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ABSTRACT
This paper introduces an extension of cluster mean centering (also called group mean centering)
for multilevel models, which we call “double decomposition (DD).” This centering method separates
between-level variance, as in cluster mean centering, but also decomposes within-level variance of
the same variable. This process retains the benefits of cluster mean centering but allows for context
variables derived from lower level variables, other than the cluster mean, to be incorporated into the
model. A brief simulation study is presented, demonstrating the potential advantage (or even neces-
sity) for DD in certain circumstances. Several applications to multilevel analysis are discussed. Finally,
an empirical demonstration examining the Flynn effect (Flynn, 1987), our motivating example, is pre-
sented. The use of DD in the analysis provides a novel method to narrow the field of plausible causal
hypotheses regarding the Flynn effect, in line with suggestions by a number of researchers (Mingroni,
2014; Rodgers, 2015).

Introduction

When data are collected from clustered observations
emerging from a nested design structure – members of
families, children in classrooms, or repeated measures –
multilevel data analysis is a recommended analytic
method (Snijders & Bosker, 2012). Researchers routinely
use variables drawn from multiple levels. In a family
study, for example, a researcher might use data about
children, the lowest level of analysis (level 1), as well as
data about the family itself, the cluster level (level 2),
to predict an outcome. Information about higher level
clusters (e.g., parental education) provides a context
for observations at the lower levels (e.g., child achieve-
ment scores). It was acknowledged early that ignoring
the context of an observation in multilevel data could
result in the attribution of effects to the wrong level of
analysis (Cronbach & Webb, 1975), such as attributing
family characteristics to child characteristics and vice
versa. Context effects can be any variable measured at
the cluster level; however for this paper, we will focus
on the context effects derived from lower level variables
(e.g., cluster means).

A common context effect used in multilevel mod-
els is the cluster mean. The cluster mean is the mean
of all observations in a given cluster, the higher level
unit (e.g., the mean achievement scores of students in a
classroom, with classroom being the level-2 unit). The
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cluster mean is particularly useful because variables
centered using the cluster mean are uncorrelated with
variables at higher levels (Raudenbush, 1989; see also
Appendix A). Cluster mean centering can help in increas-
ing the interpretability of model parameters because the
lack of correlation helps to isolate the level at which
an effect occurs. However, for some research questions,
the cluster mean does not address the question of inter-
est, whereas other context effects derived from the same
lower level variables (e.g., baseline scores) do address
the question. The importance of context effects beyond
the cluster mean is not a novel suggestion (Cronbach et
al., 1976; Plewis, 1989), but previous work has not pre-
sented a way to obtain the mathematical benefits of clus-
ter mean centering (e.g., uncorrelated higher and lower
level variables) when using alternative context variables
derived from lower level variables. This paper presents
a method of cluster mean centering that also allows for
the use of alternative context effects. This method decom-
poses a single independent variable into multiple inde-
pendent variables, with the goal of increasing model
descriptiveness and interpretability. We call the method
“double decomposition (DD),” because one decomposi-
tion is the standard mean centering approach (across
levels) followed by additional decompositions in rela-
tion to other contextual variables within the same level,
measured using the same units (e.g., “years”). Under
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certain circumstances, this results in variables with clearer
substantive interpretations than cluster means.

The substantive problem that motivated the devel-
opment of this method, and which we will return to
throughout the paper, is the Flynn effect. The Flynn effect
is the name for systematic increases in IQ scores over the
past century in countries all over the world (Flynn, 1987).
This effect has been observed in many different data
sets across time and culture, using a variety of research
methods. Relevant to the current study, the Flynn effect
was observed in patterns of Peabody Individual Achieve-
ment Test-Math (PIAT-Math) scores from 1986 to 2000
among children from theNational Longitudinal Survey of
Youth-Children survey (NLSYC; Rodgers & Wänström,
2007). A current version of this data set, with data from
1986 to 2012, will be used here.

The purpose of the analysis presented in this paper
is not to prove the existence of the Flynn effect in the
NLSYC (which has already been demonstrated), but
rather to identify the location of the Flynn effect. Does
the increase in PIAT-Math scores over time emerge from
an annual increase in an individual’s IQ score, an increase
in scores between birth cohorts, or an increase in scores
between family cohorts? Most previous analyses have
focused on a single level in analyses. In fact, most prior
studies of the Flynn effect lacked the appropriate data
necessary to study this effect in a multilevel context (see
Sundet (2014)). All studies of the Flynn effect have the
same basic independent variable: year of testing. This is
the variable on which we will focus in our demonstration,
with additional context variables to answermore nuanced
questions than in the previous Flynn effect research.

The DDmodel

Before considering DD, it helps to look at the two alter-
natives, cluster mean centering and a decomposition
that uses substantively interesting variables (but ones
that lack the properties of cluster means). When using
multilevel models, it is recommended that the researchers
utilize cluster mean centering, which can result in more

interpretable parameters and can distinguish the effects
of lower level predictors from those of higher level
predictors (Curran, Lee, Howard, Lane, & MacCallum,
2012; Enders & Tofighi, 2007; Hoffman, 2014; Hoffman
& Stawski, 2009; Raudenbush, 1989; Wang & Maxwell,
2015). Cluster mean centering is thoroughly explained by
a number of authors in a variety of fields of research
(Hoffman, 2007; Hoffman & Stawski, 2009; Kreft,
1995; Paccagnella, 2006; Wang & Maxwell, 2015; Wu
& Wooldridge, 2005) and in several popular textbooks
(Aiken & West, 1991; Hoffman, 2014; Kreft & de Leeuw,
1998; Raudenbush & Bryk, 2002; Snijders & Bosker,
2012). From the NLSYC, we can create a multilevel
design, with repeated measures (the first level) nested
within child (the second level), and multiple children
nested within family (the third level). Table 1 shows what
cluster mean centered (CMC) data would look like for
two families with multiple children and multiple obser-
vations for the children. The variable “year of testing” is
cluster mean centered by each child’s mean year, and then
the child means are centered by each family’s mean. The
resulting family means and mean-centered variables sum
up to the original year of testing variable (the child mean
is, itself, mean-centered). Each of these variables could
be then entered into a model and slopes could be used to
estimate their individual effects on a given outcome. This
is how cluster mean centering is typically applied, and
it can help to determine if an effect is consistent across
levels; consistency cannot be determined without cluster
mean centering. However, in some research settings, the
cluster mean is not a particularly interpretable variable.

Frequently, we directly measure the variables that
are of interest. In the cases when these variables use the
same unit of measurement as lower level variables (e.g.,
“years”), deviation scores can be created in the same way
as with cluster means. Because these context variables
can be measured independently of the original indepen-
dent variable, and can arise naturally as the variables
of interest, we use the term “natural context variable”
to emphasize that these variables are not calculated (as
cluster means are). We illustrate in Table 2 how several

Table . Cluster mean centering of year of testing.

Family Child Year of testing
Child mean year of

testing
Year of testing centered by child

mean year of testing
Family mean year

of testing

Child mean year of testing
centered by family mean year of

testing

    −   − 
      −
    −   
      
    −  . − .
     . − .
    −  . .
     . .
     . .
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632 P. O’KEEFE AND J. L. RODGERS

Table . Decomposition of year of testing using natural context variables.

Family Child Year of testing Birth year of child
Birth year of first
child in family

Years current child born after
first child in family

Age of current child
at year of testing

      
      
      
      
      
      
      
      
      

natural context variables can provide a perfect decompo-
sition in the NLSYC data. The third column denotes the
year of testing for several actual observations within the
NLSYC data. The last three columns (columns 5–7) show
three interpretable context variables that fully decompose
the year of testing. The fourth column, birth year of child,
is redundant in the final decomposition, although it can
be thought of as being centered by the birth year of the
first child in the family giving column 6, “Years current
child born after first child in family.” It is easily verified
that for each row, the three final variables sum up to the
year of testing. Thus, entering those three variables as
IVs, instead of the traditional year of testing as an IV,
allows a much more nuanced evaluation of the location
of the Flynn effect. In this paper, we will refer to variables
that can be decomposed like this as “composite” variables
because we can think of them as being composed of
multiple related variables. Note that we have only illus-
trated in Table 2 a decomposition using natural context
variables, which leaves us vulnerable to attributing effects
to the wrong level of the model. Further decomposition
is required to assist in the interpretation of the location of
the Flynn effect in these data, as we will illustrate in our
expanded Flynn effect analysis later in this paper.

