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ARTICLE INFO ABSTRACT

Keywords: Does lead reduce IQ at the level of g, test specificities, or both? A bare-bones psychometric meta-analysis uti-
Intelligence lizing the Method of Correlated Vectors was performed on a sample of 16 studies for which subtest-level data
g factor could be obtained satisfying stringent inclusion rules. The aggregate correlation across samples between subtest-

Lead exposure level estimates of both g loading (g) and the deleterious impact of lead exposure (d) was 0.10 (K = 16, total

N = 1935, 80% CI after correction for sampling error = 0.10 to 0.10). So, lead exposure is associated with a
slightly positive vector correlation, which is consistent with the results of other studies examining the effects of
other neurotoxins on IQ using MCV; this outcome is consistent with two scenarios. The first is that lead exposure
may have effects on both g and test specificities owing to systemic effects on many different brain regions. The
second is that two antagonistic factors are at work. It might be that the ‘control’ and exposure groups used in
these kinds of studies are confounded with pre-existing differences in g — lower g being a risk factor for poorer life
outcomes (including lower socioeconomic status and concomitantly heightened risk of lead exposure), whereas
lead has it's primary effect on the test specificities, with both effects opposing one another, as reflected in the
small magnitude vector correlation value. Strategies for distinguishing between these scenarios are discussed.

1. Introduction
1.1. Lead exposure

Intelligence is known to be causally linked to school and work
performance (Jensen, 1998; Hunter & Schmidt, 2004; Schmidt &
Hunter, 1998), which are crucial factors for success in life. It is im-
portant therefore to be mindful of factors that lower intelligence. Lead
exposure has been proposed as one of these factors (Nevin, 2000). Lead
is a heavy metal, and exposure to lead has a toxic effect on the human
body. The main sources of lead are lead-based water taps, lead-based
paint in older housing, soil and dust contaminated with leaded paint
and gasoline, and past and present mining and industrial activity
(Koller, Brown, Spurgeon, & Levy, 2004). Fortunately, much has been
done to minimize the use of lead. For example, water pipes no longer
contain lead and are now made using nonlead alternatives. Also, whilst
lead-based paint is still present in older houses, new paint does not
contain lead. However, there continues to be major lead exposure
through contact with contaminated soil and dust, and old water taps.

Although blood-lead concentrations have fallen substantially in a
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number of countries in the last few decades (Meyer, McGeehin, & Falk,
2003; Nevin, 2000), childhood lead poisoning continues to be a major
public health problem in many countries. Children are most vulnerable
to lead exposure for three reasons: a) they are more at risk of ingesting
environmental lead through normal mouthing behaviors, b) absorption
from the gastrointestinal tract is higher in children than adults, and c)
the developing nervous system is more vulnerable to the toxic effects of
lead than the mature brain (Koller et al., 2004; Landrigan et al., 1975).
The fact that the child's developing nervous system is vulnerable could
lead to a negative impact on children's intellectual development
(Canfield et al., 2003; Lanphear et al., 2005).

There is much debate about the threshold blood-lead level for
children, especially at what blood-lead level (BLL) there is a damaging
effect on the children's intellectual functioning.

According to the World Health Organization and Centers for Disease
Control's guidelines BLLs < 10 ug/dl can be regarded as safe, whereas
medical evaluation and, in some cases, treatment is recommended for
BLLs above 20 pg/dl (e.g. Roper, Houk, Falk, & Binder, 1991).

According to the CDC and the WHO, BLLs falling within the general
boundaries of 10 to 20 ug/dl can be regarded as low. Despite being
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termed as ‘low’ BLLs, the majority of the literature suggests that there
are deleterious effects of BLLs of 10 to 20 ug/dl on intellectual func-
tioning, including lowered intelligence (Baghurst, McMichael, Wigg, &
Vimpani, 1992; Bellinger, Stiles, & Needleman, 1992; Pocock, Smith, &
Baghurst, 1994; Rice, 1993; Yule, Lansdown, Millar, & Urbanowicz,
1981). So, in the present study we also expect a negative impact for
BLLs of 10 to 20 ug/dlL.

