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Several previous studies reported relationships between speed of information processing as measured

with the drift parameter of the diffusion model (Ratcliff, 1978) and general intelligence. Most of these

studies utilized only few tasks and none of them used more complex tasks. In contrast, our study (N �

125) was based on a large battery of 18 different response time tasks that varied both in content (numeric,

figural, and verbal) and complexity (fast tasks with mean RTs of ca. 600 ms vs. more complex tasks with

mean RTs of ca. 3,000 ms). Structural equation models indicated a strong relationship between a

domain-general drift factor and general intelligence. Beyond that, domain-specific speed of information

processing factors were closely related to the respective domain scores of the intelligence test. Further-

more, speed of information processing in the more complex tasks explained additional variance in general

intelligence. In addition to these theoretically relevant findings, our study also makes methodological

contributions showing that there are meaningful interindividual differences in content specific drift rates

and that not only fast tasks, but also more complex tasks can be modeled with the diffusion model.

Keywords: intelligence, diffusion model, mathematical models, reaction time (RT) methods, fast-dm

Supplemental materials: http://dx.doi.org/10.1037/xge0000774.supp

One of the processes that has often been discussed as basis of

individual differences in intelligence is speed of information pro-

cessing (Jensen, 2006). This notion is supported by consistent

empirical results showing moderate relationships between general

intelligence1 and response times (RTs) from a broad range of

cognitive tasks (Sheppard & Vernon, 2008). Regarding these re-

lationships between intelligence and RTs, (at least) two important

observations have been made in the last decades: (a) the relation-

ship between RT and intelligence does not seem to be specific to

content domains (verbal, figural, numeric; Levine, Preddy, &

Thorndike, 1987; Neubauer & Bucik, 1996); (b) the slower re-

sponses within one task are more highly related to intelligence than

the faster responses, resulting in the formulation of the worst

performance rule (Larson & Alderton, 1990; for a review, see

Coyle, 2003; for methodological considerations, see Frischkorn,

Schubert, Neubauer, & Hagemann, 2016; for a meta-analysis, see

Schubert, 2019). Thus, in brief, the relationship between intelli-

gence and speed of information processing seems to depend on the

speed of trials, but not or only to a small degree on the specific task

content.

However, there are some methodological limitations of previous

studies that examined the relationship between intelligence and

speed of information processing. One of these limitations has been

pointed out by Schmiedek, Oberauer, Wilhelm, Süß, and Witt-

mann (2007): Regarding the worst performance rule, they noted

that previous studies employed different RT bands resulting in

only restricted numbers of trials per band, thereby limiting the

reliability of estimates. Instead of employing RT bands, Schmie-

dek et al. (2007) used a mathematical model that takes into account

information about RT distributions, and thus has a considerably

higher information usage—the diffusion model (Ratcliff, 1978; see

Voss, Nagler, & Lerche, 2013, for a review).

The diffusion model is a stochastic model that is applicable to

binary response time tasks and allows the separation of different,

otherwise confounded, processes. One parameter of this model—

1 In this article, we use the term general intelligence to denote a general
factor that statistically emerges in intelligence tests (in the sense of sam-
pling theories, e.g., Kovacs & Conway, 2016). Our use of the term general
intelligence does not imply that we assume this factor to be a causal factor.
In fact, our study does not have the aim of providing any inferences
regarding the question of causality.
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drift rate—is supposed to provide a pure measure of speed of

information processing, with other processes (such as speed of

motoric response execution, or speed-accuracy settings) “partialled

out.” It is a known property of the diffusion model that changes in

drift rate have a larger influence on the tail than on the leading

edge of RT distributions. More specifically, Ratcliff and McKoon

(2008) report that changes in the .9 quantile of RT distributions are

typically four times as large as changes in the .1 quantile. Changes

in other parameters of the diffusion model—which measure pro-

cesses such as speed-accuracy settings (threshold separation pa-

rameter) or the duration of encoding and motoric processes (non-

decision time parameter)—on the other hand, do not have this

asymmetric influence on fast versus slow RTs. In line with this

reasoning, Schmiedek et al. (2007) found the drift rate (but not

other diffusion model parameters) to be related to intelligence. In

the following years, other studies also supported the notion that

intelligence as measured by classical intelligence tests is associ-

ated with the drift rate (e.g., Ratcliff, Thapar, & McKoon, 2011;

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert,

Hagemann, Voss, Schankin, & Bergmann, 2015).

In contrast to drift rate, mean RTs are influenced by a number

of different processes (e.g., how cautious individuals are and how

fast they execute the motoric response). In fact, for these other

processes, for which the diffusion model provides distinct mea-

sures, no consistent correlations with intelligence have been found.

The only relationship that has been reported several times is a

small negative correlation of intelligence with nondecision time,

indicating that more intelligent people are faster in nondecisional

processes, that is, in encoding and/or motoric processes (McKoon

& Ratcliff, 2012; Schubert et al., 2015; Schulz-Zhecheva, Voelkle,

Beauducel, Biscaldi, & Klein, 2016). In several other studies,

however, this relationship between intelligence and nondecision

time has not been found (e.g., Schmiedek et al., 2007; Schmitz &

Wilhelm, 2016). Critically, previous studies that examined rela-

tionships between diffusion model parameters and intelligence are

based on only limited numbers of tasks and they used different

estimation approaches, which might account for inconsistencies in

the findings.

To sum up, according to the literature distinct effects of speed of

information processing on RT distributions account for the worst

performance rule. Furthermore, whereas drift rate seems to be

consistently related to intelligence, for the other diffusion model

parameters the current state of research is inconsistent. We will

now come back to the question of domain-specificity of mental

speed. The diffusion model, which has proved useful for the

examination of the worst performance rule, might also help to gain

further insights into this finding.

Interestingly, previous studies did not find clear support for a

three-factor structure (numeric, figural, verbal) in RT tasks, sug-

gesting that there are no substantial domain-specific factors of

speeds of information processing (Levine et al., 1987; Neubauer &

Bucik, 1996). This observation is in contrast to findings from

intelligence tests that assume a hierarchical structure of intelli-

gence with both a general factor and domain-specific factors (e.g.,

verbal, numeric, figural; Jäger, Süß, & Beauducel, 1997). How-

ever, it might be difficult to draw definite conclusions from the

mental speed studies by Levine, Preddy, and Thorndike (1987) and

Neubauer and Bucik (1996) as they did not explicitly disentangle

processing speed from other processes. The mental speed measures

used in these studies might, thus, have been distorted and may

therefore have been no valid indicators of actual speed of infor-

mation processing. Notably, the studies did find a tendency for

domain-specific correlations (i.e., higher correlations between in-

telligence and mental speed in the respective domains) although

their data did not contain compelling evidence for a hierarchical

factor structure of mental speed. Moreover, effects were not con-

sistent and very small. Thus, we hypothesize that the measures of

processing speed used might not have been pure enough to find

clear support for domain-specificity. Using drift rate as a purer

measure of cognitive speed provides a more powerful and fairer

test for the question, whether cognitive speed has stable domain-

specific components. The diffusion model literature, though, so far

only reports one general drift rate factor, and Schmiedek et al.

(2007) see their results as suggesting that “underlying mechanisms

could be relatively task-independent” (p. 425). Notably, however,

previous diffusion model studies only used a very restricted num-

ber of tasks per domain. Accordingly, the existing literature does

not allow to draw clear inferences as to whether there is only one

common speed of information processing or whether there are

domain-specific speeds. It is further unclear whether domain-

specific processing speeds (if they exist) are related to the respec-

tive intelligence test scores or just to general intelligence.

To sum up, we see two important research gaps that have not

been addressed by previous studies analyzing the association of

cognitive speed and intelligence with the diffusion model frame-

work. These gaps originate from restrictions in the number and

breadth of the employed tasks. First, whereas previous studies

found clear evidence for an association of drift rate and general

intelligence, results regarding the other diffusion model parameters

are less clear-cut. Second, previous diffusion model studies did not

vary task content systematically, so it remains an open question

whether there are also domain-specific factors of cognitive speed,

and whether such domain-specific speeds are related to the respec-

tive intelligence test scores.

Another perspective on the research aims listed above relates to

the diffusion model as a diagnostic tool: Whereas, in the past, the

diffusion model was mainly employed for the analysis of differ-

ences between groups or conditions, in recent years it has been

proposed to use this methodology also for the analysis of interin-

dividual differences in cognitive processes (e.g., Frischkorn &

Schubert, 2018; Ratcliff & Childers, 2015; White, Curl, & Sloane,

2016). Our study allows for an examination of whether there are in

fact meaningful content-domain specific interindividual differ-

ences in the processing of information.

One further important goal of the present study is the compar-

ison of easy (perceptual) tasks versus complex tasks (requiring

more complex mental operations). In the past, it was often recom-

mended to apply the diffusion model only to tasks with mean trial

RTs of up to 1.5 s (e.g., Ratcliff & Frank, 2012; Ratcliff &

McKoon, 2008; Ratcliff, Thapar, Gomez, & McKoon, 2004).

Following this rule of thumb, the previous studies that examined

links between intelligence and drift rate used easy tasks that

required no complex mental operations and thus allowed for very

rapid responding. Interestingly, first studies indicate that the dif-

fusion model might also be applicable to more complex tasks,

requiring several seconds for response selection (Aschenbrenner,

Balota, Gordon, Ratcliff, & Morris, 2016; Lerche, Christmann, &

Voss, 2018; Lerche & Voss, 2019). These studies, however, only
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examined single tasks (e.g., a complex figural task in the studies by

Lerche & Voss, 2019) and did not compare easy with more

complex tasks. In the present study, we use a large number of both

easy and more complex tasks and examine whether the goodness-

of-fit of the diffusion model differs between data from easy versus

complex tasks.

Furthermore, we test the criterion validity of drift rate in the

more complex tasks, analyzing whether drift rate is related to

intelligence not only in the fast, but also in the more complex

tasks. In fact, for more complex conditions stronger associations of

intelligence and mental speed have been reported (Sheppard &

Vernon, 2008; see also Coyle, 2017; Marshalek, Lohman, & Snow,

1983). More precisely, the relationship between intelligence and

mental speed increases from very simple tasks (RTs of about 300

ms) to moderately complex tasks (RTs around 500–900 ms), but

decreases again if tasks get even more complex (RTs of more than

1,200 ms; Jensen, 2005; see also Lindley, Wilson, Smith, &

Bathurst, 1995). Thus, there seems to be an inverted-U-shaped

relationship between task complexity and the correlation between

intelligence and mental speed. In our study, we examine “easy”

tasks (around 600 ms; i.e., moderately complex tasks according to

the definition by Jensen) and “complex” tasks (around 3,000 ms).

Jensen (2005) states the hypothesis that one reason for the decrease

from moderately complex to complex tasks is that individual

differences in performance strategies play a more important role in

complex tasks. Furthermore, Lindley, Wilson, Smith, and Bathurst

(1995) point out that in their complex task participants had to

repeatedly scan between different task elements resulting in sup-

plemental motor time so that RT became a less accurate measure

of processing speed. Notably, drift rate is a more specific measure

of processing speed with some strategies (different speed-accuracy

settings) or the duration of encoding processes partialled out.

Jensen (2005) also mentions that complex tasks show more task-

specific factors that can weaken the correlation between RT and g.

As we use a large number of tasks, we can use a structural equation

modeling (SEM) approach, which helps us to control for task

specificities. Thus, the use of diffusion modeling and SEM pro-

vides us with more specific measures of mental speed and the

relationship between mental speed and intelligence. Accordingly,

in our study we assume a substantial relationship between drift rate

and intelligence also for the more complex tasks.

In the following paragraphs, we first give a brief introduction to

the diffusion model (for more detailed information, see Ratcliff,

Smith, Brown, & McKoon, 2016; Voss, Nagler, et al., 2013;

Wagenmakers, 2009). Next, we present a review of previous

studies that examined relationships between intelligence and dif-

fusion model parameters. In the subsequent section, we present

theoretical underpinnings of the relationship between drift rate and

intelligence. After that, we examine the question of whether the

diffusion model is also applicable to more complex RT tasks.

Finally, we present the method and results of our study.

Introduction to the Diffusion Model

The diffusion model (Ratcliff, 1978) is a mathematical model

that is applicable to decision tasks with two response options.

When a participant works on a trial of such a binary task (e.g.,

color discrimination task, see Voss, Rothermund, & Voss, 2004)

she is assumed to accumulate information continuously until she

reaches one of two thresholds (see Figure 1). The two thresholds

represent either the two response options (response coding) or the

response accuracy (accuracy coding; e.g., Figure 1). The distance

between the thresholds, the so-called threshold separation (a)

reflects how much information needs to be accumulated to reach a

decision. If individuals are more cautious, they will accumulate

more information before they decide for one option. In this case, a

larger threshold separation will cause longer RTs and—at the same

Figure 1. Illustration of the diffusion model. The most important model parameters are threshold separation

(a), starting point z (here situated at the center between the two thresholds), nondecision time (t0, not depicted

in the figure) and drift rate �. In Panel B, drift (� � 3.5) is higher than in Panel A (� � 2.0), which results in

more accurate and faster responses.
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time—higher accuracy because the decision processes will termi-

nate at the wrong threshold more rarely.

Speed of information processing is denoted as drift (�) and is

illustrated by the arrows in Figure 1, with steeper arrows indicating

faster accumulation of information. During information sampling,

Gaussian noise is added constantly to the drift, reflecting random

fluctuations in the decision process. Due to this noise, the accu-

mulation process does not terminate after the same time and not

always at the same threshold, even if the available information

(i.e., the stimulus) is identical. The two panels of Figure 1 illustrate

the influence of differences in drift on the RT distributions. It can

be seen that if the drift is higher (Panel B) fewer errors are made

resulting in a smaller distribution at the error threshold and a larger

distribution at the correct response threshold. In addition, RT

distributions for lower drift rates (Panel A) are more spread out

than those for higher drift rates. Another diffusion model param-

eter is nondecision time (t0) which subsumes the duration of all

nondecision processes, such as encoding of information (preceding

the decision process) and motoric response execution (succeeding

the decision process). The last parameter of the basic diffusion

model is starting point, which maps whether a decision is biased

for one of the two response options.

Next to these four main model parameters, often three more

parameters mapping intertrial variability of drift s�, starting point

sz (Ratcliff & Rouder, 1998) and of nondecision time st0 (Ratcliff

& Tuerlinckx, 2002) are estimated. However, the intertrial vari-

ability of drift and starting point cannot be estimated reliably and

fixation of these parameters to zero can improve estimation of the

main diffusion model parameters (Lerche & Voss, 2016; see also

van Ravenzwaaij, Donkin, & Vandekerckhove, 2017).

Intelligence and Diffusion Modeling

It is well-known that intelligence shows a high stability over

long time periods (e.g., Carroll, 1993; Larsen, Hartmann, & Ny-

borg, 2008). Accordingly, the rank-order stability of a diffusion

model parameter is a prerequisite for it to be related to intelligence.

