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Concerning the correlational structure of intelligence, there is a broad consensus regarding
hierarchical models with a general factor at the apex (g), and less consensus regarding the number,
content, and structure of more specific ability-factors hierarchically below g. Previous studies
revealed very high correlations of test-battery-specific g-factors, whereas the consistency of more
specific ability-factors has been neglected. In order to investigate this, current data stemming from
N = 562 high school students who took 26 mental ability tests from independently developed
test-batteries were analyzed. Regarding the intelligence-structure, nested-factor models revealed a
(relatively) better fit than higher-order models and general-factor-models. The test-battery-specific
g-factors of the nested-factor models were substantially correlated (r ≥ .91); the correlations of the
test-battery-specific verbal and numerical factors evidenced convergent and discriminant validity
(convergent correlations: verbal — r = .83; numerical — r = .46; figural — r = .22). These results
provided evidence that some group factors (besides the g-factors) of different test-batteries are
largely similar.
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1. Introduction

There has been a discussion lasting decades about the
correlational structure of cognitive abilities, specifically “intel-
ligence”. At present, there seems to be a broad consensus
supporting a hierarchical model with a single general factor at
the apex (often referred to as [Spearman's] g; e.g., Carroll, 1993;
Deary, 2012; Jensen, 1998; Spearman, 1904). Nevertheless,
there is less consensus regarding the number and content of
more specific ability-factors hierarchically below g, aswell as, the
specific structure of these group factors. Focusing on hierarchi-
cally structured intelligence conceptions, nested-factor-models
(sometimes synonymously labeled as bifactor models
[e.g. Chen, West, & Sousa, 2006; Holzinger & Swineford, 1937;
Reise, 2012]) have been introduced as an empirically and
x: +49 681 30257488.
. Valerius).
theoretically well-interpretable alternative (e.g., Brunner, Nagy,
&Wilhelm, 2012; Gignac, 2008; Gustafsson & Balke, 1993; Reise,
2012) to: (a) higher-order-models, especially when a general
factor and domain-specific factors were of interest (Chen et al.,
2006), and/or (b) a g-factor model without an intermediate
hierarchical level of group factors between g and specific
subtests. Regarding the assessment of intelligence with different
test batteries, recent studies revealed very high correlations of
the test-battery-specific g-factors (Johnson, Bouchard, Krueger,
McGue, & Gottesman, 2004; Johnson, te Nijenhuis, & Bouchard,
2008), thereby supporting the consistency of the corresponding
g-factors. But, the question of the (additional) consistency of
more specific ability-factors has been neglected. By combining
these aspects, the objective of the present paper is threefold:
(1) a comparison of different model specifications within the
cognitive abilities' correlational structure, (2) an analysis of the
g-factors consistency stemming fromdifferent test-batteries, and
(3) a consistency analysis of different hierarchically intermediate
ability factors stemming from different test batteries.
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1.1. Consistency of g

Although there has been a long history of discussions about
the correlational structure of intellectual abilities in scientific
psychology, many modern intelligence researchers and intelli-
gence theories agree that “the g-based factor hierarchy is the
most widely accepted current view of the structure of abilities”
(Neisser et al., 1996, p. 81). For example, in his seminal synthesis
Carroll (1993) introduced his three-stratum model with a
general level (stratum III; similar to g), eight broad-level
ability factors (stratum II), and even more specific ability
factors (stratum I) (see also the Cattell–Horn–Carroll theory
of cognitive abilities, CHC; e.g., McGrew, 2009). Focusing on
the assessment of intelligence, even a cursory glance at
different research projects and intelligence tests reveals a
broad range of different tasks to assess different facets of
“intelligence”, varying in, at least, the number, names, content,
and composition of these specific tasks. This relative disagree-
ment regarding the specific number, names, content, and
composition of tasks within one test-battery might result in
different g-factors, or in other words: more or less similar test-
battery-specific g-factors. Applied psychology relies particularly
on the consistency of themeasurement of intelligence. Following
studies that inspected the nature of the g-loadings of particular
tests (e.g., Thorndike, 1987; Vernon, 1989), as well as, following
studies that compared different factor-analytic methods to
extract g (e.g., Jensen & Weng, 1994; Ree & Earles, 1991; see
also Floyd, Shands, Rafael, Bergeron, & McGrew, 2009; Major,
Johnson, & Bouchard, 2011); two recent studies addressed
directly the extent to which g-factor-scores depend on the
specific tasks and abilities assessed (Johnson et al., 2004, 2008).

Johnson et al. (2004) factor-analyzed the data of N = 436
adults from three different intelligence test batteries
(Comprehensive Ability Battery, CAB, Hakstian & Cattell,
1975 [14 tests]; Hawaii Battery, HB, DeFries et al., 1974,
including Raven's Progressive Matrices, 1941 [17 tests];
Wechsler Adult Intelligence Scale, WAIS, Wechsler, 1955 [11
tests]). The fit indices from the threemodels (one for each of the
three batteries), with a second-order g-factor at the apex for
each, were at least acceptable — in accordance with Hu and
Bentler's (1999) cut-off criteria (RMSEA [CAB/HB/WAIS] =
.031/.050/.061). The fit of a combined model from three
test-battery-specific hierarchical models with three test
battery-specific g-factors at the apex was acceptable, as well
(RMSEA = .069); the correlations of the corresponding g-fac-
tors ranged from .99 to 1.00. Additionally, this
test-battery-specific second-order model showed a better fit
than (a) a model with battery-specific g factors and without an
intermediate hierarchical level (RMSEA = .104; Johnson et al.,
2004, p. 104) and (b) a comparable fit for “a model with the
same first-order structure… but with only one single g-factor”
(Johnson et al., 2004, p. 104; RMSEA = .069). Consequently,
Deary (2012) concluded that “the individual differences in g
were identical from the three different batteries” (p. 457). In a
replication study, Johnson et al. (2008) reanalyzed a data
matrix by de Wolf and Buiten (1963) that was based on N =
500 16-year old Dutch seaman. Thereby, Johnson et al. (2008)
used 44 tests from five batteries for their analysis: (1) the
Battery of Royal Dutch Navy (RDN; 8 subtests), (2) an
adaptation of a test battery from the Twente Instituut voor
Bedrijfspsychologie (TIB; 13 subtests), (3) the Cattell Culture Fair
Test (CCFT; 4 subtests), (4) the General Aptitude Test Battery
(GATB; 12 subtests), and (5) the Groningse Intelligentie Test
(GIT; 7 subtests). Confirmatory factor analyses revealed good
to acceptable fit-statistics in separate analyses for each
test-battery with a test-battery-specific second-order
g-factor (RMSEA [RDN/TIB/CCFT/GATB/GIT] = .071/035/.000/
.046/.040), as well as, the combined model of all test
batteries (RMSEA = .073). Again, the correlations of the
test-battery-specific g-factors were very high, ranging from
.77 for CCFT with GATB to 1.00 for TIB with GATB and GIT,
respectively. But, by restricting each test to load only on the
corresponding factor of the battery from which it stemmed,
some g-factor correlations would have exceeded the statistical
boundary of 1.00. Thus, Johnson et al. (2008) allowed residuals
and first-order factors to correlate across batteries in order to
reduce g-factor correlations, that rose above 1.00 to 1.00.
Summing up the findings: “[t]hese results provide evidence
both for the existence of a general intelligence factor and for the
consistency and accuracy of its measurement” (Johnson et al.,
2008, p. 91). Nevertheless, therewere substantial and systematic
correlations between subtests and first-order factors not accoun-
ted for by the g-factors, either.

