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The nature of the general factor of intelligence, or g, is examined. This article begins by observing that
the finding of a general factor of intelligence appears to be inconsistent with current findings in
neuroscience and cognitive science, where specific connections are argued to be critical for different
intellectual abilities and the brain is argued to develop these connections in response to environmental
stimuli. However, it is then observed that if people differed in neural plasticity, or the ability to adapt their
connections to the environment, then those highly developed in one intellectual ability would be highly
developed in other intellectual abilities as well. Simulations are then used to confirm that such a pattern
would be obtained. Such a model is also shown to account for many other findings in the field of
intelligence that are currently unexplained. A critical period for intellectual development is then
emphasized.

Perhaps the most well-known concept that scientific psychology
has provided to the wider community is that of IQ. Although few
people in the general public are familiar with concepts such as
latent inhibition and event schemas, IQ is recognized as an attempt
to identify and measure differences in that mysterious character-
istic known as intelligence.

However, although many researchers do agree that the charac-
teristic underlying IQ performance is a real one (e.g., Brody, 1992;
Jensen, 1998; Mackintosh, 1998; Neisser et al., 1996), substantial
differences exist as to its importance (e.g., Horn, 1998; Stankov,
Boyle, & Cattell, 1995). In addition, there is general dissatisfaction
with current explanations as to what it is that the tests are actually
measuring. Indeed, when recent advances in neuroscience and
cognitive science are considered, the notion of a general factor of
intelligence appears to be incomprehensible.

The purpose of the present article then is to attempt to bridge the
gap that currently exists between neuroscience and cognitive sci-
ence on the one hand and psychometric intelligence research on
the other. It is shown that principles derived from neuroscience and
cognitive science can be used to account for the general factor of
intelligence, but that this also leads to some perhaps unexpected
implications for intellectual development.

Current Approaches to Understanding Intelligence

Intelligence may be defined in many ways. One possible defi-
nition is the ability to adapt to the environment. In this sense, even
bacteria may be said to possess a form of intelligence. If we restrict
ourselves to human capacities, characteristics such as musical

ability (Gardner, 1983) and practical knowledge (Sternberg, 1985)
represent useful skills and may be referred to as different aspects
of intelligence (see also Carroll, 1993). However, at the same time,
it is often observed that some people seem to possess a character-
istic, commonly associated with terms such as “bright” and
“gifted,” which makes them better at many tasks that involve
reasoning and the understanding of relations.

This relation was first formalized by the work of Spearman
(1904). Spearman observed that people highly developed in one
intellectual ability tend to be, on average, highly developed at
other, different intellectual abilities as well. In other words, intel-
lectual tasks show positive manifold, whereby all tasks are posi-
tively correlated with each other to varying extents. Researchers
such as Spearman have concluded that this phenomenon indicates
that there is a general factor, referred to as g, that is common to all
tests of intellectual ability. In addition, because some tests have
higher correlations with this g factor than others, such tests are
argued to be more heavily dependent on this general factor (Brody,
1992; Jensen, 1998; Neisser et al., 1996).

In other words, if people who are good at one test are good at
other tests as well, it seems reasonable to infer that there is some
ability being tested that is common to both tests, hence the corre-
lation. In addition, because some tests are more highly correlated
with each other than others, these tests are more dependent on this
common factor for determining their performance than the other
unspecified abilities or factors that may cause variations in test
performance.

Therefore, on the basis of this belief, different tests have been
analyzed using factor analysis to determine the extent to which
they are correlated with each other. Tests most highly correlated
with each other were considered the most heavily g loaded, and
because g is required on all tests of mental ability, the tests most
heavily g loaded were considered representative of “pure” or
“raw” intelligence. IQ tests have then evolved as an attempt to
measure this factor (Jensen, 1981; Kaufman, 1990). This then
indicates that IQ tests are not intended to represent a crude com-
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posite or average of a number of divergent abilities but rather are
indicative of a single factor that underlies performance on many
different intellectual tasks. IQ tests and many other measures of
intelligence are thus designed to assess how a person is likely to
perform in many situations.

Changes in Intellectual Performance Over the Life Span

The relationship just discussed is further complicated when
people of different ages are considered. This is because perfor-
mance on intellectual tasks is not constant over the life span but
rather increases during the childhood years. Therefore, the IQ was
originally based on dividing a person’s mental age by their chro-
nological age. Whereas a person’s IQ was then argued to be stable
over time, this represented their rate of development and their
actual intellectual performance would be increasing. Further in-
vestigation revealed that mental age or reasoning ability appeared
to cease to develop at maturity, or about the age of 16 years. Thus,
originally, any person older than 16 years was taken to have a
chronological age of 16 when calculating their IQ score.

More recent advances in IQ testing have seen the quotient
measure replaced with a norming procedure, whereby a person’s
IQ indicates their level of intellectual development relative to other
people of the same age. However, the intellectual performance of
the norming groups has still been observed to increase with age, at
least until maturity, and this means that an older child with the
same IQ will perform better on a given test of intellectual ability.
This then indicates that it is possible to distinguish between what
this article refers to as intelligence as opposed to intellectual
abilities. Intelligence is used to refer to whatever it is that causes
individuals to perform better than others of the same age. On the
other hand, intellectual ability refers to a person’s actual perfor-
mance level on intelligence tests. Thus, a person’s intelligence is
represented by their IQ score and is stable over time, whereas their
actual intellectual abilities improve or develop over childhood
until maturity (Neisser et al., 1996).

An important further contribution to the area was made by
Cattell (1987; see also Horn & Noll, 1994). Cattell observed that
not all intellectual abilities stopped developing at maturity, but
rather two separate processes could be discerned. One set of
abilities, described as fluid intelligence, consisted of tasks that
depended heavily on an individual’s capacity to reason, manipulate
abstractions, and discern logical relationships. Typical tasks as-
sessing fluid intelligence included Raven’s Progressive Matrices
and Letter Series Completion. Performance on these tasks was
observed to stop developing at maturity and, indeed, to decrease
somewhat in later life. On the other hand, crystallized intelligence
consisted of the application of intelligence to learning acquired
through education and experience. Examples of tasks assessing
this characteristic included Vocabulary and General Knowledge. It
was observed that, unlike fluid intelligence, crystallized intelli-
gence could continue to develop throughout most of the life span.

Typical IQ tests then consisted of subtests that would weight
more heavily on either one of these two characteristics. However,
fluid and crystallized intelligence were still observed to be corre-
lated, suggesting that a general factor of intelligence did indeed
exist. For instance, Carroll (1993) studied more than 400 different
data sets and concluded that a general factor would account for
approximately 50% of the variance on even quite diverse batteries

of tests, although this amount did vary substantially from study to
study.

The general factor observed is commonly considered to be most
closely related to, and possibly even identical to, the factor causing
differences in fluid intelligence (Gustafsson, 1999). It is with this
factor that the current article is concerned. Although this only
represents a subset of cognitive performance, this factor does have
substantial influence on achievements in present society and also
contributes to performance on many other cognitive tasks as well
(Jensen, 1998).

Causal Influences on Fluid Intelligence

Many researchers have argued that once it is possible to objec-
tively measure a person’s level of intelligence through g, this can
be used to determine the relative contribution of heredity and the
environment to this factor. In addition, it may also be determined
whether intervention programs designed to boost intelligence do,
in fact, accomplish such an objective.

Thus, these researchers have investigated the stability of IQ over
the life span and the differences in IQ that occur between different
family members such as twins and siblings. In addition, the effect
of environmental enrichment programs on IQ has also been exam-
ined. From such studies, many researchers have concluded that IQ
is relatively immutable, with the heritability of IQ being argued to
be as high as .80 for the adult population. Therefore, the conclu-
sion has been made that intelligence is largely fixed by the genes
within the present environment and that attempts at increasing
intellectual abilities through environmental intervention programs
are largely unsuccessful (Bouchard, 1997; Brand, 1996; Jensen,
1998; Loehlin, Horn, & Willerman, 1997; Plomin & Petrill, 1997).
This view has also been popularized so that many lay people are
also led to believe this research (e.g., Herrnstein & Murray, 1994).

However, attempts at explaining the nature of the cause or
causes of g have been less successful. For example, Neisser et al.
(1996) represented a collaborative review by many of the leading
researchers in the field. They concluded that “differences in ge-
netic endowment contribute substantially to individual differences
in (psychometric) intelligence, but the pathway by which genes
produce their effects is still unknown.” (p. 97; see also Hunt, 1997;
Sternberg & Kaufman, 1998). Current attempts at explaining g,
such as speed of information processing or neural efficiency, are
also notable for their eschewing of current research on how the
brain does in fact process information (e.g., Eysenck, 1994; Haier,
1993; Jensen, 1998; Miller, 1994).

Apparently, though, this lack of knowledge of the underlying
basis of g does not negate the validity of using highly g-loaded
tests to determine whether intellectual abilities are determined by
heredity or not. However, let us now consider a theory that
explains the nature of the phenomenon that is generally referred to
as intelligence or fluid intelligence and see just how valid this
reasoning is.

Recent Advances in Neuroscience
and Connectionist Science

Since Spearman originally proposed the existence of g, much
has been learned about how the brain processes information.
Accordingly, although his notion of “mental energy” may have
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seemed credible at the time, it now seems antiquated. However,
current intelligence research has also failed to incorporate recent
advances that have taken place in the understanding of how the
brain works. These advances have come about from understanding
how neurons process information, observing the properties of
artificial neural systems, and examining how the human brain
develops. The derivation of this theory comes from a consideration
of these advances.

The Properties of Neurons

It is through the action of neurons that intelligent behavior
becomes possible. Therefore, an investigation of the properties of
neurons is likely to provide some indication as to the method by
which the brain can process information. This will then give some
suggestion as to the cause of individual differences in the ability to
process information.

The properties of neurons have been firmly established through
recent procedures such as electrophysiological recording of single
neurons and the patch clamp technique. In fact, the precise char-
acteristics of neurons have been specified both mathematically and
in computer simulations (Bear, Connors, & Paradiso, 1996; Kan-
del, Schwartz, & Jessel, 1991; Thompson, 1985). These studies
have shown that neurons represent a relatively simple gating
mechanism whereby inputs are summed, and if these inputs exceed
a certain threshold, an action potential is produced that is propa-
gated to all of the neuron’s attendant connections (Beale & Jack-
son, 1991; Dayhoff, 1990). The critical issue then is how a system
consisting of such units may produce meaningful or intelligent
behavior.

Given that intelligent responding at the neural level must ulti-
mately consist of the ability to arbitrarily map inputs to outputs,
some mechanism is required to allow this mapping. For instance,
in a particular situation, stimuli innervating neurons X and Y
should lead to the same response, the firing of neuron Z. Alterna-
tively, seeing the same word on a page written by two different
people should lead to the same vocalization. Adaptations such as
these will then enable the eduction of relations and correlates.
They will also facilitate the production of appropriate responses to
the environment.

The answer to this issue lies in changing the connections be-
tween the neurons. By changing the connections, the pattern of
activation through the network can be modified. This would then
allow the neural system to produce whatever pattern of firing
would represent, in the appropriate context, a meaningful process-
ing of the inputs.

