:00

84 et 1805 -1 : : . i . 1:00

S5 SEE R R L s 1400

85 < d S e g 3 \ : ; . 100

The R,, matrix is the square 2 x 2 matrix, the R, matrix
the square 11 x 11 matrix, while R,, has two rows and
eleven columns, R, being the same transposed.

Our object is to find what may be expected to happen
to the rest of the matrix when R,, is changed to V.
Formulz for this purpose were first found by Karl Pearson,
and were put into the matrix form in which we are about
to quote them by A. C. Aitken (Aitken, 1934). The matrix

changes to :

Rrp RrpﬁIVm ‘ Rw — R (Rpp_l 2 Rp.u-l Vpp Rpp—l) RW
and in order to explain the meaning of these formule we
shall carry out the caleulation for a part of the above matrix
only (the first four tests), with a strong recommendation to
the reader to perform the whole calculation systematically.
If we confine ourselves to the first four tests we have

100 72
By *[ 72 1-00]

B 1-00 42
42 1-00

e i N B L el e g L
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63 54
e
# [ 56 48 ]
63 -56
R, = [ 54 48 ]
The most tiresome part of the calculation, if the number

of directly selected tests is large, is to find R,,~" the reci-
procal of the matrix R, such that the product—

RP,,.RW—1=[1 i]*I
where I is the so-called “ unit matrix” which has unit
entries in the diagonal and zero entries everywhere else.
The method of doing this is given in Chapter X1V,
Section 9, page 210. In the present example, where B,
is only of dimensions 2 X 2, we soon find—

g 2.0764 — 1:4950
T | — 14950 2:0764

When the reciprocal matrix R,,~" has thus been calculated,
the best way of proceeding is to find—

b Rnn.v_l B,
and D=R,—R,C

In the case of our example these are—
b OTeAR A 63 547 [4709 4087
=] —1:4950 2:0764 56 48 | | 2209 1894
PO aa T 63 56 [ 4709 4037
= a2 100 54 48 2209  -1894
g 00 421 4204 -3604
= |4 100 -3604  -3089
_ [5796 0596
— | 0506 6911

subtraction of matrices being carried out by subtracting
cach element from the corresponding one. We next need—

e M 4709 40877 _ [2858 2022
wC=| .50 36| | 2200 -1894 | | 2208 1893
which gives us the new covariances of the directly selected

tests with those indirectly selected. For V, we need still
C'(V,,C) where the prime indicates that the matrix is

transposed (rows becoming columns)—

r.A,—10%
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. 2 2858 -2022 1508 -1
C(v,,C) = 4709 2209] ['235 ] [ 5 370]

4037 1894 2208 1893 1870 1175
and then—
o _[ 5796 -05067] , [-1508 -1870
Koo P Oyl [-0590 »eml] i [-m’m -1175]

_[-7394 -wuu]
| <1966 ‘8086

We now can write down the whole new 4 % 4 matrix
of variances and covariances. In the same way, had we
included the other tests and the factors, we would have
arrived at the whole new 18 x 18 matrix for all the
variances and covariances which we now print.* The
values calculated above for the first four tests will be
recognized in its top left-hand corner. (The diagonal
entries are variances, not communalities. )

Covariances in the Sample

8. Features of the sample covariances.—Examination of
this matrix shows the following features :

(1) The specifics of the indirectly selected tests have
remained unchanged. They are still orthogonal to each
other and all the other tests and factors (excépt each to

* In such caleulations on a larger scale, the methods of Aitken’s
(1987a) paper are extremely economical. Triple products of
matrices of the form XY-'Z can thus be obtained in one pivotal
operation (see Appendix, paragraph 12),

Rend 3 4 5 6 g 8 8 8 S8 8 %
18630 | 24 2 a7 14 -84 -18 -05
280 :36| 22 .19 16 18 -32 04 -18
82422/ 74 20 16 -183 .33 —14 —-07 71 . .
412 19| 20 81 14 11 28 —12 —-06 . -80 .
DElUSIT 10 [ S8 L TAE e 0B 28 —0 —-05 . . 87 &
614 -183( 18 11 09 92 10 —.08 — 04 . 192
834 82| 83 28 23 .19 47 —19 —-10
8| 18 ‘04 [—14 —-12 —:10 —-08 —19 70 -82 .
S| 05 18 [—07 —-06 —-05 —-04 —-10 -82 -43 .
g [ /T ; . d ; . 100 . .
3‘ . . . '80 . . - > . % 1‘00 .
E{Lae - - L AT N 4 : ; o L 00 SR
Sg . . v P . 02 . & . . . . 100
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its own test), are still of unit variance, and have still the
same covariances with their own tests, though these will
become larger correlations when the tests are restan-
dardized ;

(2) The specifics of the directly selected tests have
become oblique common factors, correlated with everything
except the other specifics ;

(8) The matrix of the indirectly selected tests is still of
the same rank (here rank 1) ;

(4) The variances of the factors g, $;, and s, have been
reduced to 47, ‘70, and +43.

An experimenter beginning with this sample, and
knowing nothing about the factors in the wider population,
would have no means of knowing these relative variances,
and would no doubt standardize all his tests. He certainly
would not think of using factors with other than unit
variance. And even if he were by a miracle to arrive at
an analysis corresponding to the last table, with three
oblique general factors, he would reject it (a) because of
the negative correlations of some of the factors, and
(b) because he can reach an analysis with only two common
factors, and those orthogonal. It is therefore practically
certain that he will not reach the population factors, at
least as far as the directly selected tests are concerned.
His data and his analysis will be as overleaf. The variances
are all made unity and the covariances converted into
correlations. The analysis into factors is a new one, not
derived from the last table.

4. Appearance of a mnew factor.—The most noticeable
change in this sample analysis, as compared with the
population analysis on page 296, is the appearance of a
new ¢ factor * h linking the directly selected tests, a factor
which is clearly due entirely to that selection. What
degree of reality ought to be attributed to it ? Does it
differ from the other factors really, or have they also been
produced by selection, even in the population, which is
only in its turn a sample chosen by natural selection from
past generations ?

Otherwise the analysis is still into one common factor
and specifics. The loadings of the common factor are
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Analysis in the Sample

NSRS RO TR s e s 8, 8 8,
1 100 ~83! 46 -38 -30 24 82 45 -85 .
2| 88 1~00| 43 35 28 22 77T 45 . 48
3 | 46 43 1:00 26 21 -16 -56 . - . 88
4| 88 35| -261-00 ‘17 -13 46 . : . =080
o (AR VRS [ S R v S
6|24 22| -16 -18 -111:00 29 . 3 e y . 96
8’ 82 17| 56 46 -87 20100 . . . ;
h| 45 —45‘ At v p < 4 A
BBl [P ST A 1-00
8l v 48 . 3 : . - g v 1400 .
4 L N T e T S R, N T
8y X l R S e e 1-00
A g : { % . S 1 - 3 5 - . 1:00
8| - o e c el | v . . . & . 1:00

less than they were in the population, and this, as our table
of variances and covariances shows, is due to a real
diminution in the variance of the common factor. The
new common factor g’ is a component of the old one.

The loadings of s, and s, have also sunk, because they
have been in part turned into a new common factor. The
‘loadings of the other specifics have risen. But this is
entirely because the variance of the tests has sunk due to
the shrinkage in g, and is not due to any new specifics
being added.

All these considerations make it very doubtful indeed
whether any factors, and any loadings of factors, have
absolute meaning. They appear to be entirely dependent
upon the population in which they are measured, and for
their definition there would be required not only a given
set of tests and a given technical procedure in analysis, but
also a given population of persons.

Professor Thurstone, however, in his new book M ultiple
Factor Analysis (1947) gives what he mildly calls “a less
pessimistic interpretation than Godfrey Thomson’s of the
factorial results of selection.”

5. Identity of simple structure factors after univariate
selection.—In that book, Thurstone discusses in Chapter
XIX the effects of selection, and shows by examples that
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if a battery of tests yields simple structure with oblique
factors (including, of course, the orthogonal case), then
after univariate selection the same factors (though at new
angles with one another) are identified by the new structure,
which is still simple.

If, for example, the battery which gives the correlations
on our page 152, and yields Figure 26 on page 158, has the
standard deviation of Test 2 reduced to one-half, then by
the methods described on our pages 296-8 we can calculate
that the matrix of correlations and communalities becomes :

1 2 3 4 5 6
1 | 589 295 — -044 —-140  :866  -000
9 | .205 302 049 159 ‘183 000
3 | _—.044 040 555 115 . -804 506
4 | —.140 159 115 <871 — :087 1000
5 866  -183  -304 — 087  -480 322
6 000 000 506 000 322 493

The rank of this matrix is still 3 as it was before selection,
and three centroid factors are found to have loadings—

I L 111

|

|
y | 400" 647 058
o | 879 244 — 815
3 | 569 — 444 ‘184
4 | 160 — 271 — 522
5 | -585  lT4 257
6 | 506 — 850 387

When these are  extended ” in the manner of our page 157
and a diagram like Figure 26 made, we obtain Figure 32.
It is still a triangle, and although its measurements are
different, the same tests are found defining each side as
before. The corners of the triangle may, with Professor
Thurstone, reasonably be claimed to represent the same
factors as before selection, although their correlations have

changed.
The plane of Figure

Figure 26, being at right

32 is not the same as the plane of
angles to a different first centroid.
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When adjustment is made for this, as Professor Thurstone
has presumably done in his chapter (though, I protest,
without sufficient explanation), then the directly selected

S\L

Figure 32.

test point has not moved, while the other points have
moved radially away from or towards it.
If the above matrix of centroid loadings is postmulti-

plied by the rotating matrix obtained from the diagram,
viz.—

721 443 641
— 499 — -201 744
480 — 874 — -190

we obtain the new simple structure on the reference vectors,

A B C
1 : 732
2 : -394 484
3 562 180
4 - 472 :
5 459 : 455
6 702
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If this is compared with the table on page 154 it will be
seen that the zeros are in the same places, although the
non-zero entries have altered (except in Test 6, which was
uncorrelated with the directly selected Test 2, and therefore
is unaffected in composition).

If the correlations between the factors are calculated by
the method of pages 181-2, factor A is found to be still
uncorrelated with B and C, but these last two have a
correlation coefficient of — -3 : that is, they are no longer
orthogonal but at an obtuse angle of about 1074°.

6. Multivariate selection and simple structure.—But
though Thurstone must, I think, be granted his claim that
univariate selection will not destroy the identity of his
oblique simple structure factors, but only change their
intercorrelations, the situation would seem to be very
different with multivariate selection.

Multivariate selection is not the same thing as repeated
univariate selection. The latter will not change the rank
of the correlation matrix with suitable communalities, nor
will it change the position of zero loadings in simple struc-
ture. Repeated univariate selection will, it is true, cause
all the correlations to alter, but only indirectly and in such
a way as to preserve rank, simple structure, and factor
identity.

But in multivariate selection it is envisaged that the
correlation between two variables may itself be directly
selected, and caused to have a value other than that which
would naturally follow from the reduction of standard
deviation in two selected variables. Selection for correla-
tion is just as easily imagined as is selection for scatter.
Indeed, in natural selection it is possibly even commoner.

Once we select for the correlations, however, as well as
for scatter, new  factors » emerge, old ones change. In
this chapter we have supposed a small part R,, of the whole
correlation matrix to be changed to V, and found that
one new factor is created (page 300) or, indeed, two new
oblique factors (page 298). We might have supposed R, to
be a larger portion of R : and there is nothing to prevent
us supposing selection to go on for the whole of R, and
writing down a brand-new table of coefficients whose
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* factors * would be quite different from those of the origi-
nal table. In our example of page 152, for instance,
where the three oblique * factors ™ coincided in direction
with the communal parts of Tests 1, 4, and 6, there is
nothing to prevent us from writing down, as having
been produced by selection, a new set of correlation coeffici-
ents whose analysis would identify the  factors * with the
communal parts of Tests 2, 8, and 5. In fact, all we would
have to do would be to renumber the rows and columns on
page 152. Such fundamental changes could be produced
by selection : and perhaps they have been, for natural
selection has had plenty of time at its disposal.

Professor Thurstone (his page 438, footnote, in Multiple
Factor Analysis) classes the new factors produced by
selection as * incidental factors (which) can be classed
with the residual factors, which reflect the conditions of
particular experiments.” But we can hardly dismiss
them thus easily if, as is conceivable, they have become
the main or perhaps the only factors remaining, the others
having disappeared !

It may be admitted at once, however, that the actual
amount of selection from psychological experiment to
psychological experiment is not likely to make such
alarming changes in factors. For the use to which factors
are likely to be put in our age, in our century or more, they
are like to be independent enough of such selection as can
go on in that time, and in that sense Professor Thurstone
is justified in his thesis. Nor am I one to deny “ reality ”
to any quality merely because it has been produced by
selection, and may not abide for all time.

{

o 0 A






CHAPTER XX
/ THE SAMPLING THEORY

1. Two views. A hierarchical example as explained by one
general factor—The advance of the science of factorial
analysis of the mind to its present position has not taken
place without controversy, and it is the purpose of the pre-
sent chapter to give a preliminary deseription of some
objections which have been frequently raised by the
present writer (Thomson, 1916, 1919a, 1935b, ete.) which
he still holds to.

_The contrast between the factorial point of view and
Thomson’s sampling theory can be best seen by consider-
ing the explanation of the same set of correlation coefficients
by both views. To simplify the argument we shall take
in the first place a set of correlation coefficients whose
tetrads are exactly zero, which can therefore be completely
“ explained ” by a general factor g and specifics, as in this
table :

1 2 3 4
1 : 746 646 527
2 746 . 577 471
8 646 577 . 408
+ 527 471 -408 .

