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Abstract
Successful cognitive development between childhood and adulthood has important consequences for future mental and
physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying
changes in cognitive abilities during this developmental period will provide important insights into the biological
mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort
(PNC), a large population-based sample of individuals aged 8 to 21 years old (n= 6634), we used an empirical relatedness
matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence
cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive
measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive
ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in
genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie
cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in
neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence
cognitive development, rather than genes that influence cognition per se. Moreover, since aberrant cognitive development
confers risk for several psychiatric disorders, further examination of these Gene × Age interactions may provide important
insights into their etiology.

Introduction

The developmental period between childhood and early
adulthood is a time of substantial cognitive change, with
significant gains in working memory, complex reasoning
and social abilities [1, 2]. Successful cognitive development
during this period has important consequences for future
mental and physical wellbeing, as well as occupational and

* Josephine Mollon
josephine.mollon@yale.edu

1 Department of Psychiatry, Yale University School of Medicine,
New Haven, CT, USA

2 Department of Psychiatry, Perelman School of Medicine, and the
Penn-CHOP Lifespan Brain Institute, University of Pennsylvania,
Philadelphia, PA, USA

3 South Texas Diabetes and Obesity Institute, School of Medicine,
University of Texas of the Rio Grande Valley, Brownsville, TX,
USA

4 Analytic and Translational Genetics Unit, Department of

Medicine, Massachusetts General Hospital and Harvard Medical
School, Boston, Massachusetts, USA

5 Stanley Center for Psychiatric Research, Broad Institute of MIT
and Harvard, Cambridge, Massachusetts, USA

6 Program in Medical and Population Genetics, Broad Institute of
MIT and Harvard, Cambridge, Massachusetts, USA

7 Department of Genetics, Perelman School of Medicine, and the
Penn-CHOP Lifespan Brain Institute, University of Pennsylvania,
Philadelphia, PA, USA

8 Olin Neuropsychiatry Research Center, Institute of Living,
Hartford, CT, USA

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41380-018-0277-0) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0277-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0277-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-018-0277-0&domain=pdf
http://orcid.org/0000-0003-0642-267X
http://orcid.org/0000-0003-0642-267X
http://orcid.org/0000-0003-0642-267X
http://orcid.org/0000-0003-0642-267X
http://orcid.org/0000-0003-0642-267X
http://orcid.org/0000-0002-4749-6977
http://orcid.org/0000-0002-4749-6977
http://orcid.org/0000-0002-4749-6977
http://orcid.org/0000-0002-4749-6977
http://orcid.org/0000-0002-4749-6977
mailto:josephine.mollon@yale.edu
https://doi.org/10.1038/s41380-018-0277-0


financial success [3]. This period is also thought to be a
critical window of risk for many psychiatric illnesses, such
as psychotic disorders [4, 5]. While both biological and
environmental factors clearly influence cognitive develop-
ment, most current work in neurodevelopment focuses on
very early stages (e.g., prenatal/perinatal; first 12 months)
[6, 7]. Moreover, a rapidly growing literature has docu-
mented changes in gene expression over the course of brain
development [8–10], but the relationship between temporal
variation in gene expression and cognitive development is
unclear. Delineating the genetic influences on cognitive
development between childhood and adulthood should
provide important insights into the biological mechanisms
governing both typical and atypical maturation.

Cognitive abilities are substantially influenced by genes,
with approximately half of the variance in general cognition
attributed to genetic factors [11]. Specific abilities, includ-
ing attention [12–15], working memory [15–19], and
declarative memory [20–22], are also heritable. Further-
more, the heritability of cognition is moderated by age, with
the heritability of IQ increasing from around 40% in early
childhood to over 80% in adulthood [23]. More recently,
the heritability of general cognition has been shown to
increase between childhood/adolescence and early adult-
hood [11, 24]. Between early adulthood and old age, on the
other hand, heritability of processing speed and memory
decreases [25]. Thus, genetic influences on cognition may
vary, not as a linear function of age, but depending on the
developmental period and the specific cognitive abilities
under investigation [26]. While the moderation of herit-
ability by age is well replicated [3], previous studies have
been unable to fully disentangle this effect because age has
been categorized into broad developmental periods, rather
than investigated as a continuous factor. Moreover, herit-
ability at different ages has typically been estimated in
different samples.