1.2. Alternative conceptions: higher-order-, nested-factor-, and
general-factor models

Whereas there is little doubt about the psychometric
existence, generality, stability, and relevance of g (e.g., Deary,
2012; Gottfredson, 1997; Jensen, 1998; Jensen & Weng, 1994;
Lubinski, 2004), disagreement about the factor structure
besides or below g is still relatively widespread. In contrast
to rather well-known (a) general-factor models without a
further hierarchy (GF-models, sometimes called one-factor
models), especially (b) higher-order-factor models (HO-models)
and (c) nested-factor-models (NF-models) are discussed
(e.g., Brunner et al., 2012, see also Gignac, 2005, 2006b;
Gustafsson & Balke, 1993). Additionally, these different
models correspondwith alternative statistical representations to
account for the variance–covariance matrix of hierarchically
structured ability constructs in the framework of confirmatory
factor analysis (CFA). Furthermore, CFA allows a statistical
comparison of these different model specifications. The GF-
model assumes one general factor (g) that summarizes and
represents statistically the covariances of the specific subtests.
Thereby, individual differences in each specific cognitive
task or subtest are influenced by a combination of (a) g and
(b) a test-specific and g-independent additional factor, being
amixture of test-specific reliable variance and error-variance—
hence the name “two factor theory”. A distinction of reliable
test-specific variance and random/error variance within the
test-specific variance is not possible. In terms of a more
substantive interpretation, these test-specific and g-indepen-
dent variance components are usually assumed to be negligible
in the framework of the GF-model.

In contrast, HO-models and NF-models are statistical
representations of (more) hierarchically structured intelli-
gence models with additional factors besides g and specific
tasks or subtests (e.g., Carroll, 1993;McGrew, 2009); currently,
both models are assumed to be more adequate statistical
representations of the correlational structure of intelligence
than the GF-model. In HO-models (left hand side of Fig. 1),
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similar subtests are assumed to be influenced by one first-order
or so-called group factor, whereby the covariances of these
group-factors are accounted for by the second order g-factor at
the apex. Usually the group-factors refer to subtests that consist
of items from either a specific content domain (e.g., verbal,
numerical) or different operationalizations to assess a medium-
specific cognitive operation (e.g., reasoning, memory). In this
manner, individual differences in each specific cognitive task
are accounted for by a combination of (a) a specific group-factor,
and thereby indirectly, (b) g, along with (c) residual-terms
(consisting of a combination of reliable test-specific variance
components and unreliable error variance). These residual-
terms are (mostly) specified to be mutually independent (and,
then, correlate neither with the group factors nor with g).
Usually there are residuals of the group-factors not completely
accounted for by g; and one should keep in mind that each
specific task is influenced indirectly (via the corresponding
group-factor) and not directly by g. In this context Gignac
(2008), referring to Yung, Thissen, andMcLeod (1999), pointed
out that the association between the g-factor and the observed
variables is mediated completely by the group-factors.

NF-model (right hand side of Fig. 1) refers to a model
specification in which the domain-specific ability factors are
nested within a more general factor (g), whereby g and the
domain-specific factors, as well as, the different domain-
specific factors among themselves are assumed to be mutually
uncorrelated. Thereby, individual differences in each specific
cognitive task are accounted for by a combination of the
following mutually independent factors: (a) g, (b) a specific
group-factor and (c) residual-terms (consisting of a combina-
tion of reliable test-specific variance components and unreli-
able error variance). Therefore, the g-factor as the broadest
ability factor is specified as a first-order factor that directly
influences all subtests of a psychometric measure. Therefore
one difference to a HO-conceptualization lies in the “broad”,
but direct (NF) vs. “superordinate”, but indirect (HO) concep-
tualization of g (see Gignac, 2008).

1.3. Higher-order- versus nested-factor-models

Within psychometric intelligence research the HO-model
seems to be a popularmodel specification that is often adopted
Fig. 1. g = general factor, F1–F3 = domain-spe
without considering alternatives. However, the NF-model is
discussed as an alternative model specification. Before com-
paring these two models in more detail, one should keep in
mind that HO- und NF-models would be mathematically
equivalent, if one would add in the HO-model (constrained)
direct effects from the general-factor to every observed
variable (i.e., test) additionally to the general-factor effects on
the domain-specific factors (Yung et al., 1999). Because these
effects are usually eliminated in a “standard” HO-model, the
HO-model represents a constrained version of the NF-model.
Therefore, the NF-model is less restrictive and the HO-model is
more parsimonious (and more restrictive because all direct
effects of g on the observed variables are constrained to zero).
Another difference concerns the orthogonality of the first-order
factors within the NF-model (among the group-factors, as well
as, with the g-factor). Because the group factors of the NF-model
refer to covariances that are independent of g-bound-variances,
the group-factors refer to the residuals of g. From a statistical
point of view the uncorrelated factor-structure in the NF- model
enables the (statistically) independent and distinct analysis of
domain specific factors and a general factor, as well as, their
respective correlates (see Chen et al., 2006). When using the
NF-model one “can test, less ambiguously, hypotheses pertaining
to the existence and nature of factors, beyond the general factor”
(Gignac, 2006a, p. 143).

Nevertheless, from a more psychometric perspective, there
are questions to be answered regarding the substantivemeaning
of the factors in NF-models: On the one hand, g is based on the
covariances of the items (and not a more substantive psycho-
logical construct) and on the other, the group factors are based
on the covariances of the (g-)residuals. In HO-models, however,
the substantive meaning of the group factors can be induced
out of an inspection of the corresponding tests (e.g., tests that
are supposed to tap, for example, “memory”). Nevertheless, g in
HO-models is based on the covariance of the group factors,
as well. Jensen and Weng (1994) argued that the NF-model
is not explicitly hierarchical, because g does not depend on the
variable's loadings on the domain-specific factors. But, the
hierarchical dependency in HO-models could also be distracting
as mentioned by, for example, Brunner, Nagy and Wilhelm
(2012; Schmiedek & Li, 2004; cf. Yung, Thissen and McLeod,
1999): these authors referred to the proportionality constraints of
cific factors, V1–V9 = manifest variables.
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HO-models — meaning that for the indicators of one
domain-specific factor the ratios of variance attributable to the
respective residual of the domain-specific factor and variance
attributable to the general-factor are the same due to the
constraint. This statistical constraint in HO-models complicates a
straight-forward interpretation for the corresponding correla-
tion coefficients of the group factors and of g with other
variables. Other authors mentioned substantial advantages of
NF-models compared to HO-models (e.g., Chen et al., 2006;
cf. Brunner et al., 2013), especially when one is interested
in: (a) evaluating the psychometric properties of a test
with “a strong common trait [e.g., the g-factor], but there
is multidimensionality caused by well defined clusters of
items from diverse subdomains” (cf. Reise, 2012, p. 692) — as
particularly in intelligence tests and/or (b) the unique correla-
tions of the general factor and more domain-specific (group)
factors with other variables. This last aspect seems to be
especially useful when “making it possible to disentangle
differences in the general level of … achievement from
differences in specific strengths and weaknesses”, specif-
ically in an analysis of the general intelligence level and
“particular shapes of [the] performance profile” (Brunner
et al., 2013, p. 394).

