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A B S T R A C T   

Video games are a promising tool for the psychometric assessment of cognitive abilities. They can present novel 
task types and answer formats, they can record process data, and they can be highly motivating for test takers. 
This paper introduces the first game-based intelligence assessment implemented in Minecraft, an exceptionally 
popular video game with more than 200 m copies sold. A matrix-based pattern completion task (PC), a mental 
rotation task (MR) and a spatial construction task (SC) were implemented in the three-dimensional, immersive 
environment of the game. PC was intended as a measure of inductive reasoning, whereas MR and SC were 
measures of spatial ability. We tested 129 children aged 10–12 years old on the Minecraft-based tests as well as 
equivalent pen-and-paper tests. All three scales fit the Rasch model and were moderately reliable. Factorial 
validity was good with regard to the distinction between PC and SC, but no distinct factor was found for MR. 
Convergent validity was good as abilities measured with Minecraft and conventional tests were highly correlated 
at the latent level (r = 0.72). Subtest-level correlations were in the moderate range. Furthermore, we found that 
behavioral log-data collected from the game environment was highly predictive of performance in the Minecraft 
test and, to a lesser extent, also predicted scores in conventional tests. We identify a number of behavioral 
features associated with spatial reasoning ability, demonstrating the utility of analyzing granular behavioral data 
in addition to traditional response formats. Overall, our findings indicate that Minecraft is a suitable platform for 
game-based intelligence assessment and encourage future work aiming to explore game-based problem solving 
tasks that would not be feasible on paper or in conventional computer-based tests.   

1. Introduction 

1.1. Game-based intelligence assessment 

Video games involve cognitive processes and performance in certain 
video games is positively correlated with intellectual ability (Quiroga 
et al., 2009, 2011). Early approaches to measuring cognitive perfor-
mance through video games date back to the 1980s with Mané and 
Donchin’s (1989) space fortress game (see also Jones, 1984; Jones, 
Dunlap, & Bilodeau, 1986; Rabbitt, Banerji, & Szymanski, 1989). More 
recent work suggests that intellectual ability can be reliably captured 
with commercial video games (Foroughi, Serraino, Parasuraman, & 
Boehm-Davis, 2016; Quiroga et al., 2015, Quiroga, Román, De La 
Fuente, Privado, & Colom, 2016). As these examples indicate, the term 

game-based assessment describes the use of (video) games for the 
measurement of psychological constructs. As such, it is related but 
distinct from concepts like gamification (”the use of game design ele-
ments in non-game contexts”; Deterding, Dixon, Khaled, & Nacke, 
2011), serious games (the use of games for the purpose of learning and 
education; Deterding et al., 2011; Gee, 2003), computerized assessment 
(the use of computer interfaces to present testing materials), and sim-
ulations or complex problem solving tasks (using interactive virtual 
environments to present dynamic tasks that mimic real-world problems; 
Dorner & Funke, 2017; Greiff & Funke, 2009; Greiff, Wüstenberg, 
Molnár, Fischer, Funke, & Csapó, 2013). 

The construction of intelligence assessments is deeply intertwined 
with a long history of research into the structure of intelligence. Intel-
ligence is widely understood as a multi-faceted construct and several 
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prominent models of the structure of intelligence have been proposed in 
the literature (e.g., Carroll, 1993; Horn, 1968; Horn & Blankson, 2005; 
Horn & Cattell, 1966). The most comprehensive and most widely 
accepted model to date is the Cattell-Horn-Carroll (CHC) model, which 
integrates the works of Raymond Cattell, John Horn, and John Carroll 
(Flanagan & Dixon, 2014; Schneider & McGrew, 2012). Like Carroll’s 
(1993) Three-Stratum Theory, the CHC hierarchically distinguishes be-
tween ”narrow abilities” (stratum I), ”broad abilities” (stratum II) and a 
single ”general ability” or g-factor (stratum III). The broad abilities 
specified in the CHC provide a particularly useful taxonomy of higher 
level cognitive abilities. Among others, they include Fluid Intelligence 
(Gf), Crystallized Intelligence (Gc), General Knowledge (Gkn), Quanti-
tative Knowledge (Gq), Reading/Writing Ability (Grw), Short-Term 
Memory (Gsm), Long-Term Storage and Retrieval (Glr), Visual Pro-
cessing (Gv), Auditory Processing (Ga), and Processing Speed (Gs). Most 
new and recently revised intelligence test batteries are based on the 
taxonomy suggested in the CHC model (Flanagan & Dixon, 2014; 
Schneider & McGrew, 2012). 

Compared to conventional intelligence assessment with its centen-
nial history, game-based intelligence assessment is still in its fledgling 
phase and none of the existing game-based intelligence assessments 
captures the full granularity of the CHC model. Nonetheless, game-based 
intelligence assessment offers a promising perspective as it combines the 
flexibility of simulations and the motivational benefits of games and 
gamification. It therefore has the potential to address two important 
limitations of conventional intelligence assessments, namely their reli-
ance on static, two-dimensional testing materials (Foroughi et al., 2016; 
Hunt, 2011; Jodoin, 2003) and their limited ability to motivate test 
takers (Duckworth, Quinn, Lynam, Loeber, & Stouthamer-Loeber, 
2011). 

The possibilities of psychometric test design are greatly enhanced by 
computerization and the use of video games, which enable complex, 
interactive stimuli that are impracticable in conventional assessment. 
These new possibilities can be leveraged to either address limitations of 
existing measures or to assess psychological functions that could pre-
viously not be captured for practical reasons (Hunt & Pellegrino, 1985). 
For example, game-based presentation facilitates the measurement of 
abilities associated with spatial reasoning, such as navigation or 
reasoning about moving objects (Jackson, Vernon, & Jackson, 1993). 
The same is true for time-sensitive task formats as used for the mea-
surements of attention (Godwin, Lomas, Koedinger, & Fisher, 2015) and 
dynamic task types, where the test taker has to explore and interact with 
the testing materials like in complex problem solving tasks (Greiff, 
Niepel, Scherer, & Martin, 2016). Additionally, video games allow for 
scoring approaches incorporating process data, such as action sequences 
or movement profiles, along with traditional formats focusing on 
outcome data, where the psychometric information of an item is typi-
cally restricted to a right-or-wrong dichotomy. This is especially ad-
vantageous when the process leading to the solution contains 
information about a person’s ability level see (Bergner, Shu, & von 
Davier, 2014; Hao, Shu, & von Davier, 2015; Shu, Bergner, Zhu, Hao, & 
von Davier, 2017; Zhu, Shu, & von Davier, 2016). 

A fundamental problem of intelligence assessment is the suscepti-
bility of test results to non-ability-related factors, such as motivation 
(Borghans, Meijers, & ter Weel, 2013; Duckworth et al., 2011) or test 
anxiety (Meijer & Oostdam, 2007; Oostdam & Meijer, 2003). A 
meta-analysis by Duckworth et al. (2011) suggests that test-taking 
motivation accounts not only for a large proportion of the variance in 
test results, but also for a large proportion of the variance in academic 
achievement and other life outcomes that have otherwise often been 
attributed to intelligence. The authors showed that incentives can in-
crease IQ test results on average by 0.64 SD, with the highest gains in 
below-average IQ participants, indicating that IQ tests do not always 
measure maximum intellectual performance and that low results may be 
due to motivational deficits. Furthermore, the study found that the 
predictive validity of IQ scores dropped significantly after adjusting for 

the influence of test motivation, indicating that test motivation is a third 
variable inflating the predictive power of IQ scores. Borghans et al. 
(2013) found that intrinsic motivation (enjoyment of the task) as well as 
extrinsic motivation (presence of a monetary incentive) improved per-
formance on IQ-tests by increasing participants’ time investments per 
item. With regard to test anxiety, Meijer and Oostdam (2007) found 
consistent negative relationships between levels of anxiety and results in 
verbal ability, reasoning and memory tests. Game-based assessments, 
however, have been associated with higher levels of motivation in 
testing situations (Lumsden, Edwards, Lawrence, Coyle, & Munafò, 
2016) and lower degrees of test anxiety (Mavridis & Tsiatsos, 2017). 

Despite their potential advantages, game-based intelligence assess-
ments are rare. This is explained by a range of practical and theoretical 
challenges concerning the development of new task types, administra-
tion modes, and psychometric models for process data and complex 
answer formats. First, as Washburn (2003) points out, the development 
of game-based tasks requires more effort and expertise compared to 
conventional tasks, as it often involves the creation of computer appli-
cations from scratch. Second, the high degree of flexibility that is 
characteristic of computer games places special emphasis on the 
trade-off between standardization and generalization, and traditional 
psychometric concepts like the assumption of unidimensionality become 
less sustainable. Third, there may be conflicts between principles of 
game design and psychometric task design. Feedback, for example, is a 
central motivational aspect of games (Przybylski, Rigby, & Ryan, 2010), 
but can create dependencies between items, which is not desired ac-
cording to the traditional psychometric paradigm. Fourth, there is the 
question of how to treat confounding variables specific to game-based 
assessment, such as psychomotor factors and familiarity with com-
puter technology or games (Foroughi et al., 2016; Greiff, Kretzschmar, 
Müller, Spinath, & Martin, 2014; Washburn, 2003). These points are 
essential to the questions of fairness and validity, as design decisions 
may have differential effects on different groups of test takers (Mislevy 
et al., 2014), and may change the construct that is being assessed at the 
latent level (Hunt & Pellegrino, 1985; Mead & Drasgow, 1993; Quiroga 
et al., 2016). Finally, there are cultural challenges, referring to the 
strong tradition of originally paper-based intelligence assessments and 
their ascendancy in psychological research and practice, a point that is 
repeatedly criticized by Hunt (2011). The issue is illustrated by the fact 
that intelligence is still mostly measured with pen-and-paper tests, even 
when computerized versions of the same test are psychometrically 
equivalent and favored by test takers (Arce-Ferrer & Martínez Guzmán, 
2009; Quiroga et al., 2016). 

