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COMMENTARY ON « FAMOUS ARTEFACTS »
(P. H. SCHONEMANN)

On the mathematical relationship
between factor or component coefficients
and differences between means

John Horn

University of Southern California

By my reckoning, Schénemann is basically correct, although perhaps
not in every detail. If n variables are positively correlated and the means
on these variables (M;, M,, ... M,) for one group of subjects are larger
than the means for another group (m;, m,, ..., m,), then the corre-
lation between a ‘d’ vector of differences between the means M,-m,,
M,-m,, ..., M;-m_) and a ‘PC1’ vector of the first principal component
coefficients (C;, C,, ..., C,) for those variables (whether calculated
separately within the two groups or over the sample of the two groups
combined) is mathematically constrained to be positive, nonzero. This is
not so much an artefact (or, as more commonly spelled, artifact) as it is
an algebraic necessity. Guttman (1992) said this in words and in math-
ematical demonstration in his ‘last paper’ (Mulaik, 1992). Schonemann
cites that work, develops new demonstrations of the artefact, and points
out that Jensen (1992), in his analyses of eleven large data sets, and sev-
eral scientists who have accepted and praised Jensen’s analyses, seem
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not to have recognized the algebraic constraint, and instead have incor-
rectly regarded the correlation between the d vector and the PC1 vector
as entirely an ‘empirical discovery’ (Jensen, 1992, p. 232). I think the
point of Guttman’s and Schonemann’s demonstrations — the algebraic
restraint — can be made a bit more simply than they make it, and the
point can almost certainly be made less caustically and sarcastically than
Schénemann makes it, but I think he is quite correct in making the point
and in lecturing scientists to be more careful and cautious in their anal-
yses and writings, particularly when the results can be (or can be readily
interpreted as) denigrating to a whole class of people. It is neither good
science nor good ethics to proclaim that an outcome that is a result of
mathematical constraint is entirely empirical evidence in support an
hypothesis stipulating that Black persons, as a population, are inferior in
respect to a highly valued attribute, intelligence.

The constraint occurs under several different conditions, and the
magnitude of the constraint and hence of the correlation between the
component weights and the mean differences depends on which of these
conditions obtains. At one extreme are the conditions of factorial invari-
ance across two groups. My ‘simpler’ way of making Schénemann’s
(and Guttman’s) point stems from the case in which the conditions of
factorial invariance obtain. These are the conditions Jensen assumes
implicitly in his claim that the same g appears in different batteries of
tests, and in his claims that groups differ in respect to this g, but he
does not acknowledge these assumptions explicitly. These are the condi-
tions Guttman assumed (explicitly) in his demonstration of the constraint
for a case in which there is one and only one common factor - the
requirements of the Spearman model for g. These are the conditions
Schonemann assumed here (also explicitly) in his demonstration of the
constraint for the case of the first principal component in what he iden-
tified as a Level I interpretation. Both Guttman and Schénemann explic-
itly assumed that the covariance matrices for two groups are equal.

The condition of equal covariance matrices for different groupings of
people is a condition of strong factor invariance (Meredith, 1993). This
means that, in common-factor parlance, the factor pattern matrix, the
factor variances, the factor intercorrelations, and the variable commu-
nalities are the same - are invariant. For the case of principal compo-
nents, the full component pattern matrix (including the PC1 coefficients,
but also the PC2, PC3, ..., PCn coefficients) and component variances
are invariant. The factor means — component means — and variable
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means may differ under these conditions, and, of course, do differ for
the case under consideration. A single common factor, such as a g fac-
tor, is not required under these conditions, but the first common factor
coefficients (whether or not the Spearman g-model obtains) will be
invariant across the two samples. Most important the coefficients for
estimating the variables from the common factors or principal compo-
nents are the same for the two groups (as shown in some detail in Horn,
1991).

For the principal components case, any variable, Z. (fori = 1, 2, ...,
N, individuals in group 1 and i = 1, 2, ..., N, individuals in group 2)
can be calculated as a weighted linear composite of the principal compo-
nents as

The same linear composite, using the same a5 weights k = 1,2, ..., n
for n variables), is calculatedin both groups under the factor invariance
conditions: all that varies across groups are the component scores, Cyi-
(These scores can be calculated as linear combinations of the variables,
the weights being the values in the inverse of the matrix of the a;, again
the same for the two groups). The mean for Z. is the sum of each ay
times the corresponding mean of Cyi &k =1, 2, ..., n). Thus, if each of
the means for the Cy; is larger for the i = 1, 2, ..., N 1 individuals in
group ! than for the i = 1, 2, ..., N, in group 2, as is required under
the conditions specified by Jensen and Schénemann, then, for each in-
stance of j variables (j = 1, 2, ..., m), necessarily the mean of Z; for
the i = 1, 2, ..., N, individuals in group 1 is larger than the mean of Z
for the i = 1, 2, ..., N, individuals in group 2. More pointedly, the
largeness of the means is a direct function of the 3 coefficients for PC1
and in the order of magnitude of these a;, coefficients.

