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 118 

Abstract: 119 

The genetics of cortical arealization in youth is not well understood. In this study, we use a 120 

genetically-informative sample of 677 typically-developing children and adolescents (mean age 121 

12.72 years), high-resolution MRI, and quantitative genetic methodology in order to address 122 

several fundamental questions on the genetics of cerebral surface area. We estimate that over 123 

85% of the phenotypic variance in total brain surface area in youth is attributable to additive 124 

genetic factors. We also observed pronounced regional variability in the genetic influences on 125 

surface area, with the most heritable areas seen in primary visual and visual association cortex. A 126 

shared global genetic factor strongly influenced large areas of the frontal and temporal cortex, 127 

mirroring regions that are the most evolutionarily novel in humans relative to other primates. In 128 

contrast to studies on older populations, we observed statistically significant genetic correlations 129 

between measures of surface area and cortical thickness (rG = 0.63), suggestive of overlapping 130 

genetic influences between these endophenotypes early in life. Finally, we identified strong and 131 

highly asymmetric genetically-mediated associations between Full-Scale Intelligence Quotient 132 

and left perisylvian surface area, particularly receptive language centers. Our findings suggest 133 

that spatially complex and temporally dynamic genetic factors are influencing cerebral surface 134 

area in our species.  135 

 136 

  137 
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 138 

Significance Statement: 139 

Over evolution, the human cortex has undergone massive expansion. In humans, patterns of 140 

neurodevelopmental expansion mirror evolutionary changes. However, there is a sparsity of 141 

information on how genetics impacts surface area maturation. Here, we present a systematic 142 

analysis of the genetics of cerebral surface area in youth. We confirm prior research that 143 

implicates genetics as the dominant force influencing individual differences in global surface 144 

area. We also find evidence that evolutionarily novel brain regions share common genetics, that 145 

overlapping genetic factors influence both area and thickness in youth, and the presence of 146 

strong genetically-mediated associations between intelligence and surface area in language 147 

centers. These findings further elucidate the complex role that genetics plays in brain 148 

development and function.149 
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Introduction: 150 

Evolutionary advances in higher cognitive functions have been accompanied by dramatic 151 

increases in both the size and complexity of the human telencephalon (Carroll, 2003). The 152 

expansion of the cortical sheet in Homo sapiens has been nearly entirely driven by increases in 153 

cerebral surface area (SA). For example, human cortical SA is on average 1000 times larger than 154 

that of mice, while cortical thickness (CT) is only doubled (Rakic, 2009). Interestingly, the 155 

regions of the greatest evolutionary expansion in SA tend to mirror those with the greatest 156 

change during human neurodevelopment (Hill et al., 2010). More rapidly expanding regions also 157 

show the strongest correlations with intellectual ability (Fjell et al., 2015).  Thus, there has been 158 

increasing interest in what common genetic factors influence both evolutionary and 159 

neurodevelopmental processes in humans (Reardon et al., 2018).  160 

There are profound within-species individual differences in human brain structure. For 161 

example, the size of the human cerebral cortex can vary by nearly a factor of two in similarly-162 

aged youth (Giedd et al., 2015). Understanding the nature of these observed individual 163 

differences in brain structure remains an area of active investigation. Prior in vivo studies in 164 

children and adolescents using MRI have shown that both cerebral volumes and CT are highly 165 

heritable (Wallace et al., 2006; Schmitt et al., 2007; Lenroot et al., 2009). Studies in older adults 166 

have demonstrated very high and relatively uniform heritabilities in SA throughout the cerebrum 167 

(Panizzon et al., 2009; Eyler et al., 2011, 2012). SA also appears genetically orthogonal to CT in 168 

older samples (Panizzon et al., 2009).  169 

However, the literature on the genetics of cortical arealization area is limited in children 170 

and adolescents, with the few prior studies presenting conflicting results. This is particularly 171 

problematic given that cerebral SA changes most rapidly during childhood (Schnack et al., 172 
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2017), and the dominant theories on its genetics are based on early neurodevelopmental 173 

processes whose effects may be attenuated later in life (Rubenstein and Rakic, 1999; Rakic, 174 

2009). In the current study, we describe results from a systematic examination of cortical 175 

arealization in a large genetically-informative pediatric neuroimaging sample.  176 

 177 

Materials and Methods: 178 
 179 

Subjects 180 

677 typically developing children, adolescents and young adults (mean age 12.72) from 181 

382 families were recruited by the Child Psychiatry Branch of the National Institute of Mental 182 

Health (NIMH).  The sample included pediatric, adolescent, and young adult monozygotic twins 183 

(MZ, N=222), dizygotic twins (DZ, N=101), siblings of twins (N=84), and singleton (N=270) 184 

non-twin family members (Table 1). Details of this sample have been described elsewhere 185 

