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A B S T R A C T

Various neuroanatomical volume measures (NVMs) are frequently used as proxies for intelligence in com-

parative studies, such as the size of the brain, neocortex, and hippocampus, either absolute or controlled for

other size measures (e.g., body size, or rest of the brain). Mean species NVMs are moderately correlated with

aggregate general intelligence (G), however G and NVMs are yet to be compared in their evolutionary patterns

(e.g., conservatism and evolutionary rates) and processes (i.e., their fit to diverse models of evolution reflecting

selection regimes). Such evolutionary information is valuable for examining convergence in the evolutionary

history among traits and is not available from simple correlation coefficients. Considering accumulating evi-

dence that non-volumetric neurological measures may be as important as (or more so than) volumetric measures

as substrates of intelligence, and that certain NVMs negatively predict neuronal density, we hypothesized that

discrepancies would be found in evolutionary patterns and processes of G compared to NVMs. We collated data

from the literature on primate species means for G, the volumes of the brain, neocortex, cerebellum, and hip-

pocampus, and body mass, and employed phylogenetic comparative methods that examine phylogenetic signal

(λ, K), evolutionary rates (σ2), and several parameters of evolutionary models (Brownian motion, Early-burst,

acceleration, and Ornstein-Uhlenbeck). Evolutionary rates and acceleration trends were up to an order of

magnitude higher for G than for most NVMs, and a strong selection optimum toward which clades evolved was

found for G, whereas NVMs conformed mostly to Brownian motion. Brain size was the most contrasting NVM

compared to intelligence across most phylogenetic indices examined, showing signs of deceleration and extreme

conservativeness. Only certain operationalizations of neocortical and hippocampal volume showed convergence

with G, albeit still notably weakly. The NVM with results that most strongly approached the patterns identified

for G is residual cerebellar size (relative to body size). In comparison to the most commonly used volumetric

measures (operationalization of brain and neocortex size), G must be seen as an evolutionarily labile trait under

considerable selection pressure, necessitating that the role of the cerebellum be more aptly recognized and that

other neurological factors be invoked as potential substrates for its evolutionary trajectory.

1. Introduction

Measures of cognitive performance are found to be highly asso-

ciated in comparative analyses of primate species, giving rise to a

common factor of intelligence G. The G factor is found both for etho-

logical counts of novel problem-solving abilities (as measured, for in-

stance, through the observation of innovation rates, extractive foraging,

tool use, tactical deception, and social learning; Reader, Hager, &

Laland, 2011) and for controlled, laboratory tasks (Deaner, Isler,

Burkart, & van Schaik, 2007). In fact, these methods lead to correlated

indices of general intelligence, at the cross-species level, and are also

highly correlated with expert rankings of the species (Reader et al.,

2011). These findings replicate evidence of a g factor of individual

differences across many mammal species studied so far, including pri-

mates and also rodents (for reviews, see Burkart, Schubiger, & van

Schaik, 2017; Galsworthy, Arden, & Chabris, 2014; Shaw & Schmelz,
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2017).

For cross-species comparisons, specifically, laboratory tasks used

and validated thus far rely on cognitive test batteries that include both

(1) technical challenges involving understanding of physical properties

of objects and their surroundings, such as spatial memory, the capacity

to use tools, detour problem-solving, object discrimination capacity,

ability to identify object permanence once concealed; and (2) social

challenges involving understanding and producing communication

signals and theory of mind, such as gaze following ability, production of

signals to indicate location of hidden food, or the capacity to modulate

one's signal producing style based on the other individual's attention

state (e.g., Deaner et al., 2007; Hopkins, Russell, & Schaeffer, 2014).

Likewise, ethological measures include performance in both technical

and social abilities, from which a common factor is extracted (for an

extensive description of the measures, see the Method section). Con-

trary to the old notion that physical and social intelligences were lar-

gely separate capacities (Whiten & Byrne, 1988), an superordinate

factor incorporating both has been consistently found. However, no

single laboratory task or ethological criterion serves, by itself, as a

sufficiently representative measure of G, although many relate to it

strongly. This is because G is understood as what is common among

measures; in other words, if it is a domain-general capacity, then its

impact is seen across diverse problems and its accurate measurement is

therefore reliant upon several indicators from diverse domains of pro-

blem-solving.

Importantly, it appears that measures on which G loads more

strongly have been a main focus of selection pressures throughout

primate evolutionary history, more so than the more specialized abil-

ities, as the former exhibits faster evolutionary rates and more lability

(Fernandes, Woodley, & te Nijenhuis, 2014). In other words, more G-

loaded indicators display less evolutionary conservatism when ances-

toral to daughter lineages are examined, with closely-related species

tending to have more rapidly diverged with respect to more G-loaded

measures of performance. These findings suggest that primate species

with high success in solving a particular task relative to others also tend

to exhibit high success in other cognitive adaptive challenges, and that

a general factor is thus more parsimonious than explanations involving

the evolution of distinct and specialized abilities (for a review, see

Burkart et al., 2017).

In spite of the increased interest and largely consistent findings on

general intelligence across primates, there has been little empirical

exploration in terms of the neurological bases of general intelligence

apart from correlative analyses with volumetric measures. The ‘folk

impression’ - that brain size or the size of certain regions reflects in-

telligence (and thus can be used to track this across evolutionary his-

tory) - has been fundamental in the research traditions of anthropology

and, more specifically, primatology. This intuitive impression has been

a component of evolutionary thinking since its early history – Darwin

(1871, p. 145), for instance, presumed that no one would doubt “that

the large size of the brain in man, relatively to his body with that of the

gorilla or orang, is closely connected with his higher mental powers”.

This assumption has also permeated influential works in zoology

throughout the 20th century (e.g., Jerison, 1973). Many authors sug-

gest that neuroanatomical volume measures (NVMs) can and should be

used even as a “proxy for intelligence” at the cross-species level (Shultz

& Dunbar, 2010, p. 259). A long-lasting debate exists about which NVM

(i.e., the whole brain, the neocortex, the hippocampus, etc.) is mainly

responsible for intelligence, while assuming that at least one of these

measures is to a large extent responsible for the evolutionary trajectory

of intelligence across the primate order. Each measure appears to ex-

hibit associations with cognitive performance at the cross-species level,

but it is also essential to understand the limitations, so that a compre-

hensive comparison can be made and questions that help us move

forward can be better framed.

1.1. Brain size

Empirical evidence supports the view that absolute brain size pre-

dicts cognitive ability in comparative studies of mammals (e.g.,

Barrickman, Bastian, Isler, & van Schaik, 2008; Byrne & Corp, 2004;

Deaner et al., 2007; Reader et al., 2011), and specifically in primates it

shows higher evolutionary correlations with G than other commonly

used NVMs, such as the residual of brain volume against body size,

neocortex volume and neocortex ratio (i.e., the ratio of neocortex vo-

lume relative to the volume of the rest of the brain), among others

(Deaner et al., 2007). Absolute brain size appears also to be predictive

of related traits, such as problem-solving tasks requiring self-control

(MacLean et al., 2014). Species differences in proxies for broader in-

telligence tests, such as the transfer index test, are also predicted by

absolute brain size (e.g., Gibson, & Rumbaugh, D. M.,& Beran, M. J.,

2001). As bigger brains can contain more neurons (and brains of larger

size than expected for a given body size may contain what are com-

monly called extra neurons; Jerison, 1973), the rationale is simply that

overall volume ought to scale with processing capacity. Moreover, as G

by definition is a complex and domain-general trait, it is not expected to

be highly localized, but to draw from networks involving many brain

regions (for discussion of connectivity models see: Jung & Haier, 2007;

Santarnecchi et al., 2017), further justifying the interest in total brain

size as a substrate for G. Considering the strong allometric relations

between body and brain size, and between brain size and the size of

specific regions of the brain, many researchers use relative, residualized

volume measures as an indicator of intelligence (for a review, see Healy

& Rowe, 2007). These approaches have largely replaced the early re-

liance on the encephalization quotient (for a recent review, see

Peñaherrera, Fernandes, & Woodley of Menie, 2017), which is highly

unreliable as its equation varies strongly depending on which species

are added and which are removed from the model.

Brain size is clearly also used due to the principle of parsimony. As it

has a considerable correlation with the size of most brain structures,

and a non-negligible correlation with several non-volume measures that

may affect cognition, such as gyrification, it is argued to serve as a good

catch-all measure to explain intelligence (Falk & Gibson, 2001).

