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A B S T R A C T   

Previous studies have found that participants use two cognitive strategies—constructive matching and response 
elimination—in responding to items in the Raven’s Advanced Progressive Matrices (APM). This study proposed a 
multi-strategy psychometric model that builds on item responses and also incorporates eye-tracking measures, 
including but not limited to the proportional time on matrix area (PTM), the rate of toggling (ROT), and the rate 
of latency to first toggle (RLT). By jointly analyzing item responses and eye-tracking measures, this model can 
measure each participant’s intelligence and identify the cognitive strategy used by each participant for each item 
in the APM. Several main findings were revealed from an eye-tracking-based APM study using the proposed 
model: (1) The effects of PTM and RLT on the constructive matching strategy selection probability were positive 
and higher for the former than the latter, while the effect of ROT was negligible. (2) The average intelligence of 
participants who used the constructive matching strategy was higher than that of participants who used the 
response elimination strategy, and participants with higher intelligence were more likely to use the constructive 
matching strategy. (3) High-intelligence participants increased their use of the constructive matching strategy as 
item difficulty increased, whereas low-intelligence participants decreased their use as item difficulty increased. 
(4) Participants took significantly less time using the constructive matching strategy than the response elimi-
nation strategy. Overall, the proposed model follows the theory-driven modeling logic and provides a new way of 
studying cognitive strategy in the APM by presenting quantitative results.   

1. Introduction 

General intelligence is a core component of the intelligence structure 
and is considered to be an important predictor of academic and pro-
fessional success, which has been discussed for decades (Kane, Ham-
brick, & Conway, 2005; Marshalek, Lohman, & Snow, 1983; Vigneau, 
Caissie, & Bors, 2006). Raven’s Advanced Progressive Matrices (APM; 
Raven, Raven, & Court, 1998) is a standardized cognitive ability test 
designed to measure general intelligence or the aptitude to solve new 
problems by some elementary cognitive processes, such as identifying 
relations, drawing inferences (Loesche, 2020; McGrew, 2009). More 
specifically, as a strictly visual test, APM is one of the most commonly 
used measurement instruments for fluid intelligence than of crystallized 
intelligence (Loesche, 2020). Further, the APM has been widely used in 

research on cognitive strategies (Laurence, Mecca, Serpa, Martin, & 
Macedo, 2018) that represent sets of cognitive processes in the process 
of solving problems or achieving goals (Cameron & Cameron & Jago, 
2013; Lemaire & Reder, 1999). 

Fig. 1 (Left) displays an item from the APM. The item consists of a 
three-by-three matrix with figural elements in the matrix area and eight 
options in the response options area. One of the cells in the matrix area is 
missing and needs to be selected from the response options area, which 
requires participants to understand the rules hidden in the matrix area to 
make the selection (Gonthier, 2022). Two common cognitive strat-
egies—constructive matching and response elimination—were revealed 
in previous eye-tracking-based studies for participants to solve items in 
the APM (Vigneau et al., 2006). In constructive matching, participants 
first construct a mental representation of the answer and then make a 
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choice, whereas in response elimination, participants make a choice by 
comparing the elements of the matrix with different options multiple 
times. 

The application of eye-tracking technology enhances our exploration 
and understanding of cognitive processes (Wedel, Pieters, & van der 
Lans, 2022). Previous studies have found a correspondence between the 
cognitive strategies used by participants in the APM and their visual 
search patterns inferred from eye-tracking measures (e.g., Vigneau et al., 
2006). Specifically, compared with participants who use the response 
elimination strategy, participants who use the constructive matching 
strategy typically spend proportionately more time in the matrix area 
than in the response area, display a smaller number of toggles between 
the matrix and response options areas, and take a longer time to look 
from the matrix area to the response options area for the first time. 
Further, when using the constructive matching strategy, participants 
have a lower toggling rate, which indicates the number of toggles be-
tween the matrix and response options areas per second, but they toggle 
at a higher rate when using the response elimination strategy (Laurence 
et al., 2018). Although these studies explored the relationship between 
eye movements and cognitive strategies, they did not provide a specific 
cognitive strategy identification method. 

The identification of cognitive strategies is the basis for exploring the 
relationship between cognitive strategy and other cognitive factors (e.g., 
cognitive style and working memory), as well as for cognitive strategy 
training (e.g., Hayes, Petrov, & Sederberg, 2015; Hessels, Vanderlinden, 
& Rojas, 2011; Jarosz & Wiley, 2012; Kucharský et al., 2020; Li, Ren, 
Schweizer, & Wang, 2022). Previous studies attempted to identify par-
ticipants’ cognitive strategies using one of two self-reporting ap-
proaches. The first approach uses self-report questionnaires to ask 
participants to report the cognitive strategies they use to solve problems 
throughout the entire APM (Gonthier & Thomassin, 2015; Jastrzębski, 
Ciechanowska, & Chuderski, 2018; Li et al., 2022; Mitchum & Kelley, 
2010). The main limitation of this approach is that individuals may not 
be able to accurately and objectively recall the strategies they use, and 
the approach cannot ascertain whether participants switch strategies 
throughout the test (Jarosz, Raden, & Wiley, 2019; Lemaire & Reder, 
1999). The second approach involves utilizing the think-aloud protocol 
to ask participants to continuously say their thoughts aloud at each step 

during problem solving (Jarosz et al., 2019). However, participants may 
not be able to decipher all of their thoughts completely and accurately 
during problem solving, and the unstructured nature of language makes 
it difficult to accurately identify the cognitive strategies they employ. 
Moreover, verbal protocols can increase the cognitive load, cause the 
participant to be unable to express well, or might influence the partic-
ipant’s response process or task performance (Chiu & Shu, 2010; Jarosz 
et al., 2019). 

Further, considering that different strategies may correspond to 
different visual search patterns (Thibaut & French, 2016; Vigneau et al., 
2006), some researchers have also tried to use data-driven methods to 
distinguish different strategies from eye-tracking data. For example, to 
analyze eye-tracking data (e.g., saccade), Hayes, Petrov, and Sederberg 
(2011) proposed a semi-supervised algorithm (i.e., successor represen-
tation scanpath analysis), which combines a higher-order probability 
transfer matrix and a Markov model to visualize participants’ visual 
search patterns. Although this algorithm can accurately predict partic-
ipants’ test scores in the APM and can provide insight into the differ-
ences in their problem solving, it is rarely used in other studies due to its 
computational complexity, the subjective nature of the interpretation of 
results, and the ambiguity of strategy identification (Hayes et al., 2015; 
Laurence, 2021). Kucharský et al. (2020) proposed an unsupervised 
algorithm for mining eye-tracking data, which combines probability 
transfer matrix and K-means clustering; however, they found that the 
visual search patterns obtained from clustering by this algorithm did not 
match well with theoretically existing cognitive strategies, probably due 
to the limited amount of data. Overall, the currently used eye-tracking 
data mining algorithms are mainly limited by the low interpretability 
of the results and high data volume requirements. 

In general, because eye-tracking technology can capture partici-
pants’ eye movements in a detailed and objective manner, eye-tracking- 
based cognitive strategy identification methods are theoretically more 
accurate and objective than self-reporting approaches. Given the limits 
of existing eye-tracking data mining approaches, we need a novel eye- 
tracking-based cognitive strategy identification method with high 
interpretability of results and appropriately small data volume 
requirements. 

