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A B S T R A C T   

Substantial improvements in factors such as microbiological quality have been noted in laboratory rodent (mouse 
[Mus musculus] and rat [Rattus norvegicus]) populations over the last 140 years, since domestication of laboratory 
strains started. These environmental improvements may have caused Flynn effect-like cognitive changes to occur 
in these populations, perhaps if these improvements enhanced cognitive plasticity and, consequently, learning 
potential. While lack of relevant data precludes cross-temporal comparison of cognitive performance means of 
laboratory rodent populations, it is possible to estimate changes in the proportion of cognitive performance 
variance attributable to general cognitive ability (GCA) over time. This “differentiation effect” has been found to 
occur along with the Flynn effect in human populations, suggesting that environmental factors, possibly medi-
ated by their effects on life history speed, may weaken the manifold of GCA across time, allowing for greater 
cultivation of specialized abilities. Meta-analysis of the literature on mouse and rat cognition yielded 25 mouse 
studies from which 28 GCA effect sizes could be estimated, and 10 rat studies from which 11 effect sizes could be 
estimated. Cross-temporal meta-analysis yielded evidence of significant “differentiation effects” spanning 
approximately a century in both mice and rats, which were independent of age, sex, factor estimation technique, 
and task number in the case of the mice, and both factor estimation technique and task number in the case of the 
rats. These trends were also independent of the random effect of strain in both cases. While this is suggestive of 
the presence of the Flynn effect in captive populations of non-human animals, there are still factors that might be 
confounding these results. This meta-analysis should be followed up with experimental investigation.   

1. Introduction 

The Flynn effect (named by Herrnstein & Murray, 1994 in honor of 
James Flynn, 1934–2020) is the tendency for performance on conven-
tional IQ tests to improve over time across many different human pop-
ulations. This improvement translates into an aggregate score increase 
of approximately three IQ points per decade, which seems to have 
occurred for roughly a century in at least some areas (Pietschnig & 
Voracek, 2015; Trahan, Stuebing, Fletcher, & Hiscock, 2014). Although 
other researchers had noted this tendency as far back as the 1930s (e.g., 
Runquist, 1936), James Flynn was the first to demonstrate compellingly 
the strong pervasiveness of this effect over relatively recent historical 

time and across populations (Flynn, 1984, 1987). 
Thus far, research on the Flynn effect, and related phenomena, has 

focused exclusively on humans, and yet there is also a mass of data on 
cognitive performance in non-human animals. General cognitive ability 
(GCA), or GCA-like latent variables, have been found in the in-
tercorrelations among a wide variety of individual differences measures 
used to assess cognition in numerous mammalian and avian species (for 
reviews, see Chabris, 2007; Burkart, Schubiger, & van Schaik, 2017; 
Poirier, Kozlovsky, Morand-Ferron, & Careau, 2020). GCA-like factors 
have even been found in Trinidadian guppies (Poecilia reticulata; Pren-
tice, Mnatzaganian, Houslay, Thornton, & Wilson, 2022). These findings 
suggest that GCA might be very common among animals, with some 
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hints that it may exist even in certain insect taxa (Chabris, 2007). 

2. GCA in laboratory rodents 

Especially well studied in this regard are laboratory rodents. There 
have been more studies into the structure of cognition in laboratory mice 
(Mus musculus) than any other (non-human) species (Burkart et al., 
2017; Poirier et al., 2020). The earliest mouse study, from which GCA 
could be extracted, comes from the 1920s (Bagg, 1920),1 with a great 
many more studies having been published between 1998 and the current 
day. Norwegian rats (Rattus norvegicus) are also reasonably well studied, 
with the earliest experiments designed explicitly to detect the presence 
of GCA having been conducted in the early 1930s (e.g., Commins, 
McNemar, & Stone, 1932; Thorndike, 1935). During this “first wave” of 
research into GCA in laboratory rodents (which lasted roughly from the 
second decade of the last century to the late 1930s), relatively poorly 
characterized samples were employed (these were often inbred, or 
mutant strains such as albinos). Moreover, it has been suggested that the 
tendency among early researchers to focus on prospectively narrower 
domains of cognition, such as spatial reasoning as measured by perfor-
mance on different maze-running tasks, may have had the effect of 
limiting the degree to which their findings of GCA-like factors generalize 
relative to modern studies of GCA in laboratory rodents (Locurto, 1997). 

A sort of “dark age of individual differences research” followed the 
“first wave” of GCA research in non-human animals, the former lasting 
from roughly the early 1940s to the late 1980s. A pronounced shift in 
research focus toward approaches such as behaviorism, with its 
emphasis on conditioning and learning, characterized this period. Dur-
ing this time, researchers had a tendency to argue that manifestations of 
animal ability were primarily dependent upon the use of specific ap-
paratuses, and that there was no reason to anticipate correlations among 
distinct performance domains (e.g., Tryon, 1940; Warren, 1977; cf. 
Livesey, 1970; Rajalakshmi & Jeeves, 1968). 

Following on from the “dark age” is what could be termed the 
“second wave” of research into GCA in laboratory rodents, which started 
in roughly the late 1980s and is ongoing today. This period has been 
characterized by efforts to broaden ability batteries so that they tap 
wider arrays of performance domains, which have been coupled with 
efforts to determine the psychometric soundness of such measures 
(Crinella & Yu, 1995). Paradigmatic of this approach is the study of 
Galsworthy, Paya-Cano, Monleón, and Plomin (2002), which detected 
GCA in mice using six tasks spanning several different domains. These 
included curiosity (as indexed by spontaneous alternation of direction in 
a T-maze), route learning (evaluated using the Hebb-Williams maze), 
spatial navigation (assessed using the Morris water maze), detour 
problem solving (evaluated using a burrowing task), contextual mem-
ory, and plug puzzle performance. In another example, Anderson (1993) 
acquired evidence of GCA in rats using four broad tasks. These tapped 
the domains of attention to novelty and accuracy of reasoning (evalu-
ated using an eight-arm radial maze), as well as speed and response 
flexibility (evaluated using the detour problem). 

As Crinella and Yu (1995) note, tasks administered to laboratory 
rodents with varying degrees of complexity fundamentally overlap with 
the hierarchy of GCA-loaded tasks in human psychometric assessments, 
in that more complex behavioral challenges and more GCA-loaded IQ 
test items both present their subjects with novel stimulus configurations 
necessitating an adaptive response in order to engage in effective 
problem solving. 