Approaches relying on brain size, however, are not without criti-

cisms and there exists evidence that makes its use as a ‘strong’ neu-

roanatomical proxy measure for G dubious at best. Apes, including

humans, and monkeys do not exhibit the largest brain, either in abso-

lute terms or relative to body size (Dicke & Roth, 2016), contradicting

the contention that this is a good neuroanatomical measure of in-

telligence. The idea that brain size can be used to proxy intelligence

even within species is problematic. Whilst psychometric meta-analyses

(i.e. Gignac & Bates, 2017) and large-scale preregistered studies (i.e.

Nave, Jung, Karlsson Linnér, Kable, & Koellinger, 2019) have found

evidence of modest magnitude correlations between brain size in hu-

mans and IQ (r=0.3 to 0.4), studies involving the calculation of

coefficients of additive variance have found that the value for brain size

in humans in very small – likely much smaller than the value for g,

which poses a problem for ‘processing volume theories’ of intelligence,

as this suggests that brain size within the human lineage has been

subject to a regime of relatively strong stabilizing selection (which is

not likely to have been the case for g) (Miller & Penke, 2007). Moreover,

a recent meta-analysis found highly inconsistent indications that

subtest g-loadings positively moderate the magnitude of the correlation

between scores on ability subtests and brain volume (the overall vector

correlation value was 0.07, N=246, K=4), again indicating that (at

least within the human species) brain size differences might relate

strongly to non-g sources of ability variance, which are likely to have

been experienced somewhat divergent selection histories relative to g

(Woodley of Menie, te Nijenhuis, Fernandes, & Metzen, 2016).

Furthermore, different innovation rates and problem-solving capa-

cities are observed in species with similar brain sizes (Forss, Willems,

Call, & van Schaik, 2016; Navarrete & Laland, 2015), illustrating how
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other substrates for cognitive performance need to be invoked. These

criticisms of the brain size approach are not new, however. Several

scholars have expressed concerns with the recent uptake of interest in

the absolute brain size in the field of complex cognition (e.g., Chittka &

Niven, 2009; Healy & Rowe, 2007), renewing doubts and criticisms

expressed decades ago (e.g., Holloway Jr., 1966a, 1966b), arguing that

the field should developing in the direction of analyzing more fine-

grained neuroanatomical candidates for intelligence rather than ex-

amining a broad and unspecific proxy such as brain size (Healy & Rowe,

2007).

1.2. Major candidate brain structures

1.2.1. Neocortex size

The neocortex has been proposed by many researchers to be re-

sponsible for complex cognitive information processing, especially in

the context of the social brain hypothesis (Barton, 1996; Dunbar, 1992;

Dunbar & Shultz, 2007; Shultz & Dunbar, 2010). This hypothesis pro-

poses that, in order to cognitively monitor social interactions in com-

plexifying groups (in terms of size and forms of relations) in primate

evolution, larger neocortices were necessary. As such, it is a hypothesis

about cognitive processing and executive functions (Shultz & Dunbar,

2010), rather than necessarily specifically about general intelligence.

Still, the neocortex has been compared to other volume measures in

examinations of the best neuroanatomical predictors of intelligence

(e.g., Deaner et al., 2007), and also to ethological counts of intelligence-

related behaviors (social learning, tool use, and innovation rates;

Reader & Laland, 2002). However, neocortical size also correlates im-

portantly with rates of tactical deception at a cross-species level in

primates (Byrne, 1996), a variable that does appear to be an integral

part of the G nexus (Fernandes et al., 2014; Reader et al., 2011).

The case for the neocortex, or its relative volume, as a neuroana-

tomical indicator of intelligence, is further made by Kaas and

Herculano-Houzel (2017), who suggest that a larger neocortex would

translate into more neurons to analyze sensory inputs considering the

positive relation between its size and its number of neurons. Further-

more, the expanded cortical sheet would contain more cortical areas,

permitting more computationally intensive information processing and

storage, and decision making. However, they argue that this should

manifest as cognitive specialization (Kaas & Herculano-Houzel, 2017),

whereas general intelligence is, by definition, generalized contrary to

this expectation, reducing the plausibility of the hypothesis of cognitive

evolution focused on cortical complexification as a candidate explana-

tion.

The most common employment of neocortex volume as a proxy for

intelligence is the neocortex ratio (Dunbar, 1992; Shultz & Dunbar,

2010), operationalized as the size of the neocortex divided by the size of

the rest of the brain. However, it too is not without criticisms: The

appropriateness of the use of the neocortex ratio as a proper statistical

approach to understanding the evolution of the neocortex has been

challenged, as the enlargement of any other parts of the brain would

decrease the neocortex ratio, leading to expectations of lower in-

telligence. It is unclear why enlargements in other areas, several of

which are known to be involved in complex cognition and to be part of

neural circuits that include the neocortex, should be interpreted as

decreasing intelligence (Gibson, Rumbaugh, & Beran, 2001). Neocor-

tical volume residualized against body size has also been used as an

approach occasionally, although more in the sociality literature than in

cognition studies (Deaner et al., 2007).

Among components of the neocortex, the frontal lobe has been

central to much discussion especially for the evolution of human in-

telligence. A common assumption is that high relative enlargement of

the frontal lobe is the hallmark of human brain evolution. However,

recent evidence using correctly scaled measures and phylogenetic ap-

proaches indicates that no such relative enlargement has occurred

(Barton & Venditti, 2013), either for humans or apes in general. In fact,

other branches in the primate phylogeny exhibit faster evolutionary

rates than those for the former taxa.

1.2.2. Cerebellum size

More rarely discussed, but still tested and highlighted especially in

more recent publications, is the potential role of the cerebellum in in-

telligence. It has been argued that an excessive emphasis on neocortical

volume has obscured the putative role of the cerebellum and led to its

relative neglect (Barton, 2012). Several lines of research indicate that

cognitive capacities are predicted by cerebellar size, be it its absolute

size or relative to broader measures such as body size. Firstly, as cer-

ebellum size increases in primate lineages, its neuron density exhibits a

much less noticeable decline compared to the neuron density decline in

larger neocortices (Barton, 2012). Secondly, the cerebellum has un-

dergone rapid evolutionary expansion in the great ape clade (which

also exhibits high G; Reader et al., 2011) (see Miller, Barton, & Nunn,

2019, for a brief review). Along with such volume increases, the cere-

bellum is more intensely connected to the neocortex in apes (Barton,

2012; Rilling, 2006), with these two structures possibly evolving as a

coordinated system (Barton & Harvey, 2000). While the cerebellum is

usually considered to mainly have a role in motor control, it has long

been proposed that it actually is a modulator and augmenter of neu-

rologic function: Connections to motor areas would increase the skill of

movement, while connections to cognitive areas would improve the

skill of thought-related problem solving (Leiner, Leiner, & Dow, 1989).

Thus the observed increased connectivity to neocortical areas may be

considerably responsible for increased G.

In fact evidence has accumulated that the cerebellum is involved in

many cognitive domains, including planning and decision-making, as-

sociative learning, working memory, spatial and episodic memory,

mental rehearsal, event prediction, and imitation (for a review, see

Barton, 2012). In fact, cerebellar size is more predictive than neocor-

tical size of tool use and extractive foraging (measures of G; Reader

et al., 2011; Fernandes et al., 2014) (Barton, 2012). More recent evi-

dence suggests that evolutionary increases in cerebellar size, especially

in the lateral cerebellar hemispheres, are correlates with general in-

telligence in primates through multiple independent evolutionary oc-

currences (Smaers, Turner, Gómez-Robles, & Sherwood, 2018). Con-

sidering these lines of evidence altogether, cerebellar size must be

considered one of the main and increasingly studied candidates in terms

of the volumetric substrates of G.

1.2.3. Hippocampus size

Although also rarely proposed as being directly responsible for

broad, general intelligence, the hippocampus is often invoked as a

structure that is integral to the information maintenance and cognitive

control functions of the neocortex, especially the pre-frontal cortex

(Blair, 2006), and as such figures as a candidate region for neuroana-

tomical regions responsible for executive function and intelligence

when its absolute size is used to predict these variables (Shultz &

Dunbar, 2010). Although positive associations are found with executive

functions, little has been explored about its relationship with G as it is

uncommon to examine hippocampus size comparative analyses of in-

telligence, especially considering the limited amount of data on hip-

pocampal volume for primates compared to other measures, and con-

sidering that the differences among primate species in hippocampal size

are slight (Stephan, Frahm, & Baron, 1981).

1.3. Beyond correlations

That volumetric measures of the brain, the neocortex, and the hip-

pocampus all show correlations with intelligence is little debated.