While the research community has shown interest in game-based 
assessment of cognitive abilities since the 1980s (Haier, Siegel, Tang, 
Abel, & Buchsbaum, 1992; Jones, 1984; Jones et al., 1986; Mané & 
Donchin, 1989; Rabbitt, Banerji, & Szymanski, 1989), recent advances 
in computer and entertainment technology have reinvigorated this field 
of research. Previous work can be roughly divided into two lines of 
research, one of which is concerned with the creation of custom games 
designed for the sole purpose of measurement (Mané & Donchin, 1989; 
McPherson & Burns, 2008; McPherson & Burns, 2007; Ventura, Shute, 
Wright, & Zhao, 2013), while the other is concerned with the explora-
tion of the psychometric properties of existing, commercially available 
video games (Baniqued et al., 2013; Buford and O’Leary, 2015; Foroughi 
et al., 2016; Haier, Siegel, Tang, Abel, & Buchsbaum, 1992; Jones et al., 
1986; Quiroga et al., 2015; Quiroga et al., 2016; ; Quiroga, Diaz, Román, 
Privado, & Colom, 2019). Representing the first of these two lines of 
research, McPherson & Burns developed the games Space Code 
(McPherson & Burns, 2007) and Space Matrix (McPherson & Burns, 
2008), where test takers had to solve tasks resembling the WAIS-III Digit 
Symbol subtest and the Dot Matrix task (Miyake et al., 2000) in order to 
destroy enemy space-ships. Correlations between Space Code scores and 
Gs ranged between 0.45 and 0.60, while correlations between Space 
Matrix and Gy ranged from 0.53 to 0.66. Ventura et al. (2013) developed 
a new measure of spatial ability, involving a navigation task where 
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test-takers have to use a first-person avatar to collect gems in a range of 
virtual spaces. Performance in the task was significantly correlated with 
three other measures of spatial ability, standardized math test scores and 
STEM career choices. However, self-reported experience with video 
games was also associated with higher test scores, indicating that game 
experience may confound performance scores. 

The second line of game-based assessment research is concerned 
with the use of existing video games for intelligence measurement. 
Baniqued, Lee, Voss, Basak, Cosman, DeSouza, Severson, Salthouse, & 
Kramer (2013) analyzed relationships between performance in 20 
web-based video games and a battery of cognitive tasks, finding corre-
lations in the moderate range. Quiroga et al. (2015) showed that par-
ticipants’ performance in a series of puzzles from the video game Big 
Brain Academy is strongly correlated with a wide range of conventional 
intelligence tasks at the latent level (r = 0.93). Big Brain Academy is a 
collection of puzzle games intended to train and measure a range of 
cognitive abilities, which are similar to the known factors of intelli-
gence. In two subsequent studies, Quiroga et al. (2016) made use of 
another puzzle game, Professor Layton and the Curious Village, to inves-
tigate the relationship between game performance over time and intel-
ligence. Correlations between game performance and intelligence 
measures peaked after about seven to 12 hours of game play. Comple-
tion time was inversely correlated with intelligence measures, suggest-
ing that mastery of a complex task is indicative of cognitive ability. 
While the study provides important insights into the relationships be-
tween game performance and intelligence, the game seems too long to 
be used as an assessment in practice in its current form. Foroughi et al. 
(2016) created a customized game-based assessment with the Portal 2 
Puzzle Creator. Portal 2 is a first-person puzzle-platform game, where the 
player has to solve problems and manipulate a three-dimensional 
environment in order to escape from a series of chambers. Perfor-
mance in the game-based test is highly correlated with Ravens Advanced 
Progressive Matrices (r = 0.65) and a latent factor representing fluid 
intelligence (r = 0.78). Similar results have been reported by Buford & 
O’Leary (2015). More recently, Quiroga et al. (2019) analyzed the re-
lationships between performance in a wide range of commercially 
available video games and the stratum II intelligence factors fluid 
reasoning (Gf), visuo-spatial ability (Gv), and processing speed (Gs). The 
results confirm previous findings, showing a stong latent correlation 
between factors representing game performance and intelligence (r =
0.79). 

While these studies suggest that game-based assessments may be 
psychometrically valid, they did not investigate process data from game 
log files, as commercial video games typically limit access to game-logs 
and do not provide opportunities to modify the underlying code (Quir-
oga et al., 2016). The use of process data was recently investigated in the 
Wells task (National assessment of educational progress, 2014), a com-
plex problem solving task, in which test takers have to repair a virtual 
mechanic water pump. Hao et al. (2015) found that edit distances be-
tween students’ action sequences and the action sequence of the optimal 
solution are strongly correlated with overall scores, indicating that the 
edit distance to the best performance sequence contains information 
about test takers’ ability levels. Representing action sequences as 
weighted directed networks, Zhu et al. (2016) showed that network 
measures such as weighted density, centralization and reciprocity pre-
dict students’ scores on the task. Bergner et al. (2014) performed cluster 
analyses on action sequences and found relationships between cluster 
membership and scores, however, varying greatly with the clustering 
method that was employed. Shu et al. (2017) propose a new Item 
Response Theory (IRT) model to derive ability estimates from process 
data. This is achieved by modelling action sequences as a Markov pro-
cess and treating its state transitions as items in an IRT model, where the 
probability of choosing a transition depends on the latent trait. Methods 
like these and others (e.g., Fu, Zapata, & Mavronikolas, 2014) could also 
be used to tap into process data for game-based intelligence assessment. 

1.2. Contributions of the present study 

Previous work has shown that the use of existing video games is a 
promising option for the creation of game-based assessments. However, 
as Quiroga et al. (2016) point out, existing games are usually inflexible 
with regard to task design and data export. As a consequence, none of 
the game-based assessments reviewed above has explored the psycho-
metric properties of process data captured from the game environment. 
For the present study, we used the popular video game Minecraft in 
combination with Project Malmo (Johnson, Hofmann, Hutton, & Bignell, 
2016), an application programming interface (API) providing full con-
trol over the game environment, to implement a series of visuospatial 
and inductive reasoning tests. We were thus able to leverage the game 
environment of an immensely popular video game while retaining full 
control over task design and capturing high-resolution log-data for 
further analysis. The present work combines the approaches of Baniqued 
et al. (2013), Buford and O’Leary (2015), Foroughi et al. (2016) and 
Quiroga et al. (2015, 2016, 2019), who pioneered the use commercial 
video games for intelligence assessment, and Bergner et al. (2014), Hao 
et al. (2015), Zhu et al. (2016) and Shu et al. (2017), who have started to 
explore the psychometric properties of process data in complex problem 
solving. 

Minecraft is a digital sandbox game that enables players to design and 
simulate three-dimensional worlds. The player is represented as a first- 
person avatar in a voxel-based environment consisting of cubic blocks. 
Players can create fanciful structures from a variety of materials, interact 
with other players and accept quests such as solving puzzles or fighting 
monsters. Producing raw materials through mining activities and col-
lecting items in order to build structures are central aspects of the game. 
With more than 200 million copies sold since its release in 2009, 
Minecraft is among the most popular games of all time. Its popularity as 
well as its flexibility have recently led Minecraft to being used in 
educational applications and research (Dikkers, 2015; Ekaputra, Lim, & 
Eng, 2013; Ellison, Evans, & Pike, 2016; Karsenti, Bugmann, & Gros, 
2017; Pusey & Pusey, 2015). Minecraft has also shown potential as a tool 
for artificial intelligence (AI) research. Project Malmo is an AI experi-
mentation platform based on Minecraft. It contains an API that enables 
researchers to integrate AI agents, design tasks and run experiments in 
the game environment (Johnson et al., 2016). The API provides full 
control over the configuration of the Minecraft environment, including 
spatial arrangements, target structures and data export. 

We used Project Malmo to create a game-based assessment in Mine-
craft. The game incorporates a narrative, extensive tutorials and 
currently three Minecraft-based intelligence tasks: a matrix-based 
pattern completion task (PC) where the player has to infer a set of 
rules in order to complete a series of matrices, a mental rotation task 
(MR), and a spatial construction task (SC), similar to traditional block 
design tasks, where the player has to recreate a model structure with a 
limited inventory of blocks. The tasks can be classified according to the 
Cattell-Horn-Carrol model (Carroll, 1993; McGrew, 2005). The PC task 
would be classified as a measure of inductive reasoning belonging to the 
factor of fluid intelligence (Gf). The MR and SC tasks involve 
visuo-spatial abilities and would thus be categorized as visual processing 
tasks (Gv). However, the Minecraft-based tasks differ from their con-
ventional counterparts in several important ways: they are implemented 
in an immersive three-dimensional environment that can be explored 
and manipulated; they focus heavily on constructed response formats; 
they record process data in addition to outcome data; and they are in-
tegrated in a game structure with a narrative. Hence, our Mine-
craft-based testing platform incorporates many of the advantages of 
game-based assessments and provides a solution to most of the prac-
tical concerns discussed in the previous section, as the Project Malmo API 
provides full control over the game environment, enabling the con-
struction of customized task types, stimuli and data export functions in 
Minecraft. The design of the Minecraft-based testing platform was guided 
by the recommendations made by Quiroga et al. (2011, 2015, 2016). A 

H. Peters et al.                                                                                                                                                                                                                                   



Computers in Human Behavior 119 (2021) 106701

4

detailed description of the testing platform and the implemented tasks 
can be found in the methods section. 