1.2. Competing theories

Other than the fact that it is detrimental to performance on IQ tests,
precisely how lead influences intelligence is not known. Human in-
telligence is a complex phenotype that is organized hierarchically, with
a highly general, overarching mental ability called general intelligence or
g being situated at the apex of this hierarchy, and narrower and more
specialized abilities being located further down the hierarchy (Carroll,
1993). From this, the following question arises: is the negative effect of
lead exposure restricted to specific cognitive abilities, located further
down the hierarchy, g (at the apex of the hierarchy) or both? It is im-
portant to note that IQ tests are indexes of performance with respect to
both the g factor and also specific abilities (Carroll, 1993), thus it is
possible to depress IQ scores via suppressing either general or specific
performance, or both. To give some examples, a lowered IQ could be
caused by a lowered level of g; a lowered level of for instance fluid
abilities, short-term memory, and long-term memory; or a lowered level
of g combined with a lower level of, for instance, crystallized ability and
broad visual perception. The question of precisely how lead impacts
intelligence has never been investigated comprehensively before how-
ever.

Predicting how lead may interact with the phenotype of intelligence
is difficult, as there are indications in the literature of general, specific
and mixed effects. Finkelstein, Markowitz, and Rosen (1998) note that
lead exposure has toxic effects on a variety of brain regions, including
the cerebral cortex, the hippocampus, and the cerebellum, which sug-
gests that it might deleteriously influence many aspects of cognitive
functioning leading to a decrease in g. Conversely, it has been noted
that lead has asymmetric impacts on different cognitive abilities, sup-
pressing processing speed, whilst leaving verbal ability intact (Lezak,
1983). This would be consistent with narrow impacts on ability. It is
also possible that lead may have highly systemic effects on cognition in
development, damaging neuroanatomical systems and structures that
subserve both general and specific manifestations of intelligence. A
second possible explanation is that in many of these studies the ‘control’
and exposure groups are not precisely matched in terms of level of g,
with the former possibly exhibiting higher g due to the negative asso-
ciation between g and poorer life outcomes (including environmental
and occupational exposure to neurotoxins) (Gordon, 1997; Gottfredson,
1997). Thus, the unique effects of neurotoxins on IQ may primarily be
at the level of test specificities, however, the underlying difference in g
between the ‘control’ and exposure groups may be acting in the op-
posing direction.

1.3. MCV/Jensen effects

To test whether the performance differences between the lead-ex-
posure and ‘control’ group are moderated by the g saturation of the
indicator, there are a variety of analytic techniques available. The most
appropriate for use in secondary analyses, i.e. where the raw data are
unavailable for reanalysis is the Method of Correlated Vectors (MCV).
This technique simply involves taking the correlation between the g
loadings of various subtests (termed the g vector) and the magnitude of
an associated effect size (such as the impact of inbreeding depression on
subtest scores; termed the d or r vector). If there is a positive correlation
between the vectors, this indicates that g loading positively moderates
an associated effect size, or in other words, the better a given subtest is
at measuring the construct g, the larger the associated effect size. Such
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positive moderation effects have been termed Jensen effects (Rushton,
1998), after Arthur Jensen, the psychometrician who first developed
MCV. It has been noted (e.g. Rushton, 1999) that Jensen effects are
characteristic of biological phenomena, such as the heritability estimates
for various IQ subtests (Voronin, te Nijenhuis, & Malykh, 2015, Table 3,
p. 3), the negative association between IQ and fertility (Woodley of
Menie et al., 2017) and factors such as processing speed and inbreeding
depression effects (Jensen, 1998). The opposite phenomenon, i.e. when
g loadings negatively moderate an effect size (anti-Jensen effect), are
more characteristic of influences on IQ arising from the environment,
such as practice effects (te Nijenhuis, van Vianen, & van der Flier,
2007), the IQ gains accrued amongst children via adoption into higher-
IQ families (te Nijenhuis, Jongeneel-Grimen, & Armstrong, 2015), in-
tensive educational interventions (such as the Head Start program) (te
Nijenhuis, Jongeneel-Grimen, & Kirkegaard, 2014), and also the Flynn
effect (te Nijenhuis & van der Flier, 2013). The existence of this broad
pattern likely results from the fact that g is the principal (and in some
cases the only) source of the heritability among IQ subtests (Panizzon
et al., 2014), thus as biological variables will be further ‘upstream’ of
genetics they will tend to associate most strongly with g. Environmental
and cultural influences on IQ are further ‘downstream’ of genetics, thus
will primarily impact the non-g residuals of IQ tests (i.e. the narrow and
less heritable specialized abilities and test specificities). It should be
noted that this pattern, whilst highly general, is not universal across
studies utilizing MCV. Two notable exceptions to the pattern are the
degree to which IQ subtests are culture loaded, which has been found to
correlate positively with both subtest heritabilities (i.e. the degree to
which the score on a specific subtest of an IQ test is influenced by ge-
netic vs. environmental variation as typically measured using twin
studies) and subtest g loadings (Kan, Wicherts, Dolan, & van der Maas,
2013), and also the degree to which performance on subtests across
cohorts is sensitive to being boosted by the increased use of guessing in
more recent cohorts, higher discriminability (more g-loaded) items
being the ones that are more likely to elicit guessing as an answering
strategy. This having been termed the Brand Effect, after the psycho-
metrician Christopher Brand, who first proposed this as a potential
contributor to the Flynn Effect (Woodley, te Nijenhuis, Must, & Must,
2014).