However, examining the evolutionary associations among traits, and

therefore testing whether one may function as the main factor for

variation in another during evolution is a more complex endeavor than

simply looking at the correlations between variables. Interpreting

H.B.F. Fernandes, et al. Intelligence 80 (2020) 101456
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evolutionary processes for traits from correlations across extant species

can be misleading. A trait that exhibits strong correlation with another

may be under a different selection regime, display a different evolu-

tionary trajectory, and only constrain the evolution of the other trait

(thus permitting a window of variability, within which no evolutionary

influence may be exerted), rather than function as a driver of its evo-

lution. This case can be illustrated with recent studies that have iden-

tified different evolutionary trajectories for brain and body size in spite

of strong correlation: Analyses of cichlid adaptive radiation indicates

that body size exhibited recent bursts of rapid evolution that were not

found for brain size – the latter evolved in a gradual manner (Gonzalez-

Voyer, Winberg, & Kolm, 2009a). Similarly, in primates, a study of

evolutionary rates and selective pressures for brain size and body size

has suggested that the overall positive selection identified for both

absolute and relative brain size is not found for body size. Many se-

lection mechanisms may be responsible for the relative evolutionary

independence of phenotypically and genetically related traits, among

which it has been found, in a study of pinnipeds, that body and brain

size evolutionary trajectories may be decoupled by sexual selection

(Fitzpatrick et al., 2012). Other, hypothetical, scenarios are also pos-

sible: increases in brain size in a lineage may require body sizes that

accommodate them, but larger body size may have already evolved

before due to predation risk or other selection pressures. A similar ra-

tionale may be applied to the association between intelligence and

NVMs: it is not necessarily the case that they need to evolve in tandem.

G and certain (or all) NVMs may have been under different selection

regimes and thus may exhibit different evolutionary trajectories, in

spite of correlations. Indeed, the human brain volume coefficient of

additive variance research of Miller and Penke (2007) is strongly sug-

gestive of this, at least within this taxon.

Another issue with the volumetric approach to understanding in-

telligence is that comparative studies indicate that neuronal density and

gray matter density in many structures of the brain tend to be smaller in

species with a larger brain volume (Barton, 2006; which also applies to

the frontal lobes; Semendeferi et al., 2011). As such, evolutionary in-

creases in NVMs can be deceptive: For example, in apes the cerebral

cortex represents 70–82% of brain mass (more than in other primates)

but holds only 19–30% of brain neurons (similar to or less than other

mammals; Herculano-Houzel, Collins, Wong, & Kaas, 2007). Conse-

quently, it is an expansion of white matter that is favored in larger

brains to maintain conduction speed (Barton, 2006; Herculano-Houzel,

Mota, Wong, & Kaas, 2010; Wen & Chklovskii, 2005), with processing

power increases thus not being the main outcome of the evolution of

larger brains. While increased connectivity between closely-positioned

neurons may exist in larger brains, it is decreased among different re-

gions of the brain in spite of a higher number of axons in the white

matter (Semendeferi et al., 2011). As general intelligence is influenced

by cortical connectivity, it is likely to have considerable independence

from brain or neocortex volume, being also importantly influenced by

other factors.

It is undeniable that NVMs and intelligence show correlation at the

comparative level. However, to further understand the associations of G

and NVMs and examine the degree to which they share an evolutionary

history, it is necessary to compare their evolutionary processes, namely

what selection regimes have they been under, and to test if they are

convergent. It is also essential to compare their rates of evolution, as

even though they may be evolving in the same directions (with one

increasing when the other increases, and decreasing when the other

decreases, thus are positively correlated across evolutionary history), G

might be evolving at a faster rate than NVMs, thus necessitating that

other covariates be invoked as potential substrates. The present study

aims to address these questions.

In sum, this study has the goal of examining how comparable the

evolutionary history of G in primates is compared to the above com-

monly employed and defended neuroanatomical volume measures.

Exploring all possible brain areas, each operationalized in many ways

(e.g., absolute size, residualized against body size, or using its ratio to

the rest of the brain, etc) would constitute a largely exploratory ap-

proach that permits capitalizing on chance and difficult theory con-

struction. Rather, only already used NVMs and in specific oper-

ationalizations that have led to positive correlation coefficients with

intelligence measures will be examined, thus this study builds on pre-

vious hypotheses and evidence.

2. Method

2.1. Datasets

Data on the following variables will be collated from previous

publications and used in the analyses subsequently detailed (see

Table 1.):

I) G (Byrne & Whiten, 1990; Reader et al., 2011): The information

compiled by Reader et al. (2011) covers over 4000 publications, and 69

species describing four ethological dimensions or classes of cognitive

abilities (social learning, tool use, innovation, and extractive foraging).

Data on a fifth dimension (deception) were obtained from Byrne and

Whiten (1990). These five variables refer to ethological counts of be-

havior described in the literature. Ethological counts for each of the five

classes of behavior were registered in the database for each species, and

residualized against research effort for the respective species. Research

effort reflected the number of papers published in general for each

species across the same journals from which the counts of behavior

were obtained, thus indicating how much researchers focus on each

species irrespective of identifying complex problem solving. These data

were also obtained from Reader et al. (2011), for consistency with the

ethological counts of behavior in terms of sources used.

In previous literatures using this dataset, a G factor was estimated in

an exploratory fashion using principal components analysis, principal

axis factoring (Reader et al., 2011), and subsequently using unit

weighted factor scoring (Fernandes et al., 2014). These approaches led

to highly convergent factors. Even so, as factor loadings produced with

principal components analysis and principal axis factoring in small

samples are less reliable than those computed with unit-weighted fac-

toring because of large standard errors (Figueredo et al., 1995 and

Gorsuch, 1983), the G factor used in the present analysis was derived

from the unit weighted factor estimated by Fernandes et al. (2014). It

explained 62% of the variance among the five cognitive capacities.

To permit an understanding of the meaning of G, it is important to

conceptualize the five cognitive abilities comprising it:

(i) Tool use: Generating and employing artifacts to solve physical and

social problems. This measure is considered as an indicator of the

organism's capacity to change and control its immediate environ-

ment (Darwin, 1871; Gibson & Ingold, 1993; Washburn, 1959;

Wynn, 1988). Tool use has been demonstrated to be associated with

other intelligence indicators in primates and non-primate species

(Lefebvre, Reader, & Sol, 2004; Reader & Laland, 2002), as is often

seen as a classic intelligence measure (see Matsuzawa, 2001;

McGrew, 1993).

(ii) Extractive foraging: The capacity to extract food items known to be

cached or concealed. Previous research indicates this ability is

linked both with NVMs and G (Gibson, 1986; Parker & Gibson,

1977; Reader et al., 2011; van Schaik & Isler, 2012). It also exhibits

considerably high evolutionary lability and evolutionary rates

among primate species (Fernandes et al., 2014).

(iii) Innovation: A measure of new solutions to complex (and poten-

tially novel) social or environmental problems. It relates to the

capacity to ontogenetically adapt to new environmental conditions

and is thus considered a proxy for intelligence (Lefebvre et al.,

2004; Reader & Laland, 2002; Sol, Duncan, Blackburn, Cassey, &
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Lefebvre, 2005).

(iv) Social learning: The capacity to acquire skills and information from

conspecifics (e.g., family members, peers, or other adults). Past

publications identified social learning as a central component of

social or Machiavellian intelligence (Byrne & Whiten, 1988;

Whiten & Byrne, 1988).

(v) Tactical deception: Behaviors that reorient the attention of others

misleading, take advantage of, or otherwise damaging others

(Byrne & Whiten, 1988). In spite of exhibiting the lowest factor

loadings from G and lowest

This dataset has been used extensively in the animal cognition lit-

erature (e.g., Fernandes et al., 2014; Heldstab et al., 2016; Navarrete,

Reader, Street, Whalen, & Laland, 2016; Street, Navarrete, Reader, &

Laland, 2017). As it is not the result of manipulations or human in-

terventions for measurement, this approach has the desired quality of

being species fair rather than possibly being biased (by factors such as

perceptual, anatomic, or motivational advantage in performance) to-

ward certain species over others as has been speculated to be the case

with laboratory tasks for the measurement of animal cognition. Im-

portantly however, in previous publications, the G factor extracted from

these five measures was found to be highly correlated with and is thus

validated by diverse experimental measures (Day, Coe, Kendal, &

Laland, 2003; Reader et al., 2011; Timmermans, Lefebvre, Boire, &

Basu, 2000) and qualitative rankings based on reviews of ethological

studies (Roth & Dicke, 2012). Moreover, the approach of using ag-

gregated measures such as these leads to considerable reliability, as

error in individual measurement tends to be randomly distributed, and

as such at the aggregate level error is canceled out (Lubinski &

Humphreys, 1996).