The major advantage of cluster means over other con-
text variables (such as the birth year in our example) is
that centering using the cluster mean produces variables
that are orthogonal across levels, something no other
contextual variable produces (Raudenbush, 1989). For
example, using cluster mean centering in our Flynn effect
example produced two variables (child mean year of test-
ing and deviations from that mean; columns 4 and 5 in
Table 1) that were both orthogonal and uncorrelated. The
same result is not obtained by centering using child’s birth
year or other natural context variables. These correlation
structures can be verified by referring Tables 1 and 2.

As researchers, we may have substantive questions
unanswered by using cluster means, but the questions are
confounded if we simply use the natural context variables
related to our questions. Unfortunately, if we include
both the cluster mean and the natural context variable

in our analysis, the cluster mean may be substantially
correlated with our natural context variable. This analysis
is not necessarily wrong; however, it can complicate the
interpretation of effects. The current paper introduces
an extension of cluster mean centering called Double
Decomposition (“DD”), which handles this problem,
providing results that are more directly interpretable
and intuitive. This centering method separates a given
variable into orthogonal between-level components,
which achieves the same effect as cluster mean centering,
and then defines within-level components (e.g., a natural
context variable and a remainder) that help to reduce the
correlation between, and disaggregate effects due to, clus-
ter means and natural context variables. Our method is
a special case of cluster mean centering. It is useful when
context effects (beyond the cluster mean) which utilize
the same unit of measurement as the lower level variable
exist and when the research question is not answered by
using cluster means. In the Flynn effect example, the birth
year of a child is that kind of context effect. The purpose of
this paper is to presentDD as an extension of clustermean
centering, the one that allows a researcher to distinguish
the effects of natural context variables from clustermeans.

The notation is important. Because we are splitting
a variable into at least three parts, we need a way to
distinguish between the parts and also to indicate that
they are all related. In this paper, subscripts are used
to distinguish across levels, whereas marks above the
variable name (e.g., . and ..) are used to indicate the com-
ponent being discussed. For example, a generic level-1
variable, generici j in a multilevel model has a variable
name “generic” as well as subscripts indicating to which
level the variable applies. The “i” and “j” subscripts tell us
that this is observation i in cluster j. Further subscripts (k,
etc.) can be added to denote higher level clusters. In the
empirical example of the Flynn effect, we use the name
of the variable and three additional subscripts, i, j, and k,
to denote the interview within child, child within family,
and family levels. Because the original variable, its cluster
mean, and potentially the natural context effect will all
share the same name, an additional notation is needed to
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MULTIVARIATE BEHAVIORAL RESEARCH 633

distinguish these variables. In this paper . and .. (“dots”)
denote CMC variables, − and ˘ indicate cluster means,
and ˜ represents the difference between an original
variable and a natural context variable.

In cluster mean centering, a level-1 variable, xi j, can
be thought of as a linear combination of two separate
variables, a level-1 variable ẋi j and a level-2 variable x̄. j,
where x̄. j is the mean of xi j for cluster j (the level-2 unit),
and the “.” subscript indicates that x̄. j is the mean of all i
observations in the level-2 unit j. Thus, ẋi j + x̄. j = xi j .
The end result is two variables that can be used to model
the effect of overall differences on x between clusters, as
well as the effect of individual differences on x within
a cluster. The centered variable and the resulting mean
variable do not co-vary andmay or may not measure sep-
arate effects (Cronbach et al., 1976; Raudenbush, 1989).
Both the cluster mean and the individual deviations from
that mean can be used as predictors in amultilevel model,
with slopes representing the effects of these variables on
the dependent variable (DV). The interpretation of slopes
in which researchers have not included the cluster mean
can result in the attribution of effects to the wrong level,
the ecological fallacy (Curran et al., 2012). In the present
case, an additional error can be made: failing to properly
separate the natural context effect from the cluster mean
can result in an improper attribution of effects, but within
the same level instead of across levels.

With a composite variable, like year of testing in the
Flynn effect example, there is a level-2 natural context
variable z j, and xi j − z j = x̃i j . The z j variable, unlike
cluster means, can be measured independently of xi j,
and represents a distinct but related variable, that is
measured using the same units (note that these “units”
are the same measured unit, but they are not on the same
statistical scale, i.e., they do not necessarily have the same
variance). The difference component, x̃i j, of a composite
variable requires cluster mean centering. Cluster mean
centering gives x̃i j − x̆. j = ẍi j, where x̆. j is the cluster or
group mean of x̃i j. This method results in one level-1
variable ẍi j and two level-2 variables x̆. j and z j such that
ẍi j + x̆. j + z j = xi j. The cluster mean of xi j is x̄. j = ∑ xi j

n
in a given cluster j. This equation can be rewritten in terms
of the level-2 variables z j and x̃i j, giving x̄. j = ∑ x̃i j+z j

n .
Because the summation is confined to a single cluster,
z j is simply a constant giving x̄. j = ∑ x̃i j

n + z j. The
expression

∑ x̃i j
n is the cluster mean of x̃i j which is

x̆. j, giving x̄. j = x̆. j + z j. Because ẋi j = xi j − x̄. j and
ẍi j = xi j −

(
x̆. j + z j

)
, we see that ẍi j = ẋi j. The subtrac-

tion of z j from xi j leaves some level-2 variance so long
as z j �= x̄. j. The level-2 variance not removed by z j is
removed by x̆. j. The two level-2 variables are nonorthog-
onal components of the original cluster mean variable,

Table . Raw score multilevel model.

Model 

Level  yi j = β0 j + β1 j ∗ xi j + ei j
Level- intercept β0 j = γ00 + u0 j
Level- slope β1 j = γ10

Reduced form yi j = γ00 + u0 j + γ10 ∗ xi j + ei j

x̄. j. The result is that we decompose both across levels
and within the same level in a way that may improve
interpretability and help to avoid incorrect attributions of
effects to x̄. j if indeed the effects of x̆. j and z j are different.
Because the DD creates two variables at level 2, out of
a single variable, and each is measured using the same
units, the potential for high collinearity between double
decomposed variablesmay raise concerns. In general, this
is unlikely unless the natural context variable is closely
related to the level-2 cluster mean. A more complete
mathematical explanation can be found in Appendix A.

The potential importance of DD can be seen if we
compare three simple models: the raw score (RS) model,
the CMCmodel, and the DDmodel. The RSmodel forms
the basis of the other two and a simple version of an
RS model would be one with a single independent vari-
able with a random intercept and fixed slope as seen in
Model 1 (Table 3).

It has been pointed out by many previous authors
(Curran et al., 2012; Kreft, de Leeuw, & Aiken, 1995;
Snijders & Bosker, 2012) that the RS model assumes that
the effects of the level-2 component x̄. j and the level-1
component ẋi j are identical. The CMC model does not
make this assumption. By cluster mean centering and
reintroducing the cluster means as a level-2 variable,
researchers are able to test the hypothesis that the effects
of the cluster mean and the level-1 deviations from the
cluster mean are the same. A CMC alternative to our RS
model is Model 2 (Table 4).

This model allows for the cluster mean to have its
own slope γ01. More complex models could have the
cluster mean of x predicting the slope of the lower level
components of x.

The DD model takes this one step further. In addition
to splitting across levels as the CMC model does, the DD

Table . Cluster mean centered multilevel model.

Model 

Decomposition x̄
. j + ẋi j = xi j

Level  yi j = β0 j + β1 j ∗ ẋi j + ei j
Level- intercept β0 j = γ00 + γ01 ∗ x̄. j + u0 j
Level- slope β1 j = γ10

Reduced form yi j = γ00 + γ01 ∗ x̄. j + u0 j + γ10 ∗ ẋi j + ei j .
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634 P. O’KEEFE AND J. L. RODGERS

Table . Double decomposition multilevel model.

Model 

Decomposition x̆
. j + z j + ẋi j = xi j

Level  yi j = β0 j + β1 j ∗ ẋi j + ei j
Level- intercept β0 j = γ00 + γ01 ∗ x̆

. j + γ02 ∗ z j + u0 j
Level- slope β1 j = γ10
Reduced form yi j = γ00 + γ01 ∗ x̆

. j + γ02 ∗ z j + u0 j + γ10 ∗ ẋi j + ei j

model splits within the higher level. A DD version of the
previously presented CMC model appears in Model 3
(Table 5).