The main goal of this paper is to investigate Minecraft and Project 
Malmo as a tool for game-based intelligence assessment. We first conduct 
Rasch analyses at subscale level in order to eliminate psychometrically 
poor items and to assess the psychometric properties of the three scales. 
Secondly, we assess factorial validity. We hypothesize that the items of 
the three scales load on distinct factors representing distinct but posi-
tively related abilities. Third, convergent validity is assessed by 
analyzing the relationship between the subscales of the Minecraft-based 
test and two conventional reasoning tests: Raven’s Standard Progressive 
Matrices (RSPM; Raven, Raven, & Court, 2000) and Vandenberg & Kuse 
Mental Rotations Test (VKMR; Peters et al., 1995). In line with previous 
research (Foroughi et al., 2016; Quiroga et al., 2015), we hypothesize a 
strong positive relationship between latent factors of intellectual ability 
as measured in Minecraft and measured by conventional means. With 
regard to discriminant validity, we expect Minecraft-based subscales to 
show weaker relationships with paper-based tests belonging to a 
different factor in the Cattell-Horn-Carrol model (Carroll, 1993; 
McGrew, 2005) as compared to correlations with constructs of the same 
factor. Furthermore, we analyze effects of gender and prior experience 
with the video game Minecraft on ability scores. Here, we hypothesize a 
positive effect of Minecraft experience on performance in the SC task, as 
the task requires relatively good command of the game controls. We also 
expect that there is a gender effect regarding performance in the MR and 
SC tasks, consistent with prior research indicating a pronounced male 
advantage in spatial reasoning (Voyer, Voyer, & Bryden, 1995). Finally, 
we explore the relationships between game log-data from the SC task 
and performance in all Minecraft-based tasks, as well as the conventional 
validation tests. First, we use supervised machine learning techniques to 
predict scale scores from the log-data on a hold-out set not previously 
used for modelling. We expect the SC log-data to be most predictive of 
performance in the SC task itself as compared to performance in the PC 
and the MR tasks if the log-data captures information about task-specific 
abilities. Similarly, we expect the SC log-data to be more predictive of 
VKMR scores as compared to RSPM scores if the log-data captures spe-
cific information about visuo-spatial reasoning (Gv). Second, we use 
unsupervised learning to find clusters in the log-data, which represent 
distinct behavioral patterns. We expect the different behavioral clusters 
to be associated with different levels of performance in the SC task. We 
use local regression models to further analyze the nonlinear relation-
ships between individual behavioral features and performance. 

2. Method 

2.1. Participants 

The three Minecraft-based tests as well as the validation tests Raven’s 
Standard Progressive Matrices (RSPM) and Vandenberg & Kuse Mental 
Rotations Test (VKMR) were administered to a sample of Australian fifth 
and sixth grade primary school students. A total of 130 students took the 
Minecraft-based test. The age of the participants ranged from ten to 
twelve years (M = 11.18, SD = 0.73). In the sample there were 73 girls 
and 57 boys from six different classes in two schools. Out of the 130 
participants, 116 had played the video game Minecraft before. A total of 
120 data sets could be matched with paper-based test results from the 
RSPM and VKMR tests (69 girls, 106 with Minecraft experience; age M =
11.18, SD = 0.73). The unmatched data was still used for scale con-
struction and factor analyses. All other analyses were performed on the 
subset of data that could be matched with paper-based test results. No 
individual participants were excluded from the analyses. The schools 
were public primary schools in metropolitan Sydney chosen by the New 
South Wales Education Standards Authority (NESA). School principals 
selected which classes of grade 5 or grade 6 students participated. 

2.2. Materials 

The Minecraft-based test was created by the authors of the present 
paper using the Project Malmo API (Johnson et al., 2016) for the pro-
gramming language Python (van Rossum, 1995). A key feature of the 
platform is its ability to record log data from the Minecraft game envi-
ronment through a customized data export function. The version that 
was used in the present study comprised the three intelligence tasks 
Pattern Completion (PC), Mental Rotation (MR) and Spatial Construc-
tion (SC). Each subtest consisted of 12 items, some of which were later 
excluded as a result of the item analysis. Tutorials were used to famil-
iarize test takers with the game controls and to minimize the effect of 
prior Minecraft experience. The first tutorial orients the test taker to 
basic keyboard and mouse controls. The second tutorial demonstrates 
how to destroy blocks and collect raw materials. The third tutorial trains 
the test taker to use their inventory and to build structures using the 
materials mined in the previous tutorial. At the end of the tutorials, there 
was a practice test requiring test takers to demonstrate basic command 
of the game controls by placing colored blocks in designated areas. The 
tutorial section was followed by the PC task, the MR task and the SC task, 
all of which are described in detail in the measures section. In order to 
succeed in the tasks, no controls were needed that had not been previ-
ously covered in the tutorials. All other controls that exist in the 
commercially available version of Minecraft were disabled. Tutorials, 
questionnaires and subtests were integrated in a space-themed narrative 
which we assumed would create a coherent game-like experience. 

2.3. Measures 

The measures in the present study fall into four broad categories. 
First, there are the actual Minecraft-based scales PC, MR and SC. Second, 
there are other performance related measures from the Minecraft game 
environment, such as log data and data from the tutorial tasks. Third, 
there are self-report measures including demographics and control 
variables. And finally, there are the paper-based validation tests Raven’s 
Standard Progressive Matrices (RSPM; Raven, Raven, & Court, 2000) 
and Vandenberg & Kuse Mental Rotations Test (VKMR; Peters et al., 
1995). The two validation tests were chosen, because they are well 
established measures of fluid intelligence and spacial reasoning, suitable 
for administration in group settings. 

Pattern completion task (PC). The first Minecraft-based subtest is a 
matrix-based inductive reasoning test, where the test taker completes a 
sequence of matrices according to a set of underlying transformations, 
which have to be inferred from visual information. Each item presents a 
series of three 3 × 3 matrices consisting of two to four different block 
colors arranged in a varying pattern. The matrices form a horizontal 
row, embedded in a wall facing the avatar. The matrix on the left 
specifies the initial configuration of each series. All other matrices in a 
specific item are transformations of the matrix to their left, which means 
they can be obtained by applying a set of rules to the blocks in the 
preceding matrix. Blocks of the same type are subject to identical rules: 
they move around and appear or disappear in the same recurring 
pattern. The fourth matrix in each series is a blank space that can be 
filled with blocks from the avatar’s inventory. If the test taker fills in the 
correct blocks in the correct pattern, the answer is scored as correct. Test 
takers are allowed to delete and replace blocks. Each item has a time 
limit of 100 s. If the test taker does not solve the item within 100 s, the 
solution is scored as incorrect. The PC task is intended as a measure of 
fluid intelligence. The scale was constructed such that items with higher 
complexity, in terms of the number of different block types and the 
number of rules they involve, were expected to be more difficult. An 
example of a PC item can be found in Fig. 1. 

Mental rotation task (MR). The second Minecraft-based subtest is a 
mental rotation task. In each item the test taker encounters a range of 
four structures in three-dimensional space. Each structure is placed on a 
3 × 3 plane and reaches up to three levels in height. Three out of the four 
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structures in each set are identical but rotated along at least one rotation 
axis. One out of the four structures is different, i.e. it cannot be obtained 
by rotating any of the other three structures. The task requires the test 
taker to determine which of the structures is different. The answer is 
submitted by clicking on a green square that is embedded in the ground 
in front of each structure. Choosing the correct structure is scored as a 
correct answer. Choosing the wrong structure or exceeding the time 
limit of 100 s per item is scored as an incorrect answer. A multiple choice 
answer format was chosen, because constructed response instructions 
would have been hard to comprehend by the participants (i.e. we would 
have needed to specify for each item by how many degrees, along which 
of the three rotation axes, and in which directions the structure should 
be rotated). As such, the Minecraft-based MR task is very similar to its 
pen-and-paper equivalent, the Vandenberg & Kuse Mental Rotations 
Test (Peters et al., 1995). A crucial difference is that test takers can 
actively change their position relative to the model structures. Being 
able to see the structures from different angles puts emphasis on spatial 
exploration as a means of gathering information that is necessary to 
solve the task. The scale was constructed such that items with a larger 
number of blocks, larger degrees of rotation and more rotation axes were 

expected to be more difficult. An example of an MR item can be found in 
Fig. 1. 

Spatial construction task (SC). The third Minecraft-based subtest can 
be described as a virtual block design test. The test taker has to copy a 
three-dimensional model structure to a designated area in virtual space. 
Each model is placed on a 3 × 3 plane and reaches up to three levels in 
height. The test taker can move the avatar around to investigate the 
model structure. The avatar is equipped with a minimal inventory of 
blocks, just enough to recreate the model structure. As a result the test 
taker is sometimes forced to plan ahead and build temporary scaffolds to 
place blocks that could otherwise not be placed, e.g. levitating blocks. If 
the structure in the designated building area is identical to the model 
structure, the answer is scored as correct. Each item has a time limit of 
100 s. If the test taker does not solve the item within 100 s, the solution is 
scored as incorrect. The SC task is intended as a measure of spatial 
ability. The scale was constructed such that items with more blocks and 
higher complexity in terms of scaffolding were expected to be more 
difficult. An example of a SC item can be found in Fig. 1. 