3. Laboratory rodents as a potential model for the study of the 
Flynn effect and related trends 

Could laboratory rodents such as mice and rats be used for experi-
mental investigations into the Flynn effect, or Flynn effect-like phe-
nomena? There are two ways in which this could potentially be 
accomplished. First, experimental work involving these animals could 
be used to directly test theories of the causes and consequences of the 
Flynn effect. Both mice and rats are exceptionally well characterized in 
terms of behavior, neurology, and molecular biology, and are used as 
model organisms for experimental research in many branches of biology 
and medicine (Ellenbroek & Youn, 2016). They exhibit a variety of 
desirable characteristics that may qualify them as ideal model organisms 
for experimentally studying the Flynn effect, and related trends. These 
include:  

i) Sensitivity to gene-by-environment interactions. It has been 
found that both trait variance and broad-sense heritability in 
mouse cognitive performance (including at the level of GCA) can 
be manipulated through environmental enrichment, via the ac-
tion of gene-by-environment interactions (Matzel, Bendrath, 
Herzfeld, Crawford, & Sauce, 2019; Poirier et al., 2020).2 Gene- 
by-environment covariation, and resultant interactions (John-
son & Bouchard Jr., 2014), is likely central to the etiology of the 
Flynn effect in humans (e.g., De Kort et al., 2014; Dickens & 
Flynn, 2001). By tightly homogenizing additive genetic variance 
through the use of highly inbred strains, or twins, and via the use 
of environmental manipulations designed to actively cognitively 
engage experimental subjects, it may be possible to maximize the 
degree to which trait variance is sensitive to gene-by- 
environment interactions in such a way that could be used to 
experimentally magnify the impacts of Flynn effect-salient envi-
ronmental factors on cognitive performance across generations.  

ii) Fine control over environmental and genetic factors þ short 
generation times. Environmental and experimental conditions 
can be closely controlled in studies using mice and rats, which, 
along with short age-to-sexual-maturity times for both species 
(approximately four to seven weeks for mice and six to seven for 
rats), potentially allows for the multi-generational effect of a 
variety of prospective environmental causes of the Flynn effect to 
be experimentally investigated within a reasonable timeframe 
and in the absence of genetic confounds. These prospective 
environmental causes could be investigated via experimental 
manipulation of, for instance, nutrition quality, pathogen loads, 
and cognitive stimulation. The predictions of meta-causal models 
of the Flynn effect could also be tested, such as the life history 
model, which would involve the manipulation of more general 
factors such as environmental harshness and predictability (the 
life history model is discussed in greater detail in later sections). 
Multi-generational models would, further, enable evaluation of 
the degree to which given interventions may be associated with 
an especially striking aspect of the Flynn effect, specifically that it 
is cumulative and persistent, and therefore does not exhibit the 

1 GCA was estimated to account for 61% of cognitive variance across eight 
tasks based on reanalysis of Bagg’s (1920) published raw data in Galsworthy 
et al. (2005). 

2 It should be noted that Sauce et al. (2018) were unable to find any in-
dications of gene-by-environment interactions on cognitive ability in experi-
mental research that involved exposing mice to environments that promote 
cognitive development, despite noting a 0.44 standard deviation, or 6.6 “IQ 
point” increase, in the trait (relative to controls).The environmental manipu-
lations employed in this study may have been too subtle to yield measurable 
gene-by-environment interactions. In a subsequent analysis of the same dataset 
of mouse twins, Matzel et al. (2019) found evidence of substantial 
gene-by-environment interactions on measures of learning associated with 
exploration, in which the animals were actively “challenged” in such a way that 
experimentally better “draws out” such interactions. 
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“fadeout effect” that usually follows targeted environmental in-
terventions to boost cognitive ability in human populations 
(Protzko, 2015). Moreover, experimental work could also explore 
potential environmental causes of anti-Flynn effects (e.g., Brats-
berg & Rogeberg, 2018).  

iii) Molecular toolkit. The availability of a robust molecular toolkit 
for both mice and rats (in particular for the former, Ellenbroek & 
Youn, 2016) allows the epigenetic influences of the aforemen-
tioned environmental effects to potentially be directly mapped 
onto alterations in patterns of gene expression.  

iv) Neural mapping of behavior. The ability to use neural lesioning 
and other techniques to map behavior onto neuroanatomy in 
laboratory rodents might allow for theories of the neural locali-
zation of the Flynn effect to be directly tested, such as those 
positing a role for the secular expansion of the right hippocampal 
formation in humans (Baxendale & Smith, 2012).3 

v) Ratio-scale ability measures. Cognitive data on laboratory ro-
dents are gathered with ratio-scale measures, which side-step the 
problems for time-trend analysis that interval-scale measures 
present, since the latter lack a “true” zero performance baseline 
for the estimation of ability trends over time (as noted by Jensen, 
2011).  

vi) Tests of models positing mixed time trends. Tests of models 
positing co-occurrent, and opposingly signed, trends in different 
variance components of human IQ (such as those postulating 
genetically driven decreases in GCA, coupled with environmen-
tally driven increases in more specialized abilities; Egeland, 
2022), or those positing a role for reductions in autozygosity 
associated with heterosis in the Flynn effect (Mingroni, 2007), 
could also be tested with experimental designs in which direc-
tional selection or degree of inbreeding are used to induce 
changes in GCA and related phenotypes and traits (e.g., pro-
cessing speed or white matter integrity), against a backdrop of 
environmental change(s) designed to alter levels of less heritable, 
narrower abilities in opposing ways. 

4. Examination of time trend data using existing cognitive data 
on mice and rats 

A second approach to investigating the Flynn effect in laboratory 
rodent populations involves comparative analysis of existing studies. As 
already mentioned, laboratory rodents, and mice in particular, are 
reasonably well studied in terms of the identification of GCA, or GCA- 
like latent variables, with individual differences studies dating back to 
the 1920s in the case of mice, and the 1930s in the case of rats. More-
over, there are a series of well-characterized historical developments in 
the animal husbandry of these experimental populations that are sug-
gestive of the presence of the sort of environmental improvements 
believed to have elicited the Flynn effect in human populations. One 
such example is discussed by Buchheister and Bleich (2021), who have 
identified four key phases in the historical husbandry of laboratory ro-
dents which encompass improvements in health monitoring and 
microbiological quality. Phase 1 corresponds to domestication 
(1880–1950), phase 2 to gnotobiotic derivation (1960–1985), phase 3 to 
virus eradication (1980–1996), and phase 4 to isolated husbandry 
(current period). The transitions between these phases can be described 
in relation to questions concerning improvements in husbandry and 
experimental control. The initial challenge is captured by the question, 
“how do we keep them alive?”; this was followed by “how do we keep 
them healthy?”, then by “how do we ensure their quality?”, and finally 
“how do we ensure (strain) validity?” Improvements in the “microbio-
logical quality” of humans (e.g., via the historical control and 

eradication of infectious and parasitic diseases) is thought to have 
played a major role in catalyzing the Flynn effect, by virtue of having 
allowed for the reallocation of bioenergetic resources, which would 
otherwise have been used to boost immune functioning, into the culti-
vation of cognitive abilities (Eppig, Fincher, & Thornhill, 2010). The 
historical process described by Buchheister and Bleich (2021) may have 
had similarly beneficial effects on the cognitive ability of populations of 
laboratory rodents. 

Other sorts of environmental improvements might have also 
contributed to the Flynn effect in laboratory rodent populations. These 
might include increased environmental enrichment, dietary improve-
ments, and other environmental changes occasioned in part by the 
passage of animal welfare legislation in a variety of countries, ensuring 
that laboratory animals are treated in a more humane way when used for 
behavioral research (e.g., Guidelines for the Use of Animals, 2018). 
Substantial variation in a variety of phenotypes, including brain size, 
between laboratories and over time, has been noted in various strains of 
laboratory mice (Wahlsten, Bachmanov, Finn, & Crabbe, 2006). These 
findings might suggest the occurrence of environmentally influenced 
time trends (in cases where this variation occurs over time). 

