
Intelligence 91 (2022) 101633 

  

Contents lists available at ScienceDirect 

       
  

  

      

Intelligence 

ELSEVIER journal homepage: www.elsevier.com/locate/intell 

General cognitive ability and pericortical contrast hae 

Stefan Drakulich®’, Arseni Sitartchouk °, Emily Olafson «Reda Sarhani ”, 

Anne-Charlotte Thiffault”, Mallar Chakravarty *°, Alan C. Evans*, Sherif Karama ®”*°" 

* Montreal Neurological Institute, McGill University, Montreal, Canada 

> Department of Psychiatry, McGill University, Montreal, Canada 

© Douglas Mental Health University Institute, Montreal, Canada 

4 Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA 

  

ARTICLE INFO ABSTRACT 

    
Keywords: 

Brain development 

Gray-white contrast 

Cortical contrast 

Childhood 

Individual differences in general cognitive ability have been associated with various brain structure metrics. A 

relatively novel metric referred to as pericortical Gray-White Contrast (GWC) describes the sharpness of the 

pericortical gray-white boundary. GWC, which is hypothesized to be at least partly influenced by the degree to 

which myelinated axons invade the lower layers of cortex, is believed to be significantly associated with the 

Adolescence dynamics of signal transmission across the brain and hence, with cognitive ability. The current work explores the 

Cognitive ability association between GWC and IQ across the surface of the cortex. Subject data were retrieved from the NIH MRI 

10 Study of Normal Brain Development (Evans & Brain Development Cooperative, 2006). 376 subjects with a total 

of 742 scans were included in the longitudinal analyses. Mixed-effects regression analyses were used to map the 

relation between cortical contrast and each of full-scale, performance, and verbal IQ derived from the Wechsler 

Abbreviated Scale of Intelligence, while covarying for scanner, sex, and age effects. Significant associations were 

shown with FSIQ, PIQ, but not VIQ. We discuss the interpretation of these results and how they may relate to 

previously published results on structural cortical associations. 

  

1. Introduction 

General cognitive ability has been associated with various aspects of 

brain structure including features of both gray and white matter. 

Cortical thickness and volume, for instance, have been shown to corre- 

late with general cognitive ability across broad regions of cortex (Colom 

et al., 2009; Deary, Penke, & Johnson, 2010; Haier et al., 2009; Karama 

et al., 2009; Karama et al., 2011; Panizzon et al., 2009; Shaw et al., 

2006). Further, the size and integrity of major white-matter bundles that 

link these broad cortical areas, has been shown to relate to measures of 

general cognitive ability (Chiang et al., 2009; Ganjavi et al., 2011; 

Luders, Narr, Thompson, & Toga, 2009; Penke et al., 2012; Tamnes 

et al., 2010; Yu et al., 2008). Together, these findings highlight the 

importance of regional cortical involvement and of white matter con- 

nectivity for intelligence differences. In keeping with this, and using T1- 

weighted/T2-weighted ratio for myelin mapping, Grydeland, Walhovd, 

Tamnes, Westlye, and Fjell (2013) have shown that intracortical mye- 

lination develops until the late thirties, is followed by 20 or so years of 

stability before declining from the late fifties onwards. Importantly, they 

found that intracortical myelin is positively associated with intra- 

individual performance variability in a speeded performance task and 

concluded that the stability of cognitive ability is, to some degree, 

meaningfully associated with intracortical myelination. 

To complement the above-mentioned brain metrics, a gray/white 

matter contrast (GWC) metric has recently been developed (Salat et al., 

2009; Olafson et al., 2020). It can be defined as the ratio of the intensity 

of white matter over gray matter on Tl-weighted MRI images (Draku- 

lich, Thiffault, & Olafson, 2021), While the neurobiological foundation 

of GWC is not fully understood, evidence suggests that GWC is signifi- 

cantly influenced by myelination characteristics surrounding the 

innermost layers of the cortex (Dale, Fischl, & Sereno, 1999; Grydeland 

et al., 2013; Norbom et al., 2019; Patel et al., 2020; Rowley, Bazin, & 

Tardif, 2015; Vidal-Pineiro et al., 2016). Prior works modeling similar 

proxy measures of myelin at the pericortical boundary found a general 

trend of decreasing pericortical contrast, which progresses in a posterior 

to anterior fashion (Bartzokis, 2004; Grydeland et al., 2019; Norbom 

et al., 2020; Westlye et al., 2010). In Drakulich et al. (2021), our results 

reflected a posterior to anterior decline in GWC through childhood and 
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adolescence. In an adult population, Vidal-Pineiro et al. (2016) showed 

an association between symptoms of aging and decreased GWC in the 

frontal lobes, providing further support to examine GWC in relation to 

cognitive ability. 