This study aimed to incorporate eye-tracking measures into the 

Fig. 1. Example of the Raven item format and test sequence. 
Note. (Left) The item can be divided into three interest areas: the total item interest area, the matrix interest area, and the response options interest area. The item 
consists of a three-by-three matrix with figural elements in the matrix area and eight options in the response options area. One of the cells in the matrix area is missing 
and needs to be selected from the response options. (Right) Each test has three phases: gaze point calibration, item presentation, and response. Eye movements are 
collected during the item presentation phase. Pressing the spacebar on the keyboard to enter the response page, only the options are presented on the screen, and the 
participant presses one of the number keys 1–8 on the keyboard to respond. 
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cognitive strategy identification method in the APM from the perspec-
tive of psychometric modeling to propose a multi-strategy eye-tracking 
model (denoted as MEM). By jointly analyzing item responses and eye- 
tracking measures, the proposed model can measure each participant’s 
intelligence that is reflected by the latent trait and identify the cognitive 
strategy used by each participant for each item in the APM. Theoreti-
cally, compared with eye-tracking data mining approaches, the pro-
posed model is more interpretable and has fewer data volume 
requirements, which makes it more suitable for small-scale psycholog-
ical experimental studies. Further, compared with the self-reporting 
approaches, the proposed model can more objectively identify partici-
pants’ cognitive strategies for each item. In the rest of the paper, we 
illustrate the performance of the proposed model and the corresponding 
findings from an eye-tracking-based APM study. 

2. Methods 

2.1. Instrument 

The APM contains 48 homogenous items, which are divided into two 
sets: the first set of 12 items is intended to be used as a practice set to 
familiarize participants with the format, and the second set of 36 items is 
the main test that is supposed to be scored. Typically, the first set is 
omitted or reduced to one or two example items (e.g., Carpenter, Just, & 
Shell, 1990; Dehn, 2017; Hayes et al., 2015; Kpolovie & Emekene, 
2016). In this study, to prevent participants’ practice of the first set of 
items from affecting their responses to the second set of items used in the 
formal experiment, we used three easy items from Raven’s Standard 
Progressive Matrices as warm-up items to familiarize participants with 
the response process. 

2.2. Participants 

A total of 202 students participated in this study. All were randomly 
selected from a university in a coastal province in China and had not 
participated in the APM before. A total of 10 students were excluded, 7 
of whom had serious missing or unexplainable gaze points on many 
items (see Appendix A), and 3 had test scores that were more than three 
standard deviations below the average of all students’ scores (M =
25.12, SD = 4.92). The results from the final 192 participants (147 fe-
males and 45 males; Mage = 22.06, SD = 2.54) were used for further 
analysis. 

2.3. Procedure 

Before the test began, the participants were informed of the entire 
test process. Each participant who completed the test carefully received 
a cash payment. The test program was carried out with E-Prime software 
(version 2.0) to record the outcome data, including item response ac-
curacy and item response times1; Eye-tracking data were collected with 
a non-contact device, SR Research Ltd. EyeLink Portable Duo (EyeLink 
Portable Duo - SR Research (sr-research.com)), set in monocular 
tracking mode with a sampling rate of 1000 HZ. Each participant was 
placed in a quiet room, sitting approximately 60 cm from the computer 
screen, and chin support was used to assist in fixing the participant’s 
head. A staff member operated the eye-tracking device not far away to 
ensure the smooth running of the experiment (see Appendix B for the 
experimental environment). 

Fig. 1 (Right) displays the test sequence. The participants were given 
nine warm-up items (three items to be exact, each repeated three times) 
to familiarize them with the purpose and procedure of the test before the 
formal test began. In the calibration session, a 5-point calibration 
method was used to calibrate the participant’s gaze point before 
allowing the participant to enter the response procedure. In the response 
procedure inspired by Hayes et al. (2011), a cross mark was first pre-
sented at the center of the screen. The participant was required to look at 
the cross mark; if the gaze point deviation was larger than 2 cm, the 
participant returned to the calibration session; otherwise, they moved 
forward to the next item presentation page. On the item presentation 
page, there was no time limit for the participants to reason the answer. 
When they were ready to respond, the participant pressed the spacebar 
on the keyboard to enter the response page, where only the options were 
presented on the screen; pressing one of the number keys 1–8 on the 
keyboard allowed them to respond. Furthermore, considering that the 
participants may experience visual fatigue during the whole test, we 
allowed them to take a short break, usually less than one minute, when 
the test was halfway through. 

2.4. Interest areas and eye-tracking measures 

Eye-tracking techniques were used to analyze participants’ strategies 
in the APM, and specific eye-tracking measures depended on the divi-
sion of interest areas. In this study, three interest areas (i.e., total item 
interest area, matrix interest area, and response options interest area) 
were defined (see Fig. 1(Left)). Eye movements beyond the interest areas 
were ignored. 

Following existing studies on cognitive strategies and visual search 
patterns, three composite eye-tracking measures were recorded and 
calculated in this study (Hayes et al., 2011; Laurence et al., 2018; Li 
et al., 2022; Vigneau et al., 2006): the proportional time on matrix area 
(PTM), the rate of toggling (ROT), and the rate of latency to first toggle 
(RLT). 

2.4.1. Item latency and proportional time on the matrix area 
Item latency (Titem) is the time that participants spend on the total 

item interest area, which is recorded as the time that participants spend 
on the item presentation page (i.e., item response time). The propor-
tional time on the matrix of each item was calculated from the time 
spent on the matrix interest area (Tmatrix) divided by the time spent on 
the item interest area; that is, PTM = Tmatrix/Titem; the higher the value, 
the higher proportion of time a participant spent in the matrix interest 
area. 

2.4.2. Number of toggles and rate of toggling 
A shift of gaze from one area to another is considered a toggle. The 

rate of toggling was calculated by dividing the item latency (Titem) by the 
number of toggles (G); that is, ROT = Titem/G (Laurence, 2021),2 which 
is more suitable for representing the strategies compared with the 
number of toggles (Laurence, 2021) and reflects how long it takes to 
transition once between the matrix interest area and the response in-
terest area; the higher the value, the lower the number of transitions of a 
participant’s gaze within the same time. 

2.4.3. The latency to first toggle and the rate of latency to first toggle 
The latency to first toggle is also an important measure, which is the 

time it takes participants to transfer their gaze point from the matrix 
interest area to options for the first time (Vigneau et al., 2006). The rate 
of latency to first toggle is equal to the latency to first toggle (Ttoggle) 1 According to the description of the study procedure below, the item 

response time only includes the time spent by the participants in the item 
presentation page but not the time spent by the participants in the response 
page. The advantage of this procedure is that it eliminates the time spent by the 
participant on the keystroke response and reduces potential error (e.g., Hayes 
et al., 2011). 

2 In some previous studies (e.g., Laurence et al., 2018; Vigneau et al., 2006), 
ROT was calculated as ROT = G / Titem, indicating how many toggles per sec-
ond, which is the inverse of the ROT used in this study. 
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divided by the item latency (Titem); that is, RLT = Ttoggle/Titem; the higher 
the value, the higher proportion of time a participant spent on planning 
solutions to the problem. Compared with Ttoggle, RLT additionally takes 
into account the processing speed of individuals, as reflected by Titem. 
Suppose Ttoggle of two participants are both 5 s, one participant’s Titem is 
10 s, and the other’s Titem is 20 s. The latency to first toggle is 50% of the 
response time for the first participant and 25% of that for the second 
participant, which indicates that it would not be appropriate to assume 
that both participants use the same strategy. 

Based on the findings of previous studies (e.g., Hayes et al., 2011; 
Laurence et al., 2018; Vigneau et al., 2006), we assumed that partici-
pants who use the constructive matching strategy would have a higher 
RLT, a higher ROT, and a higher PTM than those who use the response 
elimination strategy, indicating that they spend more time analyzing the 
matrix before the first gaze at the options, take longer to each toggle 
between the matrix and the options, and spend more time on the matrix 
area throughout the entire response process. 