A major shortcoming in the existing cognitive data on mice and rats 
is the substantial heterogeneity among tests used to measure cognition. 
This coupled with the fact that many studies do not in fact report per-
formance averages, only correlation matrices or factor loadings, pre-
vents efforts to estimate mean performance change over time. The most 
direct approach to establishing a Flynn effect (via comparison of per-
formance means over time) therefore cannot be taken with these data. 

5. The life history model of the Flynn effect and ability 
differentiation 

Among human populations, it has been hypothesized that different 
sorts of environmental improvements might have distinct effects on 
secular ability gains, with these improvements having played different 
roles at different times (Williams, 2013). For example, among relatively 
malnourished populations, improved nutrition may have the biggest 
role in generating the Flynn effect, whereas among adequately nour-
ished populations experiencing expanded access to education, the latter 
factor might play the major role. An alternative hypothesis is that there 
are common pathways through which a variety of environmental im-
provements can act. The (currently) best supported model of the Flynn 
effect aiming to theoretically integrate this variety of causes (hence it 
might be called a “meta-causal” model) holds that the effect is a 
developmental product of life history (LH) tradeoffs favoring enhanced 
cognitive plasticity and specialization as an adaptation to increased 
population densities at the expense of forms of cognition favoring 
greater preparedness for the sorts of environmental stresses that reduce 
population densities (as reflected in greater cognitive generalism) 
(Pietschnig & Voracek, 2015; Woodley, 2012).4 These tradeoffs are 
likely to have been occasioned by the historical slowing of LH speed 
noted in human populations, which has resulted from modernization 
having reduced both the absolute levels of, and variance in sources of, 
extrinsic (uncontrollable) morbidity and mortality, increasing environ-
mental mildness and predictability (Baumard, 2019). More broadly, 
slower LH is associated with greater somatic effort (i.e., bioenergetic 
investments in the organism’s own survival, which may be reflected in 
enhanced body growth, such as greater stature, and mental and physical 
health) and parental/nepotistic effort (i.e., bioenergetic investments 
that prospectively increase the fitness of those with relatively high 

3 Kempermann, Kuhn, and Gage (1997) have noted that hippocampal neuron 
count is increased among mice exposed to enriched environments. 

4 A similar meta-causal model of the Flynn effect termed the cognitive genome 
optimization hypothesis, has been proposed by Greiffenstein (2011), who sug-
gests that “[p]er life-history theory, favorable secular trends may change the 
phenotypic expression of the genotype which controls the neurophysiology of 
problem solving” (p. 353). 
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genetic relatedness to the organism). It is also associated with reduced 
mating effort (i.e., bioenergetic investments in the acquisition and 
retention of short-term sexual partners) (Figueredo, Vásquez, Brum-
bach, & Schneider, 2004). More weakly correlated cognitive abilities 
have been found in individuals exhibiting slower LH (Woodley, Fig-
ueredo, Ross, & Brown, 2013). This suggests that an increased capacity 
for cognitive specialization in such individuals might be another 
important consequence of increased somatic and/or parental/nepotistic 
effort (Woodley et al., 2013). 

The LH model aims to account for the following Flynn effect- 
associated observations:  

i) Demographic transition: The Flynn effect coincides with the 
onset of the demographic transition, during which various trends 
suggestive of increased somatic effort began, such as increasing 
stature, longevity, and even brain mass in some populations 
(Mingroni, 2007; Pietschnig & Voracek, 2015; Woodley of Menie, 
Peñaherrera, Fernandes, Becker, & Flynn, 2016), 

ii) Lower time preferences: Time trends paralleling the Flynn ef-
fect over several decades suggest a lowering of time preferences 
(Protzko, 2020), which is consistent with increasing self-control. 
Higher self-control is a key feature of behavioral manifestations 
of slower LH (Figueredo et al., 2004). 

iii) Differentiation effects: Secular gains in IQ are often accompa-
nied by ability differentiation, i.e. a reduction in the strength of 
the GCA factor (specifically as measured by a reduction in the 
proportion of variance in cognitive performance accounted for by 
the first dimension, or mean intercorrelation strength, among 
subtests in more recently born cohorts relative to older ones). 
These effects have been noted in a number of studies of the Flynn 
effect (for a review of this literature, see Woodley & Madison, 
2013).5 As previously noted, slower LH seems to be associated 
with weaker associations among cognitive abilities (Woodley 
et al., 2013). Woodley and Madison (2013) found evidence of a 
direct relationship between ability differentiation and the Flynn 
effect using three administrative waves of the Estonian National 
Intelligence Test—a significant association was found between 
the decrease in the GCA loading of subtests across waves and the 
magnitude of performance gains on subtests. This, it was argued, 
is consistent with the idea that the Flynn effect involves differ-
ential, or specialized, rather than uniform gains across abilities, 
with more GCA-loaded (and prospectively also more heritable) 
ability measures being notably more weakly associated with the 
effect (for more discussion, see te Nijenhuis & van der Flier, 
2013). 

Unlike changes in performance over time, the presence of a differ-
entiation effect over time can be tested in laboratory rodents given the 
available data on GCA proportion of variance. The presence of this effect 
in populations of laboratory rodents furthermore may be suggestive of 
broader LH slowing in response to the various environmental im-
provements noted before, and are at least suggestive of the presence of a 

Flynn effect in these populations, as they might result from increasing 
cognitive plasticity and specialization. At the level of test performance, 
this might be expected to manifest as a progressively greater affinity for 
learning on certain tasks as evidenced by reductions in the latency of 
learning periods (e.g., fewer trials would be needed for successful task 
completion among more recent cohorts). Fig. 1 highlights the presumed 
sequence through which various forms of environmental improvement 
might translate into performance gains among laboratory rodents. 

In the current study, a cross-temporal meta-analysis is conducted in 
order to determine whether changes in the strength of GCA (specifically 
differentiation effects, which entail a reduction in GCA-associated 
variance) have occurred in laboratory populations of mice and rats. 
Data on a number of confounding moderator variables will also be 
collected in order to ascertain the robustness of these effects, if present. 

6. Methods 

6.1. Meta-analytic search strategy 

As (non-human) animal studies from which GCA can be estimated 
are reasonably uncommon, somewhat “generous” inclusion rules were 
applied in order to maximize the number of studies available for anal-
ysis. For a study to be included, it needed to meet the following five 
criteria:  

i) The subjects must either be laboratory mice (Mus musculus) or 
Norwegian rats (Rattus norvegicus).  

ii) The sample size must exceed five individuals.  
iii) The number of ability measures must exceed two.  
iv) The subjects must be healthy.  
v) Sufficient data to allow for factor estimation must be available 

(this can take the form of raw data, correlation matrices, and/or 
factor estimation conducted as part of the original study). 

The basis of the literature search was the meta-analysis of Poirier 
et al. (2020), which examined the prevalence of GCA across non-human 
animals. These researchers searched Scopus and Web of Science using 
the Boolean string “general cogniti*” OR “general intel*”. The results of 
their search were supplemented by consulting two recently published 
non-systematic reviews of the (recent) literature on GCA in animals 
(Burkart et al., 2017; Flaim & Blaisdell, 2020). None of these literature 
reviews considered the older literature on GCA in animals, specifically 
that from the early decades of the 20th century. These early data were 
however comprehensively reviewed quantitatively in Chabris (2007, 
with factor estimation), and qualitatively in Galsworthy, Arden, and 
Chabris (2014, without factor estimation). Finally, Google Scholar was 
searched in order to identify more recently published, or lower visibility 
(not listed on Scopus or Web of Science), studies that might contain 
relevant data. This was conducted using the following four strings: 
“general cognitive” AND mice, “general cognitive” AND rats, “general 
intelligence” AND mice, and “general intelligence” AND rats. 

