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A B S T R A C T

Cognitive Ability Differentiation (CAD) theory proposes greater differentiation of narrow cognitive abilities

occurs at a high level of g, the general factor of ability. CAD also proposes that g is a stronger determinant of

cognitive performance in low-g versus high-g individuals, but that narrow cognitive abilities are stronger de-

terminants of performance in high- versus low-g individuals. We assessed whether CAD occurs in Medical College

Admission Test (MCAT) scores using data from over 4800 medical school applicants. In support of CAD, our

results provided consistent evidence that the MCAT's measures of narrow cognitive abilities were more differ-

entiated in high- versus low-g individuals. Also consistent with CAD, g was a stronger predictor of a cognitive

performance criterion, GPA, in low- versus high-g individuals. Contrary to CAD, however, the MCAT's measures

of narrow abilities were not stronger predictors of GPA in high- versus low-g individuals. Implications of these

results for future CAD research and for medical schools' use of the MCAT are discussed.

Spearman (1927) observed that correlations between tests of dif-

ferent cognitive abilities tended to be weaker in individuals with higher

intelligence. A theory of cognitive ability differentiation (CAD) has

been developed from this premise (Jensen, 2003). Many investigations

into CAD have been conducted, but have resulted in mixed findings.

The two main tenets of CAD are 1) greater differentiation among

narrow cognitive abilities at a high versus low level of g (Abad, Colom,

Juan-Espinosa, & García, 2003), and 2) stronger predictiveness of

cognitive performance by g in low- versus high-g individuals, but

stronger predictiveness of cognitive performance by narrow cognitive

abilities in high- versus low-g individuals (Murray, Dixon, & Johnson,

2013). In a unique addition to previous investigations, we assessed

whether CAD occurs in applicants' scores on the Medical College Ad-

mission Test (MCAT).

Tenet 1 of CAD suggests differences in g-factor loadings and residual

variances with regards to the narrow cognitive abilities, and overall g-

factor variances across high- and low-g groups. Loadings of narrow

cognitive abilities on g (λs in Fig. 1) should be lower in a group of

applicants with high versus low g. This signifies that at higher g, g

contributes less to narrow cognitive abilities, and that relations be-

tween narrow abilities are weaker at higher levels of g (Jensen, 2003).

Correspondingly, CAD proposes that the variance in narrow abilities

that is not explained by g (residual variance) will be greater in the high-

versus low-g group as the narrow abilities become more varied in in-

dividuals with greater g. Additionally, given that less variability is

associated with narrow cognitive abilities at low g, the variance asso-

ciated with the g-factor should be greater in these individuals. Further, g

should explain less variance in MCAT scores in high-g individuals.

Tenet 2 suggests that the relation between g and cognitive perfor-

mance criteria will be stronger in the low- versus high-g group.

Conversely, Tenet 2 also suggests that the relations between narrow

abilities and cognitive performance criteria will be stronger in the high-

versus low-g group. To assess Tenet 2, we assessed differences across

low- and high-g groups in the relations of g, and the narrow abilities

assessed by the MCAT, with medical school applicants' grade point

average (GPA).

In the next section, we review a number of studies that have ex-

amined CAD. Almost all previous studies have been conducted in low-

stakes testing situations, but it is well-known that high-stakes testing

situations, such as our MCAT testing scenario, can substantially change

fundamental structural and validational aspects of test scores

(McLarnon, Goffin, Schneider, & Johnston, 2016). Also, interestingly,

few studies have examined Tenet 2.

1. Research supporting cognitive ability differentiation

The following research findings stem from both individual- and

group-level studies, suggesting that CAD may be observed at multiple

levels. As examples of individual-level findings, Detterman and Daniel

(1989) compared the correlations between narrow cognitive ability
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measures across low- and high-g students, and found that in the low-g

group, correlations were approximately 0.50, whereas in the high-g

group, correlations were about 0.30 (see also Legree, Pifer, & Grafton,

1996). Using principal component analysis, Deary et al. (1996) found

that g explained substantially more variance in narrow abilities at low g.

These findings demonstrate consistency across different samples and

cognitive measures. In terms of the group-level findings, Coyle and

Rindermann (2013) found that low-g nations had substantially lower g-

factor loadings for narrow abilities compared to high-g nations. Simi-

larly, Nyborg and Jensen (2000) observed that differentiation was in-

dependent from test bias across low- and high-g Caucasian and African-

American test-takers.

