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A B S T R A C T   

Here we examine three classes of models regarding the structure of human cognition: common cause models, 
sampling/network models, and interconnected models. That disparate models can accommodate one of the most 
globally replicated psychological phenomena—namely, the positive manifold—is an extension of under-
determination of theory by data. Statistical fit indices are an insufficient and sometimes intractable method of 
demarcating between the theories; strict tests and further evidence should be brought to bear on understanding 
the potential causes of the positive manifold. The cognitive impact of focal cortical lesions allows testing the 
necessary causal connections predicted by competing models. This evidence shows focal cortical lesions lead to 
local, not global (across all abilities), deficits. Only models that can accommodate a deficit in a given ability 
without effects on other covarying abilities can accommodate focal lesion evidence. After studying how different 
models pass this test, we suggest bifactor models (class: common cause models) and bond models (class: sampling 
models) are best supported. In short, competing psychometric models can be informed when their implied causal 
connections and predictions are tested.   

1. Introduction 

All cognitive abilities positively covary. People with high perfor-
mance in one ability tend to show high performance in other abilities, all 
over the world (Carroll, 1993; Jensen, 1998; Kovacs & Conway, 2019; 
Spearman, 1904; Tucker-Drob, Braindmaier, & Lindenberger, 2019; 
Warne & Burningham, 2019). To explain this covariance, causal expla-
nations are required. To understand the relative strength of each 
explanation, we can test the implications of the models using evidence 
from neuroscience. 

Covariance between two variables (A & B) can occur for any of six 
reasons: A causes B, B causes A, A and B cause one another, A and B share 
a common cause, A and B share a collider, and their covariance is 
spurious (see also Rohrer, 2018). These are not mutually exclusive and 
multiple can be operative at the same time leading to the covariance. As 
the positive manifold is not an artifact or spurious (Spearman, 1904; 
Jensen, 1998, Kovacs & Conway, 2019, Tucker-Drob et al., 2019; cf. 
Anderson, 2017) nor does it only shows up in some populations (Warne 
& Burningham, 2019), the reason must involve causal connections in 
some way. Importantly, all theories about the cause of the positive 
manifold have testable causal hypotheses that we explore here. 

In parallel, neuropsychological research has shown chronic focal 
cortical lesions lead to local, not global (e.g. not across all abilities), 
deficits (Luria, 2012; Ruíz Sánchez de León, Quiroga, & Colom, 2019). 
This has been shown relying on clinical case studies (Vaidya, Pujara, 
Petrides, Murray, & Fellows, 2019), as well as analyzing relatively large 
samples using neuroimaging approaches such as voxel-based lesion 
symptom mapping (VBLSM; e.g. Barbey et al., 2012; Barbey, Colom, 
Paul, & Grafman, 2014; Gläscher et al., 2009, 2010). 

The purpose here is to bring these two worlds together, cognitive 
structure of individual differences (psychometric approach) and find-
ings from lesion studies regarding impact over cognitive performance 
(neuroscience approach) to discuss what bearing lesion evidence has for 
understanding the causes of the positive manifold and the structure of 
human intelligence. This will be done through the lens of causality and 
causal implications of measurement models. We focus our attention on 
chronic lesions because, as underscored by Vaidya et al. (2019) these 
lesions “can reveal the necessary contributions of damaged brain regions 
that are not recovered by reorganization and plasticity” (p. 660). This 
might shed light beyond the usual statistical comparison among candi-
date models which, as we will see, leads to conceptual dead ends. 
Finally, we take a falsifiability approach. Instead of searching for 
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evidence that confirm a theory, we look at the testable causal implica-
tions of different theories and see how those testable (yet often une-
numerated) predictions play out. To this end, we do not aim to show 
how certain psychometric models inform neuroscience, as it is entirely 
possible the causal structure represented by a psychometric model does 
not reflect brain organization. As psychometric models are causal the-
ories, however, neuroscience can inform the plausibility of the neces-
sarily implied causal effects of different models. 

The value for individual differences research is enumerating how 
model fit can fail to differentiate among theories of the positive mani-
fold. We highlight how neuropsychology is relevant by allowing causal 
tests of the necessary implications of different theories. Efforts invested 
to connect individual differences research and neuropsychology might 
also help to alleviate limitations in both worlds (see McFarland, 2017, 
2019). 

We show the positive manifold must occur because of some causal 
reasons. Different explanations have distinguishable implications for 
what would happen if a local manipulation were applied to only some 
mental abilities. Focal chronic cortical lesions are one example of such a 
local manipulation. As these lesions show local instead of global effects, 
explanations for the positive manifold predicting spreading activation 
hardly account for available lesion evidence, while explanations that 
necessarily imply no such transfer between abilities are more plausible. 

The article is organized as follows: Section 2 introduces different 
classes and explanations for the positive manifold. Section 3 presents the 
problem of trying to differentiate which ones may be more likely. Sec-
tion 4 introduces the neuropsychology evidence showing chronic focal 
cortical lesions lead to local not global intellectual deficits. Section 5 
describes how the necessarily causal implications of different models 
accommodate the focal lesion locality effects. Section 6 summarizes key 
conclusions. 

2. Three classes of explanations of the positive manifold 

The positive manifold (Table 1) could occur for a number of reasons 
albeit known explanations usually fall into one of three classes: (1) 
common cause, (2) interconnected (causal interactions), and (3) sam-
pling models (see Table 2). 

We discuss the logic behind these models before exploring their 
predictions and interrogating brain lesion studies for finding candidate 
answers beyond the psychometric approach. 

2.1. Common cause models 

This class posits the positive manifold occurs because on top of 
measuring local (specific) abilities, each test is also measuring the same 
underlying general ability. These structures allow for clusters of sub- 
factors explaining why, for example, verbal abilities correlate more 
strongly with other verbal abilities (e.g. Jensen, 1998). 

Correlated factor models (Fig. 1A) posit sub-factors cause differences 
in subtest performance, with the clusters of sub-factors covarying with 
one another (for example: McAuley & White, 2011; Miyake et al., 2000; 
Neubert, Kretzschmar, Wüstenberg, & Greiff, 2015). These sub-factors 
could be considered specialized packets of independent abilities (e.g. 
Fodor, 1983, 1985). The number and nature of these sub-factors has 
been a matter of intense investigation, both psychometrically (see, for 
example: Thurstone, 1935; Cattell, 1943; Vernon, 1964; Horn, 1976; 
Johnson & Bouchard Jr, 2005; McGrew, 2009; Schneider & McGrew, 
2018) and in cognitive neuroscience (see, for example, Sporns & Betzel, 
2016) but such considerations of number and nature are not of interest 
to the main goal of the present article. The key point is all sub-factors 
tend to correlate with one another, necessitating explanation. In corre-
lated factor models, however, there is no attempt to explain this 
covariation. 

In hierarchical models (Fig. 1B), performance on individual tests 
covary (the positive manifold) but are also clustered together into sub- 

factors. These are related abilities like verbal ability, visuospatial abil-
ity, processing speed—also covary, necessitating a further explanation 
which, in these models, is that there is a higher-order factor, g in this 
case, causing differences in the sub-factors. A misconception is such 
common-cause variables must be mental processes. It may be the case 
that the cause of covarying sub-factors is environmental factors (Dickens 
& Flynn, 2001), neural architecture (e.g. Garlick, 2002; see also 
Anderson, 2017) or cellular effects (Geary, 2018). If the positive mani-
fold results from shared genes across cognitive processes, for example, it 
would manifest either because of a common cause (shared genes) or a 
bifactor model (if residual covariance occurred within cognitive pro-
cesses, such as verbal abilities correlating together).1 

Finally, in bifactor models (e.g. Gignac, 2016; Fig. 1C) there are 
clusters of sub-factors whose intercorrelations are explained by a sepa-
rate second-order factor, g, also present in all of the subtests. All subtests 
correlate with one another (the positive manifold) because, to some 
extent, they are all also measuring the same underlying ability (g). Of 
particular interest is that correlated factor models show the exact same 
statistical fit as the equivalent hierarchical model when the number of 
sub-factors is low (2–3;e.g. Gignac & Kretzschmar, 2017). Because of 
this equal fit, other considerations must be taken into account for 
evaluating between these models. 