Tutorial Test. The tutorial test requires participants to demonstrate 
basic command of the game controls which they should have learned 
from the tutorials, i.e. navigating through their inventory and manipu-
lating their environment by placing blocks. The tutorial test is a single 
item where the participant has to place four differently colored blocks 
on four designated areas of matching colors. Time spent on the tutorial 
test is used as a measure of proficiency with the game controls. The test 
has a time limit of 100 s. 

Self-report measures. As control variables we collected age, gender 
(m/f) and prior Minecraft experience (y/n) as well as positive attitude 
towards video games and self-assessed gaming skills on a five-point 
Likert scale (see SI 1). Additionally, a test enjoyment questionnaire 
(TEQ) was designed to capture how much the participants liked the 
Minecraft-based test (see SI 2). 

Log data. Log data was recorded from the game environment in real 
time with a resolution of up to 20 times per second. The log data can be 
classified into time, space and action-related variables. Time-related 
variables include response times, time spent on tutorials, instructions 
and narrative screens as well as timestamps for every other recorded 
piece of data. Spatial data includes an avatar’s position in space (x, y, z 
coordinates), orientation in space (yaw, pitch) and detailed ray-casting 
information (coordinates of fixated point, type of fixated block, distance 
to fixated block). Action data captures the test taker’s interactions with 
relevant parts of the environment, namely correctly and incorrectly 
placed blocks as well as the number of corrections. Essentially, enough 
data was collected to completely replay an individual participant’s 
gameplay. Several aggregate-level variables were also recorded. These 
included distance travelled, distance between the avatar and relevant 
structures in the environment, and how long the cursor was pointed at 
relevant parts of the environment, such as answer options, or specific 
structures that were part of the task. 

2.4. Design and procedure 

The tests were administered in classroom settings of about 25 stu-
dents per session as part of the students’ normal school day. The Mine-
craft-based tests and validation tests were administered in two separate 
blocks of less than 1 h each, divided by a 30-min lunch break. The two 
blocks were counterbalanced so that half of the sample worked through 
the Minecraft-based tests first, while the other half of the sample worked 
through the pen-and-paper tests first. Both administrations were invig-
ilated and the participants were made aware of the fact that they were in 
a testing situation. Laptops were supplied to students with the Minecraft 
test application pre-installed. No personal or school laptops were used. 

At the beginning of the Minecraft-test block the participants were 
prompted to fill out a consent form and complete an introduction screen 
asking for demographics and other personal information, namely their 
attitude towards video games, self-assessed gaming skills and Minecraft 

Fig. 1. Screenshot of an of Minecraft-based Pattern Completion (PC) item, 
Mental Rotation (MR) item, and a Spatial Construction (SC) item in this order. 
Video examples can be found at https://github.com/hp2500/MARS. 
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experience (see SI 1). After completing the initial questionnaire, par-
ticipants worked through the three tutorials and the tutorial test. In all 
three tutorials, the test takers were required to finish the task within a 
100-s time limit. If a test taker failed a tutorial task, the tutorial was reset 
and the test taker had to try again until the task was successfully 
completed. This was to ensure that all test takers understood the controls 
well enough to succeed in the actual subtests and to minimize the effect 
of prior experience with the Minecraft game controls. After the tutorials, 
the PC task, the MR task and the SC task were completed in this order. 
The first two items of each task were training items. At the end of the 
Minecraft-test block, the participants completed the test enjoyment 
questionnaire (see SI 2). 

In the pen-and-paper block the participants first completed the 
VKMR and then the RSPM. The VKMR was administered first, because it 
is a timed test, which had the advantage that all participants finished the 
test roughly at the same time. The RSPM test was administered with a 
time limit of 40 min. Participants who finished early were instructed to 
stay at their desks and remain quiet. 

3. Results 

3.1. Rasch analyses and scale construction 

The item analyses of the three Minecraft-based subscales were based 
on the Rasch model. The Rasch model is an item-response theory (IRT) 
model, in which the probability of a specific item response (in our case 
correct/incorrect) is modeled as a logistic function of a person param-
eter (ability) and an item parameter (difficulty). Higher difficulty of an 
item is associated with a lower probability for test takers to solve the 
item correctly. Test takers with higher ability, on the other hand, are 
more likely to solve items correctly. The parameters are fitted such that, 
given a specific difficulty parameter value for each item and a specific 
ability parameter value for each test-taker, the overall likelihood of the 
observed data is maximized (Smith & Smith, 2004). In order to create 
scales that were in line with the assumptions of the Rasch model, we 
used stepwise item elimination. The first two items of every subscale 
were training items and were therefore excluded from the start. Other 
items were sequentially excluded from each subscale in case of low 
variance (more than 95% of the cases in one answer category) and sig-
nificant misfit (p < .05) in the χ2-based item total fit statistic (e.g., Smith 
& Smith, 2004). In each iteration the item with the highest χ2-value was 
eliminated until no item significantly misfitted the model. Exceptions to 
this rule were made in cases where the exclusion of such items would 
have resulted in a problematic overall model fit in Andersen’s likelihood 
ratio test or scale length dropping below six items. Andersen’s likelihood 
ratio test allows to assess whether parameters estimates differ between 
subsamples created by spliting the overall sample. If the model holds, 
the parameter estimates do not vary significantly between the sub-
samples (Engelhard, 2013). All steps of the analysis as well as parameter 
estimation were performed with the R package eRm (Mair, Hatzinger, & 
Maier, 2009). 

In the three Minecraft-based subtests PC, MR and SC, 4.9%, 5.5% and 
3.1% of the data was missing due to technical glitches during test 
administration. The data was missing completely at random (MCAR) 
according to Little’s (1988) MCAR test (all p > .054). The values were 
imputed using a random forest algorithm (Stekhoven & Buhlmann, 
2012), a non-parametric technique that has proven to be effective for 
imputation of responses in the context of Rasch analysis (Golino and 
Gomes, 2016). 

In the PC scale, item pc4 was excluded due to low variance and item 
pc12 due to low item fit. Andersen’s likelihood ratio tests demonstrated 
acceptable overall model fit under the median split criterion (χ2(7) =
10.59, p = .158) and the mean split criterion (χ2(7) = 7.401, p = .388). 
In the final 8-item scale, part-whole corrected point-biserial correlations 
ranged from 0.28 to 0.57 (M = 0.43, SD = 0.10). Cronbach’s alpha was α 

= 0.735. In the MR scale, items mr9, mr12 and mr11 were excluded due 
to low item fit. Item mr7 was retained despite low item fit, as the item 
was essential to overall model fit. Overall model fit in Andersen’s like-
lihood ratio test was acceptable under the mean split criterion (χ2(6) =
4.28, p = .64) and under the median split criterion (χ2(6) = 2.67 (p =
.85). Part-whole corrected point-biserial correlations in the final 7-item 
scale ranged from 0.21 to 0.42 (M = 0.33, SD = 0.069). Cronbach’s 
alpha was α = 0.61. In the SC scale, items sc3 and sc5 were excluded due 
to low variance and items sc11 and sc4 were excluded due to low item 
fit. Item sc9 was retained despite marginal item misfit, as it correlated 
well with the rest of the scale and scale length was not to be further 
reduced. Andersen’s likelihood ratio tests were not meaningful due to a 
lack of variance in some of the subgroups produced by the splits. 
Alternative measures of model fit, specifically Pearson’s R2 and area 
under the receiver-operating-characteristic curve (AUC) as proposed by 
Mair et al. (2008), demonstrated good model fit (R2 = 0.69, AUC =
0.96). In the final 6-item scale, part-whole corrected point-biserial cor-
relations ranged from 0.35 to 0.61 (M = 0.50, SD = 0.10). Cronbach’s 
alpha was α = 0.76. Item level statistics for all Minecraft-based subscales 
can be found in Table 1. For scale level statistics, please see Table 2. For 
a graphical depiction of item information curves, see SI 3. Additional 
psychometric analyses based on classical test theory (CTT) are reported 
in SI 4. 