(Lenroot et al., 2009). Parents of prospective participants were interviewed by phone and asked 186 

to report their child's developmental, educational, and health history. Subjects were excluded if 187 

they had been diagnosed with a psychiatric disorder, taken psychiatric medications, had 188 

experienced brain trauma, or had any condition known to affect gross brain development. 189 

Inclusion criteria were a minimum gestational age of 29 weeks and a minimum birth weight of 190 

1,500 grams.  Approximately 80% of families responding to the ads met inclusion criteria.  191 

For twin subjects, zygosity was determined by DNA analysis of buccal cheek swabs 192 

(BRT Laboratories and Proactive Genetics) using 9–21 unlinked short tandem repeat loci for a 193 

minimum certainty of 99%. We obtained verbal or written assent from the child and written 194 

consent from the parents for their participation in the study. The Combined Neurosciences 195 
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Institutional Review Board (CNS-IRB) at the National Institutes of Health approved the 196 

protocol.  197 

For each subject, age-appropriate versions of a Wechsler Intelligence scale were 198 

administered. Full-Scale IQ (FSIQ) data were available for 663 (98%) of the participants.  597 199 

subjects (90%) were administered the Wechsler Abbreviated Scale of Intelligence (WASI), 47 200 

(7%) were administered the Wechsler Intelligence Scale for Children-Revised (WISC-R), and 201 

the remaining 3% of subjects were administered either versions of the Wechsler Preschool and 202 

Primary Scale of Intelligence (WPPSI) or the Wechsler Adult Intelligence Scale (WAIS).  203 

 204 

[TABLE 1 ABOUT HERE] 205 

 206 

MRI Acquisition 207 

All MRI images were acquired on the same General Electric 1.5 Tesla Signa Scanner 208 

located at the National Institutes of Health Clinical Center in Bethesda, Maryland. A 3-D spoiled 209 

gradient recalled echo sequence in the steady state sequence was used to acquire 124 contiguous 210 

1.5-mm thick slices in the axial plane (TE/TR = 5/24 ms; flip angle = 45 degrees, matrix = 256 × 211 

192, NEX = 1, FOV = 24 cm, acquisition time 9.9 min). A Fast Spin Echo/Proton Density 212 

weighted imaging sequence was also acquired for clinical evaluation. 213 

 214 

Image Analysis 215 

All MR images were imported into the CIVET pipeline for automated structural image 216 

processing (Ad-Dab’bagh et al., 2006). Briefly, the native MRI scans were registered into 217 



REGIONAL HERITABILITY OF CEREBRAL SURFACE AREA IN YOUTH 
 

 7 

standardized stereotaxic space using a linear transformation (Collins et al., 1994) and corrected 218 

for non-uniformity (Sled et al., 1998). The registered and corrected volumes were segmented into 219 

white matter, gray matter, cerebrospinal fluid, and background using a neural net classifier 220 

(Zijdenbos et al., 2002). The gray and white matter surfaces were fitted using deformable 221 

surface-mesh models and nonlinearly aligned toward a template surface (MacDonald et al., 2000; 222 

Robbins et al., 2004; Kim et al., 2005). The grey and white matter surfaces were resampled into 223 

native space. At each of approximately 80,000 vertices, surface area (SA) was calculated at the 224 

geometric center between inner and outer cortical surfaces (Lyttelton et al., 2009). Cortical 225 

thickness was measured in native-space using the linked distance between the white and pial 226 

surfaces (MacDonald et al., 2000; Lerch and Evans, 2005).   227 

 228 

Experimental Design and Statistical Analysis 229 

Each subject’s neuroanatomic measures were imported into the R statistical environment 230 

for analysis (R Core Team, 2018).  The data were reformatted such that each record represented 231 

family-wise (rather than individual-wise) data. Genetic modeling was performed in OpenMx, a 232 

structural equation modeling package fully integrated into the R environment (Boker et al., 2011; 233 

Neale et al., 2016).  First, global and vertex-level univariate analyses of SA were performed via 234 

the classic ACE model with an extended twin design (Posthuma and Boomsma, 2000). This 235 

model decomposes the observed phenotypic variance into components attributable to additive 236 

genetic (A), shared environmental (C), and unique environmental factors (E) including 237 

measurement error (Neale and Cardon, 1992; Lenroot et al., 2009). Mathematically, these 238 

variance components can be estimated based on the observed phenotypic variance and cross-twin 239 

or cross-sibling covariances. For example:  240 
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Where VP represents the observed phenotypic variance,  the monozygotic twin-twin 241 

phenotypic covariance and  the dizygotic phenotypic covariance. From these three linear 242 

equations, the variance attributable to additive genetic factors (A) can be estimated, as well as 243 

estimates for the shared (C) and unique (E) environmental variance. Proportional variance 244 

estimates (e.g. the heritability, A/VP, or a2) can subsequently be calculated.  245 