This also appears to be the only way that the neural system is
able to do this.1 A neuron cannot decide to receive inputs from
only one neuron and not others to which it is connected. Inputs to
the dendritic tree result in changes in electropotentials across the
membrane that obey simple laws of conductance. Nor can the
neuron choose to send an action potential to only one axonal
branch and not another. Similarly, the neuron does not represent a
mechanism that can be acted on by external forces; thus, neural
activity is not able to shape its pathway through the neural network
actively. Rather, the neuron is a relatively simple processing unit
that operates independently of other neurons and whose firing is
determined by changing the connections between itself and the

other neurons (Judd, 1990). Therefore, this argues for a critical role
for the connections in the production of meaningful output.

The Properties of Neural Systems

The importance of the connections for processing information
has been highlighted in cognitive science with the development of
the connectionist approach (McLeod, Plunkett & Rolls, 1998;
O’Reilly & Munakata, 2000). This approach uses computer sim-
ulations of networks based on units with similar properties to
biological neurons. Cognitive scientists have found that, although
a neural system with undifferentiated or homogeneous connections
does not produce any type of meaningful behavior, by adjusting
the connections using a general adaptation mechanism many pro-
cessing phenomena are able to be modeled. In contrast, other
characteristics of the network such as the activation functions of
the units and the output functions are observed to be relatively
unimportant in determining the network’s behavior (Caudill &
Butler, 1990; Elman et al., 1996; Rumelhart & McClelland, 1986).

Consider the example of character recognition. Character rec-
ognition studies involve teaching artificial neural systems to re-
spond appropriately when presented with different letters or sym-
bols (M. M. Nelson & Illingworth, 1991). In such studies, an
initially undifferentiated neural system is presented with a number
of training stimuli, such as As and Bs. Each letter is presented in
various forms, such as in different handwriting and typed in
different fonts. Initially, when the network is presented with these
inputs, its response patterns do not reflect the commonality that
exists between the different forms of the letter. Rather, output is
just random. However, during subsequent presentations, the neural
system is trained to produce particular activations by adjusting the
connections within the network. For instance, one output neuron
would be trained to fire if and only if an A is presented to the
network, irrespective of the way the A is written. Other output
neurons would be trained to represent other letters.

After the training of the network, it is then found that not only
can the network correctly respond to letters from the training
stimuli, but it can also generalize to other letters that were not part
of the original training stimuli but that do share the same features
(e.g., two diagonal lines intersected by a horizontal line for the
letter A). Thus, the artificial neural network has learned to abstract
the concepts of the different letters.

A number of additional features are worth noting. For instance,
unlike digital computers, which must be programmed, the artificial
neural systems learn by experience with the stimuli involved, just
as humans learn. Also, once an appropriate rule is determined for
changing the connections in response to stimuli, such systems can
adapt to any structured stimuli with which they are presented,
leading to meaningful processing and output. The responses of the
network also generalize to novel instances, again like humans, and
they can solve problems such as character recognition in a few
computational steps. This is similar to human performance, which
is based on as few as a hundred computational steps from asking

1 Although it could be argued that changes in neuronal physiology could
also influence activation patterns, the implications of this would not affect
the ultimate conclusions of this article, namely that there is a critical period
for intellectual development.
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a question to answering and is unlike digital computers, which
have difficulty with character recognition despite being able to
perform millions of calculations every second. Finally, such neural
systems also exhibit gradual deterioration in performance with
damage, again similar to human performance (M. M. Nelson &
Illingworth, 1991; Rumelhart & McClelland, 1986).

A second, possibly more compelling example is that of NETtalk
(Sejnowski & Rosenberg, 1986). This is again an artificial neural
system, but this system has been developed to read out loud printed
text. NETtalk was presented with various texts such as the con-
tinuous informal speech of a child and the 1,000 most common
words in English. After training, it was found that NETtalk could
produce spoken utterances that were correct up to 98% of the time.
During the training of the network, it was also observed that the
system went through stages that mimicked the stages infants go
through when learning to talk, such as babble. In addition, a
number of relations the network had difficulty learning are also
relations that humans have difficulty learning (see also Appendix
A for a more detailed description of the NETtalk network).

This example is important because speech and reading are
characteristics that are very much a hallmark of the development
of intelligence, with more intelligent children being able to de-
velop these skills faster and more easily. In fact, people at the
lower extreme of the distribution for intellectual ability may never
develop the ability to read, and even speech may present a serious
difficulty.2

Artificial neural systems have had similar success modeling
many other behaviors which are generally thought of as being
intelligent. For example, pattern classification, language acquisi-
tion, decision making, application of rules, game playing, and even
musical composition (e.g., Churchland & Sejnowski, 1992; Ellis &
Humphreys, 1999; Kasabov, 1996; Levine, 1991; McClelland &
Rumelhart, 1986; Waltz & Feldman, 1988).3 Examples such as
these indicate that a neural network with undifferentiated connec-
tions will not respond in a manner that is at all intelligent or
meaningful. However, by adjusting the connections in response to
stimuli, neural systems are able to change their response patterns,
thereby extracting meaningfulness from the stimulus array and
producing adaptive responses.

Even harsh critics of the connectionist approach do not dispute
this point. For instance, Pinker and Prince (1988), in a well-known
critique of the connectionist approach, noted that “given what we
know about neural information processing and plasticity it seems
likely that the elementary operations of symbolic processing will
have to be implemented in a system consisting of massively
interconnected parallel stochastic units in which the effects of
learning are manifest in changes in the connections” (p. 183).
Similarly, Fodor and Pylyshyn (1988) argued that “there is the
route that treats connectionism as an implementation theory. We
have no principled objection to this view” (p. 67).

Thus, given the critical importance of particular, specific con-
nections for a neural system to produce meaningful output, the
next issue then is, how does the brain develop its connections?

Development of the Human Nervous System

Studies of brain damage have revealed that the cerebral cortex is
the brain area responsible for higher intellectual processes. It is
also a recent evolutionary development, which is at its most

advanced in humans. A histological examination of adult cortical
neurons reveals that these cells tend to form very idiosyncratic
connections with the other neurons of the cortex (Kritzer &
Goldman-Rakic, 1995; Mountcastle, 1998; Szentagothai, 1978).
This observed specificity of connections is then confirmed by
electrophysiological recordings, which reveal that there is only a
10% probability of two neighboring cortical neurons (within 300
�m) being synaptically coupled (Abeles, Prut, Bergman, & Vaa-
dia, 1994).

This then indicates that the cerebral cortex has evolved to
produce very complex connections between the neurons, in con-
trast to earlier evolved brain areas, which possess simpler and
more uniform neural circuits (Glees, 1988). These cortical con-
nections would then largely mold or restrict the patterns of acti-
vation through the network and would allow complex relations
between input and output. This would, in turn, affect intellectual
behavior.

Figure 1 then depicts the development of cortical neurons over
childhood. It can be seen that, when the child is born, the connec-
tions of the neuron are undifferentiated. However, during child-
hood the connections the cell makes with adjacent neurons become
more and more complex and idiosyncratic up until maturity, co-
incidentally when fluid intelligence stops developing (Blinkov &
Glezer, 1968; Mrzljak, Uylings, Van Eden, & Judas, 1990; Schade
& Van Groenigen, 1961). Thus, given the importance of these
changes in neural connectivity for the growth or development of
intelligence, the next issue is what causes these developments to
occur.

Perhaps the first possibility to be considered should be the
genes. In other words, the idiosyncratic growth in connections that
occurs over childhood represents a wiring diagram that is con-
tained within the genes and that is developed slowly over the 16
years until maturity. However, there are various problems with this
interpretation. First, there is not enough genetic material to even
attempt to code for all of the possible neural connections. In
particular, it is estimated that there are only 105 genes in mammals,
in contrast to as many as 1015 neuronal interconnections (Chan-
geux, 1985; Kandel et al., 1991). Second, even if there was enough
genetic information, how could the genes control such precise fine
tuning of the neural connections? Third, if the genes were used to
code the precise patterns of the neural circuits, one would question
the effects of meiosis.

These theoretical objections are then confirmed by the finding
that animals with the same genes possess different neural connec-
tions and may not even have corresponding neurons (Changeux,

2 These comments should not be taken as inferring that a failure to
acquire either speech or reading is necessarily a reflection of a lack of
general intelligence. Other impairments could exist that selectively affect
these processes while the individual is still highly intelligent in other
respects (e.g., deafness, dyslexia). However, these types of impairments
would not affect the broad range of abilities that are observed to be affected
by the general factor of intelligence.

3 This is not intended to suggest that just because an artificial neural
system can produce similar performance to humans, then human perfor-
mance is based on precisely the same neural mechanisms. Rather, it is
arguing that only by changing the connections, no matter how complex the
neural system, will meaningful output be obtained. For example, a sym-
bolic system would still need such an implementation.
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1985; Dayhoff, 1990). Therefore, the hypothesis that the genes
manage to precisely determine the fine-tuning of the neural circuits
can be rejected.

Perhaps then the development of these connections occurs
through an interaction with the environment, with stimuli causing
the connections to change so that the neural system can extract
regularities out of the stimulus environment. This would then lead
to meaningful processing, just as is demonstrated with artificial
neural systems that change their connections in response to pre-
sented stimuli. Thus, behavior would not be fixed by the genes;
rather, the neural system would be able to adapt to any relation or
phenomenon with which it is presented.

This would then mean that children would be able to learn to
read and write, even though their early ancestors did not possess
these skills and such skills were not even required. In fact, such a
mechanism would allow the person to adapt and function intelli-
gently no matter what the environmental requirements. Also, be-
cause the system is self-organizing, it would be able to cope with
various kinds of trauma such as neural loss, which would normally
severely disrupt the development of the system. In fact, the brain
would be able to develop approximately normally even if one
hemisphere was severely damaged in early life (Neville, 1991).

Research has confirmed that this is how the brain does develop
(e.g., Kolb & Whishaw, 1998; C. A. Nelson, 1999). The neural
system will exhibit both axonal and dendritic plasticity in response
to experience (Crutcher, 1986; Katz & Shatz, 1996; Mitchell,
1980; Wiesel & Hubel, 1963).4 In other words, neurons will
change their connections with other neurons based on environmen-
tal stimulation. This would then necessarily change the processing
characteristics of the neural system and would potentially allow it
to respond in a more meaningful way.

However, the time frame during which this process occurs has
also been observed to differ based on the brain area in question.
The cortical areas responsible for lower level processing such as
the primary visual cortex possess this plasticity only until about 5
years of age in humans (Brown, Hopkins, & Keynes, 1991). In

contrast, the brain areas responsible for higher abilities such as
language and fluid intelligence retain the plasticity process for
longer. This would then allow them to adapt based on the adapted
output of the lower areas.