An under-appreciated fact is the bifactor model is often more in line 
with conceptualizations of g than is the hierarchical model. Consider the 
following: “As long as a task is at least somewhat cognitive in nature, it 
will be at least a partial measure of individuals' general cognitive ability. 
Spearman (1927, pp. 197–198) called this the “indifference of the in-
dicator”” (Warne & Burningham, 2019, p. 3). This notion captures the 
idea that g is being directly measured in an individual subtest which can 
only correspond to the bifactor model (due to the presence of causal 
arrows from g directly to the subtest). In hierarchical models, there are 
no such direct causal pathways from g to subtest performance not 
through a sub-factor. 

2.2. Interconnected models 

Another class of models of the positive manifold present the expla-
nation in terms of causal interactions. Network models are one such class 
of explanation (Fig. 2A), where networks of either cognitive abilities or 
brain regions causally interact to give rise to an emergent process (in-
telligence; Barbey, 2017; Fig. 2B). Statistically, network models are 
simply another way of modelling interconnections among variables, 
with individual cognitive abilities as ‘nodes’ and correlations between 
them as ‘edges’, for example (e.g. Fig. 2A). 

As networks are simply another way of modelling the same in-
tercorrelations among objects, for network models to contribute to sci-
entific theory they must identify control or driver nodes (Pósfai, Liu, 
Slotine, & Barabási, 2013). Driver nodes are the subset of nodes that 
have causal power—where externally manipulating the node can move 
the network to a different state—whereas non-driver nodes and their 
edges are simple covariances due to non-direct causal connections (such 
as common cause; Barabási, 2016). Thus, from a causal perspective, 
driver nodes represent those connections that are causal to the behavior 
of the system. 

Statistical networks can be understood as behavioral or neural cor-
relations. During performance on manifold cognitive measures, common 
neural brain regions, largely in the Parietal and Frontal regions (see 
Jung & Haier, 2007), are active (see Duncan & Owen, 2000; see also 
Assem, Glasser, Van Essen, & Duncan, 2020; Duncan, Assem, & Sha-
shidhara, 2020; Kievit et al., 2018). If we ascribe causality to the com-
mon regions, then they may either act as driver nodes within the neural 
network, or the model may be conceptualized more as a hierarchical 
model (if the direction of causality runs from the common brain regions 

1 We thank an anonymous reviewer for pressing us on this point. 
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directly to the recruited abilities (sub-factors)) or as a bifactor model (if 
the direction of causality runs from the common brain regions to subtest 
performance, bypassing the sub-factors). 

Explanations of the positive manifold may take also the causal 
interactionist approach. These explanations posit either direct or indi-
rect causal relations among the cognitive abilities themselves. What 
start as uncorrelated, or minimally correlated abilities, become more 
heavily correlated over time through causal connection and reinforce-
ment (Cattell, 1963 for Gf-Gc model; see also Anderson, 2005, 2017; and 
Schweizer & Koch, 2002 for a different ‘first cause’ starting ability). 
Thus, causal feedback mechanisms create the positive intercorrelations 
of sub-factors. In this way, the positive manifold at the subtest level is an 
artifact of the causal processes that led to the sub-factors becoming 
correlated. Sub-factors cause performance on their constituent subtests; 
the positive manifold at the subtest level is an effect of investment at the 
higher-level. 

Another similar model is dynamic mutualism (van der Maas et al., 
2006; Kievit et al., 2017; built off the multiplier model by Dickens & 
Flynn, 2001). This model posits a number of elementary cognitive pro-
cesses present at birth that are functionally uncorrelated. The elemen-
tary processes are, however, causally connected over time: “In [dynamic 
mutualism], all processes of the system are initially undeveloped and 
uncorrelated. During the development of the system, the dynamical 
interactions give rise to correlations among the processes of the system.” 

(van der Maas et al., 2006, p. 844). Thus, dynamic mutualism is, of 
necessity, a causal model positing cognitive abilities cause development 
in other abilities over time (Kan, van der Maas, & Levine, 2019). 

2.3. Sampling models 

Sampling models posit the positive manifold occurs from a large 
number of elementary cognitive processes. These processes are not as 
broad as, say, ‘Verbal Ability’ but often much narrower (e.g. Bartholo-
mew, Deary, & Lawn, 2009; Detterman, 1987; Thomson, 1916), as small 
as individual neurons or nerve cells (Thomson, 1951). When a given 
subtest is administered, the process of solving that test recruits a large, 
but incomplete, number of possible bonds. When a separate subtest 
ostensibly measuring a different process is administered, different bonds 
are excited to solve the items. 

Crucially, a subset of the bonds excited between the two subtests 
overlap. In this way, performance on the tests covary because they 
involve shared cognitive processes/bonds (Fig. 3A). 

Table 1 
Correlation matrix for 9 WAIS-IV subtests completed by 1002 individuals representative of the population in Spain. The positive manifold is shown. All correlations are 
positive regardless of the type of intelligence subtest (verbal, visuospatial, and processing speed in this instance). However, correlations are higher within cognitive 
domains. Data from the WAIS-IV standardization sample in Spain (Wechsler, de la Guía, & Vallar, 2012).   

SIM VOC INF BD MAT PUZ SS COD CAN 
Similarities  0.68 0.67 0.59 0.65 0.57 0.60 0.63 0.28 
Vocabulary   0.63 0.53 0.60 0.50 0.55 0.59 0.21 
Information    0.54 0.59 0.50 0.52 0.56 0.24 
Block Design     0.76 0.74 0.72 0.74 0.33 
Matrices      0.71 0.72 0.76 0.38 
Puzzles       0.66 0.67 0.29 
Symbol Search        0.86 0.51 
Coding         0.49 
Cancelation           

Table 2 
Three classes of explanations for the positive manifold.  

Model 
Class Examples 
Common Cause Correlated Factors, Hierarchical, Bifactor 
Interconnected Network, Investment, Mutualism 
Sampling Bonds, POT (Process Overlap Theory)  

Fig. 1. Examples of common cause models: (A) correlated factors model; (B) hierarchical model; (C) bifactor model. Green squares represent manifest variables, 
yellow circles represent sub-factors, red circles represent g. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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As shown in Fig. 3B, elementary processes (yellow circles) differen-
tially cause performance on individual subtests. These subtests are then 
combined into component scores. These components replace sub-factors 
in that they are observed (not latent) and caused by (not causing) per-
formance on the subtests. Overall scores are mostly additive combina-
tions of these components, mirroring the actual process of scoring IQ 
assessment batteries (e.g. Lichtenberger & Kaufman, 2009; Roid & 
Barram, 2004; Süß & Beauducel, 2015). 

The Process Overlap Theory is a complex extension of the sampling 
model (POT; Kovacs & Conway, 2016b, 2016a, 2019). When taking a 
cognitive task, demands activate relevant processes. These elementary 
processes are more concentrated within traditional sub-factors instead 
of every test randomly sampling the same large number of distributed 
processes (in the Bonds model) and represent cognitive operations more 
complex than single neuron behavior (Fig. 3C). Second, a g-factor is 
caused by the underlying sub-factors which corral the elementary pro-
cesses. Literally, g emerges from the floors below: “the positive manifold 
is an emergent property and, consequently, it translates to a formative 
model with regard to the general factor…the result of the specific pat-
terns in which items response processes overlap…a result of how pro-
cesses overlap to produce cognitive activity required by mental tests” 

(Kovacs & Conway, 2016a, pp. 162–171). Thus, IQ or g can then be 
conceptualized as formative things, i.e. cognitive indices. Third, the 

combination of mental processes is multiplicative, not additive as in the 
bonds model (Kovacs & Conway, 2016b). Finally, performance on the 
sub-factors are constrained through an Executive Function (EF) filter 
and its basic component processes (updating, shifting, and inhibition; 
Miyake et al., 2000) (shown in the Gf circle of Fig. 3C). This means that 
the intercorrelations of sub-tests is different for people with different EF 
levels. Low EF levels constrain the performance of sub-factors to be 
equal, so sub-factor differences are more equal and a higher observed 
positive manifold appears. High EF levels do not constrain the perfor-
mance and the positive manifold may be weaker as some sub-factors 
may be high or low in individuals (see Anderson, 1992 for a similar 
gating mechanism giving rise to covariance through processing speed). 
This observed pattern of results is referred to as cognitive differentiation 
(Abad, Colom, Juan-Espinosa, & García, 2003; Molenaar, Dolan, 
Wicherts, & van der Maas, 2010). 