As was mentioned previously, one of the key advantages of MCV is
that it can be used for meta-analyses involving secondary analyses of
published data, relying only on correlation matrices, and/or published
subtest g loadings and accompanying effect sizes. Other methods for
examining moderation, such Confirmatory Factor Analysis (CFA),
which measures the degree to which g is measurement invariant
throughout the range of another variable, or in group comparisons,
typically require the raw scores in order to yield quality data about the
role of latent variables in moderating a given effect size, making the
method suboptimal for meta-analysis, given that the vast majority of
studies yield too little information for this method to work (unless the
authors of those studies are forthcoming with their raw data, or the
covariance matrix is employed in lieu of the raw data for the derivation
of the relevant path coefficients). Furthermore, MCV has been refined
into a relatively robust statistic via its marriage with the techniques of
psychometric meta-analysis (Schmidt & Hunter, 2015). These techni-
ques permit sources of sampling and measurement error (such as those
associated with reliability and psychometric validity) to be explicitly
quantified, and also corrected (via the use of imported meta-analytic
values as the basis for synthetically disattenuating effect sizes). This
strengthens MCV, as samples with small values of N and seemingly
outlying vector-correlation values can be factored into meta-analyses,
and corrected, yielding more accurate estimates of the aggregate vector
correlation across studies (see: Woodley et al., 2014 for a more detailed
treatment of the relative strengths and weakness of psychometric meta-
analytic MCV vs. CFA).
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1.4. MCYV applied to other neurotoxins

Thus far, no researchers have looked at whether or not g moderates
the effect of lead on IQ using MCV. However, some researchers have
used this technique to examine the pattern of moderation with respect
to other neurotoxins on IQ. Based on the results of these analyses there
is mixed evidence for Jensen and anti-Jensen effects. Debes, Ludvig,
Budtz-Jgrgensen, Weihe, and Grandjean (2015) examined the impact of
prenatal methylmercury exposure on IQ subtests, finding that it is as-
sociated with a modest Jensen effect among young adults and young
children (r = 0.42, p < 0.001, N = 1022). As these researchers had
raw scores, they were able to conduct a CFA, which yielded results
consistent with their MCV analysis - i.e., modest indications of mod-
eration on the effect of methylmercury exposure stemming from g
modeled as a latent variable (Debes, Weihe, & Grandjean, 2016). Flynn,
te Nijenhuis, and Metzen (2014) examined the effects of prenatal al-
cohol and cocaine exposure on IQ, finding evidence of very small
magnitude Jensen and anti-Jensen effects (respectively) (p = 0.12,
p=0.182, N=125 for fetal alcohol exposure and p = —0.23,
p < 0.001, N = 215 for fetal cocaine exposure). Finally, Metzen (2012)
reanalyzed data originally published in Calderén-Garciduenas et al.
(2008), who examined the negative effects of atmospheric pollution
(which causes neuroinflammation) on cognitive ability, using the WISC-
R for an exposure sample of 55 individuals and a ‘control’ group of 18
sourced from Mexico City and the countryside, respectively, finding a
low-magnitude anti-Jensen effect (r = —0.17, p = 0.150, N = 73) in
this quasi-experiment. The sample-size weighted aggregate vector cor-
relation across the four neurotoxins is 0.27 (p < 0.001; N = 1435).
These vector correlations are generally weak to modest in magnitude
and are quite heterogeneous in sign across different neurotoxin types
(two are positive and two are negative in sign), suggesting that neu-
rotoxic substances might not have consistent effects on either g or
specialized components of cognitive ability.