Test-retest studies by Lerche and Voss (2017) provide first evi-

dence that drift rates are rather time stable. More specifically, in

Study 1, a lexical-decision task and a recognition memory task

were completed at two sessions, separated by a 1-week interval. In

a second study, participants worked on an associative priming task

(again with a test-retest interval of one week). In all three tasks,

drift showed acceptable test-retest correlations. The authors further

conducted simulation studies based on the parameters estimated

for the empirical data. Specifically, they simulated two data sets

(reflecting the two sessions) based on identical parameter values.

Interestingly, test-retest correlations of drift rates estimated from

the real data were very similar to correlations based on simulated

data. This suggests that the speed of information processing was

very stable across measurements, and situation influences on drift

rate are rather small.

A study by Schubert, Frischkorn, Hagemann, and Voss (2016)

corroborates this idea. The authors conducted a test-retest study

with a time interval of 8 months. They then used latent state-trait

analyses to disentangle trait influences and situation influences.

The most important finding was that drift rates had the highest

consistencies, indicating that they were the most trait-like param-

eters. Accordingly, drift rate might be a good candidate for asso-

ciations with intelligence, which is characterized by high temporal

stability and great consistency (Danner, Hagemann, Schankin,

Hager, & Funke, 2011).

In support of this hypothesis, in several studies relationships

between general intelligence and drift rate have been reported

(McKoon & Ratcliff, 2012; Ratcliff, Thapar, & McKoon, 2010;

Ratcliff et al., 2011; Schmiedek et al., 2007; Schmitz & Wilhelm,

2016; Schubert et al., 2015; Schulz-Zhecheva et al., 2016). These

studies measured drift rates from performance in different types of

binary tasks. For example, Ratcliff, Thapar, and McKoon (2010)

used a numerosity discrimination task, a recognition memory task,

and a lexical-decision task. Intelligence was assessed by means of

the vocabulary and matrix reasoning subtests of the Wechsler

Adult Intelligence Scale. The authors observed substantial corre-

lations between IQ (mean over the two scales) and drift rate as

measured in the lexical decision (r � .53) and recognition memory

task (r � .55). The correlation was smaller for the numerosity task

(r � .24). As also alluded to by the authors this is not astonishing,

as the subscales of the intelligence test that were administered did

not address the numeric domain, but the verbal (vocabulary sub-

test) and figural domain (matrix reasoning subtest). Only small-

to-moderate values were observed for the correlation of intelli-

gence with threshold separation and nondecision time (|r|max �

.33).

In a subsequent article, Ratcliff et al. (2011) reported correla-

tions between IQ and diffusion model parameters from an item

recognition memory task and an associative recognition memory

task. Again, there were substantial correlations between the IQ

scales and drift rate with r � .36–.68 for college age participants

and r � .47–.67 for participants aged 60–74 years. For the oldest

group (75- to 90-years-old), correlations were smaller (r � .18–

.34), which was seen as partly attributable to floor effects and

lower reliability of the vocabulary subtest. For threshold separation

and nondecision time, an inconsistent pattern of mostly small

correlations with IQ emerged across tasks and age groups. McK-

oon and Ratcliff (2012), who assessed participants of the same

three age groups with the same two subtests of the Wechsler

Intelligence Scale, also found IQ to be correlated with drift rates

for associative recognition (rs between .24 and .68) and item

recognition (rs between .49 and .68). In addition, nondecision

times were negatively related to IQ, suggesting faster encoding

and/or response execution of more intelligent participants.

Schubert et al. (2015) report results from three elementary

cognitive tasks (Hick task, Sternberg memory scanning task, and

Posner letter-matching task). Intelligence was assessed in this

study with Raven’s Advanced Progressive Matrices and with a

shortened version of the knowledge test of the German Intelligenz-

Struktur-Test 2000-R. In line with the results of the previously

reported studies, the authors observed a correlation of r � .50

between the component score of drift rates from the different tasks

(extracted from principal component analyses) and general intel-

ligence. In addition, like in the study by McKoon and Ratcliff

(2012), a negative relationship between intelligence and nondeci-

sion time emerged (r � �.42). Thus, the more intelligent individ-

uals not only showed higher drift rates but also shorter nondecision

times.

Schmiedek et al. (2007) used a larger number of different tasks:

two lexical tasks, two numeric tasks, and four spatial tasks. For the

assessment of intelligence, the authors employed tasks of the

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

4 LERCHE ET AL.



Berlin Structure of Intelligence Test (BIS; Jäger et al., 1997). More

specifically, three numeric, figural, and verbal tasks from the

reasoning and psychometric speed operation scales were used.

Based on structural equation modeling (SEM), the authors found

that the latent factor of psychometric speed correlated highest with

latent drift rate (r � .59), whereas the correlations were smaller for

threshold separation (r � �.42) and nondecision time (r � �.04).

Similarly, for reasoning the highest correlation emerged for drift

rate (r � .79; threshold separation: r � �.48; nondecision time:

r � .25).

Schmitz and Wilhelm (2016) also reported relationships of drift

with intelligence. Using two different cognitive tasks and also

employing SEM to link the drift rates to a measure of fluid

intelligence (a figural sequence reasoning test from the BEFKI;

Wilhelm, Schroeders, & Schipolowski, 2014) they found correla-

tions with drift of r � .15 (nonsignificant) for visual search and of

r � .29 for visual comparison. The authors did not report any

significant correlations between fluid intelligence and the other

diffusion model parameters.

Schulz-Zhecheva et al. (2016) tested a sample of participants

aged 8 to 18 years with Cattell’s Culture Fair Intelligence Test

(CFT 20-R; Cattell & Cattell, 1960; Weiss, 2006) of fluid intelli-

gence and measured diffusion model drift rates across four simple

decision tasks. The latter consisted of deciding whether a number

was odd or even, whether a number was smaller or larger than 50,

whether an arrow pointed upward or downward and whether a line

was shown in the upper or lower half of the screen. Once more,

drift rate was by far the strongest correlate of fluid intelligence (gf;

r � .41; nondecision time: r � �.20; threshold separation:

r � �.13). The total gf factor variance explained by the diffusion

model parameters was 19%.

In sum, drift rate seems to have a trait-like characteristic,

showing moderate consistency across different tasks and tem-

poral stability. Moreover, robust relationships between drift rates

and intelligence have been reported across different studies and

experimental tasks. In contrast, correlations of the other diffusion

model parameters with intelligence are smaller and the pattern is

less consistent. Apart from the relationship with drift rate, the

finding that has been most often reported is a negative correlation

between intelligence and nondecision time. However, this relation-

ship only showed up in some of the studies.

From the previous diffusion model literature, no clear conclu-

sions can be drawn regarding the existence of domain-specific drift

rates. Whereas the findings by Schmiedek et al. (2007) speak in

favor of task-independence of speed of information processing,

other studies lend first support to the hypothesis that speed of

information processing might differ between domains. For exam-

ple, Ratcliff et al. (2010) who measured intelligence with a verbal

and a figural test found a smaller correlation of intelligence with

drift in a numeric task than in a verbal or a figural task. Further-

more, in the study by Schubert et al. (2016) drift rates showed

smaller consistencies than typically observed in intelligence tests,

suggesting that individual differences in drift rates also reflect

task- and content-specific properties to a substantial degree. Im-

portantly, a study that combines domain-specific intelligence as-

sessment with a battery of various RT tasks that tackle these

domains is still missing. It is an open question whether a domain-

specific structure of speed of information processing can be found

and if so, if such domain-specific drift rates correlate with the

respective domain scores of an established intelligence measure.

To address these questions, in our study, we put together a battery

of 18 different binary RT tasks that address the three different

domains of intelligence.

Relationship Between Drift Rate and Intelligence:

Theoretical Considerations

As we described in the last section, empirical findings support

the view that speed of information processing as measured by the

drift rate of the diffusion model is related to intelligence. Next, we

will outline why this relationship is theoretically plausible and why

we assume that in more complex tasks relationships between drift

rate and intelligence might be even stronger than in less complex

tasks.

For illustration, let us consider the two mechanisms proposed by

Salthouse (1996) to describe the assumed effect of age-related

slowing on cognition, the limited time mechanism and the simul-

taneity mechanism. The limited time mechanism is supposed to be

in effect when the time for solving a problem is limited and only

little time is available for the higher-order integration of informa-

tion, because earlier stages of information processing occupied too

much time. The simultaneity mechanism assumes that, over time,

information becomes less available in working memory. If older

individuals need more time to process information, a greater

amount of information will then be lost or at least fragmented by

the time they start to integrate all processed information. Accord-

ingly, we assume that individuals who have a reduced speed of

information processing (i.e., a smaller drift rate) will suffer more

from time constraints, as they have less time available for higher-

order processing. Furthermore, for these individuals (in contrast to

individuals with higher drift rates) more information will get lost

during the accumulation process. The importance of temporal

aspects in information-processing has also been stressed, for ex-

ample, by the time-based resource-sharing (TBRS) model (Bar-

rouillet, Bernardin, & Camos, 2004; Camos & Barrouillet, 2014).

The model supports the view of a time-related decay of memory

traces and regards the number of necessary memory retrievals and

the time given to perform them as important factors influencing

performance. More complex tasks will often require more memory

retrievals than simple RT tasks (e.g., perceptual or recognition

memory tasks), with time pressure kept constant between task

types. Accordingly, more complex RT tasks might be more vul-

nerable to deficits in speed of accumulation of information. In

other words, task-related differences in working memory demands

might underlie higher relationships between more complex tasks

and intelligence.

A similar idea is part of the process overlap theory (Conway &

Kovacs, 2015; Kovacs & Conway, 2016; see also Kan, van der

Maas, & Kievit, 2016), a recently proposed intelligence theory.

According to this theory “executive/attentional processes” play an

important role, underlying—among other—both the worst perfor-

mance rule and the finding of higher relationships with intelligence

for more complex tasks. Process overlap theory is considered a

modern version of Thomson‘s sampling theory (Thomson, 1916).

According to Thomson (1916), each mental test addresses a num-

ber of what has later often been called “bonds” (see Deary, Lawn,

& Bartholomew, 2008, for a historical analysis). This account

explains correlations of performance across tasks by an overlap of
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required psychological processes (in the intelligence literature also

often referred to as positive manifold). Rather than assuming a

causal general factor of intelligence, process overlap theory re-

gards the g factor—that undoubtedly shows up in any factor

analysis of cognitive ability test data—as an “emergent property”

(Kovacs & Conway, 2016, p. 162).

In contrast to Thomson‘s theory, process overlap theory does

not postulate an additive overlap of processes but assumes a

bottleneck in form of multiplicatively linked “executive/attentional

processes” (Kovacs & Conway, 2016; see Schubert & Rey-

Mermet, 2019, for a critical discussion of the empirical testability

of this hypothesis). Kovacs and Conway (2016) state that “g

loadings depend on the involvement of executive processes seated

primarily in the prefrontal cortex rather than on the number of

processes measured” (p. 170) and define complexity as “the extent

to which a test taps executive/attentional processes” (p. 164).

Accordingly, they suppose the relationship between more complex

tasks and intelligence is driven by the engagement of executive

processes. Similarly, it is assumed that the slower trials in a task

are more highly related to intelligence because they are indicators

of failures in executive processes. We support this view of a

common explanation of both these empirical observations. More

specifically, we assume that the drift rate of the diffusion model

might provide a methodological account for both observations. It

has already been demonstrated that the drift rate provides an

explanation for the worst performance rule (e.g., Schmiedek et al.,

2007). So far, however, no study has examined relationships

between intelligence and drift rate in more complex tasks. In our

study, we examine complex tasks with RTs of about 3,000 ms, thus

tasks for which according to Jensen (2005) relationships between

mental speed and intelligence should be small because of higher

influences of individual differences in strategies. As the diffusion

model provides a more specific measure of mental speed (e.g.,

partialling out speed-accuracy settings), we assume that also for

more complex tasks there should be a substantial relationship

between mental speed (measured by means of the drift rate) and

intelligence. This relationship might even be larger than for less

complex tasks because of higher memory demands.

In short, we suppose that a higher speed of information process-

ing helps to counteract time-related decay of memory. This might

be particularly relevant for tasks with higher memory demands. In

our study, we examine both fast tasks with little memory demands

and more complex tasks with higher memory demands. As we will

outline in the next section, we assume that the diffusion model is

also applicable to such more complex tasks.

Diffusion Modeling for Fast Versus More

Complex Tasks

In the past, the diffusion model has almost exclusively been

applied to fast tasks. By this term, we refer here to tasks with a

mean trial duration of below 1.5 s. The claim that the diffusion

model is only applicable to such fast tasks has been repeatedly put

forth (e.g., Ratcliff & Frank, 2012; Ratcliff & McKoon, 2008;

Ratcliff, Thapar, et al., 2004) and has strongly influenced the

choice of tasks for diffusion modeling for a long time. The rea-

soning underlying this restriction is that tasks with longer RTs

were seen as more likely to violate basic assumptions of the

diffusion model (such as the assumption that decisions are based

on a single processing stage and that parameters remain constant

over time within one trial). However, we question the idea that

data from more complex tasks are more likely to violate assump-

tions of the diffusion model.

Let us first consider response time tasks that fulfill the 1.5 s rule,

that is, typical RT tasks to which the diffusion model has been

applied frequently, such as a color discrimination task. In this task,

participants have to decide whether, for example, the color orange

or blue prevails in a square filled with pixels of these two colors

(e.g., Germar, Schlemmer, Krug, Voss, & Mojzisch, 2014; Voss et

al., 2004). Participants are assumed to sample evidence from the

perceptual dimension (here, color). In such perceptual tasks, it is

plausible that participants continuously sample information (i.e., per-

ceptions of color), until they are reasonable sure that one color

prevails. However, the diffusion model has also often been applied

to tasks in which a continuous sampling of information is less

plausible. Imagine, for example, the lexical decision task (Ratcliff,

Gomez, & McKoon, 2004). Here it is unclear, whether—during

decision making—information of “wordiness” of a stimulus is

accumulated with constant drift. Rather, different prelexical (e.g.,

bigram frequencies) and postlexical (e.g., similarity to existing

words) processes could inform the decision with different impact,

thus resulting in separate decision stages with different drift rates.

Because there is no way to assess the assumptions of the

diffusion model analytically, the model has to be validated empir-

ically, both regarding its general ability to fit empirical data and

regarding the external validity of all model parameters. Such

validation studies are essential for any cognitive model and any

new type of task. One important tool in this regard are so-called

selective influence studies that demonstrate that specific experi-

mental manipulations with high face validity take impact on spe-

cific model parameters in a specific way. Importantly, such selec-

tive influence studies have shown comparably good validity of the

diffusion model parameters for color discrimination (Voss et al.,

2004) and recognition memory (Arnold, Bröder, & Bayen, 2015).

Accordingly, even in the recognition memory task the model

assumptions are apparently not seriously violated.

