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A B S T R A C T   

Species-level data on five cognitive ability measures from 69 primate species are used in conjunction with 
comparative phylogenetic methods to test for the existence of primary and secondary modules. The former are 
‘hard wired’, and solve phylogenetically recurrent problems, whereas the latter are a function of domain general 
problem-solving mechanisms being applied to solving narrower problems, which yields the ability to sponta-
neously solve those problems once the solutions are learned. It is found that these abilities exhibit affinities for 
different macroevolutionary patterns relative to ‘Big G’, and positive associations with dietary breadth and brain 
size. The analyses were also conducted using each ability residualised for G. It was found that the Ornstein- 
Uhlenbeck (OU) model best captured the macroevolution of residual tactical deception, and White Noise 
(WN) best fit the remainder. Residual tactical deception positively associates with brain volume, whereas the 
extractive foraging and innovation residuals negatively associate with this and the innovation residual negatively 
associates with social group size. The affinity of residual tactical deception for the OU model indicates that it may 
be a primary module under adaptive optimization selection. The predominance of WN in characterizing the 
macroevolution of the remaining residuals indicates that they may be secondary modules, under the influence of 
developmental and ecological (rather than phylogenetic) factors. Negative associations involving brain size (in 
two cases) and social group size (in one) suggest that the optimal conditions for cultivating these modules exist 
when these parameters are low.   

1. Introduction 

Species differences in the means of observational counts of problem- 
solving behaviors sampled with respect to a wide array of domains have 
been found to give rise to a ‘general intelligence’ or g-like general factor. 
As this pattern emerges from comparisons involving different species (as 
opposed to individuals) the term Big-G (or just G) is used to differentiate 
it from the ‘little-g’ that exists at the level of individual differences 
(Burkart, Schubiger, & van Schaik, 2017a; Burkart, Schubiger, & van 
Schaik, 2017b; Fernandes, Woodley, & te Nijenhuis, 2014). The phe-
nomenon of G was first described by Deaner, van Schaik, and Johnson 
(2006). These researchers performed a meta-analysis of studies exam-
ining cognition in non-human primates, grouping these based on subject 
attributes and experimental design. A Bayesian latent variable model 

found that primate genera differed in their overall performance across 
tasks. The presence of G was strongly corroborated by the finding that 
across 229 genus-by-genus comparisons, genera could be consistently 
ranked with respect to task performance in 85% of cases. The re-
searchers were able to rule out the influence of species-by-domain ef-
fects (or modules). These researchers also noted that Great Apes 
consistently outperformed other primates across tasks. 

Reader, Hager, and Laland (2011) were able to identify the existence 
of G among primate species using a more straightforward factor analytic 
approach. They synthesized data from over 4000 articles, spanning 75 
years, and were able to obtain observational frequency counts of per-
formance with respect to five cognitive domains (innovation, social 
learning, tool use, extractive foraging, and tactical deception) for a total of 
62 primate species. The use of Principal Components Analysis yielded a 

* Corresponding author. 
E-mail address: michael.woodley@vub.be (M.A. Woodley of Menie).  

Contents lists available at ScienceDirect 

Intelligence 
journal homepage: www.elsevier.com/locate/intell 

https://doi.org/10.1016/j.intell.2022.101645 
Received 30 November 2021; Received in revised form 23 February 2022; Accepted 15 March 2022   

mailto:michael.woodley@vub.be
www.sciencedirect.com/science/journal/01602896
https://www.elsevier.com/locate/intell
https://doi.org/10.1016/j.intell.2022.101645
https://doi.org/10.1016/j.intell.2022.101645


Intelligence 92 (2022) 101645

2

G factor accounting for 65% of the variance in performance across tasks, 
with loadings ranging from 0.88 (in the case of tool use) to 0.74 (in the 
case of tactical deception). Significant positive associations were found 
between G and log-transformed body and brain size, progression index, 
log-transformed neocortex volume, the ratio of the neocortex to the rest 
of the brain, and the residual of the log-transformed brain size on log- 
transformed body mass. As with Deaner et al. (2006), Reader et al. 
(2011) also noted that the Great Apes outscore all other primates in 
terms of level of G. 