TheCMCmodel assumes that x̆. j and z j share the same
slopes, a potential error similar to the one made by the RS
model. Because z j is a “natural” variable, one that could be
overlooked as being a component of xi j, it is possible that
a researcher might inadvertently include it in their mod-
els along with cluster means (or in an uncentered model
xi j). Because x̄. j = x̆. j + z j, such a model will not provide
a direct estimate of the effect of z j; instead, it will estimate
the effect conditioned on the fact that x̄. j has “duplicate”
variance exactly equal to that of z j. This effect will be
the difference between the effect of x̄. j and the effect of
z j. This will be demonstrated by simulation later in this
paper.

For more than two levels, the process of DD can be
repeated as necessary. It should be noted at this point that
DD is not limited to subtracting only one variable of the
type z j from the previous levels. In the empirical example
presented later in this paper, we carried the decomposi-
tion out across three levels with a time variable, year of
test, being decomposed. At the third level, two natural
level-3 components existed, mother’s age at first birth
and mother’s birth year; both were included in the model
without difficulty.

In all cases of DD, the final variables included in
the model should sum up to the original variable. In our
empirical example to be presented, evenwith seven differ-
ent components, the sum of all the components is exactly
equal to the original variable. In amodel inwhich the vari-
ables do not add back to the original value, the researcher
will have omitted variance present in the original variable.

Finally, when using DD, researchers should recog-
nize that complexity is added by DD, and the goal of
parsimony in model building may be threatened. Unlike
cluster mean centering, which is almost universally
applicable, researchers should not feel compelled to find
ways to doubly decompose their data. In fact, it is likely
that there will not necessarily be a sensible way to dou-
bly decompose data in many cases. However, in cases
where DD is possible, if the effects of the natural context
variables differ from those of the other context variables

Table . Clustermean centeredmodel with a natural context vari-
able included.

Model 

Decomposition x̄
. j + ẋi j = xi j

Level  yi j = β0 j + β1 j ∗ ẋi j + ei j
Level- intercept β0 j = γ00 + γ01 ∗ x̄. j + γ02 ∗ z j + u0 j
Level- slope β1 j = γ10

Reduced form yi j = γ00 + γ01 ∗ x̄. j + γ02 ∗ z j + γ10 ∗ ẋi j + u0 j + ei j .

(e.g., the cluster mean), then DD is necessary to sepa-
rately identify those effects (similar to the logic behind
CMC).

Simulation

The following simulation is designed to demonstrate the
potential utility of the DD formulation. The goal is to
demonstrate the utility of the model through a proof-in-
principle, rather than a complete exploration of the effects
of DD.We will use a two-level data structure with a single
outcome variable and one independent variable to be dou-
bly decomposed. Themodels to be tested include the three
models just presented in Tables 3–5, as well as an addi-
tional model presented in Table 6. Data were simulated in
R using the MASS package (R Core Team, 2016; Venables
& Ripley, 2002) and analyzed using the nlme package
(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2016).

Because of the nature of the decomposition, it was
necessary to create the individual components of the
variables separately and then combine them in subse-
quent analyses as needed. To simulate the level-2 data,
three variables were drawn from a standard multivariate
normal distribution. One was the outcome variable (ȳ. j),
one was the natural context variable (z j) and one was the
cluster mean deviations from the natural context variable
(x̆. j). The level-2 population correlations were r = .5
between the outcome and the natural context variable
and r = −.5 between the cluster means and the other two
variables. It should be noted here that the partial correla-
tion and standardized regression coefficient among these
three variables would be ±.33 in the population. One
hundred level-2 observations were selected and each was
duplicated 30 times (the level-2 observation is duplicated
across all members of a group), giving 100 clusters of size
30 each. This step created the level-2 observations, and
the level-1 components needed to be created separately.

For the level-1 components of the variables, 3000
observations were independently drawn from a standard
normal distribution. These observations were divided
into groups of 30. Each group was CMC, and the cluster
means from this procedure were discarded. Because CMC
variables are uncorrelated with higher level variables, it
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MULTIVARIATE BEHAVIORAL RESEARCH 635

was not necessary to use the cluster means from the
lower level observations, i.e., we can replace them with
the cluster means generated independently at level 2 for
the purposes of this simulation. The resulting variable
measured individual deviations from the cluster mean,
the level-1 variable (ẋi j) in the subsequent analyses.
This variable was then used to create an outcome vari-
able, ẏi j. The two level-1 variables had r = .5. The two
outcome variables were added together to create an out-
come variable for the multilevel model (ȳ. j + ẏi j = yi j).
The independent variable was created by adding the
natural context variable, the cluster means, and the
CMC observations (x̆. j + z j + ẋi j = xi j). A cluster mean
that would result from a typical CMC model was cre-
ated by adding the natural context and cluster mean
variables (x̆. j + z j = x̄. j). The resulting variables were
used in four models. One model used the summed
independent variable, without any centering (Model 1;
Table 3), the next model was a standard CMC model
(Model 2; Table 4), the third model was the DD model
(Model 3; Table 5), and the fourth model used the clus-
ter means from the CMC model, but also included the
natural context variable from the DD model (Model 4;
Table 6). All models estimated random intercepts because
the process of creating ẏi j introduced random inter-
cepts. All slopes were fixed. This process was repeated
5000 times. R code for the simulation can be found in
Appendix B.

The first model (Table 3), which used the sum of the
three component variables (xi j) to predict the outcome
(yi j), gave an average slope estimate of .49, with a mean
t value of 30.77 across the 5000 replications. This model
would suggest that a one unit increase in the independent
variable is associated with a .49 unit increase on the
dependent variable. This model does not answer any
questions about how the effect of the dependent variable
differs across levels.

The second model (Table 4) denotes a typical CMC
model. The lower level variable is the deviation of indi-
viduals from their cluster mean (ẋi j). That variable had
a slope of .5 with an average t value of 31.07. The cluster
mean, which in our case is a sum of the natural context
variable and themean deviation from that natural context
variable (x̄. j = x̆. j + z j), has an average slope of zero with
an average t value of −.01 (as opposed to the population
correlations of −.5 and .5 for x̆. j and z j, respectively).
If a researcher was to use this model to assess the data
we have used here, they might erroneously conclude
that there was no substantial relationship between the
level-2 component of the independent variable and the
dependent variable.

The third model (Table 5) uses the DD formulation.
The level-1 results are unchanged from the CMC model;

however, the level-2 results are different. The slope for
the cluster mean deviation (x̆. j = x̄. j − z j) is −.33 and
the slope for the natural context variable (z j) is .33. These
values accurately reflect the population level regression
coefficients. The corresponding t values are −3.48 and
3.46, respectively. This model reveals significant associ-
ations between components of the independent variable
and the dependent variable at level 2 that were invisible
when using the more typical CMC model.

The fourth model (Table 6) used the CMC variable
at level 1 (ẋi j), the natural context variable at level 2
(z j), and the raw cluster mean (x̄. j). In effect, this model
includes the natural context variable twice, first as the nat-
ural context variable (z j), and again as a part of the cluster
mean (x̄. j = x̆. j − z j). The slopes and t values remained
unchanged for the level-1 variable (ẋi j) and the cluster
mean (x̄. j); however, the slope and the t value doubled
for the natural context variable (z j; B = .67; t = 6.94).
The estimate is starkly different from previous models.
The coefficient for the natural context variable represents
the context effect and denotes the difference between the
effect of the cluster mean and the natural context variable.
Here, the unique effect of both x̄. j and z j was estimated,
because 100% of the variance associated with z j was also
present in x̄. j and the coefficient for z j had to account
for this and doubled in size. If a researcher attempted to
interpret the slope directly, without fully considering the
impact of including the other variables, s/he could misin-
terpret the effect as being far stronger than it actually is.

These results are not meant to be a complete analysis
of the potential effects of various model formulations
when DD is possible. They are meant to highlight the
potential importance under certain conditions of the DD
model, which is demonstrated here to have the potential
to identify an effect that was built into the data but that the
traditional multilevel analysis would not have identified.
Specifically, failing to doubly decompose in this case led
to the effects at level 2 going unnoticed, and additionally,
simply adding the natural context variable to the CMC
model artificially doubled the corresponding slope, which
could lead to erroneous conclusions if researchers are not
careful.

Example applications

An analysis of the Flynn effect was the initial motivation
for the development of this method. We hope that other
researchers will find their own uses for DD. The basic
requirements for the use of DD are a multilevel data set to
be analyzed and natural context variables of substantive
interest (other than the cluster mean) measured using the
same units as a lower level variable. In this section, we
provide some conceptual examples and motivation, and
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636 P. O’KEEFE AND J. L. RODGERS

then in the next section, we present our own example
analytically in some detail.