Since pericortical myelination is known to influence neuronal con- 

duction and signal-to-noise ratio in cortico-cortical connectivity (Kan- 

del, Schwartz, & Jessell, 2000), and because of interindividual 

variability in GWC, GWC has been proposed as a potential marker of 

cognitive ability differences. In keeping with this, Lewis et al. (2018) 

showed that GWC is a good age predictor and that the GWC-based re- 

sidual of the age predictions is positively associated with IQ. Here, we 

expand on these results by mapping the relationship between GWC and 

IQ across the surface of the cortex in a longitudinal study of healthy 

children and adolescents. 

2. Materials and methods 

2.1. Sample and dataset 

The data used for the present study were retrieved from the paedi- 

atric repository of the NIH MRI Study of Normal Brain Development 

(Evans and Brain Development Cooperative Group, 2006); a longitudi- 

nal study of typical brain maturation in children representative of the 

2000 US census population. The original sample consisted of 431 chil- 

dren and adolescents (aged 4-18 years at first visit) who were invited on 

three separate occasions, 2 years apart, to undergo a battery of tests 

including, among others, MRI brain imaging and the Wechsler Abbre- 

viated Scale of Intelligence (WASID). Inclusion of subjects in the current 

study was dependent on the availability of WASI IQ scores and good 

quality of processed brain images. After quality control of MRI images 

and exclusion due to missing data or visits, our dataset included 376 

individuals. The sample sizes for each visit were the following: 251 

subjects for visit one, 290 subjects for visit two, and 201 subjects for visit 

three. There were 120 subjects sampled only once, 256 subjects sampled 

twice, and 110 subjects who were sampled at all three visits. Subject 

handedness was denoted as “left-handed”, “right-handed”, “ambidex- 

trous”, or “mixed” (use of either hand varies depending on action). 

2.2. MRI acquisition 

Sagittal slices were acquired on 1.5 T MRI scanners across sites with a 

1 mm isotropic resolution on most scanners (a 1.5 mm in-plane resolu- 

tion was allowed on GE scanners due to their limit of 124 slices) using 

whole-brain 3D T1-weighted spoiled gradient recalled echo sequences 

(for more details, see Evans, 2006). 

2.3. Image processing 

The T1-weighted volumes were processed with CIVET (version 

2.1.1). CIVET is a fully automated structural image analysis pipeline 

developed at the Montreal Neurological Institute. Intensity non- 

uniformities were corrected using N3 (Sled, Zijdenbos, & Evans, 

1998); the input volumes were aligned to the ICBM-152-nl template 

(Collins, Neelin, Peters, & Evans, 1994); each image was classified into 

white matter, gray matter, and cerebrospinal fluid (Tohka, Zijdenbos, & 

Evans, 2004; Zijdenbos, Forghani, & Evans, 2002); the white-matter 

surface was extracted via marching cubes and placed at the point of 

maximal white/gray gradient at the inner edge of the cortical gray 

matter; the pial surface was positioned by walking outward from the 

white-matter surface to the CSF (Kim et al., 2005); finally, the surfaces 

were registered to a common surface template (Lyttelton, Boucher, 

Robbins, & Evans, 2007) and smoothed using a 20 mm smoothing 

kernel. Quality control was performed on CIVET output images using the 

procedure described in Ducharme et al. (2016), In the first step, scans 

were automatically excluded from the sample on the basis of various 

measures produced by CIVET for each individual scan, including, but 
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not limited to, poor gray matter expansion and surface-surface in- 

tersections, among others: http://www.bic.mni.mcgill.ca/ServicesSoft 

ware/CIVET-1-1-12-Quality-Control. Images were subsequently visu- 

ally inspected and removed when significantly distorted; see Supple- 

mentary Fig. 1 for two examples from this dataset that were determined 

to be a pass and a failure, respectively. Since the sample used here is the 

very same as used in our prior work (Drakulich et al., 2021), the quality 

control process was not redone for this work. 