II) Brain size (Isler et al., 2008): Data on 3813 specimens corre-

sponding to 176 non-human primate species are available for overall

brain size. Measurement is highly reliable, not needing correction,

given very high inter-researcher reliability in the estimations made

(Isler et al., 2008). Moreover, for the overwhelming majority of data

points, the original collecting locality and other information for the

specimen are known, permitting avoidance of misclassification with

respect to sister species. Data from sources other than Isler and col-

leagues' own measurement were added from the literature by the ori-

ginal authors for species with insufficient data.

III) Neocortical, cerebellar, and hippocampal size (Navarrete et al.,

2018; Stephan et al., 1981): Stephan and colleagues amassed a database

comprising the volumes of multiple neuroanatomical regions for 45

primate species. As is common practice for neuroanatomical analyses

involving primate species (e.g., Deaner et al., 2007; Dunbar, 1992;

Shultz & Dunbar, 2010), this database will be employed. However, it

will be combined with recently published data made available by Na-

varrete and colleagues on more species and more specimens for many of

the same species, totaling a 67-species database for the neocortex,

hippocampus, and cerebellum.

IV) Body mass (Isler et al., 2008): Data on body mass permits re-

sidualizing NVMs against it so as to examine if it is relative or absolute

NVMs that exhibit more evolutionary similarity to G. The updated data

source compiled by Isler and colleagues will be used, as it not only

includes original data for the same species as brain size, but also adds

data points reported in previous publications that focused on examining

the validity of body mass measurement in primatology. Chief among

these is Smith and Junger's (1997) effort to examine the shortcomings

of previous sources commonly employed in comparative analyses, and

to provide updated, more reliable estimates.

While it served the literature immensely by motivating discussions

about the neuroanatomical basis of intelligence for decades, the en-

cephalization quotient will not be included in present analyses as a

measure given (1) the now almost unanimous agreement upon its se-

vere statistical limitations and biases, (2) its inferiority to absolute or

residualized NVMs in its capacity to predict intelligence, and (3) the

strong variation in encephalization values assigned to species de-

pending on which are included in analyses (for reviews, see Falk &

Gibson, 2001; Peñaherrera Aguirre & Fernandes, 2018).

All variables will be log-transformed prior to analyses as is common

practice in comparative studies, due to the high observed skewness

inherent in cross-species data (Harvey, 1982). NVMs that are commonly

residualized against body size in the cognitive literature will be in-

cluded in both raw (i.e., absolute) and residual form in the analyses.2

Residuals will be computed with ordinary least square regressions

(OLS). The proportion of the Neocortex to the rest of the brain (i.e.,

neocortex ratio), a common index in the comparative literature, will

also be included in addition to raw variables and residuals. However,

following Shultz and Dunbar's (2010) inclusion of the raw hippocampal

volume only, and given the lack of other comparative studies that fo-

cused on residual hippocampal data specifically in both theoretical and

empirical comparative work on G, here the hippocampus volume will

not be residualized against body size.3

For all analyses, a phylogenetic tree will be obtained from 10ktrees.

fas.harvard.edu (Arnold, Matthews, & Nunn, 2010). Phylogenetic trees

represent the pattern of relatedness among species, with speciation

events represented as nodes and daughter lineages that result from

speciation represented as branches emanating from a node. Arnold

et al. (2010) made available a consensus tree for the primate order,

relying both on molecular data and fossil data available in the litera-

ture. Considering one goal of the present study involves estimating

evolutionary rates of change on measures across time, the phylogenetic

tree selected had branch lengths representing time elapsed since spe-

ciation (i.e., the so-called ultrametric tree), with the horizontal axis of

the tree reflecting time in millions of years. Furthermore, most phylo-

genetic comparative methods that will be used in the present study,

including estimation of trait conservatism, have been developed for this

type of tree topology (Garamszegi, 2014). Data for traits of interest, to

be analyzed using the phylogenetic tree through the methods described

below, can be entered for extant species (i.e., at the tips of the tree).

Rather than being independent data points, the data for the species

have a pattern of interdependence determined by the tree topology, and

this permits estimating (a) how conserved the trait in question is, (b)

the rate of change for the trait across time (i.e., branch lengths for the

tree), (c) the fit of several selection models to explain the extant species

variation in the trait; as fully detailed in the section below.

2.2. Analyses

In terms of adequate sample size, previous simulations indicate that

it is feasible to estimate a trait's phylogenetic signal, within a range of

80–90% of statistical power, with more than 20–30 species. Datasets

with more than 45 species often reach 100% of statistical power

(Blomberg, Garland Jr, & Ives, 2003; Freckleton, Harvey, & Pagel,

2002). The present analyses exceed the minimum suggested range of

20–40 taxa. Pagel's λ and Blomberg et al.'s K were estimated to de-

termine the degree of phylogenetic signal (PS) (Kamilar & Copper,

2013; Nunn, 2011). We decided to use both indicators of phylogenetic

signal considering that there is no consensus in the literature as to

2 It should be noted that controlling for the so-called ‘effects’ of body size on

the traits studied (on the basis that it may constrain/influence their evolution)

is a common but controversial approach. It has been argued that controlling for

size also removes adaptive variance (stemming from adaptations to maintain

functional equivalence or from a common cause of variation in size and in the

trait in question; Fleagle, 1985; Jeschke & Kokko, 2009; Roff, 2001; Smith,

1980), thus it might reduce the power of the traits as predictors of intelligence

when applied to NVMs (Deaner et al., 2007). Interpretations of results of re-

sidualized measures are made with caution, considering this caveat.
3 For rigor, phylogenetic residuals (Revell, 2009) were also computed instead

of residuals using OLS regression, but as they led to final results within

rounding error of those relying on OLS regression, only the latter are reported.
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which index better reflects the true pattern of conservatism

(Münkemüller et al., 2012). K as a statistic tends to underestimate the

true PS at low to intermediate levels, and λ tends to overestimate it at

intermediate to high levels. A more accurate estimation of PS can be

obtained using both metrics. As such, K and λ have produced con-

siderably divergent results in simulations and in empirical data

(Fernandes, 2014; Münkemüller et al., 2012), sharing as little as 34% of

the variance in estimated PS at times.

Moreover, they are differently designed: K permits the assessment of

whether a trait is more conserved than expected under Browninan

motion, which appears to be the case for brain size in the primate

phylogeny (Kamilar & Cooper, 2013), whereas λ simply yields a range

of values, ranging from no conservatism (0) to Brownian motion (1).

Evolutionary rates (units per million years) were estimated with the

Geiger package for R. We used both ln-transformed and standardized

(Z) scores as both approaches are used for comparing different traits on

the same metric. While log-transformation avoids overestimation of

evolutionary rates for the traits with high values (Adams, 2013;

Gingerich, 2009; O'Meara, Ané, Sanderson, & Wainwright, 2006), Z-

scores permit comparing all traits in terms of units of standard devia-

tion (Hunter & Hamilton, 2002), thus, as with indices of phylogenetic

signal, each approach has its advantages, with no consensus in the lit-

erature as to which is superior.

More specifically, standardizing forces all variables to have the

same mean (0) and a standard deviation of 1. It maintains the pro-

portions of the distances among datapoints – that is, if in the original

metric there is a difference of magnitude x between species A and B,

and of magnitude 2× between species C and D, the difference in

standard deviations between C and D will be twice as large as that

between A and B, and will exhibit the same numerical value no matter

what the original metric was. As such, estimates of phylogenetic signal,

and the fit for evolutionary models are equivalent for variables in dif-

ferent metrics (e.g., meters, centimeters, cubic centimeters, etc.) once

standardized, and they are also the same for standardized and the re-

spective non-standardized raw variables.

However, Z scores, used by themselves, have an important limita-

tion: while they are desirable in that they make variables in different

metrics behave the same in phylogenetic analyses, they have the un-

wanted side effect of also making different intervals within a single

metric behave the same: for instance, the vector (1,2,3,4,5) in cen-

timeters would exhibit the same evolutionary rate as the vector

(101,102,103,104,105) in centimeters, as the proportions that are

maintained when standardizing a variable are those among intervals

between scores, and not among the scores themselves. Therefore, with

comparison of evolutionary rates using z-scores only, one obtains esti-

mates of speed of absolute change, rather than speed of relative change

(i.e., relative to the basal value; 1 in the first example and 101 in the

second).

