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The purpose of this study was to examine the applicability of Cattell-Horn-Carroll (CHC) theory across six in-
telligence tests to better understand the cognitive abilities at a broad construct level, as opposed to narrow test
level. Nearly 4000 youth aged 6 to 18 were drawn from seven tests' standardization and linking samples and
missing data techniques were used to complete cross-battery analyses. Cross-battery confirmatory factor analyses
demonstrated support for a CHC model when the Differential Abilities Scale, Second Edition, Kaufman
Assessment Battery for Children, Second Edition, Wechsler Intelligence Scale for Children, Third, Fourth, and
Fifth Editions, and Woodcock-Johnson III Tests of Cognitive Abilities were analyzed simultaneously. All but one
of the 66 subtests mapped on the CHC broad abilities in accordance with prior CHC classifications. Results also
indicated overall intelligence (g) and fluid reasoning (Gf) were statistically indistinguishable. Findings provide
further support that the CHC taxonomy is useful for intelligence test classification, interpretation, and devel-

opment.

1. Introduction

Individuals' intelligence has been linked to many real-world issues
including, but not limited to, academic achievement, years of education
completed, occupational performance, income, and health behaviors
(Gottfredson & Deary, 2004; Neisser et al., 1996). Intelligence tests are
often used in diagnostic psychological assessment across a variety of
settings (Jewsbury, Bowden, & Duff, 2016). A number of intelligence
tests are available, although each test includes measures that differ in
content and response format, and tests have been developed according
to different theories. Nevertheless, many tests appear to, and sometimes
purport to, measure similar intelligence constructs. Thus, a classifica-
tion system for intelligence constructs that is applicable across all in-
telligence tests can facilitate communication regarding the constructs
measured, individual intelligence test results, and research on in-
telligence and intelligence tests (see McGrew, 2009). Such a classifi-
cation system does exist, but there is limited research that has studied
the constructs across test batteries rather than in isolation. Such cross-
battery research is essential for validation of that system. The purpose
of this study was to fill that void by investigating intelligence constructs
measured across six popular individually administered intelligence
tests.

2. Cattell-Horn Carroll (CHC) theory

The current study was guided by the work of Raymond Cattell, John
Horn, and John Carroll. Because Carroll's three-stratum theory and
Horn-Cattell's Gf-Gc theory share many commonalities, the synthesis of
the two theories is commonly referred to as Cattell-Horn-Carroll (CHC)
theory (McGrew, 1997; Schneider & McGrew, 2018). Factor analytic
intelligence research findings have generally supported many aspects of
CHC theory, and tests derived from other intelligence theories, and
even neuropsychological and executive functioning theories, often
conform well to a CHC orientation (Floyd, Bergeron, Hamilton, & Parra,
2010; Jewsbury et al., 2016; Keith & Reynolds, 2010; Salthouse, 2005).

CHC theory posits a three-stratum model of intelligence. A general
intelligence factor, g, is at the apex of the model in the third stratum. In
CHC theory, g subsumes 8 to 10 broad abilities at the second stratum. g
and the broad abilities are interrelated and operate together. The broad
abilities include: verbal comprehension/knowledge (Gc), or the breadth
and depth of acquired cultural knowledge, including language and in-
formation learned inside and outside of school (often referred to as
crystallized intelligence); fluid reasoning (Gf), or the ability to solve
problems using unfamiliar information or novel procedures that cannot
be performed automatically; visual-spatial processing (Gv), the ability
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to use mental imagery to solve problems including mental rotations or
pattern identification; short-term or working memory (Gsm/Gwm), the
ability to hold information in one's immediate awareness and manip-
ulate it; processing speed (Gs), the ability to perform simple, repetitive
tasks quickly; and long-term retrieval (Glr), the ability to store and
retrieve information over longer periods of time (Schneider & McGrew,
2018). Recently Schneider and McGrew (2018) have argued that this
final ability is better understood as two broad abilities: Gl—learning
efficiency of new information in long-term memory and Gr—retrieval
fluency of previously learned information from long-term storage.
These broad abilities subsume many narrow abilities at the first
stratum; these abilities are often indexed by individual intelligence
subtests. Although different tests often purport to measure the same
CHC broad ability constructs, the subtests within each test battery vary
according to task demands, stimuli, and response format. Due to these
subtest specific differences, some psychologists question whether these
different tests measure the same abilities (see Reynolds, Keith,
Flanagan, & Alfonso, 2013).

3. Cross-battery intelligence research

In an attempt to better understand the structure of intelligence tests
and the cognitive ability constructs measured across batteries, re-
searchers should analyze data from multiple intelligence tests si-
multaneously. This type of research expands the application of factor
analysis from analyzing individual intelligence tests to joint analyses of
scores from multiple tests, referred to as cross-battery confirmatory
factor analyses (CB-CFA; Reynolds et al., 2013). CB-CFA is a useful
technique for understanding the constructs shared by different mea-
sures, and also as a method of evaluating intelligence theory (Keith &
Reynolds, 2010). CB-CFA analyses also inform the nature of the broad
abilities at the construct level. Most intelligence tests do not include
more than two or three measures (often referred to as subtests) of any
one broad ability, but analyzing data from multiple batteries at once
allows for a much larger number of subtest indicators of each broad
ability. This results in more generalizable conclusions about the nature
of the cognitive abilities the subtests represent. The same common
factors should emerge when the subtest indicator variables are selected
from different intelligence batteries (referred to as factorial invariance
under selection of variables, Reynolds et al., 2013).

CB-CFA has many benefits, but its application in practice is chal-
lenging. CB-CFA requires the administration of multiple intelligence
tests to the same participant, requiring excessive time, financial, and
participant effort. These demands have generally limited prior CB-CFA
studies to the simultaneous analysis of two (Flanagan & McGrew, 1998;
Keith, Kranzler, & Flanagan, 2001; Keith & Novak, 1987; Phelps,
McGrew, Knopik, & Ford, 2005; Sanders, Mcintosh, Dunham,
Rothlisberg, & Finch, 2007; Stone, 1992) or three intelligence tests
(Johnson, Bouchard, Krueger, McGue, & Gottesman, 2004; Woodcock,
1990). Nevertheless, prior CB-CFA studies based on CHC theory or
Cattell-Horn Gf-Gc theory provide cross-battery quantitative evidence
supporting these theories, even though most of the tests, except for the
Woodcock Johnson, were not explicitly developed using these theories.