Some CFA-studies dealt with the construct validity of several
intelligence test batteries that provided evidence for the
NF-model as a useful and well fitting (alternative) model
specification (e.g. Brunner et al., 2012; Gignac, 2005, 2006b;
Gustafsson & Balke, 1993). Brunner et al. (2012) compared
different model specifications by using data from the Spanish
standardization sample of the Wechsler Adult Intelligence Scale
(WAIS-III, see Colom, Abad, Garcia, & Juan-Espinosa, 2002). In
contrast to the one-factor model with only one g-factor loading
on all subtests (RMSEA = .13), alternative model specifications
showed likewise and good approximations to the empirical data:
(1) a first-order structure with four correlated factors (verbal
comprehension [VC], perceptual organization [PO], working
memory [WM] and perceptual speed [PS]; RMSEA = .07), (2)
a HO-model with four first-order factors (VC, PO, WM, PS)
together with a second-order g-factor (RMSEA = .07), and (3) a
NF-model with orthogonal factors (VC, PO, WM, PS, and g;
RMSEA = .06). The HO-model (with its proportionality con-
straints) represents a restricted version of the NF-model;
χ2-difference testing (see Yung et al., 1999) evidenced a better
fit of the NF-solution. Additionally, the one-factor model
revealed a worse fit than the NF-model. Based on these findings,
the authors concluded that the NF-model depicts a reasonable
representation of the empirical data of the WAIS-III, and that
domain-specific ability factors account for a substantial amount
of common variance among subtest-scores above the general
factor (Brunner et al., 2012, p. 812). Furthermore, Gignac (2005)
analyzed the data of the standardization samples of theWAIS-R,
again evidencing a (numerical) superiority of the NF-model
with three factors (g, Verbal-IQ [VIQ], Perceptual-IQ [PIQ];
RMSEA = .06) compared to a GF-model (RMSEA = .12), a
HO-model (RMSEA = .09) and an oblique factors model
with two factors (VIQ and PIQ; RMSEA = .09). In a
replication study with the data of the standardization
sample of the WAIS-III (Gignac, 2006b), the NF-solution
with three factors (g, VIQ, PIQ; RMSEA = .08) revealed
again a better fit than the HO-model with a second order g
and first order VIQ- and PIQ-factors (RMSEA = .11).
Focusing on a comparison of the models, NF-intelligence
models often revealed a numerically better fit to empirical data
than HO-models (e.g., Brunner et al., 2012; Murray & Johnson,
2013). But this conclusion of a superiority of NF-models based
on the fit was criticized by Maydeu-Olivares and Coffman
(2006) among others, who reported insufficient power to reject
incorrectNF-models in their small simulation study. Focusing on
the comparison between HO- and NF-models Chen et al.
(2006) evidenced sufficient power for the rejection of incorrect
NF-models in their simulation studies. Recently, Murray and
Johnson (2013) compared the HO- and the NF-models with
data based on 42 tests arranged in two test-batteries with 21
tests each. Whereas the NF-model showed a better fit for both
batteries in real data comparisons, an additional simulation
study revealed, that the NF-model was favored even when the
true model was a higher-order model (p. 419). Therefore,
further research is urgently needed regarding the question of
power when rejecting incorrect models, as well as, comparing
different models, especially in the framework of cognitive
ability structure research. Based on these results, Murray and
Johnson (2013) concluded that the decision “in the absence of
strong substantive or empirical reasons for preferring either
model, which is to be preferred may ultimately depend on the
purpose of the measurement model” (p. 420).

Indeed, the HO-model has often been selected as an
appropriate method. But, if one assumes a strong common
trait and the multidimensionality of the defined clusters of
sub-domains (see Reise, 2012) and accepts a rather “breadth”
interpretation of g with direct effects on every observed
variable, in accordance with Spearman's understanding of g,
the NF-model represents a statistically suitable alternative
to the commonly used HO-model, especially when one is
interested in the correlations of g and the group-factors with
external criteria (see Brunner et al., 2013; Chen et al., 2006;
Murray & Johnson, 2013).

1.4. The Berlin model of intelligence structure

A careful inspection of current intelligence concepts that
analyze intelligence factors simultaneously at different hierar-
chical levels revealed the Berlin Model of Intelligence Structure
(BIS; Jäger, 1982; Süss, Oberauer,Wittmann,Wilhelm,& Schulze,
2002) as especially well-suited. Historically, the BIS was
developed following a sample examination of about 2000
different tasks to assess intelligence and different intelligence
facets. After eliminating tasks thatwere doubled or very similar
to each other, the bi-factor BIS-structure with three content
facets (verbal, numerical, and figural) and four operation facets
(reasoning capacity, memory, speed, and creativity), resulting in
twelve content-operation-combinations (3 contents × 4 opera-
tions; see Fig. 2) in addition to g at the apex, was replicated
repeatedly (cf. Beauducel & Kersting, 2002). Basically, the
model structure can be interpreted as a classification scheme
for different intelligence tasks, as well. A verbal analogy task,
for example, can be fitted into the BIS cell which results from a
cross between the “verbal” content-facet and the “reasoning”
operation-facet. Therefore, achievement in a specific task is
influenced by a specific operation-, a specific content- and
the general-intelligence factor g (along with error-terms
consisting of a combination of reliable test-specific variance
components and unreliable error variance). As mentioned, this
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BIS-classification scheme does not just allow a task classifica-
tion of the BIS-tests developed to assess intelligence following
this conception, but also as a more general framework to
classify intelligence-tasks in general. Of particular interest is
the distinction among different content-facets according to the
material used (verbal [V], numerical [N], figural [F]).

NF-modeling with data from the Berlin-intelligence-
structure test (Jäger, Süss, & Beauducel, 1997; for an English
description see Süss et al., 2002) showed a reasonable fit to
empirical data. Specifically, Brunner and Süss (2005, 2007)
analyzed NF-models with eight orthogonal factors (three
content-, and four operation-facet-factors along with the
general-factor g) in a CFA (RMSEA = .04) in which the tests
were restricted to load only on their respective content- and
operation-facet factors, as well as, on the general factor.
Additionally, two separate NF-models with (a) only the
content-facet-factors (RMSEA = .03) besides a general factor
or (b) only the operation-facet-factors (RMSEA = .04) besides
a general-factor revealed in both cases a goodmodel fit, aswell.

1.5. Consistency of group factors

Whereas there is empirical evidence for the consistency
of g (as outlined above), the (additional) analysis of the
specific ability factors consistency besides g has been
neglected. Focusing on the consistency of g, Johnson et al.
(2008) did not inspect the covariances of these specific
ability factors systematically. Nevertheless, these authors
concluded that “[t]here are substantive correlations among
… specific abilities from battery to battery, and from
first-order factor to first-order factor, and different tests
measure them with reliability comparable to that associated
with the general factor” (p. 91). At least to our knowledge, an
additional and more systematic investigation of these
“besides-g-covariances” of the corresponding “besides-g-factors”
Fig. 2. The BIS model (Jäger, 1982).
of different test-batteries is still to come. Theoretically, the
outlined characteristics of NF-models seem to be especially
well-suited to answer such a research question because one
could inspect the consistency of g and the consistency of more
specific group factors simultaneously. Specifically, NF models
allow the estimation of group factors and their cross-battery
correlations free of g-variance.

1.6. The present study

Taking these aspects into account, the aims were three-
fold of the present study investigating different structure
facets of intelligence tasks stemming from three different and
independently developed test-batteries: (1) following prior
analyses (e.g., Brunner et al., 2012; Gignac, 2005, 2006a,b;
Gustafsson & Balke, 1993), different hierarchical models of
cognitive abilities (GF-model, HO-model, NF-model) were
compared in the framework of confirmatory factor analyses.
The GF-model (as a kind of “baseline-model”) represents a
rather broad conceptualization with a strong common influ-
ence of the g-factor. We expected an increasing model fit with
specifying additional group-factors. Based on prior findings, we
expected specifically (a) at least acceptable absolute model-fit
indices of all three models and (b) a relatively better fit of
NF-models (and partially HO-models) than GF-models. This
increasing model fit would correspond with a substantially
meaningful and, therefore, more adequate representation of
systematic covariances besides the general factor. (2) Concep-
tually replicating the studies by Johnson et al. (2004, 2008),
recent data were collected and analyzed in order to investigate
the consistency of g-factors stemming from three different
test-batteries. Based on prior results, we expected (very) high
positive correlations of these test-battery-specific g-factors.
(3) Over and above prior findings, the consistency of group
factors stemming from three different test-batteries was to be
investigated in a NF-model structure. Importantly, the struc-
ture of the general and of the domain-specific factors across
batteries could be taken into account. We expected (besides
[very] high positive correlations of these test-battery-specific
g-factors) at least substantial positive correlations of these
corresponding test-battery-specific intermediate factors.