The model also contained parameters to adjust for sex and linear and nonlinear effects of 246 

age on the mean. Optimum model fit was determined using maximum likelihood (Edwards, 247 

1972).  In order to test for statistical significance, fit was compared to submodels with either 248 

genetic or shared environmental parameters removed (CE and AE models, respectively); 249 

differences in model fit asymptotically follow a 50:50 mixture of zero and 2 with 1 degree of 250 

freedom (Dominicus et al., 2006). Familial variance (combined additive genetic and shared 251 

environmental variance) was also assessed by comparing the ACE model to a submodel in which 252 

both familial factors were simultaneously removed. Control for multiple testing was performed 253 

with the false discovery rate (Genovese et al., 2002).  To investigate potential global effects on 254 

vertex-level measures, we repeated these analyses including standardized total cerebral SA as an 255 

additional covariate. Given the negligible role of the shared environment in these univariate 256 

models, it was removed from subsequent analyses.  257 

We hypothesized that a global genetic factor influenced regional genetic variance. As a 258 

second perspective on the influence of global measures on vertex-level area, we constructed 259 

bivariate models that decomposed the observed phenotypic covariance between each vertex and 260 
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standardized global SA. The statistical genetic approach was similar to that described previously 261 

for CT (Schmitt et al., 2009a). Briefly, models were statistical genetic extensions of the Cholesky 262 

decomposition, which factors any symmetric positive definite matrix into a lower triangular 263 

matrix postmultiplied by its transpose (Neale and Cardon, 1992). This approach allows for the 264 

covariance between two phenotypes to be decomposed into that owed to shared genetic or 265 

environmental sources, but places few a priori constraints on the data. Mathematically, the 2 x 2 266 

phenotypic variance-covariance matrix (P), and expected cross-twin variance-covariance 267 

matrices (CovMZ, CovDZ) can be expressed as: 268 

 

 

 

Where A, C, and E represent 2 x 2 lower triangular matrices with 3 free parameters each, e.g.: 269 

  270 

Similar to the univariate case, the observed cross-sibling variance-covariance matrices can be 271 

used to solve for each individual parameter estimate. Genetic and environmental correlations 272 

between total SA and each vertex i were calculated: 273 

 274 

 

 275 

Where aGi,totSA = a11 * a21 and represents the genetic covariance between the ith vertex and total 276 

surface area, aGi = a11 
2 the genetic variance at the ith vertex, and  atotSA = a21

2+ a22
2 the genetic 277 
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variance in total surface area.  The phenotypic (rP) and environmental (rE) correlations were 278 

estimated similarly. 279 

In order to quantify similarities between shared genetic effects on SA and hotspots of 280 

primate evolution, we compared our estimates of rG to vertex-level measures of differential 281 

cortical expansion in the human relative to macaque (Hill et al., 2010). This right hemisphere 282 

map (Evo) was transformed into CIVET space via methods described previously (Reardon et al., 283 

2018). We then tested for inter-map spatial correspondence via spatial permutation, also referred 284 

to as  the “spin” test (Alexander-Bloch et al., 2018).  Briefly, cross-vertex Pearson’s correlations 285 

for each pair of measures (rG and Evo) were plotted against a null distribution that was described 286 

by 1000 spatially-permuted values. This test is advantageous as it controls for both multiple 287 

testing and spatial autocorrelations. We also constructed rG-Evo concordance maps by 288 

identifying vertices that were greater than 50th centile in both metrics, and similarly for vertices 289 

greater than 75th centile for both metrics. We repeated this approach (i.e. CIVET transformation, 290 

spatial permutation, concordance maps) to the neurodevelopmental expansion data from Hill et 291 

al. (Devo), a map derived from 12 healthy term infants compared to 12 healthy young adult 292 

controls. In order to facilitate subjective visual comparisons between datasets, vertex-level Z-293 

scores for all three maps (rG, Evo, Devo) were also calculated. 294 

Prior studies have shown strong genetic correlations between contralateral homologues 295 

for CT (Schmitt et al., 2009). In order to examine interhemispheric covariance for SA, we 296 

constructed a bivariate model that examined the relationships between the ith vertex in the left 297 

hemisphere with its contralateral homologue in the right hemisphere. In these models, we 298 

controlled global factors by including total cerebral SA as a covariate. 299 
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Similarly, in order to assess for regionally-specific shared genetic influences on SA and 300 

