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It is unclear whether different elementary cognitive tasks (ECTs) are associated with intelligence

because these tasks tap the same basic cognitive process (suggesting a single mental speed factor)

or different ones (suggesting several mental speed factors), as it is not known which specific

cognitive processes are measured in ECTs and because the factor structure of these processes is

unknown. To address these questions, 40 participants (50%males) between 18 and 75 years drawn

from a community sample completed the Hick paradigm, the Sternberg memory scanning

paradigm, and the Posner letter matching paradigm while an EEG was recorded. We applied a

diffusion model approach to the response-time data, which allows the mathematical decompo-

sition of different cognitive parameters involved in speeded binary decisions. Behavioral and

electrophysiological results indicated that ECT conditions varied in different neuro-cognitive

components of information processing. Further analyses revealed that all speed and latency

variables had substantial loadings on a second-order general factor marked by general intelligence,

and that the association between ERP latencies and general intelligence was mediated by reaction

times. These results suggest that there is a general neuro-cognitive speed factor across different

tasks and different levels of measurement that is associated with general intelligence.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

After several decades of research, there is ample evidence of

a moderate, but very consistent association between measures

of intelligence and measures of mental speed. In a recent

review of 172 studies, Sheppard and Vernon (2008) reported

an average correlation of r=− .24 between differentmeasures

of intelligence and a variety of mental speed measures. This

evidence indicates that more intelligent individuals have a

higher speed of information processing. It is not yet known,

however, if this association is driven by a general mental speed

factor across different cognitive functions (e.g., information

uptake, short-term memory, lexical access) or if there are

several mental speed factors that are specific for cognitive

functions and that are independently associated with general

intelligence.

The aim of the present study was to address this question

and to provide a rationale for a more refined analysis of the

relationship between mental abilities and mental speed that

may allow for a better understanding of the neuro-cognitive

processes driving this association.

1.1. The study of mental speed

Almost all studies on the relationship between mental

abilities and mental speed employ so-called elementary cogni-

tive tasks (ECTs) when measuring reaction times (for a notable

exception using pencil-and-paper tests see Neubauer & Knorr,

1998). These ECTs are tasks with very low cognitive demands

that maximize the empirical control of task complexity and
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minimize unwanted sources of variance in individual differ-

ences. Because ECTs put only marginal cognitive requirements

on participants, individual differences in strategy use and in

previous experience with specific elements of the task are less

likely to influence the association between RTs and intelligence

than in more complex decision-making problems. Several of

the often-used ECTs follow an idea in tradition of Donder's

subtraction method (Donders, 1969): The subtraction method

presumes that when two reaction time tasks differ only in the

number of stimulus or response alternatives while every other

detail of the task remains the same across conditions, the

difference between RTs is an indicator of a purely mental

processing speed. Following this logic, difference parameters are

often the theoreticallymost interesting variables in ECT research.

There are several paradigms in which this idea is pursued.

In the simple and choice reaction time task based on the Hick

paradigm (Hick, 1952), participants are presented between one

and ten response buttons arranged in a semi-circle around a

single home button and have to react when the light next to

one of the response buttons is switched on. Because Hick

showed that there is a linear relationship between the amount

of information that has to be processed and reaction times

(Hick, 1952), individual intercept and slope parameters can be

computed when regressing RTs on the logarithm of stimulus–

response alternatives. This way, individual slope parameters

can be used as estimates for the “rate of gain of information”

(Roth, 1964), which are theoretically (though seldom statisti-

cally) independent of motoric movement time, and can be

correlated with measures of mental abilities. Another applica-

tion of the general idea of the subtractionmethod can be found

in the Sternbergmemory scanning task (Sternberg, 1969). In this

task, participants see memory sets of different sizes and are

then asked if a single probe item was part of the previously

presented memory set. Because RTs again increase linearly

with memory set size, the slope parameter of the regression of

RTs onmemory set size can be used as an indicator of individual

speed of short-termmemory search. A similar idea is applied in

the letter matching paradigm (Posner & Mitchell, 1967) where

participants have to decidewhether two letters are the same in

accordance with their physical identity or in accordance with

their name. The difference of RTs between these conditions is

an estimate for the speed of lexical access (Hunt, 1983),

because of the additionally required access to long-term

memory in the name identity condition.

1.2. Associations between mental speed and mental abilities

Correlations between RTs of ECTs and mental abilities are

moderate, but consistent. Jensen (1987) reviewed 26 studies

with a total N of 2317 participants that investigated the

relationship between different parameters of the Hick para-

digm andmental abilities tests. He reported amultiple R2 of .25

in a regression of IQ scores on different parameters derived

from the Hick paradigm. In a review of ten studies using

Sternberg's memory scanning task and psychometric intelli-

gence tests, Neubauer (1997) reported a mean correlation of

r=− .27 betweenmeanRT and intelligence test scores. He also

reviewed ten studies correlating RTs in the Posner letter

matching task and mental abilities test scores and computed

mean N-weighted correlations ranging between r =− .23 and

− .33 for different parameters of the paradigm. In a recent

review, Jensen (2006) reported canonical correlations ranging

from C = .55 to .72 between different measures of mental

abilities and of mental speed. It should be noted that

correlations including the difference measures and slope

parameters are usually substantially lower (Jensen, 1998;

Neubauer, 1997). Taken together, these results suggest that

there is a consistent negative association between mental

speed and mental abilities in the way that more intelligent

individuals have a higher speed of information processing.

1.3. Cognitive processes in elementary cognitive tasks

The general idea that ECTs measure specific cognitive

processes like speed of short-term memory access or information

processing speed is appealing, because correlations between

difference and slope parameters in ECTs and general intelli-

gence would then be informative about the association

between specific cognitive processes and general intelligence.

This general idea should, however, be treated with caution.

Although ECTs already have rather low task complexities, each

ECT still requires several cognitive processes such as attention,

perception, encoding, representation in working memory,

decision making, and response preparation. Moreover, it can

be argued that ECT conditionsmight differ in the demands they

put on several cognitive processes simultaneously, so that

difference and slope parametersmight not only be indicators of

a specific cognitive process, but might also include variance of

other cognitive processes that differ between conditions. This

would violate one of the assumptions of the subtraction

method proposed by Donders (1969) and question the validity

of difference and slope parameters. Because this often-

implicated premise has to our knowledge never been tested

empirically, the first aim of the present studywas to investigate

whether conditions in three ECTs differ only in one or in several

cognitive processes.

Because not much is empirically known about which

specific cognitive processes contribute to the distribution of

reaction times in ECTs, even less is known about the origins of

inter-individual differences in these RTs. One important

question is whether these different tasks are related to general

intelligence because they tap the same basic property of the

cognitive system, or whether these tasks tap different cognitive

system parameters. Many researchers tend to conclude from

these findings that there is indeed one basic property at work,

which is mental speed. According to this view, greater mental

speed facilitates a better cognitive performance. Despite the

great theoretical relevance of this concept, only few studies

provided data that may help to answer the question whether

there is one general factor of mental speed. Most studies

include only one or two elementary cognitive tasks and are not

focused on a systematic study of the factor structure itself.

There are a few studies that report correlation matrices or

factor analyses of ECTs that favor the hypothesis of a large

general mental speed factor explaining more than 40% of

variance (Burns & Nettelbeck, 2003; Hale & Jansen, 1994;

Neubauer & Bucik, 1996; Neubauer, Spinath, Riemann,

Borkenau, & Angleitner, 2000), while other studies, which

employ not only classical ECTs but a more diverse range of

information-processing tasks, report multi-factorial models of

mental speed (O'Connor & Burns, 2003; Roberts & Stankov,

1999). Clearly these inconsistent results require further

29A.-L. Schubert et al. / Intelligence 51 (2015) 28–46



systematic study of the factor structure of mental speed,

although the preliminary findings may suggest that there is a

generalmental speed factor, probably in addition tomore task-

specific speed factors. The second aim of the present study was

to address this question by decomposing the information-

processing components in three ECTs and testing whether a

single general mental speed factor emerges in a factor analysis

of different speed measures across the three tasks.

As long as we do not have enough knowledge about the

factor structure of ECTs, we cannot know which cognitive

processes might be responsible for individual differences in

RTs. Therefore, we do not know whether more intelligent

individuals have a generally faster speed of information

processing or whether they differ in very specific facets of

mental speed from less intelligent individuals. The behavioral

data do not inform us which of these processes differ between

individuals of different cognitive ability. The third aim of the

present study was to address this problem using methods that

allow the decomposition of the stream of information process-

ing during reaction time tasks and to analyze the association

between individual differences in these distinct information

processing components and mental abilities.

1.4. Decomposing the stream of information processing in ECTs

In the present study, we used two methods to decompose

the streamof information processing in ECTs: The firstmethod is

the diffusion model, which decomposes the stream of

information-processing and decision making in RT tasks into

distinct components based on RT distributions (Ratcliff, 1978).

Anothermethod that decomposes the streamof neuro-cognitive

information processing are electrophysiological measures,

namely event-related potentials (ERPs), which allow to identify

functionally distinct components in different time windows

between the stimulus onset and the response execution. While

diffusion models have only recently been applied in mental

abilities research, ERPs are already used to a great extent.