Fernandes et al. (2014) expanded Reader et al.’s (2011) dataset to 
include an additional seven species, bringing the total up to 69. The use 
of Principal Axis and Unit-Weighted factor analytic approaches 
confirmed the presence of a robust G factor in these data, even after 
controls for research effort. It was found that the G loadings onto each of 
the five abilities also strongly, positively moderated the magnitude of 
the average pair-wise differences between species and between-species 
variance associated with each ability, meaning that species differences 
were most pronounced on the more G loaded measures. It was also found 
that the evolutionary lability (specifically the rate of evolutionary 
change) increased with the ability’s G loading, indicating that G is the 
primary variance component on which macroevolutionary pressures 
have operated in shaping primate cognition. 

A more recent analysis involving the same dataset (Fernandes, 
Peñaherrera-Aguirre, Woodley of Menie, & Figueredo, 2020) found that 
G exhibited greater evolutionary lability relative to a variety of neuro-
anatomical volume measures commonly used as proxies for intelligence 
in comparative studies. These included both absolute and (body size) 
residualised brain size, neocortex size, neocortex ratio, cerebellum size, 
and absolute body mass. Among these measures, G exhibited the 
greatest evolutionary rate (0.15 standard deviations [SDs] per million 
years). Brain size (one of the most commonly used proxies for intelli-
gence) exhibited the lowest lability (close to 0.00 SDs). The only 
neuroanatomical measures that came close to matching G in terms of 
lability were residualised and unresidualised cerebellum (both in the 
region of 0.10 SDs). 

1.1. The frequency count method 

The collection of behavioral data from the literature (including in-
formation based on naturalistic observations in captive and field set-
tings) for comparative phylogenetic examinations is a fairly common 
practice across an array of scientific disciplines including evolutionary 
behavioral ecology, evolutionary anthropology, evolutionary psychol-
ogy, and comparative psychology (e.g., Allen, Street, & Capellini, 2017; 
Capellini, Baker, Allen, Street, & Venditti, 2015; Creighton, Greenberg, 
Reader, & Mooers, 2021; Ducatez, Sol, Sayol, & Lefebvre, 2020; Held-
stab, Isler, Burkart, & van Schaik, 2019; Kamilar & Cooper, 2013; Nunn 
& Samson, 2018; Opie, Atkinson, Dunbar, & Shultz, 2013; Plavcan & 
van Schaik, 1997; Shultz, Opie, & Atkinson, 2011; Sol, Duncan, Black-
burn, Cassey, & Lefebvre, 2005; Varricchio et al., 2008; Wich & Nunn, 
2002). It is appreciated that this method might be somewhat unfamiliar 
to (human) intelligence researchers and differential psychologists, who 
are the primary audience for this paper. This method will therefore be 
explained in some detail here, in order to avoid confusions concerning 
the nature of the analyses that are to be conducted subsequently. 

It should first be noted that data gathering for the purposes of 
comparative phylogenetic examinations is not strictly analogous to a 
literature review leading to traditional meta-analysis wherein the main 
goal is to determine the magnitude and consistency of a reported 
parameter estimate across publications. Instead, researchers using this 
sampling method collect information on the presence of a particular 
behavioral phenotype as described by the literature and subsequently 
incorporate this information into phylogenetic models that allow for 
various hypotheses to be tested. 