If the results of applying MCV to lead exposure follows the pattern
found for these other neurotoxins then we might expect an essentially
low-magnitude positive correlation across studies, which would be
consistent with either systemic effects on different brain regions asso-
ciated with both general and specific manifestations of intelligence, or
alternatively differences in the levels of g between comparison groups
resulting from improper matching, counteracting the potentially direct
effects of lead exposure on more specialized and less heritable abilities.
This latter scenario would be consistent with the known role of socio-
economic status (SES) as a confounding factor in studies of the effects of
lead exposure (Bellinger, 2008). SES is genetically correlated with
cognitive ability (Trzaskowski et al., 2014). As it is not possible to es-
timate the extent to which SES and covarying factors (such as g) may
confound group comparisons between control and exposure groups, it is
not possible to estimate its magnitude. The results of our aggregating
across vector correlation values sourced from various already published
studies must therefore suffice as a guide as to what sort of an effect we
might expect to see in the case of MCV as applied to lead exposure.

2. Method

To determine the magnitude, and direction of the correlation be-
tween the magnitude of g loadings and IQ scores of children with high
lead levels, a meta-analysis was performed on vector correlations ob-
tained from all studies that reported IQ scores for at least four subtests
from children with BLLs > 10 pg/dl.

Meta-analysis is a statistical method where the results of all studies
on a particular topic are aggregated allowing the use of powerful sta-
tistical techniques. The goal of the present study is to provide an esti-
mate of the vector correlation between lead exposure and the magni-
tude of g loadings. We here carry out a meta-analysis based on the
approach pioneered by Schmidt and Hunter (2015).

In general, g loadings were computed by submitting a correlation
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matrix to a principal-axis factor analysis and using the loadings of the
subtests on the first unrotated factor. In some cases, g loadings were
taken from studies where other procedures were followed; these pro-
cedures have been shown empirically to lead to highly comparable
results (Jensen & Weng, 1994). Finally, vector correlations were com-
puted (via Pearson correlation) using score differences between a high
lead-level group and a comparison group, and the subtest g loadings.

2.1. Searching and screening studies

Two separate searches were carried out for English and Chinese-
language studies — these being the two most frequently used languages
in scientific publications. For the English-language studies, three
methods were used to identify studies that contained IQ scores from the
high BLL groups. First, an electronic search for published research using
PsycINFO, ERIC, MEDLINE, PiCarta, Academic search premier, Web of
science, Google Scholar, and PubMed was conducted. General keywords
used were: intellectual development, cognitive development, mental ability,
intelligence, IQ, WISC, Wechsler, and combinations of these terms,
combined with: lead, lead level, blood lead, tooth lead, bone lead. Second,
the reference lists of all important articles were scrutinized in search of
additional studies. Third, cited reference searches were conducted using
Web of Science to search for articles citing significant articles. The third
strategy did not lead to additional English-language studies.

For the Chinese-language studies the same three methods were
used, but only Chinese-language scientific databases were used. The
China National Knowledge Infrastructure (CNKI) is the world's largest
full-text information database and digital library and it is one of the
most commonly used databases in the Chinese-language-speaking part
of the world (Kong, 2010).

Wanfang Data is anther large database in China with broadly similar
coverage. There is no evidence to show whether CNKI or Wanfang Data
is the more comprehensive database. Most of the resources of the two
databases overlap, so that most Chinese researchers use only one of
them for searching the Chinese language literature (Kong, 2010).

Taiwan Scholar Journal Database (TWS) was also searched. This
database covers > 85% of Taiwan's academic publications and is the
most complete Taiwanese database (Taiwan Scholar Journal Database,
n.d.). Finally, Airiti Library was searched. This database encompasses
the Taiwan Electronic Periodical Services (TEPS). There are about
520,000 academic papers in Airiti Library (Airitilibrary, n.d.).

2.2. Inclusion rules

For studies to be included in the meta-analyses four criteria had to
be met: 1) in order to obtain a reliable estimate of the true correlation
between lead level and the g loadings, the cognitive batteries had to
have a minimum of four subtests of the intelligence test; 2) the IQ test
had to be well-validated; 3) the mean composite scores for the high
lead-level groups had to be lower than the mean scores of the com-
parison group (the control group or the standardization sample of the
IQ test); 4) only studies published in English or Chinese were used.
Figs. 1 and 2 show the PRISMA flowcharts of, respectively, the English-
language studies and the Chinese-language studies.

