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A B S T R A C T

A substantial amount of empirical research has estimated the association between brain volume and intelligence.
The most recent meta-analysis (Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 2015) reported a correlation of
.24 between brain volume and intelligence – notably lower than previous meta-analytic estimates. This headline
meta-analytic result was based on a mixture of samples (healthy and clinical) and sample correlations not
corrected for range restriction. Additionally, the role of IQ assessment quality was not considered. Finally,
evidential value of the literature was not formally evaluated. Based on the results of our meta-analysis of the
Pietschnig et al.'s sample data, the corrected correlation between brain volume and intelligence in healthy adult
samples was r = .31 (k = 32; N= 1758). Furthermore, the quality of intelligence measurement was found to
moderate the effect between brain volume and intelligence (b = .08, p= .028). Investigations that used ‘fair’,
‘good’, and ‘excellent’ measures of intelligence yielded corrected brain volume and intelligence correlations of
.23 (k = 9; N = 547), .32 (k = 10; N = 646), and .39 (k = 13; N = 565), respectively. The Henmi/Copas ad-
justed confidence intervals, the p-uniform results, and the p-curve results failed to suggest evidence of pub-
lication bias and/or p-hacking. The results were interpreted to suggest that the association between in vivo brain
volume and intelligence is arguably best characterised as r ≈ .40. Researchers are encouraged to consider in-
telligence measurement quality in future meta-analyses, based on the guidelines provided in this investigation.

1. Introduction

The topic of brain size and its possible association with intelligence,
both within and between species, has been the subject of a substantial
amount of research and debate (Mackintosh, 2011). Recently,
Pietschnig et al. (2015) reported a meta-analytic observed correlation
between human brain volume and intelligence of r= .24, based on 120
sample correlations (N = 6778). A limitation associated with the
Pietschnig et al. (2015) investigation is that it did not provide an esti-
mate of the association between brain volume and intelligence cor-
rected for range restriction. Additionally, Pietschnig et al. (2015) did
not explore the possibility that quality of intelligence measurement may
moderate the magnitude of the association between brain volume and
intelligence. Finally, Pietschnig et al. (2015) did not formally evaluate
the evidential value of the reported research via a p-curve analysis.

Consequently, the purpose of this investigation was to extend the
Pietschnig et al. (2015) meta-analysis in three ways. First, to estimate
the correlation between in vivo human brain volume and intelligence
based on correlations associated with relatively few artefacts, i.e.,

correlations derived from healthy adult samples and corrected for range
restriction. Secondly, to develop a guide to help classify the quality of
general intelligence measurement, in order to test the hypothesis that
there is a positive association between intelligence test measurement
quality and the magnitude of effect sizes reported across empirical in-
vestigations. Finally, to conduct a p-curve analysis to evaluate the re-
ported brain volume and intelligence statistically significant correla-
tions for evidential value.

1.1. Brain volume and intelligence: quantitative reviews

The association between in vivo brain volume and intelligence has
been reviewed quantitatively several times over the years. More than a
decade ago, Gignac, Vernon, and Wickett (2003) estimated the ob-
served correlation between brain volume and IQ based on 14 samples
(N = 858), all of which were derived from peer reviewed publications.
Gignac et al. (2003) reported an N-weighted mean correlation of .37
between brain volume and intelligence. In six of the 14 investigations
included in the meta-analysis, the IQ score standard deviations were
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available. Consequently, Gignac et al. (2003) also reported an N-
weighted mean corrected correlation of .43 between brain volume and
IQ.1

McDaniel (2005) revisited the in vivo brain volume and intelligence
association by conducting a more comprehensive meta-analysis than
that of Gignac et al. (2003). McDaniel's (2005) inclusion criteria were
the following: clinically healthy samples; total brain volume measure-
ment; and well-established measures of intelligence (Wechsler scales;
Raven's; but not the National Adult Reading Test, for example). Based
on the samples which met those criteria (k= 37; N = 1530), McDaniel
(2005) reported an observed correlation of r= .29 between brain vo-
lume and global intelligence. Additionally, McDaniel (2005) reported a
range restricted corrected correlation of r= .33. Thus, the corrected
correlation reported by McDaniel (2005) was smaller than the corrected
correlation reported by Gignac et al. (2003; r = .43).

It is noteworthy that McDaniel (2005) found that the mean corre-
lation between brain volume and intelligence was larger for adults than
for children. For example, the brain volume and intelligence corrected
correlation for adult males was estimated at r = .38, whereas the same
correlation for male children was estimated at r = .22. McDaniel
(2005) did not speculate as to why the effects may have been larger for
adults in comparison to children. It is suggested here that both in-
complete neurophysiological maturation and individual differences in
the rate of maturation explain some of the increase in the magnitude of
the brain volume and intelligence correlation from childhood to
adulthood. For example, there are individual differences in the neuro-
physiological maturation of the frontal lobes across childhood and
adolescents (Nagy, Westerberg, & Klingberg, 2004; Segalowitz & Davies,
2004). Furthermore, several of the neurophysiological characteristics of
maturation may be substantially independent of brain volume (e.g.,
pruning, intra-cortical myelination; Paus, 2005). Thus, until such neu-
rophysiological characteristics are largely stabilised once maturation is
complete (i.e., adulthood), the correlation between brain volume and
intelligence may be expected to be attenuated. Stated alternatively, the
correlation between brain volume and intelligence in children may not
be a fully accurate reflection of the effect.

McDaniel (2005) noted the difficulties associated with conducting a
comprehensive meta-analysis, as many empirical investigations did not
include standard deviation or internal consistency reliability estimates
associated with the test scores. In fact, McDaniel (2005) was required to
use standard deviation artefact distribution imputation for 21 of the
sample correlations, as only 16 of the 37 brain volume and intelligence
studies reported the standard deviation associated with intelligence test
scores. Thus, the key brain volume and intelligence correlation
(r = .33) reported by McDaniel (2005) rests upon the assumption that
the imputation method worked in a valid manner.

More recently, Pietschnig et al. (2015) conducted a meta-analysis on
the brain volume and intelligence empirical literature. In contrast to
Gignac et al. (2003) and McDaniel (2005), Pietschnig et al. (2015)
obtained a substantial number of personal communications relevant to
the association between brain volume and intelligence across a variety
of studies and samples. Based on 120 sample correlations derived from
a mix of healthy and clinical samples (N = 6778), Pietschnig et al.
(2015) reported a meta-analytic correlation of r = .24 between brain
volume and global measures of intelligence (e.g., FSIQ). Thus,
Pietschnig et al. (2015) reported an effect notably smaller than the
meta-analytic estimates reported by McDaniel (2005; r = .33) and
Gignac et al. (2003; r= .43). Pietschnig et al. (2015) suggested that the
correlations reported in previous meta-analyses were likely over-esti-
mates, as the published literature was likely affected by selective re-
porting (i.e., statistically non-significant effects were not reported). In

support of such an argument, the meta-analytic correlation between
brain volume and general intelligence based on published results was
reported by Pietschnig et al. (2015) at r= .30 (k= 53; N = 3956). By
contrast, the corresponding meta-analytic correlation in non-published
work was estimated at just r = .17 (k= 67; N = 2822).

It should be noted, however, that both Gignac et al. (2003) and
McDaniel (2005) restricted their meta-analyses to healthy samples,
whereas Pietschnig et al.'s headline correlation of .24 included both
healthy and clinically mixed samples. Arguably, intelligence test scores
obtained from individuals suffering from various clinical conditions
should not be considered optimally valid indicators of intellectual
functioning. For this reason, it is commonly recommended that in-
dividuals “…should not be assessed [for intelligence] unless they ap-
pear suitably healthy and well rested.” (Reschly, Myers, & Hartel, 2002,
p. 101). From a statistical perspective, a correlation between in-
telligence and a criterion would be expected to be suppressed in clinical
samples, because it is unreasonable to assume that all of the examinees
suffer from the exact same condition to the same degree. Such in-
dividual differences in the clinical condition would be expected to af-
fect the rank ordering in measurement of intelligence, in comparison to
“true” intelligence, which is a threat to validity, in this context.

If we wish to estimate the population correlation accurately, sample
ascertainment is critical. Whereas a sample restricted to healthy adult
individuals will, allowing for sampling error, approximate the true
population estimate, mixtures of samples, with non-random inclusion
criteria, are likely to show considerable bias. This is true not only in
extreme cases (imagine a sample of people “administered” the Raven
after the consumption of 10 standard drinks of alcohol) but is likely to
hold in general.