DD will likely be particularly useful in longitudinal
studies. For example, in a hypothetical clinical interven-
tion, a researcher might be interested in the effect of per-
ceived social support on depression over the course of
treatment. In our hypothetical experiment, the researcher
has daily questionnaire data detailing a person’s percep-
tion of social support and their levels of depression. This
is a multilevel data set with observations nested in per-
sons. A DD approach may compare the effects of base-
line (e.g., day 1) levels of social support, the mean level
of social support minus the baseline (the mean overall
change from baseline for a given person), and day-to-day
changes in perceived social support. This analysis could
be used to determine if initial levels of social support are
more important than changes in social support over the
course of depression treatment. This could be modeled as
an interaction effect between time in treatment and each
social support component (three interaction effects). In
addition, the researcher could see the effect of day-to-day
changes on perceived social support and depression, and
the effect of baseline and mean change in social support
on mean depression scores.

Plewis (1989) raised the issue of context variables unre-
lated to the mean, and suggested that the mode or other
measures of central tendency might be useful. His sug-
gestion can be applied to a DD model while retain-
ing the benefits of cluster mean centering. Consider a
model predicting student achievement test (SAT) scores
from parental income. The median (or modal) income
could be included at the classroom level alongside the
mean deviation from the median (or mode); within-class
incomeswould still be a given student’s deviation from the
class mean income (as in Raudenbush (1989)). Income is
used in this example because it is well documented that
at the population level, incomes are not normally dis-
tributed (Bandourian, McDonald, & Turley, 2003), and a
researcher might be motivated to use a measure of cen-
tral tendency less affected by skewness. To be clear, a
lack of normality in data may introduce its own difficul-
ties, and should be dealt with accordingly. This exam-
ple is meant only to illustrate a potential application of
DD and is not meant as a way to deal with nonnormal
data.

Finally, the empirical example in the next section is a
longitudinal application. This example uses family data
and decomposes year of testing into seven components
across three levels. There are four natural variables, age at
testing, year of birth relative to the oldest sibling, mother’s
age at first birth, and mother’s birth year. Age at testing
is cluster mean centered within children and within
families, and the birth year variable is centered within
families. The next section details how this decomposition

allows for certain hypotheses to be explicitly addressed
that could not otherwise be evaluated.

An empirical example: DD of the Flynn effect

The Flynn effect is the name given to the systematic rise
in IQ scores over time, which has occurred at a rate of
approximately three IQ points per decade on standard
IQ tests (Flynn, 1987; Pietschnig & Voracek, 2015). The
Flynn effect is primarily associated with fluid intelligence
measures, which assess problem solving and real-world
reasoning; smaller Flynn effect patterns have occasionally
been observed in crystallized intelligence, associated
with verbal facility and memory. A recent meta-analysis
identified the Flynn effect as a roughly linear relationship
between IQ and time, although with identifiable periods
of deviation from linearity (Pietschnig & Voracek, 2015).
Many different hypotheses have been proposed to explain
the Flynn effect; previous researchers have suggested that
steps should be taken to evaluate and reduce the number
of plausible hypotheses (Mingroni, 2014; Rodgers, 1998).
For the present analysis, we use the DDmodel to identify
the location of the Flynn effect within a broad and flexible
data set, and in doing so eliminate particular classes of
hypotheses and allow focus on other classes that remain
logically plausible.

Within the design structure of the NLSYC, the causal
processes underlying the Flynn effect can emerge from
three possible locations: within-person, within-family
and between-family. A within-person process would
be caused by systematic processes leading to changes
throughout a person’s lifetime. Hypotheses such as
increased exposure to tests (Tuddenham, 1948), improve-
ments in niche picking (Dickens & Flynn, 2001) and
slowed life history (Woodley, 2012) could plausibly cause
within-person increases. In niche picking, for example,
a person’s ability to pick an intellectually facilitating
niche would likely improve over the course of their life,
both for developmental reasons and because of gradual
improvements in society. This improved ability to pick
a niche would act on a person’s cognitive ability, which
could appear as a within-person effect on fluid intelli-
gence. Within-family effects of interest would primarily
be those due to birth cohort differences between sib-
lings, or natural birth-order effects. Improvements in
neonatal nutrition (Lynn, 2009) is one example of a birth
cohort effect. Between-family effects are the ones that
vary between families, but not within families. Heterosis
(Mingroni, 2007) is an example of a between-family
hypothesis. Heterosis, or hybrid vigor, is the idea that as
human mating has expanded geographically, increases in
genetic variability have provided children with genetic
advantages, including in fluid intelligence (Mingroni,
2007; see Woodley (2011) for criticisms). An alternative
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MULTIVARIATE BEHAVIORAL RESEARCH 637

between-family hypothesis that might be considered is
that increases in maternal education allow for mothers to
provide a better cognitive environment for their children.

The developers of some of these hypotheses might
disagree with our classification, and it is worth noting
that hypotheses operating at lower levels can naturally
filter to higher levels. For example, if niche picking
occurs partly as a function of parental guidance in the
child’s niche picking, that effect would also show up as
a between-family process. Lower level hypotheses must
generally add a constraint to move up a level. Higher level
hypotheses cannot easily move down to operate at lower
levels. It would be logically difficult, for example, to imag-
ine genetic effects such as heterosis having systematic
within-family effects on a meaningful scale.

The data

The NLSYC (Bureau of Labor Statistics, 2012) provides
a nearly ideal data set to test the Flynn effect hypotheses
and apply DD. This data set comprises biennial observa-
tions of all biological children of the approximately 6500
women surveyed in the National Longitudinal Survey of
Youth-1979 (NLSY79; Bureau of Labor Statistics, 2012)
sample. There are a number of demographic, economic,
behavioral and cognitive measures collected in each
round of the NLSYC. The survey began in 1986 and
continues till the present. At the time of this analysis, data
were available through the 2012 survey year. In its initial
years, the NLSY79 (maternal) sample included an over-
sample of poor whites, minorities andmilitary personnel;
however, the military and poor white oversamples were
subsequently dropped due to funding constraints. The
overall data sets (including the oversample) were used
here. There have been approximately 11,500 children
born to the NLSY79 females, and who have taken part in
the NLSYC.

For the present analysis, only families with at least
two children born in different years are included, for two
reasons. The first is because of cluster mean centering
at the family level. If families with single children were
used, single children would be given scores of 0 on family
mean-centered time variables, roughly equivalent to
those of middle children in larger families (presuming
children are approximately evenly spaced). Given the
plausible existence of meaningful differences between
families with only one child and larger families, as well as
plausible differences between only children and middle
children, the decision was made to drop only children
and avoid conflating them with middle children and
likewise avoid conflating families with single children
and multiple children. The second reason families with

only children were omitted was to ensure variability
within all families to identify potential within-family
patterns. The resulting data set has 2881 families, with
7822 children, almost all of whom have been measured
multiple times across the longitudinal survey process, for
a total of 29,921 observations. There was a mean of 10.39
observations per family (SD = 3.83) and a mean of 3.83
observations per child (SD = 1.22).

Measures

The measure used in our analysis is the PIAT-Math
subscale (Dunn & Markwardt, 1970). This measure is
particularly well suited to studies of the Flynn effect
for two reasons. First, the Flynn effect has already been
observed in the PIAT-Math in NLSYC data through 2000
(Rodgers & Wänström, 2007; also see Ang, Rodgers, &
Wänström (2010) for the replication of these findings
in gender, race, and urbanicity subsamples). The second
is that the PIAT-Math was designed to test children’s
ability to apply math concepts in the real world (Dunn
& Markwardt, 1970), making it an excellent measure
of fluid, or problem solving, intelligence (Flynn, 2000).
PIAT-Math administrations occurred between the ages
of six and 14 in the NLSYC. The same 1968 version of the
PIAT-Math has been administered since the beginning
of the study in 1986. The PIAT-Math standardized scores
have a mean of 100 and a standard deviation of 15, and
the Flynn effect previously identified in the PIAT-Math
was approximately equal in a raw IQ scale to the Flynn
effect using other measures of IQ (Rodgers & Wänström,
2007). These standardized scores are used here to allow
for comparisons across ages.

A control variable for mother’s cognitive ability, the
mother’s Armed Forces Qualifying Test (AFQT), was
calculated from their Armed Services Vocational Apti-
tude Battery (Ree, Mathews, Mullins & Massey, 1982).
The AFQT is a test designed for adults, so rescaling due
to age was necessary for NLSY79 mothers, who ranged
in age from 15 to 23 when the AFQT was administered
in 1980. The score used here was a version created by
the NLS staff that adjusts for age differences among the
mothers taking the test. Note that it is plausible (even
likely) that there exists a Flynn effect in the mother’s
AFQT scores themselves. It should be noted however that
a Flynn effect in mother’s AFQT scores would likely bias
the Flynn effect in children downward because the AFQT
scores would have variance associated with time as well
as cognitive ability adjusting out some of the time effect
on children’s PIAT-Math scores.