2.5. Multi-strategy psychometric modeling incorporating eye-tracking 
measures 

Psychometric modeling is a theory-driven approach that constructs 
the probabilistic relationship between observed data and latent vari-
ables through statistical distribution functions. Currently, several multi- 
strategy psychometric models have been proposed to identify students’ 

problem-solving strategies in the field of educational achievement tests, 
such as mixture or multigroup models (e.g., Mislevy & Verhelst, 1990; 
von Davier, 2010) and multi-strategy cognitive diagnostic models (e.g., 
de La Torre & Douglas, 2008; Ma & Guo, 2019). One major limitation of 
mixture or multigroup models is that participants are usually assumed to 
use one of multiple strategies for all items in a test. Although multi- 
strategy cognitive diagnostic models eliminate this non-switching 
strategy assumption, these models are still limited to traditional item 
response accuracy data and categorial latent variables, ignoring the 
process of problem solving that can be reflected by eye movements. 
Perhaps due to the lack of communication between researchers in the 
field of intelligence and psychometricians, to our knowledge, no studies 
have attempted to use multi-strategy psychometric models to identify 
participants’ cognitive strategies in the APM, let alone involving eye- 
tracking measures. 

In recent years, a few studies have combined eye-tracking measures 
and psychometric models to assess participants’ visual engagement in 
educational assessments or to assess participants’ decision-making 
behavior in naturalistic settings (e.g., Man & Harring, 2019; Wedel 
et al., 2022; Zhan, Man, Wind, & Malone, 2022). Although these studies 
did not involve the identification of cognitive strategy, their idea of 
incorporating eye-tracking measures into psychometric models inspired 
the current study to construct the MEM, namely, a multi-strategy psy-
chometric model involving eye-tracking measures (e.g., PTM, ROT, and 
RLT). 

2.5.1. Generalized modeling and assumptions 
Essentially, the MEM is primarily designed to infer the probability of 

cognitive strategy use based on eye-tracking measures, which are then 
combined with item response accuracy data to estimate the participant’s 
intelligence. 

Consider participants taking an intelligence test with J items and M 
predetermined cognitive strategies. Based on the total probability the-
orem, the proposed MEM can be expressed as: 

P
(

Yij = 1|θi

)

=
∑M

m=1
P
(

Yij = 1|θi,mij

)

×P
(

mij

)

, (1)  

where P(Yij = 1|θi
) denotes the correct response probability of partici-

pant i (i = 1, 2, …, I) to item j (j = 1, 2, …, J), given the participant’s 
latent trait (θi) used to reflect the intelligence. P(Yij = 1|θi,mij

) is the 

strategy implementation model, which denotes the correct response 
probability of participant i to item j, given the participant’s intelligence 
θi and the cognitive strategy mij (mij = 1, 2, …, M) he/she used to item j. 
The proposed model allows participants to switch their cognitive stra-
tegies across items. 

Considering the limited number of participants in eye-tracking 
studies (usually just a few dozen), a Rasch family model is used to 
define the strategy implementation model: 

P
(

Yij = 1|θi,mij = m
)

=
exp

(

θi − bj + emj

)

1 + exp
(

θi − bj + emj

), (2)  

where bj denotes the difficulty of item j, and emj is the strategy sensitivity 
parameter, which represents the variation in the correct response 
probability by using strategy m on item j; the larger the value of ⃒⃒emj

⃒

⃒, the 
more sensitive item j is to strategy m. 

P(mij
) is the strategy selection model, and it denotes the probability 

of participant i applying strategy m on item j, and ∑M
m=1P(mij

)

= 1. It is 
inferred using eye-tracking measures in the present study, and its value 
is constrained to a number between 0 and 1, with a logistic function as 
follows: 

P
(

mij = m
)

=
exp

(

ω1 × f1ij + ω2 × f2ij + … + ωc × fcij

)

1 + exp
(

ω1 × f1ij + ω2 × f2ij + … + ωc × fcij

), (3)  

where fcij represents the c-th (c = 1, 2, …, C) eye-tracking measure of 
participant i on item j, and ωc is the corresponding weight parameter of 
it. The weight parameters reflect the magnitude of the effect of different 
eye-tracking measures on the probability of strategy selection. Note that 
in the strategy selection model, each eye-tracking measure for all par-
ticipants can be standardized for each item to put all weight parameters 
on the same scale. This allows for a comparison of the extent of the 
impact of various eye-tracking measures on the probability of strategy 
selection. 

Based on the model setup, some assumptions of the MEM can be 
summarized for a better understanding of it. First, following the findings 
of existing studies on strategy choice in cognitive tasks (e.g., the 
probability-matching perspective and the over-matching perspective [e. 
g., Lovett & Anderson, 1995; Ma & Guo, 2020]), the MEM assumes that a 
participant will use different cognitive strategies in proportion to their 
responses simultaneously, rather than definitively using a specific 
strategy. Second, during problem-solving, unlike the ability, the choice 
and use of strategies does not directly determine the success or failure of 
the problem solving, but affects the process and time spent on problem 
solving (Cook & Mayer, 1983; Mislevy et al., 1991); hence, the MEM 
assumes that participants’ choice of cognitive strategy is not theoreti-
cally related to their intelligence but is reflected by behavioral indicators 
of the problem-solving process (i.e., eye-tracking measures in this 
study).3 Third, the MEM assumes that the impact of cognitive strategy 
on the correct response probability is reflected in the item parameter via 
the strategy sensitivity parameter. In other words, the impact on the 
correct response probability is the same for participants using the same 
cognitive strategy on a given item; of course, this assumption could be 
released as emj⟹emij, but this would undoubtedly increase the 
complexity of the model and increase the demand on the amount of data 
volume. 

2.5.2. Specific setting 
Some specific settings can be made to the generalized function of the 

MEM to apply to the analysis of APM data. In this study, M = 2 cognitive 

3 Note that since no latent trait parameter was involved in the strategy se-
lection model in the MEM, the intelligence reflected by latent trait and the 
choice of strategy are theoretically independent, but this does not mean that 
they are statistically independent. 
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strategies were predetermined, namely, the constructive matching 
strategy and the response elimination strategy. Specifically, mij = 1 in-
dicates that participant i applied the constructive matching strategy to 
item j, and mij = 2 indicates that participant i applied the response 
elimination strategy to item j. 

Prior studies generally accept that the constructive matching strat-
egy is a more effective strategy with higher accuracy or test scores 
relative to the response elimination strategy (Arendasy & Sommer, 
2013; Gonthier & Roulin, 2020; Gonthier & Thomassin, 2015; Mitchum 
& Kelley, 2010). Therefore, we assumed that the correct response 
probability for participants who use the constructive matching strategy 
would be higher than or equal to that for those who use the response 
elimination strategy, namely: 
P
(

Yij = 1|θi,mij = 1
)

≥ P
(

Yij = 1|θi,mij = 2
)

. (4) 
More specifically, 

P
(

Yij = 1|θi,mij = 1
)

=
exp

(

θi − bj + e1j

)

1 + exp
(

θi − bj + e1j

) =
exp

(

θi − bj + ej

)

1 + exp
(

θi − bj + ej

), (5)  

P
(

Yij = 1|θi,mij = 2
)

=
exp

(

θi − bj + e2j

)

1 + exp
(

θi − bj + e2j

) =
exp

(

θi − bj

)

1 + exp
(

θi − bj

), (6)  

where e1j = ej and is constrained to be non-negative (i.e., ej ≥ 0), and 
e2j = 0; in such cases, the larger ej is, the greater the gain in the correct 
response probability of item j for participants who use the constructive 
matching strategy compared to those who use the response elimination 
strategy. Also, we can determine whether participants can obtain an 
improvement in correct response probability by using the constructive 
matching strategy based on whether the item strategy sensitivity 
parameter is significantly greater than zero. 

