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A B S T R A C T   

The scientific study of the biological basis of intelligence has been contributing to our understanding of indi-
vidual differences in cognitive abilities for decades. In particular, the ongoing development of electrophysio-
logical, neuroimaging, and genetic methods has created new opportunities to gain insights into pressing 
questions, allowing the field to come closer towards a comprehensive theory that explains how genotypes exert 
their influence on human intelligence through intermediate biological and cognitive endophenotypes. The aim of 
this article is to provide a focused overview of empirical benchmark findings on biological correlates of intel-
ligence. Specifically, we summarize benchmark findings from electrophysiological, neuroimaging, and genetic 
research. Moreover, we discuss four open questions: (1) The robustness of research findings; (2) the relation 
between neural parameters and cognitive processes; (3) promising methodological developments; and (4) theory 
development. The aim of this paper is to assemble the most important and robust findings on the biological basis 
of intelligence to stimulate future research and to contribute to theory development.   

1. Introduction 

Intelligence is a psychological construct that refers to the ability to 
understand complex ideas, to adapt effectively to the environment, to 
learn from experience, and to engage in various forms of reasoning 
(Neisser et al., 1996). Intelligence is an important predictor of educa-
tional and occupational success (Schmidt & Hunter, 2004) and relates 
closely to positive life outcomes such as health and longevity (Deary, 
Whiteman, Starr, Whalley, & Fox, 2004). Understanding the neurobio-
logical basis of intelligence is therefore an important aim of ongoing 
research across multiple scientific disciplines. This article provides a 
focused overview of the current state of research. Specifically, we 
emphasize robust and well-established empirical benchmark findings 
from electrophysiological, neuroimaging, and genetic research on in-
telligence (see Fig. 1 for a summary of those benchmark findings). As a 
result, less well-established or relatively new findings are not included in 
this review unless considered groundbreaking. In those areas where 
systematic reviews of the literature were not yet available, we refrained 
from stating specific estimates or ranges of effect sizes but followed the 
recommendations by Funder and Ozer (2019) in labeling correlations as 
small, medium, large, or very large (for a very broad overview over 

typical effect sizes in intelligence research see Nuijten, Van Assen, 
Augusteijn, Crompvoets, & Wicherts, 2020). We discuss general topics 
concerning the robustness of research findings, highlight challenges in 
linking biological to cognitive processes parameters, and outline 
promising methodological developments that will contribute to our 
understanding about the biological underpinnings of intelligence. 
Finally, we discuss how theory development in intelligence research 
might benefit from accounting for those benchmark findings. A com-
panion article by Frischkorn, Wilhelm, and Oberauer (submitted) pro-
vides a similar overview of research pertaining to cognitive processes. 

2. Electrophysiology 

A wide range of measures derived from the electroencephalogram 
(EEG) has been examined for a potential relationship with intelligence. 
For the sake of conciseness, we will summarize empirical results from 
the last thirty years that have been (conceptually) replicated at least a 
few times (for earlier studies and studies on the relation of intelligence to 
other EEG measures not discussed here see Deary and Caryl (1993) and 
Stelmack and Houlihan (1995)). Specifically, we will focus on a) two 
established components of the event-related potential (ERP), b) 
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frequency band power, and c) individual alpha frequency (IAF). 

2.1. The event-related potential 

The ERP is the average electrophysiological response to a frequently 
presented stimulus. When the presented stimuli are attentively pro-
cessed and a specified target stimulus is consciously detected, a pro-
nounced P3 component emerges in the ERP as the third positive 
deflection (Luck, 2014). In the oddball task, for example, infrequent 
target stimuli are embedded in a series of standard stimuli. Here, the P3 
component can be observed in the target-related but not (or strongly 
attenuated) in the standard-related ERP. A medium-to-large negative 
association (roughly in the range from r = -.20 to -.40) between intel-
ligence and P3 latency has been reported consistently when oddball 
tasks were used (e.g., Bazana & Stelmack, 2002; De Pascalis, Varriale, & 
Matteoli, 2008; Saville et al., 2016; Stelmack & Houlihan, 1995; Troche, 
Houlihan, Stelmack, & Rammsayer, 2009; Walhovd et al., 2005), which 
can be interpreted as support for the mental speed approach of intelli-
gence (Der & Deary, 2017). In contrast, the relation between intelligence 
and the P3 latency in other tasks is less consistent. For example, for the 
Hick task, the Sternberg Short-Term Memory Scanning task, and the N- 
back task some studies reported negative correlations (Jungeblut, 
Hagemann, Löffler, & Schubert, 2021; Saville et al., 2016; Schubert, 
Hagemann, & Frischkorn, 2017; Schubert, Löffler, Hagemann, & Sadus, 
2022) whereas others did not (Euler, McKinney, Schryver, & Okabe, 
2017; Houlihan, Stelmack, & Campbell, 1998; Schubert, Hagemann, 
Frischkorn, & Herpertz, 2018; Troche, Merks, Houlihan, & Rammsayer, 
2017). This is in contrast to the very consistent relationship between 
intelligence and response time (RT) measures that has been observed 
across a wide variety of different tasks (Doebler & Scheffler, 2016; 
Schubert, 2019; Sheppard & Vernon, 2008), and cautions against a 
simple interpretation of the P3 latency as the non-motoric part of RT or 
stimulus-evaluation time (see Verleger, 2010). To date, neither the 

specific meaning of the P3 latency nor its relationship with intelligence 
are sufficiently understood. One step towards explaining the heteroge-
neity of findings might be to identify the specific conditions under which 
the P3 latency is related to intelligence and how this relationship 
changes under experimentally induced processing demands. For 
example, increasing the attentional demands in different conditions of a 
continuous performance task led to an increasing negative relationship 
between P3 latency and intelligence (Kapanci, Merks, Rammsayer, & 
Troche, 2019). More research tracking how the relationship between P3 
latencies and intelligence changes as a function of experimental de-
mands and subsequent systematic meta-analyses might be required to 
gain a more comprehensive understanding about the relation between 
P3 latencies and intelligence. 

The auditory mismatch negativity (MMN) is a different ERP 
component for which relationships with intelligence have been reported 
in multiple electrophysiological studies. It is elicited when, within a 
series of frequent standard sounds or sound patterns, rare deviant 
sounds (e.g., of higher pitch, duration, or loudness) or deviant sound 
patterns are presented – even if participants are instructed to ignore 
those sounds. The MMN is considered an index of an automatic 
discrimination process (Näätänen, Paavilainen, Rinne, & Alho, 2007) 
and larger (i.e., more negative) MMN amplitudes have been observed in 
more intelligent individuals in several studies (De Pascalis & Varriale, 
2012; De Pascalis, Varriale, Fulco, & Fracasso, 2014; Houlihan & Stel-
mack, 2012; Sculthorpe, Stelmack, & Campbell, 2009; Troche et al., 
2009; Troche, Houlihan, Stelmack, & Rammsayer, 2010). However, the 
observed correlational associations were of rather moderate size 
(roughly between r = -.15 and r = -.42), and, most critically, also 
inconsistent. For example, Troche et al. (2010) observed a significant 
relationship when deviant sounds were of higher pitch than standard 
sounds, while no relation was found when deviant sounds were of longer 
duration than standard sounds. In the study by Houlihan and Stelmack 
(2012), an association between MMN amplitude and intelligence was 

Fig. 1. Summary of benchmark findings in research on the biological basis of intelligence: Electrophysiological, neuroimaging, and genetic correlates of intelligence.  
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reported when simple, but not when more complex sound patterns were 
interspersed with deviant sound patterns. Furthermore, when back-
wardly masked stimuli were used (i.e., stimuli immediately followed by 
a masking stimulus), only the MMN latency, but not its amplitude, was 
negatively related to intelligence (Bazana & Stelmack, 2002; Beau-
champ & Stelmack, 2006; but see De Pascalis & Varriale, 2012). A recent 
study analyzed the relationship between intelligence and MMN as 
marker of pre-attentive discrimination processes in the visual domain 
but found no significant relationship between the two (Hilger & Euler, 
2022). 