Time, measured in years, is the variable of primary
concern in nearly all Flynn effect research. In this DD
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638 P. O’KEEFE AND J. L. RODGERS

analysis, time is the independent variable to be decom-
posed. In the context of a longitudinal family study, such
as the NLSYC, time can be partitioned into at least four
“natural” parts: age of the child at testing, the difference
between a given child’s birth year and the oldest child’s
birth year, mother’s age at first birth, and mother’s birth
year. These components correspond to within-person
(child’s age at testing), within-family (child birth year) and
between-family (mother’s age at first birth and mother’s
birth year) components. The between-family component
could be the year that the first child was born, summing
up the mother’s year of birth and the mother’s age at first
birth. However, there are two advantages of splitting this
variable. First, it presents a good demonstration of how
a variable may have more than two “natural” contextual
components at a given level. Second, mother’s age at first
birth has often been an effective between-family variable
in past demographic and behavior genetic studies (Neiss,
Rowe, & Rodgers, 2002; Rodgers et al., 2008), and has
often been more informative of family differences than
the year of the mother’s birth.

Within this example, there are four “natural” variables;
of those four, two need to be further mean-centered. Age
is mean-centered within person and within family, and
the differences in sibling birth years are centered within
family. The resultant cluster means are then reintroduced
to themodel. This decomposition into age, birth year, and
family components allows us to test multiple hypotheses
concerning the Flynn effect simultaneously. For example,
if the Flynn effect is due to ongoing changes in a person’s
overall environment (e.g., improvements to the family, to
educational settings, etc.) it should appear as a within-
person change, as a part of the individual age effect. If the
Flynn effect is due to changes between birth cohorts, it
should appear as the within-family effect associated with
the differences in birth years. If the Flynn effect is due
to between-family differences, it should appear in one
or more of the multiple between-family components for
time.

DD is necessary to adequately distinguish between the
different hypotheses tested here. For example, consider
that if simple cluster mean centering was used and a
within-family effect was found, this result would not
allow us to distinguish the between-effect cause by birth
cohort differences and age differences at thewithin-family
level. Furthermore, without cluster mean centering, it is
impossible to test that the effect for age or birth cohort
is consistent across levels. Furthermore, many (most)
of the natural/contextual variables provide substantive
interpretations. DD therefore supports distinguishing
between and properly testing the hypotheses.

The goal of the current DD analysis is not to test
specific Flynn effect hypotheses per se, but rather to

identify which slopes are statistically different from
zero, their magnitude and direction. Such an analysis
is pseudo-exploratory. The mathematical model to be
fit is clearly defined, as is the sample, and we expect
at least some of the slopes to be positive, because we
know that there is a Flynn effect within the NLSYC data
(see Rodgers & Wänström (2007)). Additionally, we
know that the Flynn effect has generally been observed
to be approximately three points per decade in a stan-
dard IQ metric (Pietschnig & Voracek, 2015), giving a
“ballpark” estimate of the expected effect sizes. (We note
that because our PIAT-Mathmeasure is a more pure form
of fluid intelligence than that contained in a standard IQ
metric, which combines fluid and crystallized compo-
nents, we might expect our effect sizes to be a bit larger
than .3 points per year.) However, we have no a priori
hypothesis about which slopes in particular will be statis-
tically significant and/or have meaningful effect sizes, as
contributions to the Flynn effect. We do have constraints
on which slopes must be significant for a particular time
component (e.g., age) to be considered as a candidate for
the Flynn effect. Results here should be explicitly tested
in other data sets, using DD as previously outlined. The
NLSY97 data set (an approximate 18-year replication of
the NLSY79) contains PIAT-Math scores, and is a data
source that could be used for such a replication.

Analysis

There are two analytic models used. The first is
a CMC model, and the second is a DD model.
The CMC model is presented for comparison pur-
poses; the primary analysis relies on the DD model. In
addition to the time component present in both models,
themother’s AFQT score, standardized by age, is included
as a control variable to account for maternal cognitive
ability in both models. The rationale for including mater-
nal IQ differences in themodel is that not quite all NLSYC
respondents have reached the age of 15, and so there are
selection effects due to the systematic differences between
children born to younger and older mothers. Including
maternal AFQT scores within the model adjusts for this
selection bias (see Rodgers & Wänström (2007) and Ang
et al. (2010) for further discussion and examples).We also
note, however, that maternal IQ is a between-family vari-
able that can function as more than just a simple control
variable. First, in addition to controlling for the selection
bias, maternal IQ may partially control for genetic sim-
ilarity between mothers and their children (see Rodgers,
Rowe, & May (1994), for a heritability analysis of the
NLSYC, including PIAT-Math, which shows moderate
levels of heritability in the NLSY cognitive ability mea-
sures). Second, maternal IQ is a between-family measure,
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MULTIVARIATE BEHAVIORAL RESEARCH 639

andmay also be a part of the explanatory process underly-
ing the Flynn effect. Thus, though we treat it primarily as
a variable controlling for the selection bias, we also keep
in mind that it can function as a substantively important
measure in defining the location of the Flynn effect aswell.

The true difference between the models is in the treat-
ment of the time variable. In the CMC model (Model
5; Table 7), there are three time components included
in the model. First,

...
yeari jk denotes the person mean

centered level-1 component (Model 5, Equation [1]). The
level-2 within-family component, denoted as yëar. jk, is
the family mean-centered person mean year. (Model 5,
Equation [2]). The level-3 between-family component
denotes the family mean year, year..k. In both the CMC
and the DDmodels, all random effects were included and
allowed to co-vary. In the DD model, the random effects’
model fit better, χ2

11 = 796.24, p< .001, so random effects
were retained in both models to facilitate comparisons.
Tables of the random effects are provided in the Results
section but they are not the primary focus of this analysis.
In the CMC model, the family mean-centered person
mean year was used to predict the person intercept, β0 jk
(Model 5, Equation [4]), and the family mean year of
testing andmother’s AFQT score were used to predict the
family intercept, θ00k (Model 5, Equation [5]). The model
with cluster mean centering, fixed and random effects,
and their covariances is presented in Table 7. Mathi jk is
the age-standardized PIAT-Math measure, and yeari jk is
the year in which a respondent took the PIAT-Math test.

The DD model (Table 8) is naturally more complex
than the CMC model and has seven time components
included in the model. Age, the measure of respon-
dents’ age at testing within the context of a given level,
is split into three components:

...

Agei jk, Ag̈e. jk, and Age..k
(Model 6, Equations [1] and [2]). As established pre-
viously, the level-1 components of a DD and CMC
model are identical, so

...

Agei jk = ...
yeari jk . The other two

components for age are the family mean-centered per-
son mean age and the family mean age, respectively.
The sibling birth year variable is split into two compo-
nents: ¨SiblingBirthYear jk and SiblingBirthYear.k (Model
6, Equation [3]). ¨SiblingBirthYear jk denotes the fam-
ily mean-centered component, and SiblingBirthYear.k
denotes the family mean. Because the two family mean-
centered person fixed components of age and sibling
birth year decomposed the family mean-centered person
mean year of test, SiblingB̈irthYear jk + Äge. jk = ÿear. jk.
The final two time components denote the mother’s
age at first birth, MotherAgeFirstBirthk, and mother’s
birth year, MotherBirthYeark. As with the level-2 com-
ponents, these two family level components combine
with the family mean age and the family mean sibling

birth year components such that MotherBirthYeark +
MotherAgeFirstBirthk + Sibling Birth Year.k + Age..k =
year..k .

From this example, it is clear how multiple valid con-
textual variables can be contained within a cluster mean
variable, or in other words, how a cluster mean can be
further decomposed within the DD approach. From this
understanding, the full model flows directly from the
CMC model. While year..k appears in the CMC model, it
is replaced by the four family-level components in the DD
model, each component having its own slope. A similar
substitution occurs for yëar. jk, although here the slopes
also have their own random component as well. The
level-1 components

...

Agei jk and yëȧri jk are identical and
interchangeable. The final DD model in mathematical
notation is presented in Model 6 (Table 8).

Results

Models were fit in Mplus using the MLR robust standard
errors. Both sets of results are presented to demonstrate
and compare the differences and similarities between the
CMCmodel and the DD model. The CMCmodel results
are presented first.