2.3. Computation of score differences between the groups of interest and a
comparison group

Most of the studies in our meta-analyses used a ‘control’ group and a
comparison group, but some groups did not have a ‘control’ group. In
one case (Wu, Cen, Zheng, & Li, 2000) we were able to create a syn-
thetic ‘control’ group by using a ‘control’ group from a highly com-
parable sample employing the same IQ battery (He, Wu, Long, Lu, &
Tian, 2009). In a second case (Hu, Dong, Ren, & Cai, 1999) there were
six samples, of which two were used as ‘control’ groups and four as high
BLL groups. To see whether these five comparisons gave different



M.A. Woodley of Menie et al.

Literature search: Databases: Web of Science, Scopus,
ProQuest Dissertations & Theses Global and EBSCOhost

Excluded: (n=27)
Animal subjects (n=8)
Behavioral and anthropometrical
studies (n=15)

Social policy studies (n=2)
Multiple publications (n=2)

Search results
combined (n=50)

Articles screened
on basis of title and
abstract

Included (n=23)

|

Manuscript review
and application of [EE————
inclusion criteria

l

Included (n=4)

l

Excluded (n=19)
Insufficient subtests/no subtests in

studies (n=14)
Non-usable data in studies (n=5)

Studies with control

group
(n=4)

Fig. 1. PRISMA flow chart for selection of r (g X d), English-language articles.

outcomes, we ran a moderator analysis contrasting data points using
original ‘control’ groups and data points using designated ‘control’
groups.

Score differences between a) the high BLL groups, and b) a ‘control’
group were computed by subtracting the mean score of the high BLL
groups on the particular composite score in question from the mean
score of the ‘control’ group, and then dividing the result by the SD of the
standardization group. The g loadings were also computed matching the
age range of the lead-exposed groups as close as possible.

2.4. Corrections for sampling error

Bare-bones psychometric meta-analytical techniques (Hunter &
Schmidt, 1990, 2004) were applied using the software package devel-
oped by Schmidt and Le (2004). In the present meta-analysis, we cor-
rected for one artifact identified by Hunter and Schmidt (1990) that
alters the value of outcome measures: sampling error. The Method of
Correlated Vectors is in essence a correlation between a number of g
loadings and the same number of associated effects, so we used the
number of subtests in the IQ battery as our measure of sampling error.
Thus, test batteries with a smaller number of subtests have more sam-
pling error than test batteries with larger numbers of subtests.
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2.5. Multiple comparisons

In four cases, two high BLL samples were compared to the same
‘control’ samples, that is, a single sample was contributing to two effect
sizes and therefore the contributing effect sizes were not fully in-
dependent. In our approach to dealing with multiple comparisons we
lean heavily on the arguments put forwards by te Nijenhuis, Willigers,
Dragt, and van der Flier (2016), who also carried out a meta-analysis
using the Method of Correlated Vectors. Eight out of 16 comparisons
use a high BLL group and a ‘control’ group, and eight out of 16 com-
parisons involve two high BLL groups being compared to the same
‘control’ group, so there is a modest dependence. Schmidt and Hunter
(2015, p. 437) state that if a very large number of comparisons makes
use of the same small sample, this may distort estimates of sampling
error which then leads to undercorrections for this statistical artifact.
However, in the present meta-analysis the four ‘control’ groups were
paired with lead-exposure data from just two data points, so there is
little error in the resulting aggregates. Schmidt and Hunter (2015, p.
452) review the literature and conclude that the distortion caused by
dependent samples is probably negligible in real data. Following te
Nijenhuis et al. (2016), we decided to not correct for the modest de-
pendence in the samples.

3. Results

The results of the studies on the vector correlation between g
loadings and the score differences between lead-exposed groups and
‘control’ groups (d) are shown in Table 1. The table gives data derived
from 12 studies, yielding 16 data points, with participants numbering a
total of 1935. It also lists the study citation, the cognitive ability test
used, the vector correlation between g loadings and d, the sample size,
and the mean age (and range of ages).