Overall, relations of amplitudes and latencies of ERP components 
with intelligence are very heterogeneous. One limitation of many studies 
is a mismatch between the hierarchical levels used to measure ampli-
tudes and/or latencies of ERP components on the one hand and intelli-
gence on the other hand: While specific ERP components were often 
recorded during specific tasks (e.g., the P3 component in the oddball 
task), intelligence was mostly operationalized as a rather broad 
construct (e.g., g at a higher hierarchical level). Measuring both con-
structs at a higher hierarchical level and estimating their associations by 
means of latent correlations may yield higher and possibly more 
consistent correlations between properties of ERP components and in-
telligence (up to r = -.89, see Schubert et al., 2017), in particular when 
noticeable parts of measurement error can be reduced at both sides 
(Schubert et al., 2017, 2022; Schubert & Frischkorn, 2020; Schubert, 
Hagemann, Voss, Schankin, & Bergmann, 2015). 

2.2. Frequency band power 

The EEG signal can be decomposed into multiple frequency bands (e. 
g., alpha, beta, gamma, delta) which allow for investigations of indi-
vidual differences in neural oscillations, interregional synchronization, 
and cross-frequency coupling (Donoghue, Schaworonkow, & Voytek, 
2021). Alpha activity reflects oscillatory dynamics in the frequency 
range from 8-12 Hz and is particularly dominant in a relaxed but awake 
state of rest (Klimesch, 2012). A functional positive relationship be-
tween the power of the alpha band during rest and intelligence could not 
be consistently established (see Jaušovec, 2019). More congruent results 
were obtained by investigating the decrease of alpha power from a state 
of cognitive rest to a state of cognitive activity. This decrease, referred to 
as event-related desynchronization (ERD; Pfurtscheller & Aranibar, 
1977), is suggested to reflect increasing cortical activation (Neuper & 
Pfurtscheller, 2001) or the release from inhibition (Klimesch, 2012). In 
line with the neural efficiency hypothesis of intelligence (Neubauer & 
Fink, 2009), multiple studies observed a negative association between 
intelligence and ERD (see Neubauer & Fink, 2009, for an overview), and 
interpreted this as support for the assumption that more intelligent in-
dividuals show less task-evoked cortical activation than less intelligent 
ones when performing the same task with the same or even more suc-
cess. In their overview, Neubauer and Fink (2009) identified a couple of 
moderating influences on this association (task demands, brain regions, 
sex, and learning effects). For example, the negative relationship be-
tween intelligence and ERD was primarily found for tasks with moderate 
task demands (see also Nussbaumer, Grabner, & Stern, 2015). However, 
a moderating effect of learning on the intelligence-ERD relationship 
could not be confirmed in a subsequent study by Nussbaumer et al. 
(2015). Subsequently, Dix, Wartenburger, and van der Meer (2016) 
proposed that the subdivision of the alpha band into lower and upper 
frequencies might also play a crucial role. Overall, only a very limited 
number of studies examined the proposed moderating factors system-
atically, which would be required to empirically establish the role of 
moderating factors in the intelligence-neural efficiency relationship. 

Beyond alpha, the power of other frequency bands such as beta and 
theta has also been related to intelligence (e.g., Liu, Shi, Zhao, & Yang, 
2008), albeit in fewer studies and with less promising results. Further-
more, the coherence (coupling, connectivity) between neural oscilla-
tions arising from different brain regions has been related to 

intelligence, both within the same frequency band as well as across 
different bands (e.g., theta-gamma cross-frequency coupling, Pahor & 
Jaušovec, 2014, 2017; delta-gamma cross-frequency coupling, Gągol 
et al., 2018; long-range theta connectivity, Schubert, Hagemann, Löffler, 
Rummel, & Arnau, 2021; for review see Chuderski, 2016). While 
negative associations between coherence and intelligence were 
observed in some studies (e.g., Cheung, Chan, Han, & Sze, 2014; Pahor 
& Jaušovec, 2014) and interpreted as indicating higher spatial differ-
entiation potentially facilitating higher processing speed and neural 
efficiency (Thatcher, North, & Biver, 2005), positive relationships were 
reported in other investigations and understood as reflecting stronger 
and thus more effective inter-regional communication in more intelli-
gent people (e.g., Anokhin, Lutzenberger, & Birbaumer, 1999; Lee, Wu, 
Yu, Wu, & Chen, 2012; Schubert et al., 2021). Other studies did not find 
any association between measures of oscillatory coherence and intelli-
gence (e.g., Ujma et al., 2019). However, differences in the range of 
investigated frequency bands, in the type of coherence or connectivity 
measure, in the analyses space (source space vs. sensor space), and in the 
cognitive state during which EEG was acquired (task vs. resting-state vs. 
sleep, eyes open vs. eyes closed), make a comprehensive comparison of 
those findings difficult. Hence, we do not identify the relation between 
oscillatory synchrony and intelligence as a benchmark finding, but 
rather as a promising future line of research. 

2.3. Individual alpha frequency 

The frequency band within the spectral distribution of the alpha 
band (8-12 Hz) that depicts the highest overall power is referred to as 
the alpha peak and is typically located in the range of 10-11 Hz 
(Angelakis, Lubar, Stathopoulou, & Kounios, 2004). This peak exhibits 
large individual differences, high temporal stability, and was proposed 
to possess a trait-like character (Kondacs & Szabó, 1999). Depending on 
the method of quantification, this peak is called individual or peak alpha 
frequency (IAF/PAF; Klimesch, 1997) and has been considered a mea-
sure of the speed of information processing (Posthuma, Neale, 
Boomsma, & de Geus, 2001) or, more specifically, speed of memory 
retrieval (Klimesch, Schimke, Ladurner, & Pfurtscheller, 1990). 

A positive relationship between IAF and intelligence was reported by 
Anokhin and Vogel (1996) as well as Grandy et al. (2013). In larger 
samples, however, Posthuma et al. (2001), Pahor and Jaušovec (2016) 
as well as Ociepka, Kałamała, and Chuderski (2022) failed to observe 
such a relation. Somewhat more consistent are empirical results on the 
association between IAF and performance on memory tests (Pahor & 
Jaušovec, 2016), potentially suggesting that IAF is linked to more spe-
cific abilities such as memory rather than to general cognitive ability, i. 
e., intelligence. Furthermore, it has been hypothesized that IAF reflects 
both a stable trait and a cognitive state, as it has been shown to be 
influenced by situational characteristics such as sensory input, mood, 
and attentional task demands (Mierau, Klimesch, & Lefebvre, 2017). 
Hence, momentary IAF is also interpreted as an indicator of cognitive 
preparedness (Angelakis et al., 2004). Whether trait aspects of IAF or 
task-related (state) changes in IAF are more consistently related to in-
telligence is still an open but interesting question (Grandy et al., 2013). 