This 1s seen most simply and clearly in the extreme case of a non-
error g-factor and true specific factors, in which case essentially only
the first principal component is a non-error set of scores. In this case,
equation [1] reduces to essentially only

where e is random error: because the components beyond the first, Cy;
(k = 2, ..., n), are random variables, the weighted sum of these (aj2 Cy;
oty Cp) is e. This e can be set to an expected value of zero by,
for example, assuming the Cy;’s are in standard-score form or by scal-
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ing the C};’s to standard-score form: the negative Cy;’s then cancel the
positive C;.’s in the summation. In any case, the mean of Zj is a;; times
the mean of C,; (give or take some error). So if the mean o% Cy; is
larger for the group 1 sample than for the group 2 sample, then neces-
sarily the mean for each variable, Zj, for group 1 is larger than the
mean of that variable in group 2 and, most important, the variable
means are larger in precisely the amount, and thus in the order of, the
3 coefficients.

Concretely, if the component means for groups 1 and 2 are, say, 4
and 3, respectively, and the coefficients for the first principal compo-
nent are .70, .60, .50, .40, .30, .20 for variables 2,2y, 72y, 7, Zs,
Z, respectively, then the variable means for the first group are 2.8,
2.4,2.0, 1.6, 1.2, and 0.8, while for the second group the means are
2.1, 1.8, 1.5, 1.2, 0.9, 0.6, and the differences between the means are
0.7, 0.6, 0.5, 0.4, 0.3, and 0.2, which are in precisely the order the
principal component coefficients. This will be true for any difference in
the component means for the two groups, however small, and for any
range of values of the component regression coefficients.

Thus we see in this case that there is a perfect algebraic relationship
between the mean difference vector and the PC1 regression coefficients.
The relationship holds for both the Level I and Level II interpretations
of Schonemann’s article (since invariance across samples means that the
factor pattern matrix for the combined sample is the same as for the
separate samples). The only statistical assumption on which this demon-
stration of the relationship is based is the assumption that the specific
factors — components beyond the first — are random variables. It is easy
to see the relationship. It requires no complex mathematical reasoning.
One would think that Jensen would readily see it and acknowledge it.
And given that he saw it, he presumably would not then call Guttman’s
critique ‘peevish’ and resort to a specious argument that « Ipso facto,
nothing can be mathematically inferred about the rank order of tests’
means (or mean group differences) from a knowledge that the tests’
loadings on g or on any other factors extracted from the correlation
matrix. » (Jensen, 1992, p. 232). Unfortunately, Guttman’s and Schéne-
mann’s demonstrations of this relationship are a good deal more com-
plex — as well as more mathematically and statistically elegant — than
this simple demonstration. A consequence of this, it seems, is that
Jensen does not ‘get it’ and thus continues to proclaim that since his
« Spearman’s hypothesis has been consistently borne out on many inde-
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pendent sets of appropriate data , and no contrary data have been found,
it may legitimately claim the status of empirical fact » (Jensen, 1992, p.
232). This is unfortunate.

This demonstration of the dependent relationship between the vectors
of means and the vector of factor or component coefficients is essential-
ly only a restatement of the Spearman g-factor model stipulating one and
only one common factor: it follows from the statements of that model. If
the one-and-only-one common factor hypothesis is supported by data,
then the differences between means will be proportional to the factor or
component coefficients.

Jensen (1992) referred to the Spearman g-factor model as a « long
defunct ‘two-factor’ theory of mental abilities ») and added that he « ...
never used Spearman’s single factor method in testing what [he] termed
the Spearman’s hypothesis » (p. 226). This is unfortunate, for had he
worked with Spearman’s model, he very possibly would have noticed
the simple relationship shown: here.

This mathematical relationship does not prove anything empirically,
no matter how many times it is calculated on independent sets of data.
The relationship will always be found. It will always be nearly perfect
(except for the random e variance) if the Spearman g-factor model fits
the data.

The problem is the g-factor model never fits cognitive ability data if
the sample of abilities selected to test the model are well chosen to rep-
resent the diversity of what is referred to as human intelligence. In such
samples of abilities, it has always been found that more than one com-
mon factor is required to account for the covariance among the tests.
(Narrow samples of abilities carefully selected to indicate particular
common factors can be shown to fit the model, as in Horn (1997), but
when other abilities are added into these samples, the model no longer
fits the data).