A recent CB-CFA analyzed data from four intelligence tests si-
multaneously: the Kaufman Assessment Battery for Children, Second
Edition (KABC-II), Woodcock-Johnson Tests of Cognitive Abilities,
Third Edition (WJ III), and Wechsler Intelligence Scale for Children,
Third Edition (WISC-III) and Fourth Edition (WISC-IV; Reynolds et al.,
2013). Participants were drawn from the KABC-II concurrent validity
sample (n = 423 children aged 6-16). Each child completed the KABC-
II and one other test for the purpose of investigating correlations be-
tween different test scores. A CB-CFA CHC model fit the data well. Five
broad abilities, including verbal comprehension/knowledge (Gc,
median standardized factor loading [(3] = 0.82), fluid reasoning (Gf,
median 3 = 0.66), visual spatial processing (Gv, median $ = 0.65),
learning efficiency (Gl, median B = 0.68), and working memory (Gwm,
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median B = 0.61) were well-measured. Correlations between the broad
ability factors ranged from 0.57 (Gv and Gwm) to 0.82 (Gf and Gv). Gf
generally had the strongest relation with a second-order g factor
(B = 0.98), and could not be reliably distinguished from g. The authors
concluded that CHC broad abilities were factorially invariant across the
four tests and 44 subtests, providing evidence that CHC theory is ap-
plicable across different tests and different tests measure the same CHC
constructs similarly.

4. Methodological considerations

Modern missing data methods provide one method to exploit the
benefits of CB-CFA to test intelligence theory and examine cognitive
abilities at a construct level while overcoming the inherent time and
resource demands of CB-CFA. For example, not requiring all partici-
pants to complete all of the tests eventually included in the CB-CFA
analyses may make a study with more than two or three tests feasible.
Missing data analysis techniques, specifically full information max-
imum likelihood (FIML) estimation, may potentially accommodate the
incomplete data. Data with incomplete cases are not discarded as they
are in list-wise or pairwise deletion. Rather FIML maximizes data that
are available by borrowing information from observed data and not
discarding important information provided by variables with missing
data; missing data are not imputed or replaced, however. The borrowed
information from the observed data improves the power and the ac-
curacy of the estimation process (Enders, 2010; Schafer & Graham,
2002).

Missing data mechanisms have implications for the use of FIML with
cross-battery intelligence analyses. Three possible missing data me-
chanisms explain how missing data relate to the variables under study;
Rubin and colleagues created these classifications in 1976 (Enders,
2010). One mechanism, missing completely at random (MCAR), is ideal
and means there is no association between scores on the intelligence
subtests and the cause of the missingness (Enders, 2010; Graham,
Taylor, Olchowski, & Cumsille, 2006). Data are missing for individuals
who were randomly missing during the data collection process. Another
mechanism, missing at random (MAR), means that missing data are
related to other variables in the model but not related to scores on the
intelligence subtests if all variables related to the missing data me-
chanism are controlled. The variables related to the missing data me-
chanism are not included in the model, but serve as auxiliary variables
in the estimation process (Enders, 2010). When FIML is applied to
MCAR or MAR data and the model is correctly specified, all parameters
estimates are consistent and unbiased (McArdle, 1994; Rubin, 1987).
The third mechanism, missing not at random (MNAR), means the cause
of missingness is related to scores on the intelligence subtests and
parameter estimates may be biased (Enders, 2010).

Some methodologists have suggested that researchers actually plan
missingness into the design of a research study prior to data collection
in order to increase the number of variables or breadth of data collected
in a study (McArdle, 1994). McArdle encouraged the use of such
planned missingness designs over 20 years ago and wrote “I want to
begin by stating: I like incomplete data and think there should be more
of it” (McArdle, 1994, p. 409). For example, a planned missingness
research design might have participants complete some tests or items
and not others and spread out the incomplete data across participants.
Often all participants complete one test, referred to as the linking test,
and a subset of other tests. Linking tests are needed because their items
are vital to the research questions (Enders, 2010; Graham et al., 2006),
but a linking test may not be necessary in all scenarios (Graham et al.,
2006).

Missingness in planned missingness designs is intentional and under
the control of the researcher (Enders, 2010; McArdle, 1994) and all
available data are analyzed simultaneously with FIML or some other
analytical technique. It should be possible, however, to apply the same
analytical techniques to incomplete data that were not “planned” to be



J.M. Caemmerer, et al.

Intelligence 79 (2020) 101433

Table 1
Characteristics and demographic of the seven samples.

Test KABC2 XBA WISC4/DAS2 DAS2/WIAT2 KABC2 /KTEA2 KABC2 /WISC5 WISC5/WIAT3 WISC4/WIAT2

Gender (%)
Male 47.7 50.0 48.2 50.1 48.9 55.2 50.8
Female 52.3 50.0 51.8 49.9 51.1 44.8 49.2

Ethnic/racial background (%)
White, non-Hispanic 60.6 35.2 60.8 62.2 46.6 50.3 61.8
Hispanic 19.7 27.2 19.2 17.7 35.2 21.0 17.5
African American 10.3 24.8 15.8 14.9 10.2 19.9 15.4
Asian 5.4 6.4 3.7 0.0 2.3 1.7 4.3
Native American 0.9 n.r. n.r. 0.0 n.r. n.r. 0.4
Other 1.7 6.4 0.6 5.2 5.7 7.2 0.6

Parents' highest level of education (%)
8th grade or below - 4.5 5.4 - 1.1 2.2 5.6
9th - 11th grade 9.4* 12.4 11.3 14.4* 12,5 8.3 11.7
High school diploma or GED 20.0 25.7 25.6 32.5 18.2 24.9 26.7
Some college 34.0 28.7 29.9 30.1 36.4 35.4 31.8
Bachelor's or higher 33.4 28.7 27.9 23.0 31.8 29.3 24.2

Age in years
Mean age (SD) 11.3(2.5) 11.2(3.5) 11.5(3.6) 10.7(4.0) 11.2(2.9) 11.8(3.1) 11.1(3.2)

Note. n.r. indicates values were not reported in the samples. Asterisks denote samples in which a percentage was reported for 11th grade and below only.

missing within a single study, given the same missing data assumptions
can be assumed. For example, a combination of data from different
studies with similar purposes (e.g., evaluating construct validity of a
test) may be analyzed simultaneously given certain assumptions may be
met.

5. Purpose of this study

The primary purpose of this research was to investigate CHC theory
across six intelligence tests. The validity of CHC-theory-based broad
abilities at a construct, as opposed to a test-specific, level and CHC-
based classifications of 66 subtests from different tests were in-
vestigated. The study builds on previous research (Reynolds et al.,
2013) by incorporating data from two intelligence tests not yet included
in CB-CFAs, the Wechsler Intelligence Scale for Children, Fifth Edition
(WISC-5) and Differential Abilities Scale, Second Edition (DAS-2). As a
result, 22 additional subtest indicators were in included in our ex-
panded cross-battery study and an additional CHC broad ability (pro-
cessing speed) was studied. The second purpose of this study was
methodological: to apply principles of missing data to a cross-battery
analysis of seven datasets without a single linking test.

6. Method
6.1. Participants

Participants were 3927 children and adolescents aged 6 to 18 drawn
from seven samples. These samples were standardization and linking
samples collected by Pearson Assessments during norming and validity
studies of their intelligence measures. Sample sizes within each sample
ranged from 88 to 2223. Demographic information for the samples is
shown in Table 1.