2.4. Open questions and future directions 

Taken together, there seems to be no EEG measure which is unam-
biguously related to intelligence. Of note, this is not necessarily a 
symptom of the replication crisis in psychological science (Open Science 
Collaboration, 2015), but may rather be explained by moderators which 
should be studied with more complex experimental designs. Thus, sys-
tematic reviews and large-scale replication studies are needed to esti-
mate the generalizability of EEG-intelligence relationships and to 
identify moderators of those associations. None of the above-mentioned 
EEG measures is a pure reflection of a single cognitive (let alone cortical) 
process. This impedes the interpretation of correlations between 
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intelligence and single EEG measures and makes conclusions regarding 
potential intermediate phenotypes difficult. Less ambiguous in-
terpretations might be obtained from experimental designs in which 
changes in EEG measures are induced by experimental manipulation 
and, thereby, directly related to the experimentally manipulated 
cognitive process (for some initial results see Euler, 2018; Jungeblut 
et al., 2021; Kapanci et al., 2019). However, this will inevitably intro-
duce other problems due to the low reliabilities of individual differences 
in experimental effects (Hedge, Powell, & Sumner, 2018). Furthermore, 
research on the relation between EEG measures and intelligence should 
also speak to the cognitive processes associated with those EEG mea-
sures. Speed measures such as ERP latencies or IAF, for example, should 
be assessed together with behavioral speed measures such as reaction or 
inspection times or drift rates. Finally, a systematic decomposition of 
task/state-specific and domain-general (trait-related) portions of vari-
ance in EEG measures by factor-analytical approaches might be a 
promising avenue to less ambiguous estimates of the relation between 
individual differences in intelligence and EEG measures (Jungeblut 
et al., 2021; McGarry-Roberts, Stelmack, & Campbell, 1992; Schubert 
et al., 2017, 2022). 

3. Neuroimaging 

3.1. Structural imaging of intelligence 

One of the best-established neural correlates of intelligence is total 
brain size, explaining up to 5% of the variation in intelligence test scores 
(e.g., Cox, Ritchie, Fawns-Ritchie, Tucker-Drob, & Deary, 2019; for 
meta-analyses see McDaniel, 2005; Nave, Jung, Karlsson Linnér, Kable, 
& Koellinger, 2019; Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 
2015; for sex differences see van der Linden, Dunkel, & Madison, 2017). 
Brain region-specific correlates of intelligence were identified in gray 
matter volume (e.g., Haier, Jung, Yeo, Head, & Alkire, 2004), cortical 
thickness (e.g., Román et al., 2014), and in additional region-specific 
morphometric characteristics (e.g., Basten, Hilger, & Fiebach, 2015; 
Colom et al., 2013) by studies using techniques like voxel-based 
morphometry (VPM; Ashburner & Friston, 2000). Intelligence-related 
variations in white matter have mostly been studied with diffusion 
tensor imaging (DTI) and have been reported at a whole-brain level (e. 
g., Chiang et al., 2009) as well as at the level of single tracts linking 
specific brain regions to each other (e.g., Kievit et al., 2016; for review 
see Genç & Fraenz, 2021). As white matter tracts can be understood as 
defining a structural brain network, those findings are discussed in detail 
in the section ‘intelligence from a network neuroscience’ perspective. 
Studies applying magnetic resonance spectroscopy (MRS) revealed in-
sights into intelligence-associated biochemical properties of brain tissue 
and significant correlations were reported ranging from r = -.35 
(Anderson et al., 1998) to r = .91 in specific subpopulations (here: only 
women, Jung et al., 2005). Although the general trend suggests a posi-
tive association between N-acetylaspartate (NAA) and intelligence as 
well as more pronounced associations in women than in men (e.g., Jung 
et al., 2005; Pfleiderer et al., 2004), conclusions that can be drawn from 
these investigations are limited due to the use of very small samples (N ~ 
10–60) that could lead to overestimated effect sizes (e.g., Anderson 
et al., 1998; Jung et al., 1999, 2005, 2009; Moss, Talagala, & Kirisci, 
1997; Pfleiderer et al., 2004; Rae et al., 1996; for a more general review 
on MRS in cognitive research see Ross & Sachdev, 2004). Finally, most 
recent neuroanatomical investigations suggest that even individual in-
telligence test scores can be significantly predicted from variations in 
brain structure, albeit with a relatively large absolute error (~ 10 IQ 
points, i.e., ~ 0.77 SD in e.g., Hilger et al., 2020a; Mihalik et al., 2019; 
Wang, Wee, Suk, Tang, & Shen, 2015; for a discussion on the differen-
tiation between explanatory and cross-validated predictive analyses see 
Yarkoni & Westfall, 2017). 

While the positive association between intelligence and brain size 
was mostly interpreted as indicating higher computational power due to 

larger neural capacities (Genç et al., 2018), brain region-specific asso-
ciations, as summarized in the Parieto-Frontal Integration Theory (Jung 
& Haier, 2007), were set in relation to multiple information processing 
stages from perception to problem solving. Specifically, Haier (2017) 
proposed four processing stages as relevant for variations in intelligence, 
each associated with specific brain regions: Stage 1: Information enters 
the brain through perception channels. Stage 2: Information flows to 
association areas of the brain and relevant memories are integrated. 
Stage 3: Information continues forward and is integrated in the frontal 
lobes, options are weighted against each other, and actions are initiated. 
Stage 4: Motor or speech areas are innervated if required. However, 
more recent work broadened the initial parieto-frontal focus to a more 
wide-spread set of brain regions and suggested a more heterogeneous 
picture when structural studies on intelligence are compared meta- 
analytically (Basten et al., 2015; Santarnecchi et al., 2017a; for re-
views see Colom, Karama, Jung, & Haier, 2010; Colom & Thompson, 
2011; Deary, Cox, & Hill, 2021; Deary, Penke, & Johnson, 2010; Dizaji 
et al., 2021; Drakulich & Karama, 2021; Goriounova & Mansvelder, 
2019; Gray & Thompson, 2004; Haier, 2017; Jaušovec, 2019; Luders, 
Narr, Thompson, & Toga, 2009; for a review about longitudinal changes 
in the relationship between brain structure and intelligence see 
Oschwald et al., 2020). This heterogeneity can partially be explained by 
different methodological choices (e.g., whether to control for brain size 
or not; Hilger, Winter, et al., 2020a) and makes it difficult to derive 
concrete conclusions about intelligence-relevant cognitive processes 
from studies of brain structure. 

3.2. Functional imaging of intelligence 

The neural efficiency hypothesis of intelligence proposes that more 
intelligent individuals require less effort to achieve a given performance 
level (Neubauer & Fink, 2009, see above). Early PET and EEG findings of 
globally less neural activation during task performance in more intelli-
gent individuals’ brains form the basis for this theory (Grabner, Fink, 
Stipacek, Neuper, & Neubauer, 2004; Haier et al., 1988; Jaušovec & 
Jaušovec, 2000). Subsequent fMRI studies, however, pointed in the 
opposite direction (i.e., more neural activation in more intelligent in-
dividuals), and contributed to the identification of multiple moderator 
variables (e.g., sex, task difficulty; Dunst, Benedek, Koschutnig, Jauk, & 
Neubauer, 2014; Neubauer & Fink, 2009, see above). Results from 
studies which focused on brain region-specific activation levels suggest 
the involvement of frontal and parietal brain regions (e.g., of the dorso- 
lateral prefrontal cortex; Gray, Chabris, & Braver, 2003; for meta- 
analyses and reviews see Basten et al., 2015; Basten & Fiebach, 2021; 
Colom et al., 2010; Colom & Thompson, 2011; Deary et al., 2021; Deary 
et al., 2010; Dizaji et al., 2021; Goriounova & Mansvelder, 2019; Jau-
šovec, 2019; Jung & Haier, 2007; Haier, 2017; Santarneechi et al., 
2017a,b). However, these investigations were often limited by a) a 
restricted focus of analyses to specific predefined regions of interest (ROI 
approach vs. whole brain approach) and b) by large variations in the 
tasks during which neural activation was assessed (from playing chess to 
passive viewing of video films, for an overview see Basten et al., 2015). 
While the former limitation prevents the identification of neural corre-
lates in regions that were not hypothesized, the latter limitation hampers 
drawing more specific conclusions about the associated cognitive 
processes. 