Consider, for example, the report of a relatively low correlation of
r = .07 between brain volume and intelligence, based on a sample of 41
neurological patients (Yeo, Turkheimer, Raz, & Bigler, 1987). Nineteen
of these patients presented with headache complaints, while 7 pre-
sented with symptoms of problems in concentration and memory. The
validity of the brain volume and IQ correlation is not established in
such a combination of groups. That is, arguably, patients suffering from
concentration and memory problems will produce IQ scores which are
lower than their natural maximal capacity. By contrast, migraine pa-
tients completing the IQ testing may be expected to show substantial
variability, depending on, for instance, the varying level of migraine
experienced during their testing, from none at all to severe. However, in
both groups of cases, brain volumes likely remained stable. Conse-
quently, rank ordering of the IQ scores in this mixed clinical sample was
likely affected adversely by the heterogeneity of the clinical conditions
between the patients. Such an adverse impact on rank ordering of IQ
scores would also affect adversely the estimated correlation between
brain volume and intelligence. In light of the above, it is our view that
the best sample estimate of the true association between brain volume
and intelligence, as well as tests of hypothesized moderator effects, is
obtained by aggregating studies of generally healthy adult samples.

Additionally, it is important to note that Pietschnig et al. (2015) did
not correct any of the correlations (published or non-published) for
range restriction. By contrast, both Gignac et al. (2003) and McDaniel
(2005) did take range restriction into consideration. Pietschnig et al.
acknowledged the issue of range restriction in their meta-analysis,
however, they did not apply a correction to their analysis, because “…a
majority of the included samples' standard deviations for test perfor-
mance were not reported” (p. 426–427). However, based on our review,
nearly all of the studies associated with the healthy adult samples
(k = 32) did report standard deviations for the intelligence test scores.
The importance of correcting observed correlations for range restriction
to obtain a more accurate estimate of the effect in the population has
been well established (Le & Schmidt, 2006). For example, based on the
results of a simulation investigation, Duan and Dunlap (1997) found
that when the population correlation was .30 and the selection ratio
was .90 (i.e., the sample standard deviation was 10% smaller than the

1 For an introduction to the problem of range restriction and the estimation of corre-
lations in the population, consult Wiberg and Sundström (2009). More advanced treat-
ments can be found in Sackett and Yang (2000) and Hunter, Schmidt, and Le (2006).
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population standard deviation), the observed correlation was estimated
at .255, whereas the correlation corrected for range restriction was
estimated at .294. Thus, to extend the findings reported in Pietschnig
et al. (2015), a primary purpose of the current investigation was to
estimate the correlation between brain volume and intelligence in
healthy adults, corrected for range restriction in the intelligence test
scores.

1.2. Measurement quality: meta-regression

In addition to range restriction, it is known that measurement
quality (both reliability and validity) can attenuate the magnitude of
effects estimated in a particular investigation (Furr, 2011). In the
context of meta-analyses, there is some awareness of the effect of dif-
ferential measurement quality on the magnitude of the effect observed
between two variables. For example, commenting on a meta-analysis
relevant to salt intake and the risk of stroke, Appel (2009) implicated
the poor quality of dietary salt measurement in several of the empirical
investigations as a key cause of significant heterogeneity in the results.
In another meta-analysis relevant to the effects of parenting type on
childhood depression, McLeod, Weisz, and Wood (2007) found that
parental rejection was associated with childhood depression, but only
when parental rejection was measured with multiple informants, in
comparison to a single informant. Thus, McLeod et al. (2007) con-
tended that measurement quality should be taken into consideration
when considering the effect of one variable on another at the meta-
analytic level.

With respect to the measurement of intelligence, assessments can
vary from brief, group-administered, arbitrarily abbreviated, single-
scale measures through to comprehensive batteries in which testing
lasts over an hour. However, few, if any, meta-analyses in the area of
intelligence have taken into consideration the possibility that the
quality of intelligence measurement may moderate the effect between
intelligence test scores and another variable. One likely reason meta-
analyses do not consider the measurement quality of general in-
telligence (g) test scores is that there are no established guidelines for
such a purpose. Consequently, a goal of this investigation was to test
intelligence measurement quality as a moderator of the effect between
brain volume and intelligence. First, however, an intelligence mea-
surement quality classification guide needed to be developed.

In the most straightforward terms, the correlation between cogni-
tive ability test scores and g would help quantify the quality of general
intelligence measurement in a study. However, many combinations of
cognitive ability tests have never been evaluated empirically for their
association with g. Although a precise, non-factor analytic, algorithm
for the specification of general intelligence measurement quality does
not appear to have ever been published, arguably, most intelligence
tests (and combination of tests) can be categorised according to their
quality, particularly with respect to representations of g. For example,
the administration of the five minute Stroop test (Golden, 1978) could
not be classified justifiably as an excellent, or even a good, measure of
general intellectual functioning, as it is only a single cognitive ability
test which measures a single group-level dimension of intelligence. Not
coincidently, the Stroop test has been found to relate to g only mod-
erately at approximately .45 (Burns, Nettelbeck, &McPherson, 2009).
By contrast, the FSIQ scores derived from the complete WAIS-IV would
be considered an excellent measure of g by most clinicians and re-
searchers (Reynolds, Floyd, & Niileksela, 2013; Sattler & Ryan, 2009).
Distinguishing between the Stroop and the full WAIS-IV as indicators of
general intelligence is relatively uncontentious. The challenge is to
specify a more detailed guideline that may be able to accommodate all
investigations which include at least one measure of cognitive ability.

As a general statement, the quality of the measurement of g may be
determined, in part, by the number of subtests completed by the par-
ticipants. Jensen (1998) recommended that a minimum of nine subtests
is required to represent g respectably. Furthermore, the nine subtests

should represent at least three group-level dimensions of cognitive
ability (e.g., fluid intelligence, crystallised intelligence, processing
speed). Jensen's (1998) recommendation is commonly cited (e.g.,
Colom, Juan-Espinosa, Abad, & Garcıá, 2000; Gignac, Shankaralingam,
Walker, & Kilpatrick, 2016; Juan-Espinosa, Cuevas, Escorial, & García,
2006). Furthermore, there is empirical research which supports the
notion that a stable estimate of g is unlikely to be achieved with fewer
than 8 subtests (Major, Johnson, & Bouchard, 2011). As can be seen in
Table 1, it is suggested that 1, 1–2, 2–8, and 9+ tests be classified as
possibly ‘poor’, ‘fair’, ‘good’, and ‘excellent’ measures of g, in the ab-
sence of any other information.

In addition to the number of tests, the number of group-level factors
of intelligence represented by the tests should also be considered. It is
widely acknowledged that there are approximately 10 group-level
factors of intelligence (Carroll, 2003). Commonly measured group-level
factors of intelligence include crystallised intelligence (Gc), fluid in-
telligence (Gf), memory span (Gsm), and processing speed (Gs). Jensen
(1998) recommended that a good measure of g be based on measures
indicative of at least three group-level factors. Thus, a battery of nine
short-term memory tests would not be considered an excellent measure
of g, because all of the tests are related to a single group-level factor
(Gsm). As can be seen in Table 1, it is suggested here that cognitive
ability tests indicative of 1, 1–2, 2–3, and 3+ dimensions be classified
as possibly ‘poor’, ‘fair’, ‘good’, and ‘excellent’ measures of g, in the
absence of any other information. The overlap across the categories is a
reflection of the fact that the various group-level factors differ in the
degree to which they relate to g. For example, Gf and Gc are known to
relate to g very strongly (Gignac, 2014; Kvist & Gustafsson, 2008),
whereas Gsm (excluding working memory tasks) and Gs have been
found to be weaker indicators of g (Reynolds & Keith, 2007). Thus, some
consideration should be placed on the g saturation of the group-level
factors to which the selected tests belong.

In addition to the number of tests and the amount of test diversity,
the amount of time required to complete the testing should also be
considered an indicator of general intelligence measurement quality.
For example, a hypothetical study may administer nine tests of cogni-
tive ability, however, due to time constraints, the investigator may
choose to administer only short-forms of all of the subtests (say, even
items), resulting in a testing time of only 30 min. Arguably, such an
administration would not be considered as impressive as the same
battery of tests which included the entire set of items and 60 min of
testing time. As can be seen in Table 1, it is suggested that 3–9 min,
10–19 min, 20–39 min, and 40+ minutes be classified as ‘poor’, ‘fair’,
‘good’, and ‘excellent’ measures of g.

To summarize, the three key general intelligence measurement
quality characteristics described above include: (1) number of tests: (2)
diversity, i.e., number of group-level dimensions measured; and (3)
amount of testing time. Across investigations, all three key character-
istics would be expected to be correlated positively. For example, the
number of tests administered would be expected to be associated with
greater testing times. However, the three key characteristics would not

Table 1
Basic guide for the categorisation of the quality of the measurement of general in-
telligence.