For instance, Rakic (1995) examined data from both humans
and primates. It was noted that “another critical cellular event that
begins before birth but is completed primarily during infancy and
adolescence is the establishment of the fine wiring arrangement of
neural connections. At that stage, environmental stimulation
sculpts the final pattern of neural organization from an initial state
of excess cells, axons, and synapses” (p. 127). Huttenlocher (1990)
studied specifically human data and argued that these processes
stop at 16 years of age, the age at which fluid intelligence is also
generally considered to stop developing.5

Therefore, consider the possibility that the development of in-
telligence over childhood is due to this long-term process whereby
the brain gradually alters its connections to allow for the process-
ing of more complex environmental stimuli. This would then
account for the time frame of the development of intellectual
abilities.6

4 Neural plasticity in this article is used to refer to those processes that
involve major connectional changes of the nervous system in response to
experience and that are observed to cease to operate at maturity in humans.
These processes would be long-term in that any such changes would take
at least days for the necessary anatomical changes to take place. Therefore,
such processes could not directly affect responding on an IQ test that is
administered over a few hours (much less the few minutes required for
individual questions), but would contribute to the development of intellec-
tual abilities over childhood. This would also reflect the nature of these
processes, which is to base changes in specific connections on past envi-
ronmental input so as to enable more efficient processing of future envi-
ronmental experiences.

5 The observation that these processes cease to operate at maturity is not
meant to infer that the brain no longer has the ability to change in response
to experience after maturity. Indeed, adults continually show examples of
learning and memory. However, these processes would likely be due to
synaptic changes that involve the modification of existing connections and
would also likely be based on different principles to determine whether a
connection should or should not be strengthened. Similarly, the adult brain
may also show examples of major connectional changes in response to
injury, but these processes would likely be due to chemical signals being
released that activate previously dormant plasticity processes (Calford,
1995). The lack of some forms of neural plasticity after maturity may at
first seem to be unusual, but it should be realized that these processes
originated as mechanisms to determine the initial wiring of the nervous
system. Natural selection has then led to these processes being operational
for longer and longer time periods, as is demonstrated by the evolution
from apes to humans. Thus, the human brain is actually much more plastic
than other species. Precisely how the different plasticity processes do differ
is still very much open to conjecture, however, although the existence of
different forms of learning with different developmental periods indicates
that different plasticity processes do exist in the human brain.

6 The decline in fluid intelligence that is observed in later life may be
accounted for by the deterioration of the connections that is observed over
this same time (Anderson & Rutledge, 1996), although other explanations
are also possible (e.g., Li & Lindenberger, 1999). However, such expla-
nations cannot be used to account for individual differences in intelligence
because these characteristics would not lead to the same differences as is
observed by people who differ in g. For instance, g is characterized by a

Figure 1. Growth of the dendritic trees and axon branches of cortical
pyramidal neurons in the human, from fetus (left) to adult (right). From
“Progressive Neuron Differentiation of the Human Cerebral Cortex in
Ontogenesis,” by G. I. Poliakov in Development of the Central Nervous
System (pp. 11–26), edited by S. A. Sarkisov and S. N. Preobrazenskaya,
1959, Moscow: Medgiz. Copyright 1959 by Medgiz.
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However, this acknowledgment also appears to provide diffi-
culties for intelligence research. On the basis of this evidence, it
can be ascertained that different intellectual abilities require dif-
ferent neural circuits and that the brain depends on environmental
stimulation to develop these connections. Therefore, one would
not expect there to be any such thing as a general ability. However,
at the same time, psychometric studies do show a general factor of
intelligence. This factor also appears to be largely determined by
the genes. Therefore, how is this conundrum to be resolved?

A Supposition

It would be true to say that humans vary in many characteris-
tics—for instance, rate of hair growth, metabolic rate, production
of various enzymes, and so forth. It then follows that people may
also vary in terms of the plasticity process described previously. In
other words, some people would possess brains that are better able
to adapt their neural circuitry to environmental stimulation during
childhood.

In addition, a basic principle of evolution also argues that those
characteristics that have evolved most recently will also show the
largest variation across the population. Thus, because the ability to
adapt the neural circuits to the environment has evolved relatively
recently (Changeux, 1985; Glees, 1988; Killackey, 1995), it is
expected that there would be large individual differences in this
process. This is in contrast to other brain characteristics such as
neural transmission, which would be largely identical across dif-
ferent individuals. Therefore, let us consider the implications if
people did vary in neural plasticity or the ability to adapt their
neural circuits to the environment.

First, it should be apparent that a person’s relative level of
intellectual development would be a function of their brain’s
relative ability to adapt to the environment. In other words, be-
cause all people are largely exposed to the same environmental
experiences, individuals with more plastic brains would be more
highly developed at all intellectual abilities, irrespective of their
superficial characteristics. This is because all intellectual abilities
would be the result of the same adaptation process.

This is demonstrated in Appendix A, where it is shown that an
artificial neural network that is better able to adapt its connections
to the environment can learn to read faster, accommodate infor-
mation from the environment better, and score higher on an actual
fluid intelligence test. All of these characteristics are also shown
by people who are higher in g.

Alternatively, if there were not individual differences in neural
plasticity, then idiosyncratic differences in environmental experi-
ences would lead to idiosyncratic differences in different intellec-
tual abilities. Therefore, differences in neural plasticity are re-
quired to produce a general factor of intelligence when the brain
depends on an adaptation mechanism to develop the appropriate
connections.

Consider further what individuals with a very low rate of neural
plasticity would be like. Their neural circuits would be unable to
adapt appropriately to the environment to which they are exposed.

They would then remain childlike, reflecting their poorly devel-
oped neural circuits. They may even have difficulty with relatively
simple processing tasks such as learning to read. This description
would seem to correspond closely to those individuals who are
believed to suffer from mental retardation.7

In contrast, consider the example of people whose brains are
very good at adapting to the environment. They could then develop
the appropriate neural circuits to comprehend and understand any
phenomenon to which they are exposed. Therefore, these individ-
uals would seem to be advanced for their age and would be able to
grasp difficult concepts sooner. Thus, they would be considered to
be “bright” or “gifted.”8

Note, however, that according to this model intellectual abilities
are also in no way fixed, especially not by the genes. A person’s
neural network would possess the capacity to adapt itself to any
required tasks, as long as it is exposed to these problems before
maturity while the network is still malleable or plastic in this way.
However, there is an interesting occurrence when this model is
exposed to the current psychometric approach.

Evaluating the Psychometric Approach

As previously noted, an implication of differences in neural
plasticity would be that people highly developed in one intellectual
ability would be highly developed in other intellectual abilities as
well, the phenomenon known as g. However, there would not be
abilities that are more and less dependent on this process. Rather,
all intellectual abilities would develop as a result of the same
developmental mechanism.

However, there would still be abilities that would correlate more
or less with each other, and this would simply represent the degree
to which such abilities have differences in the extent to which they
are affected by idiosyncratic experiences in the environment. In

7 A comment should perhaps be made about the idiot savant syndrome.
It is often argued that these individuals demonstrate that people with low
intelligence overall can demonstrate high intelligence in some situations,
arguing against a general factor mediating intellectual performance. How-
ever, even a cursory examination of these abilities reveals that they are very
different to what is generally considered to be characteristic of fluid
intelligence, or the ability to reason. Instead, they consist of skills such as
number calculation and days of the calendar, abilities that do not involve
understanding or meaning but can instead be easily programmed into a
digital computer to perform (Nettelbeck, 1999). In contrast, the abilities
possessed by individuals of high IQ are not easily programmed into a
digital computer, and these individuals also cannot perform the feats like
number calculation and days of the calendar that idiot savants can.

8 Although it can be demonstrated using artificial neural network sim-
ulations that extremely high levels of neural plasticity can also be disrup-
tive to learning, the slow rate of acquisition of abilities for even high-IQ
individuals suggests that the range of plasticity for the human population is
considerably less than the optimum level. In addition, it is questionable
whether a biological system would ever be able to attain the level of
plasticity required to be maladaptive, given that such biological systems are
inherently limited in their plasticity because of structural constraints that do
not exist with mathematical models. For instance, a biological system does
not have the freedom to form connections with every other node in the
system after a single trial of learning. The connection pattern must be
gradually developed. This is in contrast to a mathematical system in which
every node can be hypothetically connected to every other node.

progressive increase in intellectual abilities over childhood, with people
developing at different rates. Similarly, as people become older, they do
not process information in the same way as people who are younger but
less intelligent.
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other words, those abilities that most correlate with each other
would be those that are a function of environmental experiences
that are largely identical across individuals. Thus, abilities with the
highest g loadings would not be abilities that require more of any
given factor; they are simply those that have the lowest environ-
mental variances. An example of this relationship using hypothet-
ical data is given in Appendix B.

Therefore, if one then examined these highly g-loaded abilities,
it would be found that they do possess relatively little environ-
mental variance. However, this would be because one has specif-
ically chosen to test abilities that statistical analyses have already
identified as having low environmental variances. These abilities
would also not be representative of intellectual abilities as a whole.
Rather, all of the other abilities with lower g loadings would have
greater environmental variance, and clearly, according to how the
brain adapts, all intellectual abilities are actually quite malleable,
although the relative ability to develop them is determined by
heredity. Therefore, to then use highly g-loaded abilities to be
representative of intelligence as a whole and use the invariance of
such abilities to argue that intellectual abilities in general are
immutable would be extremely misleading.9

The situation becomes even more confusing when we start to
look for evidence to support this view. According to the prior
model, it would be predicted that there would be no psychological
characteristic of a task that would determine its g loading. In
contrast, g loadings should be directly related to heritability.
Therefore, it is worth noting that intelligence research has failed to
identify any psychological attribute that determines the g loading
of a task. In contrast, Jensen (1998) noted that “the relative g
loadings of various tests predict their relative heritability coeffi-
cients” (p. 169).

The Development of Intelligence

Given these very different interpretations of the underlying basis of
intelligence, it should be possible to distinguish between them by
examining how abilities do, in fact, develop. According to the process
argued for here, such abilities are a function of environmental stim-
ulation. In contrast, the geneticist view argues that some other factor
is limiting development. Therefore, examining the development of
intelligence should provide some insight into this issue.

Piaget (1952; see also Flavell, 1963) performed the most exten-
sive study of the development of childhood intelligence, and
current research still supports his main findings. During these
investigations, Piaget identified two fundamental processes in-
volved in intellectual development: assimilation and accommoda-
tion. Assimilation involves the incorporating of experience into
present cognitive structures. However, if new experiences are not
compatible with these existing cognitive structures, the cognitive
structures are altered to accommodate the new experiences. In
other words, the neural connections are adapted to reflect the new
experiences. Thus, the plasticity processes described here are con-
sistent with the accommodation processes that are known to be
critical for intellectual development (see also Elman et al., 1996;
McClelland & Jenkins, 1991).

Piaget went on to argue that cognitive development was typified
by various stages of development. For instance, Inhelder and
Piaget (1958) evaluated children’s performance on a balance scale
task (Figure 2). In this task, children are required to judge which

side of the balance scale will go down given various combinations
of weight and distance from the fulcrum. The correct solution
involves multiplying the weight by the distance on each side of the
scale and predicting that the side with the greater magnitude will
go down. Siegler (1976) carried out more extensive investigations
of this task and identified four rules that may dictate performance.
It was found that children would proceed through these four rules
as they developed cognitively. These rules could also be used to
account for many other developmental phenomena as well.
(Siegler, 1981).