Imagine now a more complex task, for example, the complex

figural task used in our study (see Figure 2, for an example

stimulus). In each trial of this task, participants see several rect-

angles. Half of the rectangles are surrounded by a blue border and

half of them by a red border. Participants have to estimate the total

area of the blue-bordered rectangles and compare it to the total

area of the red-bordered rectangles in order to assess which of

these summed areas is larger. In studies by Lerche and Voss

(2019), the variant of the complex figural task employed led to

mean RTs of about 7 s per trial. Answers of participants to an

open-framed question about their use of strategies revealed that a

typical strategy is to sequentially pick pairs of rectangles and

compare the two rectangles within one pair to each other (i.e., one

red- and one blue-bordered rectangle). Apart from the high per-

ceptual and spatial affordances (e.g., considering color of borders,

and both width and height of rectangles at different positions on

the screen), also memory processes are relevant. Participants need

to remember which of the rectangles they have already compared

and how large the differences were. Thus, this task can be parti-

tioned into several subtasks. For example, each pair of rectangles

could be seen as one subtask (with each of these subtasks consist-

ing of further subtasks). Each subtask might be conceived of as
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having its own speed of information processing. Following the

concept of the law of large numbers, with an increase in the

number of subtasks, extreme values of drift rate in single subtasks

might become less influential, allowing for an even better mea-

surement of overall mental speed. Thus, we assume that the data of

tasks such as the complex figural task can be modeled adequately

by a constant drift (i.e., on average, information accrues toward the

correct boundary) with Gaussian noise (reflecting nonsystematic

influences).

Importantly, in selective influence studies based on the com-

plex figural task, convergent and discriminant validity of the

diffusion model parameters were comparable to what has been

observed in the validation studies based on faster tasks (Lerche

& Voss, 2019). Furthermore, in another study, data from a

complex verbal task were entered into a diffusion model anal-

ysis (Lerche et al., 2018). In this task, participants had to assess

the meaningfulness of sentences, which took 2.2 s on average.

Results again demonstrated an excellent fit of the diffusion

model. Thus, these first empirical findings support our claim

that the diffusion model can also be applied to tasks with mean

response times above 1.5 s. In the present study, we build upon

these promising results and employ both fast and more complex

tasks. We compare the model fit between these two types of

tasks and examine the external validity (analyzing the relation-

ship of drift rate with intelligence).

The Present Study

In the present study, an intelligence test battery and a battery of

18 binary RT tasks were administered to a sample of 125 partic-

ipants. The RT tasks included both simple and complex tasks

addressing three content domains (numeric, figural, and verbal).

With our study, we pursued three main objectives: First, we aimed

to replicate findings from previous studies showing that general

intelligence correlates with drift rate measured across a variety of

different tasks. That is, we expected a substantial relationship

between general intelligence and the drift rates across tasks. Sec-

ond, we wanted to examine whether there are domain-specific

aspects of cognitive speed as measured by drift rates and—if

so—whether these are related to the respective numeric, verbal,

and figural aspects of intelligence, as measured by an intelligence

test. Third, we aimed at further investigating the applicability of

the diffusion model to more complex RT tasks, which require more

time for response selection. Specifically, we compare model fit

from nine fast and nine more complex tasks. We also examine how

drift rates estimated from the more complex tasks specifically

predict general intelligence.

Method

Participants

We determined the required minimum sample size for structural

equation analyses with a power analysis following the procedure

described by Kim (2005). According to this procedure, the pro-

posed minimum sample size for a test of close model fit according

to the root mean squared error of approximation (RMSEA) is 113

(df � 350, � � .05, � � .05). We recruited 125 participants for the

study to ensure adequate power.2

We used different recruitment methods. The largest part of

participants was recruited via a newspaper article. Others were

hired via the participants’ pool of the Psychological Institute of

Heidelberg University in Germany using the software hroot (Bock,

Baetge, & Nicklisch, 2014) or by means of fliers that were dis-

tributed at public places. We obtained informed consent from all

participants. Participants were remunerated with 35€ after data

collection was completed. In addition, all participants received

feedback about their performance. Participants were between 18

and 65 years old (M � 36.0, SD � 14.3). Sixty-three percent were

females. The percentage of students amounted to 50%.

Design and Procedure

The study consisted of three sessions. In the first session,

participants had to work on an intelligence test.3 In the second and

third session, all RT tasks were administered (with nine of these

tasks in each session). The order of tasks was identical for all

participants and is provided in Table 1. Tasks of the three different

2 Following suggestions of our reviewers, we kept the structural equa-
tion models simpler than in our original analysis plan. Most importantly,
for the intelligence data, we used scale means rather than the single task
scores, leading to a lower number of dfs in our models.

3 N � 11 participants had already participated in a previous study in
which the same intelligence test was administered. These participants,
therefore, only took part in the two PC assessments and received 25€.

Figure 2. Example for stimuli from the fast figural tasks (left) and the

slow figural tasks (right). See the online article for the color version of this

figure.
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domains and fast and slow tasks were presented alternatingly.

After the third and the sixth task within each session, participants

took a break of 3 min.

Each of the 18 tasks started with four practice trials. In these

trials, participants received feedback about the correctness of their

response (green checkmark vs. red cross for correct vs. erroneous

responses, respectively; presentation duration: 1,500 ms). After the

practice trials, 100 test trials (preceded by one warm-up trial) were

administered. All tasks had a binary response format, with both

responses correct in half of the trials. Simulation studies have

shown that the diffusion model can provide reliable parameter

estimates for about 100 or even fewer trials (Lerche, Voss, &

Nagler, 2017). The practice and warm-up trials were discarded

from subsequent analyses. The order of trials was determined

randomly and was held constant for all participants. In each trial,

participants had to press one of two keys (“A” or “L”). The key

assignment was identical for all participants. Each trial started with

the presentation of a fixation cross for 500 ms. Subsequently, the

target was shown and remained on the screen until the participant

responded. Participants were instructed always to respond as fast

and accurately as possible. The next trial started after an inter-

trial-interval of 500 ms.

The fast tasks took between 528 and 810 ms on average per trial

(M � 655 ms) and the slow tasks took between 2,469 and 4,314 ms

(M � 3,319 ms). The mean duration of assessment sessions was 71

min for Session 2 and 69 min for Session 3.

Intelligence Assessment

For the assessment of intelligence we used the BIS (Jäger et al.,

1997) which relies on the bimodal Berlin intelligence structure

model (Jäger, 1982). This model comprises operation-related and

content-related components of general intelligence. Of interest to

our study were the content-related components (numeric, figural,

and verbal). The intelligence assessment was run in sessions of six

participants at maximum and took on average 50 min.

Whereas Schmiedek et al. (2007) selected only nine tasks that

were all taken from the reasoning and psychometric speed opera-

tions, we also used the memory tasks of the short scale BIS (Jäger

et al., 1997), which resulted in a total of 12 tasks originating from

three of the four operations tapped in the test (reasoning, psycho-

metric speed, memory, and idea fluency). We excluded the tasks

on idea fluency because they are more related to creativity than to

the construct of intelligence (cf. Schmitz & Wilhelm, 2016). Con-

sequently, verbal, numeric, and figural domains were represented

by four tasks each. To keep the structural equation models as

simple as possible, we used scale means as manifest variables for

each of the three content domains.

Response-Time Tasks

The study consisted of 3 (domain: numeric vs. verbal vs. fig-

ural) � 2 (speed: fast vs. slow) � 3 (number of tasks) � 18

different RT tasks (see Table 1). In the following, we briefly

describe the different tasks and materials.

Numeric tasks. The fast numeric tasks were the number dis-

crimination task, the odd-even task, and the simple inequation task.

In the number discrimination task, participants saw a number in

each trial and had to assess whether this number was smaller or

larger than 500. The numbers were randomly drawn from a uni-

form distribution ranging from 100 to 900 (excluding 500), with

the restriction that half of the numbers were larger than 500 and

that the mean deviation from 500 was identical for the numbers

smaller and the numbers larger than 500. In the odd-even task,

participants had to assess whether a presented number was odd or

even. The numbers were randomly drawn from a uniform distri-

bution ranging from 100 to 899 (i.e., a vector including 400 odd

and 400 even numbers). In the simple inequation task, participants

had to decide which of two numbers displayed left and right of the

center of the screen was larger. The two simultaneously presented

numbers were randomly drawn from a uniform distribution rang-

ing from 1 to 20, with the restrictions that numbers were never

Table 1

Overview of the 3 (Domain: Numeric vs. Verbal vs. Figural) � 2 (Speed: Fast vs. Slow) � 3 (Number of Tasks) � 18 RT Tasks

Domain Fast Slow

Numeric • FN1: number discrimination task (2.2) • SN1: mean value computation task (1.8)
number is greater vs. smaller than 500 16 numbers with mean greater vs. smaller than 500

• FN2: odd-even task (1.5) • SN2: equation task (2.5)
number is odd vs. even equation is correct vs. wrong

• FN3: simple inequation task (2.8) • SN3: complex inequation task (1.2)
inequation is correct vs. wrong equation on left or right side is larger

Verbal • FV1: word category task (2.6) • SV1: grammar task (1.4)
word is adjective vs. noun sentence with grammatical error in possessive pronoun vs. noun

• FV2: lexical decision task (1.1) • SV2: statement task (2.3)
letter combination is word vs. nonword statement is correct vs. wrong

• FV3: animacy task (1.7) • SV3: semantic category task (2.9)
noun is living vs. nonliving several nouns with one vs. two nouns not belonging to the superordinate category

Figural • FF1: dot-rectangle task (1.9) • SF1: maze task (2.1)
dot within vs. outside of rectangle maze solvable vs. insolvable

• FF2: simple area task (2.4) • SF2: complex area task (1.6)
rectangles with larger area on the left vs. right side six rectangles with larger total area of red vs. blue bordered rectangles

• FF3: polygon task (1.3) • SF3: pie task (2.7)
polygon is triangle vs. rectangle three pie slices making more vs. less of a total pie

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain (N � numeric, V � verbal, F � figural).
The numbers in parentheses indicate the time point of assessment (session and number in sequence).
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identical and that the difference between the numbers did not

exceed three.

The slow numeric tasks were the mean value computation task,

the equation task and the complex inequation task. In the mean

value computation task, 16 numbers were presented on the screen.

Participants had to assess whether the mean of these numbers was

smaller or larger than 500. The mean of the 16 simultaneously

presented numbers of each trial was either 400 or 600, and the

numbers were presented at random positions on the screen (over-

lapping of numbers was prevented). In the equation task, in each

trial an equation was shown and participants had to assess whether

the equation was correct or wrong. In half of the trials, a multi-

plication or division had to be performed, respectively. The erro-

neous equations were generated using several different principles.

Specifically, for erroneous equations either the tens digit or the

ones digit of the solution were set to incorrect values (e.g., 5·7 �

25 or 4·12 � 40, respectively), the operator was wrong (e.g.,

11/3 � 33), or the order of numerator and denominator was

reversed (e.g., 8/64 � 8). In the complex inequation task, partic-

ipants had to decide which solution of two equations displayed on

the left and right side of the screen was larger. The equations were

sums and differences of two numbers (e.g., “9 – 6” vs. “19 – 17”).

The two numbers were drawn randomly from a uniform distribu-

tion between 1 and 20, and the solutions of the sums and differ-

ences were in that range as well. The operations for the two

equations were randomly determined and could be the same or

different for the two equations. Furthermore, the difference be-

tween the solutions of the two equations was restricted to a

maximum of three.

Verbal tasks. The fast verbal tasks were the word category

task, the lexical decision task, and the animacy task. In the word

category task, in each trial a word was presented and participants

had to assess whether the word was an adjective or a noun. All

words comprised of six letters and had one or two syllables. The

words had frequency classes of 12 or above (according to the

online dictionary project of the university of Leipzig, retrieved in

May 2017, see http://wortschatz.uni-leipzig.de/de), which indi-

cates that the German word “der” (“the”) is used at least 212 times

as often as the selected stimuli. The mean frequency class of

adjectives and nouns was identical (M � 15). Thus, all words had

a low frequency in German language. In the lexical decision task,

letter combinations were presented and participants had to assess

whether or not these were German words. The stimuli were se-

lected from a lexical decision study by Lerche and Voss (2017).

The words were nouns consisting of one or two syllables and four

to six letters. The words had a frequency class of 14 or 15

(retrieved in November 2014). The nonwords had been generated

by replacement of vowels from valid word. Thus, all nonwords

were pronounceable and had plausible bigram frequencies. In the

animacy task, nouns were presented and participants had to clas-

sify these as living versus nonliving. The “living” stimuli could

refer to humans, animals or plants. Two of the authors and two

further independent raters classified the words unambiguously as

living versus nonliving. The words consisted of one to three

syllables, four to eight letters, and had frequency classes between

11 and 16 (retrieved in June 2017). The mean frequency class was

identical for words classified as living or nonliving (M � 13).

The slow verbal tasks were the grammar task, the statement

task, and the semantic category task. In the grammar task, partic-

ipants read German sentences with grammatical errors and had to

indicate whether the error was located in the possessive pronoun or

in the noun. All sentences consisted of five words and had a very

similar structure: They always started with a personal pronoun and

further contained a predicate and an object with a possessive

pronoun (e.g., “Er widerspricht seine Chef oft” � “He often

contradicts his boss”; the error in the German statement is in the

possessive pronoun that should read “seinem” instead of “seine”).

In each trial, by changing one word—either the possessive pro-

noun or the object—the sentence could be corrected. The errors

were generated using the wrong case (e.g., accusative instead of

dative), the wrong gender, the wrong declension, or the wrong

number.

In the statement task, four to six words were presented at

different positions of the screen. The participants had to assess

whether or not it was possible to create a true statement using all

of the presented words. The words were distributed randomly

across the screen. From each set of words one grammatically

correct sentence could be composed. An example for a true state-

ment is “ein Lastwagen ist sehr schwer” (“A truck is very heavy”)

and for a wrong statement is “reiche Menschen haben kein Geld”

(“Rich people have no money”).

In the semantic category task, five nouns were presented one

above the other. There was one superordinate category to which

most of the words (that is, three or four words) belonged. Either

one or two words did not belong to this category. Participants had

to indicate whether one or two words did not belong to this

superordinate category. The selected words were members of the

superordinate categories planets, seating furniture, fruit, tools,

baking ingredients, medical specialists, geometric figures, grain,

craftsmen, or organs reported by Scheithe and Bäuml (1995).

Either three or four words belonged to the same category and one

or two belonged to another superordinate category. For example,

in one trial the words “Stuhl” (� chair), “Sonne” (� sun), “Sessel”

(� armchair), “Sofa” (� sofa), and “Bank” (� bench) were

shown. Here, the correct response was 1 because all words except

one (“sun”) belong to the same superordinate category “seating

furniture.” In another example, “Weizen” (� wheat), “Mond” (�

Moon), “Jupiter” (� Jupiter), “Merkur” (� Mercury), and “Hirse”

(� sorghum) were presented. In this case, the correct response was

two, because two nouns (“wheat” and “sorghum”) do not belong

to the dominant category (planets). There are 10 different

possibilities for the positioning of two minority category mem-

bers among the five words and five possibilities for the posi-

tioning of one minority category member. Each possible posi-

tioning was used equally often.