Poor = 1 Fair = 2 Good = 3 Excellent = 4

1. Number of tests 1 1–2 2–8 9+
2. Dimensions 1 1–2 2–3 3+
3. Testing time 3–9 min 10–19 min 20–39 min 40+ min
4. Correlation with g ≤ .49 .50–.71 .72–.94 ≥ .95

Note. The first three criteria can be evaluated objectively; the fourth criterion (correlation
with g) may require some judgement on the part of the researcher, based on a combi-
nation of direct and indirect empirical evidence in the literature; in the absence of direct
or indirect empirical evidence, exclusive reliance upon the first three criteria will be
required.
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be expected to be correlated perfectly. Consequently, all three char-
acteristics should be considered. For example, Raven's progressive
matrices take as much as 35–45 min to complete (Arthur & Day, 1994),
which would suggest that it is an excellent measure of g. However, it is
only a single test; furthermore, it measures only a single group-level
dimension of intelligence. Notably, across several large, representative
samples, Raven's has been found to be associated with g at .68 (Gignac,
2015). Thus, Raven's would be classified as a fair measure of g, based on
the guidelines provided in Table 1.

An additional row of information has been included in Table 1
(correlation with g): the expected association between the test scores
and g. It can be seen that relatively poor measures of g are proposed to
share ≤24% of their variance with g (r ≤ .45). Fair measures are
proposed to share between 25% and 50% of their variance g (r = .50 to
.71). Good measures of g are proposed to share between 51% and 89%
of their variance with g (r= .51 to .94). Finally, excellent measures of g
are expected to be associated with g such that the total scores share 90%
or more of their variance with g (r ≥ .95).

Technically, the only information required to categorise intelligence
test scores as indicators of g is this association with g. In practice,
however, the three key characteristics described above are necessary
because the various combinations of tests included in investigations
have never been tested specifically for their association with g. Thus,
the first three key characteristics listed in Table 1 are to be used as a
necessary substitute, when the association with g has not been estab-
lished empirically.

Once the intelligence test scores associated with the investigations
included in a meta-analysis have been coded according to the guide-
lines reported in Table 1, intelligence test score quality can be ex-
amined as a possible moderator of the effect between an independent
variable and intelligence. Such a moderator analysis can be conducted
within the context of a conventional meta-regression (Huizenga,
Visser, & Dolan, 2011).

1.3. p-Curve analysis

It is known that the social sciences suffer from severe publication
bias, which often distorts the literature (Franco,
Malhotra, & Simonovits, 2014). For the validity of meta-analyses, then,
it is critical to determine if bias affects the reviewed literature
(McShane, Böckenholt, & Hansen, 2016). The results of Pietschnig
et al.'s (2015) meta-analysis suggested that the brain volume and in-
telligence literature may have been influenced by selective reporting of
significant effects, as the reported brain volume and intelligence cor-
relations were, on average, larger than the non-reported correlations
(r = .30 versus r= .17). Such differences do not, however support a
formal diagnosis of bias in the literature, or, more generally of p-
hacking (analysing data a number of different (ad hoc) ways until a
statistically significant effect is observed). Simonsohn, Nelson, and
Simmons (2014a) introduced the p-curve analysis as a method capable
of formally evaluating the likelihood that published literature relevant
to a particular hypothesis may be the result of p-hacking. The logic of
the p-curve analysis is based principally upon the notion that p-hacking
can be expected to yield a disproportionately large number of p-values
just below the coveted alpha .05 threshold (i.e., .026 < p < .050). By
contrast, when a true statistically significant effect has been reported in
the literature, one should observe a significantly disproportionate
number of p-values < .025 (Simonsohn, Nelson, & Simmons, 2014b).
Because the analysis is based on a hypothesis about the distribution of
published significant results, it does not require access to unpublished
analyses.

Several p-curve analyses have been published recently which have
called into question the evidential value of high-profile findings. For
example, Vadillo, Gold, and Osman (2016) failed to observe the ex-
pected right-tailed distribution of statistically significant p-values in
published data on the glucose model of ego depletion. In another

investigation, the 33 statistically significant results supportive of the
claimed effect of power-posing showed a flat distribution of p-values,
thus supporting the alternative hypothesis that there is no power-posing
effect (Simmons and Simonsohn, 2016). Additionally, Melby-Lervåg,
Redick, and Hulme (2016) found that the statistically significant effects
reported in the literature relevant to the generalisability of effects due
to working memory training (with active control groups) were con-
sistent with a left-skewed distribution, i.e., not supportive of a true
effect in the population.

No published meta-analysis of the association of brain volume with
IQ has attempted a p-curve analysis. Consequently, an additional pur-
pose of this investigation was to test the possibility that statistically
significant results reported in the healthy adult brain volume and in-
telligence published literature may have been influenced by p-hacking.

1.4. Summary

Although the Pietschnig et al. (2015) meta-analysis should be con-
sidered a comprehensive and competently executed meta-analysis, the
reported results were limited in a number of ways. Consequently, the
purpose of this investigation was to estimate the association between
brain volume and intelligence, based on correlations associated with
relatively few artefacts, i.e., derived from healthy adult samples and
correlations corrected for range restriction. Additionally, we conducted
several modern publication bias analyses, including a p-curve analysis,
to determine whether the statistically significant results in the area
support evidential value. Finally, we tested the hypothesis that the
quality of measurement of intelligence, as a representation of g, mod-
erated the association between brain volume and intelligence via a
meta-regression.

2. Method

2.1. Dataset

In order to ensure comparability, the studies considered for inclu-
sion in the current meta-analysis were derived from the Pietschnig et al.
(2015) meta-analysis relevant to brain volume and intelligence. Spe-
cifically, the study references, study characteristics, and correlational
results were drawn from the supplementary material excel file pub-
lished with Pietschnig et al. (2015). Although a more extensive search
could have been undertaken, we were particularly interested in com-
paring the results obtained from this investigation with those reported
by Pietschnig et al. (2015). Consequently, we restricted our search for
studies to those reported in Pietschnig et al. (2015).

2.2. Inclusion and exclusion criteria

Pietschnig et al. (2015) listed a total of 120 sample correlations
between brain volume and overall intelligence derived from a total of
75 investigations. However, in order to estimate a meta-analytic de-
rived correlation with the least number of artefacts, we excluded
sample correlations based on children and/or adolescents, as well as
sample correlations based on a mixture of children and adults. We also
excluded samples which included participants suffering from a clinical
disorder or a learning disability. Finally, we excluded a sample that had
only 3 participants.2 In some cases, Pietschnig et al. (2015) included
only the correlation between brain volume and intelligence for the
sexes separated into two groups. As this investigation was not parti-
cularly interested in an evaluation of sex differences, we made an effort
to identify the correlation between brain volume and intelligence for
the whole sample within the research papers included in the Pietschnig

2 Pietschnig et al. (2015) included personal communication results of .00 (N = 3) as-
sociated with Leonard et al. (1999).
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et al. meta-analysis. In some cases, the overall correlation was not ob-
tainable, thus, some of the correlations included in the current meta-
analysis were based on gender separated samples. Based on the appli-
cation of the inclusion/exclusion criteria applied in this investigation, a
total of 32 correlations were selected for the meta-analysis.

As mentioned in the introduction, a key purpose of the current
meta-analysis was to estimate the brain volume and intelligence cor-
relation that was not attenuated due to range restriction in intelligence
test scores. The Pietschnig et al. (2015) meta-analysis did not include
the standard deviations associated with the cognitive ability test scores,
consequently, we searched for the standard deviations within all of the
relevant empirical research papers. In cases where the standard de-
viation was not reported in the empirical research paper, the author(s)
of the paper were contacted via email by the first author to obtain the
information via personal communication.