1. The Kaufman Assessment Battery for Children, Second Edition
(KABC-II) concurrent validity sample included 347 children (re-
ferred to as KABC-II XBA). All children completed the KABC-II and
one other test, the Woodcock-Johnson Tests of Cognitive Abilities,
Third Edition (WJ III, n = 89) and the Wechsler Intelligence Scale
for Children, Third Edition (WISC-III, n = 123) and Fourth Edition
(WISC-1V, n = 58). The KABC-II XBA sample was used by Reynolds
et al. (2013).

2. The KABC-II and Kaufman Test of Educational Achievement, Second
Edition (KTEA-II) sample included 2223 children.

3. The KABC-II and Wechsler Intelligence Scale for Children, Fifth

Edition (WISC-V) sample included 88 children.

4, The WISC-V and Wechsler Individual Achievement Test, Third
Edition (WIAT-III) sample included 181 children.

5. The WISC-IV and Wechsler Individual Achievement Test, Second
Edition (WIAT-II) sample included 532 children.

6. The WISC-IV and Differential Abilities Scale, Second Edition (DAS-
II) sample included 202 children.

7. The DAS-II and WIAT-II sample included 370 children.

Participant identification numbers were checked across samples to
determine whether the same child participated in multiple standardi-
zation or validation samples; 16 duplicates were identified. Duplicate
intelligence test entries were combined into one. One child with a du-
plicate entry completed the KABC-II, WISC-III, and KTEA-II, and the
other 15 duplicates completed the WISC-IV, DAS-II, and WIAT-IL

6.2. Study design

Across the different samples, children and adolescents were ad-
ministered specific sets of tests for validation, standardization, and co-
norming purposes. In six of the original studies, the purpose was to
provide evidence of convergent validity by examining the correlations
between scores on one intelligence test and scores on another in-
telligence test, or to provide evidence of predictive validity for that
intelligence test and a standardized achievement test. Data from three
achievement tests, the KTEA-II, WIAT-II, and WIAT-III, were related to
additional research questions beyond the scope of the current study.
KABC-II XBA data resembled a planned missingness design. All parti-
cipants completed the KABC-II, the linking test, plus another test (in our
sample they also completed the WJ III, WISC-III, or WISC-IV). The other
six samples did not share the same linking test, but one or both tests in
each sample were given in at least one other sample (see Table 2)."

L1t may seem counterintuitive that CFA would be possible, or the results
meaningful, given these missing data patterns. One way of understanding the
methodology is as a multi-group CFA with constraints across groups to allow
estimation, and this is a common method for explaining the reference variable
approach (e.g., Keith & Reynolds, 2010; McArdle, 1994). Measured variables
for tests not administered to a group are treated as latent variables, with con-
straints across groups (e.g., factor loadings, error variances) to allow estimation
in the group with missing data. See the citations for more detail about the
method.
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Table 2
Seven samples and how they were linked.
Tests KABC-II WJ III WISC-III WISC-IV WISC-V DAS-II KTEA-II WIAT-II WIAT-III
SAMPLES 347 89 123 58 - - - - -
KABC-II
XBA
KABC-II/KTEA-II 2223 - - - - - 2223 - -
WISC-IV/DAS-II - - - 202 - 202 - - -
DAS-II/WIAT-II - - - - - 370 - 370 -
WISC-IV/WIAT-IL - - - 532 - - - 532 -
WISC-V/WIAT-IIL - - - - 181 - - - 181
WISC-V/KABC-II 88 - - - 88 - - - -

Note. Values represent the sample sizes for each test.
6.3. Measures

Six intelligence tests and 66 subtests were included in the cross-
battery analyses. Age-referenced standardized subtest scores were used
for all tests. Previous research has demonstrated the factor invariance
for each intelligence measure across the age groups: DAS-II (Keith, Low,
Reynolds, Patel, & Ridley, 2010), KABC-II (Reynolds, Keith, Fine,
Fisher, & Low, 2007), WISC-III (Keith & Witta, 1997), WISC-IV (Keith,
Fine, Taub, Reynolds, & Kranzler, 2006), WISC-V (Reynolds & Keith,
2017a, 2017b), and WJ III (Taub & McGrew, 2004).

6.4. KABC-II

The KABC-II, normed for ages 3 to 18, was developed using CHC and
Luria theories (Kaufman, & Kaufman, & N. L., 2004). Sixteen KABC-II
subtests are designed to measure five CHC broad abilities: Gf, Gc, Gv,
Gwm, and Gl. Age-referenced standardized subtest scores range from 1
to 19, with a mean of 10 and a standard deviation of 3. Average internal
consistency estimates ranged from 0.74 to 0.93 in the norming sample.
Participants in this study were 6 to 18 years old and drawn from three
samples (see Table 2).

6.5. WISC

The Wechsler Intelligence Scales for Children, normed for ages 6 to
16 years 11 months, were not developed using CHC theory. Research
with the WISC-IV and WISC-III suggests, however, that the constructs
measured in these tests align with CHC theory (Keith et al., 2006; Keith
& Witta, 1997). The most recent revision, the WISC-V, is more con-
sistent with CHC theory than previous editions (Reynolds & Keith,
2017a, 2017b). WISC subtests measure five CHC broad abilities: Gf, Gc,
Gv, Gwm, and Gs. Age-referenced standardized subtest scores range
from 1 to 19, with a mean of 10 and a standard deviation of 3.

Average internal consistency estimates for subtests in the norming
samples ranged from 0.80 to 0.96 for the WISC-V (Wechsler, 2014),
0.81 to 0.91 for the WISC-IV (Wechsler, 2003), and from 0.69 to 0.87
for the WISC-III (Wechsler, 1991). In the current study 16 WISC-V, 10
WISC-1V, and 12 WISC-III subtests were analyzed. Participants were 6
through 16 years old and were drawn from five samples (see Table 2).

6.6. WJ III

The WJ III is appropriate for a wide age range, from ages 2 to
90 years or older. The WJ III was developed using CHC theory and is the
most comprehensive measure of the range of CHC broad abilities in this
study. Age-referenced standardized subtest scores are on a standard
intelligence scale with a mean of 100 and standard deviation of 15.
Median internal reliability estimates for these subtests ranged from 0.74
to 0.94 in the norming sample (Woodcock, McGrew, & Mather, 2001).
Eleven subtests representing six CHC broad abilities, Gec, Gf, Gv, Gwm,
Gs, and Gl, were analyzed in the current study. Participants in this study

were 7 to 16 years old and drawn from one sample, the KABC-1I XBA
sample.