The present study is based on a sampling method developed by 
Lefebvre, Whittle, Lascaris, and Finkelstein (1997) and Reader & Laland 

(2002), whereby researchers gather data on the frequency of a particular 
behavior for different species (Fernandes and colleagues coined the term 
Frequency Count Method to refer to this sampling produce; Fernandes 
et al., 2014). In particular, the database analyzed in this study comes 
from an online data repository uploaded by Reader et al. (2011) and 
subsequently expanded by Fernandes et al. (2014). An advantage of the 
Frequency Count Method (when conducting comparative phylogenetic 
examinations) is that since this procedure collects data on the preva-
lence of behavioral phenotypes, rather than on the performance of in-
dividuals on a particular cognitive test, it remains ecologically valid at 
the species-level. In contrast, cross-species comparisons based on 
experimental conditions at the individual-level may provide inaccurate 
results if the various cognitive tests are not specifically adapted to be 
used across species (e.g., floor and ceiling effects may provide some 
indication of a test’s limited ecological validity; see discussion in 
Woodley of Menie, Fernandes, te Nijenhuis, Peñaherrera Aguirre, & 
Figueredo, 2017; Woodley of Menie & Peñaherrera-Aguirre, 2022). This 
procedure does not consider the number of individuals observed per 
study either, treating the species or higher taxonomic rank (e.g., genus) 
instead as the unit of analysis, however previous publications have 
found that demographic information (e.g., group size or population size) 
does not bias the final frequency count of the various behavioral phe-
notypes (Lefebvre, 2011). 

In constructing their 2011 database, Reader and colleagues surveyed 
articles gathered primarily from four primatological journals: Primates, 
the American Journal of Primatology, Folia Primatologica, and the Inter-
national Journal of Primatology, in addition to other pertinent publica-
tions. According to the authors, these outlets were selected because they 
publish the largest volume of primate behavioral research. As part of 
their search strategy, the authors used several keywords, including 
“extract,” “traditional,” “novel,” used to classify behavioral patterns 
such as “innovation,” “social learning,” or “extractive foraging.” This 
strategy limited the classification of a behavioral pattern to the de-
scriptions provided by the authors of the articles. Hence, this procedure 
was designed to circumvent potential subjective bias on the part of 
Reader and colleagues when collecting the data. 

Reader et al. (2011) computed the observation frequencies as the 
overall number of reported instances per behavioral category. Behav-
ioral patterns such as tool use, social learning, and innovation occurred 
across environmental and behavioral situations (e.g., in response to 
predators, during locomotion, as part of social displays, or in association 
with foraging behavior). Although Reader et al. (2011) initially 
collected information on all instances in which the behavior occurred (i. 
e., either reported in a captive or wild setting, as part of an experimental 
intervention or in response to human activity including habitat degra-
dation or food provisioning), their analyses were restricted to a limited 
dataset comprised of instances of naturalistic observations conducted in 
a field setting without human intervention (Reader & Laland, 2002). The 
authors also conducted inter-observer reliability analyses on the reports 
of the aforementioned behavioral patterns to determine whether any of 
the authors introduced a subjective bias in the course of coding the 
behaviors. The analyses revealed high concordance values for tool use 
(internal consistency [IC] = 0.94), social learning (IC = 0.95), and 
innovation (IC = 0.83) across all raters. The authors also collected data 
on tactical deception from Byrne and Whiten (1990), who in turn sur-
veyed primatological experts to determine the prevalence of tactical 
deception across species of nonhuman primates. These reports were also 
based on naturalistic observations rather than the results of experi-
mental procedures conducted either in captivity or in the wild. 

Concerning extractive foraging, the authors operationalized this 
variable as follows: 

“Feeding on foods that must first be extracted from matrices in which 
they are embedded or encased, including nutmeat, shellfish, snails, 
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eggs, brains, bone marrow, roots, tubers, and ant and termite 
mounds” (Reader et al., 2011; supplementary material, p. 5). 
After reviewing the relevant articles, the authors validated their 

extractive foraging data by comparing their results with Gibson’s (1986) 
description of this behavioral pattern across species of nonhuman pri-
mates. Their examination provided additional evidence concerning their 
measures’ consistency with previously assembled behavioral catalogs. 
Reader and colleagues also mentioned that reports of extractive foraging 
in the literature (as naturalistic observations) predict primate perfor-
mance in cognitive tasks requiring extractive foraging in experimental 
settings. After extracting G from the aforementioned behavioral pat-
terns, Reader et al. (2011) correlated the factor scores with a global 
performance index calculated based on an array of cognitive subtests 
collected from several primate species in a captive setting (Deaner et al., 
2006). Reader and collaborators found a sizeable and significant asso-
ciation between G and the laboratory global performance scores. 