Additionally, studies using unique individual-level samples have

also provided evidence for CAD. For example, Blanch, García, Llaveria,

and Aluja (2017) found unequal g-factor loadings and residual var-

iances across amateur and expert chess players, thereby supporting the

presence of differentiation.

2. Research failing to support cognitive ability differentiation

Potentially due to a series of limitations highlighted in this section,

other studies have failed to support CAD. Fogarty and Stankov (1995)

suggested that supportive findings were associated with high-g in-

dividuals finding the tasks associated with ability measures too easy,

reducing correlations between narrow abilities. Hartmann and Reuter

(2006) critiqued the practice of dichotomizing g because it can result in

arbitrary separations and loss of power. However, McLarnon and

Carswell (2013) suggested that a discrete-group approach might be one

of the few viable options to study CAD. In particular, using an extreme-

group approach where the top- and bottom-thirds are separated into

discrete groups can help address the issue of arbitrary divides between

individuals in adjacent groups (Kline, 2005). Results of Saklofske, Yang,

Zhu, and Austin (2008) did not support CAD, however, their study only

compared adjacent ability groups, potentially leading to an arbitrary

distinction between high and low-g individuals. Further, with suffi-

ciently large samples the reduction in power associated with extreme

groups may be minimized. Notably, small sample size may have im-

pacted Fogarty and Stankov's (1995) suggestion of ceiling effects, given

that their high- and low-g groups consisted of n < 30. Furthermore,

the MCAT would likely be seen as difficult for test-takers of all ability

levels. Thus, to help address limitations of previous CAD research, we

used an extreme-group approach in which the size of each group was

substantial, and the test was sufficiently difficult.

In light of concerns over dichotomizing g, other studies have at-

tempted to leverage new data analysis techniques to investigate CAD.

Murray et al. (2013) used moderated factor analysis to explore whether

the level of the latent factor moderates factor loadings. Although

Murray et al.'s findings did not support CAD, further exploration in

unique testing situations may be necessary. Furthermore, a potential

limitation of moderated factor models is that it is not currently possible

to estimate variability of residual variances (see Bauer, 2016). Thus, in

the current study we use an extreme group approach to provide a

thorough assessment of CAD's tenets. In Online Supplemental Material

we describe the results of the moderated factor model, which demon-

strate consistency with the results presented below.

Reynolds, Keith, and Beretvas (2010) examined differentiation by

applying factor mixture analysis (FMA). FMA is a type of mixture

model, which refers to the concept that data may represent a ‘mix’ of

parameters (e.g., means, factor loadings). Reynolds et al.'s results par-

tially supported Tenet 1, in that g-variance was lower at high-g. How-

ever, their study did not investigate whether relations between narrow

abilities were weaker at high- versus low-g. This may be inherent with

FMA, as typical applications constrain factor loadings to equality across

latent classes (McLarnon, Carswell, & Schneider, 2015). Although it

may be possible to specify a FMA with unequal factor loadings across

classes, such a model may often be empirically under-identified, likely

requiring extremely large sample sizes. Thus, FMA may not be an ideal

statistical method for differentiation investigations.

3. Current study

Using multi-group confirmatory factor analysis (CFA) we in-

vestigated CAD. This approach presents a straightforward methodology

that leverages measurement invariance analyses to sequentially test the

equivalence of parameters associated with CAD (Carlstedt, 2001; Marsh

et al., 2010; McLarnon & Carswell, 2013). This study makes four con-

tributions. First, we contribute a unique examination of CAD. Specifi-

cally, we included the data of every candidate who completed the

MCAT when applying to medical school programs in a large province in

Canada during the years of 2004, 2006, 2007, and 2008. This provided

a total sample size exceeding 7000, from which we derived a low-g

(bottom third) and a high-g (top third) group.

Second, we followed Marsh et al.'s (2010) recommendations (see

Analytical procedure) for examining measurement invariance across

groups. This facilitated a straightforward examination of the equality of

factor loadings, residual variances, and factor variances across the g-

groups to assess Tenet 1.