6.7. DAS-II

The development of the DAS-II was guided by multiple theoretical
orientations, including CHC theory. The DAS-II is appropriate for ages 2
to 17. DAS-II subtests measure six broad abilities: Ge, Gf, Gv, Gwm, Gs,
and Gl. Age-referenced standardized subtest scores are T-scores with a
mean of 50 and standard deviation of 10. Average internal consistency
estimates ranged from 0.68 to 0.97 in the norming sample (Elliot,
2007). Fourteen subtests were analyzed and participants in this study
were 5 to 17 years old, drawn from two samples (see Table 2).

6.8. Data analyses

Three statistical programs were used to conduct the SEM analyses.
IBM Statistical Package for the Social Sciences (SPSS, version 25, 2017)
was used to select variables and participants and check the data.
Following data preparation, invariance was tested, and model implied
correlations were estimated via SPSS Amos, Version 23.0 (Arbuckle,
2015). Then, Mplus (Muthén & Muthén, 2018), version 8 was used to
analyze the CB-CFA models.

6.9. Missing data

Data analyzed in the current study were not intentionally collected
for the purposes of a planned missingness design or CB-CFA (refer to
Reynolds et al., 2013 which analyzed data that were also not collected
with that intention). Instead data from seven samples were combined
and missing data across the samples were due to the methodological
approach of combining data. That is, data were missing in the total
sample because participants were intentionally not administered all
tests. Thus, missingness was likely not related to scores on the in-
telligence subtests themselves and data were likely MCAR or MAR.
Most of the data sets were collected with the intention of providing data
on two tests from each participant. Thus, every participant had in-
complete data.

There were 70 missing data patterns in the total sample.
Proportionally, 68% of the total sample completed the KABC-II, 30%
completed an edition of the WISC, 14% completed the DAS-II, and 2%
completed the WJ III. See Table 2 for specific sample sizes per subtest.

SPSS Amos and Mplus handle missing data through the strongly
recommended Full Information Maximum Likelihood (FIML) proce-
dure. FIML does not discard cases with incomplete data and instead
borrows information from the observed data to maximize power and
increase the accuracy of the estimation process (Enders, 2010; Schafer
& Graham, 2002). When maximum likelihood estimation is applied to
missing completely at random (MCAR) or missing at random (MAR)
data all parameter estimates are unbiased in correctly specified models.
All variables related to the missing data mechanism must be controlled
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for in the analyses of MAR data (McArdle, 1994; Rubin, 1987). Parents'
education level, a proxy of socioeconomic status, was controlled for in
all analyses via the auxiliary variable command in Mplus to account for
a possible relation with missingness.”> The Mplus auxiliary variable
command specifies continuous variables that are not part of the ana-
lysis, but are used as missing data correlates in addition to the analysis
variables (Muthén & Muthén, 2018). The missing data correlate, parent
education, provided the correct number of parameters and the chi-
square value test for the analysis models (Asparouhov & Muthén, 2008).

7. Analysis plan
7.1. Sample invariance

Measurement invariance was tested across different samples of
youth who completed the same test to determine if the CHC broad
ability constructs were measured in the same way across samples. For
example, in order to establish the WISC-V broad abilities were mea-
sured similarly across the two separate groups of youth who completed
the WISC-V (88 youth in the WISC-V/KABC-II sample and 181 youth in
the WISC-V/WIAT-III sample) measurement invariance was tested.
Three other sample invariance tests included: (1) three WISC-IV sam-
ples (WISC-IV/DAS-II, WISC-IV/WIAT-II, WISC-IV/KABC-II XBA), (2)
three KABC-II samples (KABC-II XBA, KABC-II/WISC-V, KABC-II/KTEA-
1), and (3) two DAS-II samples (DAS-II/WIAT-II and DAS-II/WISC-1V).

Measurement invariance was tested at the first order (broad abilities
and subtests) level, and constraints were retained in later steps if they
were supported. The first step, configural invariance, tested whether
the same factor structure fit the data across groups. Next, weak factorial
invariance (also known as metric invariance) tested whether the subtest
factor loadings were equal across groups. The third step, strong fac-
torial invariance (also known as intercept invariance), tested whether
the subtest intercepts were equal across groups. Finally, strict factorial
invariance (also known as residual invariance) tested whether the
subtest residual variances were equal across groups (Keith, 2019;
Meredith, 1993). Given the missing data patterns it may not be neces-
sary to establish invariance, but testing was completed out of an
abundance of caution.

7.2. WISC edition invariance

The three editions of the WISC (WISC-III, -IV, and -V) shared 14
subtests. Although the subtests' names were identical across editions,
the item content was different in each edition. Measurement invariance
was examined across the three editions to determine if the constructs
across editions were equivalent.

7.2.1. Cross-battery first-order CHC measurement model

Due to the cross-battery nature of the analyses, CHC broad abilities
that were measured by more than one test battery were modeled.
Auditory attention (Ga) was not included because only the WJ III as-
sessed that ability. Therefore, a first-order CFA model with six corre-
lated latent CHC broad factors (Gec, Gf, Gv, Gwm, Gs, and GI) indicated
by 8 to 15 subtests was estimated. Three correlated residual variances
were included for the four KABC-II and two DAS-II subtests that in-
cluded a delayed recall measurement (KABC-II Atlantis and Atlantis
Delayed, KABC-II Rebus and Rebus Delayed, and DAS-II Recall of
Objects Immediate and Recall of Objects Delayed).

Six subtests were cross-loaded on more than one broad ability factor
based on previous CFA results; five of the cross-loadings were tested in
the Reynolds and colleagues CB-CFA (2013; one was not tested because
the DAS-II was not included in that study). The purpose of testing these

2 Analyses completed without the auxiliary variable were almost identical to
those with parent education as an auxiliary variable.
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cross-loadings in the current study was to investigate what these subt-
ests measure with well-defined factors.

e WISC Arithmetic is a complex task tapping possibly more than two
broad abilities, and recent findings suggest Arithmetic may also be a
direct measure of g (Reynolds & Keith, 2017a, 2017b). WISC Ar-
ithmetic is labeled a Gwm measure on the scoring structure of older
editions but as a Gf measure on the WISC-V; also, Arithmetic items
are timed. In our study WISC Arithmetic is more broadly defined
than previous studies because data from the third, fourth, and fifth
edition were combined. Cross-loadings of WISC Arithmetic on Gf,
Gwm, and Gs were tested.

e WISC Picture Completion is labeled a Gv measure in the scoring
structure, but a Gec cross-loading was previously supported (Keith
et al., 2006; Reynolds et al., 2013).

e KABC-II Gestalt Closure is labeled a Gv measure in the scoring
structure, but a Gc cross-loading was supported (Reynolds et al.,
2007; Reynolds et al., 2013).

o KABC-II Hand Movements is labeled a Gwm measure, but a Gf cross-
loading was supported (Reynolds et al., 2007).

e WJ III Picture Recognition is a Gv measure in the scoring structure,
but may be better represented as a Gl measure (Reynolds et al.,
2013).

® DAS-II Verbal Comprehension subtest is a measure of receptive
language (Gc), but a Gf cross-loading was previously supported
(Keith et al., 2010).