Recently, two pioneering studies (Sripada, Angstadt, Rutherford, 
Taxali, & Shedden, 2020; Wu, Li, & Jiang, 2020) applied machine 
learning-based predictive modelling (for reviews see Lemm, Blankertz, 
Dickhaus, & Müller, 2011; Poldrack, Huckins, & Varoquaux, 2020) to 
show that individual intelligence scores can be predicted from task- 
induced neural activation patterns (albeit with a rather large average 
error of ~10 IQ points, ~ 0.67 SD; Sripada et al., 2020). Interestingly, 
and in accordance with previous reports (Basten, Stelzel, & Fiebach, 
2013), the interplay between activation in fronto-parietal regions and 
deactivation in regions associated with the default mode of brain 
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functioning contributed most to this prediction (Sripada et al., 2020) – 

an observation which can potentially be interpreted as support for the 
assumption that more intelligent individuals excel by keeping their 
cortical activation more focused, i.e., more effectively activating task- 
associated brain regions while also more effectively deactivating task- 
irrelevant regions. 

In sum, functional neuroimaging research on intelligence was pri-
marily focused on fMRI and identified positive as well as negative as-
sociations between intelligence and neural activation mostly in brain 
regions associated with functions of working memory, attentional con-
trol, and reasoning. Importantly, most inferences about potentially 
intelligence-relevant processes from this empirical background are in-
direct (reverse inference problem; Poldrack, 2008, 2011) and do thus 
require further investigation. 

3.3. Intelligence from a network neuroscience perspective 

The introduction of physical network theory to neuroimaging 
enabled the field to study the human brain as a complex network. 
Functionally specialized brain regions constitute network nodes that are 
interconnected via network edges (connections) and both together 
define a graph that can be investigated with specific graph-theoretical 
metrics (Bullmore & Sporns, 2009, 2012; Sporns, 2014). In structural 
networks, edges reflect anatomical brain connections that were mostly 
estimated from white-matter tracts based on diffusion-tensor imaging 
data (DTI). In contrast, functional networks are usually derived from 
time series of correlated neural activation and were mostly assessed 
during resting-state (intrinsic connectivity; Buckner, Krienen, & Yeo, 
2013) or during ongoing cognitive demands (task-related connectivity; 
Cole, Bassett, Power, Braver, & Petersen, 2014). Over the last decade an 
increasing number of studies moved beyond the above outlined local-
izationist approach (aiming to localize intelligence in circumscribed 
brain regions) and highlighted the importance of structural and func-
tional connections for understanding the brain bases of intelligence. 

The majority of structural connectivity studies on intelligence reported 
a positive association between higher intelligence scores and higher 
levels of brain-wide white matter integrity (indexed by fractional 
anisotropy; e.g., Chiang et al., 2009; Navas-Sánchez et al., 2013; Penke 
et al., 2012). Respective associations lay typically in the range between r 
= .30 and .40 and became especially prominent in white matter tracts 
linking frontal to occipital brain regions (fronto-occipital fasciculus; 
Chiang et al., 2009; Kievit et al., 2012; Kievit et al., 2016; Malpas et al., 
2016), frontal to parietal regions (arcuate fasciculus, longitudinal 
fasciculi; Malpas et al., 2016; Schmithorst, Wilke, Dardzinski, & 
Holland, 2005), different frontal regions to each other (uncinate 
fasciculus; Kievit et al., 2016; Malpas et al., 2016; Yu et al., 2008), and a 
large number of studies identified intelligence-related characteristics of 
white matter tracts connecting both hemispheres with each other with 
specific focus on the corpus callosum (e.g., Aydin, Uysal, Yakut, Emir-
oglu, & Yılmaz, 2012; Chiang et al., 2009; Damiani, Pereira, & Nasci-
mento, 2017; Dunst et al., 2014; Ganjavi et al., 2011; Hutchinson et al., 
2009; Kievit et al., 2012; Luders et al., 2007, 2011; Navas-Sánchez et al., 
2013; Strauss, Wada, & Hunter, 1994; Tang et al., 2010; Westerhausen 
et al., 2018; Wolf et al., 2014; Yokota et al., 2022; Yu et al., 2008; for 
review see Colom et al., 2010; Deary et al., 2021; Dizaji et al., 2021; 
Genç & Fraenz, 2021; Hilger & Sporns, 2021). Interestingly, associations 
were proposed to be determined by common genetic factors (Chiang 
et al., 2009; Genç et al., 2022). Structural measures such as membrane 
density (Dunst et al., 2014) and myelination (Malpas et al., 2016) have 
also been linked to intelligence. Moreover, graph-theoretical in-
vestigations reported a globally more efficient (i.e., overall shorter path) 
structural network organization in more intelligent individuals (Koenis 
et al., 2015; Ma et al., 2017; Zalesky et al., 2011). Others, however, 
could not replicate this finding (Yeo et al., 2016). Recent studies 
applying machine learning-based algorithms including some form of 
cross validation showed that intelligence can also be predicted from 

structural connectivity (Lin, Baete, Wang, & Boada, 2020; Powell, Gar-
cia, Yeh, Vettel, & Verstynen, 2018; Zhang, Allen, Zhu, & Dunson, 
2019), and finally, longitudinal investigations suggested that white 
matter connectivity (computed from different indices of white matter 
integrity) could even predict individual intelligence scores not only at 
the same time (e.g., in childhood) but also in the future (e.g., in adult-
hood; Li et al., 2020; Ferrer et al., 2013; Wendelken et al., 2017). 

Early studies addressing the relation between intelligence and func-
tional connectivity used primarily seed-based approaches. These were 
mostly focused on fMRI data assessed during the (task-free) resting state 
in order to derive intrinsic connectivity characteristics. Intrinsic con-
nectivity has been shown to be closely associated with the underlying 
anatomical connections (Greicius, Supekar, Menon, & Dougherty, 2009; 
Hagmann et al., 2008; Honey, Kötter, Breakspear, & Sporns, 2007) and 
to predict brain activity during cognitive tasks (Cole et al., 2014; Tavor 
et al., 2016). It is therefore suggested to reflect fundamental organiza-
tional principles of the brain. The emerging picture of seed-based studies 
on intelligence suggested that higher connectivity between regions of 
the fronto-parietal network (Dosenbach et al., 2007) together with lower 
connectivity between fronto-parietal regions and the default mode 
network (Greicius, Krasnow, Reiss, & Menon, 2003; Raichle et al., 2001) 
were related to higher intelligence scores (Langeslag et al., 2013; 
Sherman et al., 2014; Song et al., 2008). Graph-theoretical in-
vestigations of intrinsic connectivity broadened the focus to the 
consideration of whole-brain characteristics. The pioneering finding 
that higher intelligence was linked to a globally more efficient network 
organization (van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) was 
not replicated in more recent work (Hilger, Ekman, Fiebach, & Basten, 
2017a; Kruschwitz, Waller, Daedelow, Walter, & Veer, 2018; Pamplona, 
Santos Neto, Rosset, Rogers, & Salmon, 2015) and the global level of 
network modularity (level of segregation between distinct brain net-
works) did not show a significant association with individual differences 
in intelligence (Hilger, Ekman, Fiebach, & Basten, 2017b). In contrast, 
region-specific associations between connectivity characteristics (i.e., 
how a specific brain region is embedded within the whole brain 
network) and intelligence have been reported in multiple studies and 
highlighted the role of brain regions belonging to the fronto-parietal 
network, to the dorsal and ventral attention networks and to the task- 
negative default-mode network (van den Heuvel et al., 2009; Hilger 
et al., 2017a, 2017b; Fraenz et al., 2021; Pamplona et al., 2015; for 
reviews about intelligence-related aspects in functional connectivity see 
Cohen, & D' Esposito, M., 2021; Dizaji et al., 2021; Hilger & Sporns, 
2021). 