Early efforts to explain the increasing heritability of cog-
nition across development mostly focused on twin and
adoption designs [27–29]. More recently, studies have
examined the genetic influence of common variants in unre-
lated individuals, known as SNP-based heritability [30, 31].
For example, Trzaskowski and colleagues [28] examined
changes in heritability of general intelligence, or g, between
ages 7 and 12 in 2875 unrelated children, as well as 6702 twin
pairs. SNP-based heritabilities were 0.26 at age 7 and 0.45 at
age 12, similar to the twin-based heritabilities of 0.36 and
0.49 at these ages. While these studies provide initial insight
into the genetic mechanisms underlying cognitive develop-
ment, they have a number of limitations. First, most have
focused on childhood, with only one study investigating
the period between childhood and adolescence [32] and none
spanning from childhood to adulthood. Second, using dif-
ferent cognitive tests at different ages has introduced

variability, making it difficult to establish whether cognitive
changes stem from genetic or methodological factors. Finally,
most studies have focused on general cognition, and have not
applied a consistent genetic approach to specific functions in a
single sample [15].

Since increase in age is not the direct consequence of
gene action, increase in age, or maturation, can be con-
sidered an effect of the environment and modeled as
a Gene × Environment interaction. Thus, a Gene × Age
(G × A) interaction on cognitive development can be tested
using a cross-sectional design that models differences in
cognitive performance as a function of both relatedness
(empirically defined) and similarity in age between indivi-
duals [25, 33]. As well as providing an estimate of genetic
influence on cognitive development, G × A interaction
analysis suggests whether this effect is due to fluctuations in
action of the same genetic factors, or variation in the genetic
factors influencing the trait at different ages. Glahn and
colleagues [25] used this approach to identify neurocogni-
tive processes with significant G × A interactions, identify-
ing potential phenotypes for gene discovery in age-related
cognitive decline. Similarly, Kent and colleagues [34]
identified more than 600 lymphocyte-based RNA tran-
scripts with significant G × A interactions, defining candi-
date genes for biological aging. Despite the high heritability
of cognitive functions, identifying specific genes that
influence cognition has proved challenging. Considering
G × A interactions in the search for cognition genes could
help, particularly when the goal is to determine if the gene
influences cognitive development.

In this study, we modeled change in cognitive functions
between childhood and early adulthood in the Philadelphia
Neurodevelopmental Cohort [35], a large population-based
sample of individuals aged 8–21 years old. The aims of the
study were to use an empirical relatedness matrix to (1)
establish the heritability of general and specific cognitive
functions, and (2) determine if G × A interactions influence
these functions between childhood and early adulthood.

Methods

Participants

The Philadelphia Neurodevelopmental Cohort (PNC) is a
population-based sample from the greater Philadelphia area,
comprising 9421 individuals aged 8–21 years who received
medical care within the Children’s Hospital of Philadelphia
network. Study procedures have been described in detail
elsewhere [35]. Briefly, participants presented for a range of
medical needs, including general checkups, and chronic
condition management [28]. Participants provided written
assent/consent for genomic studies upon providing blood
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samples during the clinical visit. Inclusion criteria were: (1)
ability to provide signed informed consent (parental consent
was required for participants under age 18), (2) English
language proficiency, and (3) physical and cognitive ability
to participate in computerized cognitive testing. Data
deposited in dbGaP [36] were used in the present analyses.
The present analyses were limited to participants
who identified as either white non-Hispanic (European
American) or black non-Hispanic (African American). A
total of 6634 subjects with available cognitive and genetic
data were included in the analyses, of whom 4694 (70.8%)
were European American (EA) and 1940 (29.2%) were
African American (AA). Given known differences in minor
allele frequencies between individuals of African and Eur-
opean ancestry, all genetic analyses were conducted sepa-
rately for EAs and AAs. Age ranged from 8 to 21, with a
mean of 13.9 (SD= 3.65)(Figure S1), 49.1% of subjects
were male (n= 3254).