Figural tasks. Example illustrations of the figural tasks are

depicted in Figure 2. The fast figural tasks were the dot-

rectangle task, the simple area task, and the polygon task. In the

dot-rectangle task, a rectangle and a dot were shown. Partici-

pants had to indicate whether the dot was located within or

outside of the rectangle. The rectangles varied in size while the

dot was always of the same size. The form of the rectangle and

the exact positioning of the dot were determined randomly. In

the simple area task, two rectangles were shown side by side.

Participants had to assess which of the two rectangles was

larger. The edge lengths of the rectangles were determined

randomly, with the area of the smaller rectangle always com-
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prising 70% of the area of the larger rectangle. In the polygon

task, polygons were shown and participants had to indicate

whether the stimulus was a triangle or a quadrangle. The shapes

of polygons were generated randomly.

The slow figural tasks were the maze task, the complex area

task, and the pie task. In the maze task, mazes were presented

with a dot positioned inside the maze. Participants had to assess

whether or not it was possible to leave the labyrinth (starting

from the position of the dot). The mazes were drawn manually

with a graphics program. In the complex area task (cf. Lerche

& Voss, 2019), in each trial six rectangles were shown. Three

of them had a red border and three of them had a blue border.

Participants had to compare the total area of all red-bordered

rectangles with the total area of all blue-bordered rectangles and

decide which area was larger. The larger area was always 1.3

times larger than the smaller area. The rectangles were gener-

ated randomly based on some restrictions (most importantly,

the largest or smallest area was not indicative of the correct

answer so that participants really had to assess the total area,

see Lerche & Voss, 2019, for details). In the pie task, three pie

slices were shown in each trial. Participants had to judge

whether the three slices—if put together—add up to more or

less than a full circle. Between trials, the slices summed up to

either 95% or 105%, and each slice comprised between 5% and

95% of a full circle each. The combinations of slices were

generated randomly with the restriction that from the summing

of only two slices it was not possible to derive a correct answer.

Data Preparation

For all RT tasks, we discarded all responses faster than 300

ms. Furthermore, for each task, trials lying more than three

interquartile ranges beneath the first or above the third quartile

of the intraindividual logarithmized RT distributions were ex-

cluded (see also Tukey, 1977). The percentage of excluded

trials was on average 1.3% per task and participant.

One participant interrupted accidentally the experimental

program at the beginning of the penultimate task of the session,

so that data from two tasks (mean value computation task and

dot-rectangle task) are missing for this participant. Further-

more, separately for the different RT tasks, we removed the

diffusion model parameter estimates of participants with inad-

equate model fit (i.e., fit �1% quantile of the simulated data,

see below for details on the assessment of model fit; this

resulted in an exclusion of 0.93% of the diffusion model pa-

rameter estimates). Next, we also excluded the diffusion model

parameter estimates, mean RT, and accuracy for a specific

person and task if the accuracy rate or mean RT for this specific

task and person exceeded the Tukey criterion (i.e., distance

from first or third quartile larger than three times the interquar-

tile range; Tukey, 1977).4 Finally, based on the estimated

diffusion model parameters (v, a, t0), accuracy rates, mean RTs

and intelligence scale scores, we computed the Mahalanobis

distances to detect multivariate outliers. Two of our participants

exceeded the critical value of 	2 � 140.89 (df � 93, p � .001)

and thus had to be excluded.

Parameter Estimation

We estimated the diffusion model parameters using the max-

imum likelihood optimization criterion implemented in fast-

dm-30 (Voss & Voss, 2007, 2008; Voss, Voss, & Lerche, 2015).

Parameters were estimated separately for each participant and

each task. Thresholds were associated with correct (upper

threshold) and erroneous (lower threshold) responses. Accord-

ingly, the starting point was centered between thresholds (zr �

0.5). In addition, we fixed the intertrial variabilities of drift rate

and starting point to zero. These two parameters cannot be

estimated reliably from low trial numbers and the fixation of

these parameters can even improve the estimation of the other

model parameters (Lerche & Voss, 2016; see also van Raven-

zwaaij et al., 2017). In sum, for each participant and each task

we obtained estimates for threshold separation, drift rate, non-

decision time, and the intertrial variability of nondecision time.

In order to examine the robustness of our results, we also

conducted three additional types of parameter estimation. In the

first, we associated the thresholds with the two response cate-

gories of the respective task (instead of correct and erroneous

responses) and freely estimated the starting point. This way, we

could check if accounting for a possible bias in starting point

alters our results. With this estimation approach, we obtained

two different drift rate estimates per task, one for each response

category, and—after multiplying the drift rate for the category

associated with the lower threshold by �1— computed the

mean of the two drift rates as an overall estimate of drift per

task. In our second additional estimation procedure, we exam-

ined whether practice effects might influence our pattern of

results. Therefore, prior to parameter estimation, we excluded

not only the four practice trials and the warm-up trial of each

task, but also the subsequent 20 trials. Finally, we combined the

two alternative estimation approaches obtaining parameter es-

timates with a freely estimated starting point while also exclud-

ing the 20 additional practice trials.

Some of the tasks employed in our study were similar to tasks

that have already been used for diffusion model analyses:

Specifically, lexical decision tasks (e.g., Dutilh, Vandekerck-

hove, Tuerlinckx, & Wagenmakers, 2009; Wagenmakers, Rat-

cliff, Gomez, & McKoon, 2008; Yap, Balota, Sibley, & Rat-

cliff, 2012), number discrimination (Ratcliff, 2014; Ratcliff,

Thompson, & McKoon, 2015), odd-even tasks (Schmiedek et

al., 2007; Schmitz & Voss, 2012), animacy discrimination tasks

(Aschenbrenner et al., 2016; Spaniol, Madden, & Voss, 2006;

Voss, Rothermund, Gast, & Wentura, 2013), and the complex

area task (Lerche & Voss, 2019) have been analyzed with the

diffusion model before. However, most tasks, in particular the

slow RT tasks (with the exception of the complex area task),

have not yet been examined by means of diffusion modeling.

Thus, we were particularly interested in whether the model can

fit data from all tasks (and especially from the slow tasks)

4 To test the robustness of our main findings, in additional analyses we
excluded univariate outliers in the diffusion model parameters (because we
had obtained some extreme estimates, e.g., t0 
 0, a 
 10, v � 10). The
pattern of results remained unchanged when we excluded these values.
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reasonably well. Accordingly, we examined the model fit for all

tasks (our procedure is reported in the Results section).

Structural Equation Modeling

Our structural equation modeling approach consisted of two

main steps. First, we established a measurement model for drift

rates and a model of the intelligence test scales, separately.

Then, we combined these two models into one complete model.

We used the R package lavaan (Rosseel, 2012) for the structural

equation analyses. To deal with missing data we employed the

full information maximum likelihood (FIML) estimator in-

cluded in lavaan, which utilizes all available information.

We standardized all observed variables before they were

entered into the structural equations to avoid estimation prob-

lems resulting from differing variances between the drift rates

and the intelligence scale scores. As we were not interested in

absolute values, fixing all means to zero is unproblematic.

However, the analysis of correlations instead of covariances can

lead to biased standard errors and fit indices (Cudeck, 1989).

We accounted for this by fixing the model implied indicator

variances to one, equal to the manifest indicator variances, as

proposed by Cudeck (1989). For examination of model fit we

used several fit indices: the 	2 statistic, the comparative fit

index (CFI), the RMSEA, and the Tucker-Lewis index (TLI).

We used the cut-off criteria proposed by Hu and Bentler (1999)

for evaluation of fit. Please note that due to the use of the FIML

estimator, a mean structure was also estimated. We fixed all

estimated indicator means to zero (as the variables were stan-

dardized), a fact that informs the degrees of freedom for all

reported models.

We compared four different measurement models of drift

rate. Because it was essential to keep the models as parsimo-

nious as possible, we assumed parallel measurement of all

factors by fixing all factor loadings to one and setting all

residual variances of items loading onto the same factor equal

(see Lord & Novick, 1968, Equations 3.3.1a and 3.3.1b, for the

outline of a model of parallel measurement). The four models

are shown in Figure 3. The first model (Model 1) assumed a

general (g) factor of drift rate. This equals the assumption that

the common variance in speed of information processing can be

explained by a single, general factor contributing to all tasks.

Model 2 did not include a g factor, but three uncorrelated

domain factors. The idea behind this model is that there are

different types of speed of information processing for figural,

verbal and numeric tasks, and that these are unrelated to one

another. In Model 3, we assumed a hierarchical structure of the

factors: g was modeled as a higher-order factor and the domain

factors as lower part of the factor hierarchy. The general factor

is here interpreted as the common variance of the domain

factors, which—in contrast to Model 2—are thought to be

correlated. Thus, Model 3 assumes that speed of information

processing has both a general component and domain-specific

components.5 Finally, in Model 4, we fit an extended version of

Model 3 adding a factor that captures the specific variance of

the slow tasks (M-1 approach; Eid, Lischetzke, Nussbeck, &

Trierweiler, 2003). Here, the idea is that speed of information

processing in the slower, more complex tasks shares specific

common variance. This way, the interpretation of the g factor

changes: It now comprises the domain-general shared variance

of speed of information processing except for the variance

solely shared by the slow tasks. As not all of the models

are nested, we compare model fit based on AIC and BIC values.

For the BIS intelligence scales, we used a hierarchical model

of domains and a superordinate g factor (Intelligence Model,

see Figure 4). We employed scale means (instead of single item

values) as single indicators for each domain (figural, numerical,

verbal) to keep the model as simple as possible, fixing residual

indicator (not: domain) variances to zero.6 Domain factor vari-

ances were set equal for the three domains. We also fixed the

unstandardized loadings of the indicators on g and on the

domain factors to 1. While this assumption of perfect measure-

ment and parallel structure is certainly an oversimplification,

we made this decision because the BIS is an established instru-

ment and the focus of this study is less on the structure of

intelligence, but on the structure of speed of information pro-

cessing and its relationship to intelligence. In the last step, we

combined the best fitting model of drift rates and the BIS model

(Combined Drift-Intelligence Model).

Although the focus of this work is on drift rate, we also fit the

same model structures (Models 1 to 4, see Figure 3) to estimates

of threshold separation (a), nondecision time (t0) and mean

logarithmized response times of correct responses. If a mea-

surement model with acceptable fit emerged, we further tested

the combined model (i.e., including the intelligence model).

In the tables and plots, models are labeled accordingly (e.g.,

Drift Model 1 or RT Model 1). The data of our study is

available on the Open Science Framework project page: https://

osf.io/xpbwe/. On the project page, also an R Markdown file is

available that allows an examination and replication of all the

structural equation modeling analyses.

5 In the literature on the structure of mental abilities, there is an
ongoing debate on how hierarchical models compare with so-called
bifactor models (see, e.g., Morgan, Hodge, Wells, & Watkins, 2015).
The latter assume a structure of both uncorrelated domain factors and a
g factor, also orthogonal to the other factors. Thus, bifactor models do
not make the presumption that the common variance shared by all tasks
is due to the variance shared between the domain factors. Empirically,
bifactor models often tend to fit better, while at the same time being less
understood from a substantive, theoretical perspective (Kan, van der
Maas, & Levine, 2019). Bifactor models fit better because with all
loadings estimated freely hierarchical models are more constrained: The
hierarchical models assume that the proportions of indicator variance
accounted for by the domain (residual) factors and the proportions
accounted for by g are the same for all indicators within a domain
(Gignac, 2016). In our modeling approach, we fixed all factor loadings
to be equal within each factor, which leads to a case were hierarchical
and bifactor models are mathematically equivalent, yielding identical fit
indices and estimates of the corresponding variances. We decided to use
a hierarchical model instead of a bifactor model because it can be
interpreted more intuitively and because it is also the more common
model of cognitive abilities found in the literature.

6 Fixing the indicator variances to zero and using the domain factors
as de-facto residuals was necessary to estimate the covariances between
the drift domain residuals and the respective intelligence test compo-
nents.
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Results

Figures A1 (fast tasks) and A2 (slow tasks) in the Appendix

show boxplots of the response times for all 18 tasks. Appendi-

ces D to I report descriptive statistics of response times, accu-

racy rates, drift rates, threshold separations, nondecision times,

and intelligence scores.

Fit of the Diffusion Model

Our analyses of model fit comprise two different approaches:

First, we examined the fit values of the maximum likelihood

optimization. For better interpretation of these values, we con-

ducted simulation studies based on the estimated parameters to

infer a criterion for the assessment of model fit (Voss, Nagler,

et al., 2013). Second, we analyzed model fit by means of

graphical illustrations comparing observed and estimated de-

scriptive statistics.

In the maximum likelihood approach, parameter estimation is

based on the maximization of the sum of logarithmized densities

over all responses. Boxplots illustrating log-likelihood values for

all tasks are given in Figure B1 (fast tasks) and Figure B2 (slow

tasks) in the Appendix. Higher likelihood values indicate a better

fit of data to the model. One problem with the interpretation of the

log-likelihood values is that they depend on the parameter ranges

of the specific task. For example, the RT distributions of slower

tasks are more spread so that the sum of logarithmized densities is

smaller (for an example illustration, see Figure 4 in Lerche &

Voss, 2019). This makes it difficult to compare the performance of

tasks with different parameter ranges.

To account for this, we conducted simulation studies. More

specifically, for each task, we generated 1,000 random param-

eter sets from multivariate normal distributions, with means,

variances, and covariances based on the distribution of esti-

mated parameters. Thus, simulated parameter sets were similar

to observed parameters. From each parameter set, we simulated

one random data set (using construct-samples, which is part of

the program fast-dm). Therefore, simulated data reflects the as-

sumption that data is based on a diffusion process. Next, we reesti-

mated parameters from simulated data using the same fast-dm

settings as for the analyses of observed data (i.e., same number of

estimated and fixed parameters, same optimization criterion). If

the fit values for the real data are worse than those of the simulated

data, the observed data probably do not result from a diffusion

process only, and consequently, results from the diffusion model

analyses might be invalid. Importantly, the distributions of log-

likelihood values did not differ systematically between observed

data and simulated data, suggesting an excellent model fit (see

Figures B1 and B2).

We further defined a criterion to quantify the percentage of

observed data sets with poor fit. Specifically, we computed the

1% quantile of the distribution of fit values from simulated data.

Maximum likelihood values below this criterion are assumed to

indicate poor model fit. This criterion is depicted as horizontal

line in each plot. In addition, the plots give the percentage of

data sets with fit values below this criterion. The percentages of

suspicious fits are very low (at maximum 3.2%) and they are

equal for the slow and fast tasks (M � 1.1%). This suggests that

the diffusion model fits equally well for the fast and slow RT

tasks of our study.

We also examined the model fit graphically, in terms of the

precision of predictions for accuracy rates and RT quartiles.