7.2.2. Second-order cross-battery CHC model

After the first-order model was established, g was added in a second-
order model. A model with a direct path from g to WISC Arithmetic was
tested and compared to the initial second-order model. Parameters of
interest in the final model included the factor loadings of the subtests
on their respective latent broad abilities and the factor loadings of the
broad abilities on g. Also, of interest were omega hierarchical coeffi-
cients for the six CHC broad abilities. Model implied correlations be-
tween Gc, Gf, Gv, Gl, Gwm, and Gs factors and their corresponding
composites were estimated in the second-order model with g.
Composites were created as phantom formative variables with the paths
of all their corresponding subtests fixed to 1 (Gignac, 2007). The
squared implied correlation is equivalent to omega hierarchical
(McDonald, 1999). Omega hierarchical coefficients are considered as
either reliability or validity indexes (Reynolds & Keith, 2017a, 2017b).

7.2.3. Model evaluation

Single models were evaluated according to multiple measures of fit,
as suggested by methodologists (Hu & Bentler, 1998, 1999). Root mean
square error of approximation (RMSEA), standardized root mean square
residual (SRMR), the comparative fit index (CFI), and the Tucker-Lewis
index (TLI) were used to assess the fit of single models (Keith, 2019).
Cut-off values that suggest good fit are RMSEA below 0.05, SRMR
below 0.08, and CFI and TLI values above 0.95 (Hu & Bentler, 1999).

Change in CFI was used to compare the fit of different invariance
models; a cut-off value of equal to or less than —0.01 supported the null
hypothesis of invariance (Cheung & Rensvold, 2002). Partial in-
variance, which allows a limited number of differences across groups,
was tested if necessary (Keith, 2019). Alternative, nested models were
compared using the likelihood ratio test. For non-nested competing
models, the adjusted Bayes Information Criterion (aBIC) was examined;
smaller aBIC values indicate better fitting models (Keith, 2019).

8. Results
8.1. Descriptive statistics

Subtest sample sizes, means, standard deviations, skewness, and
kurtosis estimates are presented in Table 3. The means and standard
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Table 3
Descriptive statistics for cognitive tests.
Tests and subtests N M SD Skew  Ku
DAS-II
Copying (Gv) 178 51.23 841 043 1.14
Digits Backward (Gwm) 557 49.82 8.56 —-0.32 0.52
Digits Forward (Gwm) 557 49.81 9.78 0.13 0.93
Early Number Concepts (Gf) 178 51.10 8.64 0.40 -0.19
Matching Letter Like Forms (Gv) 178 51.71 9.08 —-0.29 0.40
Matrices (Gf) 557 50.21 9.19 0.09 —0.04
Naming Vocabulary (Gc) 178 51.35 9.41 0.65 1.32
Pattern Construction (Gv) 557 49.97 8.65 0.69 1.61
Rapid Naming (Gs) 557 5047 897 0.84 1.97
Recall of Designs (Gv) 556 50.25 8.78 0.01 0.04
Recognition of Pictures (Gv) 557 50.26 9.29 0.65 1.11
Recall of Objects-Immediate (Gl) 557 49.06 10.32 -0.08 0.92
Recall of Objects-Delayed (Gl) 557 50.17 9.46 —0.07 0.33
Recall of Sequential Order (Gwm) 557 50.09 9.48 0.03 0.74
Sequential and Quantitative Reasoning 556 50.55 9.09 0.60 1.20
(G
Speed of Information Processing (Gs) 557 51.07 9.21 —-0.01 0.37
Verbal Comprehension (Ge, Gf cross- 178 50.15 8.96 1.09 2.15
loading)
Verbal Similarities (Gc) 557 50.66 848 —0.29 1.24
Word Definitions (Gc) 556 50.19 8.84 0.16 1.14
KABC-II
Atlantis (GI) 2654 10.02 3.09 -0.18 -0.06
Atlantis Delayed (Gl) 2435 9.93 2.80 -0.34 -0.13
Block Counting (Gv) 2655 9.97 3.00 -0.02 -0.11
Expressive Vocabulary (Gc) 2656 9.85 295 -0.03 0.05
Gestalt Closure (Gv, Gc cross-loading) 619 10.00 2.89 0.05 0.23
Hand Movements (Gwm, Gf cross- 2656 10.08 2.88 0.04 0.11
loading)
Number Recall (Gwm) 2657 10.24 2.86 -0.06 -0.07
Pattern Reasoning (Gf) 2656 10.19 2.96 —0.09 0.04
Rebus (G1) 2657 10.14 3.04 -0.16 0.01
Rebus Delayed (Gl) 2407 10.03 2.96 -0.28 -0.27
Riddles (Gc) 2657 10.14 3.04 —-0.16 0.01
Rover (Gv) 2652 10.15 3.02 -0.05 -0.02
Story Completion (Gf) 2653 10.10 298 0.02 —-0.02
Triangles (Gv) 2656 10.00 2.91 -0.08 -0.14
Verbal Knowledge (Gc) 2657 10.01 294 0.00 —-0.07
Word Order (Gwm) 2657 9.93 2.83 0.11 0.13
WISC (Version)
Arithmetic (Gwm, Gf, Gs cross-loadings; 880 10.32 2.77 0.16 —-0.33
I - v)
Block Design (Gv; III - V) 1178 10.18 2.84 0.07 0.05
Cancellation (Gs; IV - V) 998 10.03 3.02 0.05 0.06
Coding (Gs; III - V) 1178 10.06 290 0.20 -0.01
Comprehension (Gc; III - V) 1174 10.25 2.89 —-0.06 0.19
Digit Span (Gwm; III - V) 1167 10.04 286 0.16 —-0.01
Figure Weights (Gf; V) 269  9.92 2,69 —0.11 0.08
Information (Gg; III — V) 1124 10.25 2.84 0.06 -0.20
Letter-Number Sequencing (Gwm; I -V) 1050 10.00 2.82 —0.46 0.76
Matrix Reasoning (Gf; IV - V) 1060 10.21 286 0.13 -0.23
Object Assembly (Gv; III) 123  10.34 295 —0.22 0.52
Picture Arrangement (Gf; III) 123 10.65 3.45 0.20 —-0.24
Picture Completion (Gv, Gc cross-loading; 324  10.33  3.00 —0.08 0.48
III & IV)
Picture Concepts (Gf; IV - V) 1060 10.28 292 -0.24 0.19
Picture Span (Gwm; V) 269 9.75 2.66 0.06 —0.58
Similarities (Gc; III — V) 1179 10.18 2.87 —0.09 -0.07
Symbol Search (Gs; III - V) 1143 10.21 2.93 -0.15 0.74
Visual Puzzles (Gv; V) 268 10.06 2.62 0.00 —0.53
Vocabulary (Gc; III - V) 1178 10.14 291 —-0.16 0.08
WJ III
Analysis-Synthesis (Gf) 87 102.91 17.19 -0.29 0.40
Auditory Working Memory (Gwm) 88 105.40 13.91 0.34 -0.11
Concept Formation (Gf) 89 105.36 13.90 —0.08 0.54
Decision Speed (Gs) 88 100.56 16.18 -0.71 3.75
General Information (Gc) 89 98.37 16.16 —-0.31 0.32
Numbers Reversed (Gwm) 89 100.62 14.31 -0.04 0.52
Picture Recognition (Gv, Gl cross-loading) 89 100.79 12.58 0.04 2.84
Spatial Relations (Gv) 89 100.62 11.33 —-0.70 1.33
Verbal Comprehension (Gc) 89 102,55 14.24 -0.69 0.56
Visual-Auditory Learning (Gl) 89 94.65 19.76 —0.47 1.86
Visual Matching (Gs) 89 95.84 13.37 0.34 0.08