6.2. Sample of studies 

The current study followed the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) recommended guidelines 
(Moher, Liberati, Tetzlaff, & Altman, 2009). The steps used in reducing 
the initial study pool (75) to the final pool (35) are reported as a flow 
diagram in Fig. 2. 

All but two of the studies identified adhered to the inclusion rules. 
For the most part, sample sizes were substantially greater than five (the 
smallest sample size was eight rats in the case of Livesey, 1970). There 
was substantial redundancy among literature reviews due to over-
lapping inclusion of studies, however, with most “exclusions” being 
duplicates. The study of Kolata, Light, and Matzel (2008) was also 
excluded as a (partial) duplicate on the basis of textual review. This 

5 Lynn and Cooper (1993) were perhaps the first to predict the existence of 
this temporal differentiation effect on the basis that gains in IQ over time should 
be associated with Spearman’s Law of Diminishing Returns (SLODR), that is the 
tendency for GCA to account for a smaller portion of cognitive variance (as 
evidenced by weaker subtest intercorrelations) among those with higher vs. 
lower IQs (for a recent meta-analysis of this effect, see Blum & Holling, 2017). 
Both SLODR and the Flynn effect share certain psychometric properties in 
common—for example, both effects appear to be more pronounced on subtests 
onto which GCA loads more weakly (Jensen, 2003; te Nijenhuis & van der Flier, 
2013). This hints at a role for factors common to the environments of both 
higher-IQ individuals and members of more modernized populations in the 
etiology of the Flynn effect, consistent with speculations first advanced by these 
researchers. 
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study combined data from four previous studies (Matzel et al., 2003 [n 
= 56]; Matzel et al., 2006 [n = 43]; Kolata et al., 2005 [n = 21]; Kolata, 
Light, Grossman, Hale, & Matzel, 2007 [n = 27]) with an additional 94 
mice from unpublished studies, yielding a total sample size of 241. As 
the results were not broken out by sample, this study could not be used 
as the data were (for the most part) non-independent with respect to 
other studies that were identified in the meta-analytic search. 

One rat study that was included among the studies reviewed in 
Galsworthy et al. (2014) on the basis that it contained information on 
three or more measures of cognitive ability was that of Rajalakshmi and 
Jeeves (1968). This study was however excluded from the current meta- 
analysis on the basis of the fifth inclusion rule, specifically it did not 
contain enough information on the relevant correlations so as to allow 
for factor extraction. Another study was identified on the basis of the 
Google Scholar search that identified GCA in a different species of rat 
(Melomys cervinipes; Rowell & Rymer, 2021). This study was excluded on 
the basis of the first inclusion rule. Some of the studies examined 
cognitive performance and covariance in rodents that had been exper-
imentally lesioned (Anderson, 1993, 1995; Crinella & Yu, 1995; 
Thompson, Crinella, & Yu, 1990). In these cases, only data on the 
unlesioned healthy controls were retained for analysis (based on the 
fourth inclusion rule). 

In total 25 suitable studies involving mice were identified, yielding 

28 effect sizes; 10 suitable studies involving rats were identified, 
yielding 11 effect sizes. 

In order to increase model realism, data collection years were used 
instead of publication years. Textual review of the collected studies 
yielded no information on data collection year, except in the case of 
Livesey (1970), where the data appear to have been collected in the 
early 1960s (Livesey’s sample of eight “white rats” was first character-
ized in a study published in 1965 [Livesey, 1965]). A commonly used 
formula for approximating data collection years in cross-temporal meta- 
analysis is to subtract two years from the publication year of published 
papers and books, and one year from the publication year of “grey 
literature” (such as white papers and preprints), this being the typical 
lag between data collection and publication in each case (Pietschnig & 
Gittler, 2015; Twenge et al., 2010). On this basis two years were sub-
tracted from the publication years of all studies except for Livesey 
(1970), where two years were subtracted from 1965—the year in which 
this sample was first characterized in the literature. 

Data on several prospective moderators were also collected in order 
to control for factors that might confound possible temporal effects on 
the proportion of variance accounted for by GCA. These included subject 
age (in days), sex (coded as male, female, or mixed), strain type (if not 
specified this was given the label of “unknown”), the number of tasks 
comprising the GCA factor, and the factor estimation method (Principal 

Fig. 1. Hypothetical sequence in which three sources of environmental improvement have effects mediated by slowing LH on cognitive plasticity, which yields 
enhanced cognitive specialization in response to exposure to certain cognitive tasks. 

Records identified from*:
Literature Reviews (n = 67)

Chabris (2006; n= 6) 
Galsworthy et al., 
(2014; n=17)
Burkart et al.(2017; n=15)
Flaim & Blaisdell 
(2020; n=9)

Meta-analyses (n =19)

Records removed before 
screening:

Duplicate records removed 
(n = 39)

Reports assessed for eligibility
(n = 29)

Records identified from:
Google scholar (n = 8)

Studies included in review
(n = 35)

Identification of studies via databases and registers Identification via other methods

Reports assessed for eligibility
(n = 7)

One study (Rowell & 
Rymer, 2021) removed 
due to rule 1. 

One study (Rajalakshmi & 
Jeeves, 1968) removed 
due to rule 5. 

Fig. 2. PRISMA flow diagram illustrating the inclusion and exclusion of studies collected from various online databases and previously published literature reviews.  
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Axis Factor Analysis, PAF; or Principal Component Analysis, PCA). 
Subject age may affect the proportion of variance accounted for by GCA, 
as there are some indications from human studies of age-based differ-
entiation and even de-differentiation effects (McArdle, Ferrer-Caja, 
Hamagami, & Woodcock, 2002, cf. Juan-Espinosa et al., 2002). It is 
possible that sex might also influence GCA proportion of variance, if 
there are sex differences in the mean inter-correlation strengths among 
cognitive abilities due to differential susceptibility to factors that might 
induce differentiation. Some evidence consistent with this in human 
populations has been found by Escorial, García, Juan-Espinoza, Rebollo, 
and Colom (2008), who noted that differentiation effects (by ability 
level) were absent among their female subjects, but were present among 
their male subjects. Task number may also to some extent proxy the 
nomological breadth of a given battery, which may also influence the 
estimation of latent variables (Jensen, 1998). As Principal Component 
Analysis and Principal Axis Factor Analysis deal with error structure in 
different ways, it is conceivable that the use of these different factor 
estimation techniques may moderate GCA variance proportions, espe-
cially when sample size, or indicator number, is low (Gorsuch, 2014). 
Finally, Crinella and Yu (1995) have suggested that strain might influ-
ence the degree to which GCA is present across studies of rodents. This 
variable was modeled as a random effect, meaning that it is possible to 
generalize the results of the moderator analysis with respect to the 
‘universe’ of strains, including unmodelled ones. 