Specifically, we constructed scatter plots for each type of task

(Domain � Speed) that show the correspondence of different

statistics (RT quantiles and accuracy rates) of observed data

(x-axis) with the respective values predicted from the diffusion

model results (y-axis; see Figures B3 and B4 in the Appendix

Figure 3. Drift Rate Models 1 to 4. The first letter of the task indices denotes the type of task (F � fast, S � slow); the second letter indicates the domain

(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. g� � general drift rate factor; V� � verbal drift rate factor; N� �

numeric drift rate factor; F� � figural drift rate factor; s� � method factor for drift rate in slow tasks. All unstandardized factor loadings are fixed to 1.

Residuals are omitted from the plot for simplicity. We used the same model structures also for threshold separation, nondecision time, and mean

logarithmized response times.

Figure 4. Intelligence Model. Scale means are used as indicators for

verbal (VIQ), numeric (NIQ), and figural (FIQ) intelligence. gIQ � general

intelligence. Indicator residuals are fixed to zero, domain factors serve as

quasi-residuals, see Method.
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for the fast and slow tasks, respectively). In these figures, each

point represents one participant in one task. The figures illus-

trate that the diffusion model fit the data very well as for all

tasks the points are close to the diagonals (all correlations

between the empiric and the respective estimated quartiles were

larger than .97). Interestingly, the model fits at least as well for

slow as for fast RT tasks. Thus, the graphical fit analyses are in

accordance with the simulation-based analyses of maximum

likelihood values.

The simulation studies and graphical analyses of model fit for

the three alternative types of estimation (including estimates of

starting point, excluding additional practice trials, and doing

both) yielded similar results. The according plots are in the

online supplemental material.

Structural Equation Modeling

We started by fitting the measurement models described above

(Models 1 to 4, see Figure 3) to the drift rate estimates: Model 1,

a g factor model; Model 2, a model of uncorrelated domains;

Model 3, a hierarchical model of domains and a g factor; and

Model 4, a model that further added a method factor for all slow

decision tasks. Table 2 shows the fit indices for all drift rate

models. Figures C1 to C4 in the Appendix show the results for

Drift Models 1 to 4 and Appendix J to M report the parameter

estimates for each of the four structural equation models, including

the unstandardized solution, the corresponding standard errors and

p values, and completely standardized estimates.

Model 4, the model containing a hierarchical structure of three

content domain factors, a superordinate g factor, and a method

factor for the slow tasks had the best fit in terms of AIC and BIC

values (see Table 2) and also regarding the measures of absolute

model fit, 	2(df � 184) � 254.40, CFI � .88; TLI � 0.90;

RMSEA � 0.06. Accordingly, we decided to retain this model. It

should be noted that the estimated residual variance of the figural

drift factor did not differ significantly from zero und should

therefore be interpreted accordingly. We kept it in the model in

order to a) refrain from post hoc model adjustments and b) make

possible replications easier to compare.

The intelligence model is illustrated in Figure C5 in the Appen-

dix, Table 2 shows the fit, and Appendix N parameter estimates.

As the fit was good, 	2(df � 8) � 0.18, CFI � 1.00; TLI � 1.03;

RMSEA � 0.00, we used this model for the combined analyses.

Finally, we combined the best measurement model of drift rates

(i.e., Model 4) and the Intelligence Model into a Combined Drift-

Intelligence Model. We allowed freely estimated covariances be-

tween residual figural drift rate and residual figural BIS intelligence,

residual numeric drift rate and residual numeric BIS intelligence,

residual verbal drift rate and residual verbal BIS intelligence, and

the superordinate g factor for drift rate and g BIS intelligence.7 In

addition, the covariance between the slow decision task factor and

the g BIS intelligence factor was freely estimated, reflecting our

hypothesis that speed of information processing in slow tasks

might be especially closely related to general intelligence. Figure

5 shows the resulting model. Model fit was acceptable, 	2(df �

241) � 406.49; CFI � .82; TLI � 0.84; RMSEA � 0.07 (see

Table 2). Table 3 shows the parameter estimates. All latent factors

except the figural drift factor had variances significantly different

from zero; the same was true for the covariances between them.

The relative parts of the variances of the manifest indicators

explained by the latent factors are reported in Table 4. Across all

tasks, 20% of the variance of drift rates could be attributed to the

g drift factor, while 3–16% were based on the domain-specific

factors. For the complex tasks, an additional 10% of the variance

was explained by the slow factor. Overall, the mean task specific

and error variance was 63%.

The estimated correlation between figural intelligence and fig-

ural drift rate was .90. However, this value should not be over-

interpreted because of the very low residual variance of figural

drift rate, which did not differ significantly from zero. Numeric

intelligence and numeric drift rate correlated with .74. The corre-

lation between verbal intelligence and verbal drift rate was .50,

while the correlation between domain general drift rate and general

intelligence as measured by the BIS was .45. Finally, the method

factor for slow decision tasks and the BIS g factor were also

strongly correlated (r � .68). If the links of the g drift and slow

drift factors to g BIS intelligence were modeled as a regression, the

R2 value of g BIS was .67. Thus, the domain general drift factor

and the slow drift factor jointly explained two thirds of the vari-

ance in general intelligence.

We conducted several robustness checks to ensure our main

findings would hold. First, we fit models with completely freely

estimated factor loadings and residual indicator variances for both

the best measurement model (Drift Model 4, freely estimated, see

Figure C6 and Appendix O; see Table 2 for fit indices) and the

combined drift-intelligence model (freely estimated, see Figure C7

and Appendix P; see Table 2 for fit indices). In terms of AIC and

BIC values, the constrained Drift Model 4 was preferred to the

freely estimated version. For the combined drift-intelligence

model, AIC was lower for the free model, but the constrained

model had the lower BIC value (i.e., better fit). Please note that the

number of estimated parameters in the freely estimated models is

very large for our sample size and the results should thus be

interpreted with caution. In addition, estimation of the Combined

Drift-Intelligence Model (freely estimated) yielded a nonpositive

definite estimated covariance matrix.8 Still, while the estimated

unstandardized factor loadings in the freed models sometimes

differed widely from unity and standard errors were much higher

than in the constrained model, leading to statistically insignificant

estimates, the main resulting covariances remained much the same.

Namely, the estimated correlations between the factors in the

freely estimated Combined Drift-Intelligence Model (compared

with the constrained Combined Drift-Intelligence Model) were:

.56 (.90) for the figural, .90 (.74) for the numeric, and .52 (.50) for

verbal drift residual factors and their respective intelligence coun-

terparts. A correlation of .42 (.45) was now found for the relation

of g drift and g BIS and a correlation of .74 (.68) for the associ-

ation of the slow factor and g BIS.

7 We also fitted a Combined Drift-Intelligence Model freely estimating
the covariances between all domain residuals. Only the theoretically im-
plied covariances (figural drift �-� figural IQ, numeric drift �-� numeric
IQ, verbal drift �-� verbal IQ) reached statistical significance, except for
a negative correlation between verbal drift and figural intelligence
(r � �.34, p � .048).

8 This problem could be overcome by fixing the residual variance of the
figural drift factor, that did not differ significantly from zero, to zero.
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Further evidence for the robustness of our results was provided

by additional analyses based on different specifications of the

diffusion models: Similar results emerged for the structural equa-

tion models when drift was estimated using the alternative diffu-

sion model architectures that (a) also estimated the starting point,

(b) excluded 20 additional practice trials, or (c) did both. Fit

indices and parameter estimates for these models are given in the

online supplemental material.

Table 5 shows the fit values for the measurement models of

threshold separation, nondecision time, and mean logarithmized

response times. Parameter estimates for all these models can be

found in the online supplemental material. Of all the measurement

models, only t0 Models 1, 3, and 4 showed somewhat acceptable

model fit (RMSEA � 0.08, CFI and TLI at least � 0.82), with Model

4 showing the lowest values in AIC and BIC. Thus, for nondeci-

sion time, a hierarchical model of domain factors, a superordinate

g t0 factor and a method factor for slow tasks provided the best fit.

However, the residual variances for the figural and numerical

domain factors did not reach statistical significance. Appendix Q

shows the complete parameter estimates for this model. We also fit

a combined model of nondecision time and the BIS intelligence

scales (Combined t0-Intelligence Model, see Table 5 for the fit

measures). The model structure was identical to the Combined

Drift-Intelligence Model. Table 6 shows the resulting estimates.

The nondecision time domain factors were negatively correlated to

the respective intelligence factor residuals, as were the gt0 factor

and the slowt0 factor to general intelligence.

Notably, none of our predefined models showed acceptable fit to

the mean logarithmized response times. However, the relationship

between response times and intelligence is of particular theoretical

interest because response times are the measures of mental speed

used in most previous studies. Therefore, we additionally con-

ducted an exploratory principal components analysis to explore the

covariance structure of response times in our sample. A parallel

analysis (Horn, 1965) suggested the extraction of one general

component that explained 58% of variance in response time vari-

ables. When added to the Intelligence (structural equation) Model

as a manifest variable, the component scores explained 65% of the

variance in gIQ (� � .80, p � .001; RMSEA � 0.00, CFI and

TLI �1.00 for this model).

Discussion

Our study focused on the relationship between intelligence and drift

rate—a measure of speed of information processing estimated in

diffusion model analyses (Ratcliff, 1978). In contrast to previous

studies that examined such relationships (e.g., Ratcliff et al., 2011;

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert et al.,

2015), we used a much larger set of RT tasks, and these tasks

systematically addressed three content domains (verbal, numeric, and

figural). More specifically, we employed six tasks for each of the

three domains with half of the tasks of each domain being typical fast

diffusion model tasks (mean RT of 660 ms), and the other half being

more complex, slower tasks (mean RT of 3,320 ms). Thereby, our

study is the first diffusion model study on intelligence that includes

not only fast but also more complex RT tasks and uses a large number

of tasks per content domain. This allowed us to examine three main

substantial questions: First, we tested whether we can replicate the

relationship between general intelligence and drift rate that has been

found in previous diffusion model studies (e.g., Ratcliff et al., 2011;

Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert et al.,

2015). Additionally, we also examined relationships of intelligence

with mean RT and other diffusion model parameters. Second, we

analyzed whether there are domain-specific aspects of speed of infor-

mation processing and—if so—whether these domain-specific drift

rate factors are related to the respective domains of the intelligence

test BIS (Jäger et al., 1997).

In addition to these substantial questions, our study also allows

the examination of two methodological issues. First, in the last

years it has been proposed to use the diffusion model not only for

the analysis of differences between groups or conditions (the

typical application in most previous studies), but also for the

examination of interindividual differences (e.g., Frischkorn &

Schubert, 2018; Ratcliff & Childers, 2015; White et al., 2016). Our

study is the first to allow a profound analysis of whether there are

meaningful interindividual differences in the content-domain spe-

cific aspects of drift rates. Second, in the past, the diffusion model

was typically only applied to fast RT tasks. Our study allows

inferences about whether the diffusion model fits slower, more

complex RT tasks similarly well as typical fast RT tasks. Further-

more, we could examine the external validity of drift rate in more

complex tasks, analyzing the relationship with intelligence.

Table 2

Fit Indices of Drift Rate Models, Intelligence Model, and Combined Drift-Intelligence Model

Model AIC BIC 	2 df CFI TLI RMSEA

Drift Model 1 5,773.69 5,776.50 350.71 188 .73 0.78 0.08
Drift Model 2 5,795.32 5,803.75 368.34 186 .69 0.75 0.09
Drift Model 3 5,711.05 5,722.30 282.07 185 .84 0.86 0.07
Drift Model 4 5,685.38 5,699.44 254.40 184 .88 0.90 0.06
Drift Model 4, freely estimated 5,688.59 5,772.96 207.61 159 .92 0.92 0.05
Intelligence Model 945.39 948.21 0.18 8 1.00 1.03 0.00
Combined Drift-Intelligence Model 6,507.19 6,538.12 406.49 241 .82 0.84 0.07
Combined Drift-Intelligence Model, freely estimated 6,496.67 6,603.53 341.97 214 .86 0.86 0.07

Note. Model 1 � g factor model; Model 2 � model of uncorrelated domains; Model 3 � hierarchical model of domains and a g factor; Model 4 � model
3 with additional method factor for all slow decision tasks; AIC � Akaike’s information criterion; BIC � Bayesian information criterion; CFI �

comparative fit index; TLI � Tucker-Lewis index; RMSEA � root mean squared error of approximation. The best-fitting drift rate model among the four
alternative models (Models 1 to 4) is in bold. In the freely estimated models, all loadings and residual variances were unconstrained.
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Figure 5 (opposite)
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Summary of Results

The presented structural equation analyses replicated findings of

previous diffusion model studies in that we found a strong rela-

tionship between a general drift rate factor and general intelligence

as measured by the BIS. As the general latent factor of drift rates

in our study captured the shared variance of 18 different tasks, this

provides strong support for the hypothesis that speed of informa-

tion processing is closely linked to general intelligence. Further-

more, for two out of three content domains (verbal and numeric),

we found significant domain-specific drift factors, indicating that

there are domain-specific interindividual differences in mental

speed that can be assessed with a diffusion model analysis. Strik-

ingly, the three domain-specific latent factors accounted for

roughly one third of the shared variance between tasks. Moreover,

the domain-specific drift factors were closely related to the respec-

tive components of the standard intelligence test. Finally, fit of

diffusion models was equally good for fast and more complex RT

tasks and speed of information processing in the more complex

tasks explained additional variance in general intelligence.

Domain-Specific Speeds of Information Processing

Our study is the first to reveal domain-specific drift factors,

which we further found to be related to the respective domain

scores of the intelligence test. The variance proportions explained

Table 3

Combined Drift-Intelligence Model

Parameter Estimate SE 95% CI p Std. Est.

Loadings

F� on � (each figural task) 1 0 0.487
N� on � (each numeric task) 1 0 0.603
V� on � (each verbal task) 1 0 0.591
s� on � (each slow task) 1 0 0.322
g� on F� 1 0 0.919
g� on N� 1 0 0.742
g� on V� 1 0 0.758
gIQ on F_Mean/on N_Mean/V_Mean 1 0 0.734
FIQ on F_Mean/NIQ on N_Mean/VIQ on V_Mean 1 0 0.679

Covariances

g� with gIQ 0.148 0.035 [0.080, 0.216] �.001 0.450
s� with gIQ 0.162 0.030 [0.102, 0.222] �.001 0.684
F� with FIQ 0.117 0.031 [0.057, 0.177] �.001 0.899
N� with NIQ 0.202 0.035 [0.134, 0.269] �.001 0.736
V� with VIQ 0.130 0.034 [0.063, 0.197] �.001 0.497

Latent (residual) variances

g� 0.200 0.025 [0.152, 0.248] �.001 1
gIQ 0.539 0.039 [0.462, 0.617] �.001 1
s� 0.104 0.023 [0.059, 0.149] �.001 1
F� 0.037 0.028 [�0.017, 0.091] .182 0.156
N� 0.163 0.032 [0.100, 0.227] �.001 0.449
V� 0.149 0.031 [0.089, 0.209] �.001 0.426
FIQ/NIQ/VIQ 0.461 0.039 [0.383, 0.538] �.001 0.461

Residual indicator variances

� (each fast figural task) 0.763 0.033 [0.698, 0.827] �.001 0.763
� (each fast numeric task) 0.637 0.031 [0.576, 0.697] �.001 0.637
� (each fast verbal task) 0.651 0.032 [0.589, 0.713] �.001 0.651
� (each slow figural task) 0.659 0.034 [0.593, 0.725] �.001 0.659
� (each slow numeric task) 0.533 0.034 [0.467, 0.599] �.001 0.533
� (each slow verbal task) 0.547 0.032 [0.486, 0.609] �.001 0.547

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.