2.4. White/gray contrast measure 

GWC is defined here as the ratio of the intensities of white and gray 

matter on Tlw MRI images after N3 correction. In the subjects’ native 

space, we created a gray surface at 25% of the distance from the gray/ 

white boundary to the pial boundary and a white surface at the same 

distance but in the direction of white matter. A relative distance to 

compute GWC was chosen in favor of a fixed distance due to the pres- 

ence of extremely thin sections of cortex, wherein a fixed distance could, 

in some instances, lead to sampling at a distance greater than the 

thickness of the cortex. A relative sampling distance was also preferred 

over a fixed one to maximizes chances of sampling from the vicinity of 

the same cortical layer(s) across the cortical mantle. The value of 25% 

was based on results from Whitaker et al. (2016), showing that the 

highest myelin concentration observable in the cortex is within the 20% 

to 30% range of local cortical thickness. To produce the final contrast 

measures, the sub-white surface values were divided by the gray surface 

values at each vertex; thus, a larger GWC value represents a sharper 

gray-white boundary and possibly less intracortical myelin. An example 

depicting the placement of the surfaces used to compute contrast at each 

vertex is found in Fig. 1. Finally, spatial surface blurring was applied 

using a Gaussian blur with FWHM of 20 mm. 

2.5. Cognitive testing 

Full-scale IQ (FSIQ), Performance IQ (PIQ), and Verbal IQ (VIQ) 

were assessed using the Wechsler Abbreviated Scale of Intelligence 

(Weschler, 1999). The WASI consists of Vocabulary, Similarities, Matrix 

Reasoning, and Block Design subtests. The latter two tests are catego- 

rized as performance IQ subtests, while the former, as verbal IQ subtests. 

2.6. Statistical analyses 

Statistical analyses were conducted using the SurfStat statistical 

toolbox (http://www.math.mcgill.ca/keith/surfstat), implemented in 

MATLAB, and/or using R version 3.6.2. In all analyses, t-values were 

estimated at each vertex and projected onto the ICBM152 average sur- 

face. A false discovery rate (FDR) threshold of 0.05 was applied to 

control for multiple comparisons and to identify the areas of statistical 

significance. 

2.7. IQ analyses 

Mixed-effects linear regression analyses, with individuals as random 

effects, were conducted by regressing GWC against FSIQ, PIQ and VIQ, 

respectively, while covarying for sex, scanner, and a cubic age effect (i. 

e., age + age” + age®) as GWC has been shown to mainly follow a cubic 

trajectory within the age ranges studied here (Drakulich et al., 2021). 

The inclusion of age in these models may seem at first glance as “over- 

correcting”, given that WASI IQ scores are already age standardized. 

However, the inclusion of age as a covariate in the model is necessary to 

account for its potential confounding effect on GWC. Note that covary- 

ing for age when looking at a variable that is already age-corrected (e.g., 

FSIQ) should have no significant impact on that variable’s associations 

with another variable (e.g., GWC) other than accounting for uncorrected 

age effects on this other variable.
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Fig. 1. Calculation of Gray-White Contrast (GWC). 
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Example showing the placement of the 25% distance surfaces in the gray matter and superficial white matter. Figure adapted with permission from Drakulich 

et al. (2021). 

2.8. Examining sex effects 

Examinations of the GWC associations with FSIQ, PIQ, and VIQ, 

respectively, were also done in male-only and female-only subsets of the 

original dataset. To assess if observed sex differences were statistically 

significant, sex by cognitive ability interaction terms (sex by FSIQ, sex 

by PIQ, or sex by VIQ) were respectively added to our models in a further 

set of analyses. 

2.9. Examining associations specific to PIQ and VIQ 

As PIQ and VIQ are known to be highly correlated (here, r value 

~0.37, ~0.42, and ~ 0.43, for Visit 1, Visit 2, and Visit 3, respectively), 

we re-examined, on the full sample, GWC/PIQ associations after con- 

trolling for VIQ (and vice versa) in order to disentangle GWC associa- 

tions specific to PIQ and VIQ, respectively. 

2.10. Examining associations with brain volume 

Even though GWC is not a measure of physical size (i.e., is dimen- 

sionless), we analyzed the data with and without controlling for brain 

volume due to the well-established association between brain volume 

and measures of cognitive ability. As brain size had a noticeable impact 

on results (see results section), we examined this further by looking at 

the simple association between brain size and local GWC, while co- 

varying for sex, scanner, and a cubic age effect. 

2.11. Estimating effect sizes 

To provide estimates of effect sizes, vertex t-values were transformed 

into Pearson partial correlation and provided in supplementary material 

(Fig. 2B and Fig. 3B). Student t-values were transformed into Pearson 

partial correlation values using the usual following equation where df is 

the number of degrees of freedom of the t statistic (Gravetter & Wallnau, 

2008): 

r=1/(t2+df) 

2.12. Comparing cortical thickness/IQ with GWC/IQ associations 

Associations between cortical thickness and IQ (i.e., FSIQ, PIQ, VIQ) 

have frequently been reported (Raz et al., 2005; Sowell et al., 2003; 

Sowell et al., 2004), including on children from the NIH Study of Normal 

Brain development (Karama et al., 2009). To allow for a qualitative 

comparison between cortical thickness/IQ and GWC/IQ findings, we 

revisited cortical thickness/IQ associations using the same CIVET pipe- 

line (i.e., version 2.1.1) and the exact same sample used here to generate 

GWC/1Q associations. 