CT in children, we performed genetically-informative Cholesky decomposition incorporating 301 

both measures at each vertex (i.e., a bivariate model with the ith vertex-level measure of both SA 302 

and CT), adjusting for sex and linear and nonlinear effects of age.  Finally, we employed 303 

bivariate models to examine the shared genetic influences between vertex-level SA and full scale 304 

intelligence quotient (FSIQ).   305 

 306 
 307 
 308 
ROI-based Surface Area Analyses:  309 

The scale of measurement has been shown to influence neuroimaging phenotypes, 310 

including measures of SA heritability in adults (Patel et al., 2018).  Vertex-level measures also 311 

suffer from a higher risk of type II error due to the need for multiple testing correction, problems 312 

that are substantially attenuated with an ROI-based approach. Therefore, in order to examine the 313 

effects of genetics of SA at an intermediate level of resolution between global and vertex-level 314 

measures, we reanalyzed our data by assigning vertex measures to one of 308 regions of interest 315 

(ROIs). These ROIs were based on the 68 regions of FreeSurfer’s Desikan-Killany atlas 316 

(Desikan et al., 2006). The Desikan-Killany parcellations were sub-parcellated into ~500 mm2 317 

ROIs via a backtracking algorithm (Romero-Garcia et al., 2012). This approach preserved the 318 

original anatomical boundaries while both 1) increasing spatial resolution and 2) increasing the 319 

uniformity of the size of each ROI. Variance decomposition for SA was then performed for 320 

univariate ACE models (with and without a global covariate), similar to vertex-level measures. 321 

Bivariate models testing for both CT-SA and CT-IQ covariance were also performed for each 322 

ROI. Multiple testing was controlled with FDR.  323 

 324 
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Results: 325 
 326 

Heritability of Global and Regional Surface Area: 327 

Total cerebral SA was highly heritable, with over 85% of the total phenotypic variance 328 

attributable to additive genetic factors [a2=0.86, c2 =0.04, e2=0.10]; additive genetic effects were 329 

statistically significant ( 2 = 84.3, p-value <0.0001) but shared environmental effects were not. 330 

Heritabilities of vertex level measures were substantially lower, with strong regional variability 331 

in the heritability of the cortical sheet (Figure 1). Regions of highest heritability were in the 332 

medial orbital cortex and precuneus, with relatively strong genetic influences also observed in 333 

the inferior precentral and postcentral gyri. Modest heritability was also seen in the lateral and 334 

inferior temporal lobes. Additive genetic effects were statistically significant in the bilateral 335 

medial occipital lobes and precuneus, anterior cingulate gyri and sulci, perisylvian precentral and 336 

postcentral gyri, and superior and middle temporal gyri. Contributions of the shared environment 337 

were substantially lower, with no regions reaching statistical significance. Statistically significant 338 

familial covariance (i.e., combined additive genetic and shared environmental covariance) 339 

mirrored genetic probability maps.  340 

 341 

Relationships to Total Surface Area: 342 

After including total SA as a regressor, the heritability of vertex-level areal expansion 343 

substantially decreased in most brain regions. However, the overall pattern was similar, with the 344 

most heritable areas again noted posteriorly and inferiorly (Figure 2A). Statistically significant 345 

additive genetic effects were again observed in occipital and inferior temporal regions including 346 

left parahippocampal and lingual gyri, right fusiform gyrus, and the bilateral calcarine fissures. 347 
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Shared environmental effects were again substantially lower relative to genetic effects and did 348 

not reach statistical significance at any vertex.  349 

 These decreases in heritability when total SA was added as a covariate implied that 350 

global genetic factors were important contributors to vertex-level genetic variation. When the 351 

relationships between global and vertex-level SA were examined via bivariate models, we 352 

observed strong genetic correlations throughout the brain despite modest phenotypic correlations 353 

(Figure 2B). The highest genetic correlations were seen in the medial superior frontal gyrus, 354 

paracentral lobule, cingulate, and lateral frontal and temporal cortex. Environmental correlations 355 

were significantly lower and approximated zero throughout most of the brain. The influence of 356 

shared genetic factors between local and global SA were statistically significant throughout the 357 

entire brain, but were highest in the bilateral parasagittal frontal and parietal lobes, bilateral 358 

fusiform gyri, and the perisylvian cortex.  359 

 The regions of the cerebrum with the largest genetic correlations between global SA and 360 

areal expansion were similar to hotspots for evolutionary expansion (Figure 3).  The parasagittal 361 

frontal lobe, dorsolateral prefrontal cortex, and inferolateral temporal lobes demonstrated 362 

relatively strong effects in both metrics relative to other regions of the brain. The concordance 363 

between genetic and evolutionary maps was statistically significant (pSPIN=0.026). Similarly, 364 

comparison between genetic correlations and neurodevelopmental expansion demonstrated 365 

strong concordance in parasagittal frontal lobe, dorsolateral prefrontal cortex, and infro-lateral 366 

temporal lobes and additionally the precentral and post central gyri. Neurodevelopmental-genetic 367 