To address that limitation, log-transforming the variables permits

comparing proportions among scores themselves, and thus the latter

vector shows much smaller intervals than the other vectors and a much

smaller evolutionary rate once log-transformed. As such, log-trans-

forming provides a scale-free set of values within metrics, as scores are

in proportion to the mean for the variable. In fact, several authors have

proposed log-transforming data prior to evolutionary rate estimations,

especially in cases where traits measured in different metrics are stu-

died (Adams, 2013; O'Meara et al., 2006; Ackerly 2009; Gingerich,

2009).

In other words, log-transforming the data permits estimations of

relative rate of change in proportion to the mean for each trait, while

standardizing the data permits estimations of rate of change relative to

the range of values in the distribution of each trait, while both ap-

proaches permit comparison among different metrics. Considering their

unique characteristics, these two approaches are not fully inter-

changeable, and thus can be used in a complementary fashion to attain

a more comprehensive interpretability of estimates.

To examine if the traits in question in this study have been exposed

to similar or different selection regimes across the primate phylogeny,

each trait was examined and compared under five different evolu-

tionary models: Brownian motion, early burst (EB), acceleration,

Ornstein-Uhlenbeck (OU), and λ (i.e., phylogenetic lability) as detailed

below (cf. Hernandez et al., 2013; Peñaherrera Aguirre & Fernandes,

2018). These models permit an examination of why a trait exhibits high

lability and another high conservatism in the phylogeny of interest; that

is, the selection process behind the observed phylogenetic signal and

evolutionary rates.

I) Brownian motion refers to the null model of evolution of a trait

based on the length of the branches in the phylogenetic tree, simply

reflecting the passage of time, with no particular direction of trait

change (i.e., increases or decreases) and no alteration in the evolu-

tionary speed (i.e., acceleration or deceleration), but rather reflecting a

random walk under a stable rate (Nunn, 2011).

III) The acceleration model takes into consideration the swiftness of

trait evolution (Pagel, 1999), with values larger than one being asso-

ciated with linearly increasing rates of evolution with time. Relative to

the Brownian motion model, it adds a parameter, which when larger

than 1 suggests accelerated evolution toward the tree tips, and thus

taxon-specific adaptations.

II) Similarly, the EB model (Harmon et al., 2010) permits assessing

accelerated evolution but it differs from the previous model in that it

estimates whether there has been an exponential increase or decrease of

the evolutionary rate of the trait over time (Peñaherrera Aguirre &

Fernandes, 2018), by adding an additiona parameter. When this para-

meter is estimated as zero it is equivalent to evolution under Brownian

motion, whereas it is assumed there is niche-filling (i.e., rapid change)

followed by an exponential decrease of evolutionary rates if the value is

less than 0. This is expected when new ecological niches open up and

become saturated over time.

IV) The OU model also adds a parameter (α) relative to the

Brownian motion model, for the strength of a constraint force; that is, a

selection pressure toward a certain value for all taxa in the phylogeny

(Hansen, 1997). Although often associated with stabilizing selection,

the OU model actually examines whether the trait is being selected

toward an optimum point, which can be achieved not only through

stabilizing selection but also through directional selection (Ingram,

Harmon, & Shurin, 2012). The rates estimated by the OU model range

from 0 to infinity.

V) Alternatively, λ simply modifies the length of the branches based

on the phylogenetic signal associated with the trait (where values lower

than 1 indicate evolutionary lability), without offering an explanation

as to why such lability has occurred (i.e., what selection pattern led to

it). As such, this model serves as a catch-all alternative to the previous

models, whereby the Brownian motion model is rejected but the trait

evolution pattern in the phylogeny does not fit any of the above evo-

lutionary processes.

The weights associated to each Akaike Information Criteria (AIC)

value were used to determine the best model. This is a relative fit index

that takes into consideration the log likelihood of the model being

tested for a particular variable, and penalizes more complex models

(i.e., those with more parameters being estimated). Lower AIC values

reflect better fit, and as this index is used to compare among alternative

models, there is no cutoff for acceptable values. Instead of subjectively

comparing AIC values across models, we transformed them into Akaike

weights (for a detailed review and description of this approach, see

Wagenmakers & Farrell, 2004), which can be interpreted as conditional

probabilities for each model.

Considering this lack of a cutoff for AIC values, we used likelihood

ratio tests to determine whether the fit of each model for each measure

was statistically different from Brownian motion. This permitted us to

objectively determine if the models were a better fit than this null hy-

pothesis.
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3. Results

3.1. Phylogenetic signal

The phylogenetic signal (PS) for G, cerebellum size, and neocotex

size was low when estimating K, and low to medium when estimating λ.

It was consistently higher (reflecting less evolutionary lability and thus

stronger conservation) for other NVMs. These results are presented in

detail in Table 2.

Only residual cerebellum size and G exhibited a K value non-

significantly higher than 0 (and in the case of λ, only residual cere-

bellum size). This indicates that only with respect to these variables

have primate lineages differentiated radically relative to ancestral taxa

(and therefore to sister lineages), retaining only a small or negligible

degree of conservation, while other measures retain an important de-

gree of conservation in spite of millions of years of speciation. Recall

that a PS value of 0 indicates that sister taxa are no more similar to each

other than they are to distant lineages, with selection thus having

completely erased or replaced the pattern of shared ancestry on the

variable in question as selection produced intense changes in most

lineages (either toward converging values, or toward disparate values

across lineages). Analyses of selection regimes presented subsequently

in this paper will help elucidate what selection regime(s) is or are be-

hind the high evolutionary lability of G and residual cerebellum size.

Still, not only in G and residual cerebellum size, but rather in all

residualized variables, λ was found to be significantly lower than the

expectation of Brownian motion (PS=1.0), suggesting that these

variables exhibit at least some evolutionary lability. This was also the

case for all residualized variables and the G factor when K was used to

estimate PS, except for residualized neocortex size. Recall that, theo-

retically, variables perfectly conforming to Brownian motion exhibit a

random walk of slow changes in random and varying directions,

making sister lineages more similar to each other than they are to

distant relatives. Such traits would be considered conserved. In con-

trast, G and residualized NVMs exhibit a phylogenetic history that

shows a significant indication of selection relative to the conservation

assumption of the Brownian motion value of 1.0, although only G and

residual cerebellar size exhibit PS nonsignificantly different from 0.

A different picture was found for absolute (i.e., non-residualized)

NVMs and body mass however, which not only exhibited the highest or

close to highest possible λ values, but also surpassed 1.0 in K estimates

in most cases, indicating that they are even more conserved than ex-

pected through Brownian motion. Recall that K > 1 suggests stasis or

severe constraint in evolutionary change, leading sister taxa to be even

more similar to each other than in cases where there is random slow

changes in varying directions; it appears that absolute NVMs conform to

this pattern, especially brain size, which exhibited a K value more than

three times higher than would be found if it conformed to Brownian

motion.

To summarize, the pattern of evolutionary lability estimated

through λ and K suggests that variability with respect to absolute NVMs

and body mass tend to be selected against or constrained in the primate

phylogeny. Once controls for body mass are implemented for NVMs, it

can be shown that there is some lability, but usually not as much as for

G except for the cerebellum and, to a lesser degree, the neocortex.

3.2. Evolutionary rates

In analyses of evolutionary rates, non-residualized G and re-

sidualized G exhibited higher rates relative to NVMs, which were al-

most all below 0.05, as displayed in Fig. 1. The exception is cerebellum

size, both with and without body size residualization: its evolutionary

rates were approximately two thirds as fast as those for G. Although

residual neocortex size and residual brain size exhibited higher evolu-

tionary rates than the remaining NVMs, their rate was only approxi-

mately half of that observed for the residual cerebellum. These results

permit ranking the examined NVMs into three main groups, in terms of

evolutionary rates: (1) residual and absolute cerebellar size were

fastest, (2) residual neocortex and residual brain size were inter-

mediate, and (3) other NVMs and body size were slowest, evolving up

to an order of magnitude more slowly than G.

3.3. Selection regimes

A similar pattern of contrast between G, residual cerebellum and

residual neocortex, and other measures, is suggested by the selection

model comparisons, as presented in Table 3. The δ estimates were of

high magnitude for G, around an order of magnitude higher than those

estimated for residualized NVMs except for the cerebellum (presenting

intermediate values), whereas non-residualized NVMs exhibited either

no acceleration, or negative acceleration in the case of brain size (which

is compounded by a negative, exponential acceleration identified with

the a parameter of the early burst model). In accordance with this

difference among measures, G exhibited a strong trend toward a se-

lection optimum throughout the phylogeny, as can be observed with the

α parameter of the OU model.