Three eye-tracking measures (i.e., PTM, ROT, and RLT) were used in 
the strategy selection model, as follows: 

P
(

mij = 1
)

=
exp

(

ω1 × f1ij + ω2 × f2ij + ω3 × f3ij

)

1 + exp
(

ω1 × f1ij + ω2 × f2ij + ω3 × f3ij

), (7)  

and 
P
(

mij = 2
)

= 1−P
(

mij = 1
)

, (8)  

where f1ij, f2ij, and f3ij represent participant i’s PTM, ROT, and RLT on 
item j, respectively. Given the positive weight parameters, the higher the 
value of the three eye-tracking measures, the participants are more 
likely to adopt the constructive matching strategy (Laurence, 2021; Li 
et al., 2022). In summary, Eqs. (1) and (4–8) together constitute the 
MEM used in this study. 

2.6. Analysis 

SR Research Ltd. EyeLink Data Viewer (Data Viewer for EyeLink Eye- 
Tracker Gaze Data – SR Research [sr-research.com]) was used to analyze 
and export the recorded eye-tracking data. Eye-tracking measures were 
calculated for 192 participants, and the mean-fill method was used to 
handle the missing values (<1%) that occurred on a few items. We 
calculated the eye-tracking measures for each participant on each item; 
further, the three eye-tracking measures for all participants were stan-
dardized for each item to put the weight parameters on the same scale. 

The parameters of the MEM and its sub-models can be estimated 
using the Bayesian Markov Chain Monte Carlo (MCMC) algorithm via 
Just Another Gibbs Sampler (JAGS) software (Version 4.3.0; Plummer, 
2015). The process of parameter estimation was performed based on 
Python software (Version 3.10.6). The JAGS code with prior distribu-
tions of all model parameters and MCMC procedure are provided in 
Appendix C. To increase the repeatability of the current study, all rele-
vant data and the Python running code used in this study are available at 

https://osf.io/wx2p8/?view_only=9218af49196e4eb3bb947ba 
68f8f66c8. More details about how JAGS is used for Bayesian estimation 
can be found in Zhan, Jiao, Man, and Wang (2019). 

To present the advantages of considering the cognitive strategy, we 
compared the fit of the MEM and the Rasch model (Rasch, 1960), which 
does not consider the cognitive strategy to the APM data.4 The widely 
available information criterion (WAIC) and leave-one-out cross-valida-
tion (LOO) (Gelman et al., 2014; Vehtari, Gelman, & Gabry, 2016) were 
used as the relative model-data fit indices; smaller values indicate a 
better model–data fit. Further, posterior predictive model checking 
(PPMC) (Gelman et al., 2014) was used to evaluate the absolute mod-
el–data fit; a posterior predictive probability (ppp) value near 0.5 in-
dicates that there are no systematic differences between the predictive 
and observed data and thus an adequate fit of the model; by contrast, 
when the ppp value smaller than 0.025 or larger than 0.975 indicates the 
model does not fit the data. In this study, the differences between the 
observed data, Y, and posterior predicted data, Ypostpred, were compared 
in computing the PPMC; that is, ppp =
∑E

e=1
(sum(

Ypostpred(e) ) ≥ sum(Y)
)/E, where E is the total number of it-

erations in MCMC sampling; ypostpred(e) indicates the posterior predicted 
data in the e-th iteration, which were generated from the item response 
function (e.g., Eq. (1) of the MEM) based on the samplings of the model 
parameters from the posterior distributions. 

The validity of the identification results of the model was verified by 
manual judgment. First, two staff members who had not participated in 
the study were trained and informed of the definition of the two 
cognitive strategies and the corresponding typical eye movements. 
Second, the eye-tracking diagrams (heat map and gaze plot) of five 
participants were randomly selected from the eye-tracking diagrams of 
192 participants for each item, and the corresponding model identifi-
cation results were extracted.5 Then, two staff members were indepen-
dently asked to make their judgment of whether to endorse the model 
identification results based on the eye-tracking diagrams (see Appendix 
D). Lastly, we assessed the consistency of the two staff members’ judg-
ment results. 

3. Results 

3.1. Main results 

Table 1 summarizes the absolute and relative model–data fit indices 
of the MEM and the Rasch model. Both models fit the APM data well in 

Table 1 
Summaries of absolutely and relatively model–data fit indices.  

Analysis model ppp WAIC LOO 
Rasch model 0.44 6485.43 6486.57 
MEM 0.44 6395.67 6397.08 

Note. MEM: multi-strategy eye-tracking model; ppp: posterior predictive prob-
ability; WAIC: widely available information criterion; LOO: leave-one-out cross- 
validation. 

4 The Rasch model has been used in some previous studies to analysis the 
APM data (e.g., Waschl, Nettelbeck, Jackson, & Burns, 2016) and can be 
expressed as P(Yij = 1|θi

)

=
exp(θi−bj)

1+exp(θi−bj)
, where θi is latent trait (i.e., intelligence) 

of participant i and bj is the difficulty of item j. 
5 In this study, to identify the strategy used by participants, the strategy se-

lection probabilities for all participants to all items were dichotomized ac-
cording to a cut-point of 0.5. Specifically, the participants were identified as 
using the constructive matching strategy on item j by P(mij = 1)〉0.5 and the 
response elimination strategy on item j by P(mij = 1) ≤ 0.5. 
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terms of the ppp value, indicating that their analysis results can be used 
to reflect the characteristics implied by the data. However, the MEM fit 
the data better than the Rasch model according to the WAIC and LOO, 
indicating that additional consideration of cognitive strategy better re-
flected the characteristics of the data. Fig. 2 displays the scatterplot of 
intelligence (i.e., latent trait) estimates for the two models (r = 0.986, p 
< 0.001); such a high correlation indicated that the two models 
measured the same latent trait, namely, the additional consideration of 
cognitive strategy did not change the latent trait measured by the model. 
The following sections will focus on the analysis results of the MEM. 

Fig. 3 displays the scatterplot of participants’ raw scores and latent 
trait estimates of the MEM (r = 0.984, p < 0.001). Although there is a 
high positive correlation between raw scores and intelligence estimates, 
the two are not equivalent. The MEM can further differentiate the in-
telligence of participants who received the same raw score. Such 
advantage of the MEM comes from the theoretical advantages of item 
response theory over classical test theory (Embretson & Reise, 2013; 
Rasch, 1960). Specifically, instead of classifying participants into 37 
categories (i.e., 0–36 scores) only, as in the case of raw scores, the MEM 
can make full use of the participant’s response information and separate 
the effect of item characteristics (e.g., difficulty) and participant’s latent 
trait on the response, thus achieving a more refined measurement of the 
participant’s intelligence (i.e., for participants with the same raw score, 
the higher the difficulty of the correctly responded items, the higher the 
participants’ latent trait estimate is likely to be). The following discus-
sions will use the intelligence reflected by the latent trait of the MEM. 

Figs. E1–E3 in Appendix E successively present the distribution of the 
three eye-tracking measures—PTM, ROT, and RLT—on 36 items. The 
estimated weight coefficients of the three eye-tracking measures were 
ω1 = 2.01 (95%highest posterior density [HPD] = [0.79,3, 42] ) for 
PTM,6 ω2 = 0.08 (95%HPD = [ − 0.77,0.94] ) for ROT, and ω3 =

1.32(95%HPD = [0.64,2.12] ) for RLT, respectively, indicating that the 
predictions of constructive matching strategy selection probability of 
PTM and RLT were positive, while ROT seemed redundant. To further 
investigate the effect of different eye-tracking measures on strategy 
choice, six sub-models of the MEM were additionally used to analyze the 
APM data, including three sub-models containing any two of the three 
eye-tracking measures in Eq. (7) (denoted as MEM2) and three sub- 
models containing any one of the three eye-tracking measures in Eq. 
(7) (denoted as MEM1). Table E1 in Appendix E presents the estimated 
weight parameters and two relative model–data fit indices for the seven 
models. The results showed that the weight parameter of ROT was not 
equal to zero only for the worst-fitting MEM1 that contained ROT alone; 
the weight parameter of ROT in the other models was not significantly 
different from zero. The MEM2 with ROT removed on the basis of MEM 
fit the data best, according to two relatively model–data fit indices. As 
shown in Table E2 in Appendix E, the MEM and the MEM2 without ROT 
had the highest consistency in the identification of cognitive strategies 
among the seven models. Overall, PTM, RLT were in descending order of 
importance for the constructive matching strategy selection probability, 
and ROT had no significant effect in MEM. 