McClelland and Jenkins (1991) used an artificial neural system
to simulate performance on the balance scale task. They observed
that as the neural system adapted its connections to the environ-
ment, it would proceed through the same developmental stages
observed in children. In particular, it was noted that

The model captures several of the more intriguing aspects of cognitive
development. It captures its stage-like character, while at the same
time exhibiting an underlying continuity which accounts for gradual
change in readiness to move on to the next stage. It captures the fact
that behavior can often seem very much to be under the control of
very simple and narrow rules, yet exhibit symptoms of gradedness and
continuity when tested in different ways. It captures the fact that
development, in a large number of different domains, progresses from
an initial over-focussing on the most salient dimension of a task or
problem—to the point where other dimensions are not even en-
coded—followed by a sequence of further steps in which the reliance
on the initially unattended dimension gradually increases. (p. 69)

Therefore, this indicates that the development of the connections
is consistent with the development of intelligence. In addition, it is
observed that more intelligent people are more able to and can
more quickly accommodate experiences into their cognitive struc-
tures, and they also pass through the Piagetian stages faster (Car-
roll, Kohlberg, & DeVries, 1984; Humphreys & Parsons, 1979;
Jensen, 1980). This indicates that their neural systems can adapt
better, allowing for the development of structures that are more
compatible with environmental stimuli (see also Appendix A, in
which it is demonstrated that differences in neural plasticity would
lead to differences in the rate at which people would proceed
through the stages of the balance scale task described above).

In contrast, no explanation is given as to how current explana-
tions of g, such as myelination or neural efficiency, would lead to

9 Incidentally, it is often remarked that the evidence is unsupportive of
a Genotype � Environment interaction for intelligence (e.g., Loehlin et al.,
1997). However, this is a different relation to that described in this article.
It is concerned with whether the general factor or g is due to a Genotype �
Environment interaction, a view that is also being argued against in this
article.

Figure 2. The type of balance scale first used by Inhelder and Piaget
(1958) and later by Siegler (1976; 1981).
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the stagelike character of intellectual development. Nor does it
seem credible to argue that differences in the myriad of different
intellectual abilities are all due to a single factor such as myelina-
tion, ignoring the connections and the different ontogenies and
developmental trajectories of these abilities.

Other Support for a Neural Plasticity Model

It is never possible to prove conclusively that a given theory is
correct. There is always the possibility that another theory will be
discovered that provides a better explanation of the evidence.
Rather, the preferred theory should be the one that can most
parsimoniously account for all of the currently observed empirical
phenomena. This is particularly the case when the theory makes
definite predictions about the evidence that, if contradicted, would
lead to a modification or even rejection of the theory itself.
Therefore, the validity of a neural plasticity account rests on its
relative ability to account for the empirical findings that are
observed in intelligence research.

Attempts to Improve Intellectual Abilities

The first issue that may be examined is the effect that interven-
tion studies have on the development of intelligence. According to
a neural plasticity model, it is expected that environmental inter-
ventions in the form of intellectual training would improve intel-
lectual abilities. This is because environmental interventions
would increase exposure to the type of stimuli responsible for
normal intellectual development, thereby leading to faster adapta-
tion than would otherwise be the case. However, these same
interventions would not affect the underlying differences in neural
plasticity. Differences in neural plasticity would likely be deter-
mined by differences in the genes. For instance, neural plasticity
would need various neural structures to be present, whose exis-
tence would depend on particular genetic programs.

Therefore, it is expected that intervention programs would im-
prove the development of intellectual abilities relative to controls
as long as the children are part of the program. However, once the
intervention is removed, higher plasticity children who were not
part of the program would be expected to catch up and overtake
children from the program who possessed lower levels of plastic-
ity. Thus, over time, the relative rank of individuals would return
to where it was before the intervention.

This phenomenon has been consistently observed in the litera-
ture. Intervention programs do affect relative intellectual perfor-
mance, with the typical effects being between 5 and 20 IQ points.
However, at the conclusion of such programs, the IQ gains are
gradually lost relative to control groups (Brody, 1992; Neisser et
al., 1996). Similarly, schooling can also increase IQ performance
(Mackintosh, 1998). It should also be noted that the magnitude of
the IQ increase would be a function of the underlying differences
in neural plasticity. If there are large differences in neural plastic-
ity, then even relatively large interventions would not be sufficient
to overcome differences in this factor. This can be seen from the
examples given in Appendix A.

Another well-known phenomenon associated with intervention
studies is the lack of transfer from trained intellectual abilities to
other abilities (Brody, 1992; Detterman, 1993). This is again
consistent with the view that different intellectual abilities are

based on different neural circuits. In this case, the intervention
would be expected to improve the neural connections responsible
for the ability being trained, but this would not influence the level
of performance for other abilities. Rather, these other abilities
would still be dependent on the normal level of intellectual stim-
ulation for their development. Therefore, the lack of transfer
provides evidence that different intellectual abilities are based on
different neural circuits.

Finally, because intelligence tests are not measuring any direct
property of the brain but rather a characteristic that is due to an
interaction with the environment, differences across generations in
the amount and quality of environmental stimulation may also be
expected to change the mean level of performance on IQ tests. This
characteristic has again been observed, with performance on IQ
tests increasing by about 3 IQ points per decade (Flynn, 1996),
presumably because of changes in educational practices over this
time (Mackintosh, 1998). This effect has commonly been referred
to as the Flynn effect.

Thus, a neural plasticity model can account not only for the
stability of differences between individuals in intellectual perfor-
mance but also for the finding that the overall level of intellectual
performance can be seen to vary under differing environmental
conditions.

The Relationship Between Brain Size and Intelligence

Another relation that may be examined is the relationship be-
tween brain size and intelligence. Brain mass and volume progres-
sively increase over childhood, again until maturity (Morgan &
Gibson, 1991). However, the brain also possesses more neurons
shortly after birth than at any time thereafter. In fact, the loss of
neurons during early infancy can be quite severe. Therefore, be-
cause neurons are being lost over childhood, the increase in brain
mass and volume must be due to other factors.

The factor most likely to be the cause of the increase in brain
mass is the progressive increase in connection complexity over
childhood (Blinkov & Glezer, 1968; Epstein, 1979). The increase
in connections not only leads to an increase in volume directly, but
concomitant with the increase in connections is an increase in
support tissue, including myelination, blood vessels, glial cells,
and an elaboration of the nerve cells themselves (Diamond, 1991;
Konner, 1991; Sirevaag & Greenough, 1987). This is then sup-
ported by the finding that different environments not only lead to
the previously noted increase in connection complexity but also
increases in brain mass and volume as well (Kolb & Whishaw,
1998).

It could then be postulated that if people did differ in neural
plasticity and this was causing the differences in intelligence, it
would be expected that more intelligent people would also develop
larger brains. This is because a given amount of environmental
stimulation would cause more intelligent people’s brains to de-
velop more connections. However, it would also not be brain size
per se that is causing the differences in intelligence but rather that
brain size is an indication of relative connection complexity.
Therefore, other factors that influence brain size but that are not
indicative of connection complexity would confound the relation-
ship. For instance, people with larger bodies would also be ex-
pected to have larger brains, but this would be reflective of them
having greater surface area and hence more neurons than other
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people (Williams & Herrup, 1988). The possession of more neu-
rons would not affect the intelligent processing of information,
however. Therefore, one would expect there to be a stronger
relationship between intelligence and brain size once body size is
controlled for. Similarly, given that the differences in neural plas-
ticity would manifest themselves in differences in connection
complexity gradually over childhood, one would expect the cor-
relation between brain size and intelligence to increase over child-
hood as more intelligent people’s brains adapt more to the
environment.

Both of these relations have been observed. Advances in mag-
netic resonance imaging (MRI) techniques have allowed in vivo
investigation of brain volume in healthy individuals. It has been
found that there is a positive correlation between measures of
cortical volume and intelligence and that this relationship increases
when body size is controlled for (Jensen, 1998; Wickett, Vernon,
& Lee, 1994; Willerman, Schultz, Rutledge, & Bigler, 1991). In
addition, the relation between brain size and intelligence increases
over childhood (Jensen & Johnson, 1994).

Given the finding that there is a relation between brain size and
intelligence, it has also been argued that this is due simply to larger
brains possessing more neurons (e.g., Willerman et al., 1991).
However, there are a number of difficulties with this view. First, as
previously noted, the number of neurons actually decreases over
childhood. Therefore, it is difficult to see how a loss of neurons
could lead to the development or increase in intelligence over the
same time period. Similarly, if brain size was the limiting factor of
intelligence, then it would be expected that larger people should, in
fact, be more intelligent irrespective of body size, because their
brains would still be larger and contain more neurons. Because this
is observed not to be the case, it is sometimes argued that larger
bodies also have more information to process. However, larger
bodies still have similar processing requirements in terms of the
number of arms and legs, number of mouths, and many other
characteristics. In addition, even if it was acknowledged that the
primary processing areas do have more work to do, larger people
would also have larger general association areas. Therefore, it
would still be expected that they could understand more relations
compared with people with smaller brains, if intelligence was
simply determined by neuron number.

The view that larger brains are necessarily more intelligent also
has difficulties when the properties of neural systems are again
considered. The addition of more neurons in itself would not affect
the pattern of activation in a network. Also, the NETtalk network
shows only minimal increase in performance when the number of
elements is increased from 60 to 120 (Sejnowski & Rosenberg,
1986). Therefore, given that even a small human brain would have
many millions of neurons for an ability such as speech, increasing
the number of neurons by a few percentage points would not seem
to be a critical contribution. This is in contrast to the crucial
importance of the connections in determining processing output.

Differences in Neural Speed and Neural Efficiency

A brain that is more able to adapt its connections to the envi-
ronment may also be expected to show other characteristics as
well. For instance, a network with stronger and more appropriate
connections would be able to process even relatively simple tasks
faster and with less error. This has again been observed, with more

intelligent people having faster reaction times and showing less
variability in reaction times even on simple tasks (Jensen, 1998).
This relationship has been confirmed in the simulation work of
Anderson (1994; Anderson & Donaldson, 1995), where it has been
shown that differences in the number of connections would ac-
count for the observed reaction time data, unlike other possible
explanations such as differences in the speed of transmission,
which cannot explain the reduced variability in reaction times.

A network with better connections would also be more tuned to
environmental stimuli. This would result in the brain being less
active when processing information as the network has developed
the capacity to discriminate between different inputs, leading to
only the appropriate relations being activated. This is then con-
firmed with positron emission tomography (PET) studies that
show that the brains of more intelligent people are less active when
processing information, as revealed by glucose metabolism (Haier,
1993). Thus, differences in speed and efficiency can be attributed
to differences in the connections between more and less intelligent
people.

Differences in the Neural Connections

Perhaps the most direct way of establishing whether differences
in the neural connections are the cause of differences in intellectual
abilities would be to examine the connections themselves. There-
fore, it is worth noting that in some cases the only detectable brain
difference in mentally retarded individuals as opposed to normal
controls is a lack of dendritic branching (Huttenlocher, 1991). In
contrast, individuals who have obtained a higher education, and
who were presumably more intelligent, have been observed to
have greater dendritic complexity (Jacobs, Schall, & Scheibel,
1993).10 Unfortunately, however, the lack of biographical infor-
mation that can be obtained from autopsy patients limits the data
with which conclusions can be made.