Finally, a large number of recent studies applied machine learning- 
based predictive modelling approaches to demonstrate that significant 
prediction of intelligence scores is possible on the basis of functional 
connectivity assessed during resting state (e.g., Cai et al., 2021; Dadi 
et al., 2021; Dryburgh, McKenna, & Rekik, 2020; Dubois, Galdi, Paul, & 
Adolphs, 2018; Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; 
He et al., 2020; Jiang et al., 2020; Lin et al., 2020; Hebling Vieira, 
Dubois, Calhoun, & Garrido Salmon, 2021; Wei, Jing, & Li, 2020; Zhang 
et al., 2019), during tasks (Gao, Greene, Constable, & Scheinost, 2019; 
Greene, Gao, Scheinost, & Constable, 2018; Jiang et al., 2020), or both 
(Elliott et al., 2019a,b). One pioneering study also succeeded to predict 
intelligence from dynamic (time-varying) brain connectivity (Fan, Su, 
Qin, Hu, & Shen, 2020). In most of these studies the mean absolute 
prediction error remained quite high (~10 IQ points, ~0.66 SD), and the 
size of correlations between predicted and observed IQ scores varied 
between r = .24 (Ferguson et al., 2017) and r = .50 (Finn et al., 2015; for 
an overview see Dizaji et al., 2021). Nevertheless, such research en-
deavors support the assumption that it is important for the explanation 
of individual differences in intelligence to consider the interaction be-
tween different brain regions – both during rest and during active 
cognition. Of note, the interplay between the task-positive networks 
(dorsal and ventral attention networks; fronto-parietal control network) 
and the task-negative default-mode networks seemed to play a 
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particularly critical role for the prediction of individual intelligence test 
scores (Dubois et al., 2018; Jiang et al., 2020). 

To conclude, while an overall higher integrity of structural connec-
tivity can be interpreted against the background of advantages in in-
formation processing speed, findings from functional connectivity 
studies highlight the role of attention networks, the executive control 
network, and the default mode network for individual differences in 
intelligence. These findings provide indirect support (Poldrack, 2008, 
2011) for the assumption that cognitive processes related to working 
memory and attentional control are involved in intelligence test 
performance. 

3.4. Open questions and future directions 

Beyond the introduction of machine learning-based predictive 
modelling approaches to the neuroscientific study of intelligence, 
another important point to enhance the reproducibility of research 
findings is to increase sample sizes since correlations between neuro-
imaging measures and phenotypical variables such as intelligence sta-
bilize only in sufficiently large samples (Marek et al., 2020; Sui, Jiang, 
Bustillo, & Calhoun, 2020). Data sharing initiatives like the Human 
Connectome Project (van Essen et al., 2012) or the Enhanced Rockland 
Sample (Nooner et al., 2012) that provide not only neuroimaging data 
from more than thousands of people but also implemented psychometric 
assessments may therefore play an increasingly important role in future 
neuroimaging-based studies of intelligence (Laird, 2021). With respect 
to methodological advances in network neuroscience, the further anal-
ysis of dynamic (time-varying) brain connectivity (Ashrafi & Soltanian- 
Zadeh, 2020; Fan et al., 2020; Hilger, Fukushima, Sporns, & Fiebach, 
2020b; Sen & Parhi, 2021), the consideration of metrics from network 
control theory (Ashrafi & Soltanian-Zadeh, 2020; Kenett et al., 2018; 
Sen & Parhi, 2021), and a closer study of the interplay between resting- 
state and task-related connectivity present promising future directions 
(Girn, Mills, & Christoff, 2019; Ramirez-Mahaluf et al., 2020; Shine 
et al., 2019). For example, two studies suggested less rest-task brain 
network reconfiguration in more intelligent individuals, a finding that 
can be interpreted against the background of neural efficacy (Schultz & 
Cole, 2016; Thiele, Faskowitz, Sporns, & Hilger, 2022). Moreover, the 
investigation of structural-functional brain network coupling with 
methods combining (f)MRI with DTI data (Levakov, Faskowitz, Avidan, 
& Sporns, 2021; Zimmermann, Griffiths, & McIntosh, 2018) may 
represent promising ways to gain additional insights from neuroimaging 
into the neurobiological basis of intelligence. 

4. Genetics 

4.1. Quantitative genetics 

The question whether and to which extent intelligence is heritable 
has not only provided cause for controversial discussions but has also 
facilitated various scientific endeavors. Results from twin and family 
studies show that genetic differences between individuals are associated 
with individual differences in intelligence, accounting for approxi-
mately 50% of the variance when studies across all age groups are 
combined (Deary et al., 2021). A recent meta-analysis of the heritability 
of 17,804 human traits from 2,748 publications over fifty years of twin 
studies revealed that for a majority of these traits, twin resemblance was 
solely due to additive genetic influence, which explained 49% of the 
phenotypic variance across all traits (Polderman et al., 2015). In line 
with Turkheimer’s (2000) three laws of behavior genetics, the effect of 
being raised in the same family (shared environment) was much smaller 
than the effect of genes. Furthermore, a substantial portion of the vari-
ation was neither accounted for by the effects of genes nor by the effects 
of families – rather, it was a non-shared environmental effect that made 
the strongest contribution. 

Intelligence differs from the above results in so far as it shows a 

differentiated etiological pattern. Specifically, substantial shared envi-
ronmental influences were observed in early childhood but those 
declined across the school years up to only modest influences in young 
adulthood and negligible influences in later adulthood (Briley & Tucker- 
Drob, 2013). In line with this, it has also been shown that the heritability 
of intelligence increases from childhood to adolescence, reaching 60% 
or more in later adulthood (Haworth et al., 2010). This effect of 
increasing heritability in the face of genetic stability has been called 
“genetic amplification” (Knopik, Neiderhiser, DeFries, & Plomin, 2017). 
More specifically, this effect reflects the concept of active genotype- 
environment correlation: Small genetic differences are magnified 
when growing-up individuals select, modify, and create environments in 
accordance with their genetic propensities. At the level of twin corre-
lations, the change in heritability over time was shown to be mainly 
caused by decreasing similarity in dizygotic twins. In sum, the obser-
vation that less genetically similar individuals become more different in 
the face of environmental diversity suggests that it takes a highly similar 
genetic make-up to retain high phenotypic similarity in intelligence over 
the life course. At the same time, it is noteworthy that the pronounced 
stability of intelligence found when large samples of individuals are 
tested repeatedly in a longitudinal design can largely be attributed to 
genetic factors (Deary, 2012). 

Two additional findings from decades of quantitative genetic 
research on intelligence warrant attention: First, intelligence appears to 
capture genetic effects on diverse cognitive and learning abilities, which 
correlate only modestly at the phenotypic but substantially at the ge-
netic level – an observation which suggests the existence of a genetic g 
factor of intelligence (Plomin & Spinath, 2002). Second, assortative 
mating or phenotypic similarity between spouses is greater for intelli-
gence than for most other behavioral traits, which might contribute 
critically to the high narrow heritability (a predominance of additive 
genetic effects) of general intelligence. Both of these above outlined 
findings facilitate molecular genetic research strategies that benefit from 
the absence of major gene x gene and gene x environment interactions as 
they are in their essence exploratory and do not incorporate assumptions 
about interactive effects (Plomin & Deary, 2015). 

4.2. Molecular genetics 

For almost twenty years, candidate gene or genome-wide association 
studies (GWAS) for intelligence yielded disappointing results, as no 
replicable associations were found (Chabris et al., 2012; Plomin & von 
Stumm, 2018). Key issues with these early-stage failures were insuffi-
cient sample sizes combined with very low effect sizes of 0.05% or even 
less. 

In 2018, three studies (Davies et al., 2018; Hill et al., 2019; Savage 
et al., 2018) with samples of 200,000-300,000 individuals reported 
several hundred significant associations with intelligence (see Deary 
et al., 2021, for a review). All three studies calculated polygenic scores 
(PGS), i.e., an individual-level aggregate composed of large numbers of 
single-nucleotide polymorphisms (SNPs), which are combined using a 
weighted sum of allele dosages multiplied by their corresponding effect 
sizes. These PGS studies succeeded to significantly explain 4-7% vari-
ance in individual intelligence scores. 