We can more exactly follow the argument if we employ
the vulgar fractions of which these are the decimal
equivalents, namely the following, each divided by 6:

‘ 1 2 3 4
Py

A/15 V12 ] +/6
4/10 £/8 1/6 i

In this form the tetrad-differences are all obviously zero
by inspection. These correlations can therefore be ex-
307
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plained by one general factor, as in Figure 83, which gives
them exactly.

We have here a general factor of variance 30 which is
the sole cause of the correlations, and specific factors of

variances 6, 15, 30, and 60. The variances of the four

“tests  are 36, 45, 60, and 90. The * communalities
and “ specificities ** are :

Test 1 2 3 4 Totals
Communality .| 30 5 - e SRR
36 a5 60 90 | 180
. 6 15 30 60 | 800
Specificit; 0t fe 2 — — = 1:667
v 36 45 60 90 | 180
Totals A0t 1 1 1 4

T = o

A —
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'.l‘hese communalities can be calculated from the corre-
lation coefficients, foxj} it will be remembered (Chapter I,
Section 4) that(when tetrad-differences are exactly zero,
cach correlation coefficient can be expressed as the
product of two correlation coefficients with g (two
‘ saturations ). Thus—

Tig = Tiley
'rla — 7‘107'31]
Tog = Tyl'y

Therefore—
Tigl1s Lﬁg”’_ﬁq) (rtag)e 'y
= T =1
s (7a5739) W .
the square of the saturation of Test 1 with g. And when
there is only one common factor, the square of its satura-
tion is the communality.

The quantity 7,714/, therefore, means, on this theory
of one common factor, the communality, or square of the
saturation with g, of the first test. Its value in our
example is 80/36, or five-sixths.

2. The alternative explanation. The sampling theory.
—{The alternative theory to explain the zero tetrad-
differences is that each test calls upon a sample of the bonds
which the mind can form, and that some of these bonds are

common to two tests and cause their correlation. In the
present instance we have arranged this artificial example
so that the tests can be looked upon as samples of a very
simple mind, which can form in all 108 bonds (or some
multiple of 108).* The first test uses five-sixths of these
(or 90), the second test four-sixths (or 72), the third three-
sixths (54), and the fourth two-sixths (or 86). These
fractions are the same in value as the communalities of
the former theory. Each of them may be called the
“ richness » of the test. Thus Test 1 is most rich, and
draws upon five-sixths of the whole mind. The fractions
Tiitie/ Tits which in the former theory were ¢ communali-
ties,” are in the sampling theory “ coefficients of rich-

terious about the number 108. It is

* There is nothing mys
chosen merely because it leads to mo fractions in the diagram.

Any large number would do.
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"

ness.” They formerly indicated the fraction of each test’s
variance supplied by g; they indicate here the fraction
which each test forms of the whole *“ mind (but see later,
concerning ** sub-pools ).

Nowgif our four tests use respectively 90, 72, 54, and 86
of the dvailable bonds of the mind, as indicated in Figure
84, then there may be almost any kind of overlap between
two of the tests. Any of the cells of the diagram may have
contents, instead of all being empty except for g and the
specifies.  If we know nothing more about the tests except
the fractions we have called their * richnesses,” we cannot
tell with certainty what the contents of each cell will be :
but we can caleulate what the most probable contents will
be. If the first test uses five-sixths and the second test
four-sixths of the mind’s bonds, it is most probable that
there will be a number of bonds common to both tests

5 4 .
equal tof—3 X g OF 20/86ths of the total number. That is,

the four cells marked a, b, ¢, d in the diagram, the cells
common to Tests 1 and 2, will most likely contain—

20)(108 60 bonds
7 = onds

between them. By an extension of the same principle we
can find the most probable number in each cell. Thus e,
the number of bonds used in all four of the tests, is most
probably—

5 4 8 2

EXB XE Xé X 108 = 10 bonds.

In this way we reach the most probable pattern of
overlap of the four tests shown in Figure 85. And this
diagram gives exactly the same correlations as did Figure 33.
Let us try, for example, the value of Ty in each diagram.
In Figure 83 we had—

30 V12
S I = — ="' '5
® 7 V(45 x 60) 6 &
In Figure 85 the same correlation is—
20 410 + 4+ 2 12

V(72 X 54) 6
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This form of overlap, therefore, will give zero tetrad-
differences, just as the theory of one general factor did.
More exactly, this sampling theory gives zero tetrad-
differences as the most probable (though not the certain)
connexion to be found between correlation coefficients
(Thomson, 1919a) if the sam ling of causes is random.

If we let p,, Py Pg and p, represent fractions which the
four tests form of the whole pool of N bonds of the mind,
then the number common to the first two tests will most
probably be p,p,N, and the correlation between the tests

b i B

V(PN . pN)

We therefore have, in any tetrad, quantities like the
following :

= VP12

3 4

—_—

1 VPiPs VPiPa
2 V/PaPs A/ DaPa

and the tetrad-difference is, most probably (Thomson,
19274, 258)—
V/PiPaPaPs — VPiPPPs =0

This may be expressed by saying that the laws of proba-
bility alone will cause & tendency to zero tetrad-differences
among correlation coefficients.) In another form this
statement can be worded thus : The laws of probability or
chance cause any matrix of correlation coefficients to tend
to have rank 1, or at least to tend to have a low rank (where
by rank we mean the maximum order among those non-
vanishing minors which avoid the principal diagonal
elements).

It is, in the opinion of the present writer, this fact—a
result of the laws of chance and not of any psychological
laws—which has made conceivable the analysis of mental
abilities into a few common factors (if not into one only,
as Spearman hoped) and specifics. Because of the laws
of chance the mind works as if it were composed of these
hypothetical factors g, v, n, ete., and a number of specific
factors. The causes may be ¢ anarchic,” meaning that
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they are numerous and unconnected, yet the result is
“ monarchie,” or at least * oligarchic,” in the sense that
it may be so described—provided always that large specifie

JSactors are allowed.”)

" /8. Specific factors maximized.—The specific factors play,
in the usual methods of factorization, an important role,
and our present example can be used to illustrate the fact,

which is not usually realized, that all these methods

mazimize the specifics (Thomson, 1988¢) by their insistence
on minimizing the number of common factors. In Figure

88, of the whole variance of 4, the specific factors contribute

1-667, or 41-7 per cent. In Figure 85, they contribute

only—

10-|- 2 23815 5'8 per t
B 72+ + == — = 5, or 5'8 per cent.

Apart from certain trivial exceptions which do not oceur
in practice, it is generally true that minimizing the number
of common factors maximizes the variance of the specifics.
Innumerable other equivalent analyses of the above cor-
relations can be made, but they all give a variance to
the specifies which is less than 1-667. Here, for example,
in Figure 86 (page 308), is an analysis“which has no general
factor but six other common factors, and which gives a
total specific variance of—

15 6 3 33

9o+72+54+0*1_,6{36

Now(spiciﬁc factors are undoubtedly a difficulty in any
analysis, and to have the specific factors made as large and
important as possible is a heavy price to pay for having as
few common factors as possible.

That specific factors are a difficulty seems to be recog-
nized by Thurstone. “ The specific variance of a test,” he
writes (Vectors, 63), “ should be regarded as a challenge,”
and he looks forward to splitting a specific factor up into
group factors by brigading the test in question with new
companion tests in a new battery. It seems clear that
the dissolution of specifies into common factors is unlikely
to happen if each analysis is conducted on the principle of

= 3056, or 7-6 per cent.




THE SAMPLING THEORY 313

making the specific variances as large as possible) We
must, however, leave this point here, to return to it later.

4. Sub-pools of the mind.—A difficulty which will oceur
to the reader in connexion with the sampling theory is that,
when the correlation between two tests is large, it seems to
imply that each needs nearly the whole mind to perform
it (Spearman, 1928, 257). In our example the correlation
between Tests 1 and 2 was 746, a correlation not infre-
quently reached between actual tests.) It is, for instance,
almost exactly the correlation reported by Alexander
between the Stanford-Binet test and the Otis Self-
administering test (Alexander, 1985, Table XVI). (Does
this, then, mean that each of these tests requires the
activity of about four-sixths or five-sixths of all the
“ bonds ” of the brain ? Not necessarily, even on the
sampling theory. These two tests are not so very unlike
one another, and may fairly be described as sampling the
same region of the mind rather than the whole mind, so
that they may well include a rather large proportion of the
bonds found in that region. They may be drawn, that is,
from a sub-pool of the mind’s ponds rather than from the
whole pool (Thomson, 1985b, 91; Bartlett, 1937a, 102).
Nor need the phrase *region of the mind ” necessarily
mean a topographical region, a part of the mind in the
same sense as Yorkshire is part of England.) It may mean
something, by analogy, more like the lowlands of England,
all the land easily accessible to everybody, lying below,
say, the 800-foot contour line. | What the ¢ bonds ™ of the
mind are, we do not know. But they are fairly certainly
associated with the neurones or'nerve cells of our brains,
of which there are probably round about ten thousand
million in each normal brain. Thinking is accompanied
by the excitation of these neurones in patterns. The

. - . ———r-———.__.———"“'._'f—"r
simplest patterns are instinctive, more COmMpICX ones

acquired. Intelligence is possibly associated with the
number and complexity of the patterns which the brain

E;;rr(or could) make. A “ region of the mind ” in the
above paragraph may be the domain of patterns below a
the lowlands of England are below

certain complexity,)as
a certain contour fine. { Intelligence tests do not call upon_
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brain patterns of a high degree of complexity, for these
are always associated with acquired material and with the
educational environment, and intelligence tests wish to
avoid testing acquirement. It is not difficult to imagine
that the items of the Stanford-Binet test call into some
sort of activity nearly all the neurones of the brain, though
they need not thereby be calling upon all the patterns
which those neurones can form.) When a teacher is
demonstrating to an advanced class that ““a quadratic
form of rank 2 is identically equal to the product of
two linear forms,” he is using patterns of a complexity far
greater than any used in answering the Binet-Simon items.
CBut the neurones which form these patterns may not be
more numerous. Those complicated patterns, however,
are forbidden to the intelligence tester, for a very intelligent
man may not have the ghost of an idea what a “ quadratic
form ” is. Within the limits of the comparatively simple
patterns of the brain which they evoke, it seems very
possible that the two tests in question call upon a large
proportion of these, and have a large number in common_?
As has been indicated, the author is of opinion tha
the way in which they magnify specific factors is the
weak side of the theories of a few common factors. That
does not mean, however, that a description of a matrix of
correlations in terms of these theories is inexact. Men
undoubtedly do perform mental tasks as if they were doing
so by means of a comparatively small number of group
factors of wide extent, and an enormous number of specific
factors of very narrow range but of great importance each
within its range. Whether a description of their powers in
terms of the few common factors only is a good description
depends in large measure on what purpose we want the
description to subserve. The practical purpose is usually
to give vocational or educational advice to the man or to
his employers or teachers, and factors, though they cannot
improve and indeed may blur the accuracy of vocational
estimates, may, however, facilitate them where otherwise
they would have been impossible, as money facilitates
trade where barter is impossible,
As a theoretical account of each man’s mind; however,
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the theories which use the smallest number of common
factors seem to have drawbacks. They can give an exact
reproduction of the correlation coefficients. But, because
of their large specific factors, they do not enable us to give
an exact reproduction of each man’s scores in the original
tests, so that much information is being lost by their
use.

It will be seen from considerations such as these that
alternative analyses of a matrix of correlations, even
although they may each reproduce the correlation coefi-
cients exactly, may not be equally acceptable on other
grounds. The sampling theory, and the single general
factor theory, can both describe exactly a hierarchical set
of correlation coefficients, and they both give an explana-
tion of why approximately hierarchical sets are found in
practice. In a mathematical sense, they are alternatives.
But we cannot keep both as realities, though we may
employ either mathematically.

5. The inequality of men.—Professor Spearman opposed |
the sampling theory chiefly on the ground that it would
make all correlations equal (and zero), and involve the
further consequence that all men are equal in their average
attainments (dAbilities, 96), if the number of elementary
bonds is large, as the sampling theory requires. Both
these objections, however, arise from a misunderstanding
of the sampling theory, in which a sample means ‘ some
but not all” of the elementary bonds (Thomson, 1935b,
72, 76). As has been explained, tests can differ, on this
theory, in their richness or complexity, and less rich tests
will tend to have low, more complex tests will tend to have
high correlations, at any rate if the “ bonds ” tend to be
all-or-none in their nature, as the action of neurones 18
And as for the assertion that the theory
makes all men equal, there is no basis whatever for the
suggestion that it assumes every man to have an equal
chance of possessing every element or bond. On the con-
trary, the sampling theory would consider men also to be
samples, each man possessing some, but not all, both of the
inherited and the acquired neural bonds which are the
physical side of thought. Like the tests, some men are

e

known to be.
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rich, others poor, in these bonds. Some are richly endowed
by heredity, some by opportunity and education: some
by both, some by neither. \The idea that men are sa mples
of all that might be, and that any task samples the powers
which an individual man possesses, does not for a moment
carry with it the consequences asserted of equal correlations
and a humdrum mediocrity among human kind.