All data employed in the cross-temporal meta-analyses are summa-
rized in Table 1. 

Two separate cross-temporal meta-analyses were conducted using 
mouse and rat data respectively. Far more effect sizes were available for 
mice than for rats (28 vs. 11), which is consistent with the observation 
that generally more research effort has been expended on the former 
(Ellenbroek & Youn, 2016). More moderators were available for the 
former relative to the latter also (five vs. three). 

Interestingly, plotting out study number by year yields scientometric 
indications of the two research “waves” plus “dark age” model posited in 
the introduction. This is graphed in Fig. 3. 

6.3. Statistical analyses 

GCA variance was operationalized as the proportion of variance 
explained by the first unrotated component or factor, this corresponding 
to the dimension accounting for the most variance among all linear 
combinations of independent variables. When estimated using correla-
tion matrices, PAF was used as the basis for factor estimation. 

These proportions of variance were recomputed as Pearson’s r co-
efficients later to be transformed into z-values using Fisher’s r-to-z 
transformation. This last step allowed study effect size to be weighted by 
sample size. These transformations were implemented using the meta- 
analytic platform OpenMee (Wallace et al., 2017). A random effects 
meta-analysis, with maximum likelihood estimation and strain modeled 
as a random effect, was conducted to determine the moderating influ-
ence of sex (contrasting studies involving both males and females to 
studies limited to males), average age of individuals, type of latent 
variable modeling method used (contrasting PAF with PCA), number of 
cognitive tasks presented to the individuals, and data collection year, on 
the Fisher z-transformed GCA coefficients for studies conducted with 
mice. A similar model was computed for studies conducted with rats to 
determine the independent influences of number of cognitive tasks 
employed, factor estimation technique, and data collection year, on the 
Fisher z-transformed GCA coefficients. Sex and average age of in-
dividuals were not included in the meta-analysis involving rats because 
these data were not available for all studies. Meta-regression plots with 
95% confidence intervals were produced to visualize the relationship 
between data collection year and the Fisher z-transformed GCA 
coefficients. 

Meta-analytic examinations are often represented by two main figure 
types: forest plots and funnel plots. A forest plot is a graphical 

representation of the various effect sizes and their corresponding con-
fidence intervals (Borenstein, Hedges, Higgins, & Rothstein, 2021). A 
funnel plot is a graphical representation of the effects under examination 
organized alongside a scale, generally following the x-axis, relative to a 
metric of their accuracy or precision (e.g., their standard errors) repre-
sented on the y-axis (Schwarzer, Carpenter, & Rücker, 2015). Funnel 
plots feature the studies’ effects scattered in proximity to an average 
effect. If the database under consideration is characterized by a limited 
degree of between-study heterogeneity, smaller studies tend to be more 
distant from the average (display larger standard errors) (Schwarzer 
et al., 2015). Hence, a funnel plot follows a triangular shape with large 
and precise studies at the top of the figure and small and imprecise 
studies at the bottom. Asymmetrical funnel plots also indicate whether 
some studies might be missing from the statistical examination 
(Schwarzer et al., 2015). The current paper features both forest and 
funnel plots depicting the degree of effect size dispersion, the estimated 
mean effect size, and the extent of missing cases throughout these 
analyses. 

In addition to generating these graphical representations the “trim 
and fill” procedure (Duval & Tweedie, 2000) was used to investigate the 
extent of potential publication bias due to the exclusion of unidentified 
studies altering the symmetrical distribution of effect sizes around the 
mid-line. Trim and fill operates as an iterative procedure that eliminates 
small and extreme values, usually from the right side of the funnel plot 
(Borenstein et al., 2021). Furthermore, each iteration re-estimates the 
effect sizes until the plot becomes symmetrical (Borenstein et al., 2021). 
Trimming reduces the effects’ variance, providing adjusted estimates and 
unbiased effect sizes. Filling incorporates the original effect sizes into the 
model creating a mirror image (Borenstein et al., 2021). Similarly, 
Egger’s regressions were carried out in order to quantify the degree of 
funnel plot asymmetry. These analyses were conducted with the package 
metafor (Viechtbauer, 2010) in R version 4.0.1. 

7. Results 

7.1. Cross-temporal meta-analysis of GCA variance in laboratory mice 

The mouse cross-temporal meta-analysis, with strain as a random 
effect, yielded a pooled Fisher z-transformed coefficient of 0.657 (95% 
CI = 0.591, 0.723; p < .0001), equivalent to an R2 of 0.322. This in-
dicates that across studies, GCA accounts for 32.2% of the variance in 
cognitive performance. Fig. 4 presents a forest plot of the z-transformed 
GCA coefficients per study. As indicated by Table 2, the trim-and-fill 
model did not detect any missing studies. A funnel plot provided addi-
tional evidence for this finding (Fig. 5). It is worth noting that the 
Egger’s regression test did reach statistical significance suggesting the 
presence of a funnel plot asymmetry, a result expected given the fact that 
three studies feature large effect sizes and large standard errors. The 
multivariate cross-temporal meta-analysis revealed that the model’s 
residual heterogeneity was not statistically significant. Alternatively, the 
moderator test detected significant levels of heterogeneity. Concerning 
the various moderators, the analysis found no effects on GCA variance 
stemming from age, sex (the combined male and female studies were 
used as the reference category), number of tasks, or latent modeling 
method used (studies employing PAF were used as the reference cate-
gory). In contrast, (critically) year (data collection) was associated with 
negative and significant influences on GCA variance. These results 
suggest that the proportion of variance explained by GCA has decreased 
over around 100 years in mice, net of confounds (Table 3). Fig. 6 plots 
the proportion of variance associated with GCA as a function of data 
collection year. The study of Bagg (1920) was somewhat of a visual 
temporal outlier (it seems there are no subsequent studies on mouse 
cognition yielding indications of GCA until 1998). As a robustness check, 
the meta-analysis was rerun excluding Bagg (1920). This yielded a 
pooled effect size of 0.629 (95% CI = 0.569, 0.689; p < .0001), equiv-
alent to an R2 of 0.310. Moreover, the meta-analytic moderation analysis 
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remained consistent with the previous results, with the reduced model 
also identifying a significant negative influence of year on the criterion 
variable (b = −0.014; 95% CI = −0.024, −0.003; p = .0116). The 
negative time trend with respect to GCA variance in the reduced model 
is graphed in Fig. 7. 

7.2. Cross-temporal meta-analysis of GCA variance in Norwegian rats 

The second cross-temporal meta-analysis examined changes in GCA 
variance in rats over time. As with the previous analysis involving mice, 

strain was used as a random effect. A pooled Fisher z-transformed co-
efficient of 0.945 (95% CI = 0.642, 1.249; p < .0001) was found, 
equivalent to an R2 of 0.545. This means that 54.5% of the variance in 
cognitive performance in rats can be attributed to the action of GCA. 
Fig. 8 provides a forest plot of the z-transformed GCA coefficients in each 
of the 10 studies. Neither the trim-and-fill nor Egger’s regression test 
yielded any indications of funnel plot asymmetry, with the number of 
“missing” studies estimated to be zero (Table 4). Consequently, both the 
adjusted and unadjusted mean effect sizes are identical. The results are 
presented in Fig. 9. The multivariate cross-temporal meta-analysis 

Table 1 
Studies included in the current cross-temporal meta-analyses, along with effect sizes and relevant sample characteristics.  