Modularity

Much interest has arisen in the issue of modularity of brain
function (Fodor, 1983). Sometimes evidence for modularity has
also been taken to be evidence against the notion of a general
factor of intelligence. However, such findings are quite compatible
with a neural plasticity account of intelligence. The simulations in
Appendix A show that neural networks may be completely inde-
pendent and yet be related to each other through a common
adaptive process. In this case, brain localization studies and studies
of brain damage will reveal different areas specialized for different
tasks, and yet the abilities will be related in the normal population.
Incidentally, such a finding also does not provide evidence against
some other theories of g such as speed of information processing,
which would again postulate that there is some widespread quality
of brain processing that is beneficial to many different functions.

10 Note, however, that it is not more connections per se that would lead
to superior intelligence. Rather, more connections would be indicative of
the brain possessing the capacity to develop connections in response to
stimulation. Some individuals may have relatively high connection com-
plexity but poor intellectual abilities because the neurons have formed
inappropriate connections.
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Thus, the evidence for (or against) modularity is surprisingly weak
in its implications for the nature of g.

Current Explanations of Intelligence

There have been many attempts at providing an explanation for
g. Some researchers have used the previously mentioned correla-
tion between performance on simple reaction time tasks and IQ to
argue that a characteristic such as speed of information processing
is the cause of g (e.g., Jensen, 1998; Miller, 1994; Vernon, 1992).
Other researchers have argued that g is due to greater efficiency of
processing (Haier, 1993) or fewer errors in neural transmission
(Eysenck, 1994). However, these theories appear to suffer from a
number of difficulties. First, they seem to disregard recent research
arguing that the connections are critical for intellectual develop-
ment. This is even though differences in intelligence are charac-
terized by differences in intellectual performance that are charac-
teristic of differences in the connections (see Appendix A). In
contrast, no attempt is made to show how increasing the speed of
nerve transmission or the efficiency of the brain would result in a
better transformation of input, let alone reproduce the differences
in performance that distinguish people of differing intelligence.
Rather, these theories leave unresolved the issue of how the brain
is actually able to solve intellectual problems. It is also not possible
to argue that the connections are responsible for normal develop-
ment and some other factor then leads to individual differences,
because individual differences in intelligence are determined by
the rate at which abilities are developed.

These issues can be illustrated when the properties of artificial
neural systems are observed. These neural systems are mathemat-
ical models of biological systems and assume instantaneous and
perfect nerve transmission (Rumelhart & McClelland, 1986).
Therefore, it would be expected that these models would have
immense computational power, in contrast with the human brain,
in which these characteristics are supposed to limit the meaning-
fulness of processing. However, in reality, an artificial neural
system with perfect processing and transmission characteristics
does not implicitly show any intelligent processing properties. It is
only once the connections are adapted that intelligent-like perfor-
mance occurs (see also Mackintosh, 1986, 1998; Stankov & Rob-
erts, 1997, for criticisms of speed as the underlying cause of
intelligence).

Other researchers have argued that differences in g are based on
differences in working memory capacity (Kyllonen & Christal,
1990). This is based on the observation that more intelligent people
can store more complex mental representations and perform more
complex transformations on those representations. These charac-
teristics would again be determined by the neural connections. At
the same time, a characteristic such as dendritic density or ar-
borization cannot be used to explain g, because these attributes in
themselves do not determine the validity of the processing of a
neural network. For instance, 100 artificial neural networks could
be randomly created with the same connection density as the
NETtalk network shown in Appendix A, but none of these would
perform any better than chance levels. Connectionist science has
revealed that a general property of the connections will not lead to
meaningful processing, but rather the connections must be specif-
ically adapted to whatever function they are performing. Hence,
any theory of g must be able to allow for a general factor of

intelligence, while at the same time allowing specific adaptations
to be made for different intellectual abilities.

Another approach has been to argue that there is not some
general process, but rather g is due to the sampling of a number of
different, but overlapping, modules (Detterman, 1994). However,
this account again seems unconvincing. What module would be in
common and hence account for the correlation between perfor-
mance on an inspection time task (Nettelbeck, 1987) and detection
of the number of notes in a musical chord (Lynn & Gault, 1986)?
Similarly, the tasks with the two highest g loadings are typically
Raven’s Progressive Matrices and Letter Series Completion
(Jensen, 1998). By the sampling account, these two tasks must
have more components in common with each other than with any
other intellectual tasks. However, they would again seem to be
based on very different processes for their solution, as would be
demonstrated if they were instantiated within network simulations.

Another failing of all current theories of intelligence is that they
simply cannot account for all of the observed data about intelli-
gence. For instance, how does speed of information processing
account for the Flynn effect, the effect of intervention studies, or
differences in the connections between more and less intelligent
people? Similarly, how does working memory capacity account for
intelligence being related to very simple processing tasks such as
inspection time, again the effect of intervention studies, or differ-
ent stages in the development of intellectual abilities? These lim-
itations in current theory are recognized by current intelligence
researchers. For instance, Jensen (1998, p. 257) noted that “we
have a number of suggestive neurological correlates of g, but as yet
these have not been integrated into a coherent neurophysiological
theory of g. There are still too many missing pieces of the jigsaw
puzzle to be able to assemble a complete picture.” It is my position
that differences in neural plasticity can go some way toward
resolving this issue. Differences in neural plasticity can provide an
account of many of the findings that have been observed in
intelligence research, including differences in reaction time on
simple tasks, the Flynn effect, the effect of intervention studies, the
stagelike nature of development, the relation between brain size
and intelligence, the relation of g loadings to heritability, and so
on. No other current theory of intelligence is able to account for all
of these findings.

The strength of the approach advocated here is that it also moves
away from the approach that is reliant on simply observing corre-
lations between performances to determine causation. In other
words, because there is a correlation between reaction time on
simple tasks and intelligence, or working memory tasks and intel-
ligence, it is concluded that each of the former causes intelligence.
However, the observation of a correlation leaves open the possi-
bility that there is a third factor, such as differences in neural
plasticity, that leads to better performance on each of these tasks.
Similarly, even if we could directly observe neural attributes in the
brain, we would still be dealing with correlations between char-
acteristics and intelligence. In order to establish possible causation,
it is necessary to be able to independently manipulate the possible
causal factor. However, it is unlikely that ethical permission will
ever be obtained to manipulate the growth processes of children’s
brains. Thus, research is likely to become more and more reliant on
the use of simulations to evaluate the likely plausibility of mech-
anisms. Simulations not only allow the independent manipulation
of variables that are thought to have a causal influence such as the
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learning rate, but they also force the model to be specified to the
extent that it can actually be shown to be a sufficient account of
intellectual processing. Such an account is no longer reliant on
speculation as to whether a given characteristic would, in fact, lead
to the observed differences in performance. This leads to a more
convincing account of the causal factors.

The Existence of a Critical Period

The previous sections have argued that the brain has evolved a
remarkable capacity to adapt its connections to the environment.
This would then account for intellectual development. However,
this capacity of the brain to adapt its connections to the environ-
ment also diminishes over time, suggesting the existence of a
critical period for intellectual development.

This characteristic has already been established for the visual
cortex, where stimulation is required during early childhood if the
connections are to be developed correctly. For instance, a cat
exposed to only vertical lines during its infancy will then not be
able to perceive horizontal lines later on in its life (Mitchell, 1980).
The difference with other areas of the cortex is that this adaptation
process can last up until maturity (e.g., Huttenlocher, 1990; Hut-
tenlocher & Dabholkar, 1997). This is then confirmed by the
finding that fluid intellectual abilities do not develop after this time
(Horn & Noll, 1994). Therefore, does this not indicate that there is
a critical period for the development of fluid intellectual abilities
as well?11

In other words, intellectual abilities develop or increase over
childhood. This is due to the brain being able to adapt its connec-
tions to environmental stimulation. However, intellectual abilities
are also observed to stop developing at maturity. Therefore, this
indicates that the brain has lost the ability to adapt its connections
to the environment; otherwise, intellectual abilities would continue
to develop. Therefore, if the appropriate connections are to be
developed for a particular intellectual ability, a person would be
required to be presented with the appropriate stimulation during
childhood, while intellectual abilities are still observed to be able
to change.

A Critical Period for Language Development

Consider the example of language. Language proficiency is
often used to assess intelligence (Jensen, 1998). However, it has
also been established that there exists a critical period for the
development of language. For instance, Lenneberg (1967) argued
that language acquisition must occur before the onset of puberty in
order for language to develop fully. This was based on such
evidence as recovery from aphasia by children as opposed to adults
and differences in language acquisition by the mentally retarded
before and after maturity.

Grimshaw, Adelstein, Bryden, and MacKinnon (1998) also
found evidence for a critical period for language. They examined
the case of E. M., a young man who had been profoundly deaf
since birth and grew up in a rural area where he received no formal
education and had no contact with the deaf community. At the age
of 15 years, he was fitted with hearing aids that corrected his
hearing loss and then he began to learn verbal Spanish. Four years
after the acquisition of the hearing aids, it was found that he
continued to demonstrate severe deficits in verbal comprehension

and production, again supporting the critical period hypothesis for
language (see also Pinker, 1994).

Similarly, Johnson and Newport (1989) examined the acquisi-
tion of English by Chinese or Korean migrants to America. These
individuals were controlled for the number of years of exposure to
the second language but differed in age of initial exposure. John-
son and Newport found that ultimate language proficiency in
grammar was directly a function of the age of initial exposure. The
younger the person was, the higher the level of proficiency ob-
tained. However, this relationship only held until the age of 16
years. After this age, the age of arrival had no further negative
impact on ultimate grammar attainment. Thus, this suggests a
critical period effect for grammar acquisition in a second language
as well.

It is also observed that individuals suffering from localized brain
damage are more likely to recover intellectual functions if the
lesions occur before maturity (e.g., Stein, Brailowsky, & Will,
1995). This again indicates that the brain is more able to reorganize
its connections before maturity. Consider now another situation in
which intellectual processing would be dependent on possessing
particular neural connections.

Implications for the Development of Genius

It is sometimes observed that particular individuals appear
within society whose intellectual abilities are considered to be well
in advance of their peers. These individuals are often labeled as
geniuses and their capacity to reason and conceptualize problems
allows them to make advances when other researchers have failed.
For instance, Einstein’s conceptual abilities in physics were argu-
ably superior to anyone else not only from his generation but from
current generations as well. Similar examples of “geniuses” can be
observed in other fields such as economics, mathematics, and
cosmology. Given the importance of having individuals who pos-
sess such abilities, the issue is how do such people possess the
ability to understand such advanced concepts?