Except for the age effect, which was modeled as a monotonic linear 

effect (as cortical thickness has been shown to mainly follow such a 

linear effect for the age ranges examined here), the same mixed-effects 

regression analysis modeling method used for GWC/IQ associations 

was used for Cortical Thickness/IQ associations. More specifically, 

mixed-effects linear regression analyses, with individuals as random 

effects, were used to regress cortical thickness against FSIQ, PIQ, and 

VIQ, respectively, while covarying for sex, scanner, and a monotonic 

linear age effect. 

2.13. Disentangling GWC effects from cortical thickness effects 

CIVET places the white matter surface at the point of maximal 

contrast between white and gray matter. This can directly affect esti- 

mates of cortical thickness and may create correlations between GWC 

and cortical thickness. At the extreme, GWC may potentially account for 

previously reported cortical thickness/IQ associations. On this basis, 

analyses on the whole sample were redone after including local cortical 

thickness as a covariate to examine associations between IQ and GWC 

independently of cortical thickness. Further, in order to see if controlling 

for cortical thickness attenuated GWC/IQ associations more than the 

reverse (i.e., controlling for local GWC in IQ/cortical thickness associ- 

ations), the associations between cortical thickness and IQ were re- 

examined while covarying for local GWC. Partial correlation value 

changes of IQ were used to estimate to what extent FSIQ/GWC associ- 

ations were attenuated with the inclusion of local cortical thickness and 

vice versa. Specifically, the brain maps of partial correlations from the 

FSIQ/PIQ models, with and without the added respective local cortical 

thickness or GWC covariate, were squared to produce R values and then
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FSIQ and GWC 

LS 
0.05 0.04 0.03 0.02 0.01 0 

PIQ and GWC 

EE 
0.05 0.04 0.03 0.02 0.01 0 

  

FSIQ and GWC (adjusted for Cortical Thickness) 

ET 
0.05 0.04 0.03 0.02 0.01 0 

PIQ and GWC (adjusted for Cortical Thickness) 

EE 
0.05 0.04 0.03 0.02 0.01 0 

Fig. 2. Regions of statistically significant associations after thresholding with a false discovery rate of 0.05. A) Associations between GWC and Full-Scale IQ con- 

trolling for gender, scanner, and a cubic age effect - See supplementary F2_A for matched t-map and F2_B for unthresholded partial correlation map showing Pearson r 

values. B) Associations between GWC (adjusted for local cortical thickness) and Full-Scale IQ controlling for gender, scanner, and a cubic age effect C) Associations 

between GWC and Performance IQ controlling for gender, scanner, and a cubic age effect — See supplementary F3_A for matched t-map and F3_B for unthresholded 

partial correlation map showing Pearson r values. D) Associations between GWC (adjusted for local cortical thickness) and Performance IQ controlling for gender, 

scanner, and a cubic age effect. 

masked according to the 5% FDR significance mask from the simpler 

model (i.e., the model without the added covariate); the remaining 

partial correlation difference values were then averaged, yielding gross 

estimates of how much of an effect covarying for cortical thickness had 

on GWC/1Q associations and covarying for GWC had on cortical thick- 

ness/IQ associations. 

2.14, Examining associations between changes in GWC and changes in IQ 

Lastly, associations between change in GWC and change in FSIQ 

were investigated by only analyzing subjects that were scanned for all 

three visits (1 = 110), allowing for the calculation of slope of GWC 

change at each vertex against slope of FSIQ change for each subject. The 

covariates included in these models were sex, mean GWC at baseline (i. 

e., sampling timepoint one), age at baseline, and FSIQ measure at 

baseline. Prior to modeling, scanner was residualized out from the GWC 

metric using a mixed effects model in SurfStat, with just the scanner and 

the subject random effect included. The adjusted GWC values were then 

used in the change analysis modeling. 

The model used for the GWC change analysis was as follows: 

AGWC = f0* Intercept + B1*AgeV1 + f2*IQV1 + B3*AIQ + random(Subject) 

+ Error 

With AGWC representing GWC slope, AgeV1 representing age in 

years at the first timepoint, IQV1 representing IQ at the first timepoint, 

and AIQ representing slope of change in IQ. 