Figure 5. Combined Drift-Intelligence Model. The first letter of the task indices denotes the type of task (F � fast, S � slow); the second letter indicates

the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. Completely standardized loadings are reported.

Residuals are omitted from the plot for simplicity. The latent correlations between the drift domains and intelligence domains are between the drift domain

residuals and the (quasi-residual) intelligence domain factors (see Method). g� � general drift rate factor; V� � verbal drift rate factor; N� � numeric drift

rate factor; F� � figural drift rate factor; s� � method factor for drift rate in slow tasks. Scale means are used as indicators for verbal (VIQ), numeric (NIQ)

and figural (FIQ) intelligence. gIQ � general intelligence. As the loadings of the drift domain factors are standardized on the different freely estimated

variances of the domain factors, their standardized values differ although the unstandardized loadings are all fixed to 1.
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by the domain-specific drift factors for numeric and verbal drift are

substantial (15% and 16%), challenging the view of only one

general mental speed factor. Thereby, our study helps to reconcile

research on mental speed with the literature that is based on

standard intelligence testing. In the latter, a hierarchical structure

with both a g factor and domain-specific factors is a very common

assumption. Previous mental speed studies might have failed to

reveal domain-specific factors due to measurement issues. Specif-

ically, studies that did not employ the diffusion model might have

examined a measure of mental speed that is confounded by other

processes such as encoding speed, motoric speed, or speed-

accuracy settings. The diffusion model has the great advantage of

providing a more process-pure measure of mental speed. Further-

more, previous studies employing the diffusion model might have

failed to find domain-specific drift rates because the number of

tasks that had been used for each domain might have been too low.

Diffusion Modeling for Slower, More

Complex RT Tasks?

In the past, it was assumed that the diffusion model is only

applicable to fast RT tasks with mean trial RTs below 1.5 s (e.g.,

Ratcliff, Thapar, et al., 2004). However, first studies support the

notion that the model might also be utilized for more complex

tasks. Lerche and Voss (2019) conducted experimental validation

studies (also often called “selective influence studies”) based on a

complex figural RT task, and Lerche, Christmann, and Voss

(2018) examined model fit of a complex verbal task. The present

study offers a unique possibility to compare model fit between

easy and more complex tasks, because participants completed both

nine complex tasks and nine fast tasks, which were—beside the

differences in cognitive demands—very similar. Thus, we could

compare model fit (in statistical terms and graphically) between

fast and slow tasks and examine correlations with intelligence.

Interestingly, the fit of the diffusion model was as good for the

more complex as for the simpler tasks.

Furthermore, in our structural equation modeling analyses, a model

that included an additional “slow drift factor” (i.e., a factor on which

the drift rates of all slow tasks loaded) fitted data better than models

without this factor. Furthermore, this slow drift factor was closely

linked to general intelligence (r � .68). The explained variance (R2)

for drift rates from slow tasks was slightly higher than for drift from

fast tasks, due to the latent slow factor that explained 10% of their

variance. Thus, drift rates in the more complex tasks are closely

related to intelligence, which provides evidence for a good criterion

validity of drift rates in this kind of tasks.

The complex tasks that we employed in our study apparently

differed in their demands in terms of, for example, memory (e.g., high

demands in the “complex area task”) or reasoning (e.g., high demands

in the “word category task”). We did not manipulate or measure the

specific demands in our study. However, it is notable that the diffu-

sion model fit all of our complex tasks very well, thus, fit was

independent of the specific task demands. In line with this finding are

other recent studies that successfully applied sequential sampling

models to tasks with high demands on memory or reasoning. One of

them applied the diffusion model to a difficult recognition memory

task (Aschenbrenner et al., 2016) and another one applied the linear

ballistic accumulator model (Brown & Heathcote, 2008) to an induc-

tive reasoning task (Hawkins, Hayes, & Heit, 2016).

Advantages of the Diffusion Model

Notably, the slow drift factor and the general drift factor to-

gether accounted for an impressive 67% of the variance of general

Table 4

Percentage of Variance Explained by Latent Variables in

Manifest Indicators in Combined Drift-Intelligence Model

Task type g Factor Slow factor Domain factor Residual

Fast figural 20.03 3.70 76.27
Slow figural 20.03 10.37 3.70 65.90
Fast numeric 20.03 16.30 63.67
Slow numeric 20.03 10.37 16.30 53.29
Fast verbal 20.03 14.85 65.12
Slow verbal 20.03 10.37 14.85 54.75

Table 5

Fit Indices of Threshold Separation (a), Nondecision Time (t0), and RT Models

Model AIC BIC 	2 df CFI TLI RMSEA

a Model 1 5,594.45 5,597.26 485.09 188 .67 0.73 0.11
a Model 2 5,813.55 5,821.99 700.20 186 .43 0.53 0.15
a Model 3 5,597.19 5,608.44 481.84 185 .67 0.73 0.11
a Model 4 5,502.78 5,516.84 385.42 184 .78 0.82 0.09
t0 Model 1 5,610.96 5,613.77 316.75 188 .82 0.86 0.07
t0 Model 2 5,791.36 5,799.80 493.15 186 .58 0.65 0.12
t0 Model 3 5,607.52 5,618.77 307.31 185 .83 0.86 0.07
t0 Model 4 5,587.65 5,601.71 285.44 184 .86 0.88 0.07
Combined t0-Intelligence Model 6,457.09 6,488.03 390.73 241 .84 0.86 0.07
RT Model 1 4,887.05 4,889.87 801.89 188 .70 0.75 0.16
RT Model 2 5,076.96 5,085.40 987.80 186 .60 0.67 0.19
RT Model 3 4,794.67 4,805.92 703.50 185 .74 0.79 0.15
RT Model 4 4,760.91 4,774.97 667.75 184 .76 0.80 0.15

Note. Model 1 � g factor model; Model 2 � model of uncorrelated domains; Model 3 � hierarchical model of domains and a g factor; Model 4 � model
3 with additional method factor for all slow decision tasks; AIC � Akaike’s information criterion; BIC � Bayesian information criterion; CFI �

comparative fit index; TLI � Tucker-Lewis index; RMSEA � root mean squared error of approximation. The best-fitting model among the four alternative
models (Models 1 to 4) is always in bold.
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intelligence assessed by the BIS. It is striking that drift rate has

such a close relation to intelligence in the present study. In our

view, this strong relation—and the advantage of drift rate over

mean RT—can be explained by two advantages of the diffusion

model.

First, unlike mean RT, the drift provides a common metric that

combines both RT and accuracy (Spaniol et al., 2006). Thus, when

effects of cognitive ability spread over response latencies and

accuracy (i.e., higher ability is negatively related to RT and pos-

itively related to accuracy of a task), a common metric is required

that captures both effects. This is of special importance, when the

main impact of cognitive ability is for one group of participants on

speed and for others on accuracy.

Second, the diffusion model makes it possible to disentangle

different processes of information processing. Most important,

different—and conceptually independent—parameters map speed

of information processing, speed-accuracy settings, and nondeci-

sion times. For example, participants might be faster or slower,

because they are less or more cautious (i.e., error avoiding),

respectively. Participants might also differ in the time needed for

encoding or motoric responses (i.e., nondecision time parameter).

For example, it has been consistently found that older participants

are more cautious (i.e., higher threshold separations) and that they

have higher nondecision times than younger participants (see

Theisen, Lerche, von Krause, & Voss, 2019, for a meta-analysis).

This example shows that the validity of pure RT as a measure for

mental speed might be problematic (see Coyle, 2017, for a similar

argument). In diffusion modeling, the response style (threshold

separation) and nondecision time are removed analytically from

the index for mental speed (drift). Therefore, drift rate is a more

process-pure measure of mental speed than is mean RT, and is thus

a better predictor for intelligence.

Are Relationships With Intelligence Specific

for Drift Rate?

Importantly, in our structural equation analyses drift rates

showed a clear pattern of correlations with intelligence, distin-

guishing between domain-general and domain-specific aspects,

whereas the structural equation models of mean RT did not have a

satisfactory fit. Similarly, previous studies that used chronometric

tasks and varied the type of material (numeric, verbal, figural)

failed to find clear support for domain-specific factors (Levine et

al., 1987; Neubauer & Bucik, 1996). These studies examined

Table 6

Combined t0-Intelligence Model

Parameter Estimate SE 95% CI p Std. Est.

Loadings

Ft0 on t0 (each figural task) 1 0 0.540
Nt0 on t0 (each numeric task) 1 0 0.579
Vt0 on t0 (each verbal task) 1 0 0.614
st0 on t0 (each slow task) 1 0 0.275
gt0 on Ft0 1 0 1.016
gt0 on Nt0 1 0 0.948
gt0 on Vt0 1 0 0.894
gIQ on F_Mean/N_Mean/V_Mean 1 0 0.731
VIQ on V_Mean/NIQ on N_Mean/FIQ on F_Mean 1 0 0.682

Covariances

gt0 with gIQ �0.266 0.031 [�0.327, �0.206] �.001 �0.663
st0 with gIQ �0.023 0.025 [�0.071, 0.026] .358 �0.112
Ft0 with FIQ �0.047 0.027 [�0.101, 0.007] .086 �0.709
Nt0 with NIQ �0.103 0.030 [�0.161, �0.045] .001 �0.819
Vt0 with VIQ �0.113 0.032 [�0.176, �0.051] �.001 �0.604

Latent (residual) variances

gt0 0.301 0.021 [0.260, 0.343] �.001 1
gIQ 0.535 0.041 [0.455, 0.615] �.001 1
st0 0.076 0.019 [0.039, 0.113] �.001 1
Ft0 �0.010 0.022 [�0.052, 0.033] .657 �0.033
Nt0 0.034 0.023 [�0.012, 0.080] .146 0.101
Vt0 0.076 0.026 [0.025, 0.127] .003 0.201
FIQ/NIQ/VIQ 0.465 0.041 [0.385, 0.545] �.001 1

Residual indicator variances

t0 (each fast figural task) 0.708 0.029 [0.651, 0.765] �.001 0.708
t0 (each fast numeric task) 0.665 0.029 [0.609, 0.721] �.001 0.665
t0 (each fast verbal task) 0.623 0.028 [0.567, 0.678] �.001 0.623
t0 (each slow figural task) 0.633 0.030 [0.574, 0.691] �.001 0.633
t0 (each slow numeric task) 0.589 0.030 [0.529, 0.649] �.001 0.589
t0 (each slow verbal task) 0.547 0.031 [0.486, 0.608] �.001 0.547
F_Mean/N_Mean/V_Mean 0 0

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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behavioral variables which—as outlined in more detail in the

previous section—are confounded with other processes involved

in task execution such as speed-accuracy settings.

Apart from drift rate, for nondecision time, we also observed

relationships with intelligence (fitting the same models as for drift rate

resulted in a worse, but still acceptable, model fit). Higher scores in

the intelligence test were associated with shorter nondecision times.

Also in some previous studies, negative relationships between non-

decision time and intelligence have been reported (McKoon & Rat-

cliff, 2012; Schubert et al., 2015; Schulz-Zhecheva et al., 2016),

whereas in other studies no such relationship was found (e.g., Schmie-

dek et al., 2007; Schmitz & Wilhelm, 2016). Our study—which is

based on a large number of RT tasks and might thus allow more solid

inferences than previous studies—supports the view that there is also

a relationship between nondecision time and intelligence (even

though this relationship is smaller than for drift rate).

What does this relationship between intelligence and nondeci-

sion time indicate? It suggests that “intelligence” as measured by

classical paper-and-pencil based intelligence tests is more than

speed of information processing. In fact, as already mentioned

previously, not only mean RTs in response time tasks, but also

performance in paper-and-pencil-based intelligence tests like the

BIS can be influenced by different processes. In intelligence tests,

it is difficult to distinguish between the different processes that are

involved in task completion, such as decision settings (i.e.,

whether individuals prefer speed or accuracy), motoric elements

(e.g., how fast individuals write down their answers), encoding

processes, and speed of information processing.9 Thus, we suppose

that nondecision time is related to the BIS because also the

paper-and-pencil-based test measures to a certain extent nondeci-

sional components. The nondecision time parameter of the diffu-

sion model includes time needed for encoding and motoric pro-

cesses. We hypothesize that the correlations with intelligence are

probably mainly based on encoding processes rather than on

motoric processes. It seems implausible that for motoric compo-

nents a model with not only a general factor, but also domain-

specific factors and a complex task factor emerges. In line with this

argument, when the Jensen box is used—which allows a separation

of the time needed for decision making (termed RT) from the

time needed for finger movement (movement time)—RTs clearly

increase with increasing task complexity, whereas movement

times do not (Jensen, 1987, 2006; see also the differential–

developmental model by Coyle, 2017). It is, however, highly

plausible that encoding processes differ between domains. Further-

more, the complex task factor could be attributed to the fact that

the stimuli in the more complex tasks consisted of more elements

than the stimuli in the fast tasks (e.g., several numbers distributed

over the screen in the mean value computation task in contrast to

a single number presented in the center of the screen in the number

discrimination task). Accordingly, more complex tasks pose higher

demands on encoding than easier tasks. Importantly, by means of

diffusion modeling, we get a purer measure of speed of informa-

tion processing with the time needed for encoding and motoric

components partialled out.

Limitations and Directions for Future Research

We want to make clear that we do not claim that mental speed

is causally related to intelligence. In fact, a recent study based on

an experimental approach did not find support for a causal link

between mental speed (as measured by the drift rate of the diffu-

sion model) and intelligence (Schubert, Hagemann, Frischkorn, &

Herpertz, 2018). Rather, the authors suggest that structural prop-

erties of the brain may give rise to the association between mental

speed and intelligence. The aim of our project was not to make any

inferences regarding the question of causality.

Diffusion modeling allows for an examination of interesting

research questions surrounding the g factor and other intelligence-

related phenomena. One of these questions, which we addressed in

our study, is the examination of whether there are domain-specific

mental speeds. However, there are certainly further interesting

research questions that could be examined by means of diffusion

modeling in the future, for example the factor differentiation

finding (e.g., Detterman & Daniel, 1989), which is regarded as one

main feature of g (Kovacs & Conway, 2016).

Apart from the examination of further intelligence-related phe-

nomena, it would also be important to explore relationships be-

tween drift rate and external criteria (e.g., grades at school/univer-

sity, or job performance). Presently, we have no data on the

predictive validity of drift rates for success in life; however, we

think that future studies investigating this issue are important.

Because our analyses revealed that in particular drift rate in more

complex RT tasks showed strong relationships with intelligence,

future research might focus on these more complex tasks.