3. Which model is more likely? 

After seeing the classes of explanations for the positive manifold and 
some examples of those classes, the next question naturally emerges: 
‘Which one is more likely?’. Historically, in the context of hierarchical 
models, when determining among competing models, the same data is 
fit to different models (different sub-factors) and measures of global 
statistical fit are calculated (e.g. CFI, RMSEA, χ2, BIC). Then, the model 
with the ‘best’ global fit is retained and deemed the frontrunner (see 
Johnson & Bouchard Jr, 2005 for a paradigmatic example). 

This approach, however, has a number of shortcomings. The most 
pertinent is global-model-fit comparisons work best for nested models. 
Therefore, testing non-nested models of different structure using global 
fit statistics becomes difficult (though certainly not impossible; see 
Merkle, You, & Preacher, 2016). Second, different models on the same 
data may show nearly the same global fit, leaving the outcome of such 
comparisons to tenuous principles such as ‘parsimony’. Third, global 
model statistical fit is an insufficient method of theory comparison. As 
each model and (especially) class of models represent different scientific 
theories with their own unique testable hypotheses, simple fit to data 
alone cannot demarcate among them. 

3.1. Model equivalence/underdetermination 

In the world of global statistical model fit comparisons, a situation 
often arises where two models yield identical global fit statistics. This 
result is referred to as model equivalence, but this statistical version is 
simply a subtype of a much larger scientific problem referred to as 
‘underdetermination of theory by data’. In short, different theories can 
equally account for any data. Model equivalence is a problem not only 
when comparing multiple models within the same ‘class’ but especially 
across classes (see also Lee & Hershberger, 1990). 

Take the following from the attempts to explain the positive mani-
fold as an example. Correlated factor models yield identical global fit 
statistics with the same model expressed as a hierarchical factor model 
with usual 2–3 sub-factors (Gignac & Kretzschmar, 2017). Thomson's 
Bonds model also provide identical fit to the same data as a hierarchical 
model (Bartholomew et al., 2009). By extension, the Bonds model is 
therefore statistically equivalent with correlated factor models as well. 
Furthermore, bifactor models have been shown to generally fit better 
than hierarchical models (Gignac, 2016), meaning they also fit better 
than correlated factor models and fit better than Bonds models and any 
other equivalent model. At the time of this writing, it is unclear whether 
other sampling or interconnection models would also provide equivalent 
global model fit, but it would be unsurprising if such models were 
capable of doing so. Thus, especially across non-nested models, com-
parisons of global model fit on the same data are insufficient for deter-
mining which class of models or even specific models of the positive 
manifold is ‘correct’ as they are often equivalent. 

All models are incomplete representations of reality. Hierarchical 

Fig. 2. Examples of interconnected models. (A) The model on the left repre-
sents a network-type connection where abilities (modelled as manifest vari-
ables) are causally connected. The three nodes connected by double arrows, as 
well as the node in the bottom right can causally connect to every other node in 
the network. (B) The figure on the right represents such an approach as applied 
to brain systems. 

Fig. 3. Sampling models: (A) Classic Thomson's model; (B) Bonds model of 
intelligence as seen in clinical intelligence testing; (C) Process Overlap Theory 
(from Kovacs & Conway, 2016a) Gc = Crystallized Intelligence, Gf = Fluid 
Intelligence, Gv = Visuospatial Intelligence. 
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models cannot easily accommodate different developmental patterns (e. 
g. Heckman, 2006; Kievit et al., 2017). Bifactor models can appear to 
falsely fit data because of problems with heterogeneity in the population 
(Raykov, Marcoulides, Menold, & Harrison, 2018). Sampling and 
Network models have difficulty accounting for the failure of transfer 
from increasing one cognitive variable not altering the behavior of 
another (Detterman & Sternberg, 1993; Protzko, 2017; Protzko & 
Bailey, Under Review). Causal Interactionist models have difficulty ac-
counting for the fact that raising intelligence at one point does not cause 
an increase or stable effects at later ages (Protzko, 2015, 2016; Bailey 
et al., 2017). 

A relevant example from the history of intelligence research involves 
whether a single cognitive process or multiple cognitive processes could 
explain a common cause for the positive manifold. One analysis showed 
separate independent processes could better explain the positive mani-
fold than a common cause (Kranzler & Jensen, 1991). A re-analysis of 
the same dataset, however, showed the opposite conclusion (Carroll, 
1991). The method of inquiry, factor analysis in this example, was un-
able to differentiate the two competing accounts. 

So, if the positive manifold can be accommodated by numerous, even 
potentially contradictory, yet statistically identically fitting, theories 
(enumerated here and future unknown theories; e.g. building on 
Schmiedek et al., 2019) that are all incomplete—what can be done to 
determine which theory(ies) is(are) more likely? This is where theories 
have to do more than just explain existing data. They must provide novel 
testable hypotheses. This latter requirement to generate testable pre-
dictions and not just account for data is the very foundation of the 
aversion to overfitting models. Models that are overfit to data necessarily 
provide better fit, yet we often reject them because the predictions they 
offer are viewed as unlikely to occur. For demarcating between expla-
nations for the positive manifold it is crucial to move beyond statistical 
modelling and fit indices. The question is not ‘how can we best measure 
future evidence and the positive manifold’, but instead, what testable 
predictions do our measurement models make? It is such hypotheses that 
we will connect below with the research on brain lesion studies. 

3.2. Measurement models are causal 

The paths in measurement models are directed causal paths. The 
basic justification of factor models is grounded in causality (see Bors-
boom, 2005; Borsboom, Mellenbergh, & Van Heerden, 2003; Pearl, 
2009). In short, variation in performance on a series of items or subtests 
cannot be attributed to a latent ability unless the latent ability is 
considered to cause differences in the behavior of interest. 

This was not always the case, however. Older views of latent factors 
as ‘measurement’ rested on the assumptions of operationalism, that the 
definition of a construct was in what it measured; or logical positivism, 
that measurement is a placeholder or ‘promissory note’ (c.f. Borsboom, 
2005) or a ‘working reference frame’ (Cronbach & Meehl, 1955). Thus, 
any concept of measurement was operationalized as behaviors (in this 
case, test performance). Such views have long been rejected as being 
unsustainable as ways to conceptualize measurement (in psychological 
research, see, for example, Borsboom, Cramer, Kievit, Scholten, & 
Franić, 2009; Maul, Irribarra, & Wilson, 2016). The justification of 
claims of latent variable measurement at present rests on these causal 
assumptions; a latent variable causes performance in the reflective be-
haviors or items (Borsboom, 2005; Hausman & Woodward, 1999). 

This causal implications of theories are what can allow to evaluate 
among theories of the positive manifold. A hierarchical model of intel-
ligence, as shown in Fig. 1B, makes the explicit causal hypothesis that a 
change to g, the higher order factor, will cause a change in sub-factor 
performance and subsequently a change in subtest performance (see 
Protzko, 2017, for an elaboration on this argument). This causal effect 
will be proportional to the loading of g onto the sub-factors and the sub- 
factors onto the subtests (see the proportionality constraint; Gignac, 
2016). Contrasting this with the bifactor model in Fig. 1C, a change in g 

will cause a change in performance on each of the subtests (to different 
degrees) but no change in common performance summarized by the sub- 
factors (this explicitly modelled in the absence of causal connections 
from g to the sub-factors). These causal paths allow for testing different 
measurement models against one another in stricter ways than model fit 
statistics. The evidence becomes weaker when the paths in the mea-
surement model are correlational and not causal. Dynamic causal 
models like mutualism, even without reference to latent variables, make 
the explicit assumption that alterations in one variable will cause 
unfolding changes in other variables through development. 