Similar data collection procedures have also been used with other 
clades. Over the past two decades, (Lefebvre et al., 1997; Lefebvre, 
Juretic, Nicolakakis and Timmermans, 2001; Lefebvre, Reader and Sol, 
2004) have gathered innovation data from the ornithological literature. 
The authors demonstrated that this type of procedure is not affected by: 
a) type of journal; b) the journal’s editorial policy; c) the associated 
research effort; d) observation bias; e) population size; f) developmental 
processes; g) or common ancestry. Moreover, Lefebvre and collaborators 
found that their innovation metric correlated well with various mea-
sures of learning performance in a laboratory setting. Inter-observer 
agreement estimates have been found to be consistently high, ranging 
from 0.82 to 0.95 (Lefebvre, 2011; Nicolakakis & Lefebvre, 2000). 
Consequently, the aforementioned publications provide strong evidence 
concerning the validity of this method, whereby the results remained 
relatively unaltered even after accounting for potential sampling biases. 

1.2. Primary and secondary modules 

Moving now to the main research question, while much research has 
been conducted on the question of G and it’s phylogenetic, ecological, 
and neuroanatomical correlates in comparative psychological research, 
little research by contrast has been conducted into the no less important 
question of the nature of modularity at this level of analysis. The exis-
tence of two basic kinds of modules have been proposed in comparative 
psychology, primary and secondary. Primary modules are a function of 
selection favoring the emergence of specialized and dedicated problem- 
solving systems with respect to which members of a species are opti-
mized (i.e., there exists very little variance among individuals). Such 
modules are experience expectant, meaning that their functioning is 
elicited by exposure to very specific phylogenetically recurrent signals. 
They are also inflexible, meaning that they can only be used to solve 
narrowly compatible problems. Burkart et al. (2017a) give as an 
example of such a module the tendency for small moving objects to elicit 
hunting-repertoire derived behaviors from young felids (the example of 
a house cat pawing at a piece of string dangling in front of it is likely 
familiar to the reader). Secondary modules are a function of learned 
skills, acquired in ontogenetic time, via recurrent exposure to a stimulus. 
These modules once acquired allow for automatic solutions to be 
derived for a given problem, but only after a period of learning has taken 
place. These modules reflect underlying behavioral flexibility and likely 
stem from the action of executive functioning (i.e., attention and con-
trol) applied to the process of learning. One way to think of these is to 
imagine domain general processes (such as those related to g) building, 
via the allocation of cortical real estate, secondary dedicated cognitive 
structures capable of managing domain specific problems once the 
problem has become sufficiently recurrent, so that the solution no longer 
needs to be relearned with each iterative exposure. Burkart et al. 
(2017a) give as an example of this the ability for humans to learn al-
gorithms with which they can then solve algebraic equations efficiently 

with enough practice, and without the need to relearn the algorithm 
once it has been ‘captured’ in the form of a secondary module. 