6. Negative and positive correlations.*—The great major-
ity of correlation coefficients reported in both biometrie
and psychological work are positive. This almost certainly
represents an actual fact, namely that desirable qualities
in mankind tend to be positively correlated ; for though
reported correlations may be selected by the unconscious
prejudices of experimenters, who are usually on the look-
out for things which correlate positively, yet as those who
have tried know, it is really very difficult to discover
negative correlations between mental tests. Besides, even
in imagination we cannot make a race of beings with
predominantly negative correlations. A number of lists
of the same persons in order of merit can be all very like
one another, can indeed all be identical, but they cannot
all be the opposite of one another. If Lists ¢ and b are
the inverse of one another, List e, if it is negatively
correlated with a, will be positively correlated with b.
Among a number n of variates, it is logically possible to
have a square table of correlation coefficients each equal
to unity ; that is, an average correlation of unity. But
the farthest the average correlation can be pushed in the
negative direction is — 1/(n — 1). That is, if n is large,
the average correlation can range from -+ 1 to only very
little below zero. Even Mother Nature, then, by natural
selection or by any other means, could not endow man
with abilities which showed both many and large negative
correlations. If they were many, they would have to be
very small ; if they were large, they would have to be
very few.

Natural selection has probably tended, on the whole, to

* This section refers to correlations between tests, The greater

fljequeney of negative correlations between persons has already been
discussed in Chapter XVI, Section 8.




THE SAMPLING THEORY 317

favour positive correlations within the species.* In the case
of some physical organs it is obvious that a high positive
correlation is essential to survival value—for example,
between right and left leg, or between legs and arms. In
these cases of actual paired organs, however, it is doubtless
more than a mere figure of speech to speak of a common
factor as the cause. Between organs not simply related
to one another, as say eyes and nose, natural selection,
if it tended towards negative correlation, would probably
split the genus or species into two, one relying mainly on
eyesight, the other mainly on smell. Within the one
species, since it is mathematically easier to make positive
than negative correlations, it seems likely that the former
would largely predominate. To say that this was due lo
a general factor would be to hypostatize a very complex
and abstract cause. ~ To use a general factor in giving a
description of these variates is legitimate enough, but is,
of course, nothing more than another way of saying that
the correlations are mainly positive——if, as is the case, most

* An important kind of natural selection is the selection of one sex
by the other in mating. Dr. Bronson Price (1936) has pointed out
that positive cross-correlation in parents will produce positive correla-
tion in the offspring. Price further shows that this positive cross-
correlation in the parents will result if the mating is highly homo-
gamous for total or average goodness in the traits, a conclusion which,
it may be remarked here, can be easily seen by using the pooling
square described in our Chapter XIV. DPrice concludes: * The
intercorrelations which g has been presumed to illumine are seen
primarily as consequences of the social and therefore marital
importance which has attached to the abilities concerned,” Price
in his argument makes use of formule from Sewall Wright (1921).-
M. S. Bartlett, in a note on Price’s paper (Bartlett, 1937b), develops
his argument more generally, also using Wright’s formule, and says :
« Price contrasts the idea of elementary genetic components with
factor theories. . . It should, however, be pointed out that a
statistical interpretation of such current theories can be and has been
advocated. Thomson has, for example, shown . . .7, and here
follows a brief outline of the sampling theory. “ On the basis of

» Bartlett adds, “ 1 have pointed out (Bartlett,

Thomson’s theory,
1937a) that general and specific abilities may naturally be defined
in terms of these components, and that while some statistical

interpretation of these major factors scems almost inevitable, this
may not in itself render their conception invalid or useless.”
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people mean by a general factor one which helps in every
case, not an interference factor which sometimes helps and
sometimes hinders.

7. Low reduced rank.—It is, however, on the tendency
to a low reduced rank in matrices of mental correlations
that the theory of factors is mainly built. It has very
much impressed people to find that mental correlations
can be so closely imitated by a fairly small number of
common factors. Ignoring the host of large specific factors
to which this view commits them, they have concluded
that the agreement was so remarkable that there must be
something in it. There is ; but it is almost the opposite of
what they think. Instead of showing that the mind has
a definite structure, being composed of a few factors which
work through innumerable specific machines, the low rank
shows that the mind has hardly any structure. If the
early belief that the reduced rank was in all cases one had
been confirmed, that would indeed have shown that the
mind had no structure at all but was completely undiffer-
entiated. It is the departures from rank 1 which indicate
structure, and it is a significant fact that a general tendency
is noticeable in experimental reports to the effect that
batteries do not permit of being explained by as small a
number of factors in adults as in children, probably because
in adults education and vocation have imposed a structure
on the mind which is absent in the young.

By saying that the mind has little structure, nothing
derogatory is meant. The mind of man, and his brain, too,
are marvellous and wonderful. All that is meant by the
absence of structure is the absence of any fixed or strong
linkages among the elements (if the word may for a moment
be used without implications) of the mind, so that any
sample whatever of those elements or components can be
assembled in the activity called for by a * test.”

Not that there is any necessity to suppose that the mind
is composed of separate and atomic elements. It is pos-
sibly a continuum, its elements if any being more like
the molecules of a dissolved ecrystalline substance than
like grains of sand. The only reason for using the word
“ elements ” is that it is difficult, if not impossible, to speak
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of the different parts of the mind without assuming some
““items ” in terms of which to think. For concreteness it
is convenient to identify the elements, on the mental side,
with something of the nature of Thorndike’s ‘ bonds,”’
and on the bodily side with neurone ares ; in the remainder
of this chapter the word * bonds » will be used. But
there is no necessity beyond that of convenience and
vividness in this. The bonds” spoken of may be
identified by different readers with different entities. All
a “ bond * means, is some very simple aspect of the causal
background. Some of them may be inherited, some may
be due to education. There is no implication that the
combined action of a number of them is the mere sum of
their separate actions. There is no commitment to
“ mental atomism.”

If, now, we have a causal background comprising in-
numerable bonds, and if any measurement we make can
be influenced by any sample of that background, one
measurement by this sample and another by that, all
samples being possible ; and if we choose a number of
different measurements and find their intercorrelations,
the matrix of these intercorrelations “will tend to be
hierarchical, or at least tend to have a low reduced rank.
This has nothing to do with_the mind : it is simply a
mathematical necessity, whatever the material used to
illustrate it.

8. A mind with only siz bonds.—We shall illustrate this
fact first by imagining a “ mind ” which can form only
six “ bonds,” which mind we submit to four “ tests
which are of different degrees of richness, the one requiring
the joint action of five bonds, the others of four, three, and
two respectively (Thomson, 1927b). These four tests will
(when we give them to a number of such minds) yield
correlations with one another. For we shall suppose the
different minds not all to be able to form all six of the
possible bonds, some individuals possessing all six, others
possessing smaller numbers.

We have only specified the richness of each test, but
have not said which bonds form each ability. There may,
therefore, be different degrees of overlap between them,
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though some will be more frequent than others if we form
all the possible scts of four tests which are of richness five,
four, three, and two. If we call the bonds a, b, ¢, d, e,
and f, then one possible pattern of overlap would be the
following :

Test | Bonds

1 a b ¢ d ¢
2 4 b ¢ d e :
3 . : “ d g f
4 . - ¢ d -
If we for further simplicity suppose these bonds to be
equally important, and use the formula—

. overla
Correlation = —— P
geometrical mean of the two totals

we can caleulate the correlations which these four tests
would give, namely :

1 2 3 4
1 4 2 2
V20 4/15 4/10
T A
V20 T /12 4/8
ROl e b
V15 /12 °
AR T L
V10 /8 46 '

and we notice that in this particular pattern all three
tetrad-differences are zero. However, if we picked our
four tests at random (taking care only that they were of
these degrees of richness) we would not always or often get
the above pattern : in point of fact, we would get it only
12 times in 450. Nevertheless, it is one of the most prob-
able patterns. In all, 78 different patterns of the bonds
are possible—always adhering to our five, four, three, and
two—the probability of each pattern ranging from 12 in
450 down to 1 in 450.
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It is possible to caleulate the tetrad-differences for each
one of the 78 possible patterns of overlap which can occur.
When we then multiply each pattern by the expected fre-
quency of its occurrence in 450 random choices of the four
tests, we get 450 values for each tetrad-difference, distri-
buted as follows :

Values of . g2 Frcqu?‘ij Of

F x \/120“ F, 7 g
8 | ] | 2
i | 4 0
6 8 | 14
B etk a0 2 | 6
4 | 27 | 84 | 28
3 6 | 12 | 80
2 s | 72 | 48
1 61 | 66 | 72
0 99 | 54 ‘ 81

=F 56 | 78 | ‘88
— i or | 42 | 42
— 3 16 | 80 | 60
— 4 380 | 86 | 18
R 0 0 0
= Al g1

450 | 450 | 450

Although the distribution of each F about zero is slightly
irregular, the average value of each F is ewactly zero. For
F, the variance is—

o SR R R

We see, then, that in this universe of very primitive-
minded men, whose brains can form only six bonds, four
tests which demanded respectively five, four, three, and
two bonds would give tetrad-differences whose expected
value would be zero, the values actually found being

grouped around zero with a certain variance. There is no
our “ richnesses ” five, four,

particular mystery about the f
three, and two, by the way. We might have taken any

r.A—11
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“richnesses ” and got a similar result. If there are no
linkages among the bonds, the most probable value of a
tetrad-difference will always be zero; and if all possible
combinations of the bonds are taken, the average of all the
tetrad-differences will be zero. With only six bonds in the
“ mind,” however, the scatter on both sides of zero will be
considerable, as the above value of the standard deviation
of F, shows, viz.—
6 = 4/:040 = -20

9. 4 mind with twelve bonds.—But as the number: of
bonds in the mind increases, the tetrad-differences crowd
closer and closer to zero. Let us, for example, suppose
exactly the same experiment as above conducted in a
universe of men whose minds could form twelve bonds
(instead of six), the four tests requiring ten, eight, six, and
four of these (instead of five, four, three, and two) (Thom-
son, 1927b). This increase in complexity enormously
increases the work of caleulating all the possible patterns
of overlap, and the frequency of each. There are now
1,257 different square tables of correlation coefficients and
still more patterns of overlap, some of which, however,
give the same correlations. When each possibility is taken
in its proper relative frequency (ranging from once to
11,520 times) there are no fewer than 1,078,110 instances
required to represent the distribution. They have,
nevertheless, all been calculated, and the distribution of
F, was as follows :

V1920 | V1920 (V10| .. | viszo

F, Freq. | Freq. | R, | Freq. F, Freq.
20 225 J 7 | 1r7e0 | —s8 [s1482 | — 13| o2
18 1,800 6 74,892 | — 4 72,676 [ — 14 | 8,792
16 | 1,755 | 5 15744 . — 5 (58808 | — 15 | 4,144
15 | 4600 4 52085 | — 6 (49328 | — 16 3,970
14 | 8840 | 8 121608 —7 21,240 | — 18 112
12 19,610 2 42384 | — 8 |41,051 | —19 | 456
11  |10,632 1 28,096 —9 | 5896 | —20 | 584
10 | 8360 | 0 (122699 | —10 29184 | — 24 | 28
9 126696 | —1 | 63024 | —11 | 8,960 f

8 87785 | —2 81,208 | — 12 |15,672 |

Total 1,078,110
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This table again gives an average value of F, exactly
equal to zero. But the separate values of the tetrad-
difference are grouped more closely round zero than
before, with a variance now given by—

37,166,400 L
= 1,920 ¥ 1,078,110

This is rather less than half the previous variance.
Doubling the number of bonds in the imagined mind has
halved the variance of the tetrad-differences. If we were
to increase the number of potential bonds supposed to
exist in the mind to anything like what must be its true
figure, we would clearly reach a point where the tetrad-
differences would be grouped round zero VELy closely
indeed.

The principle illustrated by the above concrete example
can be examined by general algebraic means, and the above
suggested conclusion fully confirmed (Mackie, 19284,

1929). It is found that the variance of the tetrad-differ-

ences sinks in proportion to 1/(N — 1), where N is the
and the above

number of bonds, when N becomes large,
. ? a9
example agrees with this even for such small N’s as 6 and

1220 for—=

2

G

6 —1

12 =1
In this mathematical treatment, bonds have been spoken
toms of the mind, and,

of as though they were separate a : 3
moreover, were all equally important. It 1s probal z
quite unnecessary to make the former assumption, whie

may or may not agree with the actual facts of the mind,

or of the brain. Suitable mathematical treatment could
e where the causal

probably be devised to examine the cas -
background is, as it were, & continuum, dlﬁ‘?rent proport:;)ns
of it forming tests of different degrees of r_:chr}ess. An alas
for the second assumption, it is in all likelihood merely
formal. Let the continuum be divided into Parts of equal
importance, and then the number of these increased and

their extent reduced, keeping their importance equal.
It that zero tetrads are

What is necessary, to give the resutt b i
so highly probable, is that it be possible to take our 1

% 040 = 018 as found.
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with equal ease from any part of the causal background ; that
there be no linkages among the bonds which will disturb the
random frequeney of the various possible combinations ;
tn other words, that there be no * faculties ™ in the mind.
And it is also necessary that all possible tests be taken in
their probable frequency.

In any actual experiment, of course, it is quite imprac-
ticable to take all possible tests, which are indeed infinite
in number. A sample of tests is taken. If this sample
is large and random, then there should, in a mind without
separate * faculties,” without linkages between its bonds,
be an approach to zero tetrads. The fact that this ten-
dency attracted Professor Spearman’s attention, and was
_sufficiently strong to make him at first believe that all
samples of tests showed it, provided care was taken to
avoid tests so alike as to be almost duplicates (which
would be ** statistical impossibilities ”” in a random sample),
indicates that the mind is indeed very free to use its bonds
in any egpmbination, that they are comparatively unlinked.