The range restriction formula applied in this investigation requires
both the sample standard deviation and the population standard de-
viation (Case II; Thorndike, 1949). For most of the investigations, the
population standard deviation was easy to identify (e.g., Wechsler
scales, SD = 15; Raven's, SD = 15; Culture Fair Intelligence Test,
SD = 16). However, for two of the published studies that used the
Standard Progressive Matrices, the raw score standard deviations were
reported. Unfortunately, the Raven's technical manual (Raven,
Raven, & Court, 1998a) does not report any normative sample standard
deviations for the raw scores. However, the summary guide for Aus-
tralian users reported a raw score standard deviation of 7.5 for Aus-
tralian 17-year-olds who completed the SPM (Australian Council for
Educational Research, 1991). Thus, the value of 7.5 was used in this
investigation as the SPM population level standard deviation for the
purposes of correcting the observed correlations which used the SPM.
One study (i.e., Thoma et al., 2005) included in the current meta-ana-
lysis reported a raw score standard deviation for the Advanced Pro-
gressive Matrices. Raven, Raven, and Court (1998b) reported a nor-
mative sample standard deviation of 6.56 for the Advanced Progressive
Matrices. Consequently, the value of 6.56 was used to correct the brain
volume and intelligence correlation. Burgaleta et al. (2012) reported a
correlation between brain volume and intelligence assessed using a
combination of tests, several of which were based on only a subset
(half) of the items of the full test (i.e., difficult to find norms). For-
tunately, the PMA Inductive Reasoning subtest was used in its entirety
in Burgaleta et al. (2012), and the standard deviation was reported at
4.54. To estimate the degree of range restriction in the data, the PMA
Inductive Reasoning standard deviation reported for the Seattle Long-
itudinal Study (i.e., SD = 7.4; Schaie, 2013) was utilised to correct the
correlation between brain volume and intelligence reported in
Burgaleta et al. (2012). Finally, Royle et al. (2013) reported only the
raw score standard deviations for the six WAIS-III subtests administered
to measure intelligence. The standardized standard deviations (ex-
pected SD = 3.0) were obtained via personal communication (T. Booth,
personal communication, October 26, 2016).

2.3. Data analysis

The core of the meta-analysis was performed via the ‘metafor’
(command: rma.uni) package (version 1.9–9) developed for R. The data
were first examined for the possible effects of influential correlations
and/or sample sizes (via the ‘influence’ command within the ‘metafor’
package). Specifically, the 32 study correlations and sample sizes were
examined in accordance with the nine outlier evaluation statistics de-
scribed by Viechtbauer and Cheung (2010). In the event that one or
more studies were identified as potential outliers/influential cases, the
relevant data points were Winsorized (reduced/increased in magnitude
to 1+/1- the next largest/smallest data point in the distribution), in
order to reach a balance between modulating the influence of an in-
fluential study in a valid manner and maintaining statistical power
(Johnson & Eagly, 2014; Lipsey &Wilson, 2001; Macnamara,

Hambrick, & Oswald, 2014). Furthermore, after the application of
Winsorization, a leave-one-out analysis was, nonetheless, performed to
determine the degree to which one or more effect sizes may have ex-
erted an unusually large influence on the results (Borenstein, Hedges,
Higgins, & Rothstein, 2009; Kepes, McDaniel, Brannick, & Banks, 2013).

To establish a baseline to test our hypotheses, a “bare bones” meta-
analysis (Hunter & Schmidt, 2004) was conducted on the uncorrected
correlations and the “HS” (Hunter Schmidt) estimation method for
random effects (Viechtbauer, 2010, 2016a, 2016b). As Pearson corre-
lations are known to be biased negatively slightly, the bare bones meta-
analysis was conducted on the transformed (Olkin & Pratt, 1958) cor-
relations via the “UCOR” function with reference to the ‘metafor’ and
‘gsl’ packages. Heterogeneity was tested statistically with Cochran's Q.
However, given Cochran's Q is substantially affected by statistical
power (von Hippel, 2015), emphasis was placed on the interpretation of
I2, the proportion of the variance in the correlations that was due to
heterogeneity.

In accordance with contemporary recommendations, a multi-
strategy was used to evaluate the possibility of publication bias (Kepes,
Banks, McDaniel, &Whetzel, 2012). Specifically, the possibility of
publication bias was evaluated with a series of relatively well-known
analyses: funnel plot, a contour-enhanced funnel plot, and a funnel plot
with trim and fill. Additionally, Egger's regression test of funnel plot
asymmetry was also performed (model: weighted regression; standard
error as predictor; Egger, Smith, Schneider, &Minder, 1997). Further-
more, a series of relatively modern approaches to the evaluation of
publication bias were performed. Specifically, Henmi and Copas (2010)
95% effect size confidence intervals were estimated, as they have been
demonstrated to be more accurate in the presence of publication of bias.
The Henmi and Copas (2010) confidence intervals were obtained from
the HC function within the ‘metafor’ package (Viechtbauer, 2016a).
Additionally, a p-curve analysis was performed to evaluate the possi-
bility of p-hacking, in accordance with the guidelines recommended by
(Simonsohn, Simmons, & Nelson, 2015). The p-curve results were ob-
tained from the p-curve web application 4.05 (http://www.p-curve.
com/app4/). Finally, the p-curve analysis was complimented with a p-
uniform analysis, as the p-uniform analysis provides a publication bias
adjusted meta-analytic effect size estimate (van Aert, Wicherts, & van
Assen, 2016). The p-uniform analysis results were obtained from the p-
uniform web application 1.0 (https://rvanaert.shinyapps.io/p-
uniform).3

Next, the observed correlations were corrected for range restriction
on X (i.e., intelligence), based on the well-known Thorndike (1949)
case II formula, in order to conduct the psychometric meta-analysis
(Hunter & Schmidt, 2004).4 Although the case II formula is theoretically
most appropriate for scenarios where range restriction is direct, the
more advanced approaches to indirect correction (e.g., Le & Schmidt,
2006) default to the direct range restriction case, when information on
the reliability of the test scores is either not available or presumed to be
near 1.0 (Card, 2015). In this investigation, information on the

3 A p-curve analysis requires the selection of only one effect size from a single sample
(Simonsohn et al., 2015). With respect to 6 of the 32 sample correlations included in this
meta-analysis, more than one cognitive ability subtest was administered, however, a
brain volume and intelligence composite score correlation was not reported. The six in-
vestigations included: Hogan et al., 2011; MacLullich et al., 2002; Raz et al., 1993, 2008;
Schoenemann et al., 2000. Of the six investigations in question, three of the brain volume
and intelligence correlations included in the current investigation were based on the
Raven's Progressive Matrices (either standard or advanced) and three of the correlations
were based on the Culture Fair Intelligence Test. Raven's and the CFIT are typically
considered the best single test measures of g. Thus, in cases where a brain volume and
composite cognitive ability score was not available, the expected highest g loading subtest
correlation was selected for inclusion in the analysis.

4 The rma.uni command with “method = HS” estimation within the metafor package
in R yields a type of Hunter-Schmidt psychometric meta-analysis. However, it should be
noted that the HS method within the metafor package will not necessarily yield exactly
the same results as other software dedicated to the Hunter-Schmidt method (Viechtbauer,
2016a, 2016b).
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reliability of brain volume and intelligence scores was unavailable for
almost all of the investigations that met the inclusion criteria. Thus,
reliability of test scores was not considered within the context of the
current psychometric meta-analysis. Duan and Dunlap (1997) found
that Kelley's (1923) standard error formula was the most accurate when
the corrected correlation was relatively small (≤ .30) and the selection
ratio was relatively large (≥ .80), which was the circumstance for most
empirical studies included in the current investigation. Thus, Kelley
(1923) formula was used in the psychometric meta-analysis to estimate
the range corrected correlation standard errors. Publication bias ana-
lyses were not performed on the correct correlations, as corrected
correlations were not published in the literature.

In order to conduct the meta-regression, a conventional meta-re-
gression approach was adopted (Huizenga et al., 2011). Specifically, the
‘rating’ variable was entered into the meta-analysis model. The ‘HS’
method within the ‘metafor’ package for R was applied (mixed-effects
estimation). The observation of a statistically significant and positive
regression coefficient was considered supportive of the hypothesis that
measurement quality moderated the association between brain volume
and intelligence in the hypothesized direction. Finally, a statistically
significant moderator effect was followed-up with separate (basic)
meta-analyses for each rating group, as recommended by Field (2013).

3. Results

3.1. Meta-analysis: bare bones

The individual study statistical results are reported in Table 2. It can
be seen that the majority (59.4%; k = 19) of the observed correlations
between brain volume and intelligence were statistically significant
(p < .05). Prior to the meta-analysis, the data were evaluated for
outliers and influential studies. The analyses identified three influential
studies: study 9 (Hogan et al., 2011), study 17 (Royle et al., 2013;
sample 1), and study 18 (Royle et al., 2013; sample 2). As can be seen in
Fig. 1, the DFFITS, the Cook's distance, and the DFBETAS analyses
identified study 9 as an outlier/influential study, whereas the hat values
identified study 9, 17, and 18 as outliers/influential studies. The sample
correlations associated with each of these studies were neither parti-
cularly large nor small (see Table 2). However, each of the three studies
was associated with relatively large sample sizes (N > 225). Thus, to
reduce the relatively large influence of each of the three studies on the
meta-analysis, their sample sizes were Winsorized (Lipsey &Wilson,
2001). Specifically, study 9 was recoded to N = 104, study 17 recoded
to N = 102, and study 18 recoded to N = 101. Winsorizing the three
influential studies reduced the total sample size from 2305 to 1758. The
meta-analyses and meta-regression results reported below were based
on the Winsorized data.5 The publication bias analyses, however, were
based on the originally published (non-Winsorized) data.