It is found, also, that in different batteries of tests, broad and narrow,
the first linear composite, whether weighted as a first principal compo-
nent or not, correlates with the first linear composite of other batteries
of tests at varying levels from a low of close to zero to a high of close
to the reliabilities of the composites. The same common factor — the
same g — simply does not show up in different batteries of tests all of
which are said to indicate important features of human intelligence.

This is true of the general factors calculated at higher orders by
Schmid-Leiman (1957) transformation, as in Carroll’s (1993) tour de
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force study of hundreds of sets of data. Carroll identified a general
factor by Schmid-Leiman transformation in 33 separate analyses, but the
factor of one analysis was not the same as the factor of other analyses.
Some of these general factors involved crystallized knowledge and re-
trieval from long-term storage to a major extent; some involved mainly
fluid reasoning and broad visualization. Some involved still other con-
glomerations of common factors identified in the various studies Carroll
reviewed. The general factors did not meet the standards of even the
weakest form of factor invariance (namely, configural invariance, Horn
& McArdle, 1992). Although referred to as the (singular) general fac-
tor, the Schmid-Leiman factors were not replications of one factor; they
were different factors.

In his ‘Last Paper’ criticism of Jensen’s claims of support for the so-
called Spearman hypothesis, Guttman detailed much of the evidence
from structural (factor analytic) research indicating that the g-factor
model does not fit data. Schénemann here and in his 1992 paper cites
this evidence in his criticism of Jensen’s claims. I have cited this struc-
tural evidence, also, in criticisms of Jensen’s work (Horn & Goldsmith,
1981), and have reviewed a larger body of research the results of which
indicate that we have yet to find a general principle uniting all features
of human intelligence (e.g., Horn, 1989, 1991, 1997). This larger body
of research provides evidence not only from structural studies, but also
from studies of human development, behavior genetics, neurological
function, and prediction of achievement. The evidence is pervasive and
compelling, but it is almost entirely ignored by Jensen in his claims that
a particular g runs through large and diverse batteries of tests.

When the g-factor model does not fit data, there remains an algebraic
relationship between the mean difference vector and the PClregression
coefficients, but the correlation will no longer be a perfect 1.0. It will
vary lower than 1.0 depending on the non-error variance of the 3, Cy;
+o oy C,; components beyond the PC1 component. The e in equa-
tion [2] is replaced in part by non-error components. For example, if
there were one non-error component beyond the first, the equation
would be

The mean of the jth variable would now be function not only of ay
times the mean of C,;, but also a function aj, times the mean C,;. The
adding-in of the second component in Zj dilutes the amount by which
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the means (for groups 1 and 2) are dependent on the product of a; and
the mean of C;;. Thus, the correlation between the differences between
the means for groups 1 and 2 and the PC1 coefficients will be reduced.
How much this correlation will be reduced will depend on how large is
(the variance of) component 1 relative to component 2 or, more general-
ly, relative to the nonerror components beyond component 1 that are
added in and dilute the amount by which the means are dependent on
component 1.

The average of the Spearman hypothesis correlations in the calcula-
tions Jensen did on 11 sets of data was .59 (approximately the same
value Schonemann found in comparable analyses for 8 items relating to
the toys, the playing and the reading of children and among which there
was clearly no g-factor of general intelligence), This .59 is notably
smaller than 1.0. It indicates that the components beyond PC1 contrib-
uted substantial amounts of variance to the variables and thus substan-
tially affected the differences:between the means for the two groups in
Jensen’s studies. The results of Jensen’s analyses thus add to the
evidence that test data are not well accounted for by one general factor
(even when the general factor is not the same in different batteries of
tests).

Thus it is clear that Schonemann is correct in calling attention to
largely incorrect but widely announced claims that empirical evidence
demonstrates that scientists know how to specify and define a single fac-
tor that reliably represents the sine qua non of all putative indicators of
human intelligence — the same factor in different samples of such indi-
cators — and that this factor reliably distinguishes average differences
between populations of Black and White people. The empirical evidence
does not support these claims. Schénemann’s statement of this fact is
vigorous and usually clear. I would hope that it will be read widely. It
should help to break the field of scientific psychology away from the
preoccupation it has evinced in theory of, research on, and use of, the
much over simplified concept of general intelligence. The evidence on
human cognitive capabilities indicates that this domain is multidimen-
sional. Results from studies of methods has brought us to a point of
understanding that research on cognitive capabilities can now, and
should be, based on multigroup analyses of invariance of multivariate
equational models (Gustafsson, 1992; McArdle, 1988; Meredith, 1993).
Such research, not further divisive debate on race differences, should
direct our efforts in the future.
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