Table 2 presents the results of the bare-bones meta-analysis of the
16 data points. It indicates (from left to right): the number of effect sizes
(K), total sample size (N), the mean observed vector correlation (r) and
their standard deviation (SD,), the mean standard deviation one can
expect when corrections for sample size have been carried out (SD,,).
The next two columns present the percentage of variance explained by
sampling error (%VE), and the 80% credibility interval after correction
for sampling error (80% CI). This interval denotes the values one can
expect for rho in sixteen out of twenty cases (see Hunter & Schmidt,
2004, pp. 205-207, for a detailed description). Note that we are
working in the meta-analytical tradition of Schmidt and Hunter, where
I? values are not used, instead percentages of variance explained by
sampling error are estimated.

Table 2 indicates that the analysis of all 16 data points yields an
estimated correlation (rho) of 0.10 with 135% of the variance in the
observed vector correlations explained by artifactual errors. These va-
lues of variance explained of over 100% are not uncommon in Schmidt-
and-Hunter-style meta-analyses and are caused by second-order sam-
pling error (Hunter & Schmidt, 2004, pp. 399-401). According to
Hunter and Schmidt (2004) in the absence of methods to correct for
this, the most plausible way to interpret these values is that 100% of the
variance between the data points in the meta-analysis is explained by
sampling error. These credibility intervals were computed using SD
values that had been corrected for sampling error (SD,,), leading to a
massive reduction in the value of the observed SDs. As all of the var-
iation among studies is due to sampling error, the (corrected) 80% CI
value range was necessarily 0.

We tested whether study quality acted as a moderator by running
two separate meta-analyses for 1) all 11 studies with an original ‘con-
trol’ group and 2) all five studies with a designated ‘control’ group,
where we assume the studies with an original ‘control’” group are ar-
guably of better quality, as in these instances the ‘control’ group has
been sourced from the same population as the lead exposure group.
Table 2 indicates that the meta-analysis on all studies with an original
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Literature search: Databases: CNKI, Wanfang database TWS
(Tatwan scholar Journal database) and Airti Library

(Taiwan)

All the articles are in the Chinese language.

Search results from
CNKI combined
(#=597)

Search results from
TWS and Airiti
Library combined
(m=0)

Search results from
Wanfang database
combined (#=463)

Articles screened on basis of title and abstract

l

Multiple
publications (#=5)

Included (»=80)

Manuscript review
and application of
inclusion criteria

Included (7=8)

Studies with
control group

(n=6) (7=2)

Studies without
control group

Excluded (n=72)
Review of other studies (n=10)
Meta-analysis (#=2)
Insufficient subtests or no subtests
(n=50)
Full article missing (n=5)
Behavioral experiments (#=2)
Non-scientific paper (n=3)

Fig. 2. PRISMA flow chart for r (g X d), Chinese-language articles.

‘control” group yields an effect size of 0.09 with virtually all variance
between the 11 studies explained by sampling error. The meta-analysis
on all studies with a designated ‘control’ group yields an effect size of
0.12 with all the variance between the five studies explained by sam-
pling. So, the effect sizes are virtually identical and all or virtually all of
the variance is explained by sampling error, just as is the case in the
main meta-analyses. This means there is no clear moderator effect.

4. Discussion

We carried out a meta-analysis involving MCV on the role of g as a
moderator of the impact of lead on IQ performance based on sixteen
studies. There is no hard-and-fast rule as to the minimum number of
studies to include in a meta-analysis, but sometimes it is stated that
having ten data points makes for an adequately powered meta-analysis.
We have no less than sixteen studies, and the total N is 1935. We
conclude therefore that this is likely sufficient for the purposes of al-
lowing the drawing of clear conclusions. Having sixteen data points
means that high confidence can be placed in the resultant estimates of
the influence of sampling error on the differences between the studies
(Schmidt & Hunter, 2015). We were thusly highly successful in ex-
plaining the variance between the studies, which is an important goal of

188

meta-analysis.