Study ID Data collection 
year 

Species N Strain Mean Age 
(days) 

Sex Tasks Statistics R2 

Bagg (1920) 1918 Mus musculus 71 Hybrid Strain (HS)/Mixed 28 MF 8 PCA 0.61 
Colas-Zelin et al. (2012) 2010 Mus musculus 48 CD1 68 M 5 PCA 0.29 
Crawford et al. (2020) 2018 Mus musculus 74 CD1 35 M 6 PCA 0.38 
Galsworthy et al. (2005) 2003 Mus musculus 167 C57BL/6 + BALB/c + RIII+AKR +

DBA/2 + I + A/J + C3H 
103.5 MF 6 PAF 0.18 

Galsworthy et al. (2002) 2000 Mus musculus 40 C57BL/6 + BALB/c + RIII+AKR +
DBA/2 + I + A/J + C3H 

69 MF 6 PCA 0.31 

Kolata et al. (2005) 2003 Mus musculus 21 CD1 90.3 M 5 PCA 0.34 
Kolata et al. (2010) 2008 Mus musculus 60 CD1 100 M 5 PCA 0.41 
Kolata et al. (2007) 2005 Mus musculus 27 CD1 90.3 M 5 PAF 0.37 
Light et al. (2010) 2008 Mus musculus 29 CD1 55 M 5 PCA 0.30 
Light, Kolata, Hale, Grossman, and 

Matzel (2008) 
2006 Mus musculus 32 CD1 79 M 5 PCA 0.27 

Light, Grossman, Kolata, Wass, and 
Matzel (2011) 

2009 Mus musculus 24 CD1 50.5 M 5 PCA 0.41 

Locurto, Benoit, Crowley, and Miele 
(2006) 

2004 Mus musculus 20 HS/Mixed 127.5 M 5 PCA 0.28 

Locurto et al. (2006) 2004 Mus musculus 35 HS/Mixed 127.5 M 5 PCA 0.34 
Locurto, Fortin, and Sullivan (2003) 2001 Mus musculus 60 HS/Mixed 82.5 MF 6 PCA 0.19 
Locurto and Scanlon (1998) 1996 Mus musculus 34 C57BL/6 + DBA/2Js 92.5 M 5 PAF 0.61 
Locurto and Scanlon (1998) 1996 Mus musculus 41 CD1 84 MF 5 PAF 0.55 
Matzel et al. (2006) 2004 Mus musculus 24 CD1 85 M 5 PCA 0.32 
Matzel et al. (2020) 2018 Mus musculus 56 CD1 94.5 M 7 PAF 0.29 
Matzel, Grossman, Light, Townsend, 

and Kolata (2008) 
2006 Mus musculus 58 Balb/C 390 MF 5 PCA 0.31 

Matzel et al. (2003) 2001 Mus musculus 56 CD1 83 M 5 PCA 0.38 
Matzel, Kolata, Light, and Sauce 

(2017) 
2015 Mus musculus 64 CD1 100 M 4 PAF 0.28 

Matzel et al. (2011) 2009 Mus musculus 24 CD1 90.3 M 5 PCA 0.37 
Sauce et al. (2018) 2016 Mus musculus 232 CD1 38.5 M 5 PAF 0.20 
Sauce, Wass, Smith, Kwan, & Matzel, 

(2014) 
2012 Mus musculus 26 CD1 90 M 4 PAF 0.44 

Smith et al. (2013) 2011 Mus musculus 58 CD1 70 M 4 PCA 0.35 
Wass et al. (2012) 2010 Mus musculus 41 CD1 59 M 5 PCA 0.29 
Wass, Sauce, Pizzo, and Matzel 

(2018) 
2016 Mus musculus 98 CD1 89 M 4 PCA 0.31 

Wass et al. (2012) 2010 Mus musculus 25 CD1 59 M 5 PCA 0.32 
Anderson (1993) 1991 Rattus 

norvegicus 
22 Long-Evans 123 M 4 PAF 0.32 

Anderson (1995) 1993 Rattus 
norvegicus 

41 Long-Evans 67 M 3 PAF 0.26 

Campbell (1935) 1933 Rattus 
norvegicus 

28 Uknown 180 F 3 PAF 0.88 

Commins et al. (1932) 1930 Rattus 
norvegicus 

152 Uknown   4 PAF 0.92 

Crinella and Yu (1995) 1993 Rattus 
norvegicus 

24 Sprague-Dawley  7 PCA 0.28 

Kassai, Ernyey, Kozma, Plangár, and 
Gyertyán (2022) 

2020 Rattus 
norvegicus 

36 Lister-Hooded M 7 PCA 0.22 

Kassai et al. (2022) 2020 Rattus 
norvegicus 

36 Long-Evans M 7 PCA 0.27 

Livesey (1970) 1963 Rattus 
norvegicus 

8 ‘White rats’  M 4 PAF 0.82 

Thompson et al. (1990) 1988 Rattus 
norvegicus 

75 Sprague-Dawley M 4 PAF 0.43 

Thorndike (1935) 1933 Rattus 
norvegicus 

64 Albino   32 PAF 0.27 

Tomlin and Stone (1934) 1932 Rattus 
norvegicus 

132 Albino 100 MF 6 PAF 0.62 

Note:R2: The proportion of variance explained by either the first unrotated factor or the first principal component. 
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Fig. 3. Scientometric trend illustrating the number of publications (mice and rats combined) included in the cross-temporal meta-analyses by publication year.  

Fig. 4. Forest plot with z-transformed GCA coefficients across a sample of 28 GCA variance effect sizes in mice along with data collection years. The plot was 
generated using the rma function and the R package metafor. 

Table 2 
Results of the trim-and-fill test and the Egger’s regression analysis of symmetry conducted with a sample of 28 GCA variance effect sizes in mice.  

Trim-and-Fill 
Studies trimmed Point estimate 95% CI p-value Q 
Observed values = 27 0.657 0.591, 0.723 p < .0001 36.335 
Adjusted values = 27 0.657 0.591, 0.723 p < .0001 36.335  

Regression Test for Funnel Asymmetry 
Estimate 95% CI t-value Df p-value 
0.418 0.263, 0.573 2.99 26 0.0060  
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revealed that both the model’s test of residual heterogeneity and the 
moderator test were statistically significant. Concerning the various 
moderators, as with the previous analysis involving mice, the analysis 
identified year as a negative and significant influence on GCA variance. 
This result suggests that, as was found in the mice data, the proportion of 
variance explained by GCA has decreased among rats over about 90 
years (Table 5). The analysis also identified a significant negative effect 
of task number (indicating that smaller numbers of tasks were associated 
with greater GCA variance), but no effect of factor estimation technique. 
Fig. 10 illustrates the decline of GCA variance in rats as a function of 
data collection year. 

8. Discussion 

The results of the cross-temporal meta-analyses yielded indications 
of substantial variance associated with GCA in both laboratory mice and 
Norwegian rats (32.2% and 54.5% respectively). This is comparable to 
values found in large meta-analytic studies of human populations 
(Warne & Burningham, 2019). It should be noted that these values may 
underestimate the true GCA saturation across tasks and across subjects if 
there are second-order correlations among factors, which cannot be 
accounted for using the current dataset (see Warne & Burningham, 2019 
for similar arguments in the analysis of data on human GCA variance). 