In the present work, a comparative phylogenetic analysis will be 
conducted in order to identify primary and secondary modules via 
reanalysis of the extended primate G dataset utilized in (Fernandes et al., 
2014; Fernandes et al., 2020). Each of the five abilities will be consid-
ered independently in relation to their affinities for different macro-
evolutionary modes, and their association with a small set of 
neuroanatomical and ecological correlates. These analyses will be con-
ducted on the abilities in both unresidualised and residualised (for G) 
form. The latter are likely to be especially informative as to the evolu-
tionary dynamics influencing the emergence of different forms of 
modularity, as these residuals will be wholly independent of phylogenetic 
processes acting at the level of G, and their associated macroevolu-
tionary patterns will necessarily result from domain specific macroevo-
lutionary pressures acting on these. Two macroevolutionary regimes in 
particular are likely to allow for primary and secondary models to be 
clearly distinguished; Ornstein-Uhlenbeck and White Noise. The former 
relates to forms of selection that optimize populations for particular 
adaptations (i.e., via centripetal, or variance-reducing stabilizing se-
lection) (Butler & King, 2004), and is expected to be the preferred 
macroevolutionary mode for primary modules. The latter relates to a 
role for ecological and ontogenetic effects operating outside of phylo-
genetic processes in conditioning trait levels (Pennell et al., 2014). This 
macroevolutionary mode is expected to predominate in the case of 
secondary modules, as these arise in ontogenetic (as opposed to phylo-
genetic) time, and are conditional upon the presence of specific 
ecological problems that may vary in terms of their presence/absence 
and significance substantially between species. In the present analysis a 
variety of alternative phylogenetic models will be fitted to the data in 
order to thoroughly exhaust the space of likely macroevolutionary 
modes. Both the residualised and unresidualised forms of the abilities 
will also be examined in relation to between-species variation with 
respect to three variables (diet breadth, brain mass, and social group 
size) in order to determine whether there are any notable associations. 

2. Methods 

2.1. Measures 

The current analyses used data collected and examined by Fernandes 
et al. (2020) and Reader et al. (2011) on the following list of cognitive 
abilities in a sample of 69 nonhuman primate species. The number of 
studies per behavioral pattern can be found in Fernandes et al. (2020): 

2.1.1. Extractive foraging 
The cognitive and behavioral ability to extract food resources that 

have been concealed, cached, or covered by an external barrier (Fer-
nandes et al., 2014; Reader et al., 2011). 

2.1.2. Tool use 
The creation and use of artifacts for addressing physical or social 

challenges. This cognitive indicator is often viewed as a proxy for an 
organism’s ability to control and alter nearby surroundings (Gibson, 
Gibson, & Ingold, 1994; Wynn, 1988). Several studies have found that 
tool use is strongly correlated with other cognitive indicators in 
non-human species (Fernandes et al., 2014; Lefebvre et al., 2004; Reader 
& Laland, 2002). 

2.1.3. Innovation 
An organism’s capacity to develop novel solutions to new, complex, 

social, and physical challenges. More specifically, this cognitive indi-
cator entails the developmental capacity to adjust to novel ecological 
conditions. Consequently, innovation is regarded as a strong indicator of 
general cognitive ability (Fernandes et al., 2014; Lefebvre et al., 2004; 
Reader & Laland, 2002; Sol et al., 2005). 
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2.1.4. Tactical deception 
An organism’s ability to redirect the attention of others in order to 

mislead, damage, or benefit from others or via their distraction (Byrne & 
Whiten, 1990). Tactical deception does not require the individual to 
accurately interpret or “read” the mental states of the “dupe,” but can be 
achieved by predicting the behavior of the dupe in a particular social 
context (Byrne and Whiten, 1990). 

2.1.5. Social learning 
The ability to gain information, skills, and knowledge from kin, 

peers, and other conspecific adults. Although previous publications 
considered social learning an essential part of Machiavellian intelligence 
(Byrne & Whiten, 1990; Whiten & Byrne, 1988), more recent exami-
nations also view this ability as a central capacity for the evolution of 
traditions and culture (Reader et al., 2011). 

2.2. Unit-weighted factor estimations and phylogenetic generalized least 
squares models 

Traditional statistical analyses, such as regression-based models, 
assume that the data’s residuals are independent. As closely related 
species have a higher probability of resembling each other than more 
distantly related lineages, the data’s residuals collected across several 
species are not statistically independent. Ignoring the underlying pseu-
doreplication issues associated with this type of data increased the 
probability of Type I errors (Nunn, 2011; Peñaherrera & Fernandes, 
2021). Over the past three decades, various comparative phylogenetic 
methods have been developed to account for these statistical conditions 
(Nunn, 2011). For example, diagnostic statistics such as Pagel’s λ pro-
vides a quantitative estimate of the extent to which the macroevolu-
tionary pattern observed in the phylogenetic tree matches the 
phenotypic similarity across species in the dataset (Pagel, 1999). Values 
of Pagel’s λ closer to 1.0 indicate that the rate of macroevolutionary 
change is attributable to the passage of time. In contrast, when Pagel’s λ 