Respective investigations tied in with a series of GWAS focused on 
years of education (Lee et al., 2018; Okbay et al., 2016, 2022; Rietveld 
et al., 2013), which could increase the size of study samples further and 
identified an increasing number of significant genetic loci. Those studies 
explained an increasing amount of variance in educational attainment, 
and, to a lesser extent, intelligence. The largest GWAS on educational 
attainment to date (Okbay et al., 2022) investigated a sample of ~3M 
individuals from 71 cohorts and found 3,952 independent SNP associ-
ations of genome-wide significance. This study succeeded to explain 12- 
16% variance in educational attainment on the basis of PGSs. In addi-
tion, Lee et al. (2018) conducted a joint analysis of educational attain-
ment and cognitive phenotypes (intelligence). Using data from 1.1M 
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subjects, PGSs explained 11-13% of the variance in educational attain-
ment and 7-10% of variance in cognitive performance. Finally, Malan-
chini et al. (2021) used PGSs to explain 12% of variance in a newly 
developed gamified but not yet extensively validated measure of 
intelligence. 

4.3. Open questions and future directions 

One line of current genetic research aims at boosting the predictive 
validity of PGS further by using multi-trait genomic methods (e.g., 
Allegrini et al., 2019) or by combining genomic and phenotypic mea-
sures (e.g., SES) in the prediction of complex outcomes (Allegrini et al., 
2020; von Stumm et al., 2020). These investigations foster a deeper 
understanding of the mechanistic consequences of significant genetic 
loci and a comprehensive investigation of this issue is only beginning to 
emerge. 

GWAS data sets on intelligence have found associations between SNP 
variation and tissue-specific gene expression across many of the cortical 
regions of the brain (Davies et al., 2018; Hill et al., 2019; Savage et al., 
2018). SNP variation associated with intelligence has been linked to 
tissue-specific gene expression in specific classes of neurons, including 
pyramidal neurons of the somatosensory cortex, the CA1 region of the 
hippocampus, midbrain embryonic GABAergic neurons (Coleman et al., 
2019), and medium spiny neurons (Savage et al., 2018). In addition, 
tissue-specific analyses found the largest number of significant associa-
tions with intelligence for genes that are expressed in the frontal cortex. 
In their recent review, Deary et al. (2021) identified synapse and post-
synaptic density as promising biological systems, because respective 
SNPs showed the strongest association with intelligence in GWAS. 
Nevertheless, the authors also warned that “the variance accounted for 
by the intelligence-associated SNPs found in these biologically plausible 
tissues is probably very small” (p.8). 

Second, the need for large samples in GWAS has resulted in the 
predominant use of short and narrow intelligence measures instead of 
more comprehensive test batteries, which makes it difficult to differ-
entiate the predictive power of PGS in different areas of cognitive 
functioning (but see Genç et al., 2021, for a good example). Thus, future 
studies may include selected, yet more diverse cognitive tests to close 
this knowledge gap. 

Finally, the promotion of PGS as indicators of genetic propensity that 
may be used prospectively to tailor personalized medicine (McCarthy & 
Mahajan, 2018) or education (Plomin, 2018) must be evaluated against 
the background of their poor accuracy at the individual level (Morris, 
Davies, & Davey Smith, 2020). 

5. Future directions of biological research on intelligence 

Our overview of benchmark findings from electrophysiological, 
neuroimaging, and genetic research on intelligence identified a number 
of common issues and open questions for future research. Below, we 
discuss four issues that we conceive of as particularly central for further 
advances in the field as well as for an integration with other scientific 
perspectives on intelligence. 

5.1. Improving the robustness of neuroscientific research on intelligence 

A common problem of neuroscientific research on intelligence is that 
small sample sizes and the use of unreliable measures with questionable 
validity limit the replicability and generalizability of promising findings. 
Small sample sizes result in low statistical power, which often yields 
exaggerated estimates of effect sizes even in the absence of publication 
biases (Button et al., 2013). This problem has so far only been system-
atically tackled by genetic research on intelligence, where researchers 
have long been aware of the large sample sizes required to robustly test 
tiny effects. Moreover, we usually know little about the reliability, sta-
bility, consistency, and validity of neuroscientific measures in 

comparison to what we know about the psychometric properties of in-
telligence tests. Because neuroscientific measures are typically not 
developed to investigate individual differences, their psychometric 
properties need to be carefully assessed. Low reliabilities and consis-
tencies are a common problem with various resting-state and task- 
evoked neuroscientific measures (e.g., Bennett & Miller, 2010; Cas-
sidy, Robertson, & O’Connell, 2012; Colclough et al., 2016; Hardmeier 
et al., 2014; Lew, Fitzgerald, Ott, Penhale, & Wilson, 2021; Neuper, 
Grabner, Fink, & Neubauer, 2005; Schubert et al., 2017; Shehzad et al., 
2009), but less so with structural measures (Boekel, Forstmann, & 
Keuken, 2017; Fox et al., 2012). Thus, researchers may limit the 
robustness of their findings when not accounting for low reliabilities and 
consistencies (e.g., by using latent estimates). Together, these three is-
sues – low sample sizes, low reliabilities, and low consistencies – 

threaten the robustness of findings in neuroscientific research on 
intelligence. 

To make matters worse, independent replications of important 
findings are scarce1, because access to technical equipment, methodo-
logical expertise, and financial resources are limited. This is not only a 
problem of neuroscientific intelligence research, but of cognitive 
neuroscience as a whole (Button et al., 2013; Cwiek et al., 2022; Pol-
drack et al., 2017; Schäfer & Schwarz, 2019). The field of cognitive 
neuroscience has only recently begun to address this issue by coordi-
nating systematic replication attempts from different laboratories in so- 
called “many-labs” studies (Botvinik-Nezer et al., 2019; Klein et al., 
2014; Pavlov et al., 2021). The launch of such many-lab projects in in-
telligence research and systematic meta-analyses of published findings 
are needed to assess the robustness of relations between neuroscientific 
measures and intelligence. In addition, researchers should attempt to 
recruit large and heterogeneous samples or use publicly available 
datasets (exemplary samples including an intelligence assessement: NKI 
Rockland sample; Nooner et al., 2012; Amsterdam Open MRI Collection, 
Snoek et al., 2021; Human Connectome Project, Van Essen et al., 2013) 
to generate the most robust estimate of a given effect possible. However, 
an overreliance on specific data sets (e.g., the Human Connectome 
Project data) may also limit the generalizability of findings to other 
samples and measures. Finally, systematic in-sample and, if possible, 
out-of-sample cross-validation should become a standard for empirical 
investigations to avoid overfitting and to increase the generalizability of 
research findings on neural correlates of intelligence. In the case of in- 
sample cross-validation this implies that models are first fine-tuned in 
one part of the sample (training sample) and tested afterwards for their 
ability to predict intelligence in the other, withheld part of the sample 
(test sample). The even harder test of external (out-of-sample cross 
validation) requires an additional sample with neuroscientific data and 
respective phenotypical assessments (i.e., IQ scores), but represents the 
optimal way to establish reliable, robust, and generalizable relations 
between neuroscientific measures and intelligence (for further discus-
sion and an impressive illustration of how cross validation can decrease 
effect sizes see Cwiek et al., 2022). 

5.2. Relating neural parameters to cognitive processes 

Another important requirement for future research on the biological 
correlates of intelligence is a closer connection to cognitive processes 
and mechanisms – based not only on conceptual ideas but also on 
empirical results obtained with behavioral measures. Here, we call for a 
more rigorous inclusion of behavioral measures of the targeted cognitive 
processes when their underlying neural circuitry is investigated and 
related to intelligence. To be clear, many studies have implemented 
behavioral measures, but it is still not the gold standard. Including 

1 One historical exception is the debunking of the hypothesis that string- 
length, a measure of ERP signal complexity, is positively related with intelli-
gence (see Hendrickson, 1982; Robinson, 1993). 