Recall that the three selection models tested are not mutually ex-

clusive, but rather they are tested against the assumption of Brownian

motion in each trait. Identification of significant and very high

Table 2

Phylogenetic signal estimates (Pagel's λ and Blomberg's K) reflecting the degree

of conservatism of general intelligence (G) and of the neuroanatomical volume

measures in the primate phylogeny.

Measure λ K

G factor 0.62a,b 0.13a

Residual brain size 0.96a,b 0.34a†

Residual neocortex size 0.44a,b 0.43b

Residual cerebellum size 0.46a 0.18a

Neocortex ratio 0.88b 1.74b

Absolute brain size 0.99b 3.31a,b

Absolute neocortex size 0.99b 1.46b

Absolute hippocampus size 0.98b 1.00b

Absolute cerebellum size 0.99b 1.68b

Absolute body mass 0.99b 1.98b

a Denotes the parameter value is significantly different from the Brownian

motion model (p≤ .05).
b Denotes λ is significantly different from zero.

Fig. 1. Estimated evolutionary rate in standard deviations per million years of

G, of neuroanatomical volume indicators residualized and non-residualized

against body mass, and of body mass, in a comparable metric after Z-score

transformation. Bars represent standard errors of the mean.
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estimates of δ and α for G and, to a lesser extent, for residualized NVMs

(especially the cerebellum) indicate that in more recent primate history

the rate of evolutionary change on these variables has increased com-

pared to the rate estimated for the early history of primates, and that

these accelerated changes have not occurred toward random directions

but rather mostly toward an optimum. Combined with results of pre-

vious analyses, it can be inferred that such accelerated changes toward

an optimum were mostly increases in G and in the size NVMs relative to

body size for most primate clades (Reader et al., 2011) though the

present analyses by themselves are not designed to indicate direction,

especially in the absence of data for ancestral species.

Additional analysis testing the relative weights of fit for the alter-

native models (Table 4) indicate that the acceleration and OU models

are highly parsimonious for G. In contrast, the residualized NVMs as-

sumption strongly rejected the Brownian motion null hypothesis with

the favored model simply being one of trait lability – indicating that

they are not highly conserved traits but fail to exhibit a clear trend in a

particular direction or in acceleration or deceleration across evolu-

tionary time. Again, the exception was residualized cerebellar size, for

which the best fitting models were the acceleration and OU model just

as in the case for G, although parameter estimates were not as high for

the cerebellum as they were for G (see Table 3). Non-residualized

NVMs, on the other hand, exhibited Brownian motion as the most

parsimonious model, or in some cases they conformed to EB, with

negative acceleration.

4. Discussion

This study aimed to compare the evolutionary patterns (i.e., phy-

logenetic conservatism, evolutionary rates) and processes (i.e., strength

of selection regimes and changes therein across the phylogeny) of

general intenlligence (G) and neuroamatomical volume measures

(NVMs) in the primate order. While numerous previous studies have

assessed the correlation strength of G with NVMs, it has become clear in

the phylogenetic comparative methods literature more broadly, that

correlations do not necessarily imply shared evolutionary processes or

evolutionary causation, with correlated traits not uncommonly ex-

hibiting disconcerted patterns and processes of evolution (e.g.,

Fitzpatrick et al., 2012; Gonzalez-Voyer, Winberg, & Kolm, 2009b).

While largely exploratory in nature, as a first examination of the

strength of evolutionary convergence between G and the most com-

monly used NVMs, it was hypothesized that at least some differences

would be identified, as (1) the case for other neural factors behind in-

telligence has been convincingly made multiple times, which would

require that volumetric measures are not perfectly convergent with G,

(2) the size of the brain or its components is frequently negatively as-

sociated with neuronal density, and (3) profuse debates over which

NVM is the best proxy for G have led to the identification of several

limitations and generally moderate effect sizes.

It is clear that NVMs are employed as proxies for intelligence be-

cause of how easy it is to measure them, in comparison to histological

indices, and because of the predictive power that size measures have

upon some other neurological indicators. For instance, the en-

cephalization quotient was interesting because of its hypothesized re-

lation to the concept of “extra neurons” (above the number of neurons

necessary to operate a body of the size of the species in question;

Jerison, 1973). However, the multiple analyses conducted in the pre-

sent study led to largely non-converging results when comparing G and

most NVMs (with exceptions discussed below), suggesting a low simi-

larity in their evolutionary patterns and processes. Overall, G appears to

have been more evolutionarily labile, with faster and accelerating

evolution that, on average, shifted the trait toward an optimal value

rather than evolving at or close to a random walk. While in terms of

evolutionary lability (measured through λ and K), two NVMs were

comparable to G (residual cerebellum and neocortex volumes), multiple

lines of evidence indicated that the evolutionary histories of NVMs are

not highly comparable to that of G:

1) Evolutionary rates were found to be fastest for G, slow for absolute

Table 3

Parameter estimates for rate acceleration, early-burst (EB), Ornstein-Uhlenbeck

(OU), and phylogenetic signal (PS) models of evolution of species-level general

intelligence (G) and of the neuroanatomical volume measures in the primate

phylogeny.

Measure Acceleration (δ) Early burst

(a)

Ornstein-

Uhlenbeck (α)

G factor 49.43* 0.00 0.34*

Residual brain 4.28* 0.00 0.03*

Residual neocortex 7.25* 0.00 0.08*

Residual cerebellum 19.74* 0.00 0.14*

Neocortex ratio 1.23 0.00 0.02

Absolute brain size 0.19* −0.06* 0.00

Absolute neocortex size 1.01 0.00 0.00

Absolute hippocampus

size

1.43 0.00 0.00

Absolute cerebellum size 0.59 −0.04* 0.00

Absolute body mass 0.42 −0.03* 0.00

Note: The early-burst parameter a was constrained to have an upper ceiling of

0.0, as positive values represent the opposite of an evolutionary early burst, an

expectation already tested in the Acceleration model.

Table 4

Parameter estimates and relative model weights based on corrected AIC values (AICc wi) for Brownian motion (BM), rate acceleration, early-burst (EB), Ornstein-

Uhlenbeck (OU), and phylogenetic signal (PS) models of evolution of species-level general intelligence (G) and of the neuroanatomical volume measures in the

primate phylogeny.

Measure Brownian motion Acceleration Early burst Ornstein-Uhlenbeck Phylogenetic signal Favored model

AICc (AICc wi) AICc (AICc wi) AICc (AICc wi) AICc (AICc wi) AICc (AICc wi)

G factor 176.94 (< 0.01) 131.51 (0.36) 179.13 (0.00) 131.49 (0.36) 132.38 (0.27) δ / OU

Residual brain 333.01 (< 0.01) 321.25 (< 0.01) 335.08 (< 0.01) 319.01 (< 0.01) 287.031 (0.99) PS

Residual neocortex 61.05 (< 0.01) 51.95 (0.21) 62.91 (< 0.01) 51.20 (0.23) 49.40 (0.56) PS

Residual cerebellum 62.04 (< 0.01) 28.93 (0.41) 64.23 (< 0.01) 28.75 (0.44) 30.88 (0.15) δ / OU

Neocortex ratio 27.84 (0.29) 29.43 (0.13) 29.95 (0.10) 29.41 (0.13) 27.54 (0.34) PS / BM

Absolute brain size 83.63 (< 0.01) 76.92 (< 0.01) 60.38 (0.99) 85.71 (< 0.01) 85.66 (< 0.01) EB

Absolute neocortex size 120.28 (0.42) 122.41 (0.15) 122.45 (0.14) 122.38 (0.15) 122.52 (0.14) BM

Absolute hippocampus size 99.04 (0.36) 100.19 (0.20) 100.96 (0.14) 100.76 (0.15) 100.84 (0.15) BM

Absolute cerebellum size 123.41 (0.21) 124.87 (0.10) 121.55 (0.54) 125.61 (0.07) 125.61 (0.07) EB

Absolute body mass 226.91 (0.07) 226.61 (0.09) 222.42 (0.69) 227.89 (0.05) 226.24 (0.10) EB

Note: adenotes the parameter value is significantly different from the Brownian motion model (p≤ .05); bdenotes λ is significantly different from zero. PS index

estimates displayed in Table 2. The early-burst parameter a was constrained to vary from −1.0 to 0.0, as positive values represent the opposite of an evolutionary

early burst, an expectation already tested in the Acceleration model.
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NVMs and slowest for body-size-corrected NVMs, suggesting the

evolution of brain size and its components is at least partly tied to

the evolution of body size in primates, and is not remarkably fast.