Diffusion models are random walk-models used in the

context of speeded binary decisions and provide a framework

for analyzing the whole distribution of reaction time data (for

recent reviews, see Ratcliff & McKoon, 2008; Wagenmakers,

2009; Voss, Nagler, & Lerche, 2013). They allow the identifica-

tion of cognitive parameters by fitting predicted reaction time-

distributions to empiric reaction time-distributions (Voss,

Rothermund, & Voss, 2004). Diffusion models in their most

basic form identify four distinct parameters: The first param-

eter, drift rate (v), describes the strength of the systematic

influence on the diffusion processwith larger drift rates causing

shorter reaction times and smaller amounts of errors. This

parameter is most akin to the idea of ‘speed of information

processing’ mentioned earlier, as it indicates the amount of

information gathered per time unit. The second parameter,

boundary separation (a), is a measure for the distance between

decision thresholds, i.e., an indicator for the conservatismof the

decision criterion. The third parameter, starting value (z),

indicates whether a person is biased towards one of two

decision thresholds. If z is closer to one threshold than the

other, this threshold is reached more often due to random

fluctuations, resulting in more and faster decisions associated

with this threshold. The last parameter, response-time constant

(t0), encompasses processes unrelated to decision making,

mainly stimulus encoding and response execution.

There are only a very small number of studies in which

diffusionmodelswere applied in intelligence research. In a study

by Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann (2007),

university students had to complete several reasoning tasks

and choice reaction tasks. They showed that a latent drift rate

factor correlated positively with a latent reasoning ability factor

(r = .79), whereas they reported a smaller negative association

between a latent boundary separation factor (r = − .48) and

reasoning ability. Ratcliff, Thapar, and McKoon (2010) asked

participants in three different age groups (18–25, 60–74, 75–

90 years) to complete different categorization tasks. They

reported correlations ranging from r = .36 to .90 for the three

age groups between a latent drift rate factor and intelligence,

whereas they found no consistent association between other

diffusion model parameters and intelligence. They found similar

results in another study, where participants' drift rate in

recognition tasks was the only diffusion model parameter

consistently correlated with intelligence, r = .47 to .67 (Ratcliff,

Thapar, &McKoon, 2011). Although these preliminary results are

promising, it should be noted that none of these studies used

ECTs that are normally used in intelligence research.

Another method suited to decompose cognitive compo-

nents in the stream of information processing is the ERP. The

ERP methodology allows identifying functionally distinct

electrophysiological components (e.g., the N200 or P300) that

might be affected differently by condition differences in ECTs.

Moreover, according to the mental speed hypothesis, the

latencies of ERP components should be negatively correlated

with intelligence.

There are several electrophysiological studies that correlat-

ed ERP parameters with intelligence. In their review of 23 of

these studies (N N 2400), Schulter and Neubauer (2005)

concluded that there are no consistent associations between

ERP latencies and intelligence. It should, however, be noted that

most of these studies employed standard ERP paradigms such

as the oddball paradigm and that behavioral data from these

tasks is uncorrelated with intelligence. There are only a few

studies in which classical ECTs were combined with ERP

methodology. Houlihan, Stelmack, and Campbell (1998) and

Pelosi et al. (1992) computed ERPs to probe stimuli in the

Sternberg memory scanning tasks and found both weak and

mostly insignificant associations between ERP latencies and

intelligence test scores. McGarry-Roberts, Stelmack, and

Campbell (1992) computed a factor analysis of P300 latencies

recorded during six reaction time tasks including the Sternberg

memory scanning task. They correlated this P300 factor with a

general intelligence factor and reported a correlation of r =

− .36 between these factors. All in all, these studies suggest that

there may be a weak negative association between ERP

latencies and mental abilities, but further studies are needed

before any final conclusions can be drawn.

1.5. The present study

The goal of the present study was to decompose the

information-processing components in three different ECTs

(Hick paradigm, Sternbergmemory scanning task, Posner letter

matching task) by applying diffusion models to reaction time

distributions and bymonitoring the neuro-cognitive correlates
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of information processing with EEG methodology. We pursued

three aims: First, wewanted to investigate whether differences

between ECT conditions represent one or multiple cognitive

processes, as the general idea of ECT implies that these

differences represent a single process within each task.

Contrary to this idea, we expected ECT conditions to represent

a range of different processes such as attention, perception,

encoding, representation inworkingmemory, decisionmaking,

and response preparation, i.e., we anticipated that these tasks

differ in several behavioral and electrophysiological parame-

ters simultaneously. Our second aim was to investigate the

factor structure of mental speed. We expected to identify a

single general mental speed factor across all behavioral and

electrophysiological measures and all tasks in addition to more

specific factors. Our third aimwas to investigate the association

betweenmental speed and mental abilities across the different

measures and tasks. We expected a) that a general mental

speed factor is significantly associated with general intelli-

gence, and b) that the association between ERP latencies and

mental abilities is mediated by reaction times. This mediation

model is based on themethodological framework of Baron and

Kenny (1986), who suggested that mediation models are

causal models. A proposed mediator variable Z mediates the

relationship between an independent variable X and an

outcome variable Y only if the independent variable has a

causal effect on the mediator variable that in turn has a causal

effect on the outcome variable (Baron & Kenny, 1986, p. 1176).

While the mediation model allows for some part of the causal

influence to take the direct path from the independent variable

to the outcome variable (X≥ Y), it presumes that a substantial

part of the causal influence is exerted through the indirect

effect via the proposed mediator (X≥ Y ≥ Z). In all ECTs of the

present study, a stimulus has first to be processed visually and

then relayed to frontal areas associated with executive

functions and decision making before a motor response

reflecting this decision can be initiated. Thus, there is a stream

of processing that has some temporal order, with neuro-

cognitive events taking place before behavioral events occur.

Therefore, we expected that ERP latencies exert themajority of

their influence on general intelligence indirectly through the

proposed mediator reaction times.

2. Method

2.1. Participants

We recruited a sample of N = 40 participants (20 females,

20males) between 18 and 75 years old (M= 47.4, SD= 15.6)

from different educational and occupational backgrounds via

local newspaper advertisement. All participants had normal or

corrected to normal vision and no history of mental illness.

They received 10€ as payment for their participation and could

indicate whether they wanted to be informed about their

personal results.

2.2. Measures

2.2.1. Elementary cognitive tasks

2.2.1.1. Hick paradigm. In order to control for visual attention

effects, response bias effects, and top-down strategies

associated with the classical Jensen apparatus and the use of a

home button (Longstreth, 1984) and in order to ensure

compatibility of this paradigm with EEG measurements, we

adopted the modified Hick paradigm developed by Neubauer,

Bauer, and Höller (1992). This modified paradigm is presented

on a computer screen and does not employ a home button.

Participants' middle and index fingers rested on four keys of a

modified keyboard, on which all other keys irrelevant to the

task were removed. Those keys were positioned directly

underneath the squares relevant for the task, thus increasing

stimulus–response compatibility as much as possible. Partici-

pants were instructed to always keep their fingers on the keys

during the whole task. In the 2 bit condition, four squares

arranged in a row with a fixation cross in their middle were

shown on the screen for a time period varying between 1000

and 1500 ms. After this period, a cross appeared in one of the

four squares and participants had to press the corresponding

response-key. The screen remained unchanged for 1000 ms

following the response, aswewanted to record post-decisional

neuronal processes. After this time period, an ITI varying

between 1000 and 1500 ms was presented, followed by the

next trial.

We implemented two 1 bit conditions: One condition

(comparability low: 1 bitCL) adopted from Neubauer et al.

(1992) and a secondone (comparability high: 1 bitCH) designed

tomaximize stimulus comparabilitywith the 2 bit condition. At

the beginning of each trial in the 1 bitCL condition, only two

squares appeared on the screen with a fixation cross in the

middle of the screen. These two squares appeared pseudo-

randomly in two of the four locations used in the 2 bit

condition. As in the 2 bit condition, a cross appeared in one of

the two squares after 1000 to 1500 ms and participants had to

press the corresponding key. In the 1 bitCH condition, however,

all four squares were presented on the screen, but participants

were instructed to only pay attention to two of them, because

the cross could only appear in one of these two squares. There

were four blocks with 20 items each instructing participants to

pay attention to the left/right/middle/outer two squares. We

implemented this additional 1 bit condition because it shared

all stimulus features with the 2 bit condition and only differed

from this condition in the instruction participants were given.

This is a necessary prerequisite for ruling out confounds in the

interpretation of ERP effects, because small changes in physical

stimulus features can result in sizeable changes in ERP

amplitudes. For an overview over the different conditions, see

Fig. 1.

Participants were instructed to respond as quickly and

accurately as possible. The order of conditionswas the same for

all participants. First they completed the 2 bit condition, then

the 1 bitCL condition followed by 1 bitCH condition. Each

condition consisted of a learning phase with ten sample items

and direct feedback, followed by 80 test items. Participants

made short breaks between blocks. There were two fixed

sequences of the location of squares and crosses that were

balanced across participants.

2.2.1.2. Sternberg memory scanning task. Participants were

shown digits between 0 and 9 on a computer screen. There

were three blocks of ten sample items each with feedback and

80 test items with a memory set size of 1, 3, and 5 digits. Each

trial began with a fixation cross varying between 1000 and
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1500ms. Digitswere presented sequentially for 1000mswith a

blank screen of 400 to 600 ms between single digits. After the

last digit of thememory set was presented, a black screen with

a questionmark was shown for 1800 to 2200ms, followed by a

probe item showing a single digit. Participants had to press one

of two keys with their index fingers indicating whether the

digit was part of the memory set seen immediately before. The

probe item remained on screen for 1000 ms after the reaction

was made and the intertrial interval was 1000 to 1500 ms. See

Fig. 1 for illustration.