Fig. 4 displays the item difficulty estimates and strategy sensitivity 
estimates of the 36 items in the APM. First, there was a tendency for the 
items to increase in difficulty as the test progressed, the Spearman rank 
correlation coefficient between item difficulty and item serial number is 
0.853 (p < 0.001). Second, the strategy sensitivity parameter varied by 
item, indicating that participants had a greater relative advantage in 
responding to some items (e.g., items 9, 16, 21, 22, and 36) using the 
constructive matching strategy than using the response elimination 
strategy, whereas the impact of strategy use was small in responding to 

some other items (e.g., items 1, 5, 8, 10, and 13). Strategy sensitivity 
parameter estimates for 19 items did not differ significantly from zero, 
indicating that using the constructive matching strategy on these items 
may not bring a gain to their correct response probability. 

Fig. 5 displays the Spearman rank correlation coefficients among five 
indicators, including (a) the mean constructive matching strategy se-
lection probability per item (CMSSPj =

∑I
i=1P(mij

)/I), (b) the mean 
response time across participants per item (MRTj =

∑I
i=1Titem

ij /I), (c) the 
difference between the mean abilities of two strategy groups per item 
(DMAj =

∑I
i=1

(

θ
high
i − θlow

i
)/

I), (d) item difficulty bj, and (e) strategy 
sensitivity ej.7 First, there was a significantly high positive correlation 
between bj and MRTj, indicating that the higher the item difficulty, the 
longer the time participants took to respond. Second, a significantly 
moderate positive correlation was found between ej and DMAj, indi-
cating that the higher item strategy sensitivity, the greater the difference 
between the mean abilities of the two strategy groups. Third, there was a 
marginal significance moderate positive correlation between bj and 
DMAj, which seemed to indicate that the higher the item difficulty, the 
greater the difference between the mean abilities of the two strategy 
groups. Lastly, there was no significant correlation between CMSSPj and 
any of the other four indicators, indicating that for all participants, the 
use of the constructive matching strategy was not significantly influ-
enced by item difficulty, strategy sensitivity, average time spent, or the 
difference in ability between the two strategy groups of participants. 
However, some previous studies (e.g., Bethell-Fox, Lohman, & Snow, 
1984; Jarosz et al., 2019) found that participants’ strategy use may 
interact with their intelligence and the difficulty of items (e.g., low in-
telligence participants tend to use response elimination strategy on 
difficult items). Thus, it is necessary to explore further the relationship 
between participants’ intelligence, item difficulty, and constructive 
matching strategy selection probability. 

To this end, we conducted a linear regression analysis with 
constructive matching strategy selection probability P(mij

) as the 
dependent variable and intelligence θi, item difficulty bj, and their 
interaction (θi × bj) as independent variables.8 Table 2 presents the re-
sults of the regression analysis. The regression effect was significant (F 
= 29.36; p < 0.001). In addition, the main effect of intelligence was 
significantly positive, indicating participants with higher intelligence 
were more likely to use the constructive matching strategy (Fig. E4 
displays the scatterplot of all participants’ intelligence estimates and 
their mean constructive matching strategy selection probability across 
all items). The main effect of item difficulty was non-significant, 
consistent with the result in Fig. 5. More importantly, the interaction 
term was significant, indicating that the level of intelligence affects the 
relationship between item difficulty and constructive matching strategy 
selection probability. 

To further demonstrate the effects of intelligence on the relationship 
between item difficulty and constructive matching strategy selection 
probability, we divided the participants into high-, medium-, and low- 
intelligence groups according to whether they fell into the top 30%, 
middle 40%, and bottom 30% of the intelligence estimates (Beuchert & 
Mendoza, 1979; Engelhart, 1965). The mean constructive matching 
strategy selection probability for all items was 55.7% for the high- 
intelligence group, 50.4% for medium-intelligence group, and 44.5% 
for the low-intelligence group. As shown in Fig. 6, we calculated the 

6 The function of the 95% highest posterior density in Bayesian statistics is 
similar to that of the 95% confidence interval in frequentist statistics when its 
range contains zero, indicating that the estimate (i.e., the posterior mean) is not 
significantly different from zero. 

7 Some indicators do not meet the assumption of normal distribution required 
for Pearson correlation.  

8 We uniformly convert all variables into vectors of length I × J, where the 
values of three independent variables paired with P(mij

) are bj, θi, and θi × bj, 
respectively. 
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Pearson correlation coefficient between the constructive matching 
strategy selection strategy per item (i.e., CMSSPj) and item difficulty in 
three groups, respectively.9 There was a significant moderate positive 
correlation for the high-intelligence group r(CMSSPj, bj

)

= 0.493 (p =
0.002), a non-significant low negative correlation for the medium- 
intelligence group r(CMSSPj, bj

)

= −0.269 (p = 0.113), and a margin-
ally significant low negative correlation for the low-intelligence group 
r(CMSSPj, bj

)

= −0.298 (p = 0.078). Such results indicated that partic-
ipants in the high-intelligence group preferred the constructive 

matching strategy on difficulty items; in contrast, participants in the 
low-intelligence group decreased their use of the constructive matching 
strategy as item difficulty increases. 

Fig. 7 displays nine eye-tracking diagrams (heat maps and gaze plots) 
of three participants on three APM items. The areas covered from green 
to red represent the distribution of fixation time from short to long. The 
small bule circles are gaze points, and the yellow lines between the gaze 
points represent saccades. This visual information offers a rough judg-
ment of the participant’s visual searching patterns, such as the time 
allocation and the number of toggles between the matrix and response 
options areas. The constructive matching strategy selection probability 
of three participants on the three items is also presented above the di-
agrams. Taking Participant 1 as an example, the eye-tracking diagrams 
revealed that for items 1 and 36, they spent much more time in the 
matrix area than in the response options area, and we can roughly infer 

Fig. 2. Scatterplot of intelligence estimates for the Rasch model and multi-strategy eye-tracking model.  

Fig. 3. Scatterplot of raw scores and intelligence estimates of the multi-strategy eye-tracking model.  

9 The data presented in Fig. 6 were obtained by computing averages, and 
there may be some information loss. Additional smooth 3D surface plots and a 
corresponding scatter plot of all information were presented in Figure E5 in 
Appendix E. 
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that they used the constructive matching strategy on these two items. 
Such an inference matched the high selection probability of the 
constructive matching strategy estimated by the MEM. By contrast, the 
small difference in time spent by Participant 1 in the matrix and 
response options areas of item 34 and the high number of toggles be-
tween the two areas seemed to indicate that they used the response 

elimination strategy on this item, which also matched the low selection 
probability of the constructive matching strategy estimated by the MEM. 

Of course, not all participants’ strategy selections were as clear as 
those of Participant 1. For example, the estimated probability of 
Participant 138 choosing the constructive matching strategy on item 1 
was 0.45; their eye-tracking diagram also showed that they spent some 
time both in the matrix and response options areas and had a certain 
number of toggles between the two areas, which led us to draw no easy 
conclusions about which one of the two strategies they actually used. 
One possible reason for this is that this participant tried to use two 
strategies to respond to this item. 