Temporal declines in proportion of GCA variance (consistent with a 
“differentiation effect”) spanning approximately one century are evident 

in the case of both species. These declines are not confounded with age, 
sex, latent variable modeling method, or task number in the case of 
mice, or with task number or latent variable modeling method in the 
case of rats. The availability of fewer effect sizes and data on relevant 
moderators necessitates caution when interpreting temporal trends in 
the case of the latter however. There were no indications of missing 
studies based on the use of trim-and-fill in either species; but for mice, 
there were indications of significant funnel asymmetry, which might be 
attributable to three studies featuring large effect sizes and large stan-
dard errors. 

In rats, task number was an independent significant negative pre-
dictor of GCA variance, meaning that GCA variance is greatest when task 
number is lowest. It has been noted that some studies from the “first 
wave” examining GCA in Norwegian rat populations, and other taxa, 
may have oversampled narrow domains, such as those associated with 
spatial reasoning and learning (Locurto, 1997). A good example of this is 
Thorndike’s (1935) study, which evaluated rat performance with 
respect to 32 tasks, most of which measured aspects of spatial reasoning. 
Crinella and Yu (1995) have discussed this issue in relation to certain 
cognitive batteries that have been employed in rats during the “second 
wave,” specifically the Thompson and Anderson Batteries, which (while 
employing fewer measures relative to, e.g., Thorndike, 1935) never-
theless attempt to tap a broader set of domains inclusive of visual, 
spatial, tactile, and possibly also olfactory ability. They argued that 
while these domains may not be especially diverse when considered in 

Fig. 5. Funnel asymmetry plot with trim-and-fill imputed “missing” studies (unfilled circles—in this case there were no missing studies) evaluating the absence of 
data points of z-transformed GCA variance coefficients across a sample of 28 effect sizes in mice. The graphic was generated with the R package metafor. 

Table 3 
Results of a multivariate cross-temporal meta-analysis examining the moderating effects of sex, age, latent variable modeling method, number of tasks, and year on the 
proportion of variance explained by GCA in mice across 28 effect sizes.  

Multivariate Meta-Analysis Model (k = 28; method: ML) 
Test for Residual Heterogeneity: 
QE(df = 22) = 16.138, p-value = .8090 
Test of Moderators (coefficients 2:6): 
QM(df = 5) = 2.197, p-value = .0011 
Parameters (reference category) Estimate 95% CI SE z-value p-value 
Intercept 15.651 (7.752, 23.550) 4.030 3.88 0.0001 
Sex (Male and Female) −0.154 (−0.326, 0.018) 0.088 −1.76 0.0787 
Age 0.000 (−0.001, 0.001) 0.001 0.80 0.4225 
Latent Variable Modeling Method (PAF) −0.027 (−0.140, 0.087) 0.058 −0.46 0.6437 
Number of Tasks −0.024 (−0.107, 0.058) 0.042 −0.58 0.5644 
Year −0.007 (−0.011, −0.004) 0.002 −3.77 0.0002 
Fit indicator logLik Deviance AIC BIC AICc 
Value 18.310 16.138 −22.620 −13.294 −17.020  
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Fig. 6. Meta-regression evaluating the influence of data collection year on the z-transformed GCA variance coefficients across a sample of 28 mouse effect sizes.  

Fig. 7. Meta-regression evaluating the influence of data collection year on z-transformed GCA variance coefficients across a sample of 27 mouse effect sizes, 
excluding Bagg (1920). 

Fig. 8. Forest plot with z-transformed GCA coefficients across a sample of 11 GCA variance effect sizes in rats, along with data collection years. The model was 
generated with the rma function and the R package metafor. 
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light of Jensen’s (1998) nomological breadth criterion for a “good GCA 
factor,” this standard is likely easier to attain in human studies. 

Crinella and Yu’s (1995) observations furthermore suggest that 
caution should be exercised when interpreting the first dimension in 
rodents as GCA. Many researchers in this area of comparative psychol-
ogy routinely and explicitly interpret this as GCA or “general intelli-
gence” (e.g., Crawford et al., 2020; Galsworthy et al., 2002, 2005; Kolata 
et al., 2010; Light et al., 2010). However, the possibility also exists that, 
because of relatively low nomological breadth (relative to human bat-
teries), such a factor might correspond more closely to a narrower group 
factor, perhaps something more akin to domain-general spatial 

reasoning or learning.6 Whether or not Spearman’s (1927) principle of 
the indifference of the indicator (with respect to GCA) holds in non- 
human animal subjects is yet to be adequately tested. A related debate 
concerns whether or not apparent GCA factors derived from one species 
are fully translatable between species (one might ask, “do species exhibit 
compositionally distinct GCA factors reflecting their unique adaptive 
histories, or is it the same GCA, just expressed to different degrees be-
tween species?”; see Burkart et al., 2017). Some recent data indicate that 
GCAs are (to a limited degree) translatable between different species (of, 
e.g., primates) evaluated using a common behavioral-psychometric 
assessment framework (for different approaches to addressing this 
issue, see Kaufman, Reynolds, & Kaufman, 2019; Woodley of Menie & 
Peñaherrera-Aguirre, 2022). 

Crinella and Yu (1995) argued that the apparently weak GCA factor 
in their study of unlesioned rats, relative to Anderson’s (1993, 1995) 
findings of such a factor, may in part be a function of the use of different 
strains (specifically Long-Evans vs. Sprague-Dawley), controlling for 
strain (by modeling it as a random effect) did not eliminate heteroge-
neity in GCA variance in either the mouse or rat experimental pop-
ulations. Moreover, no direct evidence was found for a significant 
difference between these two strains when GCA variance was (re) 
extracted from the relevant correlation matrices (see Fig. 7).7 

An interesting observation made by Crinella and Yu (1995) is that 
GCA variance might present to a substantially greater degree among 
lesioned rats (relative to unlesioned ones). This finding strengthens the 
core hypothesis motivating the current analyses, specifically that im-
provements in environmental factors, in particular those related to 

Table 4 
Results of the trim-and-fill test and the Egger’s regression analysis of asymmetry involving 11 GCA variance effect sizes in rats.  

Trim-and-Fill 
Studies trimmed Point estimate 95% CI p-value Q 
Observed values = 10 0.945 0.642, 1.249 p < .0001 178.432 
Adjusted values = 10 0.945 0.642, 1.659 p < .0001 178.432  

Regression Test for Funnel Asymmetry 
Estimate 95% CI t-value Df p-value 
1.668 0.691, 2.645 −1.41 9 0.1918  

Fig. 9. Funnel asymmetry plot with trim-and-fill imputed “missing” studies (unfilled circles—in this case there were no missing studies) evaluating the absence of 
data points of z-transformed GCA variance coefficients across a sample of 11 effect sizes in rats. The graphic was generated with the R package metafor. 

Table 5 
Results of a multivariate cross-temporal meta-analysis model examining the 
moderating effects of number of tasks, latent variable modeling method, and 
data collection year on the proportion of variance explained by GCA across 11 
rat effect sizes.  