spatial concordance was also statistically significant (pSPIN=0.005).  368 

 369 

  370 
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Laterality: 371 

Cross-hemisphere vertex correlations are shown in Figure 4. There were modest positive 372 

interhemispheric phenotypic correlations in the lateral frontal and temporal lobes, parasagittal 373 

occipital lobe, and precuneus. Genetic correlations between homologous vertices were 374 

substantially higher in magnitude throughout the entire cortex and were generally positive. Small 375 

areas of strong negative genetic correlations (i.e., genetic factors that increase left-sided SA 376 

decrease right, and vice versa) were seen in the posterior inferior frontal cortex and posterior 377 

middle temporal gyrus, although neither reached statistical significance. Significant shared 378 

interhemispheric genetic factors were seen throughout the temporal lobe, precuneus, and medial 379 

occipital lobe.  380 

 381 

Genetically-Mediated Relationships between Surface Area and Cortical Thickness: 382 

The heritability of global mean CT was substantially lower than for total SA [a2 = 0.44, c2 383 

= 0.00, e2 = 0.56], but nevertheless additive genetic factors had a statistically significant 384 

influence on this phenotype ( 2 = 8.4, p-value = 0.0018). The genetic correlation between these 385 

global measures was moderate in magnitude and highly significant (rG = 0.63, 2 = 67.1, p-value 386 

<0.0001). There was notable regional variability in the shared genetic influences on vertex-level 387 

measures of SA and CT (Figure 5).  The strongest genetic correlations were in the bilateral 388 

dorsolateral prefrontal cortex, perisylvian parietal and temporal lobes, cingulate, right paracentral 389 

lobule, and left precuneus, where they approached unity. Statistically significant genetic 390 

covariances between SA and CT were observed in the bilateral dorsolateral prefrontal cortex, 391 

inferior precentral and postcentral gyri, bilateral superior temporal gyri, cingulate, right 392 

paracentral lobule, and left precuneus.  393 
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 394 

Surface Area and Intelligence: 395 

There were modest correlations between global cerebral SA and FSIQ (rP = 0.18, 2 = 396 

17.9, p-value = 0.0001; rG = 0.20, 2 = 15.8, p-value = 0.0001). On the vertex-level, weak (rP < 397 

0.3) but generally positive phenotypic correlations between areal expansion and FSIQ were seen 398 

throughout the cerebral hemispheres bilaterally (Figure 6). In contrast, there were strong genetic 399 

correlations localized to the left supramarginal gyrus and to a lesser extent the perisylvian cortex 400 

of the left frontal and temporal lobes and middle temporal gyrus. Genetically-mediated SA-FSIQ 401 

covariance was statistically significant in the left supramarginal gyrus, inferior precentral and 402 

postcentral gyri, middle temporal gyrus, and precuneus. There was marked asymmetry in the 403 

strength of correlations with FSIQ; correlations in the right hemisphere were substantially 404 

weaker and did not reach statistical significance.  405 

 406 

ROI-based Analyses: 407 

In general, ROI-level analyses using sub-parcellation of the Desikan-Killany atlas 408 

produced very similar patterns to those at the vertex level. The highest heritability in SA was 409 

again observed in the parasagittal occipital lobe, precuneus, anterior cingulate, and inferior 410 

temporal cortex (Figure 7). Effects from the shared environment were not statistically 411 

significant. Patterns of phenotypic, genetic, and environmental correlations between global SA 412 

and ROIs were also similar to those at the vertex-level (Figure 8); genetic correlations were high 413 

for most of the cerebral surface, with the notable exception of the medial occipital lobes. In the 414 

dorsolateral prefrontal cortex, genetic correlations were somewhat lower than those at the vertex-415 

level. Probability maps were similar for ROI and vertex-level approaches. Patterns of CT-SA and 416 
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FSIQ-SA covariance at the ROI level were also similar to our higher-resolution analyses 417 

(Figures 9 and 10); we again observed strong, asymmetric, and highly significant genetic 418 

correlations between FSIQ and SA in the left supramarginal gyrus and to a lesser extent in the 419 

left frontal operculum. 420 

 421 
Discussion: 422 
 423 

In this manuscript, we present a systematic analysis of the genetic influences on cerebral 424 

SA in children. We found the strongest genetic effects in the posterior and parasagittal cortex 425 

including cuneus, precuneus, and fusiform gyrus. Heritability patterns were strikingly similar to 426 

those seen in newborns despite differences in scan acquisition, image processing, and statistical 427 

design (Jha et al., 2018).  Like the current study, Jha et al. found predominantly low regional 428 

heritability estimates, with strongest values localizing to the parasagittal posterior cerebrum, 429 

occipitotemporal cortex, and perisylvian regions. A study of 92 8-year-old twins similarly found 430 

statistically significant SA heritability in the posterior parasagittal cerebrum and inferior 431 

temporal lobe (Yoon et al., 2012). In a young adult sample (mean age 22.27 years), regional 432 

heritability was also strongest in the occipital lobes (Strike et al., 2018). Our heritability patterns 433 

differed to a greater extent compared to 838 predominantly young and middle-aged adults 434 