The bare bones meta-analysis of the 32 correlations (N = 1758) was
associated with a statistically significant overall effect, r = .29,
p < .001 (95%CI: .24, .33; see Fig. 2 for forest plot). Furthermore, the
test of heterogeneity was not statistically significant, Q(31) = 31.70,
p = .432, I2 = 0.0% (95%CI: 0% to 55.1%). A series of one-study-re-
moved analyses found the bare bones meta-analytic estimate of r= .29
to be robust, as the one-study-removed correlations ranged from
r = .28 to r = .30.

3.2. Publication bias: well-known tests

Next, the possibility of publication bias was evaluated with four
relatively well-known analyses. As can be seen in Fig. 3 (Panel A), 91%

of the correlations (29 of 32) were within the triangular area of the
funnel plot, which suggested that there was only a small amount of
evidence to suggest bias in the reported effects (null expecta-
tion = 95%; Sterne et al., 2011). Correspondingly, the contour-en-
hanced funnel plot suggested that there was only a small amount of
publication bias, as a reasonably balanced number of correlations were
observed in the white and grey regions of the plot (i.e., non-significant;
see Panel B, Fig. 3). The trim-and-fill analysis suggested the possibility
of 6 (SE = 3.77) missing studies with relatively small effect sizes (see
Panel C, Fig. 3). Based on the additional 6 trim-and-fill estimated cor-
relations included in the meta-analysis, the adjusted correlation be-
tween brain volume and intelligence was estimated at r = .25,
p < .001 (95%CI: .20, .30). As the adjusted correlation of r = .25 was
only negligibly different to the non-Winsorized meta-analytic bare
bones correlation (r = .27; N = 2305; 95%CI: .23, .31),6 publication
bias was not considered a serious threat to the validity of the bare bones
meta-analysis. Correspondingly, Egger's regression test of funnel plot
asymmetry was not significant, t(30) = .77, p = .448, which suggested
a lack of evidence in favor of publication bias in the healthy adult
samples. Thus, all four well-known tests failed to suggest the presence
of appreciable publication bias.

3.3. Publication bias: modern tests

First, the Henmi and Copas (2010) test of publication bias was ap-
plied, by comparing the unadjusted and adjusted DerSimonian-Laird
(DL) meta-analytic correlation confidence intervals. The DL estimator
yielded 95% unadjusted confidence intervals of .24 and .33. By com-
parison, the Henmi and Copas adjusted DL 95% confidence intervals
were estimated at .26 and .34. The small difference between the un-
adjusted and adjusted confidence intervals suggested the absence of
publication bias.

Next, the p-curve analysis was performed. As can be seen in Tables
2, 19 of the published correlations were statistically significant
(p < .05). As can be seen in Fig. 4, there was a distinctly right-tailed
distribution of p-values, which suggested evidential value for the re-
ported effects between brain volume and intelligence in healthy adults.
Furthermore, based on a binomial test, the number of statistically sig-
nificant p-values< .025 was found to be statistically significantly
greater than the number of p-values between .026 and .050 (p = .032).
Finally, the full p-curve and half p-curve tests (i.e., combination test;
Simonsohn et al., 2015) were both statistically significant (z = −5.34,
p < .001; z =−5.26, p < .001, respectively).

The p-curve package also estimates the mean level of statistical
power associated with the statistically significant correlations. For the
19 correlations in the present analysis, mean power was 69% (95%CI:
44%, 85%). This implies that if the same 19 studies were conducted
again, it would be expected that approximately 69% of the studies
would replicate, exceeding substantially the null expectation of 5% for
alpha = .05. Thus, all of the p-curve related results suggested that there
was evidential value in favor of a true effect between brain volume and
intelligence in healthy adults.

Finally, the possibility of publication bias was evaluated with the p-
uniform method. The mean of the statistically significant p-values
was< .025 (i.e., .013), therefore, we used the default alpha setting of
.05, as recommended by van Aert et al. (2016). The result the of the p-
uniform publication bias test failed to suggest the presence of pub-
lication bias, z= .25, p= .400. Correspondingly, the fixed-effects es-
timation of the correlation between brain volume and intelligence
(r = .27; 95%CI: .23, .31) was negligibly different to the p-uniform
adjusted correlation (r = .26; 95%CI: .18, .33). Thus, all three modern
tests failed to suggest the presence of publication bias.

5 The sample sizes were Winsorized with reference to the other sample sizes within
each rating category. The Winsorizing of the sample sizes associated with the three in-
fluential studies did not impact the key conclusions drawn in this investigation.

6 Recall that these publication bias results are based on the published correlations and
sample sizes across all 32 samples.
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3.4. Meta-analysis: psychometric

Next, the psychometric meta-analysis was conducted on the corre-
lations corrected for range restriction (rc; see Table 2). The 32 corrected
correlations (N = 1758; sample sizes Winsorized) were associated with
a statistically significant effect, r= .31, p < .001 (95%CI: .25, .38; see
Fig. 5 for forest plot of corrected correlations). In contrast to the bare
bones meta-analysis, the test of heterogeneity was statistically sig-
nificant, Q(31) = 64.77, p < .001. Furthermore, the effect size mea-
sure of heterogeneity (I2) was equal to 50.4% (95%CI: 19.2% to 68.6%),
which implied a moderate amount of heterogeneity in the correlations
(Higgins, Thompson, Deeks, & Altman, 2003). A series of one-study-
removed analyses found the psychometric meta-analytic estimate of
r = .31 to be robust, as the one-study-removed correlations ranged
from r = .31 to r = .32.

It will be noted that the amount of heterogeneity associated with the
effects increased from the barebones meta-analysis (I2 = 0%) to the
psychometric analysis (I2 = 50.4%). The substantial amount of het-
erogeneity implied that there may have been a moderator that influ-
enced the magnitude of the corrected sample correlations between
brain volume and intelligence. Next, we tested the hypothesis that in-
telligence measurement quality is a moderator of the effect between

brain volume and intelligence.

3.5. Meta-regression

The number and nature of the cognitive ability tests used in the
investigations included in the meta-analysis are listed in Table 2 (see
column labelled ‘Tests’). It will be noted that nine of the intelligence
measures were classified as fair (coded = 2), 10 were classified as good
(coded = 3) and were 13 classified as excellent (coded = 4). Thus,
none of the investigations included in the meta-analysis were con-
sidered to have used a poor measure of cognitive ability.

The meta-regression was conducted on the range corrected corre-
lations (and Winsorized samples). The intelligence measurement
quality rating moderator variable was found to be a statistically sig-
nificant contributor to the model, b= .08 (95%CI: .01, .15), z = 2.37,
p = .028. Thus, higher scores on the intelligence measurement quality
scale were associated with larger brain volume and intelligence corre-
lations. Specifically, a one unit increase in intelligence measurement
quality was associated with, on average, a .08 increase in the corrected
correlation between brain volume and intelligence.7 Correspondingly,

Table 2
Studies included in the meta-analysis: healthy adults.

ID Author Tests Rating N SD σ r t p rc

1 Raz et al. (1993) CFIT 2 29 17.50 16 .22 1.17 .25149 .20
2 Tan et al. (1999) CFIT 2 103 18.00 16 .40 4.39 .00003 .36
3 Schoenemann, Budinger, Sarich, and Wang

(2000)
RSPM/RAPM 2 72 N/A N/A .22 1.89 .06332 .22

4 Garde, Mortensen, Krabbe, Rostrup, and Larsson
(2000)

WAIS: DSy, BD 2 22 14.20 15 .22 1.01 .32522 .23

5 Garde et al. (2000) WAIS: DSy, BD 2 46 14.20 15 .07 .47 .64389 .07
6 MacLullich et al. (2002) RSPM 2 93 8.60 7.5 .39 4.04 .00011 .35
7 Shapleske et al. (2002) Unknown (likely National Adult Reading Test) 2 23 9.20 15 .13 .60 .55438 .21
8 Raz et al. (2008) CFIT 2 55 15.46 16 .18 1.33 .18850 .19
9 Hogan et al. (2011) RSPM 2 234 7.74 7.5 .11 1.69 .09320 .11
10 Willerman, Schultz, Rutledge, and Bigler (1991) WAIS-R: Voc, Sim, BD, PC 3 40 N/A 15 .35 2.30 .02683 .35
11 Egan et al. (1994) WAIS-R: Com, Sim, Arith, BD, OA, DS, DSy 3 40 9.30 15 .32 2.08 .04412 .48
12 Gur et al. (1999) WAIS-R: Voc, BD, CVLT, JLOT 3 80 13.21 15 .41 3.97 .00016 .45
13 Schottenbauer et al. (2007) WAIS-R: Voc, BD 3 22 8.70 15 .60 3.35 .00316 .79
14 Schottenbauer et al. (2007) WAIS-R: Voc, BD 3 35 10.50 15 .33 2.01 .05286 .45
15 Amat et al. (2008) WAIS-R: BD, OA, Inf, DS, Voc 3 27 15.00 15 − .11 − .55 .58493 − .11
16 Shenkin, Rivers, Deary, Starr, and Wardlaw