Themean PIAT-Math scorewas 100.42with a standard
deviation of 14.42 across 29,921 observations. The pro-
portion of variance at level 3, between families, was .36,
and between children, it was .24; all remaining variance
(.40) was within person at level 1. For the purpose of the
demonstrations in this paper, fixed and random slopes
provided approximately equivalent results; however, the
random slopes provided a statistically significantly better
fit.

CMC analysis
A summary of the fixed effects is presented in
Table 9; a summary of the random effects is presented
in Table 10. The CMC model had an AIC of 226,983.9
and a BIC of 227,108.5. At the between-family level, a
one-point increase in mother’s AFQT score contributed
approximately two-tenths of a point to the family mean
PIAT-Math score. The between-family component of time
had a slope similar in size to those previously found for
the Flynn effect with approximately one-third of a point
increase in the family mean PIAT-Math scores for each
additional year. The within-family slope for time was sta-
tistically significant, but one-third of that normally found
in the Flynn effect literature. The within-person time
component had a slope roughly half of what is expected
from previous Flynn effect research, slightly larger than
the within-family slope. Using pseudo-standardized coef-
ficients (Hoffman, 2014 p. 342) allows some comparison
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640 P. O’KEEFE AND J. L. RODGERS

Table . Cluster mean centered Flynn effect model.

Model 

eq: centering of level- variable, year yëȧri jk = yeari jk − yëar
. jk − year

..k
eq: centering of level- cluster mean variable, year yëar

. jk = year
. jk − year

..k
eq: Level  Mathi jk = β0 jk + β1 jk ∗ ...

yeari jk + ei jk
eq: Level- intercept β0 jk = θ00k + θ01k ∗ yëar

. jk + u0 jk
eq: Level- intercept θ00k = γ000 + γ001 ∗ year

..k + γ002 ∗ AFQTk + u00k
eq: Level- slope for family mean centered, child mean year θ01k = γ010 + u01k
eq: Level- slope for child mean centered year of testing β1 jk = θ10k + u1 jk
eq: Level- slope for child mean centered year of testing θ10k = γ100 + u10k
eq: Reduced form Mathi jk = γ000 + γ100 ∗ yëȧri jk + γ010 ∗ yëar

. jk + γ001 ∗ year
..k + γ002 ∗ AFQTk

+u10k ∗ yëȧri jk + u1 jk ∗ yëȧri jk + u01k ∗ yëar
. jk + u00k + u0 jk + ei jk

Level- residual distribution ei jk ∼ N(0, σ 2)

Leve- residual distribution U2 ∼ N
([

0
0

]
,

[
τ 2
00

τ10 τ 2
11

])

Level- residual distribution U3 ∼ N

⎛
⎝

⎡
⎣0
0
0

⎤
⎦ ,

⎡
⎣ τ 2

000
τ100 τ 2

110
τ200 τ210 τ 2

220

⎤
⎦

⎞
⎠

Table . Double decomposition Flynn effect model.

Model 

eq: centering of level- variable, age
...

Agei jk = Agei jk − Ag̈e
. jk − Age

..k
eq: centering of level- cluster mean variable, child mean age Ag̈e

. jk = Age
. jk − Age

..k
eq: centering of level- context variable, sibling birth year ¨SiblingBirthYear jk = SiblingBirthYear jk − SiblingBirthYear

.k

eq: Level  Mathi jk = β0 jk + β1 jk ∗
...

Agei jk + ei jk
eq: Level- intercept β0 jk = θ00k + θ01k ∗ ¨Age

. jk + θ02k ∗ ¨SiblingBirthYear jk + u0 jk
eq: Level- intercept θ00k = γ000 + γ001 ∗ Age

..k + γ002
∗ SiblingBirthYear

.k + γ003∗ MotherAgeFirstBirthk + γ004∗ MotherBirthYeark + γ005 ∗ AFQTk+ u00k
eq: Level- slope for child mean centered age β1 jk = θ10k + u1 jk
eq: Level- slope for child mean centered age θ10k = γ100 + u10k
eq: Level- slope for family mean centered child mean age θ01k = γ010 + u01k
eq: Level- slope for family mean centered sibling birth year θ02k = γ020 + u02k
eq: reduced form Mathi jk = γ000 + γ001 ∗ Age

..k + γ002

∗Sibling Birth Year
.k + γ003∗Mother Age First Birthk + γ004∗Mother Birth Yeark + γ005 ∗ AFQTk

+γ100 ∗
...

Agei jk + γ010 ∗ Ag̈e
. jk + γ020

∗ ¨SiblingBirth Year jk + u10k ∗
...

Agei jk
+u1 jk ∗

...

Agei jk + u01k ∗ Ag̈e
. jk + u02k

∗ ¨SiblingBirthYear jk + u00k + ei jk
Level- residual distribution ei jk ∼ N(0, σ 2)

Level- residual distribution U2 ∼ N
([

0
0

]
,

[
τ 2
00

τ10 τ 2
11

])

Level- residual distribution U3 ∼ N

⎛
⎜⎜⎝

⎡
⎢⎣
0
0
0
0

⎤
⎥⎦ ,

⎡
⎢⎢⎣

τ 2
000

τ100 τ 2
110

τ200 τ210 τ 2
220

τ300 τ310 τ320 τ 2
330

⎤
⎥⎥⎦

⎞
⎟⎟⎠

Table . Fixed effects from the cluster mean centered Flynn effect model.

Level Variable Slope Pseudo-standardized slope Standard error Slope/S.E. p Value,  tailed

Within-person Year . . . . <.
Within-family Year . . . . <.
Between-family Year . . . . <.

AFQT . . . . <.
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MULTIVARIATE BEHAVIORAL RESEARCH 641

Table . Random effects from the cluster mean centered Flynn
effect model.

Level- variances and correlations

Intercept Slope for level- time component

.∗∗∗

.∗∗∗ .∗∗∗
Level- variances and correlations

Intercept Slope for level- time
component

Slope for level- time
component

.∗∗∗
.∗∗ .∗∗∗
. . .∗∗∗

∗∗∗p� ..
∗∗p� ..

between the effects. The between-family effect is nearly
six times the size of the other two time effects.

Substantively, the CMC model suggests that future
research on the causal process of the Flynn effectmight be
best focused on the family level. However, a case could be
made for bothwithin-family andwithin-person processes
because both these slopes were statistically significant as
well. However, the lower level slopes were much smaller
in effect size magnitude than the traditional magnitude
of the Flynn effect, and their pseudo-standardized effects
were substantially smaller than the between-family effect.
The DD model that we will present next will better assist
us in pinpointing the location of the Flynn effect in the
data.

DD analysis
A summary of the fixed effects is presented in Table 11;
a summary of the random effects is presented in
Table 12. The DD model had an AIC of 226,879.6,
and a BIC of 227,070.6, both lower than the CMCmodel.
Of particular note, at the between-family level, the
mother’s AFQT had a nearly identical effect size as in the
previous model. Mother’s age at first birth was associated
with a nearly half-point increase in the family average
PIAT-Math score for every additional year in which the
mother waited to have her first child. This effect was,
by far, the largest effect found in both the CMC and the
DD analyses presented, and more than double of the raw
slope of any other effect in the DD analysis. However,
although the slopes for the time effects can be compared
in the sense that they all measure what would happen for
a one-year increase in a given time-related variable, the
slopes are not comparable from a statistical standpoint
because the scale of the variables is different (i.e., the vari-
ance of the variables is different, and the variance of the
outcome is different across levels). Converting slopes into
pseudo-standardized slopes (Hoffman, 2014 p. 342), the
effect of mother’s age at first birth was eight times as large

as the next largest time-related effect. Taken as a whole,
this result strongly suggests that mother’s age at first birth
is the most important time-related effect included in this
model.

The sibling birth year variable was broken into two
components. The first varied between families and
denotes the mean number of years children in a given
family were born after the oldest child in that same family
weighted by the number of observations for each child.
Results suggested that families who were (on average)
born later did not differ from families born earlier. The
second component of this variable was within families
andwas a given child’s deviation from their family’smean.
This component was associated with an approximately .1
point increase on the average PIAT-Math score for each
additional year.