3.3. Causes, not covariance 

To summarize before moving on, here we take the stance that any 
covariance observed between two variables (A & B) occur for one or 
more of six reasons: 1) A causes B; 2) B causes A; 3) A and B cause one 
another in reciprocal interactions; 4) A & B share a common cause; 5) A 
& B share a collider; 6) The covariance is spurious. In possibilities 1–4, 
covariance is subsumed under causality. Possibility 5, colliders, occurs 
when two variables are uncorrelated in the population, but both share a 
common effect in a sampled subpopulation. An example of colliders 
would be: suppose having a pleasant singing voice is unrelated to 
memory for text in the population. Yet having a pleasant singing voice 
and good memory for text both cause an increase in the likelihood of 
being a stage actor. If one were to do a study using only musical theater 
actors, one may see a spurious covariance between singing voice quality 
and memory for text (see also Berkson, 1946; see also Anderson, 2017 
for a different theoretical take in intelligence). Regarding colliders or 
spurious covariation, enough research has been done around the world 
in dozens of disparate societies since the early 20th century to refute 
collider bias or spuriousness (Warne & Burningham, 2019). Thus, the 
positive manifold must occur because of causal connections (the first 
four reasons). We call this the causal necessity argument. 

This eliminates the correlated factors model (Fig. 1A) from consid-
eration unless the covariance between sub-factors is turned into causal 
connections (where one sub-factor causes another sub-factor either 
directly, indirectly, or in a reciprocal interaction). This would mean the 
correlated factor model decomposes into either a network model (for 
cross-sectional theories) or a type of causal interactionist model (for 
longitudinal theories) or a hierarchical model (for sharing a common 
cause). 

As any explanation for the positive manifold must decompose into a 
model with causal connections (by the causal necessity argument), those 
causal connections provide the opportunity to put statistical measure-
ment models to experimental tests. This ‘experimental psychometrics’ 

(Protzko, 2017) allows for testing between measurement models. 
This leaves us at the following point: What is needed is supplemen-

tary causal evidence providing tests of the (necessarily) causal connec-
tions implied in any adequate explanation of the positive manifold. 
Again, this is not a function of how to model the positive manifold, but of 
taking the measurement models at face value, observing what neces-
sarily causal testable predictions each of those models make (as quali-
tative prediction, not measurement model fit), and comparing observed 
evidence of those implications. If a theory makes testable causal pre-
dictions that are not borne out, this counts as evidence against the theory 
(in a falsificationist framework of evidence). 

3.4. Causation through manipulation 

One way to obtain evidence for causality is through manipulability. 
In short, X has an unconditional causal effect on Y if manipulations to X 
lead to changes in Y (Woodward, 2003). If a manipulation of X does not 
alter Y, it may be inferred that no unconditional causal effect exists 
between X and Y. This conception of causal evidence is important and 
relevant to the discussion here because, as we will see, if an effect (e.g. 
focal and chronic cortical lesion) affects A but not B, yet A and B covary 
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and must be causally connected (via the causal necessity argument), 
then A cannot be an unconditional cause of B, nor can the manipulation 
have altered any common cause of A and B. Any explanation of the 
positive manifold that implies an unconditional cause between A and B 
would thus be evidenced against. 

Unlike work looking at manipulations such as cognitive training, 
drugs (e.g. Schubert et al., 2018) or early environmental interventions as 
a way to increase a given ability (see Protzko, 2017; Protzko & Bailey, 
Under Review), manipulability can easily work when reducing a local 
ability. The effects of focal chronic cortical lesions follow a consistent 
and somewhat predictable pattern of effects. Focal chronic lesions to the 
cortex lead to local instead of global cognitive deficits. Here global 
means across all cognitive abilities. We next review some of the avail-
able evidence as it might help to provide clarity to the testing among 
causal explanations for the positive manifold. 

4. Brain lesion mapping and cognitive effects 

Structural and functional brain imaging studies based on the indi-
vidual differences approach report correlations between variations in 
brain features and cognitive differences usually measured by standard-
ized tests (Basten, Hilger, & Fieback, 2015; Colom, 2014; Colom, Kar-
ama, Jung, & Haier, 2010; Colom & Thompson, 2011; Dubois & 
Adolphs, 2016; Haier, 2017). The obtained outcomes are correlations 
and do not tell if the identified brain regions are causally involved in the 
cognitive differences. Brain lesion studies, however, can tell whether a 
manipulation to brain region X leads to an impairment in cognitive 
function Y supporting the measured differences (Barbey et al., 2012, 
2014; Gläscher et al., 2009, 2010). 

4.1. Local instead of global deficits 

The basic maxim of focal chronic cortical lesions leads to local 
instead of global deficits has been realized since the beginning of lesion 
research. Research on the effects of lesions on cognitive functions started 
small with single case studies (e.g. H.M. (Dittrich, 2017; Scoville & 
Milner, 1957), and Phineas Gage (e.g. Damasio, Grabowski, Frank, 
Galaburda, & Damasio, 1994; Van Horn et al., 2012) are well-known 
examples). As the field progressed, however, research began to incor-
porate larger samples, more circumscribed lesions, and comparison 
(control) individuals. Often, these latter individuals would be patients 
living similar lives (e.g. in the same mental hospital for non-lesion 
reasons) or patients with focal lesions in different regions (see Price, 
2018 for the argument from dissociation). 

Much of the work looking at the behavioral spread of focal damage 
restricts itself to tasks that are relevant to the damaged area. For 
example, in studies of patients with right cortical lesion damage to white 
matter tracts, certain lesions are shown to alter spatial neglect while 
other regions to object-centered neglect (e.g. Vaessen, Saj, Lovblad, 
Gschwind, & Vuilleumier, 2016). Yet measures of verbal ability or 
global processing speed are often not measured in these studies. Again, 
the simple reason is likely why bother to test verbal ability deficits to 
right cortical damage when most verbal regions are located in the left 
hemisphere. Such evidence cannot be used for our purposes here 
because the very point is to understand not just what is affected by 
damage to region X, but more specifically what is not affected yet 
covaries with the abilities affected by region X which must be causally 
related in some way. Thus, we must restrict the literature search to 
studies involving not just focal lesions (instead of lesions grouped 
together by entire hemispheres, see Theiling, Petermann, & Daseking, 
2013 for example) and cognitive measurement, but studies investigating 
a breadth of abilities not a priori believed to be affected (dissociation). 

From this literature, we see the same pattern of focal chronic cortical 
lesions leading to local, not global deficits. Lesions to the frontal or 
prefrontal cortex leads to deficits in working memory ability, as well as 
in the ability to plan–out a sequence of moves (McFie, 1961); spatial 

short-term memory, however, is completely unaffected compared to age 
and pre-morbid IQ matched controls (Owen, Downes, Sahakian, Polkey, 
& Robbins, 1990) or patients with posterior lesions (Duncan, Burgess, & 
Emslie, 1995). Yet, via the positive manifold, short-term memory 
strongly covaries with working memory and sequencing (Colom, Shih, 
Flores-Mendoza, & Quiroga, 2006; Unsworth & Engle, 2007)—and via 
the causal necessity argument, they must be causally related in some 
way. Thus, from prefrontal cortical lesions studies it cannot be the case 
that working memory or sequencing causes short-term memory. This is 
because exogenous manipulations to working memory and sequencing 
lead to no change in short-term memory. 

Narrowing the size of the lesion, damage to the dorsolateral pre-
frontal cortex leads to deficits in executive function (EF). However, 
crystallized knowledge, the bulk of information already stored, shows no 
such deficit compared to children with either focal lesions in other areas 
or psychiatric disorders (Filley, Young, Reardon, & Wilkening, 1999). 
Yet EFs covary with crystallized knowledge (Friedman et al., 2006) and 
must be causally related in some way. Thus, from dorsolateral prefrontal 
cortical lesion studies, EF likely are not causal to crystallized knowledge 
as manipulations to EF lead to no change in crystallized knowledge. 

Narrowing still, lesions to the caudate nucleus lead to deficits in 
problem solving ability and short-term memory (Mendez, Adams, & 
Lewandowski, 1989). However, compared to a control group, caudate 
lesions have no effect on subtest performance based on verbal ability at 
least two months later. Thus, if verbal ability and problem-solving 
ability/short-term memory covary, must be causally related in some 
way, yet manipulations to problem solving ability and short-term 
memory lead to no changes in verbal ability over the span of two 
months, problem solving ability and short-term memory do not cause 
verbal ability on a relatively short timescale. 