3. Results 

Descriptive statistics for age, FSIQ, PIQ and VIQ for each visit are 

shown in Table 1. In the preliminary set of analyses examining associ- 

ations between IQ measures and GWC without vertex-wise adjustment 

for cortical thickness, FSIQ and PIQ evidenced relatively widespread 

positive associations with GWC, while no areas of significance were 

found between VIQ and GWC. Significant FSIQ (Fig. 2A) and PIQ 

(Fig. 2C) associations with GWC were widespread and bilateral with the 

strongest areas of association in prefrontal, parietal, and anterior 

cingulate regions. The association between FSIQ and GWC showed a 

slightly less widespread distribution of significant vertices compared to 

the association between PIQ and GWC, although they were nearly 

identical in the regions that emerged as significant. The distribution of
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the association between GWC and PIQ was only slightly attenuated by 

covarying for VIQ (See Supplementary Fig. 4). The inclusion of PIQ as a 

covariate when modeling the association between GWC and VIQ did not 

produce any significant signal. 

Modeling performed on male- or female-only subsets of the data 

(without sex as a covariate) produced association maps with greatly 

diminished presence of significant vertices at 5% FDR when compared to 

the associations modeled on the combined sample; however, because 

subsequent modeling found no presence of any significant effect of an 

interaction between Sex and IQ at any vertex, these data are not shown. 

When total brain volume was added as a covariate in the models, 

there was an attenuation of significance with respect to number of sig- 

nificant vertices (see Supplementary Figs. 13 and 14); the most notable 

regions exhibiting diminished significance were the medial and lateral 

orbitofrontal cortex, lateral and rostral frontal cortex, precuneus, pos- 

terior cingulate, isthmus of the left cingulate gyrus, dorsal superior pa- 

rietal gyrus, lingual gyrus, and inferior occipital cortex. In order to 

examine this further, we looked at the simple association between GWC 

and total brain volume alone (i.e., without cognitive ability in the model 

- see Supplementary Fig. 12). This yielded fairly widespread regions of 

significant positive associations almost exclusively located in regions 

known to be involved in intelligence differences (i.e. the prefrontal 

cortex, lateral posterior parietal cortex, lingual gyrus, and precuneus) as 

well as the pre- and post-central gyri, and sparsely in the inferior oc- 

cipital cortex. 

GWC adjusted for local cortical thickness at each vertex showed a 

clear and notable reduction in the areas depicting positive associations 

between GWC and both FSIQ (Fig. 2B) and PIQ (Fig. 2D), respectively. 

Significant vertices in both models were more restricted to, for the most 

part, the frontal cortex, the anterior cingulate, and sparsely at the 

inferior parietal lobule; small, isolated regions of significance were also 

found in the inferior temporal cortex, near the insula, and scattered in 

the sulci of the parietal and occipital lobes. 

Subjects were a mixture of “left” handed, “right” handed, “ambi- 

dextrous”, and lastly, “mixed” use of both hands. Controlling for hand- 

edness had no significant impact on a complete absence of changes in 

either regionality or extent of significance. 

We examined the attenuation of the associations between IQ/GWC 

and IQ/Cortical thickness before and after controlling for either cortical 

thickness or GWC, respectively. This analysis showed that the mean 

(across vertices) difference in mean partial correlations in our data was 

slightly greater for the association between IQ and GWC after control- 

ling for cortical thickness (FSIQ: 0.0424; PIQ: 0.0462; VIQ: 0.0258) than 

for the associations between IQ and cortical thickness after controlling 

for GWC (FSIQ: 0.0315; PIQ: 0.0340; VIQ: 0.0182). Results from the 

vertex-wise IQ/Cortical Thickness modeling have been included in the 

supplementary material (Supplementary Figs. 5-11). 

Examining the association between change in GWC and changes in 

IQ yielded no areas of statistically significant associations. 

4. Discussion 

In a large representative US cohort of healthy individuals aged from 

6 to 22 years, we have demonstrated that pericortical GWC is positively 

associated with FSIQ, and PIQ across broad regions of the cortex. The 

strongest associations between GWC and cognitive ability were in lateral 

prefrontal and parietal areas, a portion of which remain significant after 

including total brain volume as a covariate. This is in keeping with the 

reported preferential involvement of these multimodal association areas 

in intelligence differences (Basten, Hilger, & Fiebach, 2015; Jung & 

Haier, 2007). Basten et al. (2015) performed separate meta-analyses of 

functional and structural brain imaging studies of differences in human 

cognitive ability. This meta-analysis refined Jung & Haier’s Parieto- 

Frontal Integration Theory of intelligence (P-FIT), in that it a) distin- 

guishes between structural and functional correlates of intelligence of 

the P-FIT, b) denotes positive and negative associations with intelligence 
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at various foci, and c) includes the insular cortex, posterior cingulate 