3.2. Construct validity 

3.2.1. Factorial validity 
We tested for factorial validity across all three subscales. For this 

purpose we conducted a confirmatory factor analysis using the lavaan R 
package (Rosseel, 2012). We assumed a three-factor structure with 
latent variables corresponding to the three Minecraft-based scales and a 
single higher order factor representing g. Individual items of the reduced 
scales were used as indicators. PC items were expected to load on one 
factor representing inductive reasoning and MR and SC items were ex-
pected to load on two factors representing distinct spatial abilities. The 
estimation method was maximum likelihood and we used standardized 

Table 1 
Results of item analyses - retained items.  

item diff se cor χ2-fit  df p sp 

PC 
pc3 −1.44 0.24 0.43 83.82 114 0.99 0.81 
pc9 −0.77 0.21 0.48 79.84 114 1.00 0.71 
pc10 −0.72 0.21 0.28 127.61 114 0.22 0.71 
pc5 −0.67 0.21 0.57 66.92 114 1.00 0.70 
pc8 0.00 0.20 0.41 123.52 114 0.30 0.59 
pc7 0.55 0.20 0.39 122.14 114 0.33 0.50 
pc6 0.68 0.20 0.54 91.74 114 0.95 0.47 
pc11 2.37 0.26 0.32 108.32 114 0.68 0.21 
MR 
mr5 −0.35 0.18 0.36 99.03 110 0.76 0.49 
mr3 −0.31 0.18 0.29 118.59 110 0.27 0.48 
mr4 −0.27 0.18 0.29 115.67 110 0.34 0.47 
mr7 −0.20 0.18 0.21 139.25 110 0.03 0.46 
mr6 0.08 0.18 0.35 104.64 110 0.63 0.40 
mr8 0.08 0.18 0.42 95.77 110 0.83 0.40 
mr10 0.97 0.21 0.37 98.13 110 0.78 0.25 
SC 
sc6 −3.26 0.37 0.42 47.60 108 1.00 0.84 
sc7 −2.34 0.32 0.52 123.58 108 0.14 0.75 
sc8 −1.14 0.29 0.61 66.80 108 1.00 0.62 
sc9 1.36 0.29 0.53 141.86 108 0.02 0.34 
sc10 1.56 0.29 0.58 44.49 108 1.00 0.32 
sc12 3.83 0.43 0.35 29.82 108 1.00 0.10 

Note: PC = pattern completion task, MR = mental rotation task, SC = spatial 
construction task, diff = item difficulty, se = standard error, cor = part-whole 
corrected point-biserial correlations of item and scale, χ2 = chi-square item total 
fit, df = degrees of freedom of item fit statistic, p = significance level of item fit 
statistic, sp = proportion of participants who solved the item. 
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latent factors while allowing for free estimation of all factor loadings. 
Model fit in the hypothesized oblique three-factor-model with a 

higher-level factor was not acceptable with a comparative fit index (CFI) 
of 0.82 and a root mean square error of approximation (RMSEA) of 
0.060. It is likely that model fit was negatively affected by MR items, 
showing relatively low standardized factor loadings, one of which (mr7) 
was non-significant (p = .16). Since the MR scale was also problematic in 
terms of unidimensionality according to Drasgow & Lissak’s (1983) 
modified parallel analysis (p = .01), it is plausible that it’s items do not 
load well on a single factor in the overall model. We therefore performed 
another CFA with just PC and SC items as indicators. The model clearly 
supported a two-factor solution with a higher-level factor, exhibiting 
good model fit (CFI = 0.97, RMSEA = 0.031). The model fit the data 
significantly better than a one-factor solution (χ2(1) = 70.8, p < .001) 
and a model with orthogonal factors and not higher-level factor (χ2(1) =
22.0, p < .001). All indicators showed significant positive factor load-
ings, with standardized coefficients ranging from 0.33 to 0.71. The re-
sults confirm that the items of the PC and SC scales load on two distinct 
but related factors. For graphical representations of the model structures 
including standardized factor loadings, variances and covariances, 
please see SI 5 and SI 6. Model fit statistics of all tested models can be 
found in Table 3. 

3.2.2. Convergent validity 
We used a structural equation model (SEM) to test for the correlation 

of two latent variables representing an overall Minecraft-based measure 
of intelligence and an overall paper-based measure of intelligence. As 
multivariate normality was not satisfied according to the Henze-Zirkler 
test (HZ = 1.05, p = .008), we used the MLM estimation procedure 
which is robust against violations of the normality assumption (Satorra 
& Bentler, 1994). The SEM contained a latent variable based on 
scale-level scores of the PC and SC scales on the one hand and another 
latent variable based on RSPM and VKMR scores on the other hand. MR 
was left aside, as it did not fit in the assumed factor structure. We 

expected a positive relationship between the latent variables. In accor-
dance with our hypotheses, the SEM exhibited good model fit (robust 
CFI = .99) and the latent factors of Minecraft-based and paper-based 
tests showed a strong positive relationship (r = 0.72, p = .002). The 
model structure is depicted in Fig. 2. For measurement models of the PC 
and SC scales, please see SI 7. 

To test for convergent validity at subtest level we used Spearman’s 
correlations, because some of the test scores were non-normal. The 
correlation between PC and RSPM was significant (rs(118) = 0.28, p <
.001), but the effect size was somewhat lower than expected. The cor-
relation between MR and VKMR was significant with a moderate effect 
size (rs(118) = 0.39, p < .001). The SC scale showed a significant cor-
relation with VKMR (rs(118) = 0.39, p < .001). All other correlations 
ranged from rs(118) = 0.20 to rs(118) = 0.46 showing significant re-
lationships between all pairs. A comprehensive overview of effect sizes 
can be found in Table 4. Subtest correlations based on simple sum scores 
without item elimination can be found in SI 8. Subtest correlations 
controlling for the order of test administration are reported in SI 9. The 
results were highly consistent with the results reported above. 

3.2.3. Discriminant validity 
To assess discriminant validity we used Pearson’s and Filon’s z-test 

(Diedenhofen & Musch, 2015) to test for differences between correla-
tions expected to be high (e.g. MR and VKMR) and correlations expected 
to be comparatively low (e.g. MR and RSPM). The highest correlations 
were expected between PC and RSPM, both of which are matrix-based 
tasks (Gf), and between MR, SC and VKMR, all of which are spatial 
reasoning tasks (Gv). The correlations between PC and VKMR, MR and 
RSPM as well as SC and RSPM on the other hand were expected to be 
positive but significantly lower, as the tasks belong to related but 
distinct factors in the Cattell-Horn-Carroll model (Carroll, 1993; 
McGrew, 2005). Contrary to our hypothesis, the correlation between PC 
and VKMR was not significantly lower than the correlation between PC 
and RSPM (z = −1.26, p = .90). The correlation between MR and RSPM 
was lower than the correlation between MR and VKMR, but the differ-
ence was only marginally significant (z = 1.33, p = .09). In line with our 
hypothesis, the Minecraft-based SC scale showed its highest correlation 
with VKMR and its correlation with RSPM was significantly lower (z =
2.08, p = .018). 

3.3. Effects of gender and minecraft experience 

We used pairwise Welch tests and Wilcoxon rank-sum tests to 
determine the effect of gender and Minecraft experience on ability esti-
mates at subscale-level. We did not expect gender or Minecraft experi-
ence to have an effect on performance in the PC task. However, we 
suspected a gender effect in the MR task and the SC task and an effect of 
Minecraft experience in the SC task. As expected, Welch’s t-tests showed 
no significant group differences in the PC task (all p > .10). Furthermore, 
there were no significant group differences in the MR task (all p > .14). 
In the SC task, on the other hand, there were significant group differ-
ences with regard to gender (t(104.9) =−3.361, p < .001, d = 0.62) and 
prior Minecraft experience (t(15.97) = −2.96, p = .005, d = 0.91). For 
comparison, the conventional assessments did not exhibit any 

Table 2 
Scale level statistics.   

M SD miss LR AUC BIC Alpha 
PC 0.55 1.73 4.89% .39 .87 616 .74 
MR −0.40 1.42 5.55% .638 .77 663 .61 
SC −0.06 2.70 3.10% / .96 217 .76 
VKMR 12.0 5.73 / / / / .90 
RSPM 33.7 4.92 / / / / .76 

Note. PC = pattern completion task, MR = mental rotation task, SC = spatial 
construction task, VKMR = Vandenberg & Kuse Mental Rotations Test, RSPM =
Raven’s Standard Progressive Matrices; M = mean score or ability estimate, SD 
= standard deviation of sores or ability estimates, miss = rate of missing values, 
LR = p value of Andersen’s likelihood ratio test (mean split), AUC = area under 
Receiver-Operating-Characteristic (ROC) curve, BIC = Bayes Information Cri-
terion, Alpha = internal consistency. 

Table 3 
Factorial validity - CFA fit statistics.  

Model χ2  df CFI 90% CI RMSEA SRMR AIC 

1 272 186 .82 [.044, .075] .089 3083 
2 390 189 .58 [.078, .10] .10 3194 
3 298 189 .77 [.052, .081] .12 3103 
4 84 75 .97 [.000, .061] .058 1874 
5 155 77 .76 [.068, .11] .089 1941 
6 106 77 .91 [.025, .078] .12 1892 

Note. Models: 1 = Three factors with higher level factor, 2 = One factor, 3 =
Three orthogonal factors, 4 = Two factors with higher level factor (MR 
excluded), 5 = One factor (MR excluded), 6 = Two orthogonal factors (MR 
excluded),; CFI = comparative fit index; RMSEA = root-mean-square error of 
approximation; CI = confidence interval; SRMR = standardized root mean 
square residual, AIC = Akaike’s information criterion. 