Current intelligence research would perhaps argue that these
individuals simply possess more g than other people in the popu-
lation. The nature of this g is left unspecified. However, because
the distribution of g is normally distributed, it is doubtful whether
such unique individuals would exist. It would be expected that for
every person with an extremely high IQ, there would be a number
of people whose IQ was only slightly less. Thus, these lower
individuals would still have comparable reasoning abilities, and it
would not be possible to unequivocally identify the geniuses from
the other bright individuals. In addition, the high g account can be
rejected because such individuals are shown not to possess these
outstanding reasoning capabilities in all situations, and they may
not even have possessed a high g. For instance, observations of

11 A number of researchers have argued that critical period effects are
due to the effect of the learning process itself, whereby changes in the
connections themselves limit possible future changes (e.g., Marchman,
1993). However, this view has difficulties once an individual differences
perspective is taken. In particular, it is observed that fluid intelligence stops
developing at maturity, irrespective of the intellectual level reached at that
time (Cattell, 1987). Therefore, this suggests that the mechanism respon-
sible for the critical period is a true maturational effect rather than one
based on learning.
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Einstein during his youth suggested that he was not an exception-
ally gifted child. Instead, he was little more than average (Bern-
stein, 1973). Therefore, Einstein was able to perform great reason-
ing without possessing a high g factor. Thus, this suggests that
geniuses seem to possess something other than simply a high IQ.

This article has argued that reasoning capacities would be a
function of the connections of the neural system. These connec-
tions then develop over childhood as the neural system adapts
itself to the environment with which it is presented. Therefore, to
be able to reason like Einstein, one would need a neural system
that possesses the correct connections. However, it was also noted
that this capacity of the nervous system to change the connections
in response to the environment also stops at maturity. This is
shown by fluid intellectual abilities ceasing to develop after this
time. Therefore, you could present a person with an IQ of 200 with
the appropriate phenomena when they are 20 years old, after the
critical period, and they would not have the capacity to adapt their
brains to the new phenomena. In contrast to this, people are able to
develop their connections before maturity, as is shown by their
developing intellectual performance over this time. Therefore, if it
is desired that people possess these abilities, should not they be
exposed to the appropriate stimulation during their childhood
while their brains can still adapt in this way?12

Unfortunately, this does not then imply that every child would
be able to develop these abilities. Children possessing a low rate of
neural plasticity would not be able to develop the appropriate
connections even when exposed to the appropriate stimulation, as
is demonstrated by their lack of attainment of normal intellectual
abilities. However, it would still be expected that many children
would be able to develop the right connections if given the appro-
priate experience. In fact, it may be argued that relations like
theoretical physics concepts are relatively simpler to learn than
something as complex as language. The reason that more children
acquire language is that they are extensively exposed to it during
the critical period.

This analysis is then supported by the observation that such
geniuses are also distinguishable from their peers because they
began to investigate their field before maturity, while their neural
circuits were still malleable. For example, Einstein began thinking
about the universe from the age of 5, and by 12 he was studying
advanced mathematical textbooks (Bernstein, 1973). This would
then have enabled him to develop the appropriate neural connec-
tions that are required to internally conceptualize and process the
intellectual problems in such areas.13

In contrast to this, consider the current approach to education.
The abilities possessed by geniuses such as Einstein are considered
to be very valuable to society. However, the educational system
then presents these phenomena to people in college when they are
past the critical period. It is then surprised when these young adults
cannot acquire these abilities. However, given that fluid intellec-
tual abilities are no longer developing at this age and that these
individuals cannot learn new languages to native proficiency, it
does not seem to be that surprising that they cannot acquire these
other intellectual abilities as well.

This is, of course, not intended to mean that early environmental
experience is then the only determinant of genius. Indeed, many
other factors may also exist, including personality and motiva-
tional attributes (see Simonton, 1999). Rather, it is being argued
that environmental experience during the critical period is a nec-

essary but not sufficient condition if certain intellectual abilities
are to be developed.

Note, however, that this relationship would not hold if intellec-
tual abilities were due to the type of general factor that present
intelligence researchers suggest. If reasoning ability was simply
determined by a characteristic such as speed of information pro-
cessing or neural efficiency, then those individuals who were high
in this characteristic should be able to perform well at any intel-
lectual problem irrespective of the nature of the problem. Their
performance would not be limited by their connections and, there-
fore, their childhood experience would not play a critical role in
determining their intellectual abilities. Thus, contrary to what
many intelligence researchers suggest, it is not possible to deter-
mine the heritability of intellectual abilities simply by determining
the heritability of highly g loaded abilities and ignoring the nature
of the general factor. It depends on what the nature of the general
factor or process is as to whether intellectual abilities are a func-
tion of the environment or not. However, intelligence researchers
also admit that the nature of the general factor of intelligence has
not yet been established. It is also questionable whether theories
like neural speed even represent a viable alternative to differences
in neural plasticity as a possible explanation of differences in
intellectual abilities. Thus, the possibility of there being a critical
period for intellectual development should at least be considered to
be a possibility, rather than the current approach in which attempts
at increasing intellectual abilities are discounted simply because of
the lack of variance shown by highly g loaded tasks.

Discussion

The present article has attempted to give a plausible account of
the nature of the general factor of intelligence. Research in neu-
roscience and cognitive science has suggested that different intel-
lectual abilities would require different neural connections. The
only feasible mechanism whereby the brain could obtain such
connections is through an adaptation mechanism in response to

12 Other characteristics such as crystallized intelligence may continue to
develop after maturity. This would be attributed to their dependence on
other processes such as synaptic changes, which involve the strengthening
or weakening of existing connections and which continue to occur through-
out the life span (Toyama, Komatsu, & Tanifuji, 1995). However, these
processes would be limited in the extent to which they could overcome
more fundamental differences in the connections. Rather, they would allow
the forming of associations within the framework set by the presence or
absence of connections. Thus, although fluid intelligence would not change
after maturity, vocabulary could because it would involve the formation of
new associations between existing neural structures.

13 Einstein’s brain has been subjected to histological analysis, and it was
found that one area had a significantly smaller neuron to glial ratio than the
control population (Diamond, Scheibel, Murphy, & Harvey, 1985). This is
consistent with greater connectional complexity, because brains with more
connections are also observed to have more glial cells. However, probably
more telling is that Einstein’s brain did not really differ exceptionally from
that of normal controls. Perhaps his neurons were just wired up differently,
and this is what enabled him to conceptualize some things better. In
contrast, the theory that the glial cells could be responsible for more
intelligent processing would have to be shown to be compatible with all of
the evidence provided for in this article. However, such a theory would not
appear to get past the initial section where it is argued that specific
connections would be critical for different intellectual abilities.
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environmental input. Such a developmental mechanism has al-
ready been established. These findings are not inconsistent with
the observation of a general factor of intelligence because if people
differed in the ability to adapt their connections to the environ-
ment, a general factor of intelligence would result.

This then suggests that connectionist principles are not incom-
patible with current psychometric findings regarding the distribu-
tion of higher order intellectual processes and that the connection-
ist approach can, in fact, be used to explain the general factor of
intelligence. At the same time, this analysis does suggest that IQ
tests are measuring a very definite characteristic of intellectual
functioning. However, this characteristic is also substantially dif-
ferent than that assumed by current intelligence researchers. In
particular, it is argued that the brain does not have the capacity to
directly perceive and understand concepts with which it is pre-
sented. Instead, intelligent responding is based on past activations
leading to changes in the neural connections so that future activa-
tions can be processed more meaningfully. This then eliminates the
problem of current intelligence theories that lead to an endless
recursion whereby intelligent behavior must appeal to some higher
order, intelligent, control mechanism to shape activation patterns
through the network.

However, the acceptance of such a theory then necessarily
argues for the critical role of environmental stimulation in deter-
mining intellectual abilities. Given also that some intellectual
abilities are observed to stop developing at maturity, this then also
argues for a critical period for the development of these abilities.
However, current intelligence research is notable for not even
mentioning the possibility of a critical period for intellectual
development, despite widespread agreement in other research ar-
eas that a critical period does exist for at least some intellectual
abilities such as language. Instead, current intelligence researchers
assess the malleability of intelligence by simply testing abilities
that have already been identified by statistical techniques as pos-
sessing the lowest possible environmental variances. Given then
the predictable result that such abilities do show relatively low
environmental variances, it is concluded that intellectual abilities
cannot be improved and that interventions during childhood have
little effect.

More confusing still is the open acknowledgment by intelli-
gence researchers that it has not yet been established what the
nature of g is, despite their analysis assuming that it is a type of
relation different to that described previously. Nor is there any
plausible attempt at providing an alternative explanation of how
the connections may develop. For instance, Jensen (1998) noted
that “structural, neural-net, or ‘design’ features of the brain have
scarcely been investigated in relation to g in normal persons and
cannot be evaluated in this respect at present” (p. 205). Miller
(1994) argued that “it is unlikely that the differences between the
gifted and nongifted involve the size of different parts of the gray
matter or the anatomy of its neural connections, since it is hard to
think of a mechanism that would consistently affect the gifted
relative to the normal, while simultaneously having the same effect
on university students relative to 7th grade students” (p. 810).14

Other intelligence researchers are notable for not even mentioning
the role of the connections in determining intellectual output
(Brody, 1992; Eysenck, 1994; Mackintosh, 1998; Neisser et al.,
1996).

In addition, there is widespread agreement that intelligence
consists of the ability to adapt to the environment (e.g., Neisser et

al., 1996; Sternberg & Detterman, 1986). Therefore, identifying
the ability of the neural connections to adapt to the environment
with intelligence seems to be the making of a sensible deduction.

Future Directions

A number of avenues for future research would then appear to
be suggested from this analysis. First, it is argued that there is a
critical period for intellectual development and that many children
are not currently developing abilities of which they are capable.
This characteristic has already been investigated to some extent for
language, but other intellectual abilities have been neglected. Im-
portant issues include identifying precisely which abilities are
dependent on a critical period for their development, whether any
learning of such abilities is possible beyond the critical period, the
duration of the critical period, and whether major adaptations are
possible even close to the end of the critical period. These issues
may be investigated by using the procedure whereby people of
different ages are presented with the same environmental stimu-
lation, and determining whether the effect of the stimulation on
intellectual performance varies with the age of the participants.
This is in contrast to the favored training paradigm of the past,
such as in programs like Headstart, in which environmental stim-
ulation was presented to very young children of disadvantaged
circumstances in the hope of changing the factor causing differ-
ences in IQ (Mackintosh, 1998).

Another interesting prospect is the implication of understanding
the cause of differences in intelligence for educating those who are
low in intelligence. In particular, the current analysis suggests that
people of low IQ perform poorly because their brains do not adapt
well to environmental stimulation. However, educational methods
may be designed that are more likely to produce the appropriate
change in the connections. This may be guided by the work on
artificial neural networks and observing the types of stimulation
from which networks with low learning rates are most able to
learn. For instance, networks with low plasticity tend to learn
better if the complexity between input and output is reduced, and
the network is taught in stages. This then reduces the dimension-
ality of the problem and allows the network to concentrate on only
adapting the critical connections. Applying these principles to
education could, it is hoped, lead to successful outcomes.