2. Method

2.1. Participants

Participants were N = 562 German academic-tracked
high school students (Gymnasium, grade 9) from 23 classes
out of six schools (n = 279 females, n = 258 males, n = 25
without gender specifications; mean age = 15.6 years,
SD = 0.45, Min = 14.2, Max = 17.4). The participation rate
was 91%; the parents of 9% of the high school students did not
allow their child to take part in this investigation.

2.2. Instruments and procedure

A description of the 26 tests, their allocation to a specific
content facet (verbal, numerical, figural), the time limits, and
the number of items is presented in Table 1. These 26 tests
stemmed from well-known and widely used German intel-
ligence test-batteries and formed three (new) test-batteries.

image of Fig.�2


Table 1
Tests included in the batteries, supplemented by a description of the tests, the corresponding content-facet, the allocated allowed time, the number of items, the
means (M), the standard deviations (SD) and the intraclass-correlations (ICC).

Test (abbr.) Description Mat.
factor

Time
allowed

No. of
items

M SD ICC

Berlin Intelligence Structure Test, Form 4 (BIS-4), short version
1. City map (OG) Recall of buildings in a city map F 1:30 + 1:40 27 15.78 4.24 .06
2. Number sequences (ZN) Completion of numbers in a series N 3:40 9 5.25 2.17 .10
3. Relevant traits (EF) Generation of traits for a special occupational group V 2:30 f.r. 10.14 3.71 .07
4. Figural analogies (AN) Identification of analogous figure to follow a sequence of figures F 1:45 8 3.97 1.63 .16
5. x greater (XG) Crossing out numbers x greater than the prior one N 1:00 44 22.03 8.11 .06
6. Verbal analogies (WA) Identification of analogous word pairs V 1:30 8 3.30 1.67 .07
7. Layout (LO) Shaping of graphical labels F 3:00 f.r. 4.27 1.48 .09
8. Paired associates (ZP) Recall of numbered pairs N 2:00 + 2:00 12 7.07 2.54 .08
9. Fact-opinion (TM) Conclusion of fact or opinion of verbal statements V 1:00 16 9.30 3.17 .07
10. Crossing out letters (BD) Crossing out letters in an arrangement of several ones F 0:50 130 55.36 10.88 .09
11. Estimation (SC) Estimation of complex arithmetic N 2:45 7 4.15 1.70 .07
12. Story (ST) Recall of text information V 1:00 + 2:00 22 10.60 3.51 .05
13. Divergent computation (DR) Generation of arithmetic with given elements N 1:50 f.r. 11.40 4.22 .05
14. Charkow (CH) Completion and generation of figures in a series F 3:00 6 2.49 1.44 .06
15. Part-whole (TG) Crossing out words in a series of words V 0:40 22 14.15 3.25 .05

Fluid battery with Cattell's Culture Fair Test, Scale 2, short version and Raven's Standard Progressive Matrices
16. Series (RF) Identification of the next element in a series F 4:00 15 12.79 1.53 .08
17. Classification (KL) Identification of the element in each group that does not belong F 4:00 15 10.59 2.17 .03
18. Matrices (MZ) Identification of the analogous element of the matrix F 3:00 15 11.86 1.93 .06
19. Conditions (topology) (TO) Identification of the topologically equivalent element F 3:00 11 7.05 2.01 .04
20. SPM set A–E Identification of the analogous element of the matrix F 45:00 60 50.98 4.29 .09

German Cognitive Ability Test for 4th–12th grades, short version
21. Vocabulary (WS) Identification of words with similar or same meaning V 7:00 25 17.53 3.01 .06
22. Verbal analogies (WL) Identification of analogous word pairs V 7:00 20 12.07 2.77 .06
23. Quantity comparison (MV) Comparison of greater/smaller relation of numerical elements N 10:00 25 16.98 3.51 .11
24. Number sequences (ZR) Completion of numbers in a series N 9:00 20 17.51 2.51 .04
25. Figure classification (FK) Identification of matched figures F 9:00 25 21.79 2.66 .07
26. Figure analogies (FA) Identification of analogous figure pairs F 8:00 25 20.62 3.20 .03

Note: f.r. = free response. The participants should generate free responses so that an indication of the number of items is not possible.
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Practically, these 26 tests were compiled to form three
test-booklets (booklets B 1, B 2, B 3) and were administered
booklet-wise in whole school classes, whereby administering
a booklet lasted between 50 and 90 minutes. The three
booklets were administered in a randomized order for the
school classes in the three testing sessions on three different
days with an intermediate time period of two to three days.
All data were collected during regular lessons by trained
experimenters. For few students who could not attend to the
regular group testing sessions (because of, e.g., sickness),
separate testing was scheduled in smaller groups. Because
unfortunately not every high-school student participated in
each of the three testing sessions due to illness or for other
reasons not specifically related to the study, we were able to
collect data at all three measuring points for 87.5%. 11.7%
took part at two sessions and 0.7% just at one testing-session.
Data collection took place from June to July in 2010.

Booklet 1 (B 1) was comprised of the German adaptation
of Cattell's Culture Fair Test (CFT; Weiss, 2006) consisting of
four figural tests and the short form of the Berlin Intelligence
Structure Test (most recent form: BIS-4; Jäger et al., 1997)
consisting of 15 heterogeneous tests, which are briefly
described in Table 1. The four tests from the CFT are quite
similar in regard to content and cognitive operation; exclu-
sively figural material is presented and the items are supposed
to assess (primarily) reasoning. In the (German) test manual,
retest reliability coefficients for a period of two to five months
were reported for the subtests ranging from rtt = .48 for
classification to rtt = .65 for matrices and for the sum value of
rtt =.92 (based on the four subtests). The tests of the BIS-4
(short form) assessed the content facets verbal, numerical, and
figural with five tests each. Additionally, the sum of all 15 tests
is an indicator of gBIS. Unfortunately, stability coefficients of the
short version and/or specific tests were not reported in the test
manual, a one-year stability coefficient of the general factor of
the long version reached rtt = .88 (Süss et al., 1991). Booklet 2
(B 2) consisted of Raven's Standard ProgressiveMatrices (SPM;
Raven, 1941) with figural reasoning tasks. There is consider-
able evidence for the SPM to be highly g-loaded (e.g. Jensen,
1998). In the (German) test manual, the three month retest
reliability coefficients reached rtt = .90 for the whole sample
(Heller, Kratzmeier, & Lengfelder, 1998). Booklet 3 (B 3)
consisted of the short form of the German adaptation of the
Cognitive Ability Test (CogAT; Heller & Perleth, 2000) with six
tests. Combined retest- and parallel-test reliabilities (three
weeks) of the tests (of the long test version) ranged from rtt =
.76 for verbal analogies to rtt = .92 for figure analogies. The
CogAT assesses – besides gCogAT – verbal, numerical, and figural
reasoning (Heller & Perleth, 2000).

2.3. Data analyses

Test scores for each test were computed, serving as basis for
the further analyses. The 26 tests formed three test-batteries: the
tests stemming from the BIS-test formed the BIS-battery and the
tests stemming from the CogAT formed the CogAT-battery.



Fig. 3. Confirmatory factor analyses for alternative models estimating general and specific factors in three test batteries. g = general ability, BIS = Berlin Intelligence
Structure Test, Form 4, CogAT = German Cognitive Ability Test for 4th to 12th grades, Fluid = Culture Fair Test, Scale 2 with Raven's Standard Progressive Matrices.
VBIS = verbal content factor sensu Jäger's (1982) BIS-model, NBIS = numerical content factor, FBIS = figural content factor. VCogAT = Verbal Reasoning, QCogAT =
Quantitative (numerical) Reasoning, NCogAT = Nonverbal (figural) Reasoning. For descriptions of the manifest variables (subtests) see Table 1. To ensure the clarity of
presentation, disturbance terms (all uncorrelated) of the manifest variables are not displayed.
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These two batteries included a rather broad range of different
cognitive tasks, regarding different content facets (in the
BIS-terminology). The remaining subtests stemming from the
CFT were combined with the SPM to form an additional third
test-battery with a focus on figural reasoning tasks (fluid
battery), thereby emphasizing this facet (and its potential
relevance for the different g-factors).