The evolutionary lability of G appears tied to a high evolutionary

rate, a finding previously identified by Fernandes et al. (2014) for

the specific cognitive abilities comprising G as well.

2) Deceleration of evolutionary rate was identified for brain size and

body mass, and in contrast strong positive acceleration was found in

the case of G. Residualized NVMs exhibited comparatively small or

null acceleration. Again, this suggests that, for G, evolution at the

tips of the tree has been strong, as opposed to the case of NVMs,

especially when they still retain variance associated with body size.

This body-size related deceleration of evolutionary rate in primates

confirms previous findings by Cooper and Purvis (2010).

3) Weaker or null selection trends were found toward an optimum for

controlled and uncontrolled NVMs, whereas a stronger trend toward

an optimum value was found in the case of G (as measured by the

Ornstein-Uhlenbeck model parameter α). As argued by Revell,

Harmon, and Collar (2008), selection toward an optimum can lead

to high evolutionary lability in the phylogeny, which was empiri-

cally confirmed in the case of G in primates.

Cerebellar and, to a lesser degree, neocortical volumes, when re-

sidualized against body mass presented the most similar model fit re-

sults compared to G, in addition to similar phylogenetic signal esti-

mates, even though there were still striking differences in most

parameters – in multiple cases parameter estimates being more than

twice as larger for those found for cerebellar and neocortical volume

measures. It is counter-intuitive that non-residualized brain size ex-

hibited the least comparable parameter estimates and model fit results

relative to G, while robust correlations nevertheless exist between these

two variables (Deaner et al., 2007), a point which further compounds

the low generalizability in the interpretation of correlation coefficients,

in that they may poorly reflect underlying evolutionary processes. It

must be noted that, while brain size and G may be moderately corre-

lated, over evolutionary time the proportional changes in G appear

much larger than the proportional changes in brain size. As such, while

changes appear to occur in somewhat converging directions across

evolutionary time for these two traits, the amount of modification ob-

served for G appears more than an order of magnitude higher, with

brain size being, in contrast, extremely conserved.

It is possible that correlations of NVMs with Gmay reflect constraints

imposed by the former upon the development of cognitive abilities.

Their generally modest correlation magnitude may indicate that a given

size of an NVM accommodates a wide range of values in cognitive

abilities, but beyond that window, increases in volume are necessary for

further increases in cognition. This possibility is akin to the proposed

relationship between body mass and brain size itself (e.g., Gonzalez-

Voyer et al., 2009). As such, it would not be invalid to use NVMs as a

proxy for intelligence in the absence of cognitive data given their

considerable phenotypic correlation, so long as there is awareness of

the increasingly clear limitations of this approach when dealing with

their evolutionary interpretations.

4.1. Moderate similarity between G and residual cerebellar, and to a lesser

extent, neocortical volume

It is striking that, of all NVMs and their operationalizations ex-

amined, cerebellar size residualized against body size displayed the

most similar results to those for G. Phylogenetic signal for the cere-

bellum was significantly different from 1 (i.e., from the assumption of

conservatism) just as in the case of G. While their evolutionary rates

and fit to selection regime models were not identical, residual cere-

bellar volume appears to have evolved faster than other NVMs, and

exhibited considerable acceleration and a selection trend toward an

optimum. The fact that rates, acceleration, and trend toward an

optimum were all somewhat lower than G but considerably similar

suggests that, while this neuroanatomical structure is not a sufficient

substrate for G, it may nevertheless serve as an important substrate.

This seems especially plausible considering recent evidence that cere-

bellum size has changed in lockstep with overall cognitive ability

(Smaers et al., 2018), and also specifically with technical or physical

aspects of intelligence (Barton, 2012). Cerebellar size also exhibited

rapid expansion in great apes (taxa that have high G; Reader et al.,

2011), more so than the neocortex (Barton & Venditti, 2014) while

exhibiting less reduction in neuron density (Barton, 2012). It is possible

that technical intelligence, requiring cerebellar specialization (given its

role in sensory-motor control and in learning complex movement se-

quences), was central to the evolution of intelligence. As such, it has

been argued that, under certain ecological circumstances present in the

evolutionary history of some primate taxa, the evolution of higher

connectivity among regions subserving executive, perceptual, and

motor faculties was necessary for complex cognitive abilities such as

innovation (Navarrete & Laland, 2015). It is also possible that the

cerebellum functions as an augmenter of the activity of other brain

structures (Leiner et al., 1989); as such it would enhance cognitive skill

when projecting to regions largely responsible for it. Surprisingly, re-

lative to the number of studies examining or proposing a role of overall

brain size or neocortical size in intelligence, the role of the cerebellum

is extremely understudied and understated. Further attention to cere-

bellar size in relation to cognition in primates is warranted.

It is also somewhat puzzling that neocortical volume residualized

against body size is a rarely used operationalization of neocortical size

in comparative studies, with researchers instead relying on the neo-

cortex ratio (e.g., Dunbar, 1992; Shultz & Dunbar, 2010) or overall

brain size-related measures (e.g., Deaner et al., 2007; Gibson, &

Rumbaugh, D. M.,& Beran, M. J., 2001). The results of the present study

suggest that relative neocortical volume is, second to residual cerebellar

size, the most similar to G in terms of low phylogenetic conservatism,

intermediate evolutionary rate and rate acceleration, and some sign of

evolutionary changes toward an optimum size. While the role of the

neocortex is cognition is well-discussed in the comparative and human

cognition literatures as reviewed at the outset of this study (not ne-

cessitating further elucubrated review here), further attention should be

given to how it is operationalized in comparative studies, considering

that the ratio approach exhibits high divergence from G in their evo-

lutionary patterns.

4.2. Putative alternatives to volumetric measures

Questioning the application of size-related neuroanatomical mea-

sures to understanding intelligence is not in itself a novel endeavor.

Discussion of the possibility that the reorganization of systems internal

to the brain reflected evolutionary changes in cognitive abilities better

than the size of the brain of subcomponents is not uncommon or recent

(Holloway Jr., 1966a, 1966b). More recent reviews of the literature

point to a plethora of studies that indicate how evolutionary re-

organizations of the cortex are common (Preuss, 2001).

How might G have been selected for across the primata net of brain

volume? Even metrics that had results most comparable to those of G,

such as residual cerebellar size, were still noticeably different in evo-

lutionary rates and the fit of selection regime models, not appearing as

sufficient substrates for the remarkable evolution of primate in-

telligence. There are several possible scenarios proposed and explored

in animals in general and specifically in primates as well. These alter-

natives are more than likely complementary to each other as substrates

for intelligence, and complementary to the low to moderate role of

NVMs identified in the present study, rather than full substitutes. The

alternatives outlined below appear as highly promising future avenues

for further research, although limited amounts of data are available for

analyses on primates at the current moment. A small number of data

points exist for non-volumetric potential correlates of G, preventing
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their immediate use in analyses as phylogenetic comparative methods

require a minimum of approximately 15–20 species for sufficiently re-

liable estimates.

1) Gyrencephaly, which is characterized by an increase in the degree of

convolutedness of a brain, could have increased the surface area

available to accommodate more complex neuroanatomical struc-

tures and attendant cognitive systems without having to pro-

portionately increase volume (although some increases are neces-

sary and observed, and thus a partial positive correlation exists;

Gibson et al., 2001). Gyrification may also have evolved to operate

in combination with other features. For intance, folding may reduce

connection length among cortical areas (Hofman, 2001).

2) An increase in the degree of myelination, which facilitates increased

information processing speed, may be another factor behind in-

telligence. As with humans (e.g. Jensen, 2006), differences in glial

density and myelination (both involved in processing efficiency)

should be comprehensively examined across samples of primate

taxa, and preliminary evidence comparing species qualitatively

suggest an important role of myelination in cognitive ability (Dicke

& Roth, 2016), as well as a role of progressive myelination in the

maturation of cognition within species across taxa (Gibson, 1991).

Another significant corelary of overall neural efficiency might be

mitochondrial density and efficiency, which has been proposed as a

potentially significant source of both the positive manifold and in-

dividual differences in levels of g in humans (Geary, 2018). Ex-

amination of species differences in both the genetic and histological

properties of neurons as pertaining to mitochondrial functioning

might therefore be warrented in future comparative research.