The sampling theory assumes that each ability is com-
posed of some but not all of the bonds, and that abilities
can differ very markedly in their “ richness,” some needing
very many “ bonds,” some only few. It further requires
some approach to * all-or-none ” reaction in the *“ bonds ™ ;
that is, it supposes that a bond tends either not to come
into the pattern at all, or to do so with its full force. This
does not seem a very unnatural assumption to make. It
would be fulfilled if a *“ bond ** had a threshold below which
it did not act, but above which it did act ; and this property
is said to characterize neurone ares and patterns, When
this form of sampling is assumed the rank of the correlation
matrix tends to be reducible to a small number, if all
possible correlations are taken, and finally to be one as the
bonds increase without limit.

It is important to realize what is meant by the rank
tending to rank 1 as more and more of the possible corre-
lations are taken. When the rank is 1 the tetrad-
differences are zero. But clearly, the reader may say,
taking more and more samples of the bonds to form more
and more tests will not change in any way the pre-existing
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tetrad-differences, will not make them zero if they are not
sero to start with. That is perfectly true; but that is not
what is meant. As more and more tests are formed by
samples of the bonds, the number of zero and very small
tetrads will increase and swamp the large tetrads. The
sampling theory does not say that all tetrads will be
exactly zero, or the rank exactly 1. It says that the
tetrads will be distributed about zero (not because each
is taken both plus and minus, but when all are given their
sign by the same rule) with a scatter which can be reduced
without limit, in the sense that with more bonds the pro-
portion of large tetrads becomes smaller and smaller ;
always provided all possible samples are taken, ie. that
the family of correlation coefficients is complete.

With a finite number of tests this, of course, 1s not the
case ; but if the tests are a random sample of all possible -
tests, there will again be the approach to zero tetrads.
The same will be true if the tests are sampling not the whole
mind, but some portion of it, some sub-pool of our mind’s
abilities. If we stray from this pool and fish in other
waters, we shall break the hierarchy ; but if we sampled
the whole pool of a mind, we should again find the 'tendency
to hierarchical order. If the mind is organized into sub-
pools (such as the verbal sub-pool, say), then we shall be
liable to fish in two or three of them, and get a rank of
2 or 8 in our matrix, i.e. get two or three common factors,
in the language of the other theory.

10. Contrast with physical measurements.—The tendency

for tetrad-differences to be closely grouped around zero

appears to be stronger in mental mea.suremer_lts than else-
physical measure-

where ; stronger, for example, than in
ments although it is found there too. :

In physical measurements we do not measure a person's
body just from anywhere to anywhere. We'observe organs
and measure them—Ileg, cranium, chest girth, ete. The

variates are not a random sample. In other words, the

i obvious structure which guides our
e low rank among the

measurements, and the tendency to a lo
correlation coefficient, although present, 1S less than amox:lg
mental measurements. The tendency to zero tetrad-
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_ differences in the mind is due to the fact that the mind
has, comparatively speaking, no organs. We can, and do,
measure it almost from anywhere to anywhere. No test
measures a leg or an arm of the mind ; every test calls
upon a group of the mind’s bonds which intermingles in
most complicated ways with .the groups needed for other
tests, without being a set pattern immutably linked into
an organ. Of all the conceivable combinations of the
bonds of the mind we can, without great difficulty, take a
random sample, whereas in physical measurements we take
only the sample forced on us by the organs of the body.
Being free to measure the mind almost from anywhere to
anywhere, we can get a set of measurements which show
* hierarchical order ”* without overgreat trouble. We can
do so because the mind is so comparatively structureless.
Mental measurements tend to show hierarchical order, and
to be susceptible of mathematical description in terms of
one general factor or few, and innumerable specifics, not
because there are specific neural machines through which
its energy must show itself, but just exactly because there
are no fixed neural machines. The mind is capable of
expressing itself in the most plastic and Protean way,
especially before education, language, the subjects of
the school curriculum, the occupation, and the political
beliefs of adult life have imposed a habitual structure on
it. It is not without significance that the * factor ” most
widely recognized after Spearman’s g is the verbal factor v,
the mother-tongue being, as it were, the physieal body of
the mind, its acquired structure.

11. Absolute variance of different tests.—It will be noted
that on the sampling theory the different tests will natur-
ally have different variances, the “ richer ” tests having a
wider scatter. This seems only natural. It is customary,
at any rate in theoretical discussions, to reduce all scores
in different tests to standard measure, thereby equal-
izing their variance. This seems inevitable, for there
is no means of comparing the scatter of marks in two
different tests. But it does not follow that the scatter
would be really the same if some means of comparison
were available. When the same test is given to two
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different groups we have no hesitation in ascribing a wider
variance to the one or the other group, and it seems con-
ceivable that a similar distinction might mentally be made
between the scores made by one group in two different
tests. The writer is completely in accord with M. S. Bart-
lett when he says (Bartlett, 1935, 205): I think many
people would agree . . . that the variationin mathematical
ability displayed even in a selected group such as Cam-
bridge Tripos candidates cannot be altogether put down
to the method of marking adopted by the examiners.”
We may put these mathematics marks into standard
measure, and we may put the marks scored by the same
group in, say, & form-board test, also into standard measure.
But that does not imply that at bottom the two variances
are equal, if only we had some rigorous way of comparing
them. Our common Sense tells us plainly that they are
not equal in the absolute sense, though for many purposes
their difference is irrelevant. It seems to be no defect,
then, but rather a good quality, of the sampling theory
to involve different absolute variances.

12. A, distinction between g and other common factors-—
The writer is inclined to make a distinction in interpretation

n general factor g and the various

between the Spearma
other common factors, mostly if not all of less extent than

g, which have been suggested. When properly measur-ed
by a wide and varied hierarchical battery, £ appears to him

to be an index of the span of the whole mind, other common
factors to measure only sub—pools,,lir}lg:aggsﬂaam@g bonds.
The former measures the whole number of bonds ; the
latter indicate the degree of structure among them.

Some of this * structure * is 10 doubt innate ; but more

of it is probably due to environment and education and

life. Its expression in terms of s.epara"e_ uncorre :Z‘}cleti
factors suggests what is almost qertamlz not the case, T}?e

\ ther.
the * sub-pools ” are segara.te Tom one ano '
actual organization is Jikely to be much more corpdghcatt:ﬁ
than that, and its categories to be interlaced and 1

woven, like the relationships of men in & commur]?ty,
plumbers and Methodists, blonds, bachelors, s,lmo e:;sé
Conservatives, illiterat_gs, native-born, criminals, @
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school-teachers, an_organization into classes which cut
across one another right and left,

(3 Further, it is improbable that the organization of each

6)

mind is_the same.” The phrase “‘factors of #he mind
suggests too strongly that this is so, and that minds differ
only in the amount of each factor they possess. It is more
than likely that different minds perform any task or test by
different means, and indeed that the same mind does so at
different times.

Yet with all the dangers and imperfections which attend
it, it is probable that the factor theory will go on, and will
serve to advance the science of psychology. For one thing,
it is far too _interesting to cease to have students and
adherents. There is a strong natural desire in mankind
to imagine or create, and to name, forces and powers
behind the facade of what is observed, nor can any excep-
tion be taken to this if the hypotheses which emerge
explain the phenomena as far as they go, and are a guide
to further inquiry. That the factor theory has been a
guide and a spur to many investigators cannot be denied,
and it is probably here that it finds its chief justification.




CHAPTER XXI
SOME FUNDAMENTAL QUESTIONS

[+ seems advisable to conclude with a brief discussion of
some of the fundamental theoretical questions needing an
answer. Among these are the following, of which (1)
and (8) are rather liable to be forgotten by those actually
engaged in making factorial analyses : -‘

(1) What metric or system of units is to be used in
factorial analysis ?

(2) On what principle are we to decide where to stop the
rotation of our factor-axes or how to choose them so that
rotation is unnecessary ?

(8) Is the principle of minimizing the number of
common factors, ie. of analysing only the communal
variance, to be retained ?

(4) Are oblique, i.e. correlated factors to be permitted ?

1. Metric—Most of the work done in factorial analysis
has assumed the scores of the tests to be standardized ;
that is to say, in each test the unit of measure has been
the actual standard deviation found in the distribution.
This is in a sense a confession of ignorance. The accidental
standard deviation which happens to result from the par-
ticular form of scoring used in a test means, of course,
nothing more. Yet there is undoubtedly something to be
said for the probability of real differences of standard
deviation existing between tests (see Chapter XX,
Section 11). In that case, if we knew these rea.l standard
deviations, we would use variances and covariances and
analyse them, not correlations (compare Hotelling, 1933,
421-2 and 509-10).

Burt has urged the use
which are indeed necessary

of variances and covariances,
to him to enable his relation
between trait factors and person factors to hold (see .Chap-
ter XVII, page 264). But the variances and covariances
he actually uses are simply the arbitrary ones which arise

ma—11% 329
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from the raw scores, and depend entirely upon the scoring
system used in each test. It would seem necessary to
have some system of rational, not arbitrary, units.

Hotelling has already suggested one such, based upon
the idea of the principal components of all possible tests,
but it would seem to be unattainable in practice (Hotel-
ling, 1988, 510). Another can be based on the ideas of the
sampling theory and has already been foreshadowed in
the previous chapter. Tests quite naturally have different
variances on that theory, since they comprise larger or
smaller samples of the ““ bonds * of the mind (see Thomson,
19856, 87). In a hierarchical battery these natural
varianees are measured by the ‘ coefficient of richness.”
The “ richness ” of Test k is given by

Yy

the same quantity as the square of Spearman’s * satura-
tion with g.”” It is, on the sampling theory, the fraction
which the test forms of the pool of bonds which is being
sampled, and is the natural variance of the test in compari-
son with other tests from that pool. The * saturation
with g of Spearman’s theory is the ““ natural standard
deviation ™ of the sampling theory. Even in a battery
which is not hierarchical, the formula (Chapter III,
Section 5, page 43)—

JA’ — A’

T — 24

will give a rough estimate of the natural standard deviation
of each test. The general principle is that tests which
show the most total correlation have the largest natural
variance,

2. Rotation.—Our views on the rotation of factors will
depend on what we want them to do. Burt looks upon
them as merely a convenient form of classification and is
content to take the principal axes of the ellipsoids of density,
or that approximation to them given by a good centroid
analysis, as they stand, without any rotation. He * takes
out ” the first centroid factor, either by calculation or
by selecting a very special group of persons each of whom
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has in a battery of tests an average score equal to the
population average, each of the tests also having the same
average as every other test in the battery over this sub-
group of persons (Burt, 1988a). He concentrates attention
on the remaining factors, which are * bipolar,” having
both positive and negative weights in the tests, When,
as in the article referred to, he is analysing temperaments,
this fits in well with common names for emotional charac-
teristics, for those names too are usually bipolar, as
brave-cowardly, extravagant-stingy, extravert-introvert,
and so on.

Thurstone, on the other hand, emphatically insists on
the need for rotation if the factors are to have psycho
logical meaning (Thurstone, 1088¢, 90). The centroid
factors are mere averages of the tests which happen to
form the battery, and change as tests are added or taken
away, whereas he wants factors which are invariant from
battery to battery. 1 think he would put invariance
before psychological meaning, and say that if n certain
factor keeps turning up in battery after battery we must
ask ourselves what its psychological meaning s, His
own opinion, backed up by & great deal of experimental
work of a pioneering and exploratory nature, is that his
prineiple of rotating to “ simple structure " gives us also
psychologically meaningful and invariant factors.

The problems of rotation and metric are not unconnected,
idence in favour of rotating to simple
structure is that the latter is independent of lhe units
used in the tests. If instead of analysing correlations we
analyse covariances, with whatever standard deviations
we care to assign to the tests, we get l\'ﬂ'mmd analysis
quite different from the centroid annlysis of correlations.
But if we rotate each to simple structure the tables are
identical, except, of course, that in the covariance structure
ench row is multiplied by the standard deviation of the
test.

For example, if we take the s'i! tests of Chapter ’S
Section 2 (page 152) and ascribe arbitrary standa
deviations of 1, 2, 8, 4, 5, and 6 to them, we can replace !h.t
correlations and communalities by covariances and vari-

and one piece of ev
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ance-communalities, and perform a centroid analysis.
Since we know the proper communalities* it comes out
exactly in three factors with no residues, and gives the
centroid structure :

: 1 11 111
1 372 <567 462
2 ‘048 1278 — 060
3 1-969 —1-016 — -337
4 1-:002 1:072 —2-118
5 2:992 593 1-716
6 3-879 —2:493 387

When this is rotated to simple structure, by post-
multiplication by the matrix

802 389 453
—:592 416 691
‘080 —-822 564 |

the resulting table is :

4 B G
1 . o 820
2 . 950 1-278
3 2:154 -619 .
4 . 2:577 .
5 2-187 o 2782
6 4-213 .

This is identical with the simple structure found from
the correlations, if the rows here are divided by 1, 2, 8, 4,
_ 5, and 6, the standard deviations. It is definitely a point
in favour of simple structure that it is thus independent
of the system of units employed. Spearman’s analysis of
a hierarchical matrix into one g and specifics also has this

_* If we have to guess communalities, our two simple structures
will differ slightly because the highest covariance in a column may
not correspond to the highest correlation. But with a battery of

many tests this difference will be unimportant, and could be
annulled by iteration.
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property of independence of the metric. If the tetrad-
differences of a matrix of correlations are zero, and we
analyse into one general factor and specifies, it is immaterial
whether we analyse correlations or covariances. The
loadings obtained in the latter case are exactly the same
except, of course, that each is multiplied by the appropriate
standard deviation.