(2009)
MHT, RSPM, COWA, LM 3 99 11.00 11 .21 2.12 .03696 .21

17 Royle et al. (2013) WAIS-III: BD, MR,LNS, DSB, SS, DSy 3 327 14.15 15 .27 5.06 .00001 .29
18 Royle et al. (2013) WAIS-III: BD, MR,LNS, DSB, SS, DSy 3 293 14.03 15 .26 4.59 .00001 .30
19 Burgaleta et al. (2012) RAPM, DAT AR, PMA IR, DAT VR, DAT NR, PMA Voc,

PMA MR, DAT SR
3 100 4.54 7.40 .17 1.71 .09084 .27

20 Andreasen et al. (1993) Complete WAIS-R 4 30 14.00 15 .44 2.59 .01497 .46
21 Andreasen et al. (1993) Complete WAIS-R 4 37 14.00 15 .40 2.58 .01417 .42
22 Wickett et al. (1994) Complete MAB 4 40 11.42 15 .40 2.66 .01055 .49
23 Paradiso, Andreasen, O'Leary, Arndt, and

Robinson (1997)
Complete WAIS-R 4 62 12.20 15 .38 3.18 .00232 .45

24 Wickett, Vernon, and Lee (2000) Complete MAB 4 68 10.91 15 .35 3.04 .00344 .46
25 Rojas et al. (2004) Complete WAIS-R/WAIS-III 4 17 13.60 15 .31 1.26 .22593 .34
26 Thoma et al. (2005) RAPM, Trails A, Trails B, Voc, BD, DS, VMR, COWA 4 19 6.36 6.56 .27 1.16 .26360 .28
27 Luders et al. (2007) Complete WAIS-R FSIQ 4 62 12.53 15 .28 2.26 .02751 .33
28 Nakamura et al. (2007) Complete WAIS-III FSIQ 4 44 16.10 15 .38 2.66 .01095 .36
29 Weniger, Lange, Sachsse, and Irle (2009) Complete WAIS-R 4 25 14.50 15 .15 .73 .47420 .16
30 Hermann, Seidenberg, and Bell (2002) Complete WAIS-III 4 67 13.39 15 .31 2.63 .01068 .34
31 Ashtari et al. (2011) Complete WRAT-III 4 14 17.60 15 .57 2.40 .03333 .51
32 Kievit et al. (2011) Complete WAIS-III 4 80 11.56 15 .29 2.67 .00907 .36

Note. Rating = quality of intelligence testing (2 = fair; 3 = good; 4 = excellent); CFIT = Culture Fair Intelligence Test; WAIS =Wechsler Adult Intelligence Scale; RSPM = Raven's
Standard Progressive Matrices; RAPM= Raven's Advanced Progressive Matrices; DSy = Digit Symbol; BD = Block Design; Voc = Vocabulary; Sim = Similarities; PC = Picture
Completion; Com= Comprehension; Arith = Arithmetic; OA = Object Assembly; DS = Digit Span; CVLT = California Verbal Learning Test; JLOT = Judgement of Line Orientation
Test; MHT = Moray House Test; Inf = Information; COWA= Controlled Word Association Test; LM = Logical Memory; MR = Matrix Reasoning; LNS = Letter-Number Sequencing;
DSB = Digit Span Backward; SS = Symbol Search; MAB = Multidimensional Aptitude Battery; VMR = Vandenberg Mental Rotation; the Burgaleta et al. (2012) SD corresponds to the
complete PMA Inductive Reasoning subtest; the Willerman et al. (1991) correlation of .35 was reported by Willerman et al. as corrected (however, the SD was not reported in the article);
σ = population standard deviation; rc = correlation corrected for range restriction; WRAT = Wide Range Achievement Test; the re-classification of the WRAT as only a ‘good’
(rating = 3) measure of intelligence did not impact the results in a material way (see footnote 7).

7 Ashtari et al.'s (2011) investigation (corrected r= .51, N = 14) used the WRAT-III
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Panel A: DFFITS Panel B: Cooks Distance

Panel C: Hat Values Panel D: DFBETAS

Fig. 1. Plot of four outlier diagnostic statistics;
DFFITS = difference in fits; DFBETAS = difference in betas.

Fig. 2. Forrest plot of observed correlation coefficients; diamond represents overall effect
size; square size is varied according to relative study weight within the analysis; numbers
in brackets are 95% confidence intervals of point estimation; analyses were based on the
Winsorized data.

Panel A Panel B Panel C Fig. 3. Funnel plots based on observed correlations; Panel
A = funnel plot; Panel B = contour-enhanced funnel plot
(white region, p > .10; grey region, p = .10 to .05; dark-
grey region p= .05 to .10; region outside funnel p < .01);
Panel C = trim and fill funnel plot; analyses were based on
the non-Winsorized data.

Fig. 4. Distribution of observed p-values along with the expected distribution of p-values
under the null hypothesis, and if the alternative hypothesis is true but the studies are
relatively underpowered (true effect, 33% power).
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the value of I2 was reduced to 43.4% (from 50.4%). A single study was
identified as an influential case in the meta-regression (i.e., study 13,
Schottenbauer, Momenan, Kerick, & Hommer, 2007, corrected r = .79;
DFFITS = 1.00). When the meta-regression was re-run with the exclu-
sion of the outlying correlation, the measurement quality moderator
variable remained statistically significant, b= .08 (95%CI: .04, .14),
z = 2.94, p= .003.

Separate meta-analyses were conducted to estimate the brain vo-
lume and intelligence corrected correlations across the ‘fair’, ‘good’, and
‘excellent’ intelligence measurement classifications. As can be seen in
Table 3, the following corrected correlations were estimated:
‘fair’ = .21 (95%CI: .14, .28); ‘good’ = .32 (95%CI: .16, .46); and ‘ex-
cellent’ = .39 (95%CI: .32, .46).

4. Discussion

This meta-analysis indicated several findings of note regarding the
association between brain volume and IQ. First, we confirmed a sub-
stantial downward bias on the effect due to sample restriction of range.
Secondly, we found significant support for the influence of measure-
ment quality on the effect sizes. Specifically, the quality of intelligence
measurement was found to be a moderator of the effect between brain
volume and intelligence such that investigations that used ‘fair’, ‘good’,
and ‘excellent’ measures of intelligence yielded corrected brain volume
and intelligence correlations of .23, .32, and .39, respectively. Finally,
we confirmed the significant results reported in the published literature
as likely the outcome of a genuine effect, as indicated in the p-curve
analysis. These findings are discussed in more detail below.

4.1. Comparisons with previous meta-analyses

The results of this meta-analysis suggest that the association be-
tween brain volume and intelligence is at least .30, which is arguably
substantially larger than the uncorrected correlation of .24 reported by
Pietschnig et al. (2015). The difference in the two estimates is due, in

part, to the inclusion criteria employed in this investigation: healthy
adults only. Additionally, we were able to correct the included corre-
lations for range restriction in the present investigation, whereas no
corrections were applied in Pietschnig et al. (2015). The corrected
r = .31 reported in this investigation is closely aligned with the meta-
analysis reported by McDaniel (2005; r= .33), which included only
healthy samples, in addition to corrections for range restriction in in-
telligence test scores.

As contended in the introduction, people suffering from psycholo-
gical and/or neurological disorders should not be expected to yield
accurate estimates of intellectual functioning (Reschly et al., 2002).
Additionally, there may be expected to be individual differences in the
rate of developmental change across various neurophysiological char-
acteristics, some of which may be related to be cognitive functioning
(Nagy et al., 2004; Segalowitz & Davies, 2004). Unless all of those
neurophysiological characteristics are correlated perfectly with brain
volume, the correlations between brain volume and intelligence based
on child and adolescent samples would be expected to be suppressed, if
not fully, at least partly. Consequently, it is our position that the cor-
relation of .31, based on healthy adults, is a less confounded estimate of
the association between brain volume and intelligence, in comparison
to the correlation of .24 reported by Pietschnig et al. (2015), which
included a mixture of healthy and clinical samples, as well as children,
adolescents, and adults.