Furthermore, for each item, to distinguish between participants with 
clear and ambiguous strategy use, we divided them into three strategy 
groups according to whether the estimated value of P(mij

) was signifi-
cantly different from 0.5: those significantly >0.5 were the constructive 
matching strategy group, those significantly <0.5 were the response 

Fig. 4. Posterior mean and 95% highest posterior density of item difficulty and strategy sensitivity parameters of 36 Items. 
Note. b = item difficulty; e = item strategy sensitivity. 

Fig. 5. Spearman rank correlation among different indicators on the item level. 
Note. CMSSP: the mean probability of participants using the constructive 
matching strategy per item; MRT: the mean response time across participants 
per item; DMA: the difference between the mean abilities of two strategy groups 
per item; e: strategy sensitivity parameter; b: item difficulty. The number of 
elements in each indicator was 36. **: p < 0.01; *: p < 0.05; #: p = 0.055 
(marginal significant). 

Table 2 
Regression analyses predicting constructive matching strategy selection proba-
bility by intelligence, item difficulty, and their interaction.  

Independent variable coef t p 
Intercept 0.499 107.531 0.000 
θi 0.055 9.175 0.000 
bj −0.002 −0.682 0.495 
θi × bj 0.011 2.906 0.004 

Note. F-statistic = 29.36; Prob(F-statistic) = 7.44e−19; N = 6912. 

Fig. 6. Scatterplot of item difficulty and CMSSP for three intelligence level 
groups. 
Note. CMSSP: constructive matching strategy selection probability per item. The 
green, red, and blue represent high-, medium-, and low-intelligence groups, 
respectively. 
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elimination strategy group, and those not significantly different from 0.5 
were the ambiguous strategy use group. Fig. 8 displays the sample sizes 
of the three strategy groups on each item; the two groups with clear 

strategy use accounted for approximately 78% of the total, indicating 
the majority of participants’ strategy use can be identified. 

Fig. 9 further displays the mean differences in intelligence, response 

Fig. 7. Eye-tracking diagrams (heat maps and gaze plots) of three participants on three items and corresponding constructive matching strategy selection proba-
bilities. 
Note. P(m = 1): constructive matching strategy selection probability. The area covered from green to red represents the distribution of fixation time, the small blue 
circles are gaze points, and the line between the gaze points represents the saccade. The diagram (heat map and gaze plot) was automatically generated using EyeLink 
Data Viewer software based on the recorded eye-tracking data. 

Fig. 8. Sample sizes of three strategy groups on each item.  
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time, and three eye-tracking measures for the three strategy groups of 
participants across all items.10 First, the results indicated that the mean 
intelligence and all three-mean eye-tracking measures across partici-
pants decreased in descending order in the constructive matching 
strategy group, the ambiguous strategy use group, and the response 
elimination strategy group. By contrast, the mean response time across 
participants for the constructive matching strategy group was the lowest 
and less than the similar mean response times for the response elimi-
nation strategy and ambiguous strategy use groups. Further, the results 
of the one-way repeated measures ANOVA11 showed a significant main 
effect of the group on the five indicators in Fig. 9 (intelligence: F (2, 70) 
= 26.65, p < 0.01, ηp2 = 0.43; response time: F (2, 70) = 9.12, p < 0.01, 
ηp2 = 0.21; ROT: F (1.51, 52.8) = 145.09, p < 0.01, ηp2 = 0.81; PTM: F 
(1.54, 53.95) = 923.38, p < 0.01, ηp2 = 0.96; RLT: F (1.31, 45.87) 
=501.41, p < 0.01, ηp2 = 0.94), indicating significant differences in these 
indicators among the three strategy groups. Further, Bonferroni post hoc 
comparisons showed a significant difference between any two of the 
three strategy groups on each mean eye-tracking measure (all p^ s <
0.0112). For the mean intelligence, the differences between the 
constructive matching strategy group and the ambiguous strategy use 
group were not significant (p^ = 0.218), but both were significantly 
higher than the response elimination strategy group (p^ s < 0.01). In 
addition, the mean response time of constructive matching strategy 
group was significantly less than that of ambiguous strategy use group 
(p^ < 0.01) and that of response elimination strategy group (p^ = 0.017); 
however, there was no significant difference in the mean response time 
between ambiguous strategy use group and elimination strategy group 
(p^ = 1). Overall, primarily focusing on the comparison between the two 
groups with clear use of strategies, it can be found that compared with 
the participants using the response elimination strategy, the participants 
using the constructive matching strategy had a higher mean intelligence 
level, a lower mean response time, a higher mean ROT, a higher mean 
PTM, and a higher mean RLT. Furthermore, considering that each of the 
three eye-tracking measures of the ambiguous strategy use group was 
between the constructive matching strategy group and the response 
elimination strategy group, it can be inferred that participants in the 
ambiguous strategy use group might use a combination of the 
constructive matching strategy and the response elimination strategy. 

Finally, the two staff members endorsed 88% and 86% of the strategy 
identification results from the MEM, respectively, and both endorsed 
81% of the strategy identification results (see Table D1 in Appendix D). 
This provided some evidence of the validity of the strategy identification 
results of the proposed model. 

3.2. Additional results 

In the above analysis, we found that the ROT, which has been studied 
as a concern in previous studies (e.g., Laurence et al., 2018), has no 
significant effect on the choice of strategy. To further understand this 
result, it might be important to track what response option one toggles 
to, such as distinguishing between correct and incorrect options (e.g., 
Kroczek, Ciechanowska, & Chuderski, 2022). Currently, the ROT con-
founds the toggle to the correct and incorrect options, and perhaps 
because of this fact, the ROT appeared non-significant in the choice of 
strategy in the MEM. To this end, we conducted additional supple-
mentary analyses by dividing the ROT into two sub-measures: the rate of 
toggling between the matrix area and the correct option (ROTCO = Titem 

/ GCO, where GCO is the number of toggles between the matrix area and 
the correct option) and the rate of toggling between the matrix area and 
the incorrect options (ROTIO = Titem / GIO, where GIO is the number of 
toggles between the matrix area and the incorrect options). The former 
reflects how long it takes to toggle once between the matrix area and the 
correct option, and the latter reflects that between the matrix area and 
the incorrect options. We first explored the relationship between these 
two sub-measures and strategy selection probability and then incorpo-
rated them into the MEM to explore their predictions of the strategy 
selection probability. 

Fig. E6 in Appendix E presents the Pearson correlation among the 
CMSSP, ROTCO, and ROTIO. The ROTIO had a significant positive 
correlation with CMSSP, while the ROTCO had a non-significant corre-
lation with CMSSP. Such results suggested that the ROTIO appears to 
help reflect participants’ strategy choices. Fig. E7 in Appendix E further 
presents the differences in mean values of ROTCO and ROTIO among the 
three strategy groups. One-way repeated measures ANOVA showed a 
significant main effect of the group (ROTCO: F (2, 70) = 4.45, p < 0.05, 
ηp2 = 0.11; ROTIO: F (1.56, 54.73) = 130.5, p < 0.01, ηp2 = 0.79). Further, 
Bonferroni post hoc comparisons presented a significant difference be-
tween any two of the three strategy groups on ROTIO (all p^ s < 0.01). 
For the ROTCO, only the difference between the ambiguous strategy use 
group and the response elimination strategy group was significant (p^ < 
0.05). 

Table E3 in Appendix E presents the estimated weight parameters 
and two relative model-data fit indices for the three models, including 
two models (i.e., MEM-a and MEM-b) containing three eye-tracking 
measures (PTM, RLT, and one of the two sub-measures) and one 

Fig. 9. Bar charts of three groups on intelligence, response time, ROT, PTM, and RLT. 
Note. ROT: rate of toggling; PTM: proportional time on matrix; RLT: rate of latency to first toggle; error bar: 95% confidence interval; **: p < 0.01; *: p < 0.05. 