In future studies, one might also examine whether the results

that we observed in our study are moderated by the number of

trials used in the RT tasks. Several diffusion model studies found

that drift rate grows over time (Dutilh et al., 2009; Lerche & Voss,

2017; Petrov, Van Horn, & Ratcliff, 2011). Possibly, the 100 trials

per task used in our study still give room for learning effects and

relationships with intelligence might be even stronger or possibly

smaller if higher trial numbers were employed, so that more trials

could be discarded as practice trials.10 A higher trial number would

also increase reliability of estimates for drift (Lerche & Voss,

2017; Lerche et al., 2017). Further, in future studies we advise to

use higher numbers of participants. The sample size of our study

was relatively small for the application of structural equation

modeling, leading to the use of very parsimonious parallel mea-

surement models to ensure model convergence.

One aspect that is common to both the assessment of intelli-

gence with the BIS and our computerized RT tasks (both “fast”

and “slow” tasks) is the focus on speed. Chuderski (2013) showed

that this focus on speed can have an important impact. He found

that working memory capacity and fluid intelligence are isomor-

phic constructs when both are measured under time pressure. If, on

the other hand, fluid intelligence is measured with no real time

pressure, the relationship with working memory capacity de-

creases. The findings from the study by Chuderski (2013) suggest

9 One notable exception is the explanatory model for performance in the
Raven matrices by Carpenter, Just, and Shell (1990), in which different
processes (incremental encoding, rule induction, goal management) were
identified that contributed to the solution of the matrices. However, its
application remains limited and its focus on Raven matrices forbids the
generalization to other types of intelligence tests.

10 Notably, our additional analyses in which we estimated parameters
after exclusion of a larger number of practice trials did not result in a
different pattern of results.
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that relationships between drift rate in speeded RT tasks and

intelligence measured under unspeeded conditions will probably

be lower than the relationships we observed in our study which

focused on speed. However, the difference in relationships be-

tween drift rate and speeded versus unspeeded intelligence tests

would possibly be smaller than the differences between working

memory capacity and speeded versus unspeeded fluid intelligence

as measured by Chuderski (2013), because the isomorphic relation

between working memory and fluid intelligence both assessed

under speeded conditions might be partly attributable to nondeci-

sion time (e.g., speed of encoding). If the diffusion model is used,

such influences can be “partialled out” so that we expect more

similar relationships between speeded versus unspeeded intelli-

gence testing and our performance measure (drift rate). It would be

interesting to examine the size of the relationship between drift

rate and unspeeded versus speeded intelligence testing in future

research and compare it to the effect sizes found by Chuderski

(2013).

One final aspect that we want to point out is that our findings do

not lend support to an application of the diffusion model to all

kinds of more complex, slower RT tasks. In tasks that require

significantly more time than the approximately three seconds

observed in our study, it becomes more likely that central assump-

tions of the diffusion model are seriously violated. In future studies

it would be interesting to analyze tasks with substantially longer

RTs (e.g., a matrices task with a mean RT of more than a minute;

Partchev & De Boeck, 2012). Probably more important than the

mean RT of a task are characteristics of the specific task. Even fast

tasks can be poor candidates for diffusion modeling (e.g., because

no continuous information uptake takes place). At the same time,

even highly complex tasks that consist of many subtasks might be

compatible with the diffusion model. In our study, the diffusion

model provided a good fit for all employed tasks, and the rela-

tionships with intelligence speak in favor of the validity of the

parameter drift rate. These tasks are interesting candidates for

future diffusion model studies. If, however, researchers are inter-

ested in applying the diffusion model to any new tasks, these tasks

(whether fast or slow) need to be carefully tested in terms of model

fit and—even better—additionally with validation studies.

Conclusions

Prior research revealed relationships between general intelli-

gence and the drift parameter of the diffusion model. This pattern

proved to be robust in our structural equation modeling of a set of

18 binary RT tasks. Additionally, we expanded this research

showing that there are content-domain specific (verbal, numeric,

figural) aspects of cognitive speed, which are related to the re-

spective components of a standard intelligence test. Moreover,

slower, more complex tasks also proved to be closely linked to

intelligence. Finally, we supply several more complex binary RT

tasks that were fit well by the diffusion model and could thus be

employed in future research projects.

Context of the Research

This research project is a cooperation of researchers from the

departments of Quantitative Research Methods (VL, MVK, and

AV) and Personality Research (GTF, ALS, and DH) of the Psy-

chological Institute of Ruprecht-Karls-Universität Heidelberg. In

this project, we could nicely combine the main expertise of the two

labs, that is, diffusion modeling and intelligence research. In the

preceding years, VL and AV have been contacted repeatedly by

researchers who asked whether they could use the diffusion model

also for more complex RT tasks. VL and AV conducted studies

that provide first support for an extension to more complex tasks.

Thereby arose the idea for a larger project, which includes numer-

ous both fast and more complex RT tasks. GTF, ALS, and DH

were always wondering whether there are domain-specific speeds

of information processing but—because they usually additionally

collect EEG data—they so far had refrained from running a study

with such a large number of different RT tasks (N � 18). MVK is

a PhD student who joined the team at the beginning of the

recruitment for the study and has taken over an important role in

the running of the study and the data analyses. He is currently

examining the data further, focusing on age effects. One future

research project will be the examination of relationships between

drift rate in more complex tasks and external measures of perfor-

mance (e.g., job performance).
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Appendix A

Task Descriptives

(Appendices continue)

Figure A1. Boxplots of mean response times for all fast tasks. The first

letter indicates the task complexity (F � fast); the second letter denotes the

domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief

description of all tasks. The boxplots display the first, second and third

quartile. Outliers are values greater than 1.5 times the interquartile range

from either end of the box.

Figure A2. Boxplots of mean response times for all slow tasks. The first

letter indicates the task complexity (S � slow); the second letter denotes

the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief

description of all tasks. The boxplots display the first, second and third

quartile. Outliers are values greater than 1.5 times the interquartile range

from either end of the box.
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Appendix B

Diffusion Model Fit

Figure B1. Model fit of all fast RT tasks. The boxplots show the maximum likelihood statistic (sum of

logarithmized densities). Lower values indicate worse model fit. The horizontal line is the 1% percentile of fit

values from 1,000 simulated data sets. For observed data, the percentage of fits that are worse than this critical

value is also given.

(Appendices continue)
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Figure B2. Model fit of all slow RT tasks. The boxplots show the maximum likelihood statistic (sum of

logarithmized densities). Lower values indicate worse model fit. The horizontal line is the 1% percentile of fit

values from 1,000 simulated data sets. For observed data, the percentage of fits that are worse than this critical

value is also given.

(Appendices continue)
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Figure B3. Model fit of the fast RT tasks based on the comparison of statistics (accuracy rate, first, second, and

third RT quartile) of observed data and models’ predictions. Each point represents one participant in one task.

The diagonals indicate perfect model fit. One data point exceeding the scales of the third RT quartile plot was

omitted.

(Appendices continue)
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Figure B4. Model fit of the slow RT tasks based on the comparison of statistics (accuracy rate, first, second,

and third RT quartile) of observed data and models’ predictions. Each point represents one participant in one

task. The diagonals indicate perfect model fit. Two data points exceeding the scales of the third RT quartile plot

were omitted.
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Appendix C

Structural Equation Models

Figure C1. Drift Model 1. The first letter of the task indices denotes the type of task (F � fast, S � slow); the second

letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks.

Standardized loadings reported. Residuals are omitted from the plot for simplicity. g� � general drift rate factor.
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Figure C2. Drift Model 2. The first letter of the task indices denotes the type of task (F � fast, S � slow); the

second letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief description

of all tasks. Standardized loadings reported. Residuals are omitted from the plot for simplicity. V� � verbal drift

rate factor; N� � numeric drift rate factor; F� � figural drift rate factor.
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Figure C3. Drift Model 3. The first letter of the task indices denotes the type of task (F � fast, S � slow); the second

letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks.

Standardized loadings reported. Residuals are omitted from the plot for simplicity. g� � general drift rate factor; V� �

verbal drift rate factor; N� � numeric drift rate factor; Fv � figural drift rate factor. As the loadings of the drift domain

factors are standardized on the different freely estimated variances of the domain factors, their standardized values

differ although the unstandardized loadings are all fixed to one.
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Figure C4. Drift Model 4. The first letter of the task indices denotes the type of task (F � fast, S � slow); the

second letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for a brief description

of all tasks. Standardized loadings reported. Residuals are omitted from the plot for simplicity. g� � general drift

rate factor; V� � verbal drift rate factor; N� � numeric drift rate factor; F� � figural drift rate factor; s� �

method factor for drift rate in slow tasks.
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Figure C5. Intelligence Model. Scale means are used as indicators for verbal (VIQ), numeric (NIQ), and figural

(FIQ) intelligence. gIQ � general intelligence. Completely standardized loadings are reported. Indicator

residuals are fixed to zero, domain factors serve as quasi-residuals, see Method.
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Figure C6. Drift Model 4 (freely estimated). The first letter of the task indices denotes the type of task (F �

fast, S � slow); the second letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for

a brief description of all tasks. Standardized loadings reported. Residuals are omitted from the plot for simplicity.

g� � general drift rate factor; V� � verbal drift rate factor; N� � numeric drift rate factor; F� � figural drift

rate factor; s� � method factor for drift rate in slow tasks.

(Appendices continue)
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Figure C7. Combined Drift-Intelligence model (freely estimated). The first letter of the task indices denotes the type of

task (F � fast, S � slow); the second letter indicates the domain (N � numeric, V � verbal, F � figural). See Table 1 for

a brief description of all tasks. Standardized loadings reported. Residuals are omitted from the plot for simplicity. The latent

correlations between the drift domains and intelligence domains are between the drift domain residuals and the (quasi-

residual) intelligence domain factors (see Method). g� � general drift rate factor; V� � verbal drift rate factor; N� �

numeric drift rate factor; F� � figural drift rate factor; s� � method factor for drift rate in slow tasks. Scale means are used

as single indicators for verbal (VIQ), numeric (NIQ), and figural (FIQ) intelligence. gIQ � general intelligence.
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Appendix D

Descriptives of RT (in ms)

Task M SD Minimum Maximum

FF1 560 96 398 846
FF2 620 176 372 1,278
FF3 551 96 393 877
FN1 527 78 395 758
FN2 590 107 409 947
FN3 670 135 467 1,168
FV1 792 164 542 1,350
FV2 781 162 513 1,397
FV3 737 124 530 1,161
SF1 3,234 1,091 1,517 7,354
SF2 4,189 2,009 1,355 10,366
SF3 2,856 906 1,021 5,171
SN1 4,168 1,904 1,004 11,074
SN2 2,761 1,098 1,014 6,670
SN3 2,805 885 1,571 5,780
SV1 2,380 709 1,145 4,516
SV2 3,030 1,002 1,654 6,599
SV3 3,600 895 1,935 6,808

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain
(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. SD � standard deviation.

Appendix E

Descriptives of Accuracy Rate (in %)

Task M SD Minimum Maximum

FF1 93.65 2.88 84.54 97.00
FF2 98.68 1.60 93.00 100.00
FF3 97.71 1.90 91.58 100.00
FN1 98.03 2.26 89.00 100.00
FN2 97.68 2.03 91.00 100.00
FN3 97.17 2.74 88.00 100.00
FV1 96.22 3.76 79.55 100.00
FV2 95.11 3.97 78.35 100.00
FV3 97.18 2.41 87.00 100.00
SF1 95.53 2.91 87.00 100.00
SF2 86.69 6.50 69.00 100.00
SF3 80.47 9.10 53.06 97.00
SN1 90.76 8.11 61.00 100.00
SN2 91.16 5.48 72.00 98.00
SN3 93.51 3.71 82.00 100.00
SV1 96.36 2.39 88.00 100.00
SV2 95.11 2.61 85.86 99.00
SV3 94.24 4.77 80.21 100.00

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain
(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. SD � standard deviation.
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Appendix F

Descriptives of Drift Rate

Task M SD Minimum Maximum

FF1 3.16 0.73 1.79 6.42
FF2 3.26 1.02 1.43 7.16
FF3 4.27 0.96 2.38 8.01
FN1 4.97 1.82 2.41 16.50
FN2 3.95 0.97 2.12 8.52
FN3 3.97 1.39 2.00 12.23
FV1 2.81 0.88 1.37 6.25
FV2 2.68 0.78 1.12 4.83
FV3 3.21 0.89 1.54 6.61
SF1 0.94 0.20 0.52 1.61
SF2 0.58 0.17 0.17 0.97
SF3 0.50 0.18 0.09 1.02
SN1 0.70 0.22 0.15 1.30
SN2 0.80 0.25 0.39 1.48
SN3 1.08 0.33 0.57 2.15
SV1 1.17 0.20 0.64 1.79
SV2 1.03 0.29 0.54 1.99
SV3 0.90 0.23 0.39 1.63

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain
(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. SD � standard deviation.

Appendix G

Descriptives of Threshold Separation

Task M SD Minimum Maximum

FF1 0.91 0.21 0.46 1.71
FF2 1.53 0.53 0.66 3.61
FF3 1.16 0.61 0.63 5.52
FN1 1.47 1.31 0.44 10.00
FN2 1.20 0.51 0.62 3.90
FN3 1.36 1.03 0.50 10.00
FV1 1.52 0.73 0.53 5.76
FV2 1.33 0.44 0.55 2.62
FV3 1.35 0.55 0.66 5.61
SF1 3.75 1.44 1.73 10.00
SF2 3.71 1.37 1.45 8.05
SF3 3.06 0.81 1.36 5.10
SN1 4.00 1.53 1.21 10.00
SN2 3.25 0.92 1.13 6.35
SN3 2.85 0.92 1.52 6.79
SV1 3.08 0.84 1.71 7.07
SV2 3.19 0.87 1.35 5.14
SV3 3.69 1.23 1.75 10.00

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain
(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. SD � standard deviation.
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Appendix H

Descriptives of Nondecision Time (in ms)

Task M SD Minimum Maximum

FF1 423 65 273 587
FF2 359 66 242 592
FF3 411 56 236 555
FN1 388 67 135 539
FN2 427 57 313 678
FN3 499 96 192 789
FV1 513 76 226 850
FV2 527 74 367 749
FV3 520 65 333 732
SF1 1,286 495 137 2,969
SF2 1,480 918 63 5,874
SF3 913 397 230 2,657
SN1 1,628 1,207 0 5,794
SN2 844 309 36 2,097
SN3 1,501 422 628 2,983
SV1 1,092 348 366 2,525
SV2 1,448 420 910 3,746
SV3 1,635 413 68 3,280

Note. The first letter indicates the task complexity (F � fast, S � slow); the second letter denotes the domain
(N � numeric, V � verbal, F � figural). See Table 1 for a brief description of all tasks. SD � standard deviation.