Based on a quantitative review of a large number of meta-analyses
in the field of differential psychology, Gignac and Szodorai (2016)
found that the median observed correlation reported in the literature
was .19. Thus, the observed correlation of .29 between brain volume
and intelligence reported in this meta-analysis may be considered re-
latively large (75th percentile; Gignac et al., 2016). The corrected
correlation of .31 reported in this investigation corresponds to between
the 60th and 65th percentile (Gignac et al., 2016). Larger corrected
meta-analytic correlations have been reported in the area of in-
telligence. For example, Roth et al. (2015) reported a psychometric
meta-analytic correlation of .54 between intelligence and school grades.
However, to-date, brain volume and intelligence appear to be the lar-
gest neurophysiological correlate of human intelligence (Ritchie et al.,
2015).

4.2. Intelligence test quality as a moderator

To our knowledge, this is the first meta-analysis to use intelligence
measurement quality as a moderator in a meta-analysis. The results
were consistent with our hypothesis: there was a positive association
between the magnitude of the association between brain volume and
intelligence and the quality of general intelligence measurement.
Specifically, the mean corrected correlations across the fair, good, and
excellent general intelligence measurement classifications were .23,
.32, and .39, respectively. In our view, the corrected .39 correlation
may be the most valid representation of the association between brain
volume and intelligence, as it represents the “best of” studies, at least
with respect to intelligence measurement. It may be assumed that the
brain volume scores obtained from the participants across the studies
included in this meta-analysis were associated with less than perfect

Fig. 5. Forrest plot of corrected correlation coefficients; diamond represents overall effect
size; square size is varied according to relative study weight within the analysis; numbers
in brackets are 95% confidence intervals of point estimation; analyses were based on the
Winsorized data.

Table 3
Key results associated with the meta-regression analyses: fair, good & excellent measures
of intelligence.

k N M LB UB

Fair 9 547 .23 .15 .31
Good 10 646 .32 .17 .46
Excellent 13 565 .39 .32 .46

Note. M = N-weighted correlations corrected for range restriction; LB = 95% confidence
lower-bound; UB = 95% confidence upper-bound; analyses were based on the
Winsorized data.

(footnote continued)
(i.e., a complete multi-subtest achievement inventory). In a robustness analysis, the re-
classification of the WRAT-III as only a ‘good’ measure of intelligence did not impact the
results in a material way. For example, the moderator analysis revealed essentially the
same results, b= .08 (95%CI: .01, .15), z= 2.08, p = .037.
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levels of reliability and/or validity. Thus, the application of corrections
based on the psychometrics associated with the brain volume imaging
scores (e.g., reliability; range restriction), and/or the incorporation of
brain imaging measurement quality in a meta-regression, may be ex-
pected to further increase the estimated correlation between brain vo-
lume and intelligence. Further research in this area is encouraged.

The observation of a positive association between measurement
quality and effect size is broadly consistent with Feinstein's (1995) view
that not all empirical investigations should be considered equal in the
context of a meta-analysis. That is, a meta-analysis can help overcome
the problem of sampling variability, however, the inclusion of all em-
pirical studies, without any regard for the quality of measurement, may
not be the most valid approach to the estimation of the association
between two theoretically linked variables. Strong inclusionist versus
exclusionist stances are arguably not necessary (see Kraemer,
Gardner, & Yesavage, 1998), as classifications of measurement quality
can be generated and hypotheses of moderator effects tested, as con-
ducted in this investigation. Thus, researchers in the area of intelligence
are encouraged to employ the general intelligence measurement clas-
sification reported in Table 1 in future meta-analyses.

It may be presumed that researchers who administer a small number
of cognitive ability tests do so because of limited amount of resources
(time/money). However, the results of this investigation suggest that
researchers who administer more comprehensive cognitive ability test
batteries require smaller sample sizes to achieve the same level of
power. For example, with respect to the uncorrected correlations, an
investigator who planned to administer a single cognitive ability test,
such as Raven's or the CFIT (20-minute testing time), would require a
sample size of 146 to achieve power of .80, based on an expected
correlation of .23. By contrast, an investigator who planned to admin-
ister 9 cognitive ability tests (40-minute testing time) would require a
sample size of 49 to achieve a power of .80, based on expected corre-
lation of .39. From this perspective, it is more efficient to administer a
40-minute comprehensive measure of intelligence across 49 partici-
pants (32.7 h of total IQ testing time), in comparison to a relatively
brief 20-minute measure across 146 participants (48.7 h of total IQ
testing time). Furthermore, the insights derived from an investigation
which included a comprehensive measure of intelligence may be con-
sidered a more valuable contribution to the area (e.g., better scope to
decompose unique effects across g and group-level factors).

4.3. Evidential value

The results associated with the p-curve analysis suggested the sta-
tistically significant correlations associated with the brain volume and
intelligence literature (broadly defined) are likely not substantially the
consequence of p-hacking. Specifically, the p-curve analysis found that
there was a statistically significantly greater proportion of statistically
significant p-values< .025, in comparison to between .026 and .049.

Despite the clear results obtained from the p-curve analysis in this in
this investigation, it should nonetheless be acknowledged that a p-curve
analysis has not been found necessarily to yield valid results, with re-
spect to evidential value. For example, the validity of p-curve analysis
results has been argued to be inversely related to the amount of het-
erogeneity associated with the effect sizes (van Aert et al., 2016). As the
amount of heterogeneity associated with the uncorrected correlations
was relatively small in this investigation (I2 = 12.4%), the p-curve
analysis results may be considered valid. More problematic, the inter-
pretation of the right-skewed distribution associated with a p-curve
analysis additionally assumes the absence of parallel p-hacking
(Ulrich &Miller, 2015) and the absence of gradual publication bias
(Ulrich and Miller, 2017): assumptions which cannot be tested cur-
rently. Thus, the p-curve results reported in this investigation should be
interpreted with caution, as there are several threats to validity which
cannot be ruled out easily (van Aert et al., 2016).

In addition to the above, it should also be acknowledged that the p-

curve approach to the evaluation of evidential value and publication
bias is only one approach among several (see McShane et al., 2016, for
review). Some simulation research suggests that some approaches may
be expected to perform more validly under certain conditions (McShane
et al., 2016). From a non-statistical perspective, we note that a large
percentage of studies included in the current meta-analysis were based
on FSIQ type composite scores, rather than subtest scores. The con-
sistency in the dependent variable, as opposed to a mixture of subtest
scores, is a contra-indicator of p-hacking (van Aert et al., 2016).

5. Limitations

Although the observed correlations included in the meta-analysis
were corrected for range restriction, they were not corrected for mea-
surement error. Thus, the current meta-analysis may not be regarded as
an entirely complete psychometric meta-analysis, as a complete psy-
chometric meta-analysis should correct the observed correlations for
both range restriction and measurement error (Schmidt & Hunter,
2015). The reason the observed correlations were not corrected for
measurement error is that only one investigation included in the meta-
analysis reported any information about the internal consistency re-
liability of the intelligence test scores (i.e., Wickett, Vernon, & Lee,
1994).

It may be presumed that many researchers rely upon the very high
internal consistency reliability estimates reported by test publishers in
the relevant technical manuals. However, reliability is a property of test
scores derived from a particular sample, rather than a property of a test
(Mehrens & Lehmann, 1991). Furthermore, in practice, test score re-
liability tends to be lower in empirical investigations, in comparison to
the estimates derived from normative samples (Vacha-Haase,
Kogan, & Thompson, 2000). In light of the above, it is reasonable to
suggest that the corrected brain volume and intelligence correlations
reported in this investigation are underestimates of the true score effect
in the population. Thus, the corrected brain volume and intelligence
correlation of .39 reported for the excellent intelligence measures ca-
tegory is almost certainly .40 or greater at the true score level.

Although a substantial amount of the theoretical and empirical lit-
erature was taken into consideration in the development of the general
intelligence measurement classification system (Table 1), it should be
acknowledged that it is ultimately a subjective guide. Some may raise
objections about one or more of the boundaries which demarcate one or
more of the categories. Naturally, different classification systems may
result in moderator effects different to those reported in this meta-
analysis. Thus, the results of the meta-regressions reported in this in-
vestigation are valid to the degree that the classification system is also
valid. The fact that the application of the intelligence measurement
classification system yielded a statistically significant hypothesized
moderator effect in the meta-regressions suggests that the classification
system may be valid. Additional applications of the classification
system in other meta-analyses in the area of intelligence would be va-
luable to further evaluate its validity (or to suggest modifications).8

Finally, the valid interpretation of the moderator effect obtained in
this investigation assumes that the empirical investigations classified
across the measurement quality categories do not differ along another

8 We attempted to conduct additional meta-regressions on the remaining correlations
within the Pietschnig et al. (2015) meta-analysis (i.e., outside the healthy adult samples).
However, there were too few usable correlations within any particular category to
evaluate a measurement quality moderator effect, properly. Specifically, with respect to
the 31 healthy children sample correlations included in Pietschnig et al. (2015), 15 were
based on a combination of different IQ tests within the same sample (e.g., some children
were administered an incomplete version of the WISC-R and some were administered the
complete WISC-III). Additionally, four of the healthy children studies used an ‘unknown’
measure of intelligence. Thus, in total, only 13 of the healthy children sample correlations
were considered classifiable. For thoroughness, we note that the bare bones meta-analysis
based on the 31 healthy child observed score correlations was r= .23 (N = 1954; 95%CI:
.16, .31).
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dimension that is related positively to the quality of general intelligence
measurement classifications. For example, investigations which in-
cluded a comprehensive measure of intelligence may have employed
test administrators with a substantial amount of testing experience,
whereas those investigations which administered a single cognitive
ability test may have used test administrators with little to no psy-
chometric experience. Such possible differences may have affected test
score quality in a systematic fashion.