Concerning the first research question, confirmatory
factor analyses (CFAs) were conducted using the software
program Mplus (Muthén & Muthén, 1998–2007) in order to
evaluate and compare different hierarchical model specifica-
tions of cognitive abilities (see Fig. 3): (a) HO-model with
test-battery-specific higher order factors and test-battery-
specific g-factors (HO-model), (b) NF-model with test-battery-
specific g-factors and nested factors (NF-model), (c) GF-model
with one (general) g-factor (g general) for all individual tests,
and (d) GF-model with test-battery-specific g-factors (g battery-
specific). In HO-models, each test-battery-specific higher order
factorwas indicated by the corresponding content facet-specific-
tests as specified in the test manuals (see also Table 1). Similarly
in NF-models, each test-battery-specific (and, thereby, content-
facet-specific) nested factor was indicated by the corresponding
content-facet-specific tests as specified in the test manuals (see
Table 1). Regarding the BIS-tests, we specified a model with

image of Fig.�3


Table 2
Fit indices for the alternative models: higher-order model (HO), nested-factor model (NF) and both general factor models (GF: g general and g battery-specific see
Fig. 3).

Model χ2 df p SRMR RMSEA BIC AIC

HO 1203.807 461 b .001 .069 .054 76,057.075 75,628.257
NF 899.468 431 b .001 .055 .044 75,898.279 75,339.515
GF (g general) 1530.051 464 b .001 .071 .064 76,423.261 76,007.437
GF (g battery-specific) 1471.523 461 b .001 .069 .062 76,370.952 75,942.134

Note. SRMR = Standard Root Mean Square of Residuals, RMSEA = Root Mean Square Error of Approximation, BIC = Bayesian Information Criterion, AIC = Akaike
Information Criterion.
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three content-facet specific factors (VBIS, NBIS, FBIS) and a
general factor (BIS g) in contrast to a model with four
operational components or a combined model with both
content and operational components. Similar factors were
specified for the CogAT (VCogAT, QCogAT, NCogAT; CogAT g). We
used nonstandardized test scores as indicators for the latent
factors in HO- and NF-models. In order to avoid local under-
parameterizations for the CogAT with two indicators for each
latent factor (Vocabulary [WS] and Verbal analogies [WL] for
“Verbal”, Quantity comparison [MV] and Number sequences
[ZR] for “Quantitative”, and Figure analogies [FA] and Figure
classification [FK] for “Figural”) and corresponding identifying
constraints,we first ranked the items of each test in the order of
the item difficulty; secondly, we split the items making use of
the odd–even-method. We therefore picked the first, third, fifth
(and so on) item to create the “odd”-parcel and picked the
second, fourth, sixth etc. item to create the “even”-parcel, both
consisting of ten to twelve items each. Because the tests were
speeded and presentedwith increasing difficulty the first items
were solved more often than the latter test items. By making
use of the odd–even-method, we created (as much as possible)
equal weighted item parcels. To take into account that those
two parcels stemmed from the same subtest, we fixed their
non-standardized loadings on the corresponding latent fac-
tor(s) to be equal.1 Each factor variance in each model was set
to 1.

To control for potential effects due to the school class
affiliation and the clustering of the data (students in classes),
analyses were run using the method “complex” available in
Mplus after inspecting the intraclass correlations. There were
fewmissing values in each test (Mean = 2.5%; Median = 2.5%;
Min = 2.5%; Max = 6.2%), so the analyses relied on the Full
InformationMaximumLikelihood (FIML) estimation provided in
Mplus (Muthén & Muthén, 1998–2007). The parameters were
estimated by using the robust maximum-likelihood algorithm
(MLR).

While evaluating themodels, absolute and relativemodel fits
were inspected. In addition to the χ2-test, which becomes more
sensitive to small model deviations with increasing sample size,
we used several descriptive fit-statistics for the model evalua-
tion. FollowingHuandBentler (1998),weused the Standardized
Root Mean Square of Residuals (SRMR; Bentler, 1995) together
1 As an alternative strategy, we also ran analyses using raw items and
setting their loadings to equal. Because those analyses resulted in, for
example, correlation coefficients that exceeded the boundary of r = 1
(indicating a severe misspecification), that alternative strategy did not seem
to be useful nor fruitful.
with the Root Mean Square Error of Approximation (RMSEA;
Steiger, 1990) to evaluate the goodness of fit. According to
Hu and Bentler's (1999) cutoff criteria, an acceptable model fit
is indicated by SRMR close to .08 and RMSEA close to .06.
Admittedly, these values are more or less accepted guidelines.
Moreover, we used the magnitudes of the standardized factor
loadings with values greater or equal to .30 being substantial to
evaluate the interpretability of the models (see Carroll, 1993;
McDonald, 1999). Additionally, the different models were also
compared by making use of Schwarz' (1978) Bayesian Informa-
tion Criterion (BIC) and Akaike Information Criterion (AIC), pre-
ferring models with lower values, and a comparison of the fit
value change. Although rather an ad hoc guideline to evaluate
the fit difference, and therefore to be used with caution, Chen
(2007) suggested that the more complex model should be
chosen when the RMSEA difference exceeds .015.

Concerning the second research question dealing with a
consistency analysis of the g-factors stemming from different
test-batteries, we inspected the latent g-factor correlations of the
different models from the first research question. This was done
when the fit of the correspondingmodelswas at least acceptable.
Regarding the third research question dealingwith a consistency
analysis of the hierarchically intermediate factors stemming
fromdifferent test-batteries, the content-facet factor correlations
of NF-models were inspected. Thereby, we relied on criteria
regarding a convergent and discriminant validation introduced
within the multitrait–multimethod framework (Campbell &
Fiske, 1959). Because of a lack of generally accepted scientific
criteria regarding the absolute magnitude of the corresponding
correlation coefficients, we oriented ourselves on the following
criteria: In order to evidence convergent validity, the cross-
battery correlations of the corresponding content-specific
factors had to differ from zero and approach a “large”
effect size (i.e., r = .50; see Cohen, 1988). In order to prove
discriminant validity, these convergent correlation coefficients
had to exceed numerically the remaining (discriminant) cross-
battery correlation coefficients of the non-corresponding
content-specific factors.

Reliabilities of the content-facet factors in the NF-model
were computed making use of the model-based reliability
estimate called omega hierarchical (ωh) (cf. Brunner et al.,
2012). Omega hierarchical was computed as the ratio of
variance attributable to the content specific factor (i.e., the
squared sum of the factor loadings of the manifest variables
on the associated content specific factor) to the total variance
of this scale score (i.e., the sum of the manifest variables'
factor loadings squared over the associated content specific
factor and the g-factor plus the sum of the residual variances
of these manifest variables). By means of the variance



Table 3
Standardized factor loadings in the combined nested factor-model (NF-model; see Table 2).