(McKay et al., 2014), which additionally identified strong heritability in the medial frontal lobes. 435 

In the VETSA cohort (mean age 55.8 years), estimates were much higher and less regionally 436 

variable (Eyler et al., 2011, 2012). Although these analyses were all cross-sectional, considered 437 

together they imply that SA heritability increases with age, a phenomenon that we have observed 438 

when examining CT longitudinally (Schmitt et al., 2014). 439 
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The most heritable regions of areal expansion generally conform to visual cortex 440 

including both dorsal and ventral streams (Goodale and Westwood, 2004). An enlarged visual 441 

system distinguishes primates from other mammals (Northcutt and Kaas, 1995), and regions of 442 

visual cortex demonstrate correlated evolution (Barton, 2007). Perhaps surprisingly, these 443 

heritability patterns largely correspond to cortical regions that have had the least evolutionary 444 

expansion in humans relative to other primates (Hill et al., 2010). Over evolutionary timescales, 445 

genes influencing phenotypes under strong directional selection should reach allelic fixation; 446 

thus, while a trait may remain under genetic control, genetically-mediated variance will be 447 

purged. However, other factors such as balancing selection, mutation, pleiotropy, and temporal 448 

or geographic variation in selective pressures could potentially maintain genetic variance in the 449 

population indefinitely (Barton and Keightley, 2002). Moreover, traits with greater dimensional 450 

complexity (i.e. the primate brain) are expected to adapt at substantially slower rates than simpler 451 

traits (Orr, 2000). 452 

 453 

Global Genetic Factors Influence Evolutionarily Novel Brain Regions 454 

We found strong genetic influences on total SA in children and adolescents, with over 455 

85% of the variance attributable to genetic factors. Strong heritability of this global measure 456 

appears reasonably consistent across studies including newborns a2=0.78 (Jha et al., 2018), older 457 

adults a2=0.89 (Panizzon et al., 2009), and nonhuman primates a2=0.73 (Rogers et al., 2007).  458 

When total SA was included as a covariate, genetic signal decreased through most of the cortex, 459 

implying that the global genetic factor was influencing individual differences at the vertex level.  460 

This finding was confirmed with dedicated models explicitly examining global-local SA 461 

relationships, where genetic correlations approached unity throughout much of the cortex. Those 462 
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regions with the strongest genetic correlations also have the highest rates of areal expansion on 463 

both developmental and evolutionary timescales (Hill et al., 2010; Reardon et al., 2018); our 464 

results indicate that these effects may be genetically-mediated. The presence of a global genetic 465 

factor also has implications for genomic studies, as examination of SA at high levels of 466 

neuroanatomic resolution may not be worth the associated drop in power owed to corrections for 467 

multiple testing.  468 

The principal exceptions to strong global effects were the parasagittal occipital lobe and 469 

precuneus, which were the least impacted by the global covariate despite being among the most 470 

heritable of all regions. These areas also rank among the least affected by evolutionary expansion 471 

(Reardon et al., 2018), a somewhat unexpected finding considering that areas with the highest 472 

CT heritability are among the most evolutionarily novel (Schmitt et al., 2008). We also observed 473 

that the strongest interhemispheric genetic correlations were in visual cortex. Ipsilateral between-474 

region genetic correlations are also strongest within the occipital lobe (Strike et al., 2018). These 475 

findings suggest that at least in younger individuals, the underlying genetic architecture of the 476 

occipital lobe is largely distinct from the remainder of the brain, with strong genetic overlap 477 

between areas involved in visual perception.  478 

 479 

Shared Genetic Influences on Surface Area and Cortical Thickness 480 

We observed substantial overlap in the genetic factors influencing total cerebral SA and 481 

mean CT (rG=0.63), a finding that contrasts with the VETSA (rG=0.08), GOBS (rG=-0.15), and 482 

QITM (rG=-0.21) adult samples (Panizzon et al., 2009; Winkler et al., 2010; Strike et al., 2018). 483 

Based on these prior results, it has been assumed that CT and SA are genetically orthogonal. 484 

However, a strong CT-SA genetic correlation (rG=0.65) has also been recently reported in 485 
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newborns (Jha et al., 2018). In light of these new findings, a dynamic relationship between SA 486 

and CT needs to be considered a possibility, with stronger genetic coupling earlier in life than 487 

that seen after maturity.  488 

CT and SA are both thought to be largely dependent on rates of cellular proliferation of 489 

neuronal progenitors; while symmetric divisions of precursors increase the number of radial units 490 

in the cortex (thus increasing SA), asymmetric divisions between precursors and daughter cells 491 

within units are thought to affect CT by influencing the number of cells per radial unit (Rakic, 492 