The work explored here compares patients with focal chronic lesions 
to controls of some sort. In some instances, this involves measuring pre- 
morbid IQ via vocabulary or reading tests such as the National Adult 
Reading test (Blair & Spreen, 1989; Nelson & Willison, 1991). Implicit in 
the use of such measures is that reading ability is not affected by frontal 
lobe damage. One cannot accurately measure pre-morbid IQ via reading 
ability if reading ability is reduced by frontal lobe damage. Therefore, 
either the use of such measures to approximate pre-morbid IQ is 
inherently flawed, or such measures are valid predictors but unaffected 
by many focal lesions, adding to the evidence that not all covarying 
abilities are causally affected by focal lesions. Narrower investigations, 
involving damage to smaller and smaller regions, comparing voxel to 
voxel across large numbers of participants, can lead to even stronger 
evidence, as we see next. 

4.2. Voxel-based lesion symptom mapping (VBLSM) 

VBLSM compares the psychological features of interest of patients 
with a chronic lesion at a given voxel with patients without a lesion at 
that voxel (Fig. 4). Unlike functional neuroimaging studies –which 
usually rely on the brain metabolic demands and provide a correlational 
association between brain and psychological signals—VBLSM can 
identify regions playing a possibly causal role, based on mapping which 
damaged voxel is associated with cognitive impairments. This involves 
studies in which a typical psychometric/neuropsychological test battery 
are given to large groups of patients with lesions in different regions 
across the brain. 

VBLSM relates patients' psychological scores to their individual 
lesion pattern. Thus, for instance, after analyzing 241 patients with 
single, focal, stable, and chronic brain lesions, lesions within a circum-
scribed set of areas of the frontal and parietal left hemisphere were 
related to deficits in general intelligence (g) scores extracted from a nine- 
subtest battery (Fig. 5) (Gläscher et al., 2010). 

Instead of focusing on g, VBLSM can be used to identify lesions in 
which specific voxels correspond to deficits either in subtest or sub- 
factor abilities. In this regard, visuospatial skills (Picture Arrangement, 
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Block Design, and Picture Completion) seem vulnerable to damage in 
areas of the right hemisphere. Damage to these regions cause deficits in 
visuospatial skills, but not deficits in other cognitive abilities. As shown 
in Fig. 6, the lesion map for similarities (figuring out how two words are 
related, such as how are chop and carve related?) shows remarkable 

overlap with the lesion map for g, whereas the lesion map for block 
design (manipulating colored blocks to match a given drawing) shows 
meager overlap with the lesion map for g. Interestingly, however, the 
psychometric g loadings of similarities and block design are almost 
identical (0.61 and 0.57, respectively). Furthermore, given the positive 
manifold, similarities and block design performance is correlated—and 
given the causal necessity argument, any explanation must be causal in 
nature. 

Overall, lesions in one brain region cause local deficits. This point 
becomes important to understand the causal connections implied by the 
measurement models depicted in Figs. 1, 2 & 3, considered in psycho-
metric research, when understanding the structure of intelligence and 
ultimately more and less likely reasons for the positive manifold. 

5. What do lesion studies tell about the positive manifold and 
the structure of human cognition? 

Now we can assemble the pieces and see what evidence lesion studies 
might play in the psychometric structure of cognitive abilities. Again, 
the question is not how to measure the effects of lesions from a model-
ling framework, but what causal and testable predictions different 
models for the positive manifold necessarily make. The pattern from the 
lesion evidence reviewed above is indeed focal chronic cortical damage 
leads to local cognitive effects. It is important to point out that there is 
no a priori reason for this to be the case. If the brain were an entire 
causal network where every node was a driver node, any lesion any-
where could impact the whole system. Luckily for human functioning, 
this is not the case. The brain does not follow a simple ‘all nodes are 
causal’ perspective. One of the main benefits of a network with non- 

Fig. 4. Summary of steps for computing VBLSM: (1) Creation of masks, using the original/native registration, for identifying the damaged area; (2) Normalization of 
the native image with respect to a reference group to improve comparability across individual brains, (3) Application of the masks created in step 1 and normalized in 
step 2 to the psychological outcomes of interest. This allows the visualization of which damaged regions do have impact over the measured psychological variables. 
The figure at the far right shows an example using data from the Barbey et al.'s (2012) large-scale lesion study. 

Fig. 5. Measurement model including 9 subtests from the Wechsler battery 
completed by the patients in the Gläscher et al.'s (2010) study. The factor 
structure obtained for the patients replicated the observed with the gen-
eral population. 

Fig. 6. Overlap between each of the nine subtests from the Wechsler battery (WAIS) completed by the patients and the lesion map obtained for the general factor of 
intelligence (g). The psychometric g loading computed for each subtest is also shown (adapted from Gläscher et al., 2010). 
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driver nodes over a centralized system is precisely its robustness (in a 
systemic sense) to disruptions (Santarnecchi, Rossi, & Rossi, 2015; 
Santonja et al., 2021). 

Some important points to consider before we combine the two 
strands. First, cortical lesions can damage multiple psychological func-
tions. Furthermore, lesions can be large and distributed, challenging the 
definition of ‘focal’. Per the evidence provided above of increasingly 
focal lesions, while multiple processes are impaired, not all covarying 
(and necessarily causally connected in some way) abilities are impaired. 
This was shown not only in the work using VBLSM, but also the work on 
caudate nucleus damage impairing problem solving and short-term 
memory but not verbal ability; as well as dlPFC lesions causing a 
deficit in EF, but not in crystallized knowledge (all compared to con-
trols). It is the dissociation of lesion effects that are relevant here. 

Second, lesion studies are complex, especially when combined with 
the inherent degeneracy of the brain (many cortical regions may be 
required for one function, one region may confer many functions, and so 
forth). Yet this complexity is not a concern for the arguments here. The 
central feature is investigating causality through manipulability 
(Woodward, 2003). If an ability such as EF can be manipulated and it 
causes changes in other abilities, then we have good reason to believe 
that EF is causally related to those other abilities on the timescale under 
investigation. If we manipulate EF and no change is seen in crystallized 
knowledge (Gc), for example, we may discard the idea that EF causes Gc 
on an immediate timescale. If we manipulate EF and a change is seen in 
later Gc, it may help establish a developmental causal connection (see 
Section 5.4 below for an expounding on this developmental causality). 

As a reminder, a psychometric model like that found in Fig. 1B makes 
the explicit causal prediction that a manipulation to one sub-factor 
(make it EF) will cause changes in subtests only causally reflective of 
that sub-factor. Furthermore, there will be no causal effect ‘upwards’ to 
g, nor ‘across’ to other sub-factors (call one crystallized knowledge). This 
is explicitly modelled in the hierarchical structure by the presence and 
(crucially) the absence of causal pathways between the variables. To test 
the causal predictions of such a model, we can manipulate the sub-factor 
EF (through any means) and see whether there is predicted absence of 
changes in crystallized knowledge (see Protzko, 2017 for an elaboration 
and examples). 

Thus, it may appear odd that there is no need to understand the 
specific neural-to-psychological processes of the specific brain regions 
under question (cf. Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 
Poeppel, 2017). The central argument (a form of black-box causation) 
again laid out is as follows: (a) Psychometric models of the positive 
manifold are causal models. (b) Causal models entail necessary testable 
causal predictions. (c) The best test of competing models is to manipu-
late an element of the model and see if the necessarily entailed results 
play out. (d) Focal lesions represent such a valid manipulation. And (e) 
as long as the lesion does not also lesion regions responsible for other 
cognitive abilities (e.g. focal), the dissociation of psychological effects 
tests the entailed predictions of the different psychometric models. This 
is how neuroscience can inform psychometrics, by providing tests to the 
causal implications of the psychometric models. 