At this point one is reminded of Lawley’s loadings*
found by the method of maximum likelihood, for these
possess the property that the unrotated loadings obtained
from correlations are already the same as the unrotated
loadings obtained from covariances, if the latter are
divided by the standard deviations. Centroid analyses,
or principal component analyses, do not possess this
property. The loadings obtained by these means from
covariances cannot be simply divided by the standard
deviations to give the loadings derived from correlations,
though the one can be rotated into the other. Lawley’s
loadings need no such rotation. They are, as it were, at
once of the same shape whether from covariances or from
correlations and only need an adjustment of units, such as
one makes in changing, say, from yards to feet. A field
which is 50 yards broad and 20 poles long has the same
shape as one which is 150 fect broad and 830 feet long.

Now, as we have seen, this property of equivalence of
covariance and -correlation loadings is also possessed by
It would thus not be unnatural to hope

simple structure. ! e
that Lawley’s method might lead straight to simple
But this is not the case.

structure, without any rotation. i
Clearly, then, simple structure is not the only position of
the axes where the loadings are independent of the units of
measurement employed. Indeed, any subsequent post-

* In accordance with our definition on page 17(!, the term * l?ad-
ing » means a coefficient in a speciﬁcati?n equation, an enttry :;1 g
¢« pattern,” In the present chapter it 15 used throughmll E;rt} =
strictly correct when the axes referred .to are orthogonat.h S
axes are oblique, then much of what is said re:il]y refers"’cq Ste l; aiie
in a structure, not in a pattern : but the word * loading ™ 18 511

rence
to avoid circumlocutions, and because the st.ruf:tur% of 1f‘l:kfil1':5;13;}1 i
vectors is, except for a diagonal matrix multiplier, 1denty

pattern of the factors.
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multiplication of both the simple structure tables—both
that from correlations and that from covariances—by the
same orthogonal rotating matrix will leave their equivalence
with regard to units unharmed. Simple structure is only
one of an infinite number of positions which possess this
property. But it is an easily identifiable one.

It is difficult to keep one’s mind clear as to the meaning
of this. Let me recapitulate. There are some processes
of analysis which, while they give a perfect analysis in the
sense of one which reproduces the correlations (or the co-
variances) exactly, do not give the same analysis for the
correlations as for the covariances. The factors they
arrive at depend upon the units of measurement employed
in the tests. Such, for example, are the principal compon-
ents process and the centroid process. Such processes
cannot be relied on to give straight away and without
rotation, factors which can be called objective and scien-
tific. Some processes, on the other hand, do give analyses
which are independent of the units. One such is Lawley’s,
based on maximum likelihood. Another is Thurstone’s
simple-structure process, which, though it begins by using
a centroid analysis, follows this by rotation of a certain kind.

But the principle of independence of units does not
distinguish between these processes, which both satisfy it.
Still less does it distinguish between systems of factors.
For any one of the infinite number of such systems which
can be got from either simple structure or Lawley’s factors
by rotation equally satisfies the principle. Indeed, there
can really be no talk of a system of factors satisfying the
principle.  Any table of loadings whatever, obtained from
correlations, has, of course, corresponding to it a system
differing only in that the rows are multiplied by coefficients,
a system which would correspond with covariances.
The fact that no one has discovered a process which gives
both is irrelevant. The argument is rather as follows. If
a worker believes that he has found a process which gives
the true psychological factors, then that process must be
independent of the metric, and simple structure and
maximum likelihood are both thus independent, though
they do not, alas, agree. Nor must it be forgotten that




SOME FUNDAMENTAL QUESTIONS 335

analyses from correlations are in no way superior to those
from covariances. Indeed, correlations are covariances,
dependent upon as arbitrary a choice of units—namely
standard deviations—as any other. But centroid axes
in themselves, or principal components, without rotation,
are clearly inadmissible, for they change with the units
used. The chance that such axes are the true ones is
infinitesimal, being dependent on the chance composition
of the battery, and the system of units which chances to
be used. Independence of metric is not sufficient to
validate a process but it is necessary. Its absence does
not prove a system of factors to be wrong, but it makes it
certain that the process by which they have been arrived
at does not in general give the true factors. :
3. Specifics—These form a fundamental problem 1n
factorial analysis and yet they are practically never heard
of in discussions of an analysis. It is reasonable enough to
think that a test may require some trick of the intellect
peculiar to itself, yet it is not obvious that these spf:mﬁc
factors must be made as large and important as possible ;
and that is what the plan of minimizing the rank of a
matrix does. The excess of factors over tests ‘_’Vhlt‘:h
inevitably, of course, results from postulating a Spemﬁc.m
every test, means that the factors cannot be est'lmated with
any great accuracy. Usually the accuracy 18 very low
indeed. The determinate and the indeterminate gqrts of
each of Thurstone’s factors in Primary Mental Abilities can
be found by post-multiplying Table 7 on his page 98 by
Table 3 on his page 96. We find :

Variance of the Variance of the

Kacl Estimated Part Indeterminate Part
g 611 -389
P 616 884
N -825 175
v -662 -388
M 431 869
W 439 561
I 397 603
R -600 400
D -519 481
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The average for the nine factors is only 564 per cent. of
the variance estimated. In other words the factor
estimates have large probable errors in some cases as large
as the estimates themselves. This has serious conse-
quences, not to be overcome by more reliable tests.

Using unity for every diagonal element in the matrix of
such a battery will give factors (supposing the same
number of them to be taken out) which will not imitate the
correlations quite so well, but which can be estimated

accurately.
In fact, whether Hotelling’s process or the centroid
process is used, with unit communalities, each factor can

be calculated exactly for a man, given his scores. By
exactly we mean that they are as accurate as his scores are.
Of course, in any psychological experiment the scores may
not be accurate in the sense that they can be exactly
reproduced by a repetition of the experiment. Apart from
sheer blunders and clerical errors, there is the fact that a
man’s performance fluctuates from day to day. But
these errors are common to any process of calculation
which may be used on the scores. These are not the errors
for which we are criticizing estimates of a man’s factors.
The point we are making is that factors based on com-
munalities less than unity have a further, and large, error
of estimation, whereas factors based on unit communalities
(even if only one or two or a few are taken out) have no
such further error of estimation.

If a few such factors: taken out with unit communalities
are then rotated (keeping them in the same space, i.e not
changing their number) they still remain susceptible of
exact estimation in a man.

As soon, however, as any fractions, minimum or not, are
placed in the diagonal cells, we have thereby decided to
use, in describing our tests, more orthogonal axes than there
are tests ; for each test has then a specific factor, and there
are in addition the common factors. This means in terms
of our spatial model that none of the axes, neither the
common factors nor the specific factors, are in the test
space at all (except at the origin where they all cross). It
is only about the test space, of dimensions equal to the
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number of tests, that we have any information from our
battery. These axes are away in outer darkness and we
cannot know them, but only their projections or shadows
on the test space. Psychologists invariably confine their
attention, after making an analysis using communalities,
to the * common factor space,” of a comparatively small
number of dimensions, without, I think, being usually
aware that this space is not in the test space at all. (Thur-
stone’s “ secondary factors,” in their turn, are not even in
the common factor space, for he uses what I might call
secondary communalities.) The effect of all this is that the
factors arrived at by an analysis which has begun by
placing fractions in the diagonal cells can never be measured
in any man, but only vaguely estimated, and with maxi-
mum vagueness if minimum communalities are used.

In itself the fact that factors can only be estimated and
not accurately measured is, of course, not fatal. Through-
out statistical work runs the idea ot estimation in a realm
outside that which is experimentally known, in a realm of
more dimensions than that in which our measurements
have been made. It is to allow for that that the dev-ice of
“ degrees of freedom ™ is used in the analysis of variance.
But in factorial analysis the vagueness due to est;matu?n
is deliberately maximized, for reducing the rank o.f a matrix
of correlations involves the simultaneous Maximizing of
the specific variances. In Section 8 of the previous chapter
a brief reference was made to this fact that methm_is of
factorizing which use communalities IT.la.XiI'Ili.ZC the variance
of the specific factors, by reason of minimizing the ngmber
of common factors. First take the case of 1';he analysis of a
hierarchical battery. As was illustrated in Chapter X]X
the analysis of such a battery into one geneml fa'tctor 01:: }31’7
and specifics, gives the maximum variance possible to the
specifics. The combined communalities of the tests are
less in the two-factor analysis than in any other MWIYS;;‘-‘-
The mathematical expression of this is that the trace of the
reduced correlation matrix, i.e. the sum of the cells of the
principal diagonal, is a minimum.

It is true that certain exceptions
mathematically possible, but their occurr

to this gtatement are
ence in actual
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psychological work is a practical impossibility. They have
been investigated by Ledermann (Ledermann, 1940), who
finds, in the case of the hierarchical matrix, that an excep-
tion is only possible when one of the g saturations is greater
than the sum of all the others. When the battery is of
any size, this is most unlikely to occur : and almost always,
when it did occur, the large saturation of one test would
turn out to be greater than unity, which is not permissible
(the Heywood case).

The same statement as the above, that the specifics are
maximized, is also true in general. The communalities
which give the matrix its lowest rank are in sum less than
any other diagonal elements permissible. If smaller
numbers are placed in the diagonal cells, the analysis fails
unless factors with a loading of 4/ — 1 are employed, and
such factors are, of course, inadmissible.

Here again there are possibly cases where the lowest
rank is not accompanied by the lowest trace (i.c. the lowest
sum of the communalities). But here again it seems cer-
tain that if such cases do exist, they are mathematical
curiosities which would never occur in practice.

If specific factors of such large size have any psycho-
logical existence, what can they be ? Possibilities which
will oceur to us are first, that they are error factors—but
errors or variations in the subjeet’s performance are not
likely to be entirely unique to one test. Secondly, they
have been attributed to sampling errors in the coeflicients
of correlation—but these sampling errors are themselves
correlated, and so give rise to false common factors, not to
specific factors. Thirdly, they may be real mental factors,
unique to that test, needed only by it. But what remark-
able consequences follow if we accept that. I devise a
brand-new test and, lo, in the mind of man there exists a
specific ability to do that test and, moreover, an ability
which is useless in every other activity. Further, every
individual T meet possesses this specific ability in large
or small amount. The idea in this form is really fan-
tastic.

;t would seem then that the specifies cannot be really
unique, but only unique in this battery, This leads to the




SOME FUNDAMENTAL QUESTIONS 339

presumption that the tests of a battery possess specific
factors only because there does not happen to be in the
battery any other test to share the specific, or at least part
of it, and prove it to be really one or more common factors.
On this view, specifies will disappear when a test has been
tried in a large number of batteries, or in a sufficiently large
battery. Not only does this seem unlikely when one
considers that in every battery the minimum communalities
and maximum specifics are insisted on, but it also has
peculiar consequences in regard to the number of primary
factors. Consider a battery consisting of, say, two dozen
tests, analysed into, say, seven common factors plus, of
course, two dozen specifics. The latter, it must be re-
membered, are all orthogonal, all uncorrelated with one
another. On the hypothesis that they are really factors
which just do not happen to have found a partner, like
wallflowers at a ball, there must exist at least two dozen
other primary factors waiting to be discovered in a larger
battery. And so with every battery of tests. The n.umber
of primary factors must be larger than all the tests hitherto
invented, which does not seem to be parsimonlo}ls. 1 (':ﬂ,n-
not help fearing that there is something wrong with the idea
of reducing the matrix of correlation coefficients or €0-
variances to its lowest possible rank, and then calling the
descriptive variates to which this leads fz_actors of th.e
mind ”” : something wrong with the whole idea of attri-
buting as much as possible of the Yariance ‘?f a test to 5
unique factor, something wrong with the ¢ parsimony
argument upon which all this is ba'sed. It leads toh’.ml(z
many difficulties to which it is possible, but not, I thin
advisable, to shut one’s eyes. Moreover, the reciprocity
principle, which identifies factors and Joadings O};ta’fn?g
from correlating tests with Joadings and factors O aine
from correlating persons. works only when there aln"et_no
specifics involved. I would like to see & number of gx}is ;nlgl
squares of correlation cocfficients re-analysed WIfd ud
variance in each diagoilal cell and the results. consl (i;'e .
There would be no guessing of the comn}unahtms, an .n(;
repetitions or iterations of the calf..'ulatmn to d(lf)term:)r;e
them. Tests of significance of residues would be mm
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easily made, and although rather more factors would be
necessary before the residues became insignificant, they
would have the advantage of more accurate estimation in
any man. True, such factors would be confined to the
particular test space of that battery, and admittedly a
factor of the mind is not likely to be an exact composite of
the tests of any one battery. But the point is an academic
one, for the common-factor space in which communality
factors exist, is just as much a ereation of the particular
battery as are axes determined within the bat tery
space.

I must not be misunderstood as saying that no specifie
factors exist at all. What I am sceptical about is the pro-
cedure of making the specific factors in every battery as
large as possible, by the automatie application of a mathe-
matical device. That every test may well have some
unique quality for any individual person seems conceivable,
though I do not think this special feature of the test will
be felt as a peculiarity by every person who tries the test.
I think any such unique quality would be a blemish in the
test, just as unreliability is a blemish, and that the psych-
ologist should endeavour to make tests which arc neither
unreliable nor burdened with unique peculiarities. Prob-
ably he cannot avoid a certain amount of uniqueness, just
as he cannot avoid a certain amount of unreliabilit y. But
I do not see the need for ascribing mazimum uniqueness in
order to reduce the number of common factors.

A critic may point out that, if even small truly unique
parts of the tests are admittedly present, there will always
be the need for the large number of specifics. Possibly so
—but specifics of no great importance, if the tests are
good ones ; specifics with an influence as unimportant as
the causes are of the residuals which we in any case ignore
after statistical testing.