At a biological level, much more needs to be understood about
the plasticity processes that underlie the changes in the connec-
tions. For instance, what algorithm determines whether a connec-
tion will or will not be formed between two particular neurons?
Does the back-propagation algorithm represent a somewhat close
analog of this process, or is it simply a mathematical technique to
approach the same final result? Is the difference between people of
low and high IQ simply based on quantitative differences in the
ability to change the connections, or is it that people of differing
intelligence actually change their connections based on differing
algorithms? If people of low IQ do adapt their connections on the
basis of a different algorithm, are there some situations in which it
is advantageous (e.g., consider the idiot savant syndrome)?

14 Incidentally, the present model can quite easily account for this
finding. Differences in performance between people of the same age are
due to differences in neural plasticity, whereas differences in average
performance between people of different ages are due to differences in the
amount of environmental stimulation or experience.
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These issues will be difficult to resolve because they require
both the examination of the fine detail of the nervous system in a
living organism over time and also preparations that are as closely
related to humans as possible. Although much of the original
research on neural plasticity was done using the rat (e.g., Hebb,
1949; Rosenzweig, 1979), it is questionable just how relevant
these processes are to understanding fluid intelligence in humans.
For instance, two concepts closely associated with fluid intelli-
gence are consciousness and language, attributes that are some-
times argued to be unique to humans, or at least to the primate
species. In addition, even if fluid intelligence does exist in the rat,
a characteristic like maze performance is more likely to be a
reflection of trial-and-error learning and memory processes than
fluid intelligence as such. This then suggests that new procedures
for evaluating rat performance need to be established, and there
needs to be some validation that these procedures are assessing
characteristics that are equivalent to fluid intelligence in humans.

Finally, and perhaps most exciting, once the neural process
responsible for differences in intelligence has been identified, this
opens the possibility of biological interventions that can improve
the intelligence of people suffering from low IQ. Already some
knowledge is being gathered as to the biochemical substrates of the
plasticity process (Kostovic, 1990), and advanced genetic analysis
and gene therapy will provide the option to children who suffer
from low neural plasticity of having their plasticity level increased
to that of other individuals in the population.

At the same time, the present analysis discounts the view that
intelligence can be increased immediately by the taking of some
smart drug or medication. Even if a person’s level of neural
plasticity was greatly increased through the use of such a drug, it
would not immediately lead to any change in the person’s intel-
lectual performance. Instead, it would allow their brain to adapt
better to current stimuli. This would then allow them to process
future stimuli more intelligently.

Summary

The present approach has attempted to integrate the findings
from neuroscience and cognitive science with that of psychometric
intelligence research. These approaches initially seem to be con-
tradictory because neuroscience and cognitive science argue that
different intellectual abilities would be based on different neural
circuits and that the brain would require environmental stimulation
to develop these abilities. In contrast, intelligence research argues
that there is a general factor of intelligence and that it is highly
heritable. However, it was then observed that if people differed in
their ability to adapt their neural circuits to the environment, a
general factor of intelligence would result. Such a model can also
explain many other phenomena observed with intelligence that are
currently unexplained. However, acceptance of such a model then
necessarily also argues for a critical period in intellectual devel-
opment, with the implication that many children are not currently
developing abilities that they can attain. This is an issue that needs
to be addressed in future intelligence research.
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Appendix A

Demonstration That Differences in Neural Plasticity Would Lead to the Observed Differences
in Human Intellectual Performance Using Artificial Neural Networks

This appendix demonstrates how differences in neural plasticity, or the
capacity of a neural network to change its connections in response to
environmental stimulation, would lead to the observed differences in
human intellectual performance.

The Stuttgart Neural Network Simulator from the Institute for Parallel
and Distributed High Performance Systems at the University of Stuttgart
was used for the simulations. The connections between the neurons for
each network were initialized to random values between �1.0 and 1.0
before training. These same initialization values were used for each of the
training runs comparing different levels of neural plasticity. The activation
of each unit in the network was calculated using

net j(t) � �
i

wijai(t)

aj(t � 1) �
1

1 � e�(netj(t)),

where netj (t) is the net input to unit j at step t, j is the index for some unit
in the net, i is the index of a predecessor of unit j, wij is the weight of the
connection from unit i to unit j, and ai(t) is the activation of unit I at step t.

The connection weights were then updated if the discrepancy between
desired and actual output was greater than 0.1. The following back-
propagation formula with momentum was used:

�wij(t � 1) � ��jai � 0.5�wij(t)

� j�� f �j (netj)(tj�aj) if unit j is an output-unit

f �j (netj)�k �kwjk if unit j is a hidden-unit,

where �wij(t) is the weight change of the connection from unit i to unit j;
� is the learning parameter, values of 0.2, 0.02, and 0.002 were used; �j is
the error (difference between the real output and the teaching input) of unit
j; ai is the activation of the preceding unit I; i is the index of a predecessor
to the current unit j with link wij from i to j, j is the index of the current unit,
and k is the index of a successor to the current unit j with link wjk from j
to k.

Each of the three neural network simulations chosen for this study used
these same parameters. Two of the simulations, NETtalk and the balance
scale task, have already been described in the text. The third task used was
the Concealed Words test, an actual fluid intelligence test. Each of these is
now described.

NETtalk Simulation

For the NETtalk simulation, a similar neural network to that used by
Sejnowski and Rosenberg (1986) was used. This consisted of 7 sets of 29
input units, 120 hidden units, and 26 output units. Each of the 7 sets of
input units encoded one letter of the input text, so that up to seven letters
were presented to the network at a time. The desired output of the network
was the correct phoneme for the center or fourth letter of this seven-letter
window. The other six letters were then used to provide a context for the
decision. Twenty-three of the 26 output units encoded the required pho-
nemes using a distributed representation. The remaining three output units
were used to encode stress and syllable boundaries.

The training stimuli consisted of the 1,000 most common words in the
English language, again similar to that used by Sejnowski and Rosenberg
(1986). Each word was stepped through the input window until each letter
had been presented in the center window. After being exposed to each
letter, the discrepancy between the actual and desired outputs was calcu-
lated and the error was back-propagated from the output to input layers of

the network. The connections between the units were then adjusted to
minimize their contribution to the total mean square error between the
desired and actual outputs.

To simulate differences in neural plasticity, three different neural net-
work learning rates were used: 0.2, 0.02, and 0.002. Because the network
is a mathematical approximation of a biological system, the actual differ-
ences in neural plasticity are likely to differ somewhat to this representa-
tion, but functionally the results will be similar.

Figure A1 depicts the effect of varying neural plasticity on the ability of
the network to learn the phonemic representations of the 1,000 most
common words. This task is also similar to the task that children face when
first learning to read. As can be seen in Figure A1, the neural network that
is most able to adapt its connections to the environmental requirements
(represented by 0.2) quickly achieves the task. The neural network with the
moderate rate of adaptation (represented by 0.02) takes longer to attain the
same level of performance, even though the amount of environmental
stimulation (or years of education) is equivalent. Finally, the network with
the lowest ability to adapt its connections to environmental demands takes
considerably longer again and still has not attained satisfactory perfor-
mance at the conclusion of the training. Thus, it can be seen that differ-
ences in neural plasticity would lead to differences in neural networks (or
the brain) being able to learn the task of reading written text. Jensen (1998)
also noted that “the acquisition of decoding skill in young children is highly
related to mental age (and to IQ in children of the same chronological age). But
after word reading skill is fairly mastered, it is only weakly diagnostic of IQ or
g” (p.280). This description would seem to correspond surprisingly closely
to the pattern of results shown in Figure A1.

Balance Scale Task

The next example involves the simulation of the balance scale task, as
described in McClelland and Jenkins (1991). As was noted, children’s
performance on the balance scale task is shown to proceed through four
stages or rules (Siegler, 1976). This represents a move away from focusing
on only the most salient dimension of a task to a situation in which all
information that is relevant to task performance is taken into account.

The neural network used consisted of four groups of five input units, two
groups of two hidden units, and two output units. Two of the groups of five

Figure A1. Performance on the NETtalk network as a function of differ-
ences in network learning rate or neural plasticity.
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input units were used to code weight information, one for each side of the
balance scale, and the other two groups of input units were used to code the
equivalent distance information. One group of hidden units was connected
to the weight input units, whereas the other group was connected to the
distance input units. Finally, the two output units were used to code
whether the scale would tilt down on either the left- or right-hand side. If
the scale was balanced, this was represented by having both output units at
half activation.

The training stimuli were also similar to those used in McClelland and
Jenkins (1991). They consisted of all 625 possible problems involving
the 25 possible weight combinations multiplied by the 25 possible distance
combinations. To make weight the more salient dimension, problems in
which the distance from the fulcrum was the same on both sides were listed
an additional nine times each. Each training cycle consisted of the full set
of 1,750 problems, unlike in McClelland and Jenkin’s study, in which a
random subset of 100 patterns was used. This did not affect the outcome
but did make training easier.

Again, Figure A2 shows the results when the same differences in
network learning rate were used. It can be seen that, again, the network that
is best able to adapt its connections performs the best. In particular, it
quickly proceeds through the developmental stages from random responses
to appropriately taking into account all relevant information for the task at
hand. In contrast, the 0.02 network takes considerably longer to proceed
through these same stages, even though it has been exposed to the same
environmental input. Finally, the 0.002 network is very much struggling to
acquire an understanding of the task. It takes a very long time for it to attain
Rule 1, and there is no sign of it progressing to the more complex rules.
Thus, in this example, it can be seen how neural networks that differ in
their plasticity would differ in their ability to accommodate information
from the environment. This would affect their capacity to respond appro-
priately in many situations in which they are required to process informa-
tion. Remember also that Piagetian tasks are good indicators of g. In other
words, more intelligent people pass through the Piagetian stages faster
(Humphreys & Parsons, 1979).

Concealed Words Test

The final demonstration consists of training the same neural network
simulations on an actual intelligence test. The test chosen was the Con-
cealed Words test, a test taken from French, Ekstrom, and Price (1963; see
also Thurstone’s Mutilated Words). In this test, people are presented
with 26 words that have been largely obscured or hidden (Figure A3). The
objective is then to correctly identify as many of these words as possible.
The Concealed Words test is a g loaded test, indicating that it is a good
measure of the characteristic that determines performance on other intel-
ligence tests as well (Jensen, 1980).

The neural network consisted of an input matrix of 240 columns by 80
rows, 100 hidden units, and 26 output units. The input matrix was used to
represent the training and test patterns that had been scanned into the
computer and converted into “on” and “off” bits of information on a
240 � 80 grid. This allowed a high-resolution representation of the stimuli.
The 26 output units were used to represent the word with which the
network had been presented.

The training stimuli consisted of the 26 words that were on the actual test
and were printed out in a similar but not identical font to that used for the
actual test. The printed words were then scanned into the computer, and
nine training patterns were created for each of the words. This was done by
using the combination of three different horizontal and three different
vertical offsets. This encouraged the network to associate the actual shape
of the words with the appropriate response rather than just the firing of
specific input units. Eye movements in biological systems would encour-
age a similar response.

(Appendixes continue)

Figure A2. Acquisition of Siegler’s (1976) rules on the balance scale task
as a function of differences in network learning rate or neural plasticity.

Figure A3. An example of the training (left) and test (right) stimuli for
the Concealed Words simulation (not taken from the actual test).

