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Specific cognitive abilities include ability tilt, based on within-subject differences in math and verbal scores on
standardized tests (e.g., SAT, ACT). Ability tilt yields math tilt (math > verbal), which predicts STEM (science,
technology, engineering, math) criteria, and verbal tilt (verbal > math), which predicts humanities criteria. The
current study examined a new type of tilt: tech tilt, based on within-subject differences in technical scores and

;S,;GB academic scores (math or verbal) on the Armed Services Vocational Aptitude Battery. (Technical scores tapped
Humanities vocational skills for electronics, mechanics, cars, and tools.) The difference yielded two types of tilt: tech tilt

(tech > academic) and academic tilt (academic > tech). Tech tilt was correlated with math and verbal scores on
college aptitude tests (SAT, ACT, PSAT), ability tilt on the college tests, and STEM and humanities criteria
(college majors and jobs). Tech tilt correlated negatively with academic abilities (math or verbal) on the college
tests and predicted STEM criteria. In addition, academic tilt (math or verbal) predicted the analogous type of tilt
on the college tests. The effects replicated using different analytical approaches (e.g., regressions and structural
equation modeling) and after controlling for g. The negative effects of tech tilt with academic abilities support
investment theories, which predict that investments in one domain (non-academic and technical) come at the
expense of investments in competing domains (academic). In addition, the effects demonstrate the validity of
vocational aptitudes, extending prior research on ability tilt, which focuses on academic aptitudes. Future re-
search should consider factors that moderate the effects of tech tilt (e.g., life history and ability level) as well as

other types of tilt (e.g., spatial tilt).

1. Introduction

General intelligence (g) refers to the variance common to mental
tests, which typically explains the predictive power of tests (Jensen,
1998, pp. 270-305). An important goal in intelligence research is to
identify factors with predictive power beyond g (Coyle, 2014, 2018a).
One such factor is ability tilt, which reflects specific math and verbal
abilities on standardized tests (e.g., SAT, ACT). Ability tilt is unrelated
to g yet predicts diverse school and work criteria (Coyle, 2016; Coyle,
Purcell, Snyder, & Richmond, 2014; Coyle, Snyder, & Richmond, 2015;
Lubinski, Webb, Morelock, & Benbow, 2001; Park, Lubinski, & Benbow,
2007). The current study introduces a new type of tilt: tech tilt. Tech tilt
is based on standardized tests of technical knowledge and measures
specific vocational aptitudes (e.g., knowledge of cars, electronics, and
mechanics), which may also predict work and school criteria beyond g.

Tech tilt extends research on ability tilt, which is based on within-
subject differences in math and verbal scores on standardized tests such
as the SAT (formerly, Scholastic Aptitude Test), ACT (formerly,
American College Test), and PSAT (Preliminary SAT). The within-
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subject differences yield two types of tilt: math tilt, in which math scores
exceed verbal scores, and verbal tilt, in which verbal scores exceed math
scores. Both types of tilt are unrelated to IQ and g-loaded tests but still
predict school and work criteria in specific domains. Math tilt predicts
achievements in math and science, whereas verbal tilt predicts
achievements in arts and letters (e.g., Coyle et al., 2014, 2015; Lubinski
et al., 2001; Park et al., 2007). The predictive power of tilt is surprising
because non-g factors generally predict outcomes poorly (Jensen, 1998,
pp- 270-305).

Shea, Lubinski, and Benbow (2001; see also, Lubinski, 2009,
Lubinski, 2016; Park et al., 2007; Shea et al., 2001) were the first to
identify ability tilt using the Study of Mathematically Precocious Youth
(SMPY). The SMPY is a longitudinal study of gifted individuals (top 1%
or higher) who took the SAT around age 12 years and were tracked into
adulthood. The SMPY estimated ability level using SAT sum scores (math
plus verbal), which are strongly g loaded (r = 0.82, Frey & Detterman,
2004; see also, Coyle & Pillow, 2008), and ability tilt using SAT differ-
ence scores (math minus verbal), which are unrelated to g. Ability level
predicted level of achievement (e.g., income, education; see Kell,
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Lubinski, & Benbow, 2013; Makel, Kell, Lubinski, Putallaz, & Benbow,
2016). In contrast, ability tilt predicted domain of achievement in
STEM (science, technology, engineering, and math) and the humanities.
Math tilt predicted STEM achievements (e.g., patents or STEM Ph.D.),
whereas verbal tilt predicted humanities achievements (e.g., novels or
humanities Ph.D.) (e.g., Lubinski et al., 2001; see also, Lubinski, 2009,
2016).

Coyle et al. (2014, 2015; see also, Coyle, 2016) extended Lubinski
et al.'s (2001; Park et al., 2007) tilt research using a sample in the
normal range of ability. Data were obtained from the 1997 National
Longitudinal Survey of Youth (NLSY), a nationally representative
sample in the United States. Ability tilt was based on the math and
verbal subtests of the SAT and ACT, two college admissions tests used
widely in the United States, and the PSAT, a standardized test used by
the National Merit Scholarship Qualifying Program. g was based on the
Armed Services Vocational Aptitude Battery (ASVAB), a diverse battery
of 12 tests used by the US Armed Forces. The ASVAB measures a broad g
plus four specific abilities: verbal, math, mental speed, and technical
skills (e.g., electronics, cars, mechanics, shop tools).

Coyle et al. (2014, 2015; see also, Coyle, 2016) examined associa-
tions between ability tilt (based on SAT, ACT, and PSAT scores) and
diverse criteria in STEM and humanities. The criteria included college
majors, jobs, school grades, and the four ASVAB abilities. Math and
verbal tilt showed a pattern of differential validity. Math tilt was posi-
tively associated with STEM criteria (e.g., ASVAB math ability and STEM
majors) and negatively associated with humanities criteria (e.g., ASVAB
verbal ability and humanities majors). In contrast, verbal tilt showed the
opposite pattern. (Math and verbal tilt were negligibly associated with
ASVAB speed and technical abilities, demonstrating discriminant va-
lidity.) Moreover, both types of tilt were unrelated to g Coyle et al.
(2014, 2015; see also, Coyle, 2016, 2018a) interpreted the results in
terms of investment theories (Cattell, 1987, pp. 138-146), which focus
on the development of specific abilities. Such theories assume that in-
vestment (time and effort) in a specific domain (e.g., math/STEM) boosts
abilities in similar domains but retards the development of abilities in
competing domains (e.g., verbal/humanities), yielding negative effects.