3) Processing power in so far largely neglected areas in intelligence

studies are also potential candidates. While it would be extremely

unlikely that any single localized area that has evolved in a largely

independent fashion would be responsible for general intelligence

(given the necessity of this domain-general process to recruit from a

multitude of cognitive resources), several interconnected localized

areas, working as a circuit, may be candidates for explaining the

evolutionary trajectories of general intelligence. While the overall

correlation between brain size and neuron density is negative (small

to moderate), there are exception areas that may be of interest to

studies of intelligence evolution, such as area 10, where there is

relatively more variation off the allometric line (Semendeferi,

Armstrong, Schleicher, Zilles, & Van Hoesen, 2001). Moreover,

candidate areas identified in within-species analyses (e.g., Colom,

Jung, & Haier, 2006; Duncan et al., 2000; Haier, Jung, Yeo, Head, &

Alkire, 2004; Haier, Jung, Yeo, Head, & Alkire, 2005) should be

investigated in future comparative analyses.

4) Cortical microanatomy may also form the basis of future examina-

tion. New interneural projections for increased connectivity in

complex networks that accommodate intelligence would necessitate

enlargement of existing pyramidal cells (or the generation of new

pyramidal cells) in the areas from which projections are made, in

order to support new axon collaterals (Preuss, 2001).

5) Glucose utilization is yet another dimension that requires further

exploration across non-human species. In human samples, glucose

metabolic rate has been found to be associated with intelligence.

Haier et al. (1988), for example, identified that human participants

presented with the Raven's Advanced Progressive Matrices exhibited

higher glucose utilization relative to individuals performing an at-

tention task. Moreover, the authors described that this difference

extended to various neural regions in the brain (for a more recent

description of these results, see Haier, 2017). Furthermore, addi-

tional studies are required to determine the connection between

gyrification, white matter density, glucose metabolic rate, and the

evolution of G across species.”

Dicke and Roth (2016); Roth & Dicke, 2005) make a compelling

case that the best fit between brain traits and intelligence in animals, at

the cross-species level, involves a combination of several factors that

determine general information processing capacity, such as the total

number of cortical neurons, neuron packing density, interneuronal

distance, and axonal conduction velocity, in addition to other factors

such as pulse width, gyrification, and differential allocation of con-

nection to nearby versus distant areas (cf., Hofman, 2001). As such,

there would be no single measure that serves as a substrate for in-

telligence and therefore represents it, but rather a collection of in-

tegrated features such as those listed above, preventing exponentially

costly increases in any given single factor that permits processing ca-

pacity.

Caution rather than excessive assertiveness about the explanatory

power of these alternatives is necessary before further empirical re-

search, as brain and body size tend to correlate positively overall with

several of these alternative measures, such as ratio of connections to

neurons, numbers of gyri and fissures, size of several specific brain

regions, and cerebellum (Gibson, & Rumbaugh, D. M.,& Beran, M. J.,

2001). As such, the common practice of employing controls and ex-

amining residuals when dealing with NVMs may be extended to these

alternative measures. Moreover, the plausibility of any of these alter-

natives and possible future confirmation of their roles as substrates for

G does not negate the partial relation that NVMs have with G: The most

essential point to be made is that NVMs are not a sufficient explanation

of G as only some of the NVMs examined in the present study moder-

ately replicated the evolutionary patterns and processes observed for G.

4.3. Limitations and future directions

Although used in multiple research programs due to its demon-

strably high correlations with experimental data and qualitative rank-

ings based on expert analysis, the ethological count approach to esti-

mating G is not without its limitations. It rests upon the observed

frequencies of only five indicators of high cognitive ability and relies on

controls for research effort as different species have received different

amounts of scientific attention by research groups – some species ex-

hibit an extreme paucity of data. Ideally, a larger number of indicators

would be collated, and a more systematic effort for uniform attention

across taxa would exist, however such a concerted effort is un-

fortunately not available.

Nevertheless, it is extremely unlikely that the striking results ob-

served in the present analyses are simply a function of measurement

error. This is because random error is, contrary to systematic error, by

definition likely to exist in all directions rather than consistently driving

results toward a particular, specific trend. Were low PS (i.e., high dis-

agreement among sister clades, possibly reflecting error in measure-

ment) identified along with no clear evolutionary process behind it (i.e.,

null parameter estimates for the OU, acceleration, and EB models), a

hypothesis about random error in measurement being responsible for

results would be reasonable. However, in the present study, along with

acceleration of evolutionary rates across time, a strong and consistent

selection regime toward an optimum (i.e., with a direction) has been

identified, which militates against the possibility of low reliability in

trait estimation. Moreover, even though standard error of the mean

estimates for G (e.g., in evolutionary rates) are larger than for NVMs,

the average difference is so large (at times surpassing an order of

magnitude) that any overlap in estimation is extremely unlikely.

Phylogenetic comparative methods exist that incorporate measured

within-species variability into estimations (e.g., Garamszegi, 2014 and

Ives, Midford, & Garland Jr, 2007), however the focus of the present

study was to assess the evolutionary trends in the average cognitive

performance and neuroanatomical volume measures. Interest in the

evolution of variability in cognition and neuroanatomy is com-

plementary to (though not necessary for) our analyses. However, such

endeavors would require more data collection, especially of neuroa-

natomical volumes, as unfortunately those available to this day for
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several primate species rely on only a handful of specimens (Navarrete

et al., 2018; Stephan et al., 1981), not permitting precise estimates of

variability.

Also, although this study has focused on the general evolutionary

trend of the G factor and on the main neuroanatomical structures, fu-

ture work that delves into specific, non-aggregated cognitive, beha-

vioral, and lifestyle variables may identify strong associations with

more specific, fine-grained substructures of the brain. Initial and im-

portant evidence of such relations have been found recently by Logan

and colleagues (2018), and are in line with the principle of Brunswik

symmetry in psychometrics, which holds that variables of low levels of

aggregation should be best predicted by other variables of low levels of

aggregation (in this case, specific brain structures rather than all cor-

relating only strongly with overall brain size). In contrast, our paper

focuses on variables of high levels of aggregation, and thus based on the

logic of Bruswik symmetry are more or less matched in terms of degree

of latency (i.e. general intelligence is being matched with broad neu-

roanatomical structures). These two approaches are complementary,

and future studies on the neuroanatomy behind specific cognitive

abilities may be fruitful in identifying strong evolutionary compar-

ability. Fruthermore, because the variance explained by G consistently

appears to be between 50 and 80% (Deaner et al., 2007; Fernandes

et al., 2014; Reader et al., 2011), the existence and examination of G

does not imply lack of unique species-specific abilities, rather it leaves

up to 50% of variance free for them. Their examination in other studies

is valid and unlikely to simply reflect measurement error, rather re-

flecting, to a large degree, true cognitive specialization. The abilities of

chimpanzee to excel in visual working memory far above other abilites

and even far above humans for example (Inoue & Matsuzawa, 2007)

testifies to the significance of examining the unique evolutionary tra-

jectories are correlaties of these.

Finally, the point must be made that in comparative studies of NVM

variation across species has been primarily limited to volumetric data

published in few studies and is often based on measurements of very

few specimens of each species (Frahm, Stephan, & Stephan, 1982;

Stephan et al., 1981) except for the case of overall brain size. The

amount of studies reanalyzing these data is surprising (for a review, see

Herculano-Houzel & Lent, 2005). As in the case of the expansions and

revisions of body mass data (e.g. Smith & Jungers, 1997), obtaining

further data on these regions is imperative, and the inclusion of novel

data by Navarrete et al. (2018) in the present study helps reduce bias.

Furthermore, considering the lack of convergence in the results pre-

sented in this study, it is recommended that neurological measures

other than those of a volumetric nature be given future attention.

Several of the alternatives outlined above are already known to be

largely independent of NVMs (Herculano-Houzel & Lent, 2005) and

may thus serve as good sources of complementary information for un-

derstanding the evolution of intelligence. In a related note, given most

of the available cross-species information on non-human primate neu-

roanatomical and cognitive indicators is provided as averages, at this

moment it is not feasible to explore any underying variation, between

males and females, in evolutionary rates in either G or NVMs. Theo-

retically, it is feasible that in addition to natural selection, sexual se-

lection could play a role in the evolution of NVMs and G.

In sum, limited comparability is currently found in terms of evolu-

tionary trajectories of G relative to NVMs. Nevertheless, it is also im-

portant to compare G and NVMs in another sense: whether they are

similar in the degree to which their internal structure changed over

evolutionary time. In other words, it is possible that the strength of the

manifold among cognitive abilities in G changed across the primate

phylogeny, and is it also possible that the strength of the manifold

among sizes of brain regions similarly changed as well?
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