Figure A4. Performance on the Concealed Words test as a function of
differences in network learning rate or neural plasticity.
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The test stimuli consisted of the actual 26 concealed words on the
Concealed Words test. These test patterns were approximately centered in
the region of the three vertical and three horizontal offsets used for the
training stimuli. Correct performance depended on the correct output unit
having the highest activation when presented with the appropriate pattern.
Thus, chance performance was 1 out of 26.

Figure A4 shows the performance of the network on the actual Con-
cealed Words test as it was trained on the training patterns. It should be
noted that at no point was the network actually trained on the test patterns.
Rather, the network was taught to respond appropriately to the completed
words and was then required to generalize to the test items. This is a similar
situation to that faced by people when they initially learn the unobscured
words and are then given the Concealed Words test as a test of their
intelligence.

Specifically, it can be seen in Figure A4 that the 0.2 neural network
quickly attains a high level of performance on the test. For instance, after
300 cycles of exposure, it is scoring 9 out of 26 for the test. This is
comparable to university undergraduate intellectual performance, in which
the average score is around 10 correct (the test is quite difficult because
many of the words are almost completely obscured). Of course, there are
also many differences between the present artificial neural network imple-
mentation of the test and human performance. These factors would be both
an advantage and a disadvantage to human performance relative to the
simulation’s performance at the task.

In contrast to the network that is most able to adapt its connections,
the 0.02 network takes considerably longer to reach a given level of
performance and never attains the level of performance the more adaptable
network achieves. After 300 cycles, it is only scoring 4 out of 26.
Similarly, the 0.002 network is worse again, and it has difficulty
recognizing any of the words on the Concealed Words test, even though
it has been exposed to exactly the same training information that the
other two networks have been presented with. Thus, again it can be seen
that differences in neural plasticity would lead to differences in per-
formance on an intellectual task.

Summary

These examples have shown that a more plastic neural network would
perform better in many different situations or tasks. In particular, a neural
network that is better able to adapt its connections to the environment is
observed to be able to learn to read faster, accommodate information from
the environment better, and score higher on an actual intelligence test. It
can also be seen how the same factor can show very different character-
istics of performance under different situations. In the first task, it shows
differences in rate of acquisition but not major differences in final perfor-
mance. The second task showed qualitative differences in performance,
whereas the third task showed simply quantitative differences in perfor-
mance. Appendix B examines the outcome when results such as these are
factor analyzed.

Appendix B

Demonstration That the Factor-Analytic Structure of Human Abilities Is Compatible With a
Neural Plasticity Model of Intellectual Development

The purpose of this appendix is to demonstrate how differences in neural
plasticity are consistent with the observed results of factor analysis. It also
demonstrates how relying on highly g-loaded tests will lead to a bias when
assessing the relative environmental and genetic contributions to the de-
velopment of intellectual abilities. Finally, it also shows how differences in
neural plasticity can also account for another characteristic of the correla-
tional structure of intellectual abilities.

Defining the Model

In Appendix A, it was shown how equivalent levels of environmental
experience would lead to very different levels of intellectual performance
if people differed in their brain’s capacity to adapt to the environment.
However, it is also clear that not all people would be exposed to exactly the
same stimuli for each and every ability. Rather, there would also be
differences in the amount of environmental stimulation to which people are

exposed for each ability through such factors as their own interests, and this
can again be seen from Appendix A to influence intellectual development.

A mathematical model was developed to simulate these differences in
both neural plasticity and environmental stimulation. The intention was to
show how, even though intellectual abilities are determined by both genetic
and environmental factors, a reliance on examining highly g-loaded abil-
ities would lead to the misleading conclusion that intellectual abilities are
highly heritable in general.

Differences in neural plasticity were represented quantitatively as values
between 0.002 and 0.200. A normal distribution was created between these
limits with a mean of 0.101 and a standard deviation of 0.050. This means
that a person with neural plasticity of 0.002 would be two standard
deviations below the mean and a person with neural plasticity of 0.200
would be two standard deviations above the mean. A total of 488 values
were used to represent the variation in neural plasticity. A normal distri-

Table B1
Differences in the Amount of Variation in Environmental
Stimulation for the Five Simulated Intellectual Tasks

Task
Amount of variation in

environmental stimulation

A 100 � 0–20
B 100 � 0–40
C 100 � 0–60
D 100 � 0–80
E 100 � 0–100

Table B2
Factors Extracted From the Variance of Five Simulated
Intellectual Tasks Occurring as a Result of a Neural
Plasticity Process

Factor Eigenvalue
% of

variance
Cumulative

variance

1 3.350 67.00 67.00
2 0.646 12.92 79.92
3 0.512 10.25 90.17
4 0.341 6.82 96.99
5 0.151 3.01 100.00
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bution was used because differences in IQ are typically observed to be
normally distributed (Jensen, 1980), but the effects of the model would be
the same if a uniform distribution was used.

As can be seen in Appendix A, the amount of intellectual development
is a function of an interaction between the amount of stimulation and the
amount of neural plasticity. A person with lower neural plasticity would
require more environmental experience to attain the same intellectual level.
The mean level of stimulation for each intellectual task was taken to be a
nominal 100 units. Thus, an individual with neural plasticity of 0.200, and
the average amount of environmental stimulation for a particular task
would be given a score of 0.200 � 100 � 20 for that task (an error
component could also be added, but this would not affect the overall
outcome of the model).

However, as already noted, not all individuals would experience the
same amount of environmental stimulation. Different people would receive
different amounts of environmental stimulation. The amount of variation in
environmental stimulation would also vary across tasks. Some intellectual
abilities would have relatively small differences in environmental experi-
ence across the population, whereas other abilities would have quite large
variations. It could also be argued that the amount of variation in environ-
mental stimulation would be less for less important intellectual skills. This
is because individuals would not have an incentive to make a greater effort
in attaining these abilities. Thus, each individual would spend approxi-
mately the same amount of time attempting to acquire them (such as time
in the classroom). In contrast, intellectual abilities that are more important
for later success would be characterized by greater differences in environ-
mental exposure across individuals because some children would be more
conscientious.

The differences in environmental stimulation across tasks were repre-
sented by a random quantity added to or taken away from the mean
environmental stimulation of 100 units. For a task characterized by larger
environmental variation, the possible values of the random quantity that

could be added to or taken away from the mean environmental exposure
were extended over a greater range.

Five tasks were chosen with the ranges of environmental stimulation
simulated as deviating up to plus or minus 20, 40, 60, 80, or 100 units away
from the mean of 100 (see Table B1). Thus, for the first task differences in
environmental stimulation were uniformly distributed over the range of 80
to 120, whereas for the fifth task differences extended from 0 to 200. Each
individual’s performance on each of the five tasks was then calculated,
taking into account their relative level of plasticity and the amount of
environmental stimulation they had received for each task. This gave each
individual a score on each of the five tasks, similar to the scores that are
collected on a typical battery of intelligence tests. This datum was then
analyzed using maximum likelihood factor analysis.

Results of the Factor Analysis

Table B2 contains the initial results of the factor analysis. Although five
factors were extracted, it can be seen that there was only one factor that
accounted for more variance than any of the original tasks. This accounted
for 67% of the total variance across all five tasks and is consistent with the
finding of a general factor influencing performance on the intellectual tasks
just mentioned.

Table B3 shows the factor loadings of the prior hypothetical tasks on the
general factor extracted. As can be seen, the factor loadings systematically
decrease as the amount of environmental variation on the task increases,
even though all tasks are determined by the same developmental process.
The highly g loaded tasks possess high g loadings simply because the
amount of environmental variation that occurs on these tasks is relatively
lower. This is what then enables them to correlate more highly with each
other. Of course, the absolute magnitude of the factor loadings would also
be determined by the relative amount of variation in the genetic and
environmental dimensions.

Thus, the prior demonstration shows that if the development of intellec-
tual abilities was due to a neural plasticity process, then a general factor of
intelligence would still be revealed through factor analysis. In addition,
even though all intellectual abilities would be dependent on an interaction
between this neural plasticity factor and environmental stimulation, factor
analysis would identify those abilities whose differences in environmental
stimulation within the present population are relatively small. If one then
assessed the heritability of these tasks, one would find that they are highly
heritable. However, this would purely be a function of having chosen to
test tasks that have already been identified statistically as having extremely
low environmental variances within the present population. These tasks
would be most representative of a person’s relative level of neural plas-
ticity, but they would not necessarily be a good indicator of their various
intellectual capacities.

Table B3
Factor Loadings of the Five Simulated Tasks on the First
Factor Extracted by Factor Analysis

Task Factor loading

A .951
B .880
C .768
D .662
E .546

Table B4
Correlations Between the Simulated Tasks Separately Analyzed for Low and High Neural
Plasticity Groups

Task

Low neural plasticity High neural plasticity

1 2 3 4 5 1 2 3 4 5

1. Task A — —
2. Task B .797 — .548 —
3. Task C .681 .602 — .376 .343 —
4. Task D .599 .528 .442 — .337 .216 .245 —
5. Task E .527 .444 .344 .406 — .157 .177 .156 .148 —

(Appendix continues)
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Thus, the prior analysis demonstrates how the finding of high heritabil-
ities for particular intellectual abilities is not incompatible with abilities
developing as a result of environmental experiences. Rather, these partic-
ular tasks would be tasks in which environmental stimulation is largely
identical across the population. Note also that correlations in environmental
stimuli for different abilities would also result in the formation of lower
level factors or cognitive abilities, as observed by Carroll (1993).

Differences in Correlations Based on Intellectual Level

Astute readers would also be aware that the development of intellectual
abilities according to a neural plasticity model would also reveal another
characteristic. Because a given amount of environmental stimulation would
have a greater effect on high-IQ than on low-IQ individuals, because their
brains are more able to adapt to environmental stimulation, it then follows
that high-IQ individuals’ intellectual abilities would be more differentiated.
In other words, the same differences in environmental stimulation would
cause the intellectual abilities of high-IQ individuals to differ more than
those of low-IQ individuals. Thus, the correlations between abilities would
be expected to be higher for low-IQ than for high-IQ individuals.

Table B4 illustrates the correlations between the five stimulated tasks
when the scores were analyzed separately for individuals above and below

the mean for neural plasticity. As can be seen, the correlations for the
low-IQ group are approximately twice the size of those for the high-IQ
group. Thus, if intellectual abilities were due to a neural plasticity
process, it would also be expected that the correlations between
abilities would be greater for low-IQ than for high-IQ groups. This
could again be used as a test to determine whether the prior model is
appropriate.

Therefore, it is again worth noting that another basic characteristic of
intelligence that has been observed is that the size of the correlations
between tests are smaller for high-ability groups than for low-ability
groups (Spearman, 1927). For instance, Detterman and Daniel (1989)
analyzed the variance from their own studies and that of the Wechsler
Adult Intelligence Scale–Revised and Wechsler Intelligence Scale for
Children–Revised standardization samples. They noted that “correlations
declined systematically with increasing IQ. In both studies, correlations
were found to be two times higher in low IQ groups than in high IQ
groups” (p. 349; see also Deary et al., 1996; Detterman, 1991, for more
recent discussions).
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