The current study examines the validity of a new type of tilt: tech tilt.
Tech tilt reflects technical/vocational aptitudes (e.g., knowledge of
cars, electronics, mechanics, shop tools), which are contrasted with
academic aptitudes. In the current study, tech tilt is based on within-
subject differences in tech scores and academic scores on the ASVAB,
which measures both technical aptitudes and academic aptitudes.
(Academic aptitudes on the ASVAB include math and verbal abilities,
which are integral to college curricula, whereas technical aptitudes
include mechanical and vocational abilities, which are integral to vo-
cational curricula.) The within-subject differences yield two types of
tilt: tech tilt, in which tech scores exceed academic scores, and academic
tilt, in which academic scores exceed tech scores. To examine its va-
lidity, tech tilt is correlated with math and verbal scores on the college
aptitude tests (SAT, ACT, PSAT), ability tilt on the college tests, and
jobs (e.g., chemist, journalist) and college majors (e.g., chemistry,
English) in STEM and humanities, using data from the NLSY.

Predictions were based on investment theories (Cattell, 1987, pp.
138-146). Such theories assume that investments in one domain (e.g.,
math/STEM) enhance abilities in that domain but inhibit abilities in
competing domains (e.g., verbal/humanities), yielding negative effects.
Tech tilt reflects a non-academic (vocational) ability, which should
compete with academic abilities. Therefore, tech tilt (based on the
ASVAB) was expected to correlate negatively with academic abilities
and ability tilt (math and verbal), based on college aptitude tests (SAT,
ACT, PSAT). A second prediction was that tech tilt would correlate
positively with preferences (college majors and jobs) in STEM, which
incorporates technical knowledge (e.g., electronics, mechanics, tools).
Moreover, like ability tilt, tech tilt was expected to measure specific
non-g (technical) abilities, and therefore was expected to predict cri-
teria beyond g.
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2. Method
2.1. Participants

Data were obtained from the NLSY (N = 8984), a representative
sample of youth born in the United States between 1980 and 1984
(Hering & McClain, 2003, pp. 1-14). The sample consisted of 1950
subjects (866 males and 1084 females) with ASVAB scores and SAT or
ACT scores. No sampling weights were used. The same sampling criteria
were used by Coyle et al. (2015; see also, Coyle, 2016, 2018b). (Mean
age at testing was 15 years for the ASVAB and 17 years for the SAT; age
at testing was not available for the ACT.) SAT, ACT, PSAT, and ASVAB
scores were available for 1174, 1088, 708, and 1950 subjects, respec-
tively. College majors and occupations (in STEM and humanities) were
available for 369 and 239 subjects, respectively.

2.2. Variables

2.2.1. Test scores

SAT, ACT, and PSAT scores were available for math and verbal
subtests. (The ACT reading subtest was used as a measure of verbal
ability.) There were 1174 SAT math scores (M = 507.00, SD = 109.61),
1174 SAT verbal scores (M = 506.70, SD = 107.45), 1087 ACT math
scores (M = 20.83, SD = 5.20), 1088 ACT verbal scores (M = 21.53,
SD = 6.21), 708 PSAT math scores (M = 49.77, SD = 10.37), and 708
PSAT verbal scores (M = 49.01, SD = 10.11). An ACT math score of 49
was removed from the dataset because it exceed the highest possible
ACT score (i.e., 36).

ASVAB scores were available for 12 subtests: (a) arithmetic rea-
soning (AR), (b) assembling objects (AO), (c) automobile information
(AD), (d) coding speed (CS), (e) electronics information (EI), (f) general
science (GS), (g) math knowledge (MK), (h) mechanical comprehension
(MQ), (i) numerical operations (NO), (j) paragraph completion (PC), (k)
shop information (SI), and (1) word knowledge (WK). ASVAB scores
were based on item response theory statistics, with higher scores in-
dicating better performance. To facilitate interpretation, all test scores
were standardized (M = 0, SD = 1) prior to analysis.

2.2.2. Ability tilt

Ability tilt was based on within-subject differences in math and
verbal scores on the SAT, ACT, and PSAT. Tilt scores were computed
separately for each test. Following Coyle et al. (2014, p. 19; see also,
Park et al., 2007), tilt scores were obtained after (a) standardizing test
scores in the full sample (M = 0, SD = 1), and (b) taking the within-
subject difference between test scores (math minus verbal). Positive
scores (math > verbal) indicated math tilt; negative scores (verbal >
math) indicated verbal tilt. Because math and verbal test scores differed
for each subject after standardization, all subjects showed some degree
of tilt (verbal or math) on the SAT, ACT, and PSAT.