1988; Rubenstein and Rakic, 1999; Amlien et al., 2014). Genetic independence between SA and 493 

CT is therefore conceptually appealing, since it conforms to our traditional understanding of 494 

neurogenesis. However, newer research has found that the neurodevelopmental relationships 495 

between these measures are more nuanced than previously understood (Kriegstein et al., 2006). 496 

For example, intermediate progenitor cells have been identified that may influence the expansion 497 

of both CT and SA (Pontious et al., 2007). It is also important to consider that other 498 

developmental mechanisms influence both metrics, including apoptosis, neuropil growth, and 499 

mechanical tension (Van Essen, 1997; Krubitzer and Kahn, 2003; Toro and Burnod, 2005), all of 500 

which are likely influenced by genetics.  501 

When the relationships between arealization and thickness were examined on the vertex 502 

level, we found substantial regional variation, with the strongest positive genetic correlations in 503 

the perisylvian cortex, left dorsolateral prefrontal cortex, parasagittal frontal lobes, and cingulate 504 

cortex. Although many of these regions correspond to areas of evolutionary expansion, there are 505 

notable exceptions, including greater than expected genetic correlations in primary motor cortex 506 

and less than expected correlations in the posterolateral temporal lobe.  Nevertheless, the similar 507 

patterns may be indicative of genetic variants influencing both metrics in these regions. Overall, 508 
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the strength of genetic correlations that we observed were stronger compared to Strike et al., who 509 

reported weak genetically-mediated relationships at the gyral level. Given the differences in age 510 

between samples, neurodevelopmental factors may explain the discrepancies between studies 511 

and warrants further investigation.  512 

 513 

 514 

Genetic Factors Drive Relationships between Surface Area and Intelligence in Children 515 

 We observed modest phenotypic correlations between cortical arealization and 516 

intelligence that were stronger in the left cerebrum. Although numerous prior studies have found 517 

correlations between constructs of intelligence and both volume and CT (Deary et al., 2010), the 518 

extant literature on the relationships between SA and intelligence is more limited, particularly in 519 

children. Schnack et al. found that total cortical SA was larger in children with higher FSIQ 520 

(Schnack et al., 2015). In a sample of 449 children aged 4-12 years (Walhovd et al., 2016), there 521 

were widespread SA-FSIQ associations that generally parallel the regions of strongest 522 

phenotypic correlations in the current study. Moreover, when these areas were mapped to the 523 

VETSA sample, there was a small (rG=0.21) but statistically significant genetic correlation in 524 

older adult subjects.  525 

However, to our knowledge, the genetics underlying these relationships has not yet been 526 

directly examined in youth. Our data suggests significant asymmetry in genetic factors 527 

influencing both cortical arealization and intelligence in children, particularly in the left 528 

supramarginal and angular gyri (Brodmann areas 39, 40) where genetic correlations approached 529 

unity. The genetically-mediated relationships between FSIQ and SA are very similar to the 530 

regions of greatest leftward asymmetry in humans (Lyttelton et al., 2009). Brodmann areas 39 531 
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and 40 are both central to the Parieto-Frontal Integratation Theory (P-FIT) network of regions 532 

that have been most associated with performance on cognitive tasks (Jung and Haier, 2007), are 533 

critical for receptive language ability, and rank among the most evolutionarily unique regions of 534 

the human brain (Carroll, 2003).  We also found statistically significant shared genetic effects for 535 

two other regions in this network (BA 21, 37), although several other regions (e.g., dorsolateral 536 

prefrontal cortex, associative visual cortex) did not reach statistical significance.   537 

 538 

Conclusions: 539 

These data provide strong evidence that genetic factors drive individual differences in human 540 

cerebral SA in children. We also find convincing evidence that global genetic factors influence 541 

local SA, as well as genetically-mediated brain-behavioral associations that conform to our 542 

current understanding of functional neuroanatomy. However, our results also suggest a nuanced 543 

and sometimes counterintuitive process influenced by regional, evolutionary, and 544 

neurodevelopmental factors that thus far remain poorly understood.  Further multivariate, 545 

genomic, bioinformatics, and longitudinal studies will be required to understand this remarkably 546 

complex structure in greater detail. 547 
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 698 
 699 
 700 

Table 1: Demographic characteristics of the sample. 701 
 702 

 703 
 MZ DZ Siblings of Twins Singletons Total 

Sample Size 222 101 84 270 677 

Mean age  

(years SD) 

 

12.55 (3.30) 12.24 (3.29) 12.98 (3.96) 12.95 (4.62) 12.72 (3.95) 