Intelligence 79 (2020) 101433

deviations of the subtests are mostly similar to those of their respective
norming samples. As evidenced in Table 3, the subtests are normally
distributed; skewness and kurtosis values are well below suggested cut-
off points for univariate normality (below 2 and 7, respectively; Curran,
West, & Finch, 1996). The table also shows the broad abilities assumed
to be measured by each test. The covariance matrix is available upon
request from the first author.

8.2. Invariance testing

8.2.1. Sample invariance

Strict factorial invariance—configural, intercept, metric, and re-
sidual invariance—was supported across three models (WISC-IVZ,
WISC-V, and KABC-II, see Table 4), but not for the DAS-II (change in
CFI = 0.011). The Early Number Concepts subtest was the largest
contributor to the lack of strict factorial invariance on the DAS-IIL
Partial strict invariance was tested by allowing the residual of Early
Number Concepts to freely vary across the two samples. This mod-
ification resulted in a reduction of the change in CFI (0.009), thus
supporting partial strict invariance for the DAS-II samples. The in-
variance results suggest the CHC broad ability factors were measured
equivalently across the multiple samples of youth who completed the
WISC-IV, WISC-V, KABC-II, and DAS-II. As noted earlier, given the
missing data patterns testing for invariance may not have been neces-
sary, but we did so to bolster our and others' confidence in our findings.

Because invariance was supported across the multiple samples of
the four tests, subtest data from each sample were merged into a single
data column for that respective test. For example, DAS-II Matrices
subtest scores from the DAS-II/WIAT-II and DAS-II/WISC-IV samples
were combined into one data column within a combined dataset.

8.2.2. WISC edition invariance

The merged invariant samples of the WISC-IV and WISC-V from the
previous analysis step were used to test edition invariance. Strict fac-
torial invariance was supported across the WISC-III and WISC-IV data
and also between the merged WISC-III/-IV data and the WISC-V data
(see Table 4). Factorial invariance suggests that although the subtest
content varied across the three WISC editions, the CHC broad ability
factors were measured similarly across the three editions. Data for the
nine subtests that were administered in all three editions (Vocabulary,
Similarities, Comprehension, Information, Coding, Symbol Search,
Block Design, Arithmetic, and Digit Span), four additional subtests
administered in the WISC-IV and WISC-V (Cancellation, Picture Con-
cepts, Matrix Reasoning, Letter-Number Sequencing), and one addi-
tional subtest administered in the WISC-III and WISC-IV (Picture
Completion) were merged resulting in the merging of data from five
samples. These 14 merged subtests are referred to as “WISC” subtests in
later analyses (Reynolds et al., 2013).

3 In the WISC-IV invariance model Gv and Gf were combined into one factor
because there was only one measure of Gv, Block Design, and the model would
have been under-identified otherwise. Picture Completion is also a measure of
Gv, but only one of the three WISC-IV samples included this subtest; therefore
we did not include the subtest here. Picture Completion was also completed by
participants in the single WISC-III sample (taken from the KABC-II XBA
sample), and invariance was tested across the two editions of the tests and is
described below.

2 It was not possible to test one KABC-II subtest, Gestalt Closure, from one
sample, KABC-II/KTEA-II, for invariance. Gestalt Closure had a significant
amount of missing data in that specific sample (n = 193 out of 2223 total
participants). Invariance was supported for Gestalt Closure between the two
other KABC-II datasets, KABC-II XBA and KABC-II/WISC-V.
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Table 4 Table 5

Invariance testing across samples & editions. Correlations between broad abilities in the First Order Model.
Model name x2(dp p CFI A CFI Adj. RMSEA Gf Gv Gc Gl Gwm
WISC-V (2 samples) Gv 0.90
Configural invariance 227.85(188) 0.03 0.97 - 0.04 Gc 0.78 0.67
Metric invariance 241.67(199) 0.02 0.97 0.00 0.04 Gl 0.75 0.64 0.68
Intercept invariance 249.00(210) 0.03 0.97 0.00 0.04 Gwm 0.65 0.55 0.60 0.54
Residual invariance 263.05(226) 0.05 0.97 0.00 0.04 Gs 0.57 0.57 0.42 0.59 0.51
DAS-II (2 samples) . . N
Configural invariance  389.89(310) 000 097 - 0.03 Note. All correlations are statistically significant, p < .01.
Metric invariance 405.24(324) 0.00 0.97 0.00 0.03
Intercept invariance 415.80(338) 0.00 0.97 0.00 0.03 8.3.2. CB-CFA second-order model
Residual invariance 467.62(358)  0.00  0.96  0.01 0.03 The addition of a second-order g factor resulted in model fit which
Partial invariance 459.89(357) 0.0 096  0.01 0.03 was also acceptable to well-fitting (2 [1329] = 2633.99, CFI = 0.96,
WISC-IV (3 samples) TLI = 0.95, RMSEA = 0.02, SRMR = 0.09, aBIC = 334,403.09). An
Configural invarfance ~ 282.71(157)  0.00 097 - 0.05 alternative model was tested to determine whether WISC Arithmetic is
Metric invariance 307.31(172) 0.00 0.97 0.00 0.05 b db ltipl loadi di £
Intercept invariance 354.51(187) 0.00 096 0.0l 0.05 etter represented by multiple cross-loadings or as a direct measure o

Residual invariance 384.30(210) 0.00 0.96 0.00 0.05

KABC-II (3 samples)

Configural invariance ~ 841.00(280) 0.00 097 - 0.05
Metric invariance 865.83(302) 0.00 0.97 0.00 0.04
Intercept invariance 931.72(324) 0.00 097 0.00 0.04
Residual invariance 1011.05(356) 0.00 0.97 0.00 0.04
WISC-III & -IV

Configural invariance 249.02(119) 0.00 0.97 - 0.05
Metric invariance 254.03(125) 0.00 0.97 0.00 0.05
Intercept invariance 277.81(131) 0.00 0.97 0.00 0.05
Residual invariance 319.56(141) 0.00 0.96 -0.01 0.05
WISC-III/IV & -V

Configural invariance 323.90(169) 0.00 097 - 0.04
Metric invariance 334.84(178) 0.00 0.97 0.00 0.04
Intercept invariance 344.745(187) 0.00 0.97 0.00 0.04
Residual invariance 391.22(200) 0.00 0.97 0.01 0.04

8.3. CB-CFA

8.3.1. CB-CFA first-order model

A first-order CB-CFA with six correlated broad ability latent vari-
ables was fit to the data across the six intelligence tests. Gc, Gf, and Gv
were measured by 15 subtests, Gwm was measured by 12 subtests, and
Gl and Gs were measured by 8 subtests based on a priori classifications.
Five subtests—KABC-II Gestalt Closure, KABC-II Hand Movements,
WISC Picture Completion, DAS-II Verbal Comprehension, and WJ III
Picture Recognition—were cross-loaded on two CHC broad ability
factors and WISC Arithmetic was cross-loaded on three CHC broad
abilities.