To develop the key argument, take as an example a focal lesion to the 
right inferior frontal cortex (rIFC). Based on neuroanatomical studies, 
we would expect this focal damage leads to local effects only. Indeed, 
such damage has been shown to affect the inhibition component of EF, 
but little else (Aron, Robbins, & Poldrack, 2004; Swick, Ashley, & 
Turken, 2008). Thus, lesions to this region represent a manipulation to 
inhibitory control. We can then look at what different psychometric 
theories predict will happen when there is a manipulation to inhibitory 
control (or EF as a standalone sub-factor). We expect to observe no 
deficits to crystallized knowledge or processing speed, or verbal abilities 
etc. as determined by the pattern of frontal evidence reviewed above. 
Furthermore, this damage lies outside of the left frontal pole, and as such 
does not show deficits in a higher-order g-factor (if necessitated by 
theory; Gläscher et al., 2010). With this pattern of responses in hand as 

an example, we can explore the causal connections necessitated in the 
proposed models to explain the positive manifold. Importantly, our 
argument is not restricted to the rIFC and is informed by the whole 
pattern of lesion studies reviewed above. We only present this as an 
illustrative example. 

5.1. Hierarchical and bifactor models 

In a hierarchical model (Fig. 1B), rIFC damage would correspond to a 
deficit in a sub-factor. We would therefore expect to see performance 
deficits on any subtest that is reflective of the sub-factor (due to the 
presence of causal arrows to the manifest variables). We would not, 
however, expect to see any deficits in unrelated sub-factors (as there is 
no causal connection between them). As well, we would not expect to 
see any deficit in g, as there is no ‘upwards’ causation to g modelled. As 
the lesion only affects EF/inhibitory control, but not g or other abilities 
in our example, this pattern of results is therefore indirect evidence in 
favor of a hierarchical model of intelligence, as the patterns of effects 
from such a lesion matches the expected causal pathways and their 
determined effects. 

Bifactor models (Fig. 1C) are able to accommodate the example but 
do so in a very interesting way. The rIFC lesion would correspond to a 
deficit in a sub-factor which would then manifest as deficits in perfor-
mance on only those tasks reflective of this factor. As in the hierarchical 
model, there is no expected deficits in effects on other sub-factors or g. 
So far, the bifactor model is indirectly supported by the pattern of def-
icits from lesion studies. For manifest performance on a cognitive test in 
the bifactor model, however, there is also a direct influence of g on the 
test, on top of the causal effect from the sub-factor. It can be the case, 
therefore, that damage to the sub-factor can lead to undetectable deficits 
in a causally reflective subtest scores because of the superior perfor-
mance of g. This pattern of results is a well-known phenomenon in the 
neuroscience literature referred to as the cognitive reserve hypothesis. 
People with higher levels of general intelligence are more likely to 
‘adapt’ or ‘hide’ their deficits caused by lesions or cognitive deteriora-
tion (Katzman et al., 1988, Santarnecchi et al., 2015; Santonja et al., 
2021). This is a place a bifactor model is better able to explain effects 
than a hierarchical factor model. In the hierarchical factor model, there 
is no connection to test performance from g that does not go through the 
damaged sub-factor. Therefore, there is no causal path available for 
cognitive reserve to increase the performance on the test. In the bifactor 
model, however, there is such a causal direct path from g to test per-
formance. Only the bifactor model contains a direct path from a theo-
rized g to specific subtest performance (see Gignac, 2016). The direct 
path onto manifest performance not through a damaged sub-factor is 
what is required for cognitive reserve to operate. Therefore, a bifactor 
model is able to explain an aspect of lesion evidence that the hierarchical 
model cannot. While both can accommodate the causal predictions 
based on lesion evidence, bifactor models are better able to accommo-
date additional neuropsychological findings. 

5.2. Correlated factors and network models 

The correlated factor model cannot explain the positive manifold as 
the correlated links must, by necessity, be causal. As noted above, if we 
make the links causal, we can treat them the same way we would address 
a network model (Fig. 2B; see Epskamp, Rhemtulla, & Borsboom, 2016 
for an example). In a network model, the paths between sub-factors are 
causal. Therefore, lesion to the rIFC, using the working example, would 
be predicted to cause deficits in other—causally connected variables. But 
this is not what is observed on a short timescale (see Section 5.4 below 
for evidence on developmental timescales). Thus, the pattern of lesion 
studies is indirect evidence against a causal network model of the posi-
tive manifold. The way to bypass such disconfirming evidence would be 
to remove the connections between the damaged node and other 
unaffected-by-the-example-lesion nodes. As inhibition covaries with, for 
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example, vocabulary (via the positive manifold), such a model would 
therefore be unable to explain such covariance without resorting to a 
common-cause model for why inhibitory control and vocabulary covary, 
yet EF does not cause vocabulary. 

Therefore, cross-sectional network models are unable to accommo-
date lesion evidence as the connections between covarying variables are 
unlikely to be causal (due to a lack of spreading loss from a focal lesion 
to all other abilities). As to date there has been no focal cortical brain 
region where manipulations cause diffuse effects, we cannot as yet claim 
any of the nodes are driver nodes. It may be the case in the future some 
driver node is identified where minor manipulations cause changes in all 
covarying abilities. But these connections so far, however, cannot sub-
mit such connections as covarying but not causal via the causal necessity 
argument. 

Another implication of network models is the common Frontal and 
Parietal brain regions active across tasks (e.g. Duncan & Owen, 2000). 
Common brain regions across tasks being activated across multiple 
tasks, with lesions to those areas not causing diffuse performance defi-
cits, might appear to present a paradox. We think, however, this more 
appropriately stands as evidence either against the causal role these 
regions play as driver nodes in a network model, or evidence that the 
regions act more in a bifactor model with cognitive reserve described 
earlier able to ‘pick up the slack’. Future research will help tease these 
implications out. 

5.3. Sampling models 

Bonds models are able to accommodate the pattern of lesion effects, 
although to do so they must engage in semicircular reasoning. In the 
bonds model, there is no covariance whatsoever between the bonds 
outside of being sampled by a given subtest. Therefore, if one were able 
to create the ideal test that only samples one bond (the key research goal 
of J. P. Guilford, 1967; theorized to be impossible by Lumsden, 1976 and 
Detterman, 1987), test performance would be uncorrelated in the pop-
ulation with another test that did not sample the isolate bond. Bonds can 
be as small as an individual neuron in Thompson's bonds model 
(Thomson, 1951), and the pattern of lesion studies are at the moment far 
too global and not granular enough to test such a prediction. 

Assuming we could, however, the following prediction would be 
made (Fig. 3B). Suppose damage to the rIFC was exceptionally small and 
located on one bond. We would only see manifest deficits on cognitive 
tests that are causally reflective of it and no other tests. As this is the 
pattern of results observed in lesion studies, it is indirect evidence in 
favor of bonds models. The only hesitation should be that in the absence 
of causal and testable pathways in bonds models, the predictions 
become ‘lesions only affect what they affect and not affect what they do 
not affect’ which is an unimpressive truism. If such theoretical bonds 
exist, some bonds may surely affect more tasks than others, so when it 
comes to the effects of focal brain damage, the effect can be restricted to 
just a small number of tasks, or more widespread. Thus, bonds models 
are indirectly supported by the lesion evidence. 

The POT model (Fig. 3C), a complex variant of sampling models, 
provides more testable predictions. Using the example, damage to the 
rIFC would provide a local deficit in a specific process (inhibitory con-
trol). That decrement would lead to a strong constraining of additional 
processes. Meaning, damaging the rIFC would lead to two processes 
unrelated to inhibitory control, such as reaction time and vocabulary, to 
become more highly correlated (as they would be constrained via the EF 
gating filter). Covariance, however, cannot be increased without per-
formance on the abilities also being altered. Therefore, damage to 
inhibitory control would have to transfer to other abilities, even if the 
decrement performance was not due to a loss of those abilities but a 
constrained gating mechanism. One aspect in favor of POT is it may 
partially account for the cognitive reserve hypothesis as long as it is 
restricted to within-domains. Part of the POT model involves a within- 
domain compensatory mechanism. Thus, within a domain very local 

damage may be hidden by heightened undamaged processes within that 
same domain. What POT explicitly does not allow, however, would be 
cross-domain compensation (e.g. mental rotation deficit compensated 
by g or verbal ability or any cross-domain process). Therefore, future 
work and refinements to POT would require taking these issues into 
account. 