Fig. 2. Structural equation model (SEM) of the latent relationship between 
Minecraft-based and paper-based intelligence measures; PC = pattern comple-
tion task, SC = spatial construction task, VKMR = Vandenberg & Kuse Mental 
Rotations Test, RSPM = Raven’s Standard Progressive Matrices. 
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significant group differences (all p > .05). 
No group differences were found with regard to enjoyment of the 

Minecraft testing experience between male and female participants (t 
(93.9) = 0.57, p = .57) and between participants with and without 
Minecraft experience (t(16.24) =−1.8384, p = .084). Furthermore, there 
were no group differences with regard to participants’ positive attitude 
towards video games (all p > .075), but with regard to self-assessed 
gaming skills (all p < .020), as males and participants with Minecraft 
experience tended to rate their skills more favorably. Self-assessed 
gaming skills, in turn, were correlated with PC scores (rs(118) = 0.21, 
p = .024) and SC scores (rs(118) = 0.37, p < .001). Group differences 
with regard to gender in the SC task persisted when the effect of self- 
assessed gaming skills was partialled out (t(105) = −2.38, p = .019), 
but group differences with regard to Minecraft experience did not (t 
(15.6) = −1.98, p = .066). Similarly, the differences remained signifi-
cant when correcting for time spent on the tutorial test, which was 
negatively correlated with SC task performance (rs(118) = −0.32, p <
.001) and can be interpreted as an inverse proxy of actual Minecraft skills 
(gender: t(95.1) = −3.36, p = .001; Minecraft experience: t(14.3) =
−2.16, p = .049). 

All comparisons were reexamined using a Wilcoxon rank-sum text as 
a non-parametric alternative to the t-test. The Wilcoxon tests showed 
several additional group differences, namely an effect of gender on 
VKMR-scores (p = .035), as well as an effect of gender and Minecraft 
experience on positive attitude towards video games (both p < .046). 
Structurally, however, the results are comparable as SC remains the only 
Minecraft-based task where significance persists after a Bonferroni- 
correction for multiple comparisons. For a detailed overview of group 
differences with effect sizes and significance levels, please see Table 5. 

3.4. Exploring behavioral data from game-logs 

In order to explore whether the log data collected through the Project 

Malmo API encodes information about test takers’ ability levels, we 
employed supervised machine learning techniques to predict sub-scale 
scores in the Minecraft test and the pen-and-paper tests, based on 
aggregate features derived from the logged variables. Considering the 
scope of the present paper we focus on log-data from the SC task, as the 
SC task provides the most opportunities for test takers to interact with 
the game environment, compared to the PC and MR tasks. Specifically, 
we used random forest regression models (Breiman, 2001) in conjunc-
tion with a nested cross validation scheme to assess how well the test 
scores could be predicted from the log data. Random forest models were 
fitted with 500 regression trees and up to 26 randomly selected features 
per split. In order to identify the optimal number of features used for 
each split we searched a hyper-parameter space including all even 
numbers between two and 26 and picked the model configuration that 
performed best on a validation set. This model was then evaluated on a 
testing set consisting of hold-out data. The inner loop of the 
cross-validation scheme used 10-fold cross-validation for 
hyper-parameter tuning, while the outer loop used Monte-Carlo cross 
validation with an 85/15 split and 30 iterations to estimate generalized 
model performance on testing data, which had not been previously used 
for training. The analyses were performed with the Caret (Kuhn, 2008) 
machine learning package for R. 

The features that were used for modelling capture how test takers 
interact with the game environment. We extracted the range, mean and 
standard deviation of each of the following variables: X, Y and Z co-
ordinates of the avatar’s position in space; X, Y and Z coordinates of the 
point in space that the cursor was focused on; the avatar’s distance to the 
point in space that the cursor was focused on; the pitch (the vertical 
orientation of the avatar, i.e. looking up or down); the yaw (the hori-
zontal orientation of the avatar, i.e. looking left or right). Additionally, 
we extracted overall distance travelled, as well as the time spent facing 
the model structure, the time spent facing the target structure, and the 
ratio of the two. Taken together, these 28 features provide a relatively 
complete picture of a test taker’s idiosyncratic interactions with the 
virtual environment. We purposefully decided not to use metrics like the 
number of correctly placed blocks or completion times, because such 
data would have revealed too much information about the solution 
process and would have rendered the prediction problem trivial. 

We found that the SC log-data was highly predictive of performance 
in the SC task, where the average correlation between predicted and 
observed test scores was r = 0.67. The SC log-data was less predictive of 
performance in the PC task, where the average correlation between 
predicted and observed test scores was r = 0.25, and in the MR task, 
where the average correlation between predicted and observed test 
scores was r = 0.20. Finally, the SC log-data predicted performance in 
the VKMR test, where the correlation between predicted and observed 
scores was on average r = 0.21, but not in the SPM test, where the 
average correlation was only r = 0.04. An overview of the results 
including error metrics can be found in Table 6. 

To further explore the idea that the log-data can provide information 
about differentially successful solution strategies, which may be indic-

Table 4 
Convergent validity - Spearman’s correlation coefficients.   

PC MR SC VKMR RSPM 
PC (.73)     
MR .20* (.62)    
SC .41*** .20* (.76)   
VKMR .39*** .39*** .39*** (.90)  
RSPM .28** .28** .20* .46*** (.76) 

Note. PC = pattern completion task, MR = mental rotation task, SC = spatial 
construction task, VKMR = Vandenberg & Kuse Mental Rotations Test, RSPM =
Raven’s Standard Progressive Matrices, *p < .05, **p < .01, ***p < .001; di-
agonal shows internal consistencies. 

Table 5 
Group comparisons - gender and minecraft-experience.   

gender Minecraft experience  
d p p* d p p* 

PC 0.31 .10 .054 0.20 .60 .74 
MR 0.20† .14† .16† 0.069 .79 .84 
SC 0.62† <.001† <.001† 0.91† .004† .001†
RSPM −0.14 .46 .87 −0.44 .23 .11 
VKMR 0.32† .05† .035† −0.17 .51 .53 
TEQ −0.11 .57 .57 0.54 .084 .066 
PAVG 0.31 .098 .012 0.68 .075 .046 
SAGS 0.57 .003 ¡.001 0.84 .020 .006 

Note. Results of Welch’s t-tests and Wilcoxon rank-sum tests, p* indicates p value 
of Wilcoxon rank-sum tests, †denotes one sided hypothesis, positive effect sizes 
indicate higher sores for male participants or participants with prior Minecraft 
experience, respectively; PC = pattern completion task, MR = mental rotation 
task, SC = spatial construction task, RSPM = Raven’s Standard Progressive 
Matrices, VKMR = Vandenberg & Kuse Mental Rotations Test, TEQ = test 
enjoyment questionnaire score, PAVG = positive attitude towards video games, 
SAGS = self-assessed gaming skills. 

Table 6 
Evaluation of performance prediction from SC log-data.   

RMSE MAE r 
M SE M SE M SE 

SC .77 .03 .64 .02 .67 .02 
PC 1.18 .03 .95 .03 .25 .03 
MR .96 .09 .81 .08 .20 .11 
VKMR 1.21 .03 1.00 .03 .21 .03 
SPM 1.33 .03 1.08 .02 .04 .04 

Note. Means and standard errors of evaluation metrics over 30 Monte-Carlo 
cross-validation iterations; RMSE = root mean squared error, MAE = mean 
absolute error, r = Pearson’s correlation coefficient of predicted and observed 
test scores. 
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ative of different ability levels, we adopted an unsupervised learning 
approach. First, we used the Uniform Manifold Approximation and 
Projection (UMAP; McInnes, Healy, & Melville, 2018) algorithm in 
conjunction with density-based spatial clustering (DBSCAN; Ester, 
Kriegel, Sander, & Xu, 1996) to find clusters in the previously described 
28-dimensional feature space. The clustering algorithm assigns data 
points to groups, such that similar data points are grouped together in 
the same cluster. The analysis revealed five distinct clusters (Fig. 3). We 
then analyzed between-cluster performance differences using analysis of 
variance (ANOVA) and a series of pairwise group comparisons. The 
ANOVA revealed significant differences in overall SC scores between 
clusters (F(4,115) = 8.77, p < .001). Cluster differences accounted for 
23% of the variance in SC scores (R2 = 0.23). Pairwise group compari-
sons revealed that cluster 3 in particular stood out for being associated 
with very low SC scores (M = −3.20, SD = 1.93), whereas cluster 1 was 
associated with particularly high scores (M = 1.22, SD = 1.92). Per-
formance differences between cluster 2 (M = −0.68, SD = 2.63), cluster 
4 (M = 0.61, SD = 2.50) and cluster 5 (M = 0.85, SD = 2.41) were less 
extreme. The results of all pairwise t-tests can be found in SI 10. 

In order to gain a detailed understanding of the associations between 
specific behavioral patterns and SC test scores, we extracted feature 
importance scores (permutation importance; Breiman, 2001) from each 
of the random forest models evaluated in the outer cross-validation loop. 
The importance scores of each feature were averaged across all 30 
cross-validation iterations. The results show that the features varied 
greatly in their predictive power. The avatar’s position on the vertical 
axis (Y_Pos_Mean, Y_Pos_SD), the distance that was travelled within the 
game environment (Distance_Travelled), the mean distance to the point 
in the environment that the cursor was aimed at (Ray_Dist_Mean), and 
the range of the degree to which the avatar was oriented along the 
vertical axis (Pitch_Range) were identified as the most important pre-
dictors. A full ranking of the features by permutation importance can be 
found in SI 11. Importantly, the feature importance scores include 
complex non-linear effects and interactions, which prevents a direc-
tional interpretation of the scores. To investigate the non-linear re-
lationships between the five most important features and SC test scores 
we fitted a series of local regression models using locally estimated 
scatter plot smoothing (LOESS; Cleveland, 1979). The resulting regres-
sion curves are depicted in Fig. 4. All of the depicted relationships are 
non-linear: while there is a strong positive relationship between 
Y_Pos_Mean and test scores for lower feature values, the relationship 
levels off for higher values; Y_Pos_SD shows a similar pattern; Ray_-
Dist_Mean, on the other hand, only shows a negative relationship for 
higher feature values; finally, Distance_Travelled and Pitch_Range show 
inverted-U shaped relationships indicating that mid-range values were 
associated with the highest test scores. The results suggest that specific 
behavioral profiles were associated with high scores in the SC task. Such 

behavioral profiles are characterized by efficient movement, appro-
priate distance to the focal objects in the environment, and high vari-
ability along the vertical spatial dimension. This means that successful 
participants were able to trade off spatial exploration and goal-directed 
behavior and effectively utilize all three spatial dimensions to solve the 
task. Importantly, when the same analysis was applied to the relation-
ships between SC log-data and VKMR scores the associations were very 
similar to the ones reported above (see SI 12). This indicates that the 
identified features indeed capture individual differences in spatial 
reasoning and not just differences in participants’ familiarity with the 
game controls or other artifacts. LOESS regression curves including 
confidence intervals for all features are reported in SI 13. 