Neurocognitive assessment

All PNC participants completed the 1-hour Computerized
Neurocognitive Battery (CNB) [37, 38]. The CNB consists
of 14 tests designed to capture functioning in five domains
of cognitive ability: (1) executive function (abstraction and
mental flexibility, attention, working memory), (2) episodic
memory (verbal, facial, spatial), (3) complex cognition
(verbal reasoning, nonverbal reasoning, spatial processing),
(4) social cognition (emotion identification, emotion dif-
ferentiation, age differentiation), and (5) sensorimotor speed
(motor, sensorimotor). The CNB has been described else-
where [37, 38] and a summary of the measures is included
in Table S1. The battery also included the reading compo-
nent of the Wide Range Achievement Test (WRAT), a
measure of general cognitive ability.

In addition to the measures directly indexed by the
CNB, we derived a general composite score (g) as the first
component of principal component analyses (PCA) using
all tests except the WRAT. We also derived a general
composite score for speed (gs) as the first component of
PCA using reaction times for all cognitive measures. To
minimize the impact of missing data on these composite
scores, the Multivariate Imputation by Chained Equation
(MICE) method [39–41] was used to impute missing values
using the mice package in R [42]. The imputation model
was based on age, sex, and ethnicity (AA or EA). Test
scores were imputed for subjects with less than 50%
missing neurocognitive data and five datasets were imputed
(see Figure S2 for patterns of missingness and Figure S3
for plots of observed and imputed data). All subsequent
analyses were conducted on the imputed neurocognitive
data. Correlations among all test scores can be seen in
Figure S4.

Genotyping

Samples were genotyped on one of four Illumina
arrays: HumanHap550, HumanHap610, OmniExpress, or
Human1M. Genotyped data were imputed in a separate
phase of the study at the Broad Institute [43]. Unobserved
genotypes from each chip set were imputed using the
IMPUTE2 package and the reference haplotypes in Phase I
of the 1000 genomes data (June 2011 release) that included
~37138905 variants from 1094 individuals from Africa,
Asia, Europe, and the Americas. The imputed genotype data
were used in subsequent analyses. All analyses were con-
ducted separately for EA and AA populations.

Estimation of the empirical relatedness matrix

Empirical relatedness quantifies the proportion of alleles
that are identical by descent between individuals and was
calculated for all pairs of individuals using the genotype
data. A set of 50 k common autosomal SNPs in approximate
linkage equilibrium was selected from all available SNP
variants after LD pruning (r² > 0.1) using PLINK [44].
Relatedness was estimated from the selected SNPs using the
IBDLD software package [45] (up to 50 SNPs within a
2 cM span), and a whitening transformation was applied to
the resulting empirical relatedness matrix. The matrix was
inspected to ensure correct properties (trace equal to number
of genotyped subjects, symmetry, positive semi-definite-
ness, range of diagonal, and off-diagonal elements). The
distribution of estimated relatedness values can be seen in
Figure S5.

Statistical and quantitative genetic analyses

The statistical programming language R [46] was used for
descriptive statistics and graphics. All genetic analyses were
conducted using the SOLAR software package [47].
Briefly, SOLAR implements linear mixed-effects models,
which decompose the overall variance of a quantitative trait.
Traditionally, these analyses have been performed on
family data using matrices calculated from pedigree infor-
mation, but can also be applied to cohorts of related and
unrelated individuals using relatedness estimated from
genotype information [48]. Under a simple polygenic
model, the phenotypic variance (σ2p) is assumed to be
composed of an additive genetic component (σ2g) and an
environmental component (σ2e). Maximum-likelihood esti-
mates (MLEs) of σ2g and σ2e (along with regression coef-
ficients for any variables included as fixed-effect covariates
in the model) are found using an iterative procedure.
Narrow-sense heritability (h2) is the proportion of the phe-
notypic variance accounted for by additive genetic variance
(h2= σ2g/σ