It is true that by the use of communalities the total
number of loadings to be estimated is reduced to a mini-
mum. That way of putting the parsimony argument
would be perhaps defensible. What I doubt is whether too
high a price is not paid, since this same procedure maxi-
mizes the specifics, and decides their importance without
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any psychological consideration whatever being given to
the question. :

The practical conclusions 1 would draw from these con-
siderations about the nature of specific factors are that a
battery used for factorial analysis should be composed of
tests of high communality in that battery : or that, if
tests are admitted which by the mathematical principle
of rank reduction are allotted low communalities, the
psychologist should agree that these tests do draw, each
of them, upon factors of the mind not represented elsewhere
in the battery.

Such is the argument against minimum communalities.
For them is the hope that some day, despite their draw-
backs, the factors they lead to may prove to be something
real, perhaps have some physiological basis. And their
defender may plead that the estimates of these factors are
as good as the estimates W€ find useful, in predicting
educational or occupational efficiency. )

4. Oblique factors.—L think it is pretty certa.m'that
Thurstone took to oblique factors because he wants simple
structure at all costs. Certainly oblique factors make 1t
much easier to reach simple structure—too €asy, Reyburn
and Taylor say. It will be found far more often: than it
really exists, they add. On the other hand, Thurstorie
can point to his box example and his trapeziuxm example
and say with truth that simple structure enabled him

to find © realities,” can say that the oblique simple strue”

A X . i -sense
ture is something more real, in the or dinary common sen

everyday use of the word, than the orthogonal second-

order factors which are an alternative. : -
Other workers, not at all wedded to the 1de.as of simple
structure, have also declared their belief in oblique 'facltforsci
e.g. Raymond Cattell, and, I think, many.who fqgl e 1.n61: :
to work in terms of clusters.” In ord.mary life, weig ]h
and height are both measures of something real; althoug

they -are correlated. We ould analyse them into t’iw:
uncorrelated factors @ and b, or into th.ree for that ]I'It}: 611’;
but certainly no one would use these 10 orc.ilnaj;'};1 1n;0nes
is, however, just conceivable that some pair © chf s
(say) might be found which corresponded, not one
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to height and one to weight, but one to orthogonal factor
a and another to orthogonal factor b. It is far too early
to state anything more than a preference for orthogonal
or oblique factors. Opinion is turning, I think, toward
the acceptance of the latter.
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1. Textbooks on matrix algebra. 2. Matrix notation.
3. Spearman’s Theory of Two Factors. 4. Multiple common
factors. 5. Orthogonal rotations. 6. Orthogonal transforma-
tion from the two-factor equations to the sampling equations.
7. Hotelling’s ** principal components.” 8. The pooling square.
9. The regression equation. 9a. Relations between two sets
of variates. 10. Regression estimates of factors. 10a. Leder-
mann’s short cut. 11. Direct and indirect vocational advice.
12. Computation methods. 18. Bartlett’s estimates of fac-
tors. 14. Indeterminacy. 15. Finding g saturations from an
imperfectly hierarchical battery. 16, Sampling errors of
tetrad-differences. 17. Selection from a multivariate normal
population. 17a. Maximum likelihood estimation (by D. N.
Lawley). 18. Reciprocity of loadings and factors in persons
and traits. 19. Oblique factors. Structure and pattern.
19a. Second-order factors. 20. Boundary conditions. 21.

The sampling of bonds.

1. Teathooks on maria algebra.—Some knowledge of
matrix algebra is assumed, such as can be gained from 'the
mathematical introduction to 1. L. Thurstone’s M'ulnpfe
Factor Analysis (Chicago, 1947) ; Turnbull and Aitken’s
Theory of Canonical Matrices, Chapter 1 (London and
Glasgow, 1932); H. W. Turnbull’s The Theory of Deter-
minants, Matrices, and Invariants, Chapters -V (L?ndon
and Glasgow, 1929); and M. Bocher’s Introduction 10
Higher Algebra, Chapters 11, V, and VI (New York, 1936).

I have adopted Thurstone’s notation 11 Sections 19

and 19a of the mathematical appendix, and in Chapters
X1, XII, and XIILin describing his work. But I have not
ecause readers would then be

made the change elsewhere b

incommoded in consulting my own former papers.
The chief differences are as follows @ '
My M is Thurstone’s F, for centroid factors, my Z is

Thurstone’s 8 — /N, and my F is Thurstone’s P+

345
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9. Matrix notation.—Let X be the matrix of raw scores
of p persons in n tests, with n rows and p columns ; and
when normalized by rows, let it be denoted by Z. The
letters z and Z in the fext of this book mean standardized
scores, which are used in practical work, but in this
appendix they mean normalized scores, so that

72" =R TR

the matrix of correlations between n tests.

For many purposes it is convenient to think of solid
matrices like Z as column (or row) vectors of which each
element represents a row (or column). Thus Z can be
thought of as a column vector z, of which each element
represents in a collapsed form a row of test scores. Thus
with three tests and four persons—

z o ~ -~ ~
1 A1 1z A3 R
.
B=| 2| =2 % B | =%2 . (2
%3 %31 %32 Rgz Ray |

In the theory of mental factors each score is represented
as a loaded sum of the normalized factors f, the loadings
being different for each test, i.e.—

z = Mf (specification equations) .  (3)

where M is the matrix of loadings and f the vector of v
factors, collapsed into a column from F, the full matrix, -
of dimensions v X p.

We note that p = number of persons,
n = number of tests,
v = number of factors.

The dimensions of M are n x v. Equation (3) represents
n simultaneous equations, and the form Z = MF represents
np simultaneous equations.
We now have—
R =ZZ' = (MF)MF) = MFF'M' . KA
If the factors are orthogonal, we have—
=7 . : : - . (5)
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the unit matrix, and therefore—

R=MM St : : . )
The resemblance in shape between this and—
=/ : ¢ - ()

leads to a parallelism between formule concerning persons
and factors (Thomson, 1935b, 75 ; Mackie, 1928a, 74, and
1929, 34).

3. Spearman’s Theory of Two Factors assumes that M
is of the special form—

L ang e
, L e e
M= (7)
L,
and therefore—
Rl My . S rs(8)

where M, is the diagonal matrix which forms the right-
hand end of M, and [ is the first column of M. In this
form it is clear that R is of rank 1 except for its principal
diagonal. Its component Il is the *reduced correlational
matrix > of the Spearman case, and is entirely of r.anl.c 1.
The elements L% L - - « b which form the principal
diagonal of Il, are called * communalities.”
4. Multiple common factors—When more than one
common factor is present, M takes the form—
M (MM T )
x of loadings of the common factors,

where M, is the matri _
e by the simple column L.

represented in the Spearman €as
We have then—

R = MM =MM, +M* - - (10)
where the “reduced correlation matrix ” M-OM-Q’ is of
rank 7, the number of common factors, and I identical
with R except for having « gommunalities ” in 1ts principal

diagonal.
5. Orthogonal
terms of w new factors @ by

f=49

rotations.—If we express the v factors f in
the equation—

(11)
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where A is a matrix of v rows and w columns, we have—
z=Mf=MAy 3 g . (12)
an expression of the tests z as linear loaded sums of a
different set of factors, with a matrix of loadings M4,
If—
AA' =1 ; : ; : . (18)

the new factors ¢ are orthogonal like the old ones. They
can be as numerous as we like, but not less than the number
of tests unless the matrix R is singular. (12) represents a
rigid rotation of the orthogonal axes f into new positions,
with dimensions added or abolished.

6. The sampling theory.—The following transformation
is of interest as showing the connexion between the
Theory of Two Factors and the Sampling Theory (Thom-
son, 1985b, 85). We shall write it out for three tests only,
but it is quite general. Consider the orthogonal matrix :

! i ! mil Iml m, mmi mim Imm| mmm

o St - e .t i t w e s

! mil e W mml mim, —Iml —lm mmm, —Imm

| Iml : mmi  —U  Imm, —mll mmm —Un| —mln

. lm . omlm  Imm =1l : mmm —mil —Iml' —mml (14)

s e T : 1y ‘ &

] mml, —Iml —mll mmm : u —imm —mim' lim
mim| —lUm mmm —mil; —lmm i —mml Iml

! Imm | mmm —lm —Iml | —mim —mml i mll

_____ S R e B e at e e - = -

% mmm | —lmm —mlm —mml | lm Iml mil, —Il

wherein the omitted subsecripts 1, 2, and 38 are to be
understood as existing always in that order, so that mll
means myl,l,.

If we take for 4 in Equation (12) the first four rows
of this orthogonal matrix, and for M the Spearman form
(7) with three tests, the result is to transfer to eight new
factors, yielding :

2 = Llp, + mylp; + Lmyg, + memygp,
%y = Llypy + mylypy + Lmypg + mmyg, . . (1)
2y = hlypy + mbyp, + Lmgpy + mmyp,

Each z is here in normalized units. If, however, we
change to new units by multiplying the three equations
by L, l,, and I, respectively, we have :

i st s LRt B o e
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Lz, = LLe, + Limalys + Llymygp, + Limgia®,

Iz, = LLLp, + mylolyps + Llgms@y + myliig@s y . (16)
Lz = Lllyp, + mylals®y -+ Lmglyps + mymalyps

and the variates Lz, L2, and lg; are now susceptible of
the explanation that each is composed of ;2N small equal
components drawn at random from a pool of N such
components, all-or-none in nature. In that case L L3N
components would probably appear in all three drawings
(o) 3 Ll*mg*N components would probably appear in the
first two drawings, but not in the third (g,); and so on
down to my*my*mg* components, which would not appear
at all (g, which is missing from the equations).

The transformation can, of course, be reversed, and the
sampling theory equations converted into the two-factor
equations.

w 7. Hotelling’s ** principal components ”* are the principal
axes of the ellipsoids of equal density—
2’R~'z = constant . ’ g (1T

when the fest vectors are orthogonal axes (Hotelling, 1933).
To find the principal axes involves finding the latent
roots of R~:. The Hotelling process consists of (a) a
rotation of the axes from the orthogonal text axes to the

directions of the principal axes ; and (b) a set of strains
and stresses along these new axes to standardize the factors,

making the ellipsoid spherical and the original axes oblique.
to the Hotelling factors

The transformation from the tests
v being from Equation (8)—
5 — My (M square)
the ellipsoids (17) become—
constant = 3’ R™'2 = ' (M'R™'M)y = Y (18)
since they become spheres. Therefore we must have—
MR = T T e (1)
The locus of the mid points of chords of #'R~'z whose

direction cosines are A’ is the EIane KR 2 =0, ang ifdthTi
is a principal plane it is at right angles to the chords 1

bisects, i.e.—

th-—l — m'
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which has non-trivial solutions only for
|R\— M | =0

the roots A of which are the * latent roots ”’ of R~!, while
each ' is a ** latent vector.”
Now, if H is the matrix of normalized latent vectors of
R, we have—
B'R'H = A
where A is the diagonal matrix of the latent roots of R™';
so that a solution for M corresponding to rotation to the
principal axes and subsequent change of units to give a
sphere is seen to be—
M =HA" 2 . (20)
The latent vectors of R are the same as those of R,
or of any power of R, and Hotelling’s process described
in the text (Chapter VII) finds the latent roots (forming the
diagonal matrix D) and the latent vectors (forming H) of
R. We then have—
M = HD' , : . (21)
For the convergence of the process, see Hotelling’s paper
of 1933, pages 14 and 15.
Since in Hotelling analyses M is square, we can write—

v =M1z = (HDY) '3
=D H-'2s = D-(D'H'): = D-'M'z . (22)

Each factor vy, that is, can be found from a column of
the matrix M, divided by the corresponding latent root,
used as loadings of the test scores z.

8. The pooling square.—If the matrix of correlations of
a -+ b variates is ;

R, | R,

Rba Rbb

and if the standardized variates a are multiplied by weights
u, the standardized variates b by weights w, and each set
of scores summed to make two composite scores, the
resulting variances and covariances are :

(23)

uw'R,u | W'Ryw

(24)

w'Ru | w'R,w
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as can be seen by writing out the latter expressions at

length. The battery intercorrelation is therefore—
wWRyw or wRu
sl ARSI )
'\/(u Raau R w Rbbw)
If weights are applied to raw scores, each applied weight
must be multiplied by each pre-existing standard deviation,

in (25).
If there is only one variate in the a team, (25) becomes—
WIT[m
— : : . (26)
/(W' Ryye)

where 7, represents a whole column of correlation coefli-
cients. The values of w for which this reaches its maximum
value will satisfy the equation—
/
B Bhel gt kA ()
Sw A/ (w'Ryw)
that is—
w — a scalar X By~ (28)
consistent with the ordinary method of deducing regression

coefficients. 3
9. The regression equation.—If % 18 the one variate 1n

the @ team, and 2 are the b team, and if —

we wish to make S{zy — )" & minimum, that is—

b)

2 S(zg — w)* =0

S (20 )

Szt = W'z
w' = "'M’Rbb-_l
£0 = ?‘nb'Rbb_lz . (80)

| the tests including

If R is the matrix of correlations of al
%y, the regression estimate of any one of the tests from a

weighted sum of the others is given by—
determinant R, =0 (81)
where R, is R with the row corresponding to the variate

i iates.
to be estimated replaced by the row of varia .
9a. Relations between 10 sets of variates.—(Hotelling

1935a, 1936, M. S. Bartlett 1948). If two sets of variates
have correlation coefficients—



352 MATHEMATICAL APPENDIX
R, | R, 41 c

or ——
B ¢ .RY c l B

and if the variates of the B team are fitted with weights b,
then the correlations of the B team, thus weighted, with
the separate tests of the 4 team are given by

C'b
o —— —
Vb'Bb
and the square of the correlation coefficient between the
two teams is then—
b'CA~'C'h
BiBb "
The maximum intercorrelation, and other points of in-
flexion in 2, will be given by—
d)r/db = 0
ie. (CA'C' —»Bb =0 . . .(313)

a set of homogeneous equations in 5. We must therefore
have—

. (3L.1)

. (31.2)

|CATIC—AB| =0 . .  .(814)

an equation for A with as many non-zero roots as the num-
ber of variates in the smaller team. For any one of these
roots A, the weights b are proportional to the co-factors of
any row of (C4A~'C’' — aB). The corresponding weights
a for the 4 team are then found by condensing the team B
(using weights b) to a single variate and carrying out an
ordinary regression calculation.