 Gender 103 F 

119 M 

46 F 

55 M 

48 F 

36 M 

126 F 

144 M 

323 F 

354 M 

Handedness 193 R 

15 M 

13 L 

83 R 

10 M 

8L 

67 R 

7 M 

9 L 

241 R 

18 M 

11 L 

584 R 

50 M 

41 L 

FSIQ 110.45 (11.68) 111.71 (11.88) 113.93 (12.55) 115.95 (12.06) 113.22 (12.19) 

      

 704 
 705 
  706 
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Figure Legends: 707 
 708 
Figure 1: The heritability of cerebral surface area in children and adolescents. Maximum 709 
likelihood estimates for additive genetic (a2), shared environmental (c2), and unique 710 
environmental (e2) variance in vertex-level cerebral surface area are shown for multiple views.  711 
Probability maps identifying regions with statistically significant variation are also shown. 712 
Nonsignificant vertices are shown in gray; there were no statistically significant shared 713 
environmental effects after correction for multiple testing. Probability maps for familial (a2+c2) 714 
covariance also are provided. Because the power to identify familial effects is greater than for 715 
individual variance components, a logarithmic scale is use in order to better visualize regional 716 
differences.  717 
 718 
Figure 2: Global effects on areal expansion. Results from univariate variance decomposition 719 
after including total cerebral surface area as a covariate are shown on the left (Panel A). The 720 
shared environment was not significant in these models.   plots regional differences in 721 
heritability relative to the original model presented in Figure 1; negative values indicate regions 722 
where heritability decreased after including the global covariate. On the right (Panel B), results 723 
from bivariate analyses directly examining the relationship between areal expansion and total 724 
surface area. Regional phenotypic (rP), genetic (rG), and unique environmental (rE) correlations 725 
are provided, as well as tests assessing the statistical significance of genetic and environmental 726 
covariance.  727 
 728 
Figure 3: Global genetic influences on SA compared evolutionary and neurodevelopmental 729 
expansion.  Evolutionary (top, Evo) and neurodevelopmental (bottom, Devo) maps of cortical 730 
expansion from Hill et al. compared to genetic correlations between total surface area and 731 
vertex-level areal expansion (rG).  Standardized (Z-transformed) maps are shown for all measures 732 
(along figure margins). Concordance maps (center) indicate vertices where values were greater 733 
than the 50th (green) or 75th (red) centile for both rG and either Evo or Devo. Histograms from 734 
spatial permutation analysis for both Evo-Genetic (top) and Devo-Genetic correspondence are 735 
also provided. 736 
 737 
Figure 4: Interhemispheric correlations in areal expansion. Results of bivariate models 738 
examining correlations between vertex-level homologues in the contralateral cortex projected 739 
onto the left hemisphere.    740 
 741 
Figure 5: Shared genetic relationships between areal expansion and cortical thickness. Regional 742 
phenotypic (rP), genetic (rG), and environmental (rE) correlations are shown, as well as tests 743 
assessing the statistical significance of genetic and environmental covariance. 744 
 745 
Figure 6: Genetically-mediated correlations with intelligence. Vertex-level phenotypic (rP), 746 
genetic (rG), and environmental (rE) correlations are shown (top) along with a probability map of 747 
statistically significant shared genetic influences. Environmental covariance between surface 748 
area and FSIQ were not statistically significant at any vertex. Because genetic correlations were 749 
much stronger than phenotypic correlations, rG is plotted a second time with a wider scale 750 
(bottom).    751 
 752 
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 753 
Figure 7: Heritability of cerebral surface area for 308 sub-ROIs based on the Desikan-Killany 754 
atlas.  Maximum likelihood estimates and FDR-corrected probability maps for genetic and 755 
familial variance are also shown; similar to vertex-level measures, there were no statistically 756 
significant shared environmental effects after correction for multiple testing.  757 
 758 
Figure 8: Genetic effects of global surface area on regional parcellations. Results from 759 
univariate ACE models after including total cerebral surface area as a covariate are shown on the 760 
left (Panel A).   plots ROI-level differences in heritability relative to the original model 761 
without a global covariate. Panel B presents results from bivariate analyses that directly model 762 
the relationship between regional surface area and total surface area. 763 
  764 
Figure 9: Shared genetic relationships between areal expansion and cortical thickness at the 765 
ROI level. Regional phenotypic (rP), genetic (rG), and environmental (rE) correlations are shown, 766 
as well as tests assessing the statistical significance of genetic and environmental covariance. 767 
 768 
Figure 10: Genetically-mediated correlations between intelligence and regional parcellations of 769 
cerebral surface area. Phenotypic (rP), genetic (rG), and environmental (rE) correlations are 770 
shown (top) along with a probability map of statistically significant shared genetic influences. 771 
Environmental correlations were not statistically significant after correction for multiple testing.  772 
 773 






