cortex, and subcortical structures in addition to those in the original P- 

FIT (frontal, parietal, temporal, and occipital lobes) (Basten et al., 

2015). The regions included in this revised P-FIT have been identified as 

multimodal processing centers, with injuries to these areas being the 

most likely to lead to cognitive deficits (Glascher et al., 2010). Relatively 

strong associations with cognitive ability in our data were also observed 

in the anterior cingulate region, slightly more widespread in the right 

hemisphere. The anterior cingulate is believed to be engaged in con- 

straining response selection, inhibiting competing responses, error 

detection, and balancing them in order to reward optimal decision- 

making (Chudasama et al., 2013; Hayden & Platt, 2010; Jung & Haier, 

2007; Lgvstad et al., 2012). In the context of the revised Parieto-Frontal 

Integration Theory (P-FIT) of intelligence (Basten et al., 2015, Jung & 

Haier, 2007), these regions and the connectivity between prefrontal and 

parietal areas, via the arcuate fasciculus, are crucial to higher-order 

cognitive performance. Finding associations between GWC and IQ in 

the anterior cingulate is compatible with the known involvement of the 

anterior cingulate cortex in cognition (Lgvstad et al., 2012; Stevens, 

Hurley, & Taber, 2011). The anterior cingulate cortex is a hub that 

shares connections with both the prefrontal cortex and the limbic system 

(Hadland, Rushworth, Gaffan, & Passingham, 2003; Mueller, Brass, 

Waszak, & Prinz, 2007). In other words, it is linked with both cognitive 

and emotional regulation regions and, while speculative, might be 

involved in motivational states and cognitive drive while pursuing a 

cognitive task (Assadi, Yiicel, & Pantelis, 2009; Devinsky, Morrell, & 

Vogt, 1995; Holroyd & Yeung, 2012; Lgvstad et al., 2012). 

Another, perhaps complementary, mechanistic perspective for our 

findings draws on a link between cortical gray matter tissue sparsity and 

cognitive ability. More specifically, Genc et al. (2018) showed that 

greater neurite sparsity within the cortex is linked to higher intelligence. 

This link might be due to individual differences in pruning of non- 

essential neurites. This, in turn, would allow for greater signal-to-noise 

ratio and provide more efficient signal transfer. A decrease in tissue 

within the cortex associated with sparser neurites could possibly lead to 

increased GWC and account for the positive association between 

contrast and cognitive ability found in our current work. This proposal 

should be understood as being highly speculative as it is not based on a 

concurrent analysis of both contrast and neurite sparsity, as neurite 

sparsity data is unavailable for this dataset. 

The strongest and most widespread associations with GWC observed 

in our analysis was with performance IQ. Since performance IQ and 

verbal IQ jointly contribute to full-scale 1Q, it is expected that the 

strength of a given association with full-scale IQ will land between that 

of either performance or verbal IQ, an effect reflected in our results. As 

highlighted in the introduction, cognitive ability is likely to be partially 

related to the degree of myelination of pericortical connections invading 

the cortex, an index which is thought to be partially captured by 

quantifying the contrast in the intensities of white versus gray matter at 

the inner edge of cortical gray matter. Finding an association with 

performance IQ, but not with verbal IQ, can be viewed as suggesting that 

pericortical myelination is mostly involved in fluid intelligence rather 

than in crystallized forms of intelligence. 

Research from adjacent fields can also help contextualize and sup- 

port the suggestion that GWC is a functionally relevant metric that likely 

reflects, to some extent, the degree of myelination. While speculative, 

the current findings are potentially compatible with previously reported 

work emphasizing the importance of white matter for cognition, such as 

positive associations between white matter N-acetylaspartate in left 

frontal and occipito-parietal areas and general intelligence (Jung et al., 

1999; Jung et al., 1999), as well as between white matter integrity, 

processing speed, and general intelligence (Penke et al., 2012). Further 

potential supporting evidence comes from the field of network neuro- 

science by means of using graph theory on proxy metrics of myelin 

content (Lutti, Dick, Sereno, & Weiskopf, 2014; Boshkovski et al., 2021). 