All participants beganwith set size one and then progressed

to set sizes three and five. They were given the option to make

short breaks between blocks. There were two versions of

stimulus material counterbalanced across participants. The

probe itemwas previously presented in thememory set in 50%

of the trials. The position of keys indicating whether the probe

Fig. 1. Stimulusmaterial for the three ECTs. Upper part: The three conditions of themodified Hick paradigm. 2-bit= 2-bit condition, 1-bitCL= 1-bit conditionwith low

stimulus comparability to the 2-bit condition, 1-bitCH= 1-bit conditionwith high stimulus comparability to the 2-bit condition.Middle part: Differentmemory set sizes

in the Sternberg memory scanning task. Lower part: Physical identity (PI) and name identity (NI) condition in the Posner letter matching task.
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item was part of the memory set was counterbalanced across

participants.

2.2.1.3. Posner letter matching task. After a fixation cross lasting

between 1000 and 1500 ms, two letters were presented in the

middle of the screen and participants had to decide whether

this pair was identical or not by pressing the corresponding

key. In the physical identity condition, participants were

instructed to judge letters as identical only if they were

identical in physical characteristics (thus, “AA” would be

identical, while “Aa” or “AB” would be judged as different). In

the name identity condition, participants were instructed to

judge the name identity of stimuli (thus, “AA” and “Aa” would

be judged as identical, while “AB” would not be). Afterwards,

the pair of letters remained on the screen for 1000 ms and was

followed by an ITI varying between 1000 and 1500 ms. See

Fig. 1 for illustration.

The two conditionswere separated into blocks of 10 sample

items with feedback and 200 test items each. All participants

began with the physical identity condition and made a short

break between blocks. There were two versions of stimulus

material assorted to participants depending on their number.

We used the upper- and lowercase letters A, B, F, H, and Q as

stimulusmaterial. The pair of letters was identical in 50% of the

trials. The position of keys indicating whether the pair was

identical was counterbalanced across participants.

2.2.2. Intelligence tests

2.2.2.1. Fluid intelligence. We used a self-programmed comput-

erized version of Raven's Advanced ProgressiveMatrices (APM;

Raven, Court, & Raven, 1994) to measure fluid intelligence. In

this computer adapted version of the APM, one item was

presented at a time with its eight possible alternatives and

participants had to indicate their solution with a mouse click.

They were able to go back and forth between the different

items at any time with the exception that they could not go

back to Item set I once they had started working on Item Set II.

According to the test manual, the APM raw test score was

computed as the number of correctly solved items and used in

all further analyses. Cronbach's alpha was α = .82.

2.2.2.2. Crystallized intelligence. We constructed a short version

of the knowledge test from the German Intelligenz-Struktur-

Test 2000-R (IST 2000-R; Liepmann, Beauducel, Brocke, &

Amthauer, 2007) as an indicator of crystallized intelligence. The

knowledge test of the IST 2000-R consists of several knowledge

questions tappingdifferent fields of knowledge like “What does

π (pi) mean?”, “In which street is the New Yorker stock

exchange?”, or “What does the octane index indicate?”. To

create a short version, we chose the 20 items with the highest

loadings on crystallized intelligence, although we lost some

diversity in the content of test items. The knowledge test was

administered according to the manual and the number of

correctly solved items was used as the test score for all further

analyses. We did not compute IQ scores because we had no

normative data of our abbreviated version. Cronbach's alpha

was α = .65.

2.3. Procedure

Participants read and signed an informed consent. They

were seated on a comfortable chair in a dimly lit EEG cabin in

front of a computer screen. All participants completed the three

ECTs in the same order with small breaks between the tasks:

Hick paradigm, Sternberg memory scanning task, and Posner

letter matching task. ECTswere followed by a short break, after

which participants completed the APM and the knowledge test

based on the IST 2000-R. Information about demographic

variables was gathered at the end of the session.

2.4. EEG recording

The EEGwas recordedwith nine Ag–AgCl electrodes (F3, Fz,

F4, C3, Cz, C4, P3, Pz, P4) that were positioned according to the

international 10–20 system. We used the aFz electrode as the

ground electrode. Electrodeswere initially referenced to Cz and

later re-referenced to linked mastoids (TP9, TP10). To correct

for ocular artifacts, we recorded the electrooculogram (EOG)

bipolarly with two electrodes positioned above and below the

right eye and two electrodes positioned at the outer canthi of

the eyes. All electrode impedances were kept below 5 kΩ. The

EEG was recorded continuously with a sampling rate of

2500 Hz (band-pass 0.1–100 Hz). We applied an offline low-

pass filter of 16 Hz for the determination of average activity

within timewindows and low-pass filters of 12Hz (early ERPs)

and 8 Hz (late ERPs) for latency detection.

2.5. Data analysis

2.5.1. Response times

Trials with extremely fast RTs (b200 ms for the Hick

paradigmand b300ms for the Sternbergmemory scanning and

the Posner letter matching task) or extremely slow RTs

(N3000 ms) were removed. We used the fast-dm program

developed by Voss andVoss (2007) to fit diffusionmodels to RT

distributions, which is free software that utilizes the Kolmogo-

rov–Smirnov test statistic to estimate model parameters. The

parameter z for mean starting point was set equal to a/2,

presuming that participants had no response bias towards the

correct or incorrect alternative. We computed separate diffu-

sion models for each condition of the three ECTs in which the

parameters a, v, t0, and st0 were allowed to vary freely. For

correlational analyses, we averaged the respective parameters

across all conditions for each ECT. Thus, we computed an

average drift and an average response-time constant for each of

the three ECTs in order to reduce the number of variables

entered into the subsequent factor analysis while increasing

their reliability. Inter-trial variability parameters of the diffu-

sion model (sv, sz) were fixed to 0 to keep the model

parsimonious with the exception of st0, because it led to a

notable improvement of model fit.

To assess how well diffusion models fit the individual-level

data, we conducted Monte-Carlo simulations and simulated

1000 data sets from the diffusion model that matched the

characteristics of the empirical data (i.e., simulated parameter

values were based on empirical parameters values, and the

number of trials and conditions was equivalent to the tasks

used in the present study). We then re-analyzed the simulated

data sets with the diffusion model and used the 5% quantile of
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the distribution of fit-values in each ECT condition as the critical

value to assess individual model fit in the empirical models.

2.5.2. EEG parameters

We calculated ERPs time-locked to the onset of probe items

in all tasks, using the preceding 200 ms as baseline and

including an interval from 200 ms before stimulus onset until

1000 ms afterward. Ocular artifacts were corrected using the

regression procedure of Gratton, Coles, and Donchin (1983).

Epochs with amplitudes exceeding ±70 μV, with amplitude

changes exceeding 100 μV within 100 ms, or with lower

activity than 0.5 μV were discarded as artifacts. We identified

ERP components by visual inspection of the grand average

waveforms (Fig. 3–5) for the three ECTs and computed mean

EEG activity in the following time windows: In the Hick

paradigm, we computed the P200 (175–215 ms), the N200

(210–240 ms), and the P300 (360–420 ms). In the Sternberg

memory scanning paradigm, we computed the N150 (115–

160ms), the P200 (200–245ms), the N300 (300–360ms), and

the P300 (400–600 ms). In the Posner letter matching

paradigm, we computed the N140 (115–155 ms), the P210

(190–235 ms), the N300 (240–365 ms), and the P300 (465–

580 ms). For ERP latencies, we inspected participants' individ-

ual averaged waveforms at all nine electrode positions for

peaks during the time windows described above and used

these peak latencies as individual latency measures. For

correlational analyses, we inspected grand average waveforms

and determined at which electrode position each ERP compo-

nent was greatest and used the corresponding electrode

position for all further analyses. We used the same electrode

position for each ERP component for all participants.

2.5.3. Statistical analyses

In order to characterize ECTs in terms of information

processing components, we ran repeated measures ANOVAs

with the factor condition separately for median RTs, drift rates,

and response-time constants for each ECT. In the following

analyses on average EEG activity, we ran an omnibus repeated-

measures ANOVA for each ECTwith fourwithin-subject factors:

ERP component (with three levels for the Hick paradigm: P200,

N200, P300; four levels for the Sternberg memory scanning

task: N150, P200, N300, P300; with four levels for the Posner

letter matching task: N140, P210, N300, P300), condition (with

two levels for the Hick paradigm: 1 bit vs. 2 bit; three levels for

the Sternberg memory scanning task: set size 1, set size 3, set

size 5; two levels for the Posner letter matching task: PI vs. NI),

caudality (with three levels for all tasks: frontal, central,

parietal), and laterality (with three levels for all tasks: left,

central, right) in order to test if condition effects differed

between time windows. We then ran follow-up repeated

measures ANOVAs for each ECT with the three within-subject

factors condition, caudality, and laterality to test for condition

differences in specific ERP components in each ECT. For these

analyses, we dropped the fourth factor ERP component that

was included in the omnibus ANOVAs, because we wanted to

test for condition differences in specific time frames.