Appendix I

Descriptives of BIS Domain Scale Scores

Scale M SD Minimum Maximum

F_Mean 96.35 7.74 76.50 114.25
N_Mean 99.94 8.38 80.50 120.75
V_Mean 102.78 7.83 79.75 121.50

Note. V � verbal; N � numeric; F � figural; SD � standard deviation.

Appendix J

Drift Model 1 (g Factor)

Parameter Estimate SE 95% CI p Std. Est.

Loadings

g� on � (each task) 1 0 0.509

Latent (residual) variances

g� 0.259 0.020 [0.219, 0.298] �.001 1

Residual indicator variances

� (each task) 0.741 0.020 [0.702, 0.781] �.001 0.741

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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Appendix K

Drift Model 2 (Uncorrelated Domains)

Parameter Estimate SE 95% CI p Std. Est.

Loadings

F� on � (each figural task) 1 0 0.506
N� on � (each numeric task) 1 0 0.610
V� on � (each verbal task) 1 0 0.615

Latent (residual) variances

F� 0.256 0.035 [0.188, 0.325] �.001 1
N� 0.371 0.033 [0.308, 0.435] �.001 1
V� 0.378 0.033 [0.314, 0.442] �.001 1

Residual indicator variances

� (each figural task) 0.744 0.035 [0.675, 0.812] �.001 0.744
� (each numeric task) 0.629 0.033 [0.565, 0.692] �.001 0.629
� (each verbal task) 0.622 0.033 [0.558, 0.686] �.001 0.622

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.

Appendix L

Drift Model 3 (Hierarchical Model of Domains and g Factor)

Parameter Estimate SE 95% CI p Std. Est.

Loadings

F� on � (each figural task) 1 0 0.514
N� on � (each numeric task) 1 0 0.605
V� on � (each verbal task) 1 0 0.617
g� on F� 1 0 0.922
g� on N� 1 0 0.784
g� on V� 1 0 0.769

Latent (residual) variances

g� 0.225 0.024 [0.178, 0.271] �.001 1
F� 0.039 0.029 [�0.017, 0.096] .171 0.149
N� 0.141 0.033 [0.077, 0.206] �.001 0.386
V� 0.156 0.032 [0.092, 0.219] �.001 0.409

Residual indicator variances

� (each figural task) 0.736 0.032 [0.672, 0.800] �.001 0.736
� (each numeric task) 0.634 0.031 [0.573, 0.696] �.001 0.634
� (each verbal task) 0.620 0.031 [0.559, 0.680] �.001 0.620

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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Appendix M

Drift Model 4 (Hierarchical Model of Domains and g Factor and Slow Method Factor)

Parameter Estimate SE 95% CI p Std. Est.

Loadings

s� on � (each slow task) 1 0 0.308
F� on � (each figural task) 1 0 0.486
N� on � (each numeric task) 1 0 0.600
V� on � (each verbal task) 1 0 0.598
g� on F� 1 0 0.926
g� on N� 1 0 0.750
g� on V� 1 0 0.751

Latent (residual) variances

g� 0.202 0.025 [0.154, 0.251] �.001 1
s� 0.095 0.022 [0.051, 0.138] �.001 1
F� 0.034 0.028 [�0.022, 0.089] .235 0.142
N� 0.158 0.033 [0.094, 0.222] �.001 0.438
V� 0.156 0.031 [0.095, 0.217] �.001 0.435

Residual indicator variances

� (each fast figural task) 0.764 0.034 [0.698, 0.830] �.001 0.764
� (each fast numeric task) 0.640 0.031 [0.579, 0.701] �.001 0.640
� (each fast verbal task) 0.642 0.032 [0.580, 0.704] �.001 0.642
� (each slow figural task) 0.670 0.034 [0.602, 0.737] �.001 0.670
� (each slow numeric task) 0.545 0.034 [0.479, 0.612] �.001 0.545
� (each slow verbal task) 0.547 0.032 [0.485, 0.610] �.001 0.547

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.

Appendix N

Intelligence Model

Parameter Estimate SE 95% CI p Std. Est.

Loadings

gIQ on F_Mean/N_Mean/V_Mean 1 0 0.736
VIQ on V_Mean/NIQ on N_Mean/FIQ on F_Mean 1 0 0.677

Latent (residual) variances

gIQ 0.542 0.040 [0.465, 0.620] �.001 1
FIQ/NIQ/VIQ 0.458 0.040 [0.380, 0.535] �.001 1
V_Mean/N_Mean/F_Mean 0 0

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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Appendix O

Drift Model 4 (Hierarchical Model of Domains and g Factor and Slow Method Factor), Freely Estimated

Parameter Estimate SE 95% CI p Std. Est.

Loadings

F� on v.FF1 1 0 0.365
on �.FF2 1.213 0.685 [�0.128, 2.555] .076 0.443
on �.FF3 1.996 1.266 [�0.486, 4.477] .115 0.729
on �.SF1 0.793 0.624 [�0.430, 2.017] .204 0.290
on �.SF2 0.974 0.532 [�0.067, 2.016] .067 0.356
on �.SF3 1.364 0.802 [�0.207, 2.935] .089 0.498

N� on �.FN1 1 0 0.610
on �.FN2 1.035 0.144 [0.753, 1.318] �.001 0.632
on �.FN3 0.802 0.158 [0.492, 1.112] �.001 0.489
on �.SN1 0.673 0.188 [0.304, 1.042] �.001 0.411
on �.SN2 1.172 0.203 [0.774, 1.570] �.001 0.715
on �.SN3 1.206 0.217 [0.780, 1.632] �.001 0.736

V� on �.FV1 1 0 0.690
on �.FV2 1.045 0.126 [0.799, 1.291] �.001 0.721
on �.FV3 0.942 0.135 [0.678, 1.207] �.001 0.650
on �.SV1 0.828 0.123 [0.586, 1.070] �.001 0.571
on �.SV2 0.628 0.130 [0.372, 0.883] �.001 0.433
on �.SV3 0.741 0.136 [0.474, 1.008] �.001 0.511

s� on �.SF1 1 0 0.378
on �.SF2 1.339 1.182 [�0.978, 3.656] .257 0.507
on �.SF3 1.080 0.997 [�0.875, 3.034] .279 0.408
on �.SN1 1.543 1.299 [�1.002, 4.088] .235 0.584
on �.SN2 0.587 0.673 [�0.733, 1.907] .383 0.222
on �.SN3 0.579 0.744 [�0.879, 2.038] .436 0.219
on �.SV1 0.749 0.501 [�0.233, 1.731] .135 0.283
on �.SV2 0.895 0.653 [�0.385, 2.175] .170 0.339
on �.SV3 1.099 0.654 [�0.182, 2.381] .093 0.416

g� on F� 1 0 0.748
g� on N� 1.860 1.370 [�0.825, 4.545] .175 0.833
g� on V� 1.768 1.188 [�0.560, 4.096] .137 0.700

Latent (residual) variances

g� 0.075 0.100 [�0.121, 0.270] .455 1
s� 0.143 0.214 [�0.276, 0.562] .503 1
F� 0.059 0.050 [�0.038, 0.156] .235 0.441
N� 0.114 0.071 [�0.026, 0.254] .110 0.307
V� 0.243 0.082 [0.081, 0.404] .003 0.510

Residual indicator variances

�.FF1 0.867 0.142 [0.589, 1.144] �.001 0.867
�.FF2 0.804 0.085 [0.637, 0.970] �.001 0.804
�.FF3 0.469 0.170 [0.136, 0.802] .006 0.469
�.FN1 0.628 0.090 [0.451, 0.804] �.001 0.628
�.FN2 0.601 0.094 [0.418, 0.784] �.001 0.601
�.FN3 0.760 0.074 [0.615, 0.906] �.001 0.760
�.FV1 0.524 0.083 [0.361, 0.687] �.001 0.524
�.FV2 0.480 0.086 [0.312, 0.648] �.001 0.480
�.FV3 0.577 0.082 [0.416, 0.738] �.001 0.577
�.SF1 0.773 0.158 [0.463, 1.083] �.001 0.773
�.SF2 0.617 0.096 [0.428, 0.806] �.001 0.617
�.SF3 0.585 0.090 [0.408, 0.762] �.001 0.585
�.SN1 0.491 0.098 [0.298, 0.684] �.001 0.491
�.SN2 0.439 0.071 [0.300, 0.578] �.001 0.439
�.SN3 0.411 0.073 [0.268, 0.553] �.001 0.411
�.SV1 0.594 0.079 [0.440, 0.748] �.001 0.594
�.SV2 0.698 0.082 [0.538, 0.858] �.001 0.698
�.SV3 0.566 0.094 [0.381, 0.750] �.001 0.566

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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Appendix P

Combined Drift-Intelligence Model, Freely Estimated

Parameter Estimate SE 95% CI p Std. Est.

Loadings

F� on �.FF1 1 0 0.392
on �.FF2 1.180 0.463
on �.FF3 1.630 0.639
on �.SF1 0.758 0.297
on �.SF2 1.215 0.477
on �.SF3 1.554 0.610

N� on �.FN1 1 0 0.526
on �.FN2 1.011 0.187 [0.645, 1.377] �.001 0.532
on �.FN3 0.756 0.181 [0.401, 1.112] �.001 0.398
on �.SN1 0.860 0.202 [0.464, 1.257] �.001 0.453
on �.SN2 1.472 0.261 [0.960, 1.985] �.001 0.775
on �.SN3 1.572 0.252 [1.078, 2.066] �.001 0.827

V� on �.FV1 1 0 0.679
on �.FV2 1.043 0.123 [0.803, 1.284] �.001 0.709
on �.FV3 0.970 0.131 [0.714, 1.226] �.001 0.659
on �.SV1 0.846 0.118 [0.615, 1.076] �.001 0.575
on �.SV2 0.679 0.117 [0.450, 0.907] �.001 0.461
on �.SV3 0.740 0.120 [0.505, 0.976] �.001 0.503

s� on �.SF1 1 0 0.564
on �.SF2 0.537 0.230 [0.087, 0.988] .019 0.303
on �.SF3 0.399 0.191 [0.025, 0.773] .036 0.225
on �.SN1 0.641 0.219 [0.212, 1.070] .003 0.362
on �.SN2 0.469 0.236 [0.008, 0.931] .046 0.265
on �.SN3 0.151 0.188 [�0.218, 0.520] .421 0.085
on �.SV1 0.392 0.168 [0.063, 0.721] .020 0.221
on �.SV2 0.717 0.214 [0.297, 1.137] .001 0.404
on �.SV3 0.747 0.182 [0.391, 1.104] �.001 0.421

g� on F� 1 0 0.885
g� on N� 1.091 0.720
g� on V� 1.191 0.608
gIQ on F_Mean 1 0 0.808
gIQ on N_Mean 0.858 0.033 [0.794, 0.923] �.001 0.693
gIQ on V_Mean 0.833 0.673
FIQ on F_Mean 1 0 0.590
NIQ on N_Mean 1 0 0.721
VIQ on V_Mean 1 0 0.740

Covariances

g� with gIQ 0.117 0.418
s� with gIQ 0.336 0.062 [0.214, 0.458] �.001 0.739
F� with FIQ 0.060 0.035 [�0.008, 0.128] .082 0.561
N� with NIQ 0.237 0.038 [0.162, 0.312] �.001 0.899
V� with VIQ 0.208 0.046 [0.119, 0.298] �.001 0.522

Latent (residual) variances

g� 0.121 1
gIQ 0.652 0.038 [0.578, 0.727] �.001 1
s� 0.318 0.127 [0.068, 0.567] .013 1
F� 0.033 0.017 [0.000, 0.067] .053 0.217
N� 0.134 0.036 [0.000, 0.067] �.001 0.482
V� 0.291 0.080 [0.134, 0.448] �.001 0.630
FIQ 0.348 0.038 [0.273, 0.422] �.001 1
NIQ 0.519 0.059 [0.404, 0.634] �.001 1
VIQ 0.548 0.052 [0.446, 0.649] �.001 1

(Appendices continue)
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Appendix P (continued)

Parameter Estimate SE 95% CI p Std. Est.

Residual indicator variances

�.FF1 0.846 0.846
�.FF2 0.786 0.067 [0.655, 0.916] �.001 0.786
�.FF3 0.591 0.097 [0.402, 0.780] �.001 0.591
�.FN1 0.723 0.085 [0.557, 0.890] �.001 0.723
�.FN2 0.717 0.075 [0.571, 0.863] �.001 0.717
�.FN3 0.842 0.064 [0.716, 0.967] �.001 0.842
�.FV1 0.538 0.080 [0.382, 0.695] �.001 0.538
�.FV2 0.497 0.077 [0.346, 0.649] �.001 0.497
�.FV3 0.566 0.079 [0.412, 0.720] �.001 0.566
�.SF1 0.594 0.102 [0.393, 0.794] �.001 0.594
�.SF2 0.681 0.076 [0.531, 0.831] �.001 0.681
�.SF3 0.578 0.061 [0.458, 0.697] �.001 0.578
�.SN1 0.664 0.078 [0.512, 0.817] �.001 0.664
�.SN2 0.330 0.054 [0.225, 0.435] �.001 0.330
�.SN3 0.309 0.051 [0.209, 0.409] �.001 0.309
�.SV1 0.621 0.076 [0.471, 0.771] �.001 0.621
�.SV2 0.624 0.080 [0.466, 0.782] �.001 0.624
�.SV3 0.570 0.082 [0.409, 0.731] �.001 0.570
F_Mean/N_Mean/V_Mean 0 0

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
Caveat: unreliable estimates with some missing standard errors.

Appendix Q

Nondecision Time Model 4 (Hierarchical Model of Domains and g Factor and Slow Method Factor)

Parameter Estimate SE 95% CI p Std. Est.

Loadings

Ft0 on t0 (each figural task) 1 0 0.539
Nt0 on t0 (each numeric task) 1 0 0.582
Vt0 on t0 (each verbal task) 1 0 0.613
st0 on t0 (each slow task) 1 0 0.273
gt0 on Ft0 1 0 1.020
gt0 on Nt0 1 0 0.944
gt0 on Vt0 1 0 0.897

Latent (residual) variances

gt0 0.302 0.021 [0.261, 0.344] �.001 1
st0 0.075 0.019 [0.038, 0.112] �.001 1
Ft0 �0.012 0.021 [�0.054, 0.031] .592 �0.040
Nt0 0.037 0.023 [�0.009, 0.083] .117 0.108
Vt0 0.074 0.026 [0.023, 0.124] .004 0.196

Residual indicator variances

t0 (each fast figural task) 0.709 0.029 [0.652, 0.767] �.001 0.709
t0 (each fast numeric task) 0.661 0.029 [0.605, 0.717] �.001 0.661
t0 (each fast verbal task) 0.624 0.028 [0.568, 0.680] �.001 0.624
t0 (each slow figural task) 0.635 0.030 [0.575, 0.694] �.001 0.635
t0 (each slow numeric task) 0.587 0.030 [0.527, 0.646] �.001 0.587
t0 (each slow verbal task) 0.550 0.031 [0.488, 0.611] �.001 0.550

Note. Missing p values indicate fixed parameters. The standardized solution is completely standardized.
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