2
p).
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As detailed previously [25, 34, 49], this polygenic model
can be extended to examine Gene × Environment (G × E)
interactions. One potential consequence of a G × E inter-
action is that the overall additive genetic variance is greater
under certain environmental conditions than others. To test
for this effect with a quantitatively measured environment,
the polygenic model is modified to include a linear function
on the logarithm of σ2g. This linear function contains a free
parameter, γ, reflecting the change in σ2g per unit of the
environmental variable, age in this case. A non-zero value
of γ implies a heritable response to the environment, and
therefore, a G × E interaction. A second potential con-
sequence of a G × E interaction is that the trait exhibits
imperfect pleiotropy with itself at different ages i.e., the
relative contributions of genetic factors to σ2g change with
age [34]. In this case, the genetic correlation (ρg) between
the trait measured at one age and the same trait measured at
another age is less than 1, suggesting changes in the genetic

factors contributing to σ2g. This phenomenon can be
examined in cross-sectional studies where individuals are
only tested under a single environmental condition or at a
single time point, provided the degree of relatedness
between individuals is known [33]. To uncover this effect,
the ρg for a given pair of individuals is modeled as a
function of the difference in their ages and another free
parameter, λ, reflecting the rate of decay in ρg as the dif-
ference in ages increases. The genetic correlation (ρg) equals
1 if either the difference in ages between individuals is 0 or
λ is 0. Thus, a non-zero value of λ implies decreasing ρg and
imperfect pleiotropy across ages, and therefore, a G × E
interaction. See Genotype × Age Interaction Model in sup-
plement for more information.

Polygenic models with modifications to test for both
consequences of a potential G × E interaction, i.e., γ and λ,
were fitted to all neurocognitive traits. Age in years was
fitted as the continuous environmental variable. All models

Fig. 1 Neurocognitive scores by age for all participants
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included age, age2, sex, and their interactions as fixed-effect
covariates. Statistical significance for each of the parameters
of interest was determined by comparing the likelihood of
the full polygenic model to the likelihood of a null model
i.e., where the parameter of interest was constrained to 0. To
control for multiple testing, the false discovery rate (FDR)
was set at 5% [50]. A rank-based inverse normal transfor-
mation was applied to scores on each test to ensure normal
distributions. Separate polygenic models were fitted to data
from EAs and AAs.

Results

Cognitive scores increase between childhood and
early adulthood

Figure 1 shows neurocognitive test scores plotted by age.
As previously reported [1], increasing age was significantly
associated with increasing test scores across all neurocog-
nitive measures. Verbal reasoning, age differentiation,
sensorimotor speed, WRAT, and g showed particularly
substantial age-related changes, with increases of 1.69,
1.56, 2.08, 2.08, and 2.08 SD between ages 8 and 21,
respectively (Fig. 1).

Cognitive abilities are heritable

Heritability estimates for all neurocognitive measures
are presented in Fig. 2 and Table 1. For EAs, all herit-
ability estimates, except for abstraction and age differ-
entiation, were significant after adjustment for multiple
testing (Table 1). For AAs, all heritability estimates,
except for abstraction, spatial memory, verbal memory,
spatial reasoning, age differentiation, and sensorimotor
speed were significant after adjustment for multiple
testing (Table 1). The AA sample is smaller than the
EA sample, which may account for fewer statistically
significant results. Neurocognitive measures with
non-significant heritability estimates were excluded
from subsequent G × A analyses. Figure S6 shows herit-
ability estimates for the imputed and unimputed neuro-
cognitive data.

G×A interaction I: genetic variance increases with age

In EAs, general cognitive ability, or g, exhibited a sig-
nificant increase in genetic variance with increasing age
(γ= 0.047, p= 0.024) after adjustment for multiple testing.
This effect is denoted by γ and suggests that specific genetic
factors influence change in performance on these measures,
but also that the magnitude of effect of these genetic factors
varies as a function of age (Table 1). Figure 3 shows genetic

variance, environmental variance, and heritability between
ages 8 and 21 for g.