For factor analyses, we first computed principal component

analyses (PCA) a) for intelligence test scores and b) for each of

six time-domain variables across the three ECTs (Table 8 shows

a list of variables).We included only time-domain variables that

were available and comparable in at least two different ECTs,

which led to the exclusion of slower ERP components because

their time windows were not comparable across ECTs. Next, we

computed individual factor scores of the first principal compo-

nent of these seven PCAs that yielded individual factor scores for

RT, v, t0, and three ERP latencies. A hierarchical PCA was then

run on the correlation matrix of these factor scores and the

number of factors was determined by the scree plot (Cattell,

1966) and the parallel analysis criterion (Horn, 1965). Because

of their intercorrelations, factors were rotated obliquely.

Finally, we ran mediation analyses to test whether the

relationship between ERP latencies on intelligence test scores

was mediated by reaction times and used the bootstrap

procedure to test for an indirect effect (Preacher &Hayes, 2004).

We repeated all correlational analyses controlling for age

because of the heterogeneous sample. Since age had no

influence on the pattern of results, we did not include these

analyses in this report.

3. Results

3.1. Descriptive data

The median RT in the Hick paradigm was M = 447.22

(SD= 91.62) and themean accuracywasM=0.98 (SD= .01).

In the Sternberg memory scanning paradigm, the median RT

was M = 736.78 (SD = 133.17) and the mean accuracy was

M = 0.96 (SD = .02). The median RT in the Posner letter

matching task was M = 663.41 (SD = 104.89) and the mean

accuracy was M = 0.98 (SD = .01). Please consult Table 1 for

the descriptive data of the different ECT conditions. The mean

score of correctly solved APM items was M = 24.55 (SD =

5.09), which corresponds to a mean IQ of M = 91.68 (SD =

14.6). IQ scores were normally distributed (skew = 0.16,

kurtosis = −0.24) and ranged from 78 to 123 IQ points. The

mean score of correctly solved knowledge test itemswasM=

15.49 (SD = 2.72). No corresponding IQ score could be

computed, because we only used an abbreviated version of

the full IST 2000-R knowledge test. Knowledge test scoreswere

also normally distributed (skew= −0.17, kurtosis =−0.49).

Descriptive statistics for the diffusionmodel parameters are

shown in Table 1.Model fits were satisfactory for all three ECTs.

In the Hick paradigm, 5% of the models in the 1 bit condition

and 2.5% of the models in the 2 bit condition had p-values

smaller than the critical p-values of pcrit = .794 and .843,

respectively. In the set size 1 condition of the Sternberg

memory scanning paradigm, there were no models with p-

values below the critical value of pcrit = .834, while 2.5% and

7.5% of the models in the set size 3 and in the set size 5

condition had p-values smaller than pcrit = .839 and pcrit =

.836. Model fits were slightly worse in the Posner letter

matching paradigm with 10% of the models falling short of

the critical p-value pcrit = .833 in the physical identity

condition and 5% of the models falling short of the critical p-

value pcrit = .824 in the name identity condition. We kept the

models with bad model fits in our analyses, because excluding

these models did not change the pattern of results.

3.2. Characterization of ECTs in terms of neuro-cognitive processing

One aim of this study was to identify neuro-cognitive

parameters differing between conditions of the three ECTs. The
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main purpose of the analyses reported in this section was to

test whether there are specific RT and ERP parameters that

differ between conditions or whether we have to assume that

ECT conditions differ in several steps in the course of neuro-

cognitive information processing.

3.2.1. RT characterization and diffusion model results of ECTs

As expected, median RTs increased with increasing task

difficulty in all ECTs (Fig. 2). In the Hick paradigm, median RTs

were significantly larger in the 2 bit than in the 1 bitCH
condition, F(1,38) = 92.73, p b .001, ω2 = .71. In the 1 bitCL
condition, however, median RTs were significantly larger than

in the 2 bit condition, F(1,38) = 4.62, p = .038, ω2 = .09,

which was unexpected as less information (only two alterna-

tives) had to be processed in the 1 bitCL than in the 2 bit

condition (four alternatives). As we did not know which

cognitive processes were responsible for this unexpected

increase in RTs, we dropped the 1 bitCL condition from all

further analyses and renamed the “1 bitCH” condition to “1 bit”

condition for the remainder of this report. When we analyzed

the effects of condition on drift rates and response-time

constants separately, we observed no change in drift rates

with increasing number of stimulus alternatives, F(1,38) =

2.02, p = .163, ω2 = .03, but an increase in response-time

constants, F(1,38) = 58.62, p b .001, ω2 = .60.

In the Sternberg memory scanning paradigm, RTs increased

with set size, F(2,78)= 113.17, p b .001,ω2= .74, ε= .68, in a

strictly linear way, F(1,39) = 133.53, p b .001, ω2 = .77. As

expected, drift rates decreased with memory set size,

F(2,76) = 18.47, p b .001, ω2 = .31, ε = .91, also following a

linear pattern, F(1,38) = 31.16, p b .001, ω2 = .44. t0 also

differed between conditions, F(2,76) = 35.57, p b .001, ω2 =

.48, ε = .82, and increased linearly with memory set size,

F(1,38) = 46.76, p b .001, ω2 = .55.

Table 1

Median RTs, mean accuracies, mean drift rates and mean response-time constants for the different conditions in the three ECTs (SD in parentheses).

ECT Condition Median RT Accuracy v t0 a st0

Hick paradigm 1 bitCL 483 (172.41) .97 (.03) 3.53 (1.57) 0.31 (0.10) 1.47 (0.56) 0.13 (0.11)

1 bitCH 380 (73.59) 1.00 (.01) 5.26 (1.34) 0.30 (0.04) 1.18 (0.33) 0.11 (0.06)

2 bit 461 (98.73) .99 (.02) 4.89 (1.44) 0.37 (0.06) 1.17 (0.26) 0.15 (0.08)

Sternberg memory scanning task Set size 1 599.25 (105.60) .96 (.03) 3.15 (0.81) 0.40 (0.08) 1.35 (0.35) 0.18 (0.13)

Set size 3 732.75 (146.69) .97 (.03) 2.86 (0.79) 0.51 (0.10) 1.54 (0.36) 0.21 (0.16)

Set size 5 851.25 (187.74) .96 (.03) 2.36 (0.72) 0.56 (0.13) 1.68 (0.41) 0.20 (0.14)

Posner letter matching task PI 618 (96.44) .98 (.01) 3.98 (0.94) 0.46 (0.07) 1.37 (0.35) 0.13 (0.07)

NI 683.50 (120.78) .98 (.02) 3.03 (0.84) 0.47 (0.08) 1.64 (0.31) 0.15 (0.14)

Note. 1 bitCL = 1 bit condition with low comparability; 1 bitCH = 1 bit condition with high comparability; PI = Physical Identity; NI = Name Identity; v = drift rate;

t0 = response-time constant; a = boundary separation; st0 = intertrial-variability of the response-time constant.

v

t
0

t
0

vv

t
0

Fig. 2. Median RTs, mean drift rates, and mean response time-constants for the different conditions of the three ECTs. Error bars represent doubled standard errors.
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In the Posner letter matching paradigm, median RTs were

higher in the name identity than in the physical identity

condition, F(1,38) = 70.36, p b .001, ω2 = .64. When v and t0
were compared between conditions, we found that drift rates

decreased in the NI condition, F(1,38) = 35.76, p b .001, ω2 =

.48, and that there was no significant difference in response-

time constants between conditions, F(1,38) = 2.64, p = .112,

ω2 = .04. Overall, these results indicated that there was

substantial variation between tasks in which diffusion model

parameters varied significantly between ECT conditions. Only

in the Sternberg memory scanning paradigm did different

conditions differ not only in their information processing

demands, but also in their sensomotoric difficulties.

3.2.2. ERP characterization of ECTs

In order to investigate whether electrophysiological activity

differed between conditions within each of the three ECTs, we

compared average activity and peak latencies across different

time windows in the course of information processing. Our

main aim was not to identify specific processes differing

between conditions, but to test if ECT conditions differed in

only one or several electrophysiological components. We only

reported main effect and interactions including the factor ECT

condition, as we were only interested in condition effects on

ERPs; additional topographical information on the ERP compo-

nents can be found in the tables detailing the complete ANOVA

results in the supplementary material.

In the Hick paradigm, we compared mean activity and peak

latencies between conditions in three different time windows.

First, we computed an omnibus ANOVA with the four within-

subject factors ERP component (P200: 175–215 ms, N200:

210–240 ms, P300: 360–420 ms), condition (1 bit vs. 2 bit),

caudality (frontal, central, parietal), and laterality (left, central,

right) to test whether condition effects differed between time

windows. For mean activity, we observed a significant

interaction between component and condition, F(2,70) =

20.26, ε = .71, p b .001, ω2 = .55, as well as significant three-

way interactions between ERP component, condition and

caudality, F(4,140) = 5.12, ε = .39, p = .014, ω2 = .11, and

between ERP component, condition and laterality, F(4,140)=

3.16, ε=.53, p= .045,ω2=.06. For ERP latencieswe observed

a significant interaction between ERP component and

caudality, F(4,140) = 3.96, ε = .64, p = .032, ω2 = .08, and a

significant three-way interaction between ERP component,

condition and caudality, F(4,140) = 8.96, ε = .56, p b .001,

ω2 = .18. See Fig. 3 for the ERPs elicited by stimuli in the Hick

paradigm.