The result is to  factorize ”’ each team into as many
orthogonal axes as there are variates. These axes are re-
lated to one another in pairs corresponding to the roots A.
Each axis is orthogonal to all the others except its own
opposite number in the space of the other team, arising
from the same root 1 as it does, to which axis it is inclined
at an angle arccos VA. Where one team has m more
variates than the other, m of the roots will be zeros and
the corresponding axes will be at right angles to the whole
space of the other team. This form of factorizing has been
called by M. S. Bartlett (1948) eaternal factorizing, since
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the position of the * factors " or orthogonal axes in each
team, in each space, is dictated by the other team.

The weightings corresponding to the largest root give
the closest possible correlation of the two weighted teams.
If the two teams are duplicate forms of the same tests, this
is the maximum attainable battery or team reliability
(Thomson 1940, 1947, 1948). In this case Peel (Nature,
1947) has shown that a simpler equation than 31-4 gives
the required roots. If A = u® Peel’s equation [H===

|C —pd| =0 . 3 . (81.5)
where A differs from C only in the diagonal elements, which
in A are unities but in C are reliabilities r;; of the individual
tests.

Green (1950) gives a transformation of this equation
which enables Hotelling’s iterative process (see Chapter
VII) to be used to find g, the maximum battery reliability.
For the diagonal elements 7 — {* of the matrix (C — pd),
Green writes—

= B | L.l

T =g
when 81-5 becomes equivalent to—

| DCD — pI| =0 ; : . (81.6)
wherein D is a diagonal matrix with elements (1 —r)h
[ is the unit matrix, and = w/(1—p)- The la‘tent vector
V corresponding to the largest latent root of DCD can then
be found by Hotelling’s process, and the best wmg7hts for
maximum battery reliability are pro.portl(')nal toDV =W.

The maximum reliability thus attained 15—
= WCeW/WAW
10. ‘Regression estimates of factors—
fications— ‘
g = Mf . . . . (8)
¢ the tests, they cannot be measured
To all men Wwith the same set of
e set of estimated factors
may be different. The
mizes the squares of

When in the speci-

the factors outnumbe
but only estimated.
scores z will be attributed the sam
f, though their *true » factors M3
regression method of estimation mini

T.A—12
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the discrepancies between f and f, summed over the men.
The regression equation (81) will be for one factor f—

h ’
B0, . . (a
lm; R |

where m, is a column of M. Expanding, we have
. { = 1"5,16_1:,
and in general—

f=MR": . : . (88)
or, separating the common factors and the specifics—

fo=M/R 'z . . . (84)

h=MR's . SR

the latter of which shows that we know the proportionate
weights for each specific (the rows of R™!) even before we
know whether that specific exists (Wilson, 1934, 194).
The matrix of covariances of the estimated factors is—

4 ’ -_— r — gl

o e IM'OR ‘M, M/R~'M, 6

= METM, MRS, (86)

a square idempotent matrix of order equ;l‘ to the number
of factors, but trace only equal to the number of tests.

For one common factor, (84) reduces to Spearman’s

estimate—

g = = - & . (84a
Sl (G
r 2
where S=3_%
1 o Tign

while K = M/R~'M, in (86) reduces to S/(1 + ), the
variance of g.

10a. Ledermann’s short cut (1938a, 1939b).—The above
requires the calculation of the reciprocal of the large square
matrix B. Ledermann’s short cut only requires the reci-
procal of a matrix of order equal to the number of common,
factors. As long as the factors are orthogonal we have—

R=MM, +Ms . . . (10)
and the identity
My M~ (MM + M,*) = (MyM,~*M, + I)M,’
= (J 4+ I)M ' say.
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Premultiplying by (I 4 J)7' and postmultiplying by B~
we reach (I + J)My'M,~* = MyR™". 5 . (86.1)
and the left-hand quantity can then be used in Equation
(84).

This short cut requires modification when the factors are
oblique. See Equations (70.1) to (70.4) below.

11. Direct and indirect vocational advice.—If =z, is an
occupation and z a battery of tests, the estimate of a
candidate’s occupational ability is—

8, =1yR 72 ; 3 < . (87)

where the 7, are the correlations of the occupation with the
tests. If z, can be specified in terms of the common
factors of z, and a specific 8o independent of z, then an
indirect estimate of %, via the estimated f, is possible. We

have—
zg =mofo+ % - ’ . (88)

where m,’ is a row of occupation loadings for the common
factors f, of z, and also—

fo=MR™'

Substitution in (88), assuming an average S (=0)
gives—
PRSPl T gl i R RO (39)
But—

PO e (40)

and (89) is identical with (87) (Thomson, 1936a). 1f, how-
ever, S is not independent of the specifics § of -the batt.cry,
(40) will not hold, and the estimate (39) made via an estima-
tion of the factors will not agree with the correct estimate
37).
; 1)2. Computation methods.—The Doolittle ” _method.of
computing regression coefficients is widely used in Amencg
(Holzinger, 19374, 82). Aitken’s method, 1’Jsed _an

explained in the text, is in the pr:esent alilthors opinion
superior (Aitken, 19874 and b, with earlier retl‘clarence§)i
Regression calculations and many othgrs are a sll;ic,;lza
cases of the evaluation of a triple matrix product X ;

where ¥ is square and non-singular, and X and Z may
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be rectangular. The Aitken method writes these matrices
down in the form—

X v 2

=

and applies pivotal condensation until all entries to the
left of the vertical line are cleared off. All pivots must
originate from elements of Y. By giving X and Z special
values (including the unit matrix I) the most varied
operations can be brought under the one scheme.

18. Bartlett's estimate of factors.—We have z = M, f, +
M, f,, where f, and f; are column vectors of the common
and specific factors respectively and M, is a diagonal
matrix. Bartlett now makes the estimates f, such as will
minimize the sum of the squares of each person’s specifics
over the battery of tests, i.e.—

P
Sfo(f’fl) =0

(-

i.e.—
(—M,"*M)' (M,™'z — M, 'M,f,) =0
M M,z = MM, M, f,
= Jfy, say
fo=Jd MM,z . (41)
(Bartlett, 1937a, 100.)
One could also find the estimated specifics as—

h= - M7MJ'M/M )M, . . (42)
Substituting—

g =[M, ,M,] [?]

we get for the relation between f and f—
LiJ5 MM !
[fn] [ _________ ¥ -—“:r"r“:'] [ft!] = Af (48)
S A — M7 MMM LS

and for the covariances of f we get—

A4’ = [ ....... L D A S T v o
. 1I = MI—IM J_lMolMl-l] ( )




MATHEMATICAL APPENDIX 357

The error variances and covariances of the common
factors are—
(fo —fo)(fo _fo)' = J“1M'olluldl(flfll)lwfll‘fln']m1
=J MM MJT =T . (45)
(Bartlett, 1937a, 100.)
When there is only one common factor, J becomes the
familiar quantity—

(Bartlett, 1985, 200.)

As was first noted by Ledermann *—
I4J'=(MyR'My)~} =K' . (46)
(quoted by Thomson, 1938a) ; and using this we see that
the back estimates of the original scores from the regression
estimates f, are identical with the insertion of Bartlett’s
estimates f; in the common-factor part of the specification
equations, viz.—
MK M R™'z = M, 1M/ M,z . . (47)
(Thomson, 1938a.)
Bartlett has pointed out that, using the same identity, in
the form K = J(I — K), it is easy to establish th_e rever-
sible relation between his estimates and regression esti-
mates— : i X
Jo = Kfo fo =Ko J . (48)
(Bartlett, 1938)
and he summarizes their different interpretation and prop-
erties by the formule—

E{fo} = E{_fo} =0, E{(fo ’fo)(fo -fo)’} —I1—-K (49)

o E(fy — o0y =T .
Exlfo} = for Ex(fo—Jolllo - K_I}(I_ K) . (50)

where E denotes averaging over all persons, .E‘ ov?r e?ll
possible sets of tests (compara.ble th.h the given set m
regard to the amount of information on the group

factors fj)- : :
14. fﬁ&!tmminuﬁg.—ThE fact that estl_mated factors, if
the factors outnumber the tests, necessarily have less than .

# Letter of October 23, 1937, to Thomson.
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unit variance has sometimes been expressed in the case of
one common factor by postulating an indeterminate
vector ¢ whose variance completes unity. This ¢ may be
regarded as the usual error of estimation, and is a function
of the specific abilities (Thomson, 1934, B.J.P., 25, 92). That
M'R~'M in Equation (36) is of rank less than its order also
expresses the indeterminacy, and allows the factors to be
rotated to different positions which nevertheless fulfil all
the required conditions. In the hierarchical case the
transformation which effects this is (Thomson, 19354)—

f=0Be . : : . (51)
where B means the required number of rows of

B=I-—20q/gq . . . (52
in which—

¢; = l,/m; (see Equation 7) .- (58]

as far as there exist tests, after which ¢ is arbitrary.
For—
2 =Mf=MBp = Moy
since—
MB =M . . . (54)
and z is thus expressed by identical specification equations
in terms of new factors ¢. For such transformations in the

case of multiple factors see Thomson, 1936a, 40; and
Ledermann, 1938¢.

If the matrix M is divided into the part M, due to
common factors and the part M, due to specifics, as in
Equation (9), then Ledermann shows that if U is any
orthogonal matrix of order equal to the number of com-
mon factors, the matrix—

B=1—10 U)QY)~'

wherein— [ J

will satisfy the equation—
MB =M

Indeterminacy is entirely due to the excess of factors
over tests, i.e. to the fact that the matrix of loadings M
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is not square. It can be in theory abolished by adding
a new test which contains no new factor, not even a new
specific; or a set of new tests which add fewer factors
than their number, so that M becomes square (Thomson,
19345 ; 1935a, 253). In the case of a hierarchy each of
these tests singly will conform to the hierarchy, so that
their saturations I can be found ; but jointly they break
the hierarchy. If they add no new factors, g can then be
found without any indeterminacy. -

15. Finding g saturations from an imperfectly hierarchical
battery.—The Spearman formula given in Chapter I,
Section 5, is the most usual method. A discussion of other
methods will be found in Burt (1936, 283-7). See also
Thomson (19344, 870), for an iterative process modified
from Hotelling.

16. Sampling errors of tetrad-differences.—The formulee
(16) and (16a) given in the text are both approximations,
but appear to be very good approximations. The primary
papers are Spearman and Holzinger (1924 and 1925).
Critical examination of the formule have been made by
Pearson and Moul (1927), and Pearson, Jeffery, and Elder-
ton (1929). Wishart (1928) has considered a quar’lt.lty P
which is equal to P'N 2/(N — 1N — 2), where P’ is the
tetrad-difference of the covariances a instead of the correla-
tions, and obtained an exact expression for the standard

deviation o of P—

(N — 2)otee %‘%DHDM — D +8DyDy - (59)

where the D’s are determinants of the following matrix

and its quadrants :

| |
| &y | 3 4
ay G | 9w LT
__________ 22
l a
ag O3 O3y 31
| Gy Oas |

|

re necessary when the

: ate assumptions &
Bt . tetrad-difference of the

standard deviation of the ordinary
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correlations is deduced from that of P. The result for
the variance of the tetrad-difference is—

N +1
(N —=1)(N —2) (

where R is the 4 X 4 determinant of the correlations.

17. Selection from a multivariate normal population.—
The primary papers are those of Karl Pearson (1902 and
1912). The matrix form given in the text (Chapter XIX,
Section 2) is due to Aitken (1984), who employed Soper’s
device of the moment-generating function, and made a
free use of the notation and methods of matrices. A
variant of it which is sometimes useful has been given by
Ledermann (Thomson and Ledermann, 1938) as follows.
If the original matrix is subdivided in any symmetrical
manner ;

1 —ryp')(1 —1y®) — R . (56)

‘ RPP RW RP’ I{l"

i R'IP 7 I{W RQ'

J R sp ‘R.tq R.m Rat

{ Rtp qu R is RM >
s

and R, is changed by selection to V,» then each resulting
sub-matrix, including V,, itself, is given by the formula—

Vyo=R,;— R, E,R } .
af B appp Vpf ! 57)
where— E, =R, — RV, R, :

17a. Maximum likelihood estimation.—The maximum
likelihood equations for estimating factor loadings (Lawley,
1940, 1941, 1943b) may be expressed fairly simply in the
notation of previous sections. It is necessary, however,
to distinguish between the matrix of observed correla-
tions, which we shall denote by R,, and the matrix—

R=MM, + M

which represents that part of R, which is * explained * by
the factors.

The equations may then be written—
My = MIRAR, . . . (58)
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These are not very suitable for computational work.
It may, however, be shown that— 3 :
My/R' = — KEYM/M,* =(I + J)IMy M7 (59)
where, as before,
K =M/R'M,, J = My/M,~*M,
Hence our equations may be transformed into the
form—
M= (%5 HM/M, 7R, . . (60)
or alternatively,
M, = J- (MM, Ry — My) . (61)
When there are two or more general factors the above
equations will have an infinite number of solutions corre-
sponding to all the possible rotations of the factor axes.
A unique solutien may, however, be found such as to
make J a diagonal matrix.
Finally, if we put—
L == MO’M1—2R0 == 1"10'
V = LM, M,,

then, from the last set of equations
V = JM/M, My = J?