10 For each variable, we calculated the average of the three groups of partic-
ipants on each item to make the data of the three groups on each variable paired 
(i.e., for each variable, the data length for each group is 36).  
11 One-way repeated measures ANOVA was performed using the “rsratix” 

package in R. Spherical correction was performed automatically using “get_ 
anova_table()” to make the variance homogeneous (Kassambara, 2020; details 
see https://rpackgs.datanovia.com/rstatix).  
12 p^ is the p-value after Bonferroni adjustment. 
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model (i.e., MEM-ab) containing four eye-tracking measures (PTM, RLT, 
and both two sub-measures). The results showed that the ROTCO and 
ROTIO played opposite roles in predicting the selection probability of 
constructive matching strategy: ROTCO is a positive prediction, while 
ROTIO is a negative prediction. Such results indicated that participants 
were more likely to use the constructive matching strategy when they 
consulted the incorrect options less often per unit of time or the correct 
option more often per unit of time. In addition, when splitting the ROT 
into ROTIO and ROTCO, the model-data fit increased. In particular, 
when the ROTIO was incorporated, the predictive effect of the PTM and 
RLT on the strategy selection probability became non-significant; such 
results may imply that the information provided by ROTIO overlaps 
with the information provided by the PTM and RLT. Furthermore, as 
shown in Table E4 in Appendix E, there is relatively low consistency of 
strategy identification for models that include the ROTIO versus those 
that do not, indicating that the ROTIO may provide additional infor-
mation different from that provided by the PTM and RLT. 

To further investigate the strategy identification accuracy of the 
model with the ROT split (i.e., the MEM-ab) and the model without the 
ROT split (i.e., the MEM), we randomly selected some participants’ eye- 
tracking diagrams and found that the latter’s identification results for 
strategies matched the patterns presented in the eye-tracking diagrams 
more than the former’s identification results for strategies. Fig. E8 in 
Appendix E displays the eye-tracking diagrams of four participants on 
four items (the correct responses to the item in Figures (a), (b), (c), and 
(d) are options 5, 1, 6, and 1, respectively), and the strategy identifi-
cation results of the two models in these four diagrams were different. 
For example, for Fig. E8(a), the visual search pattern shows that this 
participant spent more time in the matrix area than the options area and 
had a few toggles between the two areas. Thus, this visual search pattern 
is more consistent with the constructive matching strategy (i.e., the 
identification result of MEM) than the response elimination strategy. 
However, perhaps because this participant toggled between the matrix 
area and the correct option very few times led to a large ROTCO, which 
led to an identification by the MEM-ab as a response elimination strat-
egy. In addition, for Fig. E8(b), the visual search pattern of it displays 
that this participant spent more time in the matrix area than the options 
area but had many toggles between the two areas, indicating this 
participant tried to find the rule in the matrix area and also tried to 
compare between the options. Hence, this visual search pattern tended 
to conform to the constructive matching strategy while being ambig-
uous, which is consistent with the identification result of MEM. How-
ever, perhaps because this participant toggled between the matrix area 
and the incorrect options very few times and correct option many times 
lad to a large ROTIC and a small ROTCO, which further led to a fairly 
certain identification of the MEM-ab as a constructive matching 
strategy. 

Furthermore, the visual search pattern of Fig. E8(c) shows that the 
participant used a constructive matching strategy but induced a wrong 
rule from the matrix area. However, the MEM-ab identified it as a 
response elimination strategy because this participant had multiple 
toggles between the matrix area and the objectively incorrect but sub-
jectively correct option. Finally, for Fig. E8(d), the identification results 
of the two models were also opposite, most likely also because the MEM- 
ab focused more on there is a lot toggles between the matrix area and the 
correct option. In summary, the strategy identification results of the 
MEM-ab would be heavily influenced by the frequency with which 
participants toggle to the incorrect or correct options from the matrix 
area, ignoring the difference between the elapsed time of the two in-
terest areas. 

4. Summary and discussion 

4.1. Summary 

The APM is a valid measurement instrument of intelligence, and 

previous studies have investigated the role of cognitive strategies in 
responding to these items. This study proposes a multi-strategy psy-
chometric model incorporating eye-tracking measures (i.e., PTM, ROT, 
and RLT). By jointly analyzing item responses and eye-tracking mea-
sures, the proposed model can measure each participant’s intelligence 
and identify the cognitive strategy used by each participant on each item 
in the APM at the same time. The proposed model follows the theory- 
driven modeling logic and provides a new way to study cognitive 
strategy in the APM by presenting objective and quantitative results 
based on existing findings on the correspondence between cognitive 
strategies and eye-tracking measures. Theoretically, compared with eye- 
tracking data mining approaches, the proposed model is more inter-
pretable and has fewer data volume requirements, which makes it more 
suitable for small-scale psychological experimental studies. Compared 
with self-reporting approaches, the proposed model can more objec-
tively identify participants’ cognitive strategies for each item. 

The findings of this study can be summarized as follows. First, the 
MEM fitted the data better than the Rasch model while ensuring that the 
same latent trait (i.e., intelligence) was measured, indicating that the 
participants do use different cognitive strategies in responding to items 
in the APM. Second, the effects of PTM and RLT on the constructive 
matching strategy selection probability were positive and higher for the 
former than the latter, while the effect of ROT was negligible. Third, the 
average intelligence of participants using the constructive matching 
strategy was higher than that of participants using the response elimi-
nation strategy. Fourth, participants with higher intelligence were more 
likely to use the constructive matching strategy. Fifth, the choice of 
strategy has different magnitudes of effect on different items in the APM; 
namely, choosing to respond to items with the constructive matching 
strategy did not result in significant gains on every item in the APM. 

Sixth, for all participants, there was no significant correlation be-
tween item difficulty and the probability of participants choosing the 
constructive matching strategy. However, there was a significant inter-
action effect between item difficulty and intelligence. High-intelligence 
participants increased their use of the constructive matching strategy as 
item difficulty increased, whereas low-intelligence participants tended 
to decrease their use of the constructive matching strategy as item dif-
ficulty increased; in addition, participants in the medium-intelligence 
group had a similar trend to participants in the low-intelligence group, 
but the trend was not significant. 

Seventh, participants took significantly less time to use the 
constructive matching strategy than to use the response elimination 
strategy. Eighth, the use of the two cognitive strategies coexisted in 
responding to the items in the APM; some participants were more likely 
to use one of them, while some participants might try both strategies. 
Ninth, after splitting the ROT into two sub-measures at the option level 
(i.e., ROTCO for the correct option and ROTIO for the incorrect options), 
the two predict the constructive matching strategy selection probability 
in opposite ways: the smaller the former or the larger the latter, the 
greater the probability. Meanwhile, there are some differences in the 
strategy identification results between the model with ROT dis-
assembled (i.e., the MEM-ab) and the model without ROT disassembled 
(i.e., the MEM). Overall, the strategy identification results of the latter 
match the visual search pattern of the eye-tracking diagrams more than 
those of the former. Finally, the validity evidence based on manual 
judgment also indicated that the proposed model was, to some extent, 
effective for identifying cognitive strategies in the APM. 

4.2. Discussion 

The findings of this study show consistency as well as disagreement 
with previous studies. For example, consistent with the findings of 
Bethell-Fox et al. (1984) and Vigneau et al. (2006), the use of the 
constructive matching strategy has a significant positive correlation 
with participants’ intelligences, which means high intelligence partici-
pants tended to use the constructive matching strategy. Consistent with 
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the findings of Vigneau et al. (2006), for all participants, the usage of 
strategy was independent from item difficulty; however, further analysis 
of this study showed that there was an interaction between difficulty and 
intelligence, with participants of different intelligence levels choosing 
different strategies when treating difficult items. For low-intelligence 
participants, our findings support the findings of Jarosz et al. (2019) 
and Gonthier and Roulin (2020) that participants decrease their use of 
the constructive matching strategy as item difficulty increases. In this 
regard, Bethell-Fox et al. (1984) explained that when responding to 
difficulty items, low-intelligence participants tend to shift from using the 
constructive matching strategy to using the response elimination strat-
egy, which may be due to the failure to induce the rules from the matrix 
area. 