is close to zero, it indicates that the phenotype across species is less 
similar to what would be expected from the underlying phylogeny. In 
addition to reducing the probability of Type I errors, comparative 
phylogenetic methods have also been found to increase the model’s 
statistical power and reduce the probability of Type II errors (Maclean & 
Nunn, 2017; Peñaherrera & Fernandes, 2021). Although some statistical 
procedures such as Linear Mixed Models may account for pseudor-
eplication issues by including cladistic-related factors as random effects 
(e.g., genus, tribe, family, subfamily, infraorder, suborder, order, or 
class), comparative phylogenetic methods, such as phylogenetic gener-
alized least square regression, incorporate the trait’s phylogenetic signal 
into the model providing a more accurate computation of the various 
macroevolutionary parameter estimates. 

It is also worth noting that the probability of reporting a particular 
behavioral phenotype is expected to vary depending on how extensively 
a nonhuman species has been described in the literature. Consequently, 
Reader et al. (2011) operationalized research effort (i.e., the degree to 
which some species have been studied more than others) as the number 
of publications per taxon. The authors collected this information from 
the Zoological Record, an online data repository featuring scientometric 
data on a large number of nonhuman taxa, and proceeded to use the 
number of publications as a predictor of the various behavioral patterns 
(social learning, innovation, tactical deception, tool use, and extractive 
foraging) in several regression analyses. The authors then extracted the 
models’ residuals, yielding a set of values that provided a better estimate 
of the prevalence of these behavioral phenotypes across species of 
nonhuman primates net of effort. Subsequent publications, including 
Fernandes et al. (2014, 2020), have also used this analytical procedure 
to conduct macroevolutionary examinations with the aforementioned 
behavioral patterns. 

A series of Linear Models were conducted using research effort 
(number of publications per species in the Zoological Record) as a 

predictor of the various cognitive abilities. The pertinent residuals were 
then extracted and used to compute a unit-weighted (UW) G factor. This 
process involves the standardization of all relevant indicators and the 
calculation of an average across the pertinent z-indicators. In contrast to 
other factor scoring procedures, UW does not suffer from sample-specific 
analytic limitations (error estimations associated with small sample 
sizes or case numbers; Gorsuch, 1983). Consequently, factor loadings 
under UW scoring are equivalent to the part-whole correlations between 
the standardized indicators and the standardized UW factor. Informa-
tion was also gathered on the species’ diet breadth, adult brain mass (in 
grams), and social group size from the online data repository Pantheria 
(Jones et al., 2009). The mice (Zhang, 2016) and sjmisc (Lüdecke, 2018) 
packages were used to compute MCMC imputation across 100 samples 
and 50 iterations for ecological indicators featuring missing data. A 
consolidated ecological dataset was later integrated into several 
Phylogenetic Generalized Least Squares Models (PGLS), predicting the 
various unresidualized and G residualized cognitive abilities. 

These analyses were conducted with the phylogenetic comparative 
package Phytools (Revell, 2012) in R v. 4.0.1. 

2.3. Macroevolutionary selection regimes 

The present study compared each cognitive indicator across nine 
different macroevolutionary models: Brownian Motion, Pagel’s λ, 
Ornstein-Uhlenbeck, Early Burst, Acceleration-Deceleration, Kappa, 
Mean Trend, Rate Trend, and White Noise. This approach allowed for 
comparative examination of the macroevolutionary patterns character-
istic of each traits’ level of phylogenetic signal and its degree of pres-
ervation, as well as corresponding evolutionary rates across the primate 
phylogeny. The various macroevolutionary models were estimated with 
the Geiger package (Pennell et al., 2014) in R v. 4.0.1. 