In AAs, increase in genetic variance with increasing age
on g showed a trend towards statistical significance after
adjustment for multiple testing (γ= 0.081, p= 0.065)
(Table 1). Figure S7 shows genetic variance, environmental
variance, and heritability between ages 8 and 21 for g in the
AA sample. The smaller AA sample may account for fewer
statistically significant results.

G × A interaction II: genetic factors influencing
cognitive abilities at different ages overlap

In both EAs and AAs, none of the neurocognitive measures
exhibited statistically significant changes in genetic corre-
lation with increasing age, suggesting that the genetic fac-
tors influencing changes in neurocognition do not change
between childhood and adulthood (Table 1).

Discussion

Using a large population-based developmental cohort of
individuals aged 8–21 years old, we established that both
general and specific neurocognitive measures are heritable.
Heritability estimates for measures of general cognition,
executive function, memory, complex reasoning, social
cognition, and sensorimotor speed were moderate to large,
consistent with previous findings that neurocognition across
the first two decades of life is under considerable genetic
influence [11, 24, 32]. Using G × A interaction analyses, we
found that specific genetic factors influenced changes in
general cognitive ability, or g, between childhood and
adulthood, but that the scale, or strength, of action of these
genetic factors varied with age, particularly in the EA
sample. Finally, we did not find evidence for decay in
genetic correlation on any neurocognitive measure
throughout childhood and early adulthood, suggesting that
the same genetic factors influence changes in neurocogni-
tion during this developmental period.

Our findings advance knowledge regarding the genetic
architecture of cognitive development between childhood
and adulthood in several ways. First, while the importance
of genetic factors in determining individual differences in
general cognitive ability is well established [3], specific
neurocognitive functions have received less attention. We
found that measures of general cognition, executive func-
tion, memory, complex reasoning, social cognition, and
sensorimotor speed were significantly heritable. The largest
heritability estimates were for general cognitive measures,
67 and 72% for the WRAT and g respectively, but were also
substantial for memory (36–56%) and complex reasoning
(35–46%) measures. This pattern of results is consistent

Genetic influence on cognitive development between childhood and adulthood



with those of genome-wide complex trait analysis (GCTA)
in the same sample [15]. Specifically, the largest heritability
estimates in both our study and that of Robinson and col-
leagues are in the complex reasoning domain and the
WTAR and the smallest are in the executive and social
domains. The main reason for the somewhat higher herit-
ability estimates in our study is that our analyses included
all individuals, whereas individuals with relatedness > 0.05
were excluded prior to GCTA [15]. Thus, the higher her-
itability estimates using related individuals are likely due to
rare variants, CNVs, and structural variants that are not well
captured by current common SNPs. Our findings are also in
line with reports that heritability increases with increasing
task complexity [51–53]. Differences in heritability esti-
mates between cognitive measures may be due to differ-
ences in genetic architecture, such that different genetic
factors and/or the same genetic factors, but to differing
degrees, underlie variation in different neurocognitive
measures [54]. Differential effects of environmental factors,
such as education [55] and socioeconomic factors [56, 57]
may also play a role. Measurement error is unlikely to
underlie the observed differences in heritability estimates
since reliability of the CNB measures is high ( > 0.7 for
most measures) [15, 38, 58].