2.2.3. Tech tilt

Tech tilt was based on within-subject differences in technical and
academic scores on the ASVAB. (Academic scores were based on math
or verbal scores.) Technical scores were the average of the tech tests
(Al, EI, SI, MC); verbal scores were the average of the verbal tests (GS,
WK, PC); and math scores were the average of the math tests (AR, MK).
The three types of tests (tech, verbal, math) have been validated in
factor analysis and structural equation modeling of the ASVAB (e.g.,
Coyle & Pillow, 2008; Ree & Carretta, 1994; see also, Coyle et al., 2014,
2015; Schmidt, 2011). Following prior tilt research (e.g., Coyle et al.,
2014; Park et al., 2007), tech tilt was computed by (a) standardizing
test scores in the full sample (M =0, SD = 1), and (b) taking the
within-subject difference between test scores (tech minus academic).
There were two types of tech tilt: techV, which was the difference in
tech and verbal scores (tech minus verbal), and techM, which was the
difference in tech and math scores (tech minus math). Positive scores
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Table 1
Correlations of tech tilt with math and verbal subtests of college aptitude tests (SAT, ACT, PSAT) and with jobs, college majors, and g.
1 2 3 4 5 6 7 8 9 10 11

1. Tech tilt-V - 0.64** —0.21* —0.41* —0.23* —0.37* —0.12* —0.36** 0.35** 0.29+* —0.21*
2. Tech tilt-M - —0.31* —0.16** —0.35* —0.17+ —0.25** —0.11% 0.15* 0.01 —-0.19*
3. SATm - 0.73** 0.88** 0.62* 0.85"* 0.71* 0.30"* 0.12 0.69*
4. SATv - 0.68** 0.82* 0.62** 0.86** 0.04 —0.20* 0.68*
5. ACTm - 0.67+* 0.84* 0.66** 0.30** 0.15* 0.70**
6. ACTv - 0.56"* 0.75** 0.01 —0.12 0.66*
7. PSATm - 0.66** 0.41+* 0.28** 0.67*
8. PSATv - 0.21* —0.02 0.67+*
9. Jobs - 0.67** 0.26**
10. College majors - 0.02
11. g -
N 1950 1950 1174 1174 1087 1088 708 708 239 369 1950

Note. *p < .05; **p < .01. Tech tilt is based on ASVAB tech scores minus academic scores (math or verbal) so that positive scores indicate tech tilt and negative
scores indicate academic tilt (math or verbal). Tech tilt-V = tech tests minus verbal tests. Tech tilt-M = tech tests minus math tests. SATv, ACTv, PSATv = verbal
scores on the college aptitude tests. SATm, ACTm, PSATm = math scores on the college aptitude tests. Jobs and college majors = jobs or majors in STEM (value = 1)

or humanities (value = 0). g = g factor scores based on all ASVAB tests.

(tech > academic) indicated tech tilt; negative scores (academic >
tech) indicated academic tilt (i.e., math or verbal). All subjects showed
some degree of tilt (tech or academic).

2.2.4. College majors

College majors were the most recent undergraduate major reported
by subjects. Following Coyle et al. (2014, p. 20; see also, Achter,
Lubinski, Benbow, & Eftekhari-Sanjani, 1999; Lubinski et al., 2001;
Park et al., 2007), majors were divided into two categories: (a) STEM
(n = 197), which included physical science, computer science, en-
gineering, and math; and (b) humanities (n = 172), which included
English, fine arts, history, foreign languages, philosophy, and theology.
These categories have been validated in discriminant analysis, which
shows that STEM and humanities majors are related to math and verbal
abilities, respectively (Achter et al., 1999, p. 783).

2.2.5. Occupations (jobs)

Occupations were the most recent jobs reported in the last four
waves of the NLSY (i.e., 2008, 2009, 2010, 2011). Following Coyle et al.
(2015, p. 211; see also, Coyle, 2018b; Park et al., 2007; Wai, Lubinski,
& Benbow, 2005), occupations were divided into two categories: (a)
STEM (n = 112), which included physical scientists (e.g., physicists,
astronomers, chemists), engineers (e.g., civil, electrical, mechanical),
and mathematical and computer scientists; and (b) humanities
(n = 127), which included counselors and religious workers (e.g., social
workers and clergy); lawyers and judges; and media and communica-
tions workers (e.g., authors, editors, reporters). The job categories have
been validated in discriminant analysis, with STEM and humanities jobs
related to math and verbal abilities, respectively (Wai et al., 2005, p.
490; see also, Park et al., 2007, p. 950).

2.3. Statistics

Tech tilt was analyzed using bivariate correlations, logistic regres-
sions, and structural equation modeling (SEM). Correlations (supple-
mented with t-tests) examined relations of tech tilt with math and
verbal abilities on the college aptitude tests (SAT, ACT, PSAT) and with
jobs and college majors in STEM (coded =1) and humanities
(coded = 0).

Logistic regressions used tech tilt to predict jobs or majors in STEM
and humanities fields after controlling for ability tilt alone and com-
bined with g. g scores for participants were based on the first factor (i.e.,
g) of a factor analysis of all ASVAB tests and were estimated using re-
gression. The logistic regressions yielded odds ratios (ORs) for jobs and
majors (in STEM and humanities). ORs greater than 1.00 indicated a
STEM bias; ORs less than 1.00 indicated a humanities bias.
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SEM with maximum likelihood estimation analyzed relations of tech
tilt scores with latent variables for math ability, verbal ability, and
ability tilt, all based on the three college aptitude tests (SAT, ACT,
PSAT). Latent variables for math ability, verbal ability, and ability tilt
were estimated using, respectively, math scores, verbal scores, and
ability tilt scores, of all three tests. (All latent variables were just
identified with > = 0.00, df = 0.) Missing data were handled using full
information maximum likelihood.

SEM also analyzed relations of tech tilt with a latent variable for
jobs/majors, based on both jobs and majors. The relations were esti-
mated using a Markov Chain Monte Carlo (MCMC) approach for binary
criteria (jobs, majors). The approach uses Bayesian statistics to simulate
observations from the posterior distribution (Arbuckle, 2016, pp.
403-427; see also, Gelman et al., 2014, pp. 275-291). Each analysis
involved approximately 24,000 draws (i.e., simulated samples), ob-
tained over six separate runs, with 1000 burn-in draws per run. (The
burn-in draws were used to minimize simulation error before gen-
erating the simulated samples. Final parameter estimates were based on
the simulated samples after discarding the burn-in draws.) To reduce
temporal autocorrelation, the MCMC chain was thinned after the initial
run by retaining an equally-spaced subset of samples in the five sub-
sequent runs. The subsequent runs retained one sample out of every 2,
4, 8, 16, and 32 samples, respectively. Effects that did not include zero
in 95% credibility intervals are reported as significant.