The fit of the first-order CHC CB-CFA model was acceptable to well-
fitting (2 [1320] = 2497.99, CFI = 0.96, TLI = 0.96, RMSEA = 0.02,
SRMR = 0.09, aBIC = 334,312.97). The RMSEA, CFI, and TLI values
were considered excellent, and the SRMR value was adequate but
slightly exceeded the “good” fit threshold. Most of the factor loadings
and the three correlated residual variances were statistically significant.
Three cross-loadings were not statistically significant— the WJ III
Picture Recognition subtest Gv cross-loading ( = 0.19, SE = 0.15,
p = .21; which replicates Reynolds and colleagues CB-CFA finding
(2013)), the DAS-II Verbal Comprehension Gf cross-loading (f = 0.25,
SE = 0.13, p = .05), and the WISC Arithmetic Gs cross-loading
(B = 0.08, SE = 0.04, p = .05). Non-significant cross-loadings were
retained in all models and were not pruned. Standardized factor load-
ings ranged from 0.35 (DAS-II Picture Similarities on Gf) to 0.87 (WISC
Vocabulary on Gc; cross-loadings not included). In addition, all six
broad abilities significantly correlated with each other (see Table 5 for
the correlation coefficients). Gv and Gf correlated with each other most
strongly. The weakest correlation was between Gc and Gs.

g. In this alternative model a direct path from g to WISC Arithmetic was
estimated and the three cross-loadings on Gf, Gwm, and Gs were re-
moved. The model with a WISC Arithmetic direct g loading fit worse
than the previous model according to the aBIC and likelihood ratio test
(%2 [1331] = 2662.00, Ax> = 28.01(2), Ap < 0.01, CFI = 0.95,
TLI = 0.95, RMSEA = 0.02, SRMR = 0.09, aBIC = 334,420.90); this
alternative model was rejected. Thus, the model with seven cross-
loadings was accepted as the final second-order model and was the
basis for interpretation.

As shown in Fig. 1, second-order loadings of the broad abilities on g
were large and statistically significant. Unlike the other broad abilities,
Gf's unique variance was not statistically significant from zero, which,
along with Gf's very strong factor loading on g (3 = 0.992), suggests
that Gf and g were statistically indistinguishable.

Model implied correlations of the six CHC broad ability factors and
their corresponding composites were also estimated. Those correlations
were also squared to estimate omega hierarchical coefficients
(McDonald, 1999). Omega hierarchical coefficients were 0.64 for Gs
(r = 0.80), 0.69 for Gl (r = 0.83), 0.79 for Gwm (r = 0.89), 0.85 for Gv
(r = 0.92), 0.88 for Gf (r = 0.94), and 0.92 for Gc (r = 0.96). These
findings suggest that possible subtest composites for Ge, Gf, Gv, and
Gwm would be highly related to the underlying latent variables, and
more so than composites for Gl and Gs.

As with the first-order model, all factor loadings were statistically
significant with the exception of the same three cross-loadings (Gv WJ
III Picture Recognition, Gf DAS-II Verbal Comprehension, and Gs WISC
Arithmetic cross-loadings). Gc standardized factor loadings ranged
from 0.71 (WISC Comprehension) to 0.87 (WISC Vocabulary), Gf factor
loadings ranged from 0.34 (DAS-II Picture Similarities) to 0.74 (DAS-II
Sequential and Quantitative Reasoning), Gv factor loadings ranged
from 0.44 (DAS-II Recognition of Pictures) to 0.78 (DAS-II Pattern
Construction and WISC Block Design), Gs factor loadings ranged from
0.39 (WISC Cancellation) to 0.74 (WISC Symbol Search), Gwm factor
loadings ranged from 0.61 (WJ III Auditory Working Memory) to 0.78
(KABC-II Word Order), and Gl factor loadings ranged from 0.43 (DAS-II
Recall of Objects Delayed) to 0.80 (KABC-II Rebus Immediate; ex-
cluding subtests that were cross-loaded). Overall, these results suggest
the subtests from these six tests are all generally good indicators of the
six CHC broad abilities. Thus, these cognitive CB-CFA model results
suggest that the six CHC broad ability factors were invariant across the
six intelligence tests analyzed in this study.

9. Discussion

The purpose of this study was to test the validity of the application
of CHC theory to six individually administered intelligence tests (KABC-
11, DAS-II, WJ III, WISC-III, -1V, and -V) using cross-battery confirmatory
analyses (CB-CFA). The seven datasets were drawn from co-norming,
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Fig. 1. CB-CFA second-order model standardized coefficients.
standardization, and linking samples, resulting in a large sample cov- based broad abilities were examined at a construct, rather than test-
ering a broad age range. The analyses used missing data principles and specific level. The results provided further support for the taxonomy of
the samples did not share a single linking test. The CB-CFA allowed for CHC cognitive abilities, regardless of whether or not the tests were

an examination of the classifications of 66 subtests and six CHC-theory- explicitly designed using a CHC framework.
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9.1. Theoretical implications

A cross-battery CHC model including Gc, Gf, Gv, Gwm, Gl, and Gs fit
data from six different intelligence tests well. The factor loadings of all
six CHC broad abilities on g were large and statistically significant. The
pattern of relations and the magnitude of the broad ability factor
loadings on g is similar to a recent CB-CFA study despite differences in
samples and tests included in the two studies (Reynolds et al., 2013). Gf
had the strongest loading on g and a non-significant residual, sup-
porting previous research that these two constructs are not statistically
distinguishable (Caemmerer, Maddocks, Keith, & Reynolds, 2018;
Gustafsson, 1984; Reynolds et al., 2013,). Gv had the second strongest
loading on g, followed by Gc, Gl, Gwm, and finally Gs (8 = 0.87, 0.81,
0.78, 0.68, and 0.61 respectively. These findings suggest novel problem
solving, visual-spatial problem solving, and the depth and breadth of
general knowledge and the ability to retrieve that knowledge efficiently
are stronger indicators of overall intelligence, g, than are working
memory, and simple processing speed. These findings appear to con-
tradict previous assertions that g and working memory capacity and g
and speed of mental operations are equivalent (Colom, Rebello,
Palacios, Juan-Espinosa, & Kyllonen, 2004; Jensen, 1993).