Second, G × A analyses revealed a significant age-related
increase in genetic variance on general cognitive ability, or
g, in line with previous studies [11, 28]. Specifically, we

found an increase in genetic variance from 0.32 at age 8 to
0.58 at age 21, which closely resembles that reported by
Trzaskowski and colleagues of an increase from 0.26 to
0.45 between ages 7 and 12 [28]. Similar increases have
also been reported in the twin literature. For example,
Haworth et al. reported an increase from 0.41 to 0.66
between ages 9 and 17 [11], and Bergen et al. reported an
increase from ~0.45–0.80 between ages 5 and 35 [24].
Previous studies have generally discussed increasing
genetic variance in terms of three phenomena: (1) innova-
tion, i.e., novel genetic factors coming into play over time,
(2) decay, i.e., existing genetic factors becoming decreas-
ingly important over time, and (3) amplification i.e. existing
genetic factors becoming increasingly important over time
[27, 29]. Our findings provide evidence for genetic influ-
ences on g becoming amplified over childhood and early
adulthood. This amplification of genetic factors may be due
to gene-environment correlations, whereby individuals
increasingly select experiences based on their underlying
genetic predispositions, thus accentuating genetic differ-
ences [59, 60]. Moreover, genes may become increasingly
expressed over the course of cognitive development due to
maturational processes [61], and/or environmental factors
may moderate gene expression as individuals increasingly
select and evoke these factors [11, 62]. Our findings also
highlight the importance of g, or general cognitive ability,
and lend support to the notion of generalist genes i.e., that a
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set of generalist genes influence multiple cognitive domains
[63]. The generalist gene hypothesis has important practical
implications since g can readily be calculated in any study
that includes five or more cognitive tests, allowing com-
bining of data from multiple studies and thus increasing
power to detect genetic variants underlying cognition [26].

Third, our G × A analyses suggest overlap between the
genetic factors influencing changes in neurocognition in
childhood and adulthood, since none of the neurocognitive

measures exhibited significant changes in genetic correla-
tion with age. This finding is directly in line with that of a
previous meta-analytic study, which found that genetic
innovation, whereby novel genetic factors come into play
over time, ceased after age 8 [29]. Our findings are also in
line with an expansive literature documenting stable genetic
effects on cognition throughout the lifespan [3]. For
example, in a longitudinal twin study, the genetic correla-
tions of full-scale, verbal and performance IQ between

Table 1 Heritability estimates and G ×A interactions

Population Domain Heritability h2 p σg2 with age
γ

p ρg with age
λ

p σe2 with
age

p

European Americans
(n= 4694)

Abstraction 0.12 0.135 — — — — — —

Attention 0.34 2× 10–5 0.002 0.955 0.050 0.5 −0.013 0.791

Working memory 0.28 0.004 −0.036 0.665 0.099 0.5 −0.029 0.692

Face memory 0.56 6× 10–7 0.038 0.287 0.000 0.5 0.029 0.718

Spatial memory 0.36 3× 10–4 0.124 0.100 0.000 0.5 −0.056 0.318

Verbal memory 0.42 2× 10–4 −0.035 0.713 0.112 0.5 0.041 0.791

Verbal reasoning 0.45 2× 10–6 −0.001 0.955 0.000 0.5 −0.007 0.848

Nonverbal reasoning 0.46 5× 10–6 0.021 0.665 0.126 0.5 0.007 0.848

Spatial reasoning 0.35 1× 10–4 −0.009 0.834 0.128 0.5 0.005 0.848

Age differentiation 0.11 0.176 — — — — — —

Emotion differentiation 0.22 0.017 −0.043 0.713 0.242 0.5 0.033 0.791

Emotion identification 0.30 0.001 −0.037 0.713 0.000 0.5 0.025 0.745

Sensorimotor speed 0.37 6× 10–5 0.053 0.382 0.000 0.5 0.036 0.676

Motor speed 0.34 3× 10–4 0.082 0.287 0.033 0.5 0.030 0.692

WRAT 0.67 8× 10–22 0.040 0.382 0.000 0.5 0.034 0.791

Composite score (g) 0.72 9× 10–15 0.047 0.024 0.000 0.5 0.046 0.692

Speed composite score
(gs)

0.38 3× 10–4 0.041 0.638 0.182 0.5 −0.016 0.848

African Americans
(n= 1940)