5.4. Causal interaction models 

Causal interaction models are also unable to accommodate the 
pattern of effects seen in lesion studies. Unlike other models which aim 
to explain immediate covariance, these developmental models require 
longer timescales to evaluate causal implications. For example, in Cat-
tell's Investment model, such local damage as to the rIFC would be too 
‘small’ to provide indirect evidence, as the pattern of results would 
unlikely lead to an overall deficit in fluid abilities (as the pattern of ef-
fects are more local). Therefore, in the example of damage to the right 
inferior cortex, the evidence is neutral. If we instead increase lesion size 
to the prefrontal cortex, causing a resultant decrease in fluid intelligence 
at the earliest ages, we can see how the effects play out. 

Investment models, where fluid abilities are ‘invested’ into verbal 
abilities, make the prediction that manipulations to early fluid abilities 
will manifest as long-term changes in both verbal and fluid abilities. 
Dynamic mutualism (van der Maas et al., 2006) gives no preference to 
one ability over others as the ‘driver’ of cognitive development and 
instead each ability is invested causally into all others. Thus, any 
manipulation to one ability will be reflected in long-term changes in all 
abilities. Therefore, the simple case of childhood cortical lesions to right 
frontal regions causing a decrement in fluid abilities, under both in-
vestment and mutualistic models, will manifest as long-term decrements 
in verbal abilities under these models. 

Although there is a large literature on focal cortical lesions in 
childhood, the developmental subset of the literature relevant here is 
exceedingly small. Four requirements are needed to be filled to properly 
test the causal implications of such developmental models: 1) Focal 
cortical lesions need to occur in childhood; 2) to test developmental 
models, long-term follow-up years after the early lesion must be inves-
tigated; 3) To test the manipulation-induced causal assumptions, follow- 
up measurements must break down the outcomes by focal lesion site; 
and 4) follow-up measurements must include a range of dissociable in-
telligence outcomes (e.g. not just Full-Scale IQ or local abilities only). To 
our knowledge and through an extensive search, no study to date has 
reported results properly fulfilling all four categories. Thus, we describe 
results relevant to three of the four requirements. Studies with only two 
or less of the four (e.g. McFie, 1961; Woods & Teuber, 1978; Woods, 
1980; Aram & Ekelman, 1986; Riva & Cazzaniga, 1986; Levine, Hut-
tenlocher, Banich, & Duda, 1987; Nass, Peterson, & Koch, 1989; Aram & 
Eisele, 1994; Raz et al., 1994; Muter, Taylor, & Vargha-Khadem, 1997; 
Filley et al., 1999; Anderson, Catroppa, Rosenfeld, Haritou, & Morse, 
2000; Jacobs and Anderson., 2002; Pavlovic et al., 2006; Catroppa, 
Anderson, Morse, Haritou, & Rosenfeld, 2007; Jacobs, Harvey, & 
Anderson, 2007; Duval et al., 2008; Long et al., 2011; Gingras & Braun, 
2018) do not contain enough evidence for our purposes here. Further-
more, studies without lesions but instead looking at IQ changes over 
time in those with endogenous diagnoses, also do not contain the level of 
causality for the purposes aimed here (e.g. Felton, Naylor, & Wood, 
1990; see also Ackerman, Weir, Holloway, & Dykman, 1995). 

5.4.1. Long-term outcomes reported by focal lesions site with dissociable 
intelligence data not in children 

McFie (1960) compared 206 individuals with focal lesions to one of 
six regions: left or right frontal, temporal, or parietal regions when they 
were middle-aged. The comparison group in this study was the age- 
matched subtest scores from the norming sample of the WAIS. In this 
study patients with right frontal lesions showed worse performance on 
reasoning and processing speed measures such as picture arrangement 
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and digit-symbol substitution, but showed absolutely no deficits in vo-
cabulary or other verbal tasks such as similarities. Thus, a manipulation 
can alter some abilities that continue to show up decades later, but not 
others. This suggests there cannot be a direct or indirect causal 
connection between all abilities. It is important to point out, however, 
that this study excluded participants who had sustained the injury at 
birth or in early childhood. It is therefore not as clear the specific age of 
lesion onset interacting with age. This is particularly important as age of 
lesion onset has implications for intellectual development (discussed 
below). Furthermore, the age of lesion was not reported, so the full 
implications of developmental models cannot be assessed from this data 
alone. 

Another study looked at the impact of focal traumatic head wounds 
in World War II vets 30 years after the lesion, compared with vets who 
sustained peripheral nerve injury (Corkin, Rosen, Sullivan, & Clegg, 
1989). Looking just at the vocabulary subtest, damage to all locations 
led to a developmentally exacerbated decline in vocabulary except for 
damage to the right parietal lobe. Damage to the right parietal lobe, 
however, did lead to developmental deficits in perceptual field depen-
dence and spatial tests such as block design. Thus, again, focal damage 
can lead to developmental deficits in some abilities but not others, 
indicating that a manipulation can alter some abilities (spatial ability) 
but not others (vocabulary) in adults. Therefore, if causal interactionist 
models apply to intellectual development throughout the lifespan, this 
evidence would stand as counterevidence to the models implied effects. 
If the causal interactions only apply to childhood, this evidence is 
neutral to the models. 

5.4.2. Long-term outcomes from focal childhood lesions with dissociable 
intelligence data not reported by lesion location 

Westmacott, Askalan, Macgregor, Anderson, and Deveber (2010) 
looked at 145 children who suffered a unilateral ischemic stroke, with 
follow-up tests done between 1 and 8 years later with dissociable in-
telligence data. Unfortunately, the results were not broken down by site 
of focal lesion on verbal vs. performance IQ deficits. Results did show, 
however, that intellectual outcomes were worst for children suffering 
lesions perinatally than in middle childhood through adolescence. 
Therefore, there are likely developmental effects, but the relevance to 
certain structures of the positive manifold are unclear. 

Montour-Proulx et al. (2004) investigated 257 children with cortical 
lesions to only one region (coded as frontal, parietal, temporal, or oc-
cipital) sustained when they were 5 years old and tested them when they 
were 13 years old. Although this study found that lesions sustained 
earlier in life lead to worse intellectual outcomes, there was no break-
down of the dissociable intelligence data by brain region. 

Hajek et al. (2014) looked at 36 children following arterial ischemic 
strokes compared to 15 children with asthma. While the children suf-
fered lesions as early as perinatally and had follow-up assessments on 
average 5 years later, the data was not broken down by lesion location 
on the dissociable intelligence data. Measures like inhibitory control 
were particularly affected, but without the data broken down by lesion 
location this cannot be interpreted for our purposes here. 

Braun et al. (2002) looked at 357 adolescents (mean age 17yo) who 
suffered a unilateral focal lesion 12 years prior. Unfortunately, the re-
sults were not broken down by lesion site beyond left/right hemisphere 
despite having dissociable intelligence data. 

5.4.3. Long-term outcomes from non-focal childhood lesions with 
dissociable intelligence data reported by lesion location 

Westmacott, MacGregor, Askalan, and deVeber (2009) investigated 
the effects of unilateral lesions in 3.5–6 year-olds (N = 26) three to six 
years after their ischemic strokes. While the data provided dissociable 
verbal and performance IQ measures, from early childhood lesions with 
adequate follow-up, the breadth of the lesions were too wide to be 
classified as focal (on average covering multiple cortical lobes). No child 
had a focal right frontal lesion, only one child had a focal frontal lesion 

(to the left side) showing significant deficits in all intellectual abilities 
except for perceptual reasoning/organization at age 10. Thus, while 
close, the absence of focal-ness of the lesions in this study corrupt the 
manipulability argument as it cannot be clear what else is affected by the 
diffuse lesions. 

5.4.4. All four requirements combined? 
As noted, no single study contains all four of the required compo-

nents to adequately test certain developmental models (early focal le-
sions, long-term follow-up, dissociable intelligence data, and reported 
by lesion site). Perhaps the closest comes from work showing lesions to 
the right prefrontal cortex in 2–3 year-olds led to deficits in sustained 
attention when they were around 11 years old, with no concomitant 
deficit in processing speed (measured by the Trails Making Test, version 
A; Anderson, Jacobs, & Harvey, 2005). Unfortunately, the results of the 
study do not report right prefrontal only versus left prefrontal (with 
children with diffuse lesions being included in both groups) nor does it 
contain data on functionally unrelated yet covarying abilities (like 
vocabulary). 