Brownian Motion (BM) acts as a null macroevolutionary model 
depending on the phylogenetic trees’ branch length. Thus, correlation 
matrices are assumed to be proportional to the shared ancestry among 
species (Felsenstein, 1973). The dimension of the branches represents 
how much time has passed since the species emerged. As a result, under 
BM, a trait is more likely to change in older lineages compared to those 
in more recent ones. This model does not account for the direction of the 
trait’s change, i.e., whether it increases or decreases over time, or the 
speed at which the feature evolved (deceleration or acceleration). The 
model assumes the phenotypic attribute evolved at a stable rate 
following a random walk (Nunn, 2011). 

Pagel’s λ alters the length of the branches in the phylogenetic tree 
based on the trait’s phylogenetic signal (Pagel, 1999). This measure 
ranges from 0 to 1, where values closer to 1 indicate the trait evolved 
under BM, whereas values closer to 0 suggest high evolutionary lability. 
This macroevolutionary model does not give any indication as to the 
reasons for a trait’s preservation level. The model operates as an all- 
encompassing alternative to all other models in the analysis. Pagel’s λ 

operates under the logic of rejecting a BM model but acknowledging that 
the trait did not evolve under any of the competing macroevolutionary 
models under consideration, as reflected by the model’s statistical fit. 

Ornstein-Uhlenbeck (OU) builds upon the BM model by including 
the parameter α that represents the magnitude of a constraint force, 
considering whether the selective pressure orients all lineages in the 
phylogeny toward a specific value. Even though the Ornstein-Uhlenbeck 
model is generally viewed as a measure of stabilizing selection (Butler & 
King, 2004), this macroevolutionary model considers the alternative 
hypothesis that the trait evolved toward an optimum, regardless of 
whether it occurred due to stabilizing or directional selection. In 
contrast to other models, such as Pagel’s λ, the values computed by an 
Ornstein-Uhlenbeck model do not have an upper range (i.e., they span 
from zero to infinity). 

Early Burst evaluates any exponential increase or decrease of the 
trait’s evolutionary rate across time (Harmon et al., 2010). This esti-
mation derives from the addition of a statistical parameter. Whereas a 
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value equal to 0 is analogous to a BM evolutionary model, an estimate 
below 0 reflects a fast niche-filling process accompanied by an expo-
nential decline in evolutionary rates. Such a dynamic is dependent on 
novel ecological niches becoming available and eventually reaching a 
point of saturation. 

Delta considers the speed at which the trait evolved over time (Pagel, 
1999). Similar to previous models, this model incorporates an additional 
statistical parameter, whereby values above 1 indicate an accelerated 
macroevolutionary process acting particularly at the tip of the phylo-
genetic tree. Consequently, larger values reflect a linear increase in 
evolutionary rates over time. As a result, this model evaluates whether 
adaptations are lineage-specific. 

Kappa assumes that the probability of trait change increases with the 
speciation events occurring across the phylogenetic tree (Pagel, 1999). 
Thus, this analysis evaluates whether the trait evolved following a 
punctuational dynamic. It is worth noting that it is difficult to interpret 
the results of this model if multiple speciation events are missing in the 
phylogenetic tree, either due to inadequate sampling or extinction 
events. 

Mean Trend examines whether the evolution of a trait occurred 
following a directional drift or toward a general trend, as reflected by a 
tendency to display either smaller or larger values over time (Pennell 
et al., 2014). Although this model is generally recommended for non- 

ultrametric trees (in ultrametric trees, the likelihood surface is usually 
flat relative to the trend’s slope), it was considered reasonable here to 
include this as part of the overall macroevolutionary model 
comparisons. 

Rate Trend acts as a diffusion model examining whether the rate of 
trait evolution followed a linear trend over time, either increasing or 
decreasing (Pennell et al., 2014). 