At the broad ability level, the Ge, Gf, Gv, and Gwm composites were
more highly related to their respective underlying latent variables than
the Gl and Gs composites, suggesting higher reliability indexes for these
factors. Correlations between all of the latent broad abilities were large
and significant. The strongest relation was between Gf and Gv (the
same as the 2013 CB-CFA by Reynolds and colleagues), while Gs and
Gwm had the weakest correlations with all the broad abilities.

At the subtest level, almost all of the 66 subtests loaded on the broad
abilities in accordance with prior CHC classifications (except for the WJ
I1I Picture Recognition subtest which did not load on Gv). A CHC-based
interpretation of these 66 subtests from six intelligence tests is well-
supported. Subtests with the largest factor loadings may be thought of
as the strongest indicators of their respective CHC broad abilities. For
example, block construction tasks generally had the strongest loadings
on Gv, and rebus tasks had the strongest loadings on Gl, whereas WISC
Cancellation and DAS Similarities were weak measures of Gs and Gf,
respectively. The four significant cross-loaded subtests (WISC
Arithmetic, WISC Picture Completion, KABC-II Hand Movements,
KABC-II Gestalt Closure) suggest these subtests may better be con-
ceptualized as mixtures of multiple cognitive abilities (Reynolds et al.,
2013). These cross-loaded subtests are supplemental, as opposed to
core, subtests and are often not included in composite scores in prac-
tice. The three non-significant cross-loadings (Gv WJ III Picture Re-
cognition, Gf DAS-II Verbal Comprehension, and Gs WISC Arithmetic)
suggest these subtests are not strong indicators of those broad abilities.

An important theoretical implication based of our results is the
perfect correlation between Gf and g. Gf and g constructs may be re-
dundant and may be used interchangeably. This interchangeable re-
lationship suggests a composite of subtests designed to measure Gf may
also be considered primarily a direct measure of g (Reynolds et al.,
2013). The perfect relation between Gf and g raises questions about the
structure of intelligence and whether g and Gf are redundant or separate
abilities (Gustafsson, 1984; Reynolds et al., 2013). The existence of g
has long been debated in the field. In support of the existence of g
biological mechanisms of g, specifically mitochondrial functioning,
have been proposed recently as a form of Spearman's mental energy
(Geary, 2018). Another recent theory suggests g does not exist because
the relations between cognitive abilities are caused by reciprocal in-
teractions during development (mutualism theory, Kan, van der Maas,
& Levine, 2019). Still yet another possibility is that g is the result of
overlapping cognitive processes across diverse tests (Kovacs & Conway,
2019). Further research is needed to better understand the overlap
between Gf and g.

Taken together, the strong loadings of the broad abilities on g and
the consistent loadings of the subtests on the broad abilities in
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accordance with a priori CHC classifications supports the applicability
of CHC theory across intelligence tests, regardless of whether the test
was explicitly designed with CHC theory in mind. Despite differences
across tests in regard to subtest task demands, stimuli, and response
formats, these six intelligence tests are measuring the CHC broad
abilities similarly, and thus, practitioners and researchers can assume
broad ability scores from any of these six intelligence tests are mea-
suring similar underlying cognitive abilities.

The contributions of our CB-CFA CHC model to the cognitive cross-
battery literature include the addition of two currently used tests that
have yet to be included in such analyses, the DAS-II and WISC-V, 22
additional subtests, the inclusion of an additional broad ability, Gs, and
a large sample size. The additions replicate and extend the CB-CFA
model presented by Reynolds et al. (2013). This larger CB-CFA CHC
model provides further evidence for the applicability of CHC theory to
the development of modern intelligence tests, CHC-based classification
and interpretation of test results from these six intelligence tests, and
cognitive research guided by CHC theory (Reynolds et al., 2013). Use of
a common terminology can facilitate communication as CHC theory,
and intelligence theory more broadly, continues refinement. Results of
this study suggest the validity of CHC terminology beyond applied
fields, such as school psychology, to theoretical fields as well.

9.2. Limitations and future research

The findings of this study need to be considered within the context
of the study's limitations. This study used principles of missing data
analysis, but the data did not include a single linking test. The seven
datasets were linked to each other through various configurations of
tests they shared in common. While some methodologists have noted a
single linking test may not be necessary (Graham et al., 2006) more
research is needed to better understand this alternative approach. The
influence of the amount of missingness is unknown due to the novelty
of the approach, and it is possible that with more observed data be-
tween more possible pairs of tests the model fit statistics and other
results may be different. Also, the nature of SEM/CFA means there may
be other alternative models not tested by the researchers that fit the
data as well or better than the model used here.

The current study tested a single model of intelligence against the
data from multiple intelligence measures. Future research should ex-
pand on the limited theory-testing approach of this study. For example,
future research should use cross-battery analyses to test and compare
other models of intelligence such as the verbal, perceptual, image ro-
tation (VPR) model supported in previous research (Johnson &
Bouchard, 2005). In addition, such data can be used to help evaluate
questions about CHC theory, such as the existence and nature of pos-
sible intermediate factors, and the validity and consistency of narrow
abilities.

Another limitation is findings are limited to the specific tests in-
cluded in this study and may not be generalizable to other intelligence
tests. Due to the specific tests included in this study auditory processing
(Ga) was excluded from the analysis because the WJ III was the only
test to include measures of Ga. In order to analyze the cross-battery
structure of Ga, future research may incorporate other measures in a
CB-CFA, such as the newest edition of the WJ, 4th edition, and other
types of tests, such as the Comprehensive Test of Phonological
Processing, Second Edition (CTOPP-2). Other non-intelligence mea-
sures, such as executive functioning tests, can also be used to supple-
ment cognitive tests in future research given findings suggest these
neuropsychological measures fit well within the CHC taxonomy (Floyd
et al., 2010; Jewsbury et al., 2016; Salthouse, 2005). Such research
broadens the use of the CHC nomenclature beyond intelligence tests
and further facilitates communication about the abilities various tests
share in common.
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10. Summary

An adequately fitting cross-battery CHC cognitive model that com-
bines six tests consisting of 66 subtests and seven samples of nearly
4000 youth aged 6 to 18 provides validity evidence for CHC theory. The
findings applied to tests and subtests developed from a variety of the-
oretical orientations, not just those derived from CHC theory. These
findings support the applicability of CHC theory to the development
and interpretation of modern intelligence tests. Results suggest the CHC
classification system is useful even if there are other possible theories
that may explain intelligence as well or better. Thus, across applied and
theoretical fields CHC terminology can be used as a common language
to classify these different cognitive tasks according to overarching
broad cognitive abilities.
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