All effects are reported as standardized coefficients (r or ). Mean
effects (M, and Mp), and the average of absolute effects (|M,| and |Mp|),
are reported in parentheses. Significant effects are reported atp < .05.
Based on Cohen's (1988) criteria, effect sizes (rs or Bs) of 0.10, 0.30, and
0.50 are described as small, medium, and large, respectively.

3. Results

Table 1 (rows 1 and 2) reports correlations of tech tilt (techM and
techV) with math and verbal subtests of the three college aptitude tests
(SAT, ACT, PSAT). (Tech tilt was based on ASVAB tech scores minus
academic scores so that positive scores indicated tech tilt and negative
scores indicated academic tilt.) Both types of tech tilt correlated
strongly with each other (r = 0.64). In addition, both types of tech tilt
correlated negatively (and significantly) with the college aptitude tests

! peterson and Brown (2005) showed that the relationship between r and B is
independent of sample size and number of predictors and that the imputation of
r (given B) yields an estimate similar to the population correlation (for a con-
trasting view, see Roth, Le, Oh, Van Iddekinge, & Bobko, 2018). Given the re-
lationship between r and f3, Bs of .10, .30, and .50 could be described as small,
medium, and large, respectively, using Cohen’s (1998) criteria for r.
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Table 2
Correlations of tech tilt with ability tilt, jobs, and college majors.
1 2 3 4 5 6 7 8

1. Tech tilt-V - 0.64** 0.28** 0.17+* 0.29** 0.35** 0.29+* —0.21*
2. Tech tilt-M - —0.21* —0.23** —0.17+* 0.15* 0.01 —0.19*
3. SAT tilt (M-V) - 0.66"* 0.61* 0.35"* 0.38"* 0.01
4. ACT tilt (M-V) - 0.50** 0.35* 0.34* 0.05
5. PSAT tilt (M-V) - 0.26** 0.41+* —0.01
6. Jobs - 0.67** 0.25%
7. College majors - 0.02
8.g -
N 1950 1950 1174 1087 708 239 369 1950

Note. *p < .05; **p < .01. Tech tilt is based on ASVAB tech scores minus academic scores (math or verbal) so that positive scores indicate tech tilt and negative
scores indicate academic tilt (math or verbal). Ability tilt is based on SAT, ACT, and PSAT math scores minus verbal scores so that positive scores indicate math tilt
and negative scores indicate verbal tilt. Tech tilt-V = tech tests minus verbal tests. Tech tilt-M = tech tests minus math tests. SAT, ACT, PSAT tilt = ability tilt based
on math tests minus verbal tests. Job and college major = job or major in STEM (value = 1) or humanities (value = 0). g = g factor scores based on all ASVAB tests.

Table 3
Means and SDs of tech tilt for jobs and college majors.

Job College major

STEM Humanities t STEM Humanities t d

M SD n M SD n M SD n M SD n
Tech tilt-V 0.20 0.64 112 —-0.29 0.69 127 —5.66** 0.74 0.09 0.68 197 —-0.29 0.56 172 —5.89* 0.61
Tech tilt-M 0.11 0.82 112 -0.12 0.77 127 —2.30" 0.29 —-0.06 0.82 197 -0.07 0.76 172 -0.21 0.01

Note. *p < .05; *p < .01. Tech tilt is based on ASVAB tech scores minus academic scores (math or verbal) so that positive scores indicate tech tilt and negative
scores indicate academic tilt (math or verbal). Tech tilt-V = tech tests minus verbal tests. Tech tilt-M = tech tests minus math tests. Job and college major = job or

major in STEM (value = 1) or humanities (value = 0).

(M, = —0.25, range = —0.41 to —0.11), with similar results for
math (M, = —0.25, range = —0.35 to —0.12) and verbal subtests
(M, = —0.26, range = —0.41 to —0.11). The negative effects indicate
that tech tilt (positive scores) predicted lower levels of performance on
college aptitude tests.

Table 1 (columns 9 to 11) reports correlations of both types of tilt
(techM and techV) with jobs and majors in STEM and humanities and
with g (As noted, tech tilt was based on ASVAB tech scores minus
academic scores so that positive scores indicated tech tilt and negative
scores indicated academic tilt.) Both types of tech tilt correlated posi-
tively and (generally) significantly with jobs and majors (M, = 0.20,
range = 0.01 to 0.35), indicating that tech tilt predicted STEM criteria,
whereas academic tilt predicted humanities criteria. An exception was
math tech tilt (techM), which correlated near zero (r = 0.01) with
college majors. (The trivial effect might reflect overlap between tech
abilities and math abilities, a possibility revisited in the Discussion.) In
addition, both types of tech tilt correlated negatively and significantly
with g (r = —0.21 and — 0.19, techV and techM, respectively), in-
dicating that high levels of tech tilt were associated with low levels of g.

Table 2 (columns 3 to 5) reports correlations of both types of tech
tilt (techM and techV) with ability tilt based on the college aptitude
tests (SAT, ACT, PSAT). (The table also includes tech tilt correlations
with jobs and majors, which were already discussed and will not be
repeated here.) Ability tilt was based on math scores minus verbal
scores so that positive scores indicated math tilt and negative scores
indicated verbal tilt. Tech tilt was based on ASVAB tech scores minus
academic scores (math or verbal) so that positive scores indicated tech
tilt and negative scores indicated academic tilt (math or verbal). The
results were similar for all college tests (SAT, ACT, PSAT). Tech tilt
based on verbal scores (techV) correlated positively with ability tilt,
indicating that verbal tilt on the ASVAB (negative scores) predicted
verbal tilt on the college tests (negative scores) (M, = 0.25,
range = 0.17 to 0.29). In contrast, tech tilt based on math scores
(techM) correlated negatively with ability tilt, indicating that math tilt

on the ASVAB (negative scores) predicted math tilt on the college tests
(positive scores) (M, = —0.20, range = —0.23 to —0.17).