In a next step,we comparedmean activity and ERP latencies

between conditions in each of the three different time

windows. Please see Table 2 for detailed results of the main

effects and interactions including the factor condition on ERP

amplitudes and Table 3 for detailed results on ERP peak

latencies. We found a significant difference in mean P200 and

N200 activity with amplitudes being greater in the 1 bit than in

the 2 bit condition for the P200,ω2= .41, andwith amplitudes

being greater in the 2 bit than in the 1 bit condition for the

N200,ω2= .42. The significant interactions between condition

and caudality, ω2 = .25, and between condition and laterality,

ω2 = .22 and .30, indicated a specific topography of this effect.

In particular, condition differences were largest at central and

central parietal electrode sites for both ERP components.

Moreover, P200 latencies were shorter in the 2 bit than in the

Fig. 3. Event-related potentials elicited by the onset of the cross in the 1 bit condition (solid lines) and 2 bit condition (broken lines) in theHick paradigm. Electrodes are

arrayed from most anterior (top) to most posterior (bottom) and from left to right.
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1 bit condition, ω2 = .27, but the significant interaction

between condition and caudality, ω2 = .17, suggested that

this was mostly the case for frontal electrode sites, as P200

latencies were slightly shorter in the 1 bit than in the 2 bit

condition at parietal electrode sites, F(1,35) = 4.26, p = .046,

ω2 = .09. Furthermore, we found significant interactions

between condition and caudality,ω2 = .11, between condition

and laterality, ω2 = .08, and between condition, caudality and

laterality, ω2 = .11, for the N200 peak latencies. These

interactions indicated that N200 latencies were shorter in the

2 bit condition than in the 1 bit condition at Fz and F4,

F(1,35) = 6.78, p = .013, ω2 = .14, and marginally larger in

the 2 bit than in the 1 bit condition at Cz and Pz, F(1,35)= 3.14,

p = .085, ω2 = .06.

We observed nomain effect of condition on average activity

in the P300 component, ω2 = .00. The significant interactions

(see Table 2c)) between condition and caudality,ω2= .25, and

between condition and laterality, ω2 = .13, indicated that

amplitudes in the 1 bit were greater than in the 2 bit condition

at central electrode sites, F(1,35) = 4.36, p = .044, ω2 = .09,

and tended to be smaller at frontal electrode sites in

comparison to the 2 bit condition, F(1,35) = 3.58, p = .067,

ω2= .07.Moreover, condition effects could only be observed at

central and left electrode sites. For P300 latencies we found a

pattern of results that again indicated that P300 latencies were

marginally shorter in the 2 bit than in the 1 bit condition at

frontal electrode sites, F(1,35)= 3.44, p= .072,ω2 = .07, and

shorter in the 1 bit than in the 2 bit condition at parietal

electrode sites, F(1,35)= 5.20, p= .029,ω2= .11. It should be

noted that mean RTs in both conditions were close to the P300

time window (391 and 467 ms) and might therefore account

for condition effects in terms of differently timed response

preparation processes.

Together, the topography effects described for the mean

activity in each ERP time window and the significant interac-

tions of the omnibus analysis suggested that conditions in the

Hick paradigm differ in several electrophysiological compo-

nents of information processing. For ERP latencies, however,

there seemed to be a caudality-specific pattern of results that is

consistent across all ERP components and that suggests that

condition differences in ERP latencies are not specific for ERP

components.

In the Sternberg memory scanning task, we compared mean

activity and ERP latencies between conditions in four different

time windows. First, we computed another omnibus analysis

following the previously described logic with the four within-

subject factors ERP component (N150: 115–160 ms, P200:

200–245 ms, N300: 300–360 ms, P300: 400–600 ms), condi-

tion (set size 1, set size 3, set size 5), caudality (frontal, central,

parietal), and laterality (left, central, right) to test whether

condition effects differed between timewindows.We observed

a significant interaction between ERP component and condi-

tion on average activity, F(6,228) = 8.52, ε = .59, p b .001,

ω2= .17, aswell as significant three-way interactions between

ERP component, condition, and caudality, F(12,456) = 18.92,

ε = .36, p b .001, ω2 = .32, and between ERP component,

condition, and laterality, F(12,456) = 3.79, ε = .23, p = .015,

ω2 = .07. For ERP latencies, we observed a significant main

Table 2

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), caudality (frontal, central, parietal), and laterality (left, central, right) on a) P200

(175–215 ms) amplitude, b) N200 (210–240 ms) amplitude, and c) P300 (360–420 ms) amplitude in the Hick paradigm. (n = 36).

ERP component Variable df F p ε ω2

a) P200 Condition 1,35 25.18 b .001 – .41

Condition × Caudality 2,70 12.40 b .001 .67 .25

Condition × Laterality 2,70 11.08 b .001 .90 .22

Condition × Caudality × Laterality 4,140 b1 .765 .66 .00

b) N200 Condition 1,35 25.89 b .001 – .42

Condition × Caudality 2,70 27.79 b .001 .43 .25

Condition × Laterality 2,70 16.17 b .001 .82 .30

Condition × Caudality × Laterality 4,140 b1 .654 .72 .00

c) P300 Condition 1,35 b1 .497 – .00

Condition × Caudality 2,70 12.90 b .001 .69 .25

Condition × Laterality 2,70 8.21 b .001 .71 .13

Condition × Caudality × Laterality 4,140 b1 .526 .59 .00

Table 3

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), caudality (frontal, central, parietal), and laterality (left, central, right) on a) P200

(175–215 ms) peak latencies, b) N200 (210–240 ms) peak latencies, and c) P300 (360–420 ms) peak latencies in the Hick paradigm. (n = 36).

ERP component Variable df F p ε ω2

a) P200 Condition 1,35 13.91 .001 – .27

Condition × Caudality 2,70 8.42 .003 .65 .17

Condition × Laterality 2,70 b1 .631 .93 .00

Condition × Caudality × Laterality 4,140 b1 .932 .69 .00

b) N200 Condition 1,35 b1 .813 – .00

Condition × Caudality 2,70 5.35 .009 .90 .11

Condition × Laterality 2,70 3.84 .026 .82 .08

Condition × Caudality × Laterality 4,140 5.29 .002 .73 .11

c) P300 Condition 1,35 b1 .759 – .00

Condition × Caudality 2,70 7.88 .004 .64 .16

Condition × Laterality 2,70 1.50 .233 .81 .01

Condition × Caudality × Laterality 4,140 b1 .40 .68 .00
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effect of condition, F(2,76)= 8.87, ε= .91, p= .001,ω2= .17,

and a significant interaction between condition and ERP

component, F(6,228) = 4.52, ε = .37, p = .011, ω2 = .08. See

Fig. 4 for the ERPs elicited by stimuli in the Sternberg memory

scanning paradigm.

Please see Table 4 for detailed results of the ANOVAs on the

average activity for the specific time windows and Table 5 for

the detailed results on peak latencies. We found no significant

main effects or interactions including condition on the

amplitudes or peak latencies of the N150 and P200 component,

all Fs b 3.15, all ps N .065, allω2s b .06 (see Tables 4 and 5 a) and

b)).

We observed a significant main effect of condition on

average N300 activity,ω2= .26,with greater amplitudes in the

set size 3 and set size 5 conditions than in the set size 1

condition, F(1,38) = 26.31, p b .001, ω2 = .40, and no

difference between amplitudes in themore difficult conditions,

F b 1.Moreover, a significant interaction between condition and

caudality indicated a specific topography of this effect, ω2 =

.15. The condition effects were greatest at central and parietal

electrode sites. We also observed a significant interaction

between condition and caudality for N300 peak latencies,ω2=

.06, indicating that N300 latencies became longer with

increasing memory set size at central and parietal electrodes,

F(2,76) = 5.07, ε = .97, p = .009, ω2 = 10.

Next, we compared conditions and electrode sites for P300

activity. We observed a main effect of condition,ω2 = .36, that

indicated that P300 amplitudes decreased linearly with

increasing memory set size, F(1,38) = 30.84, p b .001, ω2 =

.44. There was also a significant interaction between condition

and caudality, ω2 = .31, as P300 amplitudes only increased at

central, F(2,76) = 15.85, ε = .92, p b .001, ω2 = .28, and

parietal electrode sites with increasing memory set size,

F(2,76) = 49.44, ε = .90, p b .001, ω2 = .56, but not at frontal

electrode sites, F(2,76) b 1, ε = .80, p = .856, ω2 = .00.

Moreover, P300 peak latencies became longer with increasing

memory set size, ω2 = .13.

The results of these analyses indicated that conditions

differ systematically in average activity and suggest together

with the specific topographic interactions for each ERP that

the neural processing of probe items in different memory

set sizes differs in more than one electrophysiological

component.