Hence we have—
My = VL

These equations have been found ;
practice, since they can be solved by an iterative process.
When first approximations to M, and M, have l-Jeen.ob-
tained, they can be used to provide second apprommatmns

by substitution in the right-hand side. .

18. Reciprocity of loadings and factors W persons and

traits (Burt, 1937 b).—Let W be a matrix .of scores ceptred

both by rows and columns. Its dimensions are traits X

persons (t . p), and its rank isf :hw}(lierebvlf li e;lllclrftllllzr tgi;l:
1 ) : e double .

both t and p consequence o L e oz

two matrices of covariances are : r .
heorem first enunciated by Sylvester

for persons, and by a t !
! 2 Y their non-zero

i i tly discovered by Burt), :
e (mdependen Y If their dimensions differ,

latent roots are the same. di
i.e. t + p, the larger one will have additional zero roots.

F.A—12%

(62)

the most convenient in
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Let the non-zero roots form the diagonal matrix 1.  Then
the principal axes analyses are :
W = H,D'F,, dimensions (t . r)(r . r)(r . p)
and W= H,D'F,, dimensions (p . r)(r . r)(r . 1)
where H, and H, are the latent vectors of WW’" and W'W,
while F, is the matrix of factors possessed by persons,
F, that of factors possessed by traits. From the analysis
of W we have, taking the transpose—
W'= F,'"D'H,’, dimensions (p . 7)(r . 7)(r . 1)

and comparison of this with the former expression for W’
makes the reciprocity of H, and F,’, F, and H,’, evident.

19. Oblique factors. Structure and pattern.—In Thur-
stone’s notation, which we shall follow in this paragraph,
the matrix M of our equation (8), when it refers to centroid
factors, is called F. Our equation (8) becomes in his
notation—

s =Fp

Since centroid factors are orthogonal, F is both a pattern
and a structure. The structure is the matrix of correla-
tions between tests and factors, i.e. :
Structure = sp’ = (Fp)p’ = F(pp') = FI = F = Pattern.

When the factors are oblique, however, this is not the
case. In that case, Structure — Pattern ¥ matrix of
correlations between the factors.

Thurstone turns the centroid factors to a new set of
‘positions (still within the common-factor space, and in

general oblique to one another) called reference vectors.
The rotating matrix is A, and
V=FA : 5 . (68)
is the structure on the reference vectors. The cosines of
thff angles between the reference vectors are given by A’A.
_V 1s not a pattern. Its rows cannot be used as coeflicients
In_equations specifying a man’s scores in the tests, given
his scores in the reference vectors. The pattern on the
reference vectors would not have those zeros which are
found in V.
The primary factors are the lines of intersection of the
hyperplanes which are at right angles to the reference
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veetors, taken (r — 1) at a time where 7 is the number of
common factors, the number of dimensions in the common-
factor space. They are defined, therefore, by the equations
of the hyperplanes, taken (r— 1) at a time. These

(64)

where 2 is a column vector of co-ordinates along the
centroid axes. The direction cosines of the intersections
of these hyperplanes taken (r — 1) at a time are therefore
proportional to the elements in the columns of (AT
and to make them into direction cosines this has to have
its columns normalized by post-multiplica.tion by a diagonal
matrix D, giving for the structure on the primary factors
_ F(A)™'D : : . (65)
D is also the matrix of correlations between the reference
veectors and the primary factors, for
N(A)D =D . ; . (66)
Each primary factor is therefore correlated with its own
reference vector but orthogon‘al to all the others, as can
also be easily seen geometrically.
The matrix of intercorrelations of the p
is DA~Y(A)™'D from equation (65).
If W is the pattern on the prim
test scores s = Wp
then the structure on the primary factors is
sp’ = Wpp'
trix of correlations

equations are Apetp

rimary factors

ary factors p, SO that
also

where pp’ is the ma between the primary

factors, and therefore : 7
primary factor structure = WDA';(A )~'D (
Also, this structure — F(A)~'D from (65).
Equating these we have :
WDA™' =F (68)
-1
whence w Z 1:’ Al_?l : _(69)
N , fore,
We have, thereior WS Patte)r'nl
s B F(A')™ } 70
Reference vectors - "~ BA)D FAD- (70)

Primary factors
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where the reference-vector pattern has been entered
by analogy but could easily be independently found.
It will be seen that the structure and pattern of the
primary factors are identical with the pattern and strue-
ture of the reference vectors except for the diagonal
matrix D. The structure of the one is the pattern of the
other multiplied by D.

This theorem is not confined to the case of simple
structure, but is more general, and applies to any two sets
of oblique axes with the same origin 0, of which the axes
of the one set are intersections of ** primes  taken » — 1
at a time in the space of r dimensions, and the axes of the
other set are lines perpendicular to those primes. By
-prime is meant a space of one dimension less than the whole,
i.e. Thurstone’s hyperplane. The projections of any point
P on to the one set of axes are identical with the projections
thereon of its oblique co-ordinates on the other set, which
sentence is equivalent to the matrix identities (see 70)—

KN =FAD™ % D
and F(A)"'D=F(A')"'x D
Structure |  Pattern on ‘[Cosines to project it
on one set [~ other set } | on to the first set.

A diagram makes this obvious in the two-dimensional case
and gives the key to the situation. A perspective diagram
of the three-dimensional case is not very difficult to make
and is still more illuminating. The vector (or test) OF
is the “ resultant  of its oblique co-ordinates (the pattern),
but not of its projections (the structure). It is of interest
to notice that, either on the reference vectors or on the
primary factors—

Pattern x Transpose of Structure = Test-correlations.

This serves as a useful check on calculations. It is geo-
metrically immediately obvious. For consider a space
defined by » oblique axes, with origin 0, and any two
points P and @ each at unit distance from 0. The direc-
tions OP and OQ mav be taken as vectors corresponding
to two tests, and cos POQ to the test correlation.

Consider the pattern, on these axes, of OP, and the
structure, on the same axes, of OQ. The former is com-
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posed of the oblique co-ordinates of the point P, the latter
of the projections on the axes of the point @, which pro-
jections (OQ being unity) are cosines. Then ‘the inner
product of those oblique co-ordinates of P with these cosines
obviously adds up to the projection of OP on O, that is
to cos POR, or the correlation coefficient.

In estimating oblique factors by regression, since the
correlations between factors and tests must be used, the
relevant equation is

fo = {FA)'DYR'= o)
Ledermann’s short cut (section 10a above) requires consider-
able modification for oblique factors. We no longer have
R =MM, + M?* . . . (10)
but
Pattern % transpose of structure + M;* =
i.e. in Thurstone’s notation

(FOAD‘I){FO(A’)‘lD}' 4+ Ft=R . (70.2)
and using this (Thomson, 1949), we reach the equation
fo =T J)“{FO(A’)'ID}’FI""Z 5 . (70.8)"

where now

J = {Fy(A)"'DYF(FeAD™Y) . . (104)

in place of Ledermann’s J = MM, M.

Only reciprocals of matrices of order equal to the
number of common factors are NOw required, but the
calculation, like all concerning oblique factors, is still one

of considerable labour. ]
19a. Second-order factors.—The above primary factors

can themselves in their turn be factorized into one, two, or

more second-order factors, and a factor-specific for each

primary. If the rank of the matrix of interco?relations
diagonal entries to say

of the primaries can be reduced by

two, thI()en the 7 primaries will be replaced by 7 +2 se'co.nd-
order factors which will no longer -be in the erglqal
common-factor space. The correlations of the primaries
with these second-order factors will form an oblong matrix
with its first two columns filled, but eqch succeeding
column will have only one entry corresponding to & factor-

specific, thus :
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r n r . .

r 4 5

r 7 r ‘ - E (say),
it r /o

r r 9

where subseripts must be supplied to indicate the primary
(the row) and the second-order factor (the column).

The primary factors can be thought of as added to the
actual tests, their direction cosines being added as rows
below F', which thus becomes :

j I"

i
| DAY

Imagine this matrix post-multiplied by a rotating matrix
¥, with r rows and r + 2 columns, which will give the
correlations with the r -+ 2 second-order factors. The
lower part of the resulting matrix will be E, which we
already know. That is—
DAY = F ; - o 0
o= ADE . - o (T2)
and the correlations of the original tests with the second-
order factors are then :
G=FY =FAD'E = VD 'E 5 (78]
G is both a structure and a pattern, with continuous
columns equal in number to the general second-order
factors, followed by a number of columns equal to the
number of primaries, this second part forming an orthog-
onal simple structure.

20. Boundary conditions.—These refer to the conditions
under which a matrix of correlation coefficients can be
explained by orthogonal factors which run each through
only a given number of tests. The problem was first
raised by Thomson (1919h) and a beginning made with
its solution (J. R. Thompson, Appendix to Thomson’s
paper). Various papers by J. R. Thompson culminated
in that of 1929, and see also Black (1929). Thomson
g ‘returned to the problem in connexion with rotations in the
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common-factor space (Thomson, 1936b), and Ledermann
gave rigorous proofs of the theorems enunciated by
Thomson and Thompson and extended them (Ledermann,
1986). A mecessary condition is that if the largest latent
root of the matrix of correlations exceeds the integer s,
then factors which run through s tests only and have zero
loadings in the other tests are certainly inadequate. This
rule has not been proved to be sufficient, and when applied
to the common-factor space only it is certainly not suf-
ficient, though it seems to be a good guide. Ledermann
(1936, 170-4) has given a stringent condition as follows.
If we define the nullity of a square matrix as order minus
rank, then if it is to be possible to factorize orthogonally a
matrix of B rank 7 in such a way that the matrix of load-
ings contains at least r zeros in each of its columns, the
sum of the nullities of all the r-rowed principal minors of
R must at’least be equal to 7.

21. The sampling of bonds.—The root idea is that of the
complete family of variates that can be made by all possible
additive combinations of bonds from a given pool, and
the complete family of correlation coefficients between
pairs of these. Thomson (1927b) mooted the idea and
worked out the example quoted in Chapter XX. He
had earlier (1927a) showed that with all-or-none bonds the

most probable value of a correlation coefficient ‘is \'/(plpz),
where the p’s are fractions of the whole pool forming the

variates, and the most probable value of a tetrad-difference

F, zero. Mackie (1928a) showed that the mean tetrad-
for Fi—

difference is zero, and its variance,

1
o' =N — 1{111193 1 pypy + P1Pa Tt PaPs T 2(p1pePs

+ pupaps + PiPaPa 1 papspa) T AP1P2PaPs
Al -”2)-2 (1 — p(1 — Pt — o)L = PO

( 1
where N is the number of bonds in the whole pool. He
found for the mean value of 75 the value V(pipe)s and for
its variance—
2 (e o1 ﬂ
o =
T2 N-—-1
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This is not the variance of all possible correlation
coefficients, but of those formed by taking fractions p, and
P, of the pool. The whole family of correlation coeflicients
will be widely scattered by reason of the different values
of p, “rich” tests having high correlations, and those
with low p, low correlations. Mackie (1929) next extended
these formule to variable coeflicients (i.e. bonds which no
longer were all-or-none). He again found the mean value
of F' to be zero, and for its variance—

4N — 1)(N — 2\12 . 9(N
ot BN = 1K 2){?:(1_1)J w2 i3 1)

f-Q))

9
The presence of - in this is due to Mackie’s limitation to
™

positive loadings of the bonds. Thomson (1935h, 72)
removed this limitation and found—
2(N — 1)
=~ VN:l
Similarly, Mackie found for variable positive loadings

(1929)—
ot =31~}

and for all loadings Thomson found (19355)—
1
~ N
Thomson suggested without proof that in general, when
limits are set to the variability of the loadings of the bonds,

resulting in a family of correlation coefficients averaging 7,
these correlations will form a distribution with variance—

Gyt

o,

i T
LA _N(l %)

and will give tetrad-differences averaging zero with a
variance—

o2 MN —1)N —2) {5‘(1 33 ;)}2 2(N — 1)

L N" +—'_'

1 — )
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Summing up, Thomson says (1935b, 77-8) : *“ The sam-
pling principle taken along gives correlations of all values
"~ and zero tetrad-differences if N be large. Fitting the
sampled elements with weights . . . if the weights may
be any weights . . . destroys correlation when N is infinite.
This means that on the Sampling Theory a certain approxi-
mation to *all-or-none-ness’ is a necessary assumption
—not to explain zero tetrad-differences, but to explain
the existence of correlations of . . . large size. . . . The
most important point in all this appears to me to be the
fact that on all these hypotheses the tetrad-differences tend to
vanish. This tendency appears to be a natural one among
correlation coefficients.”

A tendency for tetrad-differences to vanish means, of
course, a still stronger tendency for large minors of the
correlational matrix to vanish. In more general terms,
therefore, Thomson’s theorem is that in a complele fa.mi!y
of correlation coefficients the rank of the correlation matrix
tends towards unity, and that a random sample of variates
from this family will (in less strong measure) show the

same tendency. >
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Histogram, 13 ; of tetrad-differ-
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Simple structure, criticisms, 182 ;
Horst, 372 ; and independence
of units, 331 ff. ; Ledermann’s
method, 166 ; orthogonal, 151
ff. ; rotation to, 154

Singly conforming tests, 55.

Soper, 360.
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388

Thompson, J. R., 366, 375.
Thomson, passim, 375.

Trace of a matrix, 337,
Thurstone, L. L., passim, 376.
Thurstone, T. G., 377.

Tryon, 20, 26, 377.

Tucker, 121, 377.

Turnbull, 345.
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