Third, we provide an investigation of differentiation using high-

stakes testing data. High-stakes situations are ones in which a test is

completed for the purpose of obtaining a highly-desired outcome (i.e.,

gaining admittance to medical school). Few, if any, previous in-

vestigations have examined whether CAD may occur in situations in-

volving high-stakes testing.

Fourth, to assess Tenet 2, we examined relations of the MCAT's g-

factor and narrow abilities scales with medical school applicants' GPA.

As GPA is also one of the focal indicators of success in universities it

serves as a suitable cognitive performance criterion in the assessment of

predictive hypotheses1 (McLarnon et al., 2017).

In sum, we investigated two general hypotheses:

Hypothesis 1. Tests of equivalence of factor loadings, residual

variances, and factor variances across low- and high-g groups of

medical school applicants will reveal a lack of invariance, thereby

supporting Tenet 1.

Fig. 1. Conceptual g-factor model defined by subtests of Medical College Admissions Test

(MCAT). VR = verbal reasoning, BS = biological science, PS = physical science,

WRIT = writing. Parameters that were tested for invariance across low- and high-g

groups are given by k subscripts.

1We use the terms predictor and predictiveness for descriptive purposes, and do not

imply causality.

M.J.W. McLarnon et al. Personality and Individual Differences 123 (2018) 50–55

51



Hypothesis 2a. The g-factor will demonstrate stronger predictiveness

of cognitive performance (GPA) in the low- versus the high-g group.

Hypothesis 2b. The MCAT's narrow abilities will demonstrate stronger

predictiveness of cognitive performance (GPA) in the high- versus the

low-g group.

4. Method

4.1. Participants

Participants were all 7498 applicants to all of the medical schools in

one large Canadian province during the years of 2004 and 2006–2008.

Demographics were not available for all participants, but in a sub-

sample (n = 330) used in McLarnon et al. (2017), 59.1% were female,

and were on average 25.00 years old (SD = 2.05). It is likely that the

demographics of that subsample are representative of the larger sample.

Low-g (n = 2421) and high-g (n= 2425) groups were based on the

lower and upper tertiles defined by the overall MCAT score. The middle

third was omitted from further analysis as the use of the extreme-group

approach was deemed the most appropriate option for this study.

4.2. Measures

The MCAT (AAMC, 1991) consists of four subtests: verbal reasoning,

physical sciences, biological sciences, and writing. The MCAT's validity

has been established in a wide-range of previous research (Julian, 2005;

McGaghie, 2002).

As is typical, the average GPA of the applicants' best two years of

undergraduate study served as a measure of GPA (McGaghie, 2002),

and was used as the cognitive performance criterion in this study.

4.3. Analytical procedure

Our focal model was a first-order CFA, with a single latent variable

representing the g-factor (Fig. 1). All four of the MCAT subtests were

treated as indicators of the latent g-factor. We followed Marsh et al.'s

(2010) invariance testing procedure, which required that we test and

compare the fit of models that varied in their invariance assumptions.

In Model 1, configural invariance was specified in order to assess

whether the same factor model, with no equality constraints on factor

loadings, residual variances, or factor variances, was supported across

groups.

Model 2 specified metric invariance by assessing whether respective

MCAT abilities have equal factor loadings across groups. Model 3 added

equality constraints on respective residual variances. Model 4 was

tested by placing an equality constraint on the variance of the latent

factor across groups, over and above metric invariance, without re-

sidual variance constraints. Model 5 specified a complete invariance

model: corresponding factor loadings, residual variances, and g-factor

variance were constrained to equality across groups. We also assessed

residual variance equality (Model 3b) and factor variance equality

(Model 4b) without the metric invariance constraints to investigate

whether those constraints were individually equivalent across g-groups

(Marsh et al., 2010). We did not consider tests of intercept equality

because unequal intercepts were confounded with the g-based groups.

Fit was assessed using: comparative fit index (CFI) values of> 0.90

and> 0.95, and root mean square error of approximation (RMSEA)

values of< 0.08 and< 0.05, to indicate adequate and good fit re-

spectively (Goffin, 2007; Hu & Bentler, 1999). Overall model fit esti-

mates were supplemented with maximal reliability (H) to provide an

indication of measurement quality (McNeish, An, & Hancock, in press).