K. Hilger et al.                                                                                                                                                                                                                                   



Intelligence 93 (2022) 101665

8

behavioral measures helps validating the interpretation of neural cor-
relates of intelligence. This might also solve some of the problems dis-
cussed under the keyword of “reverse inference” (Nathan & Del Pinal, 
2017; Poldrack, 2015). The reverse inference problem refers to the fact 
that most brain areas and electrophysiological measures are associated 
not only with one but with several different cognitive processes. Thus, if 
intelligence is related to the activation of a specific brain area, a brain 
network, the latency or amplitude of an ERP component and so on, this 
relation cannot be unambiguously attributed to one specific cognitive 
process, in particular when this interpretation is generalized to tasks 
different from those used to formally establish a valid reverse inference 
(Hutzler, 2014). Including behavioral measures of the cognitive process 
of interest (e.g., performance parameters of a working memory task) can 
improve the convergent validity of the interpretation of biological cor-
relates. The inclusion of behavioral measures of other cognitive func-
tions (e.g., processing speed) would enable to determine divergent 
validity. This might also be informative in studies on the genetic basis of 
intelligence. 

However, even at the behavioral level, the reliable and unambiguous 
assessment of specific cognitive processes is challenging given that not 
only one single cognitive function underlies the behavioral measures in 
a cognitive task (c.f., Frischkorn et al., submitted), which are, therefore, 
referred to as “impure” measures (Schweizer, 2007). As mentioned 
above, experimental manipulations of the demands on targeted cogni-
tive processes might be especially helpful, allowing to relate changes in 
behavior (RTs, errors, hit rates, or mathematical model parameters) to 
changes in brain activity, because those changes on the behavioral and 
the brain level can be attributed to the experimentally induced demands 
on the targeted cognitive process (Wagner, Rammsayer, Schweizer, & 
Troche, 2015). This will also facilitate the interpretation of the obtained 
changes when related to individual differences in intelligence (Junge-
blut et al., 2021). When using this approach, difference scores should be 
avoided as they are well-known to be prone to low reliabilities and may 
therefore contribute to an underestimation of the relationship between 
experimentally induced changes in neurocognitive parameters and in-
telligence. This problem can be overcome by latent-change (McArdle, 
2009) or fixed-links modeling (Schweizer, 2009). 

Finally, the measurement of biological correlates of intelligence 
often requires a high number of trials. In a given task with many trials, 
more intelligent individuals may automatize their task processing faster 
than less intelligent individuals. This could lead to individual differences 
in brain activity because brain areas associated with controlled pro-
cessing are no longer required for an automatized processing of the task 
in more intelligent individuals but still in less intelligent individuals. 
This difference in brain activity may, however, be misinterpreted to 
reflect individual differences in controlled processes, while they actually 
reflect temporal differences in the relative deactivation of those 
controlled processes. Thus, more attention to temporal changes in the 
biological processes and mechanisms during task course might be 
insightful to disentangle quantitative and qualitative differences in the 
psychophysiology of individuals with different levels of intelligence. 

5.3. Methodological developments 

Beyond the above-mentioned methodological issues specific to a 
certain research modality (i.e., EEG, neuroimaging, genetics) or a 
certain type of study design (task-based vs. resting state), three aspects 
that refer to studies across modalities might be worth mentioning. First, 
all of the above outlined research was focused on identifying biological 
correlates of intelligence. These correlates, however, do not allow for 
any conclusion about directionality of effects and causality. Does a more 
efficiently connected attention network contribute to higher intelligence 
or does it rather represent the results of a brain organization with higher 
functionality? Experimental study designs probing the effects of certain 
cognitive interventions or applying non-invasive neurostimulation 
techniques are required to address those questions systematically. For 

instance, Curtin et al. (2019) combined cognitive training with trans-
cranial magnetic stimulation to the left dorsolateral prefrontal cortex 
(DLPFC) to show causal effects of DLPFC functioning on the perfor-
mance in speed of processing tasks. Other studies used transcranial 
direct current stimulation (tDCS) alone (Sellers et al., 2015) or in 
conjunction with cognitive training (Brem et al., 2018) to directly 
modulate performance during an intelligence test (see also Santarnecchi 
et al., 2015, 2016, 2019). However, large heterogeneity in study pro-
tocols, stimulation sides, small sample sizes, and the lack of replication 
limit comprehensive conclusions, but also suggest room for improve-
ment in future investigations. 

Second, a different consideration refers to partially contradictory 
findings from EEG vs. fMRI research (e.g., in some studies that focus on 
neural efficiency). To rule out that such contradictory results can be 
attributed to circumstantial factors (e.g., sample compositions, mea-
surement characteristics, …), the simultaneous assessment of neural 
activity with EEG and fMRI is warranted. Respective methodologies are 
available today (e.g., Huster, Debener, Eichele, & Herrmann, 2012; 
Rosenkranz & Lemieux, 2010), however, to the best of our knowledge, 
those have not yet been applied to the study of intelligence. 

Last, in EEG as well as in fMRI research a broad variety of methods 
have been developed to address different aspects of brain signal vari-
ability. Microstate analyses (e.g., Liu et al., 2020; Santarnecchi et al., 
2017b), the analyses of signal complexity and entropy measures 
(Dreszer et al., 2020; Kaur, Weiss, Zhou, Fischer, & Hildebrandt, 2021; 
Stankova & Myshkin, 2016; Ueno et al., 2015), as well as the identifi-
cation of specific moments of brain-wide cofluctuations (Esfahlani et al., 
2020) represent some examples of advanced methodological approaches 
that have only started to get used in the field of intelligence research but 
may allow for promising insights into the temporal dynamics of 
intelligence. 

5.4. Building bridges across measurement levels 

To understand how genetic variability contributes to variability in 
intelligence, it is necessary to develop and test theoretical models how 
genetic effects exert their influence on intelligence through neuro-
cognitive endophenotypes (for first attempts see Deary et al., 2021). This 
ambitious goal involves at least two steps: Advancing theory develop-
ment and broadening the scope of empirical research. 

In psychological science, there is an ongoing debate about valuing 
and improving theory development (Proulx & Morey, 2021). Instead of 
only testing and replicating “effects-bounded hypotheses” (Proulx & 
Morey, 2021, p. 675) – a practice that is common in many fields of 
psychology –, intelligence research is a field with a rich history of theory 
development and continues testing influential theories as well as to 
develop new ones (e.g., Geary, 2018; Kievit et al., 2016; Kovacs & 
Conway, 2016; Van Der Maas et al., 2006). Two recently proposed 
theories already attempted to mechanistically bridge the long and 
winding path from gene expression to reasoning ability (Geary, 2018; 
Kievit et al., 2016). This focus on theories as well as empirical findings is 
an important trajectory the field of intelligence research should stay on. 
Most importantly, agreeing on important theoretical concepts and key 
hypotheses will allow pooling resources to develop measures and study 
protocols to test those hypotheses across different labs. 

Testing theories becomes more complicated if those theories make 
causal or mechanistic predictions that span multiple measurement levels 
(e.g., genetic variability, brain structure, cognitive process parameters, 
and fluid intelligence). Therefore, we believe that future research on 
biological correlates of intelligence could profit from interdisciplinary 
collaborations. Ideally, labs researching intelligence should consist of 
researchers with backgrounds in cognitive psychology, cognitive 
neuroscience, genetics, data analysis, and psychometrics. Moreover, 
intelligence researchers should make concerted efforts to conduct large- 
scale longitudinal projects spanning multiple measurement levels or 
identify elements of an important theory they can test in clearly defined 
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smaller-scale projects. Once the field has agreed upon key hypotheses, it 
could be very promising to coordinate many-labs studies testing those 
hypotheses or to generate a large, publicly available dataset designed to 
test central theories of human intelligence. Nevertheless, there would 
also be great value in smaller individual studies aimed to cleverly test 
key predictions of those hypotheses. For example, former empirical 
studies revealed structural and functional brain properties to mediate 
the link between single polymorphisms and intelligence (e.g., Green, 
Kraemer, DeYoung, Fossella, & Gray, 2013) or analyzed shared genetic 
correlations to gain insights into potentially mediating factors (e.g., 
Posthuma et al., 2002), while more recent research demonstrated that 
even the link between PGS and variations in intelligence is mediated by 
specific neural features, both on a whole brain level (e.g., brain volume, 
Elliott et al., 2019a,b) as well as at the level of single brain regions (e.g., 
structural connectivity: Genç et al., 2022; cortical surface: Lett et al., 
2020; Mitchell et al., 2020). More research of this kind is essentially 
required to advance the development of a theoretical framework for the 
biological basis of intelligence. 