Table 3 reports mean levels of tech tilt for STEM and humanities
criteria (i.e., jobs and majors), by type of tech tilt (i.e., techV and
techM). (Tech tilt was based on tech scores minus academic scores so
that positive scores indicated tech tilt and negative scores indicated
academic tilt.) In general, STEM criteria (jobs and majors) were asso-
ciated with positive scores (M = 0.09), indicating a tech tilt bias,
whereas humanities criteria were associated with negative scores
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Fig. 1. Plot of college majors and jobs in STEM and humanities, by mean tilt
pattern (tech tilt or academic tilt) and mean ability level. Tilt pattern is depicted
on the x-axis, with academic tilt to the left of the origin (negative scores) and
tech tilt to the right of the origin (positive scores). Ability level is based on the
sum of standardized tech scores and academic scores on the ASVAB for the full
sample (M = 0, SD = 1). Ability level is depicted on the y-axis, with below
average scores below the origin and above average scores above the origin.
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Odds ratios for logistic regressions of job or college major on tech tilt, before (step 1) and after controlling for ability tilt (step 2) and both ability tilt and g (step 3).

Predictor Criterion Step 1 Step 2 Step 3 Model ? by step

Tech tilt Tech tilt Ability tilt Tech tilt Ability tilt g 1 2 3
1. Tech tilt-V Job 2.81* 2.10% 2.34" 2.40" 1.94* 1.88** 17.18* 28.22+* 37.53*
2. Tech tilt-V Major 3.21 2.41* 2.56" 2.43* 2.54+ 1.06 29.04+ 52.84* 52.97+
3. Tech tilt-M Job 1.20 1.43 2.96" 1.60* 217+ 1.83* 0.87 23.71%* 32.66*
4. Tech tilt-M Major 1.07 1.49¢ 3.42 1.49* 3.41* 1.03 0.68 43.42 43.36**

Note.*p < .05; **p < .01. Significance tests based on Wald chi-square test (2-tailed). Odds ratios greater than 1.00 indicate tech tilt is associated with STEM; odds
ratios less than 1.00 indicate tech tilt is associated with humanities. Tech tilt is based on ASVAB tech scores minus academic scores (math or verbal) so that positive
scores indicate tech tilt and negative scores indicate academic tilt (math or verbal). Ability tilt is based on SAT math scores minus verbal scores so that positive scores
indicate math tilt and negative scores indicate verbal tilt. g = g factor scores based on all ASVAB tests. Tech tilt-V = tech tests minus verbal tests. Tech tilt-M = tech
tests minus math tests. Job and major = job or college major in STEM (value = 1) or humanities (value = 0).

(M = —0.19), indicating an academic tilt bias. An exception concerned
the non-significant negative techM (tech minus math) effect for STEM
majors, indicating a slight academic tilt (math) bias for STEM. (The
exception may be attributed to the math tilt component of techM,
which predicts STEM.) The effect sizes (d) for STEM-humanities dif-
ferences were stronger (jobs, majors) for tech tilt based on verbal scores
(0.74, 0.61) than for tech tilt based on math scores (0.29, 0.01). All
STEM-humanities differences were significant, except the difference
involving college majors and tech tilt based on math scores (i.e.,
techM).

Fig. 1 depicts plots of college majors and jobs in STEM and huma-
nities, by tilt pattern (tech tilt or academic tilt) and ability level. Two
results are notable. First, both majors and jobs were associated with
above-average ability levels (positive scores on the y-axis). (The above-
average ability levels may be attributable to screening out lower ability
applicants for college admissions and jobs, inflating ability levels.)
Second, majors and jobs varied by tilt pattern. Consistent with the prior
results (Table 3), STEM criteria were generally associated with tech tilt
(positive scores), whereas humanities criteria were associated with
academic tilt (negative scores).

Table 4 reports odds ratios for supplemental logistic regressions of
tech tilt (techV and techM) on STEM and humanities criteria. The
analyses were performed separately for each type of tech tilt (techM,
techV) and criterion (jobs, majors) in STEM (coded 1) and humanities
(coded 0). Odds ratios greater than 1.00 indicate tech tilt is associated
with STEM, whereas odds ratios less than 1.00 indicate tech tilt is as-
sociated with humanities. The odds ratios for tech tilt were computed
before (Step 1) and after (Step 2) controlling for ability tilt, and also
after controlling for both ability tilt and g (Step 3). (Ability tilt was

Table 5
Relations of tech tilt with latent variables for ability tilt, specific abilities, and
jobs/majors.

Ability tilt Math ability Verbal ability Jobs/Majors
Tech tilt-V 0.31** —0.24* —0.43* 0.38**
Tech tilt-M —0.27+ —0.35" -0.17* 0.08*

Note. *p < .05; *'p < .01. Tech tilt is based on ASVAB tech scores minus
academic scores (math or verbal) so that positive scores indicate tech tilt and
negative scores indicate academic tilt (math or verbal). Tech tilt-V = tech
scores minus verbal scores. Tech tilt-M = tech scores minus math scores. Ability
tilt is based on SAT, ACT, PSAT math scores minus verbal scores so that positive
scores indicate math tilt and negative scores indicate verbal tilt. Latent factors
for ability tilt, math ability, and verbal ability are based on math and verbal
scores of the SAT, ACT, PSAT. The latent factor for jobs/majors is based on jobs
and college majors in STEM (value = 1) and humanities (value = 0). For
MCMC analysis of jobs/majors, effects that did not include zero in 95% or 99%
credible intervals are reported as significant with one (95%) or two (99%) as-
terisks.
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based on SAT math minus verbal scores, the most common scores for
the college aptitude tests.) Ability tilt was entered in Step 2 to control
for an alternative type of tilt (which also predicts jobs/majors), fol-
lowed by g, which controlled for the negative relation between tech tilt
and g (see Table 1).