Multivariate Meta-Analysis Model (k = 11; method: ML) 
Test for Residual Heterogeneity: 
QE(df = 7) = 44.307, p-value < .0001 
Test of Moderators (coefficients 2:4): 
QM(df = 3) = 26.534, p-value < .0001 
Parameters (reference 
category) 

Estimate 95% CI SE z-value p-value 

Intercept 25.108 (10.531, 
39.685) 

7.437 3.38 0.0007 

Latent Variable Modeling 
Method (PAF) 

−0.054 (−0.490, 
0.383) 

0.223 −0.24 0.8098 

Number of tasks −0.021 (−0.032, 
−0.009) 

0.006 −3.54 0.0004 

Year −0.012 (−0.019, 
−0.005) 

0.004 −3.27 0.0011 

Fit indicator logLik Deviance AIC BIC AICc 
Value 0.763 17.917 8.475 10.464 20.475  

6 Nicholas Mackintosh (1935–2015) publicly expressed a similar view while 
being interviewed for the Distinguished Contributor Award at ISIR in 2013.  

7 It should be noted that in re-estimating Anderson’s (1993) rat GCA factor 
loadings, they excluded one of his four measures on the basis of non- 
independence. 
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microbiological quality and organismal health, may be a powerful 
driving force behind the trend toward greater cognitive differentiation 
among laboratory rodent populations. This is because negative cognitive 
effects from lesioning might resemble the broad effects of forms of 
environmental stress and associated organic damage (such as that 
caused by microbial infections), which, via their impacts on central 
nervous system integrity, might handicap the phenotypic expression of 
specific cognitive processes, drawing them into correlation with one 
another to a greater degree historically (when the influences of such 
adverse environments were more potent). Moreover, this is consistent 
with the LH model, as more strongly intercorrelated abilities are likely to 
be an adaptive condition-dependent response to the presence of height-
ened environmental risk. This is because cognitive generalism (as evi-
denced by the presence of stronger GCA covariance) is thought to 
prepare organisms for unpredictable and harsh regimes of environ-
mental risk, by enhancing their capacity for contingent switching be-
tween unstable environmental niches (Woodley et al., 2013). 

This strengthens the inference to the idea that an actual Flynn effect 
is present in these data, as rodents that are in poorer condition (whether 
as a result of passive exposure to heightened environmental risk, or due 
to the experimental induction of forms of brain damage) might 
reasonably be expected to exhibit lower performance means (in addition 
to generally greater inter-individual variance with respect to cognitive 
performance), relative to “healthy” rodents. Congruently, Sauce et al. 
(2018) noted that when mice were exposed to highly cognitively 
enriched environments, cognitive performance levels were greatly 
elevated (by the equivalent of 6.6 “IQ points”), relative to those found in 
the control population. These researchers also observed that heritability 
appeared to decline in tandem with the ability gain (consistent with 
reduced inter-individual cognitive variance and possibly also 
covariance). 

As mentioned in the introduction, the LH model can be directly 
tested experimentally in laboratory rodents via measurement of the 
strength of correlations among abilities in addition to learning potential 
in different populations exposed to different levels of environmental 
risk. There may also be other trends accompanying the ones noted in the 
current analysis that might be expected were LH characteristics chang-
ing in more recent laboratory populations of these rodents. For example, 
there may be increases in brain mass in addition to other potential 
outcomes of increased somatic effort. One set of findings potentially 
consistent with this are those of Klimentidis et al. (2011), who examined 
trends in body weight in a sample of more than 20,000 animals covering 
eight species. These included laboratory mice and both captive and feral 
(urban and rural) Norwegian rats. Increases in body weight were noted 
in all cases. Among the various prospective causes of these trends, 

Klimentidis et al. (2011) note that “[o]ther explanations may include 
epigenetic-mediated programming of growth and energy-allocation 
patterns owing to any number of environmental cues such as stressors, 
resource availability, release from predation or climate change” (p. 
1631). As some of these prospective causes might be associated with 
reductions in environmental risk, these positive body weight trends may 
(in part) be a consequence of (possibly miscalibrated) epigenetically 
mediated increases in somatic effort stemming from LH slowing in these 
rodent (and other) populations. 

Another (but possibly complementary) hypothesis, which cannot be 
ruled out based on the current results, is that the “differentiation effect” 

noted here stems from the action of genetic changes occurring in these 
populations of laboratory rodents over time. One possibility is that 
laboratory rodents used in behavioral research might have been bred for 
enhanced competence with respect to narrower domains of cognition, 
reflecting the shift away from individual differences research that star-
ted in the early 1940s (the start of the “dark age”). Indeed, this may even 
have been to an extent a “self-fulfilling prophecy,” in that the experi-
mental focus on performance with respect to very narrow learning do-
mains or to conditioning during this period, without regard to individual 
differences or large factors underlying them, may have (inadvertently) 
led to the selective propagation of strains in which GCA variance was 
attenuated, yielding laboratory populations that were more amenable to 
working within the constraints of the behavioristic experimental para-
digm more broadly. It is conceivable that this hypothetical selection may 
have acted specifically so as to favor increased cognitive plasticity via 
enhancement of the capacity to form secondary modules, which underlie 
the ability to acquire narrow, environmentally sensitive abilities 
through the application of domain-general learning mechanisms (akin 
to “muscle memory” acquired in the course of learning to play a com-
puter game, or musical instrument; for discussion of these, see Burkart 
et al., 2017; Woodley of Menie, Peñaherrera-Aguirre, & Jurgensen, 
2022). Rodents that are better able to develop these secondary modules 
through exposure to repeated stimuli might be expected to have weaker 
GCA manifolds. This hypothesized genetic preparedness for cognitive 
plasticity might also have provided a genetic substrate on which the 
Flynn effect could act to a greater extent among more recently bred 
rodent populations, with more innately cognitively plastic populations 
being better able to engage in the sorts of LH tradeoffs necessary for the 
cultivation of at least some subset of narrow abilities, relative to their 
less genetically plastic ancestors. Another possibility is that more recent 
strains are more inbred. The resultant loss of genetic and phenotypic 
diversity might be expected to attenuate the strength of phenotypic 
correlations among ability measures, although the use of strain as a 
random effect in the current analyses might have gone some way toward 

Fig. 10. Meta-regression evaluating the influence of data collection year on z-transformed GCA variance coefficients across a sample of 11 rat effects sizes.  
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having controlled for this potential confound, as heterogeneity in the 
degree of inbreeding among the various strains considered would have 
been (indirectly) controlled in these analyses. 

It should be stressed that as the confounds discussed above could not 
be addressed in the current study, and as changes in mean performance 
over time could not be directly established among these populations, the 
results of this analysis, while certainly suggestive of the presence of the 
Flynn effect among laboratory rodent populations, are nevertheless 
speculative. Early in the exploration of novel scientific topics more 
speculative findings can catalyze more rigorous research. Ultimately, 
and to this end, in order to comprehensively test for Flynn effects in 
rodent populations, experimental designs along the lines discussed in 
the introduction would be ideal. Such efforts aimed at specifically 
testing the long-term influences of a variety of prospective causes and 
meta-causes of the Flynn effect (or its reversal) could help to solve many 
of the enduring mysteries surrounding this enigmatic effect. 
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