The last “natural” variable included was the age of
the child at testing, which was split into within-person,
within-family, and between-family components. The
between-family component was the average age at which
children took the test in a given family, weighted by the
number of observations for each child. This slope was
not statistically significant, suggesting no meaningful
differences between families whose children were older
on average compared to families whose children were
younger on average. The next component was within
families, and was the deviation of the child’s mean age
from their family’s mean age. This fixed component of
this slope was just significant using a one-tailed test. This
result suggests that children with an average age one year
greater than their siblings would have a roughly .2 point
advantage over their siblings on the PIAT-Math score.
The last component denoted the deviations of a child’s
age at a given observation from their mean age across
tests. As in the CMCmodel, this slope was approximately
half of the magnitude expected for the Flynn effect.

Overall, the DD model allows us to conclude that not
only the Flynn effect is largely a family-level process,
but it also appears to be closely related specifically to
mother’s age at first birth. This is a stronger and more
precise claim than we were able to make with the CMC
model. It is difficult to argue, from the results of the DD
model, that the Flynn effect is related to an aging process;
older families were not statistically significantly different
from younger families, and older children were only
marginally so. Likewise, it is difficult to argue for a birth
cohort process because families that were born later were
not significantly different from families born earlier.

Discussion

We have presented an alternative method for cluster
mean centering variables in multilevel analyses. This
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642 P. O’KEEFE AND J. L. RODGERS

Table . Fixed effects from the doubly decomposed Flynn effect model.

Level Variable Slope Pseudo-standardized slope Standard error Slope/S.E. p Value,  tailed

Within-person Age . . . . <.
Within-family Age . . . . .

Sibling birth year . . . . <.
Between-family Age . . . . .

Sibling birth year . . . . .
Mother’s age at first birth . . . . <.
Mother’s birth year − . − . . − . .
Mother’s AFQT . . . . <.

method results in variables that can be linearly com-
bined to give CMC variables, resulting in potentially
more explanatory and more interpretable models. The
DD model retains many of the benefits of cluster mean
centering, particularly the orthogonality of higher and
lower level variables (Raudenbush, 1989), but allows
for the consideration of contextual variables beyond the
cluster mean such as those suggested by previous authors
(Plewis, 1989). We demonstrated the potential effects of
failure to use the DD model in a brief simulation study.
We then used this method to analyze the Flynn effect in
an attempt to winnow the field of plausible explanatory
hypotheses.

The simulation study was presented as a proof-in-
principle. Future analysis should look at the effects of
different magnitudes and directions of the relationships
between variables at the second level of analysis. Further-
more, research should also examine the effects on power
and the type-one error rate. Finally, because a single
variable is being split into three components, it will be
important to examine the effects of multiplicity. Given
the results of the present study, particular care should be
taken when researchers do not use the DD model and
include the natural context variables we have discussed
alongside cluster means.

Table . Random effects from the doubly decomposed Flynn
effect model.

Level- variances and correlations

Intercept Slope for level- age effect

.∗∗∗
.∗∗∗ .∗∗∗

Level- variances and correlations

Intercept Slope for level-
age effect

Slope for level-
age effect

Slope for level-
birth year effect

.∗∗∗
.∗∗ .∗∗∗
. .∗∗∗ .∗∗
.∗ . − . .∗∗∗

∗∗∗p� ..
∗∗p� ..
∗p< ..

When analyzing the Flynn effect, the first model fit
was a standard CMC model. This model was of lim-
ited use in the present study. The hypotheses regarding
the Flynn effect tend to work either across everyone
every year, across birth cohorts, or between families. A
between-family variable is present in this analysis but it is
a mixture of between-family components of birth cohort
and age as well as the mother’s birth year and age at
first birth. Birth cohort effects are not explicitly modeled
and age effects are mixed at higher levels with other
between-person and between-family effects. However,
we know that at level 1, the person mean-centered year is
identical in value to the person mean-centered age, and
thus that variable is present in both models. Overall, the
highest slope, at .33, was for the between-family effect
and is in line with the general magnitude of the effect size
associated with the Flynn effect. The other two slopes are
weaker, but also in the expected direction. This model is
of limited utility in narrowing the potential causes of the
Flynn effect because many different hypotheses are con-
sistent with the patterns of results (although CMC results
would appear to tilt in the direction of a between-family
explanation).

Utilizing DD avoids some of the pitfalls of the CMC
model, and allows us to interpret the results more pre-
cisely. The results do not support an effect for themother’s
year of birth, but do support an effect for mother’s age
at first birth (the strongest effect size that emerged from
this analysis). Based on the other results, this leads us to
conclude that the location of the Flynn effect is primarily
in the between-family part of the NLSYC data. We want
to be cautious in our interpretation, however. Although
the results support that the Flynn effect is primarily a
between-family effect and that the mother’s age at first
birth is closely related to the Flynn effect, we cannot
simply state that the mother’s age at first birth is the
causal explanation of the Flynn effect. Rather, we believe
it to be related to the true causes of the Flynn effect, but
any explanation of the effect is likely related to a number
of disparate factors.

The effect of birth year was significant within fami-
lies but not between families. Such a result is not fully
consistent with an overall birth cohort effect, however.
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The lack of a family level effect indicates that families
whose birth years were later on average did not have
higher PIAT-Math scores. An explanation for the small
within-family effect is not immediately apparent. The
present birth cohort effect findings are also inconsis-
tent with much of the research on birth-order effects
(Zajonc & Sulloway, 2007), although previous research
has suggested that the birth-order effect may be spurious
(Wichman, Rodgers, & MacCallum, 2006, 2007), or a
byproduct of the Flynn effect (Rodgers, 2014); however,
the literature related to birth-order effects has a long his-
tory, and the treatment is beyond the scope of the present
study.

The effect for age was significant within person,
marginally significant within families, and not significant
between families. This final result is inconsistent with a
Flynn effect due to age, ormore precisely due to a constant
effect on all individuals, for reasons similar to that for the
birth cohort effect. As with the birth cohort effect, the lack
of a statistically significant effect at the family level is diffi-
cult to interpret. If there was truly an effect on individuals
across time (the age effect), families that were on average
older ought to have higher means than families who
are younger, all else equal. Similarly to the birth cohort
effect, the age effect, where significant, was substantially
smaller than the overall Flynn effect, or the maternal age
at first birth effect. Unlike the within-family birth cohort
effect, an explanation of the age effect within person is
readily available. A longitudinal study such as the NLSYC
provides repeated measures of the same individual, and
it is likely that a small but significant practice effect may
be occurring because of repeated administration of the
PIAT-Math score. In summary, the most strongly sup-
ported class of hypotheses to explain the Flynn effect was
the between-family class, in particular those related to
maternal IQ and maternal age at first birth variables.

The purpose of presenting this example was to high-
light the utility of DD, and the results fully justify it.
Based on these results, it would appear that the Flynn
effect emerges primarily from between-family processes,
and furthermore, given the effect of mother’s age at
first birth and IQ, factors specific to parents are likely
causal candidates. This result would suggest a rather
substantial re-orientation in thinking about the Flynn
effect, because most previous work has focused on the
child and the individual, including recent calls to focus
on within-family explanations (Mingroni, 2014; Sundet,
2014); these results suggest that a re-focus on the role
of the mother/parents, and how they impact intellectual
development within the family, would be appropriate.

The Flynn effect analysis, as an illustration of the DD
model, is meant to demonstrate the utility of DD, as
an expansion of cluster mean centering, in a setting in
which there are many potential sources of interesting

variance. In the CMCmodel, there are natural contextual
variables of clear substantive importance (e.g., mother’s
age at first birth) that are masked when using cluster
mean centering. Using DD allows for a more nuanced
examination of potential effects. In the CMCmodel, there
were significant effects at all levels, but it was impossible
to determine how the results matched different sources
of explanation, in relation to past theory. To its credit, the
CMC did show that lower level effects were substantially
smaller than both the level-3 effect and the Flynn effect
generally (Pietschnig & Voracek, 2015). Conversely, in a
model based on uncentered “natural” variables, it would
be impossible to know if the results were due to consistent
effects across levels, or alternatively if effects that should
be present were lacking as indicated in the final results.
The DDmodel overcomes both shortcomings. In the DD
model, it was apparent that the results at level 3 were not
due to the effect of lower level variable clustermeans. This
lack of effect for cluster means ruled out the lower level
variables because their effects were not consistent across
levels. This is a question that could only be adequately
answered using an approach like the DD model.

Beyond its application to the Flynn effect presented
here, DD is more generally meant to allow researchers
the flexibility to examine the effects of cluster contexts at
a level of detail not provided by cluster means. The exam-
ple applications provided, such as baseline effects, cluster
modes, and the Flynn effect analysis are examples that the
authors were readily able to develop. Presumably, other
researchers will identify additional useful applications, as
they identify natural contextual variables relevant to their
own research.