In the Posner letter matching paradigm, we compared mean

activity and ERP latencies between conditions in four different

time windows. Again, we first computed an omnibus ANOVA

with the four within-subject factors ERP component (N140:

115–155 ms, P210: 190–235 ms, N300: 240–365 ms, P300:

465–580 ms), condition (PI vs. NI), caudality (frontal, central,

parietal), and laterality (left, central, right) to test if condition

effects differed between ERPs. The effect of the interaction

between ERP component and condition on average activitywas

marginally significant, F(3,99) = 3.36, ε= .36, p= .072,ω2 =

.06. We also observed a significant three-way interaction

between ERP component, condition and caudality,

F(6,198) = 5.05, ε = .36, p b .01, ω2 = .11, and a marginally

significant three-way interaction between ERP component,

condition and laterality, F(6,198) = 2.55, ε = .44, p = .068,

Fig. 4. Event-related potentials elicited by the onset of thememory probe for the differentmemory set sizes in the Sternberg lettermatching task. Electrodes are arrayed

from most anterior (top) to most posterior (bottom) and from left to right.
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ω2 = .04. There was no significant main effect or interaction

including condition on ERP peak latencies. See Fig. 5 for the

ERPs elicited by stimuli in the Posner lettermatching paradigm.

Next, we computed several ANOVAs for the different time

windows in the Posner letter matching paradigm. Please see

Tables 6 and 7 for allmain effects and interactions including the

factor condition. There were no significant main effects of

condition on ERP amplitudes, all ω2s b .05, but several

interactions between condition and caudality and condition

and laterality. Condition differences were most pronounced at

frontal electrode sites for theN140, P210 andN300 component.

These interactions were not further unraveled, as follow-up

tests of condition differences at frontal electrode sites yielded

no significant effects, all Fs b 1.2, all ps N .282, all ω2 = .00. For

the P300 component, we observed a specific topography of

condition effects that indicated that P300 amplitudes were

greater in the PI than in theNI condition and that this effectwas

greatest at central electrode sites, ω2 = .07. Moreover, the

significant three-way interaction suggested that condition

differences were greatest at Cz, ω2 = .05. As in the overall

analyses, there were no main effects or interactions including

condition on any of the ERP peak latencies.

Again, the topography differences between condition

differences in ERPs and the significant interactions in the

omnibus analysis indicated that the PI andNI condition differ in

more than one ERP component. These differences were only

manifest in average activity, but not in peak latencies.

3.3. Factor structure of mental speed

In the next step, we analyzed the factor structure of mental

speed and its relation to general intelligence. In order to

investigate the factor structure of mental speed, we computed

six principal component analyses separately for the six time-

domain variables (RT, v, t0, P100 latency, N150 latency, P200

latency) across the three ECTs. We then computed individual

component scores of the first principal component for all

participants to generate six new variables that capture the

greatest amount of variance in each set of time-domain

variables across ECTs. We repeated this procedure for

Table 5

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set size 5), caudality (frontal, central, parietal), and laterality (left, central,

right) on a)N150 (115–160 ms) peak latencies, b) P200 (200–245 ms) peak latencies, c)N300 (300–360 ms) peak latencies, and d) P300 (400–600 ms) peak latencies

in the Sternberg memory scanning paradigm. (n = 39).

ERP component Variable df F p ε ω2

a) N150 Condition 2,76 1.55 .22 .85 .01

Condition × Caudality 4,152 b1 .758 .72 .00

Condition × Laterality 4,152 b1 .695 .89 .00

Condition × Caudality × Laterality 8,304 1.12 .351 .60 .00

b) P200 Condition 2,76 b1 .433 .80 .00

Condition × Caudality 4,152 b1 .485 .51 .00

Condition × Laterality 4,152 b1 .782 .70 .00

Condition × Caudality × Laterality 8,304 b1 .578 .57 .00

c) N300 Condition 2,76 2.01 .143 .96 .03

Condition × Caudality 4,152 3.37 .019 .78 .06

Condition × Laterality 4,152 2.43 .064 .81 .04

Condition × Caudality × Laterality 8,304 1.69 .123 .76 .02

d) P300 Condition 2,76 6.43 .005 .82 .13

Condition × Caudality 4,152 1.84 .139 .82 .02

Condition × Laterality 4,152 2.06 .100 .85 .03

Condition × Caudality × Laterality 8,304 b1 .767 .76 .00

Table 4

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set size 5), caudality (frontal, central, parietal), and laterality (left, central,

right) on a) N150 (115–160 ms) amplitude, b) P200 (200–245 ms) amplitude, c) N300 (300–360 ms) amplitude, and d) P300 (400–600 ms) amplitude in the

Sternberg memory scanning paradigm. (n = 39).

ERP component Variable df F p ε ω2

a) N150 Condition 2,76 b1 .95 .66 .00

Condition × Caudality 4,152 2.08 .151 .32 .03

Condition × Laterality 4,152 b1 .813 .39 .00

Condition × Caudality × Laterality 8,304 1.04 .334 .16 .00

b) P200 Condition 2,76 2.13 .134 .86 .03

Condition × Caudality 4,152 1.48 .235 .34 .01

Condition × Laterality 4,152 2.05 .149 .37 .03

Condition × Caudality × Laterality 8,304 1.19 .289 .15 .00

c) N300 Condition 2,76 14.41 b .001 .93 .26

Condition × Caudality 4,152 7.46 .002 .42 .15

Condition × Laterality 4,152 b1 .595 .55 .00

Condition × Caudality × Laterality 8,304 1.20 .300 .19 .01

d) P300 Condition 2,76 22.33 b .001 .93 .36

Condition × Caudality 4,152 18.32 b .001 .45 .31

Condition × Laterality 4,152 b1 .409 .49 .00

Condition × Caudality × Laterality 8,304 b1 .387 .23 .00
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intelligence test scores and extracted a general intelligence

factor. Table 8 shows the variables entered into each PCA and

the amount of variance explained by the respective first

principal component.We then entered these seven component

score variables into further analyses to explore the factor

structure of mental speed. Correlations between these seven

component scores are shown in Table 9. If the factor structure

of mental speed is unitary, all component score variables

should load onto one mental speed variable that should have a

great eigenvalue and explain a substantial amount of variance

in speed and latency parameters.

To explore this idea, we conducted a hierarchical PCA of the

six time-domain component scores and identified two compo-

nents explaining 76% of variance based on the scree plot

(Cattell, 1966) and the parallel analysis criterion (Horn, 1965).

These two components had eigenvalues of 3.32 and 1.21.

Component loadings after an oblique rotation of the two factors

are shown in Table 10. All ERP latencies loaded strongly onto

Fig. 5. Event-related potentials elicited by the onset of the letter pair in the PI condition (PI= physical identity; solid lines) and the NI condition (NI = name identity;

broken lines) in the Posner letter matching task. Electrodes are arrayed from most anterior (top) to most posterior (bottom) and from left to right.

Table 6

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. Name Identity), caudality (frontal, central, parietal), and laterality (left,

central, right) on a) N140 (115–155 ms) amplitude, b) P210 (190–235 ms) amplitude, c) N300 (240–365 ms) amplitude, and d) P300 (465–580 ms) amplitude in the

Posner letter matching paradigm. (n = 35).

ERP component Variable df F p ε ω2

a) N140 Condition 1,33 b1 .712 – .00

Condition × Caudality 2,66 2.22 .139 .62 .04

Condition × Laterality 2,66 b1 .377 .95 .00

Condition × Caudality × Laterality 4,132 2.68 .045 .84 .05

b) P210 Condition 1,33 b1 .535 – .00

Condition × Caudality 2,66 7.37 .007 .58 .16

Condition × Laterality 2,66 b1 .480 .77 .00

Condition × Caudality × Laterality 4,132 2.04 .122 .67 .03

c) N300 Condition 1,33 1.15 .292 – .00

Condition × Caudality 2,66 5.91 .015 .61 .13

Condition × Laterality 2,66 b1 .573 .69 .00

Condition × Caudality × Laterality 4,132 2.79 .043 .77 .05

d) P300 Condition 1,33 2.53 .121 – .04

Condition × Caudality 2,66 b1 .424 .61 .00

Condition × Laterality 2,66 3.64 .038 .88 .07

Condition × Caudality × Laterality 4,132 2.84 .037 .83 .05
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the first rotated component that was also loaded by drift rates.

All behavioral time domain component scores loaded more

strongly on the second component that was marked by RT

component scores. Because greater (i.e., slower) ERP latencies

were associated with greater component scores in the first

component, we reversed the polarity of the first component so

that greater component scores indicated smaller (i.e., faster)

ERP latencies. Subsequently, we labeled the two components

‘processing speed’ and ‘behavioral speed’, respectively. The two

components were correlated, r = .36.

We extracted individual component scores for these two

hierarchical components and computed a hierarchical second-

order PCA of these two components and the intelligence

component scores. Correlations between the three variables

were r = .54, p b .001 (g and processing speed), r = .52, p =

.001 (g and behavioral speed), and r = .36, p = .028

(processing and behavioral speed). The PCA of these correlates

yielded a single second-order component based on the scree

plot (Cattell, 1966) and the parallel analysis criterion (Horn,

1965) with an eigenvalue of 1.98 onto which all hierarchical

first-order components loaded (see Table 11 for factor

loadings). This component explained 66% of variance in first-

order factor scores. g component scores had the greatest

loadings on this component, followed by neural and behavioral

speed with highly similar loadings.

In the last step, we computed correlations between the two

speed components and APM and knowledge test scores to

investigate whether correlations were greater for gf or gc.

Correlations were generally greater for gf than for gc:

Correlations between APM scores and speed components

ranged from r = .53 to .54, while correlations between

knowledge test scores and speed components ranged from

r = .35 to .39.