Table 4 reports the results of the supplemental logistic regressions,
which extended the analyses of mean levels of tech tilt (cf. Table 3).
Both types of tech tilt were associated with odds ratios (ORs) greater
than 1.00 before and after controlling for ability tilt and after control-
ling for both ability tilt and g (Mor = 1.97, range = 1.07 to 3.21)
(Table 4). The results indicated that tech tilt was associated with STEM
criteria (jobs and majors), with increases in significant effects after
controlling for ability tilt alone (Step 2) or combined with g (Step 3).

Table 5 reports relations of tech tilt with latent variables for ability
tilt, math ability, verbal ability, and jobs/majors in STEM/humanities.
All relations were estimated using SEM. The latent variables for ability
tilt, math ability, and verbal ability were based on math and verbal
scores of the three college aptitude tests (SAT, ACT, PSAT). The latent
variable for jobs/majors was based on jobs and majors in STEM (coded
1) and humanities (coded 0).2 Effects were estimated separately for the
two types of tech tilt (techM, techV) and the four latent variables
(ability tilt, math, verbal, jobs/majors), yielding a total of 8 analyses (2
types of tech tilt x 4 latent variables).

Table 5 reports the results of the analyses, which confirm the prior
analyses (cf. Tables 1-4). Both types of tech tilt (techM, techV) were
negatively associated with the latent math and verbal abilities
(Mg = —0.30, range = —0.43 to —0.17), indicating that high levels of
tech tilt predicted low levels of academic ability. Moreover, techV was
positively associated with ability tilt (3 = 0.31), indicating that verbal
tilt on the ASVAB (negative scores) predicted verbal tilt on the SAT,
ACT, and PSAT (negative scores). In contrast, techM was negatively
associated with ability tilt ( = —0.27), indicating that math tilt on the
ASVAB (negative scores) predicted math tilt on the SAT, ACT, and PSAT
(positive scores). Finally, the latent jobs/major factor was positively
and significantly related to techV ( = 0.38), and weakly (but still
positively) related to techM ( = 0.08). The positive effects indicate
that tech tilt predicted STEM jobs and majors.>

2 Latent variables were justified by strong correlations (|r| > .50, Tables 1
and 2) between SAT, ACT, and PSAT indicators of the same ability (i.e., ability
tilt, verbal ability, math ability) and between STEM and humanities preferences
for jobs and majors, indicating high levels of shared variance between analo-
gous variables.

3 The SEM analysis also provided separate effects of tech tilt for each criterion
(i.e., jobs, majors). The results were consistent with the prior correlations of
tech tilt with jobs and majors (cf. Table 1, columns 9 and 10). Tech tilt was
positively and significantly associated with jobs and majors, with effects (jobs,
majors) being stronger for techV (.34, .38) than for techM (.08, 08). The po-
sitive effects indicated that tech tilt predicted STEM jobs and majors.
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4. Discussion

Prior research has examined ability tilt, based on within-subject
differences in math and verbal scores on college aptitude tests (e.g.,
SAT, ACT). Ability tilt yields math tilt (math > verbal) and verbal tilt
(verbal > math), which differentially predict STEM and humanities
criteria (e.g., Coyle et al., 2014, 2015; Lubinski et al., 2001; Park et al.,
2007). The current study was the first to examine tech tilt, based on
within-subject differences in technical abilities (e.g., mechanics, cars,
electronics) and academic abilities (math or verbal), all based on the
ASVAB. The within-subject differences yielded two types of tilt: tech tilt
(tech > academic) and academic tilt (academic > tech). The two types
of tilt were correlated with math and verbal scores on college aptitude
tests (SAT, ACT, PSAT), with ability tilt (math minus verbal) on the
college tests, and with jobs and college majors in STEM and humanities.
The main results follow:

1) Tech tilt correlated negatively with math and verbal scores on the
college aptitude tests (SAT, ACT, PSAT), indicating that tech tilt
predicted low levels of academic ability (i.e., math and verbal)
(Table 1, rows 1 and 2). The effects replicated using latent variables
for math and verbal abilities based on all three college aptitude tests
(Table 5).

2) Tech tilt predicted jobs and college majors in math/STEM fields
(e.g., physics, engineering), whereas academic tilt (math or verbal)
predicted jobs and majors in verbal/humanities fields (e.g., history,
journalism) (Table 1, column 9 and 10). The effects replicated using
a latent variable based on both jobs and majors (Table 5) and after
controlling for g (Table 4).

3) Tech tilt (on the ASVAB) correlated with ability tilt on the college
aptitude tests (SAT, ACT, PSAT), indicating that verbal tilt on the
ASVAB predicted verbal tilt on the college tests, and that math tilt
on the ASVAB predicted math tilt on the college tests (Table 2,
columns 3 to 5). The effects replicated using latent variables for
ability tilt based on multiple tests (Table 5).

The tech tilt effects replicated with different college aptitude tests
(SAT, ACT, PSAT), different analytical approaches (e.g., correlations,
regressions, SEM), and different control variables (e.g., g and ability
tilt), bolstering the robustness of effects. In addition, the tech tilt effects
with latent variables were robust across different criteria (e.g.,
|Mg| = 0.28, Table 5). Finally, the sign of effects (positive or negative)
was uniform across analyses. Tech tilt was negatively associated with
academic abilities (math or verbal) on the college aptitude tests, and
positively associated with STEM criteria (e.g., Table 5).

The negative relations of tech tilt (on the ASVAB) with math and
verbal abilities on the college aptitude tests (SAT, ACT, PSAT) are
consistent with investment theories (Cattell, 1987, pp. 138-146). Such
theories assume that investment in one ability (e.g., non-academic,
technical) boosts similar abilities but retards competing abilities (e.g.,
academic), yielding negative effects. In the current study, tech tilt was
assumed to reflect investment in non-academic abilities (e.g., me-
chanics, cars, tools), which came at the expense of investment in aca-
demic abilities (e.g., math, verbal), yielding negative effects between
tech tilt and academic abilities (e.g., Table 5).