4. Discussion 

4.1. Evaluation of the results 

The aim of the present study was to investigate Minecraft and Project 
Malmo as a tool for game-based assessment research. We therefore set 
out to create measures of fluid intelligence and spatial ability in the 
virtual environment of the game. All three Minecraft-based subscales 
were successfully fitted to the Rasch model. Mental Rotation (MR) items, 
however, appeared to load on more than one factor in violation of the 
unidimensionality assumption. Internal consistencies were acceptable 
considering the low number of items per scale and the exploratory 
character of the project. When corrected for scale length (de Vet, Mok-
kink, Mosmuller, & Terwee, 2017), the reliabilities were comparable to 
those of other innovative game-based assessments proposed by Foroughi 
et al. (2016) and Quiroga et al. (2016). The results show that scale 
construction was least successful in the case of MR, the only Mine-
craft-based task with a multiple choice answer format, as reliability was 
comparatively low, there was little variance in item difficulties, and the 
scale was not unidimensional. The relatively low accuracy in combina-
tion with surprisingly low response times (M = 18.23, Mdn = 13.52, SD 
= 17.23) in the MR task resembles previous findings concerning effects 
of game-like task presentation. Washburn (2003) reports that partici-
pants responded faster and with lower accuracy when an otherwise 
identical cognitive task was framed as a game. The author concludes that 
the observed speed-accuracy trade-off was a characteristic effect of 
competition, i.e. participants trying to win the game. This interpretation 
is supported by the fact, that test takers on average spent less time on 
items that were answered incorrectly (see SI 14). 

The problematic properties of the MR scale were reflected in the 
results of the CFA, revealing that the data did not support an overall 
three-factor solution with a higher level g-factor. This was due to the MR 
items not fitting in the hypothesized factor structure, a finding that is in Fig. 3. Clusters in SC log-data projected to two-dimensional UMAP-space. 

Cluster assignments are represented by colors. 

Fig. 4. LOESS regression curves of the relationships between the most impor-
tant features used in the random forest models (by permutation importance) 
and SC test scores. 
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line with the scale’s violation of the unidimensionality assumption. A 
CFA with just Pattern Completion (PC) and Spatial Construction (SC) 
yielded good model fit for a two-factor solution with a higher level g- 
factor, suggesting that the scales measure distinct constructs. This result 
is in line with the literature supporting distinct – albeit related – factors 
for fluid reasoning and spatial abilities (Gf and Gv in the Cattell-Horn- 
Carroll model; McGrew, 2005; Schweizer, Goldhammer, Rauch, & 
Moosbrugger, 2007). With regard to convergent validity, the Mine-
craft-based tests and the paper-based tests showed a strong correlation at 
the latent level between factors that can be described as nonverbal 
proxies for general intelligence made up of Gf and Gv. The latent rela-
tionship was lower than the one found by Quiroga et al. (2015) with a 
model including a wider range of game-based tasks from Big Brain 
Academy and a wider range of conventional measures of intelligence. 
The relationship was in the same range as the correlations found by 
Foroughi et al. (2016), which were based on a single video game, Portal 
2, and measures of fluid intelligence only. At subscale level, the Mine-
craft-based tests correlated moderately with each other and their 
paper-based counterparts. The correlations were comparable in size to 
correlations between different WISC and WAIS subtests for average to 
high IQ participants (Detterman & Daniel, 1989) and the subtest-level 
correlations between game-based assessments and conventional tests 
reported by Quiroga et al. (2016) or Jones et al. (1986). However, they 
were lower than what would be expected for conventional tests aiming 
to measure similar constructs and also somewhat lower than the 
subtest-level correlations reported by Quiroga et al. (2015). The results 
concerning discriminant validity were mixed. As expected, the SC scale 
showed a significantly lower correlation with RSPM than with VKMR. 
The MR scale also showed the expected pattern, but the difference of the 
correlation coefficients was only marginally significant. The expected 
pattern of correlations was not found in the case of the PC scale, which 
did not show a lower correlation with VKMR than with RSPM. The last 
finding is not in line with our hypotheses, but on the other hand previous 
research finds that matrix tasks like Raven’s Advanced Progressive 
Matrices involve spatial ability and show moderate correlations with 
mental rotation tests (Mackintosh & Bennett, 2005; Schweizer et al., 
2007). It is possible that the relationship with spatial ability is even more 
accentuated in the PC task, since the stimuli are three-dimensional and 
the item transformations are based on movement patterns of blocks and 
changes of location rather than transformations of geometric shapes in a 
single matrix as in RSPM. This interpretation is supported by findings 
that scores in a cognitive task showed an increased association with Gv 
when presented in a game-like fashion (McPherson & Burns, 2007). 

Group differences with regard to gender and Minecraft experience 
show a male advantage and a positive effect of Minecraft experience on 
ability estimates in the SC task, even when corrected for self-assessed 
gaming skills or actual Minecraft skills demonstrated in the tutorial 
test. The findings are in line with our hypotheses and prior research 
suggesting gender differences in spatial reasoning (Voyer et al., 1995). 
The fact that prior findings regarding gender differences in spatial 
reasoning were reproduced can be interpreted as additional evidence of 
construct validity (Cronbach & Meehl, 1955). On the other hand, such 
differences raise questions regarding the fairness of the test. Given the 
small number of students without Minecraft experience (only 14 in-
dividuals), the effect of prior Minecraft experience has to be treated with 
caution. Assuming, however, that the effect is reliable, there are at least 
three possible explanations. First, it is possible that participants’ lack of 
familiarity with the game controls interferes with the solution process – 

either by preventing them from submitting the correct solution through 
psychomotor constraints or by absorbing cognitive resources that could 
otherwise be used to solve the problem (see Sweller, 2010). This inter-
pretation would pose a threat to the fairness of the test, as individuals 
without Minecraft experience would be disadvantaged. Second, exposure 
to video games, in this case Minecraft, may be the cause of a real 
improvement in spatial reasoning among the subsample with Minecraft 
experience (Granic, Lobel, & Engels, 2014; Uttal et al., 2013). Finally, 

there is the possibility that the results are in part attributable to reverse 
causality, as individuals with good spatial ability may feel drawn to 
games where they can put their spatial strength to use and thus may be 
more likely to have experience with Minecraft. While a single causal 
explanation of the effects is highly unlikely it should be noted that the 
latter two explanations are not supported by our data as there was no 
positive relationship between Minecraft experience and VKMR scores. 
Hence, it is likely that familiarity with Minecraft gives test takers an 
advantage in the SC task. 

The analysis of game log-data indicates that testing performance can 
be predicted from relatively abstract patterns in test takers’ interactions 
with the game environment. Specifically, we found that SC scores can be 
predicted accurately on hold-out data, and that different behavioral 
clusters were associated with performance differences in the SC task. 
These results are in line with earlier findings indicating that perfor-
mance in the wells-task can be predicted from discrete action sequences 
(Hao et al., 2015; Zhu et al., 2016) and that cluster analyses can pick up 
on performance related information (Bergner et al., 2014). Importantly, 
in distinction from previous research, we also tested how well the 
log-data predicted performance in the other Minecraft tasks and the 
pen-and-paper tasks in order to arrive at a first assessment of convergent 
and discriminant validity. The results showed that the SC log data was to 
a lesser extent predictive of performance in the PC and MR tasks 
compared to SC performance, indicating that it encodes task-specific 
information and not just navigation skills or familiarity with the game 
controls. Interestingly, the SC log-data was also more predictive of 
VKMR scores compared to RSPM scores (i.e., the quality of the pre-
dictions mapped onto the strength of the associations that would be 
expected based on the CHC), which indicates that the log-data indeed 
captures information about participants’ spatial reasoning ability. The 
observed pattern of results hence provides additional evidence for the 
construct validity of the Minecraft test. Another key difference that sets 
the Minecraft test apart from previous work is the volume and granu-
larity of data that is collected. While previous research (e.g. Bergner 
et al., 2014; Hao et al., 2015; Shu et al., 2017; Zhu et al., 2016), mainly 
dealt with discrete univariate process data, such as action sequences, the 
Minecraft-based assessment opens up a larger, less well-defined action 
space and produces continuous multivariate data, potentially encoding 
more information, but also posing methodological challenges that have 
to be addressed in future research. 