3.4. The effects of latencies on g are mediated by RTs

Next,we analyzed if reaction timesmediate the relationship

between ERP latencies and intelligence test scores. For all

mediation analyses, we used the component scores we

computed in the PCA.

As Fig. 6 illustrates, the relationship between ERP latencies

and intelligence was mediated by reaction times. A bootstrap

analysiswithm=5000 resamples yielded a significant indirect

effect of P100 latencies through RTs on intelligence test scores,

CI 95% (−0.44, −0.01). We found that RTs also partially

mediated the effect of N150 latencies on intelligence test

scores. We observed a significant indirect effect when we

computed a bootstrap analysis with m = 5000 resamples, CI

95% (−0.41,−0.02). Lastly, we tested if RTs also mediated the

effect of P200 latencies on g. Again, the bootstrap analysis with

m = 5000 resamples indicated a significant indirect effect, CI

95% (−0.43,−0.04).

4. Discussion

The present study sheds light on the neuro-cognitive

processes of mental speed. The results indicate that so-called

elementary cognitive tasks (ECTs) are not as elementary as

presumed but that they tap several functionally different

neuro-cognitive processes. As expected, we found that there

is no unitary construct of mental speed, but that there are

several distinct speeded processes involved in elementary

Table 7

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. Name Identity), caudality (frontal, central, parietal), and laterality (left,

central, right) on a) N140 (115–155 ms) peak latencies, b) P210 (190–235 ms) peak latencies, c) N300 (240–365 ms) peak latencies, and d) P300 (465–580 ms) peak

latencies in the Posner letter matching paradigm. (n = 35).

ERP component Variable df F p ε ω2

a) N140 Condition 1,33 b1 .580 – .00

Condition × Caudality 2,66 b1 .794 .61 .00

Condition × Laterality 2,66 1.07 .321 .61 .00

Condition × Caudality × Laterality 4,132 b1 .413 .62 .00

b) P210 Condition 1,33 b1 .471 – .00

Condition × Caudality 2,66 3.14 .066 .75 .06

Condition × Laterality 2,66 2.69 .086 .84 .05

Condition × Caudality × Laterality 4,132 1.41 .243 .82 .01

c) N300 Condition 1,33 1.17 .288 – .00

Condition × Caudality 2,66 b1 .629 .98 .00

Condition × Laterality 2,66 1.04 .356 .94 .00

Condition × Caudality × Laterality 4,132 1.87 .148 .65 .03

d) P300 Condition 1,33 3.01 .092 – .06

Condition × Caudality 2,66 b1 .443 .73 .00

Condition × Laterality 2,66 b1 .614 .85 .00

Condition × Caudality × Laterality 4,132 b1 .832 .80 .00

Table 8

Sources of entered variables for the six speed, latency, and intelligence variables

and the amount of variance explained by thefirst principal components of each

PCA.

Variable name Source of entered variables % of variance explained

by first principal

component

g APM, knowledge test 78%

Median RT All ECTs and conditions 62%

v All ECTs, estimated across

conditions

42%

t0 All ECTs, estimated across

conditions

51%

P100 latency Hick paradigm and

Sternberg memory scanning

task, all conditions

37%

N150 latency All ECTs and conditions 45%

P200 latency Sternberg memory scanning

and Posner letter matching

task, all conditions

69%

Note. v = drift rate; t0 = response-time constant.
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cognitive tasks. Moreover, our results show that an increase in

the difficulty and complexity of these ECTs affects several of

these processes simultaneously. If we consider, for example,

our results for the Sternberg memory scanning paradigm, we

see that conditions in this task differed in several behavioral

and electrophysiological parameters. As expected, diffusion

model analyses revealed that drift rates decreased and

response-time constants increased with increasing memory

set size, which indicates that conditions differ both in the speed

of decision making (reflected in the changes in the v

parameter) and in the speed of encoding, memory access,

and/or in the speed of movement times (reflected in the

changes in the t0 parameter).Moreover, changes inmemory set

size also had an effect on several ERP components in the stream

of information processing, namely theN300 component, which

is associated with spatial, structural and categorical incongru-

ences of visual stimuli (Demiral, Malcolm, & Henderson, 2012;

Hamm, Johnsin, & Kirk, 2002), and the P300 component, which

is associatedwith stimulus evaluation and categorization and is

known to be sensitive to stimulus probability, subjective

uncertainty and resource allocation (Luck, 2005). All in all, we

can conclude that the traditional difference and slopemeasures

of ECTs do not only capture variance from a single cognitive

process, but that they reflect a multitude of different processes.

Condition differences in ERP amplitudes and latencies were

mostly consistent with previous research on these tasks,

although there are only few studies with comparable designs.

In the Hick paradigm, we observed significantly greater P200

amplitudes for the 1 bit than for the 2 bit condition, which is

consistentwith the results reported by Falkenstein, Hohnsbein,

and Hoormann (1994) who analyzed ERPs in 2- and 4-choice

RT tasks and found that P200 amplitudes were greater in the 2-

choice than in 4-choice condition.Moreover, they reported that

P390 amplitudes were greater in the 2-choice than in the 4-

choice condition for all electrode sites, while we found this

effect only at central electrode sites and observed a reversed

effect at frontal electrode sites. McGarry-Roberts et al. (1992)

reported greater P300 amplitudes in a choice reaction time task

than in a simple reaction time task,whichmay indicate that the

more complex RT task resulted in greater P300 amplitudes. As

McGarry-Roberts et al. (1992) only used a 2-choice CRT and no

4-choice CRT and only entered the Pz electrode into the

statistical analyses, their results are not directly comparable to

our results that showed a very specific topography. In the

present study,we found an effect of choice alternatives on P300

latencies with a specific topography in the way that P300

latencies were larger for the 2 bit than for the 1 bit condition at

parietal electrode sites, while this effect was reversed at frontal

electrode sites. Falkenstein et al. (1994) found a similar effect

Table 9

Product–moment correlations (rank correlation coefficients in parentheses) between the six mental speed component scores (RT, v, t0, P100 latency, N150 latency,

P200 latency) and g.

ECT RT v t0 P100 N150 P200 g

RT component scores 1

v component scores − .74⁎⁎⁎ 1

(− .79⁎⁎⁎)

t0 component scores .72⁎⁎⁎ − .34⁎ 1

(.65⁎⁎⁎) (− .37⁎)

P100 latency component scores .53⁎⁎ − .38⁎ .11 1

(.38⁎⁎) (− .41⁎) (.02)

N150 latency component scores .50⁎⁎ − .38⁎ .19 .54⁎⁎⁎ 1

(.35⁎) (− .32⁎) (.06) (.48⁎⁎)

P200 latency component scores .46⁎⁎ − .46⁎⁎ .18 .25 .80⁎⁎⁎ 1

(.40⁎) (− .44⁎⁎) (.11) (.25) (.80⁎⁎⁎)

g − .55⁎⁎⁎ .50⁎⁎ − .42⁎ − .49⁎⁎ − .53⁎⁎ − .45⁎⁎ 1

(− .56⁎⁎⁎) (.56⁎⁎⁎) (− .38⁎) (− .44⁎⁎) (− .50⁎⁎) −(.45⁎⁎)

Note. v = drift rate; t0 = response-time constant.
⁎ p b .05.
⁎⁎ p b .01.
⁎⁎⁎ p b .001.

Table 10

Component loadings for the principal component analysis with oblimin

rotation of time-domain component scores.

First-order component

1 2

RT component scores − .29 − .83

v component scores .40 .55

t0 component scores .20 − .94

P100 latency component scores − .59 − .20

N150 latency component scores − .96 .04

P200 latency component scores − .93 .10

Note. Because greater (i.e., slower) ERP latencies were associated with greater

component scores in the first component, we reversed the polarity of the first

component so that greater component scores indicated smaller (i.e., faster) ERP

latencies.

Table 11

Component loadings for the principal component analysis of the two

hierarchical mental speed factors and g.

G

g .87

Processing speed .80

Behavioral speed .77

Note. Lowercase g designates general intelligence extracted from the PCA of

APM and knowledge test scores, whereas uppercase G is the second-order

component derived from speed and intelligence components.
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with a very specific topography as the P390 component peaked

later in the 4-choice than in the 2-choice task at Pz, and

McGarry-Roberts et al. (1992) also reported longer P300

latencies for the CRT task in comparison to the SRT task at Pz.

There was also a latency shift in the N200 peak reported by

Falkenstein et al. (1994), but it did not display the specific

topography effects of the present study.

In the Sternbergmemory scanning paradigm,we found that

P300 amplitudes decreased and P300 latencies increased with

increasing memory set size, which is consistent with the

majority of the studies analyzing the electrophysiological

activity in this paradigm (Brookhuis, Mulder, Mulder, &

Gloerich, 1983; Ford, Roth, Mohs, Hopkins, & Kopell, 1979;

Gomer, Spicuzza, & O'Donnell, 1976; Houlihan et al., 1998;

Pelosi, Hayward, & Blumhardt, 1998), although some studies

found no difference in P300 latencies across conditions (Pelosi

et al., 1992) or substantial interindividual differences in

condition effects on P300 latencies (Pelosi, Hayward, &

Blumhardt, 1995).