So, how does lead exposure negatively impact human intelligence?
Does it reduce IQ at the level of g, specialized abilities and test speci-
ficities, or does it have mixed effects? The meta-analytic vector corre-
lation between the magnitude of the depressing effect of lead exposure
on subtest scores and their g saturations is positive in sign, but is weak
in magnitude, in line with several other studies involving other neu-
rotoxic substances (reviewed in the Introduction). This is consistent
with the hypothesis that lead may have effects on both g and specialized
abilities/test specificities owing to systemic effects on many different
brain regions. However, this finding is also consistent with the ex-
pectation that two antagonistic factors are at work. Firstly, lead may
have exclusively domain-specific impacts on the functioning of the
central nervous system, inhibiting the brain regions that subserve short-
term memory, such as the hippocampus and motoric speed, but not
long-term memory, which would explain why lead exposure has been
observe to suppress processing speed, but not verbal ability (Lezak,
1983). This suggests that neurotoxins (such as lead) should have their
principal effects at the level of specialized abilities and narrow test
specificities. General intelligence by contrast is highly distributed with
respect to the brain's neural architecture (Haier, 2017) and is robustly
canalized in development against the impact of factors that would
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Table 1
Vector correlations between g loadings and lead exposure.
Study Test Nationality r(d X g Number of N Lead N comparison N all Age Age mean Age Age range
subtests group groups  mean comparison range comparison
lead group lead group

Control group available

Chen, Zhao, Zhang, Chen, =~ WISC-CR Chinese 0.17 10 31 14 45 6-7 6-7
and Wu (2000)

Chen, Li, Chen, Zhang, and WISC-CR Chinese 0.62 10 77 31 108 9.92 8.95
Pu (2008)

Ernhart, Landa, and Schell ~McCarthy us 0.32 4 32 31 63 8-12 8-12
(1981) Scales

Hansen, Trillingsgaard, WISC Danish 0.12 11 78 78 156 7 7 - -
Beese, Lyngbye, and
Grandjean (1989)

He et al. (2009) C-WISC Chinese —0.50 11 40 154 194

He et al. (2009) C-WISC Chinese —-0.53 11 6 154 160

Kim, Yu, and Lee (2010) KIT-P Korean 0.18 5 151 151 302 10.5 10.5 9-12 9-12

Liu, Huang, and Pang C-WYCSI Chinese —0.05 11 43 38 81 5-6 5-6
(2004)

Needleman et al. (1979) WISC-R us 0.37 11 58 100 158 7.5 7.25

Zhu et al. (2006) C-WYCSI Chinese 0.28 10 73 88 161 5-6 5-6

Zou et al. (2005) WISC-CR Chinese 0.25 10 85 33 118 6-13 6-13

Control group designated

Wu et al. (2000) C-WISC Chinese —-0.08 11 62 154° 216 8.9 8.9 6-12 6-12

Hu et al. (1999) C-WYCSI Chinese 0.14 10 40 22 62

Hu et al. (1999) C-WYCSI Chinese 0.12 10 20 21 41

Hu et al. (1999) C-WYCSI Chinese 0.36 10 19 22 31

Hu et al. (1999) C-WYCSI Chinese 0.07 10 18 21 39

Note. The empty cells mean the values are not available.

r(d x g) = correlation between column vector of the impact of lead exposure on subtest score (d) and subtest g-loading; N lead = sample size for the lead exposure
group; N comparison group = sample size of control group; age mean lead = age mean for lead exposure group; age mean comparison group = age mean for
comparison group; age range lead = age range for the lead exposure group; age range comparison group = age range for the comparison group.

2 Value estimated.

disturb its development, such as parentally-derived de novo mutations
and presumably also neurotoxins (see discussion in: Woodley of Menie,
Sarraf, Penaherrera-Aguirre, Fernandes, & Becker, 2018). Secondly, as
was mentioned in the introduction, the ‘control’ and exposure groups in
these sorts of studies are typically not precisely matched in terms of
levels of g. For individuals, low g is a risk factor for a variety of poorer
life outcomes, including poorer quality diets, excessive consumption of
alcohol and also living in poorer quality environments (i.e. living near
to factories, power plants and other sources of pollution, or working in
jobs in which neurotoxin exposure is an occupational hazard) (Gordon,
1997; Gottfredson, 1997). This does not mean that all low-g individuals
will have poor life outcomes, but that on average they will have poorer
life outcomes than high-g individuals. So, it could be argued that there
might be an underlying difference in g favoring those in the ‘control’
group, i.e., those who are able to avoid exposure to neurotoxins by
virtue of living in better environments or working non-hazardous
‘white-collar’ type jobs. As was mentioned already, it has been found
that socioeconomic (SES) status confounds studies examining the im-
pacts of lead exposure, as factors that covary with SES, but not with
lead exposure can give rise to apparent differences between comparison
groups (Bellinger, 2008). That g differences may be one factor that

Table 2

covaries with SES independently of neurotoxin exposure is supported
by genetically-informed studies, that reveal substantial shared genetic
variance between cognitive ability and SES (Trzaskowski et al., 2014).
However, without precise information as to the extent of this con-
founding it is not possible to correct for this presently.