Our initial investigation of the relationships between individual 
behavioral features and test scores revealed distinct behavioral profiles 
that are associated with high levels of spatial ability. Such behavioral 
profiles are characterized by efficient movement within the game 
environment, appropriate distance to the focal objects within the envi-
ronment, and high variability along the vertical spatial dimension. The 
inverted U-shaped relationships between movement, as well as distance 
to focal objects, and test scores speak to participants’ ability to trade off 
spatial exploration and goal-directed behavior. While travelling further 
distances and creating distance between the avatar and focal objects can 
help to explore relevant parts of the environment, such behaviors may 
interfere with the construction of the target structure, which requires 
test takers to focus on a particular part of the environment and to be 
close enough to place blocks in the designated area. These findings 
highlight the known relationship between intelligence and goal-directed 
behavior (Duncan, Emslie, Williams, Johnson, & Freer, 1996) in the 
context of spatial reasoning and relate loosely to the process coordina-
tion view of spatial reasoning (Pellegrino, Alderton, & Shute, 1984). The 
positive relationships between vertical movement and test scores indi-
cate that individuals who changed their elevation levels were particu-
larly successful. Associated behaviors include jumping up and down, 
building scaffolds in order to explore the model structure and attach 
blocks to the target structure, or to construct the target structure while 
standing on top of it. Such behaviors speak to participants’ ability to 
utilize all three spatial dimensions when solving the task. This obser-
vation is consistent with previous research linking flexible strategy 
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choice to performance in spatial reasoning (Hegarty, 2010). Further-
more, our results are in line with previous findings indicating that high 
levels of spatial ability result in the adoption of more holistic solution 
strategies leading to superior performance in spatial reasoning tasks 
(Buckley, Seery, & Canty, 2019). Our results also can also be interpreted 
in light of Hegarty’s (2010) idea of representational meta-competence as 
a component of spatial reasoning. Meta-representational competence 
(diSessa, 2004) describes peoples’ ability to choose the best represen-
tation for a particular task and interact effectively with novel displays 
without explicit instruction. While the behavioral log-data does not 
enable us to directly assess test-takers’ representational states, the data 
clearly suggests differences in the effectiveness of test-takers’ approach 
to the virtual environment and the task, which are consistent with the 
concept of meta-representational competence. Importantly, the re-
lationships between SC log-data and VKMR scores closely mirrored the 
relationships between SC log-data and SC scores, suggesting that the 
identified features indeed capture individual differences in spatial 
reasoning and not just differences in participants’ familiarity with the 
game controls or other artifacts. Taken together, these findings provide 
further support for the validity of the SC task and demonstrate how the 
analysis of multivariate process data can contribute to our understand-
ing of the psychometric properties of game-based assessments. As such, 
our findings provide a meaningful addition to earlier work on the 
analysis of process data in complex problem solving tasks (Bergner et al., 
2014; Hao et al., 2015; Shu et al., 2017; Zhu et al., 2016) and recent 
research exploring the use of sensing technologies for the collection of 
process data in block design tasks (Cha, Ainooson, & Kunda, 2018; Lee 
et al., 2018). 

With regard to task design and presentation in game-based assess-
ments, the present study raises four major points. First, multiple choice 
formats as in MR seem to encourage guessing in game-like tasks, as test 
takers may feel encouraged to explore and use trial and error strategies – 

possibly because it is less clear to students that they are taking a test, 
compared to conventional tests on paper (Washburn, 2003). Second, 
complex constructed response formats as in the SC task eliminate the 
danger of excessive guessing, but may introduce other distortions as a 
result of differences in psychomotor abilities (Foroughi et al., 2016) and 
familiarity with computer games (Hambrick, Oswald, Darowski, Rench, 
& Brou, 2010). We agree with prior research (Foroughi et al., 2016; 
Greiff et al., 2016) that test performance needs to be independent of 
gaming experience and computer skills. We therefore want to stress the 
importance of tasks with low psychomotor requirements and tutorials 
specifically preparing test takers for the tasks they are about to face. 
Tutorials are essential, not only to offset differences in familiarity with 
game controls, but also to balance out differential learning curves in 
video games (Jones, 1984). Another potential solution would be the 
presentation of tasks in virtual reality (VR), which is possible in Mine-
craft as it has already been adapted to be playable on consumer VR 
devices like the Oculus Rift. Participants without gaming experience 
may find it more intuitive to look around by moving their head in VR 
than they would looking around with the mouse. Third, the effects of 
three-dimensional, game-like presentation on performance, motivation 
and the factorial structure of intelligence measures should be further 
investigated, as there is the possibility that game-like presentation 
differentially affects test takers’ motivation (Mislevy et al., 2014) and, as 
illustrated by the PC task, may disproportionally emphasize the impor-
tance of Gv (McPherson & Burns, 2007). Finally, our results indicate that 
complex tasks, such as the SC task, yield useful process data that cap-
tures information about test takers ability and could be used alongside 
with traditional scoring approaches in future assessments. 

4.2. Limitations and directions for future work 

The present study has some limitations with regard to sample size 
and representativity of participants and psychometric tasks. In future 
studies, the assessment should be recalibrated and cross-validated with a 

wider range of tasks, a larger sample of participants, and a larger 
number of items per scale, allowing for the creation of item banks for 
adaptive testing and an in depth investigation of differential item 
functioning. Additional conventional measures of intelligence could be 
used for the purpose of construct validation, for example measures of Gc 
could be included for a better assessment of discriminant validity. In the 
context of construct validation it may also be advisable to conduct a 
multi-trait-multi-methods analysis. Most importantly, criterion validity 
should be addressed by including external outcomes such as academic 
achievement, specifically in the fields of science, technology, engi-
neering and mathematics (STEM), which are closely associated with 
fluid intelligence and spatial reasoning (Kell & Lubinski, 2013; Wai, 
Lubinski, & Benbow, 2009). Another key point is incremental validity, 
the question of whether the game-based tests predict criterion variance 
not shared with paper-based tests, as it would indicate the involvement 
of ability factors that are not present in conventional assessments (Jones 
et al., 1986). We found anecdotal evidence that a student with autism 
particularly enjoyed the game-based assessment whereas the same stu-
dent found it difficult to complete paper-based assessments. This in-
dicates that games have the potential to bring out capabilities in certain 
students that they do not demonstrate on paper. This is worthy of 
follow-up study. Future studies should also take into account the role of 
the narrative and other game design principles. For example, it would be 
possible to give test-takers more control about the testing experience by 
enabling non-linear game-play sequences, where players determine the 
order in which they work through the tasks (Kim & Shute, 2015). 

Given the overall favorable results of our study, it seems appropriate 
to briefly discuss two opportunities for future work, which set the cur-
rent project apart from previous work on game-based assessment: the 
analysis of log-data from the game environment and automatic item 
generation. As our exploratory analyses suggest, the log-data captures 
information about test-takers’ performance. Future work could expand 
more on this finding. First, since the present paper focuses on SC log- 
data, future work should explore the properties of the log-data from 
the remaining tasks. Second, log-data could be used to detect differential 
strategies and problematic behaviors such as rapid guessing and refusal 
to work, or problems with the game controls. Third, it would be inter-
esting to predict not only ability estimates, but also external criteria 
from the log-data. This could provide additional evidence that the data 
encodes information about test-takers’ ability levels. As mentioned 
above, the complexity of the log-data also calls for methodological 
innovation, as the structure of the data is not compatible with conven-
tional psychometric modelling approaches. Furthermore, the Minecraft 
environment seems predestined for automatic item generation - 
employing computer algorithms to generate new items on-the-fly (Gierl 
& Haladyna, 2013; Gierl and Lai, 2012). Due to the block-based orga-
nization of the environment, structures in Minecraft can easily be rep-
resented as arrays in various programming languages. These data 
structures can be transformed according to computer-generated rules 
and translated back into code that is processed by the Project Malmo API. 
All of this can happen in a single Python script. That means that an 
automatic item generator can produce fully functioning items that are 
automatically implemented in the Minecraft environment and can be run 
in real time. 

4.3. Conclusions 

All in all, the present study suggests that customized assessments 
based on existing games have the potential to become a viable com-
panion to conventional assessments in the future. We have shown for the 
first time that Minecraft can be used as an assessment platform and that 
reasoning tests can be implemented in the three-dimensional game 
environment. We found that young children are not necessarily 
distracted by the game-like features of Minecraft and genuinely engage 
with the assessment task. Unlike previous work on the measurement of 
intelligence with video games, the present study uses a Rasch model for 
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scale construction, which is a first step towards the application of 
computer adaptive testing in game-based assessment. Adaptivity is 
especially important in game-based assessment, as it allows for the 
presentation of moderately difficult items relative to individuals’ ability 
levels and moderate task difficulty is one of the key principles of game 
design (Gee, 2003; Przybylski, Rigby, & Ryan, 2010). Hence, adaptivity 
is likely to increase enjoyment and motivation in addition to test effi-
ciency (Mislevy et al., 2014). The flexibility of Project Malmo, enabling 
the definition of customized task types and performance criteria, com-
bined with its capacity to record real-time process data and its suitability 
for automatic item generation, makes Minecraft a very promising tool for 
future work in game-based assessment. Furthermore, the implementa-
tion of intelligence tasks in an environment that is open to machine 
learning applications - and thus also computational models of cognition - 
has the long term potential to integrate the research areas of psycho-
metric task design and cognitive theory, which is a key challenge in the 
field of game-based assessment and psychometrics in general (Embret-
son, 1998; Primi, 2014; Quiroga et al., 2016). 
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