One such study examined how myelination (as measured by
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magnetization transfer) changes synchronously among spatially distant 

regions to create characteristic networks of gray-matter myelin covari- 

ance that undergo topological changes through young adulthood 

(20-31 years old) and old age (60-71 years old) (Melie-Garcia et al., 

2018). In the young group, they found high myelin covariance in ho- 

mologous structures in the frontal and parietal lobes, and higher global 

efficiency in the constructed myelin networks than in the old age-group. 

They suggest that two brain structures anatomically connected by 

myelinated fibers are likely to show correlated and relatively similar 

myelin density, possibly in order to optimize synchronicity between 

these structures and their connections (Kimura & Itami, 2009; Melie- 

Garcia et al., 2018). With this in mind, future examinations of GWC 

through the lens of network neuroscience may prove useful. 

It has been shown that GWC decreases with age (Lewis et al., 2018, 

Drakulich et al., 2021). Also, raw cognitive ability (i.e., uncorrected for 

age), increases throughout development (Waber et al., 2007). One could 

hence expect a negative association between GWC and cognitive ability. 

On the contrary, our data show the reverse relationship of a positive 

association between GWC and IQ. To reconcile this apparent contra- 

diction, we need to first highlight that IQ measures, unlike raw/absolute 

cognitive ability, are relative, age-standardized metrics. Within this 

framework, it is possible to imagine that people with greater intelligence 

start with greater GWC and, at any given age, tend to have greater GWC, 

despite GWC decreasing as the brain reaches maturity. This could 

explain the positive association observed here. 

Overall, the pattern of associations found between cognitive ability 

and pericortical contrast had some overlap with the pattern of associa- 

tions between cognitive ability and cortical thickness in this work. This 

latter association with cortical thickness was modeled cross-sectionally 

with a first-order linear model in Karama et al. (2009), with clear 

albeit not perfect overlap with the pattern shown in this work. This 

could be explained by differences in study design, wherein we employed 

a longitudinal design in a sample with a broader range of ages (4-22 

years old) compared to that of Karama et al. (2009) (6-18 years old), by 

improvements in the CIVET pipeline, and by the fact that the specific 

sample was not identical as more subjects passed QC with CIVET 2.1.1 

than with the older version of CIVET used in the Karama et al., 2009 

paper. Nevertheless, our results appear to corroborate an obvious pref- 

erential involvement of parieto-frontal and temporal regions, as well as 

a notable presence of significance in key medial structures. This is well 

in line with existing literature of multimodal associations of intelligence 

found in the human brain (Luders et al., 2009; Tamnes et al., 2010; 

Grydeland et al., 2013; Burgaleta, Johnson, Waber, Colom, & Karama, 

2014; Shaw et al., 2006; Tamnes et al., 2017), and supports the P-FIT 

(Jung & Haier, 2007). The coinciding regional significance suggests that 

changes in pericortical contrast are meaningful with respect to function 

and integrity of these areas in higher-order cognition. Importantly, 

while controlling for local cortical thickness led to an attenuation of the 

association between GWC and IQ measures, many regional associations 

persisted, suggesting some degree of independent contributions from 

both GWC and cortical thickness to cognitive ability differences. This 

supports the view that at least a portion of intelligence differences are 

explained by multiple, and at least partially independent, neurobiolog- 

ical factors. 

Our analysis of the gross differences in mean partial correlations in 

the associations between the cognitive measures and either GWC or 

cortical thickness sought to inform which metric’s association with IQ 

was stronger. We found that GWC is potentially more distinctly associ- 

ated with cognitive ability, at least for the age range spanning this study, 

than with cortical thickness, despite their interdependence with respect 

to physiology and how both metrics are calculated. 

As would be expected from decreased statistical power, when 

examining boys and girls separately, associations between GWC and the 

various IQ measures exhibited diminished regional significance when 

compared to the larger sample including both sexes. There was little to 

no overlap in the sparse regions that remained significant at 5% FDR. 
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Since the subsequent analysis which tested for a significant Sex by IQ 

interaction produced a null result, apparent differences in the GWC and 

IQ associations modeled on the male-only and female-only subsets are 

likely attributable to expected statistical fluctuations in our data be- 

tween the male and female samples. However, not finding sex differ- 

ences does not necessarily mean that these do not exist. An alternative 

might be that the effect size of sex differences for IQ and GWC associ- 

ations throughout early life is very small and would require a larger 

sample to be detected if they exist. 