To our knowledge, there are no previous EEG-studies

specifically aimed at analyzing the Posner letter matching

paradigm. McGarry-Roberts et al. (1992) used a comparable

paired-stimuli task, in which two words were presented

subsequently and participants had to decide whether the

target stimulus was a) physically or b) semantically the same

(i.e., a synonym) as the prior presented first stimulus. Please

note that the experimental setup (presenting subsequent

instead of parallel stimuli) as well as the stimulus material

(words instead of letters) and the depth of semantic processing

(word meaning instead of letter identification) varied substan-

tially from the present study. Still, the authors reported greater

P300 amplitudes to the target stimulus for the physical

similarity task than for the semantic similarity task, which is

consistent with the results of the present study as we also

found greater P300 amplitudes in the physical identity

condition than in the name identity condition. McGarry-

Roberts et al. (1992) also reported longer P300 latencies in

the semantic similarity task than in the physical similarity task,

while we found no latency shift in the data. This discrepancy

may be due to a multitude of reasons as their paradigms varied

substantially from ours.

Nearly all of these studies analyzed a smaller number of

time windows and fewer ERP components than the present

study and generally focused on one or two major components

(often the P300). Therefore, it is not possible to relate our

results for all timewindows to previous research, as the stream

of information processing during ECTs has not yet been

analyzed electrophysiologically in such detail. Moreover, in

several of these previous studies only very few electrodes were

used, often only the midline electrodes (Fz, Cz, Pz), making it

difficult to compare condition effects with a specific topogra-

phy to these studies, as in many of the previous studies

condition effects were only analyzed at one electrode (e.g., Pz

for the P300 component) and the topographic characteristics of

condition effects were not considered.

Furthermore, we could show that a single broad general

mental speed factor is substantially associated with general

intelligence, because a second order factor analysis of twomore

specific speed factors and general intelligence yielded a single

broad factor marked by general intelligence. Thus our results

indicate that although there are several functionally distinct

processes involved in ECTs, it is the common time-domain

variance shared by all these components that is associatedwith

general intelligence. This does not imply that more specific

speed components do not share unique variance with intelli-

gence, but it does imply that the association between mental

speed andmental abilities could in most part be due to a single

shared source of variance. This result is consistent with the few

studies that reported associations between RTs in different

elementary cognitive tasks (Burns & Nettelbeck, 2003; Hale &

Jansen, 1994; Neubauer & Bucik, 1996; Neubauer et al., 2000).

In his reanalysis of the reaction time data reported by Kranzler

and Jensen (1991), Carroll (1991) also found a broad general

factor in addition to narrower task-specific factors with

substantial variable loadings reflecting decision time (in

contrast to an orthogonal factor of movement time). In our

study, movement times (captured in the t0 parameter) did not

span a distinct factor, but loaded onto the behavioral speed

factor that showed substantial loadings on the second-order

mental speed factor. One difference between the movement

speed factor in Carroll's (1991) reanalysis and movement

speed measured as t0 might be that t0 does not only capture

movement speed, but also stimulus encoding and memory-

related processes (Ratcliff & McKoon, 2008), which might be

more closely related to a general mental speed factor. Taken

together, our findings suggest that there is indeed a single

broad mental speed factor across different tasks and across

both behavioral and electrophysiological measurements, a

general factor that is significantly associated with general

intelligence.

The associations between RTs, ERP latencies and general

intelligence in this study are substantially greater than the

initially quoted average correlation of r = − .24 between RTs

andmental abilities in Sheppard andVernon's (2008) reviewor

the weak negative associations between ERP latencies and

intelligence reported in the literature (Houlihan et al., 1998;

McGarry-Roberts et al., 1992; Pelosi et al., 1992; Schulter &

Neubauer, 2005). There may be two reasons why the

magnitude of the associations in the present study is greater

than in the literature: Jensen (2006) argued that characteristics

of the participant sample may affect the size of the association

between RTs and mental abilities. We deliberately recruited a

heterogeneous community sample to avoid any restriction in

the variance of the cognitive variables, because a lack of

variation in one or more variables may decrease the co-

variation between variables. Moreover, the number of trials

used in the three paradigms was higher than most trial

numbers in the literature, which may have increased the

Fig. 6. Standardized regression coefficients for the association between ERP

latencies and general intelligencemediated by reaction times. The standardized

regression coefficients between ERP latencies and general intelligence

controlling for reaction times are in parentheses. *p b .05. **p b .01.
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reliability of the ERP latencies that are known to sometimes

have low to moderate reliabilities even when the number of

trials is relatively large (Cassidy, Robertson, & O'Connell, 2012).

What is intriguing about our findings is that the association

between ERP latencies and mental abilities was mediated by

reaction times. This mediation supports the hypothesis that

individual differences in psychophysiological information

processing speed are manifested in behavioral reaction times

and may in this way contribute to individual difference in

general intelligence. In other words, individual differences in

the onset of early ERP components such as the P100 or P200,

which are components that occur nearly immediately after

stimulus presentation in the chronometry of neurocognitive

information-processing, predict individual difference in reac-

tion times that occur about half a second later. This result

suggests that higher speed of neurocognitive information-

processing may contribute to advantages in the speed of

cognitive information-processing, decision, and memory pro-

cesses. These advantages in the speed of different cognitive

processes may then enhance performance on psychometric

intelligence tests and explain the association between early

ERP latencies and mental abilities.

4.1. Limitations

Some limitations have to be considered before strong

conclusions may be drawn. First, the sample size with N = 40

participants is rather large for an electrophysiological study,

but it is too small for complex multivariate analyses such as

multiple regression and structural equation modeling. More-

over, the stability of the factor structure we extracted has to be

replicated in further studies before drawing any final conclu-

sions, although our results are generally consistent with earlier

studies on the factor structure of RTs in elementary cognitive

tasks.

Second, it is unclear if ERP latencies and diffusion model

parameters show enough stability over measurement occa-

sions to qualify as trait-like variables. There are no systematic

studies on the stability of diffusion model parameters except

for one study that reported between-session stabilities of

r ≥ .65 for drift rate and non-decision time parameters in a

lexical decision task (Yap, Balota, Sibley, & Ratcliff, 2012). A first

study on the temporal stability of ERP components reported

strong test–retest correlations for ERP amplitudes ranging from

r = .63 to .89 and varying test–retest correlations for ERP

latencies ranging from r= .19 to .89 (Cassidy et al., 2012). Both

measures can only explain inter-individual differences in

intelligence if they show sufficient psychometric stability.

Third, the RTs of the 1 bit condition we adopted from

Neubauer et al. (1992) did not follow Hick's law, but were

instead significantly larger than the RTs in the 2 bit condition.

We therefore did not include behavioral and electrophysiolog-

ical data from this condition in further analyses. Still, this

divergence from the data reported by Neubauer et al. (1992) is

surprising. The standard deviation in this condition was twice

as large as the standard deviations in the other conditions,

which indicates a great increase in difficulty or complexity.

Moreover, individual differences in the understanding of the

rather complex instructions of the task or in the ability to adapt

to position changesmight have affected RTs to a great degree. It

should be noted that the sample in the original study by

Neubauer et al. (1992) consisted only of children (11 to

15 years old) who got feedback immediately after each trial.

Therefore, either the age difference or the direct feedback

might explain why no such phenomenon was reported in the

original study. A thorough validation of the modified paradigm

with several control conditionswould be needed to understand

which cognitive processes are involved in the strangely

behaving original 1 bit condition.

4.2. Conclusion

The aim of the present study was to decompose the stream

of information processing in elementary cognitive tasks in

order to identify processes that might contribute to the

association between mental abilities and mental speed. By

combining diffusionmodel analysis with ERPmethodology, we

showed that ECT conditions differ in several neuro-cognitive

parameters. Therefore, we would not recommend the use of

difference scores in further studies, not only because they suffer

from severe psychometric problems such as low reliabilities

(Jensen, 1998), but also because they do not seem to measure

what they are supposed to. According to our results, difference

parameters are likely to capture several different sources of

variance and are probably not singling out specific cognitive

processes such as the speed of information uptake. Instead, we

propose using diffusion models and electroencephalography in

order to single out specific components of information

processing for further analyses.

Future studies should include several measurement occa-

sions to test whether a general mental speed factor qualifies as

a trait-like variable. Only a factor that captures a certain

amount of trait-like performance is suited to be considered as

an explanation of general intelligence. Moreover, future studies

should also include a broader battery of intelligence tests to

investigate if mental speed is more strongly associated with

general intelligence (as our data would suggest) or with

specific mental abilities, which we could not test in the present

study.

Our study is one of the few studies that reported consistent

negative correlations between ERP latencies and intelligence

across different tasks and different timewindows. In contrast to

most other studies, we recruited a community sample in order

to avoid restricted variance in the cognitive performance

variables and their electrophysiological correlates. Moreover,

each of our tasks had a large number of trials to increase the

reliability of the notoriously unreliable ERP latencies. We could

show that there is a general mental speed factor across

different tasks and different measures of speed that is

associated with general intelligence. Moreover, we found that

the association between ERP latencies and intelligence is

mediated by reaction times. These results illustrate the benefits

of the application of diffusion models and ERPs in research on

the chronometry of mental abilities. All in all, we found that

more intelligent individuals do not only show faster behavioral

reactions, but that they have a general advantage in all neuro-

cognitive speed-related processes.

Appendix A. Supplementary data

Supplementary data to this article can be found online at

http://dx.doi.org/10.1016/j.intell.2015.05.002.
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