Invariance is supported by ΔCFI ≤0.010 and/or ΔRMSEA ≤0.015

versus a preceding model (Sass, 2011). The equality of the predictive-

ness of GPA across groups, Wald χ2 tests from Mplus 7.4′s (Muthén &

Muthén, 2012) MODEL TEST procedure were examined. Mplus' robust

maximum likelihood estimator was used.

5. Results

Online Supplemental Material contains descriptives and correlations

for the full sample and each g-group. Preliminary analyses using the full

sample suggested adequate measurement quality of the MCAT factor by

its four narrow ability measures, H = 0.83, p < 0.01 (McNeish et al.,

in press).

5.1. Tenet 1: assessing measurement invariance

Table 1 presents model fit indices for the invariance analyses. Model

1, configural invariance, demonstrated adequate fit (CFI = 0.95,

RMSEA = 0.07). Table 2 provides standardized estimates from the

configural model for high- and low-g groups. Adding metric invariance

constraints, the fit of Model 2 was substantially worse according to

ΔCFI (Table 1). Failing metric invariance suggested that relations be-

tween narrow abilities and the g-factor were discrepant across groups.

Factor loadings for verbal reasoning, biological science, and physical

science were significantly stronger in the low- versus high-g group.

However, contrary to expectations, the narrow ability of writing had a

significantly stronger loading in the high- versus low-g group. None-

theless, metric invariance was not supported because of stronger

Table 1

Measurement invariance analyses.

Model χ2 χ2c χ2 df CFI RMSEA (90% CI) Model comparison Δχ2 Δχ2 df ΔCFI ΔRMSEA

1 57.35⁎ 0.88 4 0.954 0.074 (0.058–0.092) – – – – –

2 93.33⁎ 1.04 7 0.926 0.071 (0.059–0.085) 2 vs. 1 37.18⁎ 3 −0.028 −0.003

3 498.75⁎ 0.96 11 0.583 0.135 (0.125–0.146) 3 vs. 2 467.89⁎ 4 −0.343 0.064

3 vs. 1 426.30⁎ 7 −0.371 0.061

3b 499.13⁎ 0.88 8 0.580 0.159 (0.147–0.171) 3b vs. 1 442.71⁎ 4 −0.374 0.085

4 176.58⁎ 1.06 8 0.856 0.093 (0.082–0.105) 4 vs. 2 77.58⁎ 1 −0.070 0.022

4 vs. 1 110.48⁎ 4 −0.098 0.019

4b 72.76⁎ 0.92 5 0.942 0.075 (0.060–0.090) 4b vs. 1 15.26⁎ 1 −0.012 0.001

5 605.74⁎ 1.00 12 0.492 0.143 (0.133–0.153) 5 vs. 4 471.13⁎ 4 −0.364 0.050

5 vs. 3 87.82⁎ 1 −0.091 0.008

5 vs. 2 539.93⁎ 5 −0.434 0.072

5 vs. 1 524.08⁎ 8 −0.462 0.069

Note. nlow = 2421 nhigh = 2425. χ2c = χ2 scaling correction; df= degrees of freedom; #fp = number of parameters estimated; CFI = comparative fit index; RMSEA = root mean square

error of approximation; Δχ2 = scaled χ2 difference statistic; ΔCFI = change in CFI estimate from less restricted to more restricted models; ΔRMSEA = change in RMSEA estimate. Model

1 = configural invariance, Model 2 = metric/factor loading invariance, Model 3 = metric + uniqueness invariance, Model 3b = uniqueness invariance, Model 4 = metric + factor

variance invariance, Model 4b = factor variance invariance, Model 5 = metric + uniqueness + factor variance invariance.
⁎ p < 0.01.
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relations among MCAT subtests in the low- versus high-g group, which

supports Tenet 1.

The poor overall fit of Model 3, and its ΔCFI and ΔRMSEA values,

suggested a lack of equality of residual variances of the narrow abilities

across groups. Model 3b, which constrained the residual variances but

freed the factor loadings to vary across groups, also fit poorly. These

results suggested greater variability in narrow abilities at higher g,

supporting Tenet 1.