There is a case study of an 11-year old with a pre-morbid IQ of 126 in 
gifted programs who suffered frontal lobe contusions (left greater than 
right). Eight weeks after the injury verbal IQ was similarly high (VIQ =
119) but performance IQ severely limited (PIQ = 60; Williams & Mateer, 
1992). Two and four years after the injury, verbal abilities had remained 
unimpaired while inhibitory control and attention were significantly 
impaired. While only a case study, this shows that a manipulation 
(frontal damage) can cause changes to a subset of abilities but not 
others. This cannot be the case if all cognitive abilities are causally 
interrelated over development (as directly implied by mutualism ac-
counts). More evidence, however, is needed. 

The only other study coming close to what we are looking for is a 
study of 30 unilateral lesioned 10-year-olds who were studied when they 
were 20 years old. Although the data was not broken down by lesion site 
and there was no expansive intellectual measurement, one interesting 
dissociation emerged. EF was impaired for all patients, while recogni-
tion memory was not (Braun, Guimond, Payette, & Daigneault, 2013). 
Thus, we see two abilities (EF and recognition memory) that covary, that 
must covary for some causal reason, yet manipulation to one ability 
leads to no change in the other. This suggests theories entailing direct or 
indirect causal connections between cognitive abilities cannot explain 
such dissociation. 

Nevertheless, the only way to truly disentangle causal developmental 
models will be longitudinal follow up of sufficiently sized samples with 
proper psychometric assessments in developmentally appropriate 
timescales (e.g. monthly/yearly during periods of rapid growth), with 
consideration of focal lesions (to exploit exogeneity) and a full range of 
psychometric data. As it stands, the state of the literature does not 
contain enough such data to warrant any strong conclusions, but evi-
dence is mounting. As is plain from our review, however, the fullest 
evidence testing these interaction models must be the place of future 
work (and we explain why). This is a further direction for neuropsy-
chological work to take, as it is clearly a needed avenue of testing and 
reporting childhood focal lesions, a large battery of disparate tasks, and 
long-term follow-up (over the course of years). 

6. Conclusion 

In conclusion, focal chronic cortical lesions cause local instead of 
global deficits and we have discussed here how this pattern may have 
remarkable consequences for different psychometric models trying to 
account for the cause of the positive manifold. The discussed evidence 
leads to the conclusion that not all these models are consistent with the 
pattern of lesion effects and their necessarily causal explanations of why 
all cognitive performances covary (Table 1). 

We explored three classes of models: common cause models, inter-
connected models, and sampling models, with a number of alternatives 
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within each class (Table 2). The fact that disparate models can accom-
modate –from a psychometric perspective—the positive manifold is 
simply an extension of a well-known scientific feature of under-
determination of theory by data. As several models are able to accom-
modate the positive manifold equally well, statistical fit indices on the 
same data cannot demarcate which models are more likely. Strict causal 
tests and indirect evidence must be accumulated for finding a way out. 

One proposed solution is to adopt an experimental psychometrics 
approach, where effects on a potential ability/driver node are imposed 
and the dissipation of effects is observed to strictly test the 
measurement-implied causal paths (Protzko, 2017). Here we have 
explored the opposite side of the causal coin. Instead of attempting to 
increase cognitive abilities through training, stimulants, or other means, 
we explored the effects of focal chronic cortical lesions decreasing spe-
cific cognitive abilities. 

This is an important distinction as instances of increasing local 
abilities through avenues such as cognitive training has been fraught 
with concerns over teaching to the test, ‘hollow’ effects not to the 
construct under question, and lack of reproducibility (e.g. Colom et al., 
2013; Green et al., 2019). Thus, the applicability of cognitive training 
studies on transfer and causal connections can sometimes be tenuous. 
Lesion effects, however, rarely suffer from such concerns, and provide 
an additional test of causal implications through manipulability. 

The pattern of lesion effects observed in neuropsychology research is 
that lesions to one part of the cortex have local instead of global effects. 
In one of the case examples considered here, the rIFC causes decrements 
in inhibitory control but not in covarying abilities such as vocabulary, 
reading ability, or processing speed. Using this example, we saw hier-
archical models like the classic g-model could accommodate local defi-
cits, but not phenomena like cognitive reserve. Bifactor models are also 
able to accommodate the local pattern of deficits caused by focal cortical 
lesions. These two types of models are therefore indirectly supported by 
the available lesion evidence. 

Some sampling models are able to accommodate lesion effects if they 
engage in semicircular reasoning, which is suboptimal from a theoretical 
perspective. A sampling model like POT was unable to accommodate 
local lesion effects without corresponding effects on general ability. 
Therefore, lesion research provides indirect evidence against such 
sampling models. 

Correlated factor models must, as a necessity, decompose into a 
different type of model such as a network model or other interconnected 
model. We saw network models are unable to accommodate local lesion 
effects unless they decompose themselves into a hierarchical model or 
give up on explaining the correlation between causally unconnected 
variables. Causal interactionist models, such as Cattell's investment 
theory and dynamic mutualism, were likely unable to accommodate 
lesion effects, as the necessary causal connections between either some 
(investment) or all (mutualism) cognitive abilities is not held up by the 
absence of spreading effects from (for example) inhibition to vocabulary 
or processing speed. 

Overall, it cannot be the case that performance on two different 
cognitive subtests are correlated without being causally connected in 
some way. The pattern of evidence from cortical lesions provides an 
interesting test of proposed causal connections from numerous 
competing models of the positive manifold. Only models that can 
accommodate a deficit in a local ability without effects on other covarying 
abilities are able to account for lesion evidence. Bifactor models are best 
able to accommodate such evidence. Hierarchical models, like the 
classic g-model, can also accommodate lesion effects, but not cognitive 
reserve. Some sampling models are able to accommodate the effects as 
well. For developmental models, the evidence appears consistent with 
non-spreading deficits from early focal lesions, but more evidence is 
required to draw firm conclusions. 

The core argument of this article is not a takedown of any type of 
model nor an impassioned defense of another. All models are incomplete 
and the cause of the positive manifold will not be found in one of the 

models examined here. This may be an underwhelming conclusion, as 
the work here does not definitively declare a winner, but that is the 
nature of scientific exploration. The approach we take here is one of 
falsifiability of theories, instead of searching for confirming evidence. 
Such an approach cannot declare uncontested winners. Furthermore, as 
the sciences here involve individual differences, strict falsification may 
not be possible from one study alone. That is why, throughout, we have 
eschewed using the term ‘falsifies’ and instead used terms more like 
‘provides evidence against’ a theory. Bringing together the two worlds of 
psychometrics and neuropsychology shows they may (and should) 
inform one another, give wider context to the implication of their work, 
and help move each other forward. What is clear, however, is that future 
theories that try to explain the positive manifold must consider the 
focality of lesion effects data in their explanations and (necessarily) 
causal implications of their theories. This is perhaps our main take home 
message. 

Crucially, our argument here goes from neuroscience informing 
psychometrics. The same relation does not necessarily hold going from 
psychometrics to neuroscience. Future research and theorizing may 
draw such connections. 

Available measurement models are substantially more than ways of 
picturing an idea. They are causal models, scientific theories, with 
necessarily causal connections and, importantly, testable predictions 
(Borsboom et al., 2003). These qualitative testable predictions must be 
borne out if a theory is to accurately explain the positive manifold. While 
many explanations so far can provide closely similar statistical fit, the-
ories must do more than simply account for data. It is in these testable 
predictions that lesion studies can weigh in. Lesion effects being local, 
even years after the damage, has implications for the predictions all past 
present and future models make. Future theories and explanations of the 
positive manifold must also consider the fact that the covariance in the 
positive manifold must necessarily be causal in some capacity, yet 
manipulation of one local ability does not correspond to cross-sectional 
nor longitudinal effects on other abilities. 
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