Test BIS-4 CogAT Fluid

λVBIS λNBIS λFBIS λBIS g λVCogAT λQCogAT λNCogAT λCogAT g λFluid g

TM .45⁎ .25⁎

EF .25⁎ .08
WA .28⁎ .36⁎

TG .45⁎ .14
ST .37⁎ .18⁎

ZN .34⁎ .45⁎

XG .51⁎ .27⁎

ZP .34⁎ .14⁎

SC .26⁎ .42⁎

DR .22⁎ .17⁎

OG .31⁎ .35⁎

AN .06 .55⁎

LO .32⁎ .09
BD .39⁎ .14⁎

CH − .14⁎ .59⁎

WS 1 .51a⁎ .31⁎

WS 2 .55a⁎ .19⁎

WA 1 .43b⁎ .42⁎

WA 2 .42b⁎ .39⁎

MV 1 .06c .48⁎

MV 2 .06c .56⁎

ZR 1 .66d⁎ .47⁎

ZR 2 .63d⁎ .40⁎

FK 1 .49e⁎ .51⁎

FK 2 .53e⁎ .53⁎

FA 1 .23f .67⁎

FA 2 .26f .58⁎

RF .52⁎

KL .44⁎

MZ .41⁎

TO .42⁎

SPM .62⁎

ωh .39 .29 .12 .67 .46 .25 .24 .85 .60

Note. For indications with superscript letters (a–f) the unstandardized factor loadings, each with the same letter, were fixed to be equal. The model-based
reliability estimates omega hierarchical (ωh) for the content specific factors are represented in the bottom row.
⁎ p b .05.
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attributable (solely) to the general factor in the denominator it
becomes clear, that ωh, and thus the reliability of the content
specific factors, decreases as the influence of the general-factor
increases.

3. Results

The mean values, standard deviations and intraclass cor-
relations of the tests are presented in Table 1. The intraclass
correlations ranged from ICC = 0.03 for classification (CFT test
KL) to ICC = 0.16 for figural analogies (BIS-4 test AN).

3.1. Absolute and comparative model evaluation

The specified HO-model with correlated g-factors for the
three test batteries revealed at least acceptable fit statistics
(see Table 2 and Fig. 3). All first-order standardized factor
loadings with their corresponding factor were statistically
significant (p b .05), and many of the standardized factor
loadings were substantial with values greater than or equal
to .30 (exceptions: LO = .12, BD = .18, EF = .28, DR = .28
and ZP = .29). The second-order standardized factor load-
ings ranged from .58 for VBIS on BIS g to .98 for FBIS on BIS g for
the second-order structure.
The NF-model with three correlated g-factors and six
domain-specific factors (VBIS, NBIS, FBIS, VCogAT, QCogAT, NCogAT)
correlated across, but not within batteries revealed good fit
indices (Table 2). Most of the standardized factor loadings
were statistically significant (Table 3). For 14 out of the 32
manifest variables (44%) substantial factor loadings on both the
corresponding battery-specific g-factor and the corresponding
domain-specific factor occurred. A total of 16 tests (50%)
revealed substantial loadings either on their corresponding
g-factor or on the corresponding specific factor. Two variables
(6%) did not load substantially on either the corresponding
g-factor or on the specific corresponding content-facet factor.
In sum, 94% of the tests had at least one substantial loading.
Overall, both the fit indices and the inspection of the loadings
indicated that the proposed NF-model represents an, at least,
acceptable approximation to the empirical data.

Two GF-models, a GF-model with test-battery-specific
g-factors (g battery specific) and a model with only one
g-factor (g general), were additionally specified as a basis for
further model-comparisons with a widely used “baseline
model”. In contrast to the model-fit of the HO- and NF-model,
the model fit for both g-factor models was acceptable, but
numerically poorer. The standardized factor loadings of the
tests were statistically significant in both models (p b .05).



Table 4
Correlations of the g-factors in the different models (see Table 2): higher
order models (HO), nested factor models (NF), and test-battery-specific
g-factor models (GF) across the three test batteries.

Model CogAT g Fluid g

HO NF GF HO NF GF

Bis g .92⁎ .91⁎ .80⁎ .99⁎ 1.00⁎ .91⁎

CogAT g .95⁎ .92⁎ .88⁎

⁎ p b .05.

Table 5
Correlations of the content-facet-specific factors in the nested-factor models
(see Table 2) across the three test batteries.

Factor VCogAT verbal QCogAT numerical NCogAT figural

VBIS .83⁎ .01 .03
NBIS − .41⁎ .46⁎ − .25
FBIS − .47⁎ .00 .22

⁎ p b .05.
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They ranged from LO = .15 on BIS g to FA 1 = .69 on CogAT
g in the test battery-specific GF-model and from Lo = .12 to
FA 1 = .67 for the model with one g-factor. Therefore, the fit
of both of these models was acceptable, but did not account
for the empirical data in a totally sufficient manner.

In sum, all four models revealed acceptable to good model-
fits. The NF-model revealed the lowest AIC- and BIC-values,
followed by the HO-model; both GF-models revealed substan-
tially higher BIC-values. Regarding ΔRMSEA, the NF-model
showed a lower value than the HO-model (ΔRMSEA = .010)
and both GF-models (ΔRMSEA = .018 and .020), indicating a
better fit of the NF-model. Comparing the HO-model with the
other models the RMSEA did not differ by more than .015
(although it was numerically higher for the HO-model than
for the NF-model and lower for the HO-model than for both
GF-models). The SRMR, the AIC and the BIC-values and
additionally ΔRMSEA – as a rule of thumb and, therefore, to
handlewith caution – indicated a (numerically) better fit of the
NF-model compared to the HO-model and to both GF-models,
and a better fit of the HO-model than both GF-models.

3.2. Correlations of the g-factors

An inspection of the correlations of the latent g-factors of
the three different test-batteries within the NF-framework
revealed very high coefficients (r = .91–1.00; Table 4).
Model-based reliability estimates ωh of the general factors
reached .67, .85 and .60 for BIS, CogAT and Fluid, respectively.
The g-factor correlations were of comparable magnitude
within a HO-framework (r = .92–.99). However, even for the
less convincing GF-model with test battery-specific g-factors
(regarding the fit values as well as the model comparisons),
the correlations of these g-factors stemming from three
different test batteries reached substantial values between
r = .80 and r = .91.

3.3. Correlations of the content facet-factors

The consistency of hierarchically intermediate intelligence
factors (below g) stemming from different test-batteries was
investigated within the NF-framework. As mentioned, the
selected tests of the BIS as well as the CogAT allowed the
specification of nested and g-independent content-facet factors
(verbal, numerical, figural). An inspection of the correlational
pattern of these factors revealed a substantial convergent
correlation of the two test-battery-specific nested verbal factors
(r = .83; Table 5) that was numerically higher than the
corresponding (absolute values of the) discriminant correlation
coefficients, evidencing convergent-discriminant-validity. For
the nested numerical factors, the convergent correlation was
statically significant, as well (r = .46), and numerically higher
than the absolute values of the corresponding divergent
correlation coefficients. Nevertheless, this convergent correla-
tion coefficient was numerically lower than the convergent
coefficient for the verbal factors. Regarding the figural nested
factors, the convergent correlation coefficient was even lower
(r = .22). Moreover, some of the corresponding divergent
coefficients were numerically higher in absolute values
indicating a lack of convergent–divergent validity of the figural
group factors. Model-based reliability estimates ωh of the
content-specific factors ranged from .12 (for Figural of the
BIS-battery) to .46 (for Verbal of the CogAT-battery) (see
bottom row of Table 3). These relative low values of the
content-specific factors were mainly attributable to the ratio
of variance of the general factor in all scales of the BIS- and
CogAT-battery. In sum, the NF-model including simultaneously
orthogonal general factors and (nested) content-facet-specific
factors for each of the independently developed test batteries
revealed a distinct correlation pattern for the verbal and
numerical group factors over and above the correlations of
the general factors.