Abstraction 0.00 0.5 — — — — — —

Attention 0.32 0.045 0.138 0.125 0.000 0.5 −0.069 0.225

Working memory 0.29 0.045 0.085 0.409 0.000 0.5 −0.067 0.225

Face memory 0.28 0.045 0.002 0.969 0.061 0.5 0.013 0.699

Spatial memory 0.17 0.138 — — — — — —

Verbal memory 0.00 0.5 — — — — — —

Verbal reasoning 0.48 0.002 0.075 0.409 0.000 0.5 −0.018 0.699

Nonverbal reasoning 0.29 0.045 0.013 0.933 0.000 0.5 0.051 0.286

Spatial reasoning 0.24 0.075 — — — — — —

Age differentiation 0.18 0.138 — — — — — —

Emotion differentiation 0.31 0.045 0.036 0.668 0.000 0.5 0.019 0.699

Emotion identification 0.35 0.028 −0.066 0.409 0.034 0.5 0.033 0.528

Sensorimotor speed 0.00 0.5 — — — — — —

Motor speed 0.28 0.045 −0.075 0.668 0.000 0.5 0.074 0.528

WRAT 0.73 4× 10–6 0.040 0.409 0.000 0.5 0.031 0.699

Composite score (g) 0.61 1× 10–4 0.081 0.065 0.000 0.5 0.074 0.225

Speed composite score
(gs)

0.36 0.031 0.071 0.668 0.000 0.5 −0.037 0.699

Bolded estimates significant after correction for multiple testing (FDR= 0.05)

WRAT wide range achievement test
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childhood and adolescence were estimated at 0.96, 0.78,
and 0.90, respectively [64]. Similarly, a study examining
changes in heritability of g between ages 7 and 12 in 6702
twin pairs, as well as 2875 unrelated children [28], reported
genetic correlations between ages of 0.73 and 0.75 for the
SNP-based and twin approaches, respectively. Our results
extend these findings by showing overlap between the
genetic factors influencing neurocognition beyond adoles-
cence to early adulthood.

Our findings have several implications and generate tes-
table hypotheses for future work. First, our findings suggest
the importance of considering G ×A interactions when con-
ducting gene discovery studies since genetic variance
increases with age. Thus, gene discovery efforts during this
developmental period may be most fruitful when examining
young adults or by using statistical models that account for
changes in genetic variance with age. Second, this study
suggests the feasibility of utilizing different populations of

individuals together in genetic studies. Although our AA
sample was small, we found significant heritability estimates.
Conducting genetic studies across populations is critical
in assessing the accuracy and broader relevance of a finding
[65, 66]. Finally, our findings provide evidence for specific,
but also dynamic, genetic influences on cognitive develop-
ment between childhood and adulthood, in line with a
growing literature on changes in gene expression over the
course of brain development [8, 53]. Future studies integrat-
ing neurocognitive and neurobiological measures will aid
understanding of the complex interplay between genetic
influences. For example, cortical thickness and white-matter
tract integrity may act as intermediary pathways between
genetic factors and neurocognition over development [27].

This study has some limitations. First, our data were
cross-sectional and longitudinal studies with repeated
assessments of the same individuals over time using iden-
tical cognitive tests are needed to fully establish develop-
mental cognitive trajectories. Second, while we included
individuals of both European and African ancestry, the AA
sample was small. Future studies should include larger
samples of individuals of African ancestry, as well as other
underrepresented populations [65, 66]. Third, while this is
the first time, to our knowledge, that G × A analyses have
been used to examine genetic influences on changes in both
general and specific cognitive measures between childhood
and adulthood, different tests have different psychometric
properties and strong assertions about specific cognitive
functions require replication in independent samples.

In conclusion, we found that neurocognitive measures
across childhood and early adulthood are under substantial
genetic influence. Moreover, specific genetic factors influence
changes in general cognitive ability, or g, between childhood
and adulthood, but the magnitude of effect of these genetic
factors varies as a function of age. Finally, the genetic factors
influencing neurocognition throughout this developmental
period overlap at different ages. Establishing the nature of
G ×A interactions on changes in neurocognition across
childhood and early adulthood is a necessary first step in
identifying genes that influence cognitive development.
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