Observing a noticeable attenuation in number of significant vertices 

when controlling for total brain volume (a measure of size) prompted 

further analysis, as GWC is not a measure of physical size. Surprisingly, 

our subsequent examination of the simple association between total 

brain volume and GWC (i.e., excluding measures of cognitive ability 

from the model) revealed that this association was almost exclusively 

limited to regions known to be involved in intelligence differences (Jung 

& Haier, 2007) and hence explaining the GWC/cognition attenuation in 

association when controlling for total brain volume. The prefrontal 

cortex, cingulate gyrus, precuneus, and pre- and post-central gyri, and 

parts of the occipital lobe, all showed broad significant associations 

between brain volume and GWC. Finding such a pattern between total 

brain volume and GWC (without cognitive ability measures in the 

model) is intriguing and will require work that extends well beyond the 

scope of this paper. Results from the association between GWC and 

measures of cognitive ability, with and without the inclusion of brain 

volume as a covariate, retained significant associations in regions 

associated with higher order cognitive functions and multimodal asso- 

ciation areas, suggesting that GWC makes somewhat independent con- 

tributions to cognitive ability. 

Prior work using diffusion MRI might be able to aid the interpret- 

ability of our results. The regions with a significant association between 

brain volume and GWC in our data appeared to be in regions of granular 

cortex (Triarhou, 2007). A study on the HCP dataset used diffusion MRI 

to produce maps of neurite density and neurite orientation dispersion, 

among other measures (Fukutomi et al., 2018); the regions with highest 

neurite density largely overlap with significant regions showing an as- 

sociation between GWC and brain volume in our work. Likewise, regions 

showing a significant positive association between GWC and cognitive 

ability appear to have overlap with lower dispersion in neurite orien- 

tation (Fukutomi et al., 2018). If GWC partially reflects wiring effi- 

ciency, our findings support the hypothesis that cognitive ability is less 

related to a metric amounting to the sum of cellular matter in the brain, 

and instead reflects the quality in wiring of neural pathways and con- 

nections, as well as pruning of excess and/or metabolically unproductive 

ones (Genc et al., 2018). 

Examining associations between change in GWC and change in IQ 

did not yield significant associations. This contrasts with findings from 

Burgaleta et al. (2014), where such an association was noted for cortical 

thickness despite also looking at a sample of children and adolescents 

from the NIH Study of Normal Brain Development. One possibility is 

that there is indeed no association between changes in GWC and changes 

in cognitive ability in early life in contrast to later life, where a faster 

decline in GWC throughout late adulthood was found to be associated 

with more aggressive cognitive decline (Vidal-Pineiro et al., 2016). 

Differences in associations between GWC changes and cognitive ability 

changes may be due to the underlying reasons for the changes in GWC. 

In our study, GWC changes are linked to development, whereas in the 

Pineiro et al. study changes in GWC are likely due to brain tissue 

degeneration. Another possibility is that our sample was underpowered 

for this part of our analysis; Burgaleta et al. (2014) conducted their study 

on a sample of 188 subjects and between only two of the visits, whereas 

our sample consisted of 110 subjects over three timepoints. 

The results presented here are bound by the usual limitations asso- 

ciated with data that are inevitably correlational. For instance, finding 

associations between brain measures and a measure of general cognitive 

ability in a distributed set of areas does not necessarily imply an
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involvement of this whole set of areas in cognitive ability differences. 

Indeed, it is possible to imagine a common mechanism influencing GWC 

throughout these brain areas but with only a subset of these areas being 

involved in intelligence differences. Having said this, finding correla- 

tions between pericortical contrast and measures of general cognitive 

ability preferentially distributed in multimodal association areas sug- 

gests that links between mental ability and pericortical contrast in these 

areas are not spurious, as cognitive processes are likely to involve 

multimodal processing. Given the advent of new imaging methods 

capable of more directly capturing myelin and related processes, sub- 

sequent studies should be well poised to further inform the nature and 

significance of the associations that appear to be emerging between 

changes at the pericortical gray-white boundary and cognitive ability. 

Finally, our sample aims to be representative of the healthy typically 

developing population of the US 2000 census and hence excludes many 

subjects that constitute the US population. This led to the exclusion of 

individuals with neurological disease and/or IQ scores below 70 and had 

the corollary consequences of leading to a mean sample IQ greater than 

100. The generalizability of our findings should be viewed with this 

limitation in mind. 

In summary, we have shown a multiregional positive association 

between measures of cognitive ability and pericortical GWC in the 

period of life from early childhood to the beginning of adulthood. These 

results complement those showing relationships between cognitive 

ability and other features of the cortex like cortical thickness, with a 

similar spatial distribution. While future work is needed to further 

inform the nature and significance of these relationships, this compar- 

ative analysis supports the hypothesis that differences in peri-cortical 

myelination within cortical gray tissue may account for at least part of 

the association between pericortical contrast and cognitive ability. 
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