Model 4, which constrained factor loadings as well as factor var-

iances to equality across groups, was not supported by the ΔCFI and

ΔRMSEA criteria. Model 4b, which omitted metric invariance but still

constrained factor variances, was also not supported. In both cases, the

unacceptable ΔCFI and ΔRMSEA were due to substantially larger g-

factor variance in the low- versus high-g group. This further supported

Tenet 1.

Finally, the constraints associated with equal factor loadings, re-

sidual variances, and factor variances were combined in Model 5.

Model 5′s poor fit further supported the lack of invariance across

groups, which supports Tenet 1. Together, these analyses supported the

plausibility of Hypothesis 1.2

5.2. Tenet 2: assessing relations with GPA

Tenet 2 proposed that the relation between g and the cognitive

performance criterion, GPA, will be stronger in the low- versus high-g

group, and that the relations between narrow abilities and cognitive

performance will be stronger in the high- versus low-g group. To test

this we compared the correlations of g and the MCAT's narrow abilities

with GPA in a sequential manner (i.e., each of the following tests were

derived in separate analyses). Rather than using raw correlations for

this assessment, results were drawn from the Model 1 because of its

superior overall fit. Results are presented in Table 3.3 g and GPA cor-

related at 0.51, p < 0.01 in the low-g group, and 0.36, p < 0.01 in the

high-g group. A significant Wald test emphasized that the association

between g and GPA was significantly stronger in the low- versus high-g

group. This supported Tenet 2 and Hypothesis 2a.

To further assess Tenet 2, we tested the hypothesis that the corre-

lation between each of the narrow abilities and GPA would be stronger

in the high- versus low-g group (see Table 3). The correlations for verbal

reasoning were found to be 0.03, p= 0.17, and −0.02, p = 0.36, in

the low- and high-g groups, respectively, and were not significantly

different from each other. For physical science, the correlation with

GPA was significantly stronger (0.31, p < 0.01) in the low- compared

to the high-g group (0.19, p < 0.01). The correlation for writing was

r = 0.15, p < 0.01 in the low-g group, and 0.04, p = 0.14, in the high-

g group, which were significantly different from each other. Finally, for

the relation involving biological science, the correlation was 0.31,

p < 0.01 in the low-g group, and r= 0.20, p < 0.01 in the high-g

group, and also differed significantly. Thus, for the physical science,

writing, and biological science narrow abilities, there was evidence for

differential effects, however, the direction of these effects was opposite

to Tenet 2, contradicting Hypothesis 2b.

The generally weaker criterion relations of narrow abilities with

GPA in high-g participants might be attributable to lower g-loadings and

therefore lower redundancy among the narrow abilities in this group.

However, this lower redundancy might result in a predictive advantage

when the narrow abilities are considered as a set rather than individual

predictors. Thus, GPA was then regressed onto the four narrow cogni-

tive abilities.4 In the low-g group R2 = 0.21, p < 0.01, and in the high-

g group R2 = 0.08, p < 0.01. These estimates were significantly dif-

ferent, Wald χ2(1) = 4.41, p < 0.05, suggesting that all four narrow

abilities, as simultaneous predictors, accounted for greater variability in

GPA in the low- than in the high-g group. In sum, regardless of whether

one considers the MCAT's narrow abilities individually or as a set, their

predictiveness of a cognitive criterion was generally greater in the low-g

versus high-g group, contrary to Tenet 2. However, the prediction of a

cognitive criterion by the MCAT's g-factor was superior in the low-

versus high-g group, consistent with Tenet 2. In sum, Hypothesis 2a

received support, but Hypothesis 2b did not.

6. Discussion

This study focused on cognitive ability differentiation (CAD) as it is

reflected in the MCAT and a large sample of medical school applicants.

To assess Tenet 1 of CAD we assessed whether factor loadings, residual

variances, and g-factor variances are invariant across low- and high-g

groups of applicants. Tenet 2 was assessed by considering the equiva-

lence of the MCAT's g-factor and narrow abilities to predict GPA across

the high- and low-g groups.