6. Conclusion 

This article provides a focused overview of key benchmark findings 
on biological correlates of intelligence (see Fig. 1 for a summary). 
Electrophysiological studies have been revealing candidate components 
of the ERP and characteristics of the alpha frequency band that are 
associated with intelligence, while neuroimaging research has been 
providing insights into how different brain regions and their functional 
and structural connections relate to individual differences in intelli-
gence. Finally, genetic research has been suggesting that intelligence is 
highly heritable, with polygenetic scores of GWAS accounting for up to 
10 percent of variance in intelligence today. However, common to all 
research modalities is the problem of much heterogeneity in methodo-
logical choices, which limits systematic cross-study comparison and 
meta-analytic summaries. In fact, much about the current state of bio-
logical research on intelligence is reminiscent of the famous “chaos in 
the brickyard” metaphor established by Bernard K. Forscher (Forscher, 
1963), who warned that assembling bricks (i.e., generating new find-
ings, developing new methods) cannot replace the building of edifices (i. 
e., the development and testing of theories). The aim of this paper was to 
assemble the most important and robust bricks in the field of biological 
research on intelligence, to put them into the hands of researchers in the 
field, and thus contribute to theory testing and future theory 
development. 
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Peterchev, A. V., & Fröhlich, F. (2015). Transcranial direct current stimulation 
(tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. 
Behavioural Brain Research, 290, 32–44. https://doi.org/10.1016/j.bbr.2015.04.031 

Sen, B., & Parhi, K. K. (2021). Predicting biological gender and intelligence from fMRI via 
dynamic functional connectivity. IEEE Transactions on Bio-Medical Engineering, 68(3), 
815–825. https://doi.org/10.1109/tbme.2020.3011363 

Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., … 

Milham, M. P. (2009). The resting brain: Unconstrained yet reliable. Cerebral Cortex 
(New York, NY), 19(10), 2209–2229. https://doi.org/10.1093/cercor/bhn256 

Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information- 
processing: A review of 50 years of research. Personality and Individual Differences, 44 
(3), 535–551. https://doi.org/10.1016/j.paid.2007.09.015 

Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. 
(2014). Development of the default mode and central executive networks across 
early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 
148–159. https://doi.org/10.1016/j.dcn.2014.08.002 

Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R., Koyejo, O., … 

Poldrack, R. A. (2019). Human cognition involves the dynamic integration of neural 
activity and neuromodulatory systems. Nature Neuroscience, 22(2), 289–296. https:// 
doi.org/10.1038/s41593-018-0312-0 

Snoek, L., van der Miesen, M. M., Beemsterboer, T., van der Leij, A., Eigenhuis, A., & 
Scholte, H. S. (2021). The Amsterdam Open MRI Collection, a set of multimodal MRI 
datasets for individual difference analyses. Scientific data, 8(1), 1–23. 

Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous 
functional connectivity and intelligence. Neuroimage, 41(3), 1168–1176. https://doi. 
org/10.1016/j.neuroimage.2008.02.036 

Sporns, O. (2014). Contributions and challenges for network models in cognitive 
neuroscience. Nature Neuroscience, 17(5), 652–660. https://doi.org/10.1038/ 
nn.3690 

Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden, K. (2020). Toward a 
“treadmill test” for cognition: Improved prediction of general cognitive ability from 
the task activated brain. Human Brain Mapping, 41(12), 3186–3197. 

Stankova, E. P., & Myshkin, I. Y. (2016). Association between individual EEG 
characteristics and the level of intelligence. Moscow University Biological Sciences 
Bulletin, 71(4), 256–261. https://doi.org/10.3103/S0096392516040118 

Stelmack, R. M., & Houlihan, M. (1995). Event-related potentials, personality, and 
intelligence: Concepts, issues, and evidence. In D. H. Saklofske, & M. Zeidner (Eds.), 
International handbook of personality and intelligence (pp. 349–365). Plenum Press. 
https://doi.org/10.1007/978-1-4757-5571-8_17.  

Strauss, E., Wada, J., & Hunter, M. (1994). Callosal morphology and performance on 
intelligence tests. Journal of Clinical and Experimental Neuropsychology, 16(1), 
079–083. 

von Stumm, S., Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K., Dale, P. S., & 
Plomin, R. (2020). Predicting educational achievement from genomic measures and 
socioeconomic status. Developmental Science, 23(3), Article e12925. https://doi.org/ 
10.1111/desc.12925 

Sui, J., Jiang, R., Bustillo, J., & Calhoun, V. (2020). Neuroimaging-based individualized 
prediction of cognition and behavior for mental disorders and health: Methods and 
promises. Biological Psychiatry, 88(11), 818–828. https://doi.org/10.1016/j. 
biopsych.2020.02.016 

Tang, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Mai, X., Schroeder, D. H., … 

Haier, R. J. (2010). Brain networks for working memory and factors of intelligence 
assessed in males and females with fMRI and DTI. Intelligence, 38(3), 293–303. 
https://doi.org/10.1016/j.intell.2010.03.003 

Tavor, I., Parker Jones, O., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). 
Task-free MRI predicts individual differences in brain activity during task 
performance. Science (New York, N.Y.), 352(6282), 216–220. https://doi.org/ 
10.1126/science.aad8127 

Thatcher, R. W., North, D., & Biver, C. (2005). EEG and intelligence: relations between 
EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116(9), 
2129–2141. 

Thiele, J. A., Faskowitz, J., Sporns, O., & Hilger, K. (2022). Multi-task brain network 
reconfiguration is inversely associated with human intelligence. Cerebral Cortex. In 
press. 

Troche, S. J., Houlihan, M. E., Stelmack, R. M., & Rammsayer, T. H. (2009). Mental 
ability, P300, and mismatch negativity: Analysis of frequency and duration 
discrimination. Intelligence, 37(4), 365–373. https://doi.org/10.1016/j. 
intell.2009.03.002 

Troche, S. J., Houlihan, M. E., Stelmack, R. M., & Rammsayer, T. H. (2010). Mental 
ability and the discrimination of auditory frequency and duration change without 
focused attention: An analysis of mismatch negativity. Personality and Individual 
Differences, 49(3), 228–233. https://doi.org/10.1016/j.paid.2010.03.040 

Troche, S. J., Merks, S., Houlihan, M. E., & Rammsayer, T. H. (2017). On the relation 
between mental ability and speed of information processing in the Hick task: An 

analysis of behavioral and electrophysiological speed measures. Personality and 
Individual Differences, 118, 11–16. https://doi.org/10.1016/j.paid.2017.02.027 

Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current 
Directions in Psychological Science, 9(5), 160–164. https://doi.org/10.1111/1467- 
8721.00084 

Ueno, K., Takahashi, T., Takahashi, K., Mizukami, K., Tanaka, Y., & Wada, Y. (2015). 
Neurophysiological basis of creativity in healthy elderly people: A multiscale 
entropy approach. Clinical Neurophysiology: Official Journal of the International 
Federation of Clinical Neurophysiology, 126(3), 524–531. https://doi.org/10.1016/j. 
clinph.2014.06.032 

Ujma, P. P., Konrad, B. N., Simor, P., Gombos, F., Körmendi, J., Steiger, A., … Bódizs, R. 
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