Preferences for jobs and college majors varied with mean levels of
tech tilt and academic tilt (Table 3). Tech tilt predicted jobs and majors
in STEM (e.g., engineering, computing), which incorporates technical
knowledge (e.g., electronics, mechanics, tools). In contrast, academic
tilt predicted jobs and majors in humanities (e.g., journalism, coun-
seling), which rarely incorporate such knowledge. A similar pattern was
observed on the plots of jobs and majors, which were associated with
elevated ability levels (Fig. 1). (The elevated ability levels could be
attributed to selection effects, with higher ability people being selected
for college or jobs.)

The results can be attributed to differential investment in technical
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and academic areas (cf. Coyle, 2018a, p. 12). Tech tilt presumably re-
flects non-academic, technical investments, which are related to STEM
preferences (e.g., electronics, mechanics). In contrast, academic tilt
(especially verbal tilt) reflects academic investments, notably in arts
and letters, which are more strongly related to humanities preferences.
These differential investments make domain of preference (STEM or
humanities) a useful criterion in tilt studies, which focus on domain
rather than level of achievement (for a similar argument, see
Humphreys, Lubinski, & Yao, 1993).

The effects were slightly weaker for tech tilt based on math scores
(techM) than for tech tilt based on verbal scores (techV) (Table 1). The
differences might reflect differences between technical tests and math
tests, which both measure STEM skills (e.g., mechanics, electronics),
versus technical tests and verbal tests, which measure non-analogous
skills (e.g., mechanics and electronics vs. literature and history). The
similar skills measured by technical and math tests could reduce dis-
criminability of techM, which would reduce predictive power. In con-
trast, the non-analogous skills measured by technical and verbal tests
would boost discriminability of techV, which could increase predictive
power. Correlations involving the two types of tech tilt supported these
predictions. Compared to techV, techM had weaker correlations with
college tests (SAT, ACT, PSAT), majors, and jobs (|M,| = 0.19 and 0.29,
techM and techV, respectively) (Table 1, rows 1 and 2).

An anomaly concerned tech tilt based on math scores (techM),
which correlated significantly with jobs (r = 0.15) but not with college
majors (r = 0.01) (Table 1). (A similar pattern was observed for techV,
which correlated more strongly with jobs [r = 0.35] than with majors
[r = 0.29].) The anomaly could be attributed to the sensitivity of tech
tilt to different outcomes. In particular, tech tilt may be more sensitive
to skills required by STEM jobs (e.g., mechanics, electronics, tools) than
to those required by STEM majors. Indeed, tech tilt reflects vocational
skills, which should be more strongly related to vocations (jobs) than to
college majors, which may focus more on theoretical matters with less
vocational relevance.

Two findings warrant elaboration. First, tech tilt correlated nega-
tively with g (M, = —0.20, Table 1) but robustly with ability tilt
(|M;| = 0.23, Table 2), which was unrelated to g (|M,| = 0.02, Table 2).
The negative effects of tech tilt with g indicate that high levels of tech
tilt predicted low levels of g, perhaps because low levels of g are related
to non-academic (technical) preferences (cf. Schmidt, 2011). The robust
relations of tech tilt with ability tilt indicate that math and verbal tilt on
the ASVAB predicted the analogous type of tilt (math or verbal) on the
college tests (SAT, ACT, PSAT), providing convergent validity. The re-
lations of tech tilt with ability tilt and g suggest that the effects of tech
tilt might be attributable to g or ability tilt. However, this was not the
case. The effects of tech tilt on majors and jobs replicated after con-
trolling for g and ability tilt, suggesting the effects were not spurious
(Table 4).

Second, relations of tech tilt with jobs and college majors were
uniformly significant, and generally strengthened, after controlling for g
(Table 4). The findings can be explained by reciprocal suppression
(Tzelgov & Henik, 1991, p. 526), which describes increases in the ef-
fects of a predictor when it correlates positively with a criterion but
negatively with another predictor. Reciprocal suppression can explain
the increase in tilt tech effects (with jobs and majors) after controlling
for g: Tech tilt and g both correlated positively with STEM criteria but
negatively with each other (Table 1).

The overall pattern of effects is consistent with investment theories
(e.g., Cattell, 1987, pp. 138-146), which focus on the development of
specific abilities. Such theories predict that investments in one domain
(e.g., non-academic) come at the expense of investments in competing
domains (e.g., academic). Tech tilt presumably reflects investments in
non-academic, vocational fields (e.g., cars, electronics), which would
reduce investments in academic fields (e.g., math, verbal), yielding
negative effects between technical and academic abilities.

The effects are also consistent with niche picking theories (Scarr &
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McCartney, 1983) and experience-producing drive theories (Bouchard,
1997). Both theories assume that cognitive abilities are shaped by
predispositions, which include interests in different domains. Tech tilt
presumably reflects interests in non-academic, technical activities,
which boost technical abilities but inhibit academic abilities. In con-
trast, academic tilt presumably reflects interests in school activities,
which boost academic abilities but inhibit non-academic, technical
abilities. Relations among abilities and interests form trait complexes
(Ackerman & Heggestad, 1997), which represent associations among
distinct traits (abilities, interests, personality) in specific domains (e.g.,
science/math, social, clerical). Trait complexes predict that different
traits develop in tandem, with positive relations among traits in similar
domains (e.g., technical interests and technical abilities) and negative
relations among traits in competing domains (e.g., technical interests
and academic abilities).