The findings of this study were found in untimed APM, which may 
lead to some time-related findings that are different from those of 
existing studies. For example, contrary to the findings of Gonthier and 
Roulin (2020) and Gonthier and Thomassin (2015), the results of this 
study showed that participants who used the constructive matching 
strategy spent less time than those who used the response elimination 
strategy. One of the possible reasons for this discrepancy is that in their 
studies, participants were asked to complete the APM within a specific 
time limit, whereas, in this study, there was no time limit. Some previous 
studies have pointed out that time pressure can affect strategy selection, 
causing individuals to sacrifice response accuracy in order to make a 
quick decision in decision-making and cognitive tasks, namely, the 
speed-accuracy trade-off (e.g., Caviola, Carey, Mammarella, & Szucs, 
2017; Starcke & Brand, 2012; Szalma, Hancock, & Quinn, 2008). 
Furthermore, Fehrenbacher and Smith (2014) found that time pressure 
reduced participants’ attention to available information, reducing the 
retrieval of useful information. Hence, when participants perceive time 
pressure in the timed APM, they may reduce their time spent on the 
matrix. Instead, they use the response elimination strategy to go for a 
seemingly correct answer and make a quick choice, especially when they 
cannot identify the rules in the matrix. This may result in less time for 
the response elimination strategy than the constructive matching 
strategy. 

In contrast to the findings of some previous studies (e.g., Laurence 
et al., 2018; Vigneau et al., 2006) that suggested that ROT was one of the 
best measures for distinguishing strategy and predicting test outcomes 
(i.e., raw scores), our findings indicate that ROT has no significant effect 
on predicting strategy selection when PTM and RLT are present. One of 
the possible reasons for this discrepancy is that most existing studies did 
not directly explore the relationship between these three eye-tracking 
measures and the strategy used, as the MEM did in this study, but 
instead used indirect speculation to obtain the conclusion. For example, 
Laurence et al. (2018) explored the predictive role of several indices, 
including the ROT, on raw scores and found that the ROT was the best 
predictor of raw scores. They then inferred that the ROT was the best 
predictor of strategy use by combining the characteristics of two 
cognitive strategies from existing studies (e.g., Vigneau et al., 2006). 
Another reason may be that the ROT used in current study confounds the 
toggle to the correct and incorrect options, resulting the predictive ef-
fects of the two option-level ROT sub-measures (i.e., ROTCO and 
ROTIO) on the strategy selection probability to cancel each other out. 
Although the supplementary analysis supports this view, it also leads to 
some differences in the strategy identification results for the two models 
before and after the ROT split. Given that the model using option-level 
ROT may be biased in strategy identification (e.g., participants 
selected the wrong answer using the constructive matching strategy 
would lead to a large GIO and a small ROTIO, leading the MEM-ab 
biasedly identify the participants as using a response elimination strat-
egy) and that little study has focused on the role of option-level ROT in 
strategy identification, the effectiveness of option-level ROT in strategy 
identification is yet to be further investigated in the future. 

In addition to the two constructive strategies investigated in this 
study, Jarosz et al. (2019) pointed out that participants may also use 

another cognitive strategy in the APM—the isolate-and-eliminate 
strategy. The isolate-and-eliminate strategy can be treated as a combi-
nation of the constructive matching strategy and the response elimina-
tion strategy, in which “participants would establish the rules governing 
one feature of items in the problem matrix, use that rule to eliminate 
potential responses from the response bank, and then proceed with 
another feature, until only one item was left” (Jarosz et al., 2019, p. 5). 
In this study, we found that the estimates of the probability of strategy 
selection of some participants (i.e., P(mij)) were within the ambiguous 
region of about 0.5 (i.e., no significant difference from 0.5). Considering 
that each of the three eye-tracking measures of these participants was 
between those using constructive matching strategy and those using 
response elimination strategy, it can be inferred that these participants 
may have tried to use both strategies simultaneously (e.g., strategy shift 
occurs during problem-solving). Such an interpretation may provide a 
new perspective for understanding the isolate-and-eliminate strategy. 

Despite the promising results of this study, there are some limitations 
of this study that need to be addressed in further studies. First, consistent 
with most studies on cognitive strategy in the APM, this study focused on 
only two cognitive strategies—the constructive matching and response 
elimination strategies. However, in practice, more types of cognitive 
strategies may exist when responding to items on the APM, such as the 
isolate-and-eliminate strategy (Jarosz et al., 2019) and the goal man-
agement strategy (Carpenter et al., 1990). Carpenter et al. (1990) 
believed that the response of the APM involves a goal management 
strategy, which means breaking down the overall goal into sub-goals, 
and is demonstrated in the APM test by participants inducing one rule 
at a time. Alternatively, DeShon, Chan, and Weissbein (1995) suggested 
that there were two other strategies in APM, one relying on visuospatial 
processes and the other relying on verbal-analytic processes. Theoreti-
cally, the MEM proposed in this study is not limited to two strategies; 
thus, the performance of the MEM with more than two strategies is 
worthy of further exploration. 

Second, the relationship between intelligence and the strategy use 
(or other indices) obtained in this study is based on a single batch of data 
obtained from participants solving APM items. Consequently, the latent 
trait estimates were indirectly inferred from the same batch data from 
which the strategy identifies. Although the MEM assumes that partici-
pants’ choice of cognitive strategy is not theoretically related to their 
intelligence but is reflected by behavioral indicators of the problem- 
solving process (i.e., eye-tracking measures), because of their shared 
source of data, some unknown dependencies between ability and strat-
egy might have emerged. Since we did not obtain more generalized in-
telligence of the participants through multiple external measures, it 
remains to be further verified whether this study’s findings are robust 
and can be generalized to a broader domain. 

Third, the three composite eye-tracking measures used in this study 
are based on the participants’ complete responses to each item, ignoring 
changes in cognitive states during problem-solving. Therefore, the 
proposed model cannot be used to explore the possible strategy shifts in 
problem-solving (e.g., the proposed model cannot explore how many 
participants use the response elimination strategy after a failed attempt 
to use the constructive matching strategy). Meanwhile, the proposed 
model may not accurately distinguish between different cognitive pro-
cesses because similar values of these eye-tracking measures do not 
imply similar cognitive processes. In the future, eye-tracking data’s high 
temporal accuracy nature can be fully leveraged using time-series eye- 
tracking measures instead of the composite eye-tracking measures to 
achieve dynamic identification of strategy usage. 

Finally, participants were randomly selected from the same univer-
sity. Although the sample size in this study was larger than in other 
related studies, the results may not be universal due to the homogeneity 
among participants. 

Overall, following the theory-driven modeling logic, this study pro-
posed a multi-strategy psychometric model incorporating three eye- 
tracking measures (i.e., PTM, ROT, and RLT) to measure each 
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participant’s intelligence and identify the cognitive strategy used by 
each participant on each item in the APM at the same time. Several main 
findings were revealed from an eye-tracking-based APM study using the 
proposed model: (1) The effects of PTM and RLT on the constructive 
matching strategy selection probability were positive and higher for the 
former than the latter, while the effect of ROT was negligible. (2) The 
average intelligence of participants who used the constructive matching 
strategy was higher than that of participants who used the response 
elimination strategy, and participants with higher intelligence were 
more likely to use the constructive matching strategy. (3) High- 
intelligence participants increased their use of the constructive match-
ing strategy as item difficulty increased, whereas low-intelligence par-
ticipants decreased their use as item difficulty increased. (4) Participants 
took significantly less time using the constructive matching strategy 
than the response elimination strategy. 
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