4. Discussion

The main results of the present study are threefold,
whereby the analyses were based on current data from a
large sample of high-school students taking a total of 26
heterogeneous intelligence tests stemming from indepen-
dently developed test-batteries: (1) a comparison of different
hierarchically structured intelligence models in a confirma-
tory approach revealed (a) at least acceptable absolute model
fits of the analyzedmodels (NF-model, HO-model, GF-models
with test-battery-specific g-factors as well as one general
g-factor), and (b) a numerically better approximation to the
data in the NF-model. (2) The correlations of the three
test-battery-specific g-factors were very high, indicating that
the interindividual differences of the corresponding three
test-battery-specific g-factors were (almost) interchange-
able. This applies to all three methodological approaches
(NF-model, HO-model, GF-model with test-battery-specific
g-factors). (3) Going beyond these and prior findings, the
correlations of the content-facet- and besides-g-factors evi-
denced a pattern of convergent–divergent validity of the verbal
and numerical group factors in a NF-model framework.

Regarding the first research question dealing with the more
specific structure of intelligence, different theoretically derived
hierarchical intelligence-models were compared. Corresponding
to the majority of theoretical and empirical assumptions (first
mentioned by Spearman, 1904, and continued by numerous
researchers, e.g., Carroll, 1993; Deary, 2012; Jensen, 1998;
McGrew, 2009) all of our CFA-models converged in the notion
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of a general intelligence factor at the apex. Replicating prior
results (e.g., Brunner et al., 2012) with data based on a sub-
stantially different sample of high school students and concep-
tually different intelligence tests, our analyses revealed at least
acceptable absolute fit statistics for all four model-specifications.
Thereby, the widespread assumption of a general factor under-
lying cognitive ability tasks was supported again. Furthermore,
the model fit successively improved from a more general
(GF-model) to a more differentiated structure within the HO-
and NF-models, that differentiated the latent group-factor
structure besides g with regard to verbal, numerical and figural
content facet factors within the test batteries. The successively
better fit of theNF-model than theHO-model and theGF-models
is in accordance with the analyses using the Spanish standard-
ization data of the Wechsler Adult Intelligence Scale (WAIS) by
Brunner et al. (2012) and the analysis with the standardization
samples of the WAIS-R and WAIS-III (Gignac 2005, 2006b).
Although the specific NF-model-structure differed somewhat
due to different theoretical conceptions between theWAIS with
rather operation-facet specific nested factors and in contrast,
the content-facet nested factors of our analyses. It would be
interesting to (re-)analyze further test batteries in NF-models
with a realization of test-classifications according to the theo-
retically convincing content-facet-specific BIS-facet-structure
(already a dimension of Guilford's [1985] Structure-of-Intellect
Model) or even the bi-faceted classification schema of diverse
intelligence test tasks.

One anonymous reviewer justifiably asked how can one
interpret the orthogonality of the factors in the NF-model in
terms of human cognitive function, specifically when individual
differences are a sum of two (or more) uncorrelated processes.
We agree that CFA-models should be consistent with theoretical
assumptions. Both NF-models and HO-models are statistical
models that represent the empirical data, and for the most part,
in terms of model fit at least acceptable. In most cases, a
psychological interpretation of the group factors in HO-models
seems to be quite straight forward: for example, different tasks
and tests are supposed to tap “working memory”, a dimension
on which individuals differ. One conclusion is that these inter-
individual differences in these specific tasks and tests could
causally result from the variation inworkingmemory. Therefore,
calling the corresponding group factor a “working memory
factor” seems straight forward (thank you to the reviewer for
this specification). Nevertheless, the covariances of such group
factors in a HO-model constitute what many researchers call g;
and, therefore, there are purely statistical aspects constituting g
(taking a more psychological point of view, this might be one
reason for the psychological lack of clarity of g in HO-models).
Similarly, the representation of orthogonal factors in NF-models
is “just” a statistical representation of empirical data. One should
keep in mind that there are still unresolved issues regarding
power and the interpretation of the corresponding fit values
changewhen comparing themodels statistically. Taken together,
some arguments remain for and against both statistical models.
As already mentioned in the Introduction, Murray and Johnson
(2013) concluded that the corresponding decision for a
particular model specification “may ultimately depend on the
purpose of the measurement model” and added: “If ‘pure’
measures of specific abilities are required then bi-factor model
factor scores should be preferred to those from a higher-order
model” (p. 420). Therefore, from a purely statistical viewpoint
and for the purpose of our study, the orthogonality of g- and
content-specific factors within the NF-specification constitutes
an advantage, specifically the distinct analysis of correlations
with external criteria (in the present study: content-specific
factors from other test-batteries) independently of the general
factor and without the inevitable limitations related to propor-
tionality constraints (cf. Chen et al., 2006; Schmiedek & Li, 2004).
Itwould be an interesting challenge for future research to further
clarify the relations between more psychological intelligence
models and their corresponding statistical representations
(cf. Brunner et al., 2013).

Regarding the second research question dealing with the
consistency of the g-factors stemming from different test
batteries, the test-battery-specific g-factors correlated very
high, as expected. The g-factor correlations in the GF-model
with one g-factor for each battery were substantially lower
(.80 ≤ r ≤ .91) in contrast to the HO- (.92 ≤ r ≤ .99) and the
NF-model (.91 ≤ r ≤ 1.00). One rather substance-based
interpretation of this pattern suggests that the group factors
of NF- and HO-models accounted for systematic covariances
besides g, which somehow biased the g-factors of the
GF-model. Our results are in line with previous research:
(a) the (almost) test battery-independence and consistency
of g (Johnson et al., 2004, 2008), and (b) a large extent of
invariance in the specific factor-analytic method (e.g., Jensen
& Weng, 1994). As a test of robustness and to strengthen the
latter point we additionally conducted CFA's with all three
test-batteries in a combined model and systematically varied
the specification types (i.e., NF, HO, GF) for each battery
(BIS-HO with CogAT-NF and vice versa; or BIS-GF with CogAT
HO and vice versa; and all together with Fluid-GF): all six
model-variations showed good to acceptable fit statistics
(RMSEA b .06) and the g-factor correlations (r N .84) were of
similar magnitude as in the combined models using uniform
methods for the BIS- and CogAT-batteries. It should be kept in
mind that the 26 different tests were quite heterogeneous
and that the original test-batteries were based on substan-
tially different theoretical intelligence conceptions. These
very high g-correlations with different tests in an independent
sample (German high school students) provided additional
evidence for the consistency of g.

Of particular importance is the substantial correlation of
the battery-specific-g-factor of the Fluid-test-battery with
both the CogAT- and the BIS-battery-specific g-factors. The
subtests of the Fluid-battery consisted exclusively of figural
reasoning tasks like matrices and figural analogies and were,
thereby, capturing a cognitive ability which is rather narrow
in scope; the g-correlations to the BIS- and CogAT-battery,
which are broader in scope, were also very high, ranging
from .88 for Fluid-g with CogAT-g in the GF-model to 1.00 for
Fluid-g with BIS-g in the NF-model. Johnson et al. (2008)
reported their lowest g-factor-correlation of .77 for the CCFT-
with the GATB-battery interpreting this result pattern by
suggesting that the CCFT might be narrower in scope,
compared to the rather broad GATB-battery. This might
have been caused by the fact, that the Fluid-battery in our
analyses consisted of (in addition to the four CFT-tasks) the
reliable full set of Raven's Standard Progressive Matrices (Raven,
1941) with relatively strong g-factor-loadings of .62. Raven's
Matrices are known to be (very) highly g-loaded (cf., Jensen,
1998). In accordancewith prior research and due to our findings,



2 An inspection of the corresponding quotients of the standard deviations
revealed that most standard deviations of our sample seem (very) similar to
those standard deviations of the (Gymnasium) norm samples — not
indicating severe range restrictions (SPM: 0.9; CogAT: 1.0 [WS], 1.0 [WL],
0.8 [MV], 1.0 [ZR], 1.7 [FA], 1. [FK]). We furthermore inspected these
quotients calculated with the standard deviations of the whole CogAT- and
SPM-norm samples (not just students attending the Gymnasium): as
expected, these values were a bit higher (SPM: 1.5; CogAT: 1.4 [WS], 1.1
[WL], 1.4 [MV], 1.5 [ZR], 1.9 [FA], 1.5 [FK]) — but exceeding 1.5 for only one
test.