4.1. Future research

Future research should consider the development of tech tilt using
differentiation theories (e.g., Deary et al., 1996). Differentiation the-
ories assume that over time, cognitive abilities become less loaded with
g (general variance) and more loaded with non-g factors, which reflect
specific abilities such as tech tilt. The decrease in g (and increase in non-
g factors) can be attributed to cognitive specialization, which boosts
specific abilities unrelated to g. Such specialization may be linked to
college attendance, which improves academic abilities (e.g., academic
tilt), versus vocational school attendance, which improves technical
abilities (e.g., technical tilt). Moreover, cognitive specialization should
increase over time with continued investment, which would magnify
specific abilities such as tech tilt (cf. Coyle, 2018a, p. 12).

Future research should also consider cognitive specialization in the
context of cognitive differentiation-integration effort (CD-IE) theory
(Woodley, 2011; Woodley, Figueredo, Ross, & Brown, 2013). CD-IE
theory is an evolutionary theory linking cognitive specialization and life
history speed. The theory describes tradeoffs between mating effort and
competing activities such as education, which produces cognitive spe-
cialization. CD-IE theory distinguishes between fast life histories, which
are associated with high mating effort and less education (and less
specialization), and slow life histories, which are associated with the
opposite pattern. The theory has been supported using the subtests of
the ASVAB, which was associated with more non-g variance (implying
more cognitive specialization) at slower life history speeds (Woodley
et al., 2013). Consistent with CD-IE theory, slower life history speeds
should also be related to higher levels of tech tilt, which reflects cog-
nitive specialization.

Future research should also consider other types of tilt. One pro-
mising target is spatial tilt, based on within-subject differences in spa-
tial ability and competing abilities (e.g., academic or technical). Spatial
tilt measures spatial abilities such as mental rotation and spatial vi-
sualization. Such abilities have been linked to STEM achievements (e.g.,
patents and STEM doctorates) in gifted and non-gifted samples (e.g.,
Coyle et al., 2014; Lubinski, 2010; Wai, Lubinski, & Benbow, 2009).
Moreover, spatial tilt may predict STEM criteria beyond tech tilt or
math tilt, which has also been linked to STEM achievement (e.g., Wai
et al., 2009).

A related suggestion is to examine whether spatial abilities con-
tribute to the predictive power of tech tilt. In the current study, tech tilt
was based on four ASVAB subtests (Al, EI, SI, MC). The four subtests
measured unknown mixtures of technical knowledge and spatial abil-
ities. Future research should examine the unique contributions of tech
tilt and spatial abilities to STEM criteria. Spatial abilities could be
measured using tests with distinct spatial loadings. One such test is
assembling objects on the ASVAB, which examines the ability to men-
tally rotate puzzle pieces to form a coherent object. Assembling objects
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and similar tests tap spatial abilities (e.g., mental rotation, spatial
imagery), which predict STEM achievements and may contribute to the
predictive power of tech tilt (e.g., Wai et al., 2009).

Finally, future research should use other analytical approaches to
examine the contribution of g and specific abilities (e.g., academic and
spatial) to tech tilt. Two such approaches are relative importance
analysis, which empirically distributes shared variance among g and
specific abilities (e.g., Lang & Bliese, 2012; Lang, Kersting, Hiilsheger, &
Lang, 2010), and bifactor analysis, which analyzes independent con-
tributions of g, specific abilities, and other factors (e.g., Beaujean,
2015). These approaches could examine whether the predictive power
of tech tilt is primarily attributable to g, specific abilities, or a mixture
of g and specific abilities.

4.2. Implications of tilt research and technical aptitudes

The current study has implications for vocational education, also
known as career and technical education (CTE). CTE aims to inculcate
job-ready skills, often by offering vocational certificates. The percen-
tage of vocational certificates earned between 1984 and 2009 increased
from 1.8% to 10.9% (Ewert, 2012, p. 2) in STEM (e.g., electronics and
computers) and non-STEM fields (e.g., business and policing). Based on
the current results, tech tilt may be more strongly associated with STEM
vocations compared to non-STEM and business vocations (e.g., sales
and management), which may be related to other traits (e.g., extra-
version in sales).

The current study also has implications for research with high
ability samples such as the SMPY (top 1% in ability level) (Lubinski
et al., 2001; Park et al., 2007; see also, Lubinski, 2009, 2016). Ac-
cording to differentiation theories (e.g., Deary et al., 1996; see also,
Coyle, 2016), test scores of high ability samples are loaded with less g
(e.g., general variance) and more specificity (e.g., unique variance),
which includes non-g technical skills. Such non-g skills may predict
outcomes better for SMPY and higher ability samples, whose test scores
are loaded with more non-g variance, compared to lower ability sam-
ples, whose test scores are loaded with less non-g variance (and more g).

Technical and academic abilities may also have implications for
college admissions. The distinction between technical and academic
abilities is consistent with Vernon's (1950; see also, Humphreys, 1962,
1986; Humphreys et al., 1993) distinction between a verbal-numerical-
educational factor and a practical-mechanical-spatial factor. These
factors are differentially represented on the SAT and ACT, two widely
used college admissions tests. Verbal-numerical-educational factors are
integral to both tests, which include math and verbal subtests. Practical-
mechanical-spatial factors are not directly measured by the tests, which
do not include mechanical or spatial subtests. The omission of me-
chanical and spatial subtests may overlook prospective students with
strong spatial abilities, which predict STEM criteria (for a similar ar-
gument, see Humphreys, 1986; Humphreys et al., 1993).

5. Conclusion

This study examined the validity of tech tilt, based on within-subject
differences in technical scores and academic scores (math or verbal) on
the ASVAB. Tech tilt correlated negatively with math and verbal scores
on college aptitude tests (SAT, ACT, PSAT) but positively with STEM
criteria (e.g., jobs and majors). The effects replicated using different
tests (SAT, ACT, PSAT) and different analytical approaches (e.g., cor-
relations, regressions, SEM). The results are consistent with investment
theories, which predict that investments in one domain (non-academic,
technical) come at the expense of investments in competing domains
(academic). Future research should consider factors that moderate the
effects of tech tilt (e.g., education and life history) as well as com-
plementary types of tilt (e.g., spatial tilt).
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