6. Conclusion

There is almost undoubtedly a true, positive association between
brain volume and intelligence, and the magnitude of this effect is likely
large, relative to typically reported correlations in the individual dif-
ferences literature (Gignac & Szodorai, 2016). Researchers should now
focus on why this association exists. Arguably, the best insights into the
mechanisms of neurophysiology and intelligence will be achieved by
investigations which include excellent neurophysiological indicators
and excellent measures of intelligence.

References

Amat, J. A., Bansal, R., Whiteman, R., Haggerty, R., Royal, J., & Peterson, B. S. (2008).
Correlates of intellectual ability with morphology of the hippocampus and amygdala
in healthy adults. Brain and Cognition, 66(2), 105–114.

Andreasen, N. C., Flaum, M., Swayze, V., O'Leary, D. S., Alliger, R., Cohen, G., ... Yuh, W.
T. (1993). Intelligence and brain structure in normal individuals. American Journal of
Psychiatry, 150, 130–134.

Ashtari, M., Avants, B., Cyckowski, L., Cervellione, K. L., Roofeh, D., Cook, P., ... Kumra,
S. (2011). Medial temporal structures and memory functions in adolescents with
heavy cannabis use. Journal of Psychiatric Research, 45(8), 1055–1066.

Burgaleta, M., Head, K., Álvarez-Linera, J., Martínez, K., Escorial, S., Haier, R., & Colom,
R. (2012). Sex differences in brain volume are related to specific skills, not to general
intelligence. Intelligence, 40(1), 60–68.

Egan, V., Chiswick, A., Santosh, C., Naidu, K., Rimmington, J. E., & Best, J. J. (1994). Size
isn't everything: A study of brain volume, intelligence and auditory evoked potentials.
Personality and Individual Differences, 17(3), 357–367.

Garde, E., Mortensen, E. L., Krabbe, K., Rostrup, E., & Larsson, H. B. (2000). Relation
between age-related decline in intelligence and cerebral white-matter hyper-
intensities in healthy octogenarians: A longitudinal study. The Lancet, 356(9230),
628–634.

Hermann, B. P., Seidenberg, M., & Bell, B. (2002). The neurodevelopmental impact of
childhood onset temporal lobe epilepsy on brain structure and function and the risk
of progressive cognitive effects. Progress in Brain Research, 135, 429–438.

Hogan, M. J., Staff, R. T., Bunting, B. P., Murray, A. D., Ahearn, T. S., Deary, I. J., &
Whalley, L. J. (2011). Cerebellar brain volume accounts for variance in cognitive
performance in older adults. Cortex, 47(4), 441–450.

Kievit, R. A., Romeijn, J. W., Waldorp, L. J., Wicherts, J. M., Scholte, H. S., & Borsboom,
D. (2011). Mind the gap: A psychometric approach to the reduction problem.
Psychological Inquiry, 22(2), 67–87.

Luders, E., Narr, K. L., Bilder, R. M., Thompson, P. M., Szeszko, P. R., Hamilton, L., &
Toga, A. W. (2007). Positive correlations between corpus callosum thickness and
intelligence. NeuroImage, 37(4), 1457–1464.

MacLullich, A. M. J., Ferguson, K. J., Deary, I. J., Seckl, J. R., Starr, J. M., & Wardlaw, J.
M. (2002). Intracranial capacity and brain volumes are associated with cognition in
healthy elderly men. Neurology, 59(2), 169–174.

Nakamura, M., Nestor, P. G., McCarley, R. W., Levitt, J. J., Hsu, L., Kawashima, T., ...
Shenton, M. E. (2007). Altered orbitofrontal sulcogyral pattern in schizophrenia.
Brain, 130(3), 693–707.

Raz, N., Torres, I. J., Spencer, W. D., Millman, D., Baertschi, J. C., & Sarpel, G. (1993).
Neuroanatomical correlates of age-sensitive and age-invariant cognitive abilities: An
in vivo MRI investigation. Intelligence, 17(3), 407–422.

Raz, N., Lindenberger, U., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D.
(2008). Neuroanatomical correlates of fluid intelligence in healthy adults and persons
with vascular risk factors. Cerebral Cortex, 18(3), 718–726.

Royle, N. A., Booth, T., Hernández, M. C. V., Penke, L., Murray, C., Gow, A. J., ...
Wardlaw, J. M. (2013). Estimated maximal and current brain volume predict cog-
nitive ability in old age. Neurobiology of Aging, 34(12), 2726–2733.

Schoenemann, P. T., Budinger, T. F., Sarich, V. M., & Wang, W. S. Y. (2000). Brain size
does not predict general cognitive ability within families. Proceedings of the National
Academy of Sciences, 97(9), 4932–4937.

Schottenbauer, M. A., Momenan, R., Kerick, M., & Hommer, D. W. (2007). Relationships
among aging, IQ, and intracranial volume in alcoholics and control subjects.
Neuropsychology, 21(3), 337–345.

Shapleske, J., Rossell, S. L., Chitnis, X. A., Suckling, J., Simmons, A., Bullmore, E. T., ...
David, A. S. (2002). A computational morphometric MRI study of schizophrenia:
Effects of hallucinations. Cerebral Cortex, 12(12), 1331–1341.

Shenkin, S. D., Rivers, C. S., Deary, I. J., Starr, J. M., & Wardlaw, J. M. (2009). Maximum
(prior) brain size, not atrophy, correlates with cognition in community-dwelling

older people: A cross-sectional neuroimaging study. BMC Geriatrics, 9, 12.
Tan, Ü., Tan, M., Polat, P., Ceylan, Y., Suma, S., & Okur, A. (1999). Magnetic resonance

imaging brain size/IQ relations in Turkish university students. Intelligence, 27(1),
83–92.

Thoma, R. J., Yeo, R. A., Gangestad, S. W., Halgren, E., Sanchez, N. M., & Lewine, J. D.
(2005). Cortical volume and developmental instability are independent predictors of
general intellectual ability. Intelligence, 33(1), 27–38.

Wickett, J. C., Vernon, P. A., & Lee, D. H. (1994). In vivo brain size, head perimeter, and
intelligence in a sample of healthy adult females. Personality and Individual
Differences, 16(6), 831–838.

Wickett, J. C., Vernon, P. A., & Lee, D. H. (2000). Relationships between factors of in-
telligence and brain volume. Personality and Individual Differences, 29(6), 1095–1122.

Willerman, L., Schultz, R., Rutledge, J. N., & Bigler, E. D. (1991). In vivo brain size and
intelligence. Intelligence, 15(2), 223–228.

van Aert, R. C., Wicherts, J. M., & van Assen, M. A. (2016). Conducting meta-analyses
based on p-values: Reservations and recommendations for applying p-uniform and p-
curve. Perspectives on Psychological Science, 11(5), 713–729.

Appel, L. J. (2009). The case for population-wide salt reduction gets stronger. BMJ, 339,
b4980.

Arthur, W., & Day, D. V. (1994). Development of a short form for the Raven Advanced
Progressive Matrices test. Educational and Psychological Measurement, 54(2), 394–403.

Australian Research Council for Educational Research (1991). Raven's progressive matrices:
Summary guide for Australian users. Hawthorn, Australia: ACER.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to
metaanalysis. London: Wiley.

Burns, N. R., Nettelbeck, T., & McPherson, J. (2009). Attention and intelligence: A factor
analytic study. Journal of Individual Differences, 30(1), 44–57.

Card, N. A. (2015). Applied meta-analysis for social science research. New York: Guilford
Publications.

Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities: Current evidence
supports g and about ten broad factors. In H. Nyborg (Ed.), The scientific study of
general intelligence: Tribute to Arthur R. Jensen (pp. 5–21). New York: Pergamon Press.

Colom, R., Juan-Espinosa, M., Abad, F., & Garcıá, L. F. (2000). Negligible sex differences
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