131S. Valerius, J.R. Sparfeldt / Intelligence 44 (2014) 120–133
we suggest that the amount of g-factor correlations across
batteries, although always very high and approaching unity,
seems to be influenced by several aspects: (a) the number and/
or (b) the differences of the tasks of the batteries, and/or (c) the
degree to which the subtests are “g-reliable”, meaning that high
g-loaded subtests (e.g. [Raven's] Matrices) strengthen the
g-factor correlations. Another explanation for the very high
correlations between the fluid- and the other batteries could be
thatwe operationalized g quite “figural”, as indicated by the high
loadings of the figural subtests on the g-factors in theHO-models
of the BIS- (.98), as well as, the CogAT-battery (.84). This point
will be particularly important within the framework of the next
research question.

The third research question dealt with the inspection of the
group-factor correlations of different test-batteries beyond the
correlations of test-battery-specific g-factors. As expected, the
substantial positive correlations of these test-battery-specific
and content-facet-specific factors proved (at least for the verbal
and numerical factors) convergent validity. Additionally, the
pattern of the correlations of those test-battery-specific group
factors proved divergent validity. The highest convergent
correlation of the test-battery-specific factors occurred for the
verbal-group factors (r = .83), followed by numerical (r = .46)
and figural factors (r = .22) in the NF-model. As mentioned
above, our g-factors had a figural focus which could explain
(a) the high loadings of the figural factors on the g-factors in the
higher order BIS- and CogAT-battery and (b) the relative low
cross-battery correlations of the figural factors in the NF-model
because reliable figural variance was already bonded to a large
extent with the considerably figural-based g-factors. One re-
viewer pointed out that g tended often to be the predominant
source of variance in indicators as compared to specific abilities
(cf. Canivez & Kush, 2013), although this interpretation was
often based on HO-models. In examining the standardized
factor-loadings the pattern of the indicators (Table 3) in our
NF-model showed no such general predominance of the general
factor, especially for the verbal (and for the numerical) ability-
factor. This relative g-dominance of the figural (vs. numerical
and verbal) subtests corresponds with the outlined pattern of
less evidence for convergent–divergent validity of these figural
group factors. At this point, we recommend caution in making a
more substantial interpretation of the different convergent
correlations of the content-facet-specific factors because the
number of tests was limited (for pragmatic reasons) to two to
five tests per test-battery-specific content-facet factor. It would
be interesting to replicate these results with a broader range of
tests. As shown in prior studies (e.g., Brunner et al., 2012; Reise,
2012), the model-based reliability estimates of the
domain-specific factors in the NF-model as operationalized by
omega hierarchical [ωh] using factor loadings were rather low.
The loadings we made use of for estimating omega hierarchical
stemmed from the complex NF-model with all batteries and,
thus, were partially rather low. Half of the variables in the NF
model loaded substantially above .30 on both g and the
group-factor, but nearly half of the loadings reached substantial
values only on the general- or the respective group-factor in
consequence of modeling orthogonal factors. As can be seen
from the formula of ωh, the reliability estimates for the specific
ability factors are influenced substantially by the amount of the
g-factor loadings of the corresponding subtests. It seems that this
was particularly relevant for the figural content factors, because
the g-loadings of these subtests were particularly high. In
contrast, the reliability coefficients of the verbal factors were
rather higher, because a substantial amount of systematic verbal
variance (i.e., loadings on the verbal factor) was set against the
relatively moderate g-factor loadings of the corresponding
subtests. So the interpretation of the subscales as precise
indicators of unique constructs seems to be limited (Reise,
2012, p. 691), at least at first glance. Additionally it should be
kept in mind, that reliability represents merely one aspect when
evaluating the quality of a psychometric measure besides
important other criteria as, for example, the (convergent)
validity with similar constructs and/or external criteria. Corre-
spondingly, the substantial convergent nested factor correlations
of the verbal and numerical factors can be interpreted as the
lower bound of the reliabilities of these factors. (Similarly, the
g-factor correlations were substantial and very high, despite
model-based reliability estimates being rather moderate.) In
sum, this convergent–divergent correlation pattern of the nested
factors gave us reason to believe that these beside-g and
content-facet-specific (nested) factors have substantial rele-
vance (at least, for the verbal and numerical factors). One
anonymous reviewer asked justifiably about the implications for
themagnitudes of cross-battery correlations of the group factors.
In several studies g is observed as the predominant source of
systematic variance of cognitive tasks and the factors beside/
below g are sometimes designated as rather negligible. The
purpose of our studywas to systematically examine this variance
not accounted for by g; and the findings suggest that it is
fruitful to have a closer look on these former classified “rather
negligible” variance components. In a next step it would be
interesting to investigate the correlations of these content-
specific nested factors with real life criteria (e.g., achievement
tests and grades) to further evidence criterion validity of the
content-facet group-factors.

However, there are some limitations to our study: although
partially replicating former analyses and results that were
primarily based on adult samples, the presented results are
restricted to German high school students and a specific grade
(9th graders; although this relatively age-homogeneous sam-
ple reduced corresponding confounding variance of different
age cohorts). The students' participation depended partially on
decisions of their principals as well as their teachers and
parents. Therefore, the selection of the students was non-ran-
dom. The high participation ratewithin the sample prevented a
substantial bias due to a systematic self-selection within the
targeted sample. Focusing on potential variance-restriction2

we inspected the correlation-coefficients of our sample in
comparison to those of the German CogAT norm sample.
Effect-size q ranged from .03 to .30 indicating (atmost) small to
medium effects (Median: q = .16). These results suggest, that
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range restriction was indicated to a small to medium extent as
would have been expected for a (Gymnasium) high-school-
sample. Although variance-restriction affects the magnitude of
correlations, the g-factor-correlations reached magnitudes as
high as can be expected from other studies. Nevertheless, our
results can be seen as conservative estimates. One can assume
that similar analyses in more heterogeneous samples would
likely yield a (more) stable correlation pattern, particularly for
the specific-ability-factors. Similar investigations based on
different samples from other countries should be conducted.
The analyses were based on a relatively broad and heteroge-
neous sample of 26 different intelligence tests, but practical
limitations made it impossible to further broaden the range of
different cognitive tasks and tests. These practical reasons
limited the test-battery-specific content-facet specific group
factors to two (CogAT) to five (BIS) tests per factor. Neverthe-
less, the test selection was guided by considerations to
conceptually replicate prior results (from the first two research
questions). It would still be fruitful to include even more tests
of an even higher variety in order to further strengthen the
interpretations. Although the different hierarchical models
were derived from prior analyses, the HO- and NF-models
in particular were specified by splitting the corresponding
CogAT-tests (in order not to risk under-identifications).

In sum the findings of our study affirm the main results:
(1) in the framework of CFA-modeling of hierarchically
structured intelligence models, the NF-model represents a
useful and fruitful alternative to GF- and HO-models especially
when the general factor and domain-specific factors are of
interest (conceptually replicating, e.g., Brunner et al., 2012;
Gignac, 2005, 2006b; Gustafsson & Balke, 1993). (2) The
general-factor as an underlying and broad intelligence-factor
correlated very high proof consistency (almost) regardless
of the instrument, given that it is developed to measure g
(conceptually replicating Johnson et al., 2004, 2008). (3) In
addition to and beyond prior results, test-battery-specific
and content-domain-specific verbal and numerical ability
factors proved consistent across independently developed
test-batteries. For this reason, these results confirmed
empirically the comment made by Johnson et al. (2008, p. 91)
that “[t]here are substantive correlations among … specific
abilities from battery to battery … and different tests measure
them with reliability comparable to that associated with the
general factor”, at least and especially for the verbal (and, to a
lesser degree numerical) content-facet factors.
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