6.1. Evaluation of Tenet 1 of cognitive ability differentiation

6.1.1. Invariance testing of g-factor loadings

We examined whether the factor loadings of each narrow ability on

a g-factor, varied across the high-g and low-g groups. Three of the

MCAT's four narrow abilities (verbal reasoning, biological science, and

physical science) demonstrated higher loadings in the low- versus high-

g group, partially supporting Tenet 1. However, writing ability's g-

loading was significantly stronger in the high-g group. One potential

explanation is that the MCAT's writing subscale may be closer to a

general versus narrow evaluation of ability. Composing a narrative

requires considerable verbal knowledge, but also narrow content

Table 2

Configural invariance (baseline) model estimates.

Low High

λ SE ε SE λ SE ε SE

Verbal reasoning 0.20⁎ 0.03 0.96⁎ 0.01 0.05 0.03 1.00⁎ 0.01

Physical science 0.64⁎ 0.04 0.59⁎ 0.06 0.46⁎ 0.03 0.79⁎ 0.03

Writing −0.26⁎ 0.04 0.93⁎ 0.02 −0.45⁎ 0.04 0.80⁎ 0.03

Biological science 0.76⁎ 0.05 0.43⁎ 0.08 0.57⁎ 0.04 0.67⁎ 0.04

σ2 SE σ2 SE

g 0.07⁎ 0.01 0.01⁎ 0.01

Note. The top panel gives standardized factor loadings, λ, and residual variances, ε, and

their respective standard errors (SEs) from the configural invariance model. The bottom

panel gives the variance, σ2, of the latent g-factor from the metric invariance model.
⁎ p < 0.01.

Table 3

GPA relations.

Low High χ2(1)

g 0.51⁎ (0.02) 0.36⁎ (0.03) 65.82⁎

Verbal reasoning 0.03 (0.03) −0.02 (0.02) 2.53

Physical science 0.31⁎ (0.03) 0.19⁎ (0.02) 31.65⁎

Writing 0.15⁎ (0.03) 0.04 (0.03) 22.23⁎

Biological science 0.31⁎ (0.03) 0.20⁎ (0.02) 23.80⁎

Note. Correlations, with associated standard errors in parentheses presented under each g-

group label. The last column presents Wald χ2 tests, with df= 1.
⁎ p < 0.01.

2 Online Supplemental Material presents an application of the moderated factor model,

which demonstrate consistency with the focal results.
3 There was moderate negative skew in GPA, in both groups, resulting in censored data.

Analyses were also conducted using Mplus' censored variable and tobit regression pro-

cedures (Muthén & Muthén, 2012), and log-transforming GPA. Results from these ana-

lyses parallel those reported.

4 GPA was standardized separately in each group so that its variance was approxi-

mately equal across groups. This was necessary because the Wald test assessed the

equivalence of the residual variance of GPA (i.e., 1-R2) across groups.
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knowledge, which might saturate writing with additional g variance.

Interestingly, the writing subtest demonstrated negative factor loadings

in both g-groups, which stand in contrast to the full-sample correlations

(see Online Supplemental Material). Negative relations, however, might

actually be expected because of compensatory relations between the

subtests that manifest when g is split into high-g and low-g groups

(Jensen, 2003).

6.1.2. Invariance testing of residual variances

We also posited that Tenet 1 of CAD could be exhibited through

greater residual variances of the narrow abilities at high-g. Invariance

testing suggested that residual variances of verbal reasoning, biological

science, and physical science were indeed greater in the high-g group.

However, similar to the earlier invariance findings on factor loadings,

the writing subtest was the exception, exhibiting smaller residual var-

iance in the high- versus low-g group. Nevertheless, overall, Tenet 1

received partial support because residual variances of three out of four

MCAT subscales were larger in the high-g group.

6.1.3. Invariance testing of g-factor variances

Tenet 1 of CAD also implied that g should have greater variance in

the low-g group, and our analyses supported this: the variance of the g-

factor was significantly greater in the low-g group.

Collectively, the preponderance of evidence rendered by the current

study supported Tenet 1 of CAD. Thus, with respect to the MCAT, there

is, in general, greater differentiation among narrow cognitive abilities

within a sample of high- versus low-g individuals.