There are of course limitations to this method. For
example, Plewis (1989) suggested the cluster standard
deviation as one possible context variable; this context
variable may be important in some applications, but it is
difficult to see how it would be implemented via DD. The
resulting variables would be the standard deviation of a
cluster, the mean deviation of scores from the standard
deviation of that cluster, and deviations within cluster
from the cluster mean. Although those variables might
be mathematically sound, it is difficult to grasp the sub-
stantive meaning of the mean difference of a cluster from
that cluster’s standard deviation. In summary, although
many contextual variables that were not accommodated
by CMCmodels are accommodated by DDmodels, some
contexts are beyond the application of DD models. Two
other limitations should be considered by researchers.
First, there is a tradeoff in model parsimony; if a sim-
pler model serves the research purpose, it should be
used. However, as with any model, differing models
should be compared to evaluate meaningful statistical
differences. The second issue is that the within-level
effects may be correlated. This, however, is a concern
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644 P. O’KEEFE AND J. L. RODGERS

for any two variables included in any model at the same
level.

Future research regarding the centering method
should examine its effects on random components of
multilevel models in comparison to more typical cluster
mean centering. The effects of DD on power and type I
error should also be examined. Future research regarding
the Flynn effect should apply this decomposition to other
Flynn effect data sets to evaluate whether the between-
family results found in the NLSYC are consistent across
samples. Our research is not the first to use family data
to study the Flynn effect and especially the large samples
of Norwegian conscript data (Sundet, 2014) may be
well adapted to the present method. It is hoped that DD
will prove similarly useful in other multilevel modeling
applications.
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Appendix A

Further examining the correlation between the level two
variables, it can be shown that because we mean centered
the level-1 variable after removing the level-2 variable,
there can be no systematic covariation between the level
1 and either of the resultant level-2 variables. Prior to
cluster mean centering, there is a covariation between x̃i j
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and z j, and this covariance is given as follows:

cov(x̃i j, z j )

=
∑ (x̃i j − e(x̃i j))(z j − e(z j))

n

=
∑ (x̆. j + ẍi j − e(x̆. j + ẍi j ))(z j − e(z j))

n

=
∑ (x̆. j + ẍi j − e(x̆. j) − e(ẍi j))(z j − e(z j))

n

=
∑ (x̆. j + ẍi j − e(x̆. j) − 0)(z j − e(z j))

n

=
∑ x̆. jz j + ẍi jz j − e(x̆. j)z j − x̆. je(z j) − ẍi je(z j) + e(x̆. j)e(z j)

n

=
∑ x̆. jz j + 0 − e(x̆. j)z j − x̆. je(z j) − 0 + e(x̆. j)e(z j)

n

=
∑ x̆. jz j − e(x̆. j)z j − x̆. je(z j) + e(x̆. j)e(z j)

n

If we calculate cov
(
x̆. j, z j

)
, we

see that it is
∑ (x̆. j−e(x̆. j))(z j−e(z j))

n =∑ x̆. jz j−e(x̆. j)z j−x̆. je(z j)−e(x. j)e(z j)
n which is precisely

equal to cov(x̃i j, z j) calculated previously. The entire
covariance between the level-1 variable x̃i j and the
level-2 variable z j is included in x̆. j. However, although
cov

(
x̆. j, z j

) = cov
(
x̃i j, z j

)
, the respective correlations

are not equal because the standard deviations of x̃i j and
x̆. j are not equal. This correlation is of some concern. If it
is equal to 1, the two variables cannot be included in the
model simultaneously; however, this will only occur if
x̆. j = c ∗ z j, where c is some constant. In such a scenario,

this implies that the original variable x1 j comprised solely
ẍi j + (1 + c) ∗ z j. In our example of using patient base-
line scores, this would imply that every patient’s mean
deviation from their baseline was some multiple of their
baseline, and that this multiple was exactly the same for
every patient in the study. It is unlikely that such an event
would occur in practice.

If a researcher is concerned about excessive collinear-
ity, it is possible to impose cov

(
x̆. j, z j

) = 0 by residualiz-
ing x̆. j on z j andmultiplying z j by the resulting regression
coefficient β + 1. Although this might be a technically
correct way to manage the collinearity, because x̆. j and
z j form a linear combination equal to x̄. j, if x̆. j and z j are
problematically collinear, simply replacing the two vari-
ables with x̄. j is likely a better course of action. In the case
of high collinearity, the high positive correlation implies
that x̆. j and z j are equivalent variables and because x̄. j
is a linear combination of two equivalent measures, it
would be a legitimate substitute. Furthermore, using
this regression method instead of the simple subtraction
method may reduce the interpretability of the variables,
defeating the purpose of double decomposition. How-
ever, if a researcher desires to use double decomposition,
and also wants to remove all correlations between x̆. j
and z j, this regression method is a means of achieving
that goal. If the assumptions of regression have been
met, x̆. j and z j will not be correlated as x̆. j is a residual
variable.

Appendix B

library(MASS)
library(nlme)
set.seed(420)

##Strong correlations, negative for group mean##
i<-1
Whole_Tvalues<-c()
CMC_Tvalues<-c()
DD_Tvalues<-c()
CMC_Context_Tvalues<-c()

Whole_pvalues<-c()
CMC_pvalues<-c()
DD_pvalues<-c()
CMC_Context_pvalues<-c()

Whole_Coeff<-c()
CMC_Coeff<-c()
DD_Coeff<-c()
CMC_Context_Coeff<-c()
while(i<5001){
Datums<-c()
Group<-rep((1:100),each = 30)
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ID<-c(1:3000)
Remainder<-rnorm(3000, sd = 1)
X<-as.data.frame(mvrnorm(100,c(0,0,0),matrix(c(1,-.5,.5,-.5,1,-.5,.5,-.5,1),3)))
names(X)<-c(“Outcome”,“Group_mean”,“Context”)
Outcome<-rep(X$Outcome,each = 30)
GMR<-rep(X$Group_mean, each = 30)
Context<-rep(X$Context, each = 30)
Datums<-as.data.frame(cbind(Group, ID, Remainder, Outcome, GMR, Context))
Datums<-Group_function(Datums, “Remainder”,levels = “Group”, center = T, append = T)
Datums$Original_Var<-Datums$Remainder+Datums$GMR+Datums$Context
Datums$Original_cluster_mean<-Datums$GMR+Datums$Context
Datums$Outcome_lower<-Datums$Remainder∗.5+rnorm(3000,sd = sqrt(.75))
Datums$Outcome<-Datums$Outcome+Datums$Outcome_lower

Fit_whole<-lme(Outcome∼Original_Var, data = Datums, random = ∼1|Group)
Fit_CMC<-lme(Outcome∼Remainder+Original_cluster_mean, data = Datums, random = ∼1|Group)
Fit_DD<-lme(Outcome∼Remainder+GMR+Context, data = Datums, random = ∼1|Group)
Fit_CMC_Context<-lme(Outcome∼Remainder+Original_cluster_mean+Context, data = Datums, random =

∼1|Group)

Whole_Tvalues<-rbind(Whole_Tvalues,summary(Fit_whole)$tTable[,“t-value”])
CMC_Tvalues<-rbind(CMC_Tvalues,summary(Fit_CMC)$tTable[,“t-value”])
DD_Tvalues<-rbind(DD_Tvalues,summary(Fit_DD)$tTable[,“t-value”])
CMC_Context_Tvalues<-rbind(CMC_Context_Tvalues,summary(Fit_CMC_Context)$tTable[,“t-value”])

Whole_pvalues<-rbind(Whole_pvalues,summary(Fit_whole)$tTable[,“p-value”])
CMC_pvalues<-rbind(CMC_pvalues,summary(Fit_CMC)$tTable[,“p-value”])
DD_pvalues<-rbind(DD_pvalues,summary(Fit_DD)$tTable[,“p-value”])
CMC_Context_pvalues<-rbind(CMC_Context_pvalues,summary(Fit_CMC_Context)$tTable[,“p-value”])

Whole_Coeff<-rbind(Whole_Coeff,summary(Fit_whole)$tTable[,“Value”])
CMC_Coeff<-rbind(CMC_Coeff,summary(Fit_CMC)$tTable[,“Value”])
DD_Coeff<-rbind(DD_Coeff,summary(Fit_DD)$tTable[,“Value”])
CMC_Context_Coeff<-rbind(CMC_Context_Coeff,summary(Fit_CMC_Context)$tTable[,“Value”])
i<-i+1
if(i%%50 = = 0){

timestamp()
print(i)

}
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