In the scenario that there are two prospectively antagonistic factors
at play, their net action will cause the value of the vector correlation to
deviate away from either +1 or —1 (depending on whether the effect is
completely moderated by g or by performance with respect to specia-
lized abilities and test specificities). Thus, in line with the results of
vector correlations sourced from other studies presenting results
amenable to MCV, we observe a weak magnitude Jensen effect con-
sistent with the scenario sketched above (i.e. that these two factors
might be acting simultaneously on the samples). Thinking in terms of
this scenario helps to account for other ‘anomalous’ imperfect results
(i.e. r <1 in magnitude) from applying the Method of Correlated
Vectors to other forms of environmental insult such as iodine deficiency
(p = 0.01, p = 0.889, N = 196) and traumatic head injury (p = —0.07,
p = 0.066, N = 629) (Flynn et al., 2014), as in these cases, the direct
deleterious impacts on IQ could also purely be at the level of specialized
abilities and test specificities. However, as with lead exposure, in these

Bare bones meta-analytical results for the vector correlations between lead exposure and g loadings after correction for sampling error.

K Nuptests Niotal r SD, SDho % VE 80% CI after correction for sampling error (rho)
All studies 16 155 1935 0.10 0.30 0 135 0.10 to 0.10
Moderator: study quality
Original control group 11 104 1545 0.09 0.35 0.07 96 —0.01 to 0.18
Designated control group 5 51 389 0.12 0.14 0 516 0.12 to 0.12

Note. Meta-analytical results for vector correlations between g loadings and lead exposure. K = number of effect sizes; N = number of subtests in all the IQ bat-
teries = total sample size; r = weighted mean observed correlations; SD, = standard deviation of observed correlation; SD,, = standard deviation after correction
for sampling error; %VE = percentage of variance accounted for by sampling error; CI = 80%(rho) = credibility interval for weighted mean observed correlations

using standard deviation after correction for sampling error (SD rho).
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cases the ‘exposure’ and ‘control’ groups may also differ in terms of g,
given that lower g is a major risk factor for nutritional deficiencies and
accidents (Gottfredson, 2007).

The scenario that group differences in studies such as these are
confounded with an uncontrolled underlying difference in g stemming
from socioeconomic factors has an unfortunate implication, namely
that it makes it impossible to say precisely how lead exposure impacts
IQ in terms of variance components. The methods employed here do
yield some interesting insights however. It is notable for example that
all of the variance among the studies included in the present meta-
analysis can be accounted for with sampling error. This leaves no room
for prospective moderators such as age, degree of lead exposure and
country of origin among the studies sampled, indicating that absent
sampling error, the effects of lead across subtests would be uniform
across studies.

To get a better idea of how lead exposure actually impacts different
variance components of IQ, it would be necessary to conduct a study in
which great care was taken to impose equality constraints in terms of
intelligence across the exposure and ‘control’” groups. Another line of
research would involve longitudinal analysis of individuals who have
become exposed to lead in the course of their lives, where cognitive-
ability data collected before and after exposure can be compared. By
restricting the analysis to single individuals, the problem of underlying
differences in g associated with differential socioeconomic character-
istics can be obviated. This approach would therefore allow for the
scenario that neurotoxins like lead have effects only on specific var-
iance components of IQ to be tested.

Finally, it should be noted that changing levels of lead exposure
(along with mercury and dioxin exposure and alcohol consumption —
operationalized as part of a common industrialization factor) does not
predict the long-term (> 1 century) secular decline in indicators of g
(Woodley of Menie et al., 2018), contrary to predictions made by
Demeneix (2017). g in this study was operationalized as a common
factor among measures of simple visual reaction times, working
memory, use of high-difficulty vocabulary words, ‘social intelligence’
and per capita macro-innovation rates (for a cross-temporal meta-ana-
lysis of these trends see: Woodley of Menie et al., 2017). Secular de-
clines in a common factor of polygenic scores from age-stratified sam-
ples sourced from the US and Iceland did however predict the decline in
g — after controlling for the effects of neurotoxins and also time (so as to
control for temporal autocorrelation; Woodley of Menie et al., 2018).
This further militates against the idea that neurotoxins such as lead
should have their primary effects on IQ scores at the level of g.
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