6.2. Evaluation of Tenet 2 of cognitive ability differentiation: GPA relations

Tenet 2 suggested that the MCAT's g-factor should be more pre-

dictive of cognitive performance in the low- versus high-g group, and

that narrow abilities should be stronger predictors in the high- versus

low-g group. A significantly stronger correlation between g and GPA

was found in the low- versus high-g group. However, relations of the

narrow MCAT abilities with GPA were also generally stronger in the

low- versus high-g group. This occurred regardless of whether the

narrow cognitive abilities were considered individually or as a set of

simultaneous predictors. Thus Tenet 2 of CAD was supported by the

predictiveness of the MCAT's g-factor, but challenged by the predic-

tiveness of the MCAT's narrow cognitive abilities. Although this pro-

vides mixed support for CAD, it corresponds to Schmidt and Hunter's

(1998) arguments that predictive validity is primarily driven by g, ra-

ther than narrow abilities. The findings concerning the stronger rela-

tions between the specific abilities in the low-g groups may potentially

be explained by high-g individuals finding the tasks (i.e., course work

associated with GPA) relatively easy, which may not tap the full range

of abilities, thereby attenuating correlations.

6.3. Contributions and directions for future research

The results of this study ultimately supported Tenet 1 of CAD and

provided mixed support for Tenet 2. Accordingly, depending on whe-

ther an individual had high- versus low-g, we observed that MCAT

subtest g-factor loadings and residual variances differed substantially,

as did the g-factor variances, and the predictiveness of the g-factor.

Thus, the MCAT may demonstrate differential functioning across ap-

plicants' levels of g. Although medical schools may prioritize the ac-

ceptance of high-g individuals, recent research highlights the value of

also considering non-cognitive attributes such as personality in selec-

tion (Goffin et al., 2011; McLarnon et al., 2017). If medical schools

allow non-cognitive selection criteria to play key roles in their deci-

sions, they may accept individuals from both the high- and low-g seg-

ments of the applicant pool. These individuals' respective MCAT scores

may consequently function differently, in accordance with the differ-

ences uncovered by this study. Thus, the MCAT could be targeted for

additional refinements to address the occurrence of CAD. This might

improve selection decisions, as well as applicants' perceptions of justice

regarding the selection process.

One advantage of this study was that data comprised four full co-

horts of medical school applicants, representing the entire population of

applicants within one sizable jurisdiction during those years. This

supports the representativeness of our sample and the generalizability

of the findings. Although dichotomization may have some limitations

(i.e., range restriction, reduced power, negative correlations that may

emerge [Jensen, 2003]), our use of the high- versus low-g design may

be one of the few viable options to adequately assess research questions

about differentiation (McLarnon & Carswell, 2013). Further, in com-

paring the high- and low-g thirds of the overall sample, these groups

still contained over 2400 applicants, which afforded abundant statis-

tical power. Future advances in moderated factor models may permit a

more comprehensive analytical strategy to assess CAD. For the purposes

of this study, the multi-group approach balanced the analytical needs of

the research questions with the currently available statistical frame-

works.

Additionally, most previous investigations of CAD have been re-

stricted to low-stakes situations, whereas this study is distinctive be-

cause of the high-stakes scenario involved. Nonetheless, our results

pertain to the MCAT, the cognitive performance criterion of GPA, and

the use of medical school applicants. Additionally, testing tools such as

the MCAT may include implicit range restriction, as test-takers re-

presenting the full-range of abilities measures may not take the test

(very low-g individuals might not even consider applying to medical

school). Thus, the low extreme group considered here may not objec-

tively reflect low-g individuals in the population. However, this re-

striction in range afforded this study a conservative test of differentia-

tion because individuals in the low- and high-g groups may not have

been as strongly divergent in g relative to the general population. Cross-

validation with other high-stakes tests (e.g., Graduate Records Exam,

SAT), other performance criteria, and other samples are necessary di-

rections for future research.

7. Conclusion

We examined cognitive ability differentiation by assessing the in-

variance of g as measured by the MCAT across low- and high-g in-

dividuals. This was accomplished using a large sample of medical

school applicants. Although there was some degree of mixed evidence,

it was generally found that the measurement properties of the MCAT

were not invariant across low- and high-g test-takers. Additionally, we

found that g and its narrow abilities demonstrated differential relations

with GPA across low- and high-g groups, which partially supported

differentiation. All things considered, our study contributes a unique

examination of cognitive ability differentiation as reflected by the

MCAT and data obtained from medical school applicants undergoing

high-stakes testing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.paid.2017.11.005.
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