White-Noise (WN) is a non-phylogenetic mode that assumes the 
information was collected from a normal distribution lacking a covari-
ance structure across the lineages in the dataset (Pennell et al., 2014). 
This model allows for the implementation of the variance parameter s2 

values, and employs similar bounds to those associated with a BM 
model. 

3. Results 

3.1. Phylogenetic signal of non-residualized and residualized cognitive 
abilities 

Table 1 shows the values of Pagel’s λ¸, a measure of phylogenetic 
preservation, for the various cognitive abilities as well as the results of a 
likelihood ratio test, assuming the phylogenetic signal to be identical to 
zero. Tactical deception and tool use exhibited strong phylogenetic 
signals. A likelihood ratio test revealed that these values were signifi-
cantly different from zero, thus suggesting that the traits are phyloge-
netically conserved. Alternatively, extractive foraging, innovation, and 
social learning featured a phylogenetic signal that was not significantly 
different from zero. The G factor was also evolutionarily conserved, with 
its phylogenetic signal significantly differing from zero. Residualizing 
the five cognitive abilities for G reduced the degree to which the traits 
appeared to be evolutionarily conserved. Whereas the residualized 
values for tactical deception remained significantly different from zero, 
extractive foraging, innovation, social learning, and tool use had rela-
tively small values of Pagel’s λ that were not statistically different from 
zero. 

Table 1 
Phylogenetic signal of non-residualized and residualized cognitive abilities.  

Non-residualized Cognitive Abilities /GCA Residualized Cognitive Abilities 
Cognitive 
ability 

Pagel’s 
λ 

p-value 
LRT (0) 

Cognitive 
ability 

Pagel’s 
λ 

p-value 
LRT (0) 

Z- T. 
Deception 

0.69 0.0000 Z-res. T. 
Deception 

0.46 0.0086 

Z- Ex. 
Foraging 

0.44 0.6426 Z-res. Ex. 
Foraging 

0.21 0.3191 

Z- Innovation 0.24 1.0000 Z-res. 
Innovation 

0.07 0.3623 

Z- Social 
Learning 

0.00 1.0000 Z-res. Social 
Learning 

0.00 1.0000 

Z- Tool Use 0.69 0.0020 Z-res. Tool Use 0.08 0.5685 
Z-GCA 0.54 0.0179     

Table 2 
Macroevolutionary model comparison evaluating the effect of nine selection regimes upon five cognitive abilities and G. Bolded values indicate those associated with 
the best fitting model(s).  

Akaike Information Criteria (AIC weight)  
Z-T. Deception Z- Ex. Foraging Z- Innovation Z-Tool Use Z- Social Learning Z-G 

Delta AIC 188.51 (0.01) 195.21 (0.33) 197.81 (0.18) 194.49 (0.04) 198.28 (0.15) 195.86 (0.12) 
BM AIC 219.18 (0.00) 240.87 (0.00) 254.81 (0.00) 225.64 (0.00) 261.99 (0.00) 239.87 (0.00) 
OU AIC 188.16 (0.01) 195.18 (0.34) 197.81 (0.18) 194.36 (0.04) 197.97 (0.18) 195.83 (0.15) 
Pagel’s λ AIC 179.56 (0.83) 197.75 (0.09) 197.97 (0.17) 188.45 (0.86) 197.97 (0.18) 192.37 (0.66) 
Early Burst AIC 221.18 (0.00) 242.87 (0.00) 256.81 (0.00) 227.64 (0.00) 263.99 (0.00) 241.87 (0.00) 
Κappa AIC 183.02 (0.15) 203.59 (0.01) 214.39 (0.00) 195.15 (0.03) 228.26 (0.00) 202.37 (0.00) 
Mean Trend AIC 221.18 (0.00) 242.87 (0.00) 256.81 (0.00) 227.64 (0.00) 263.99 (0.00) 241.87 (0.00) 
Rate Trend AIC 214.24 (0.00) 235.76 (0.00) 249.43 (0.00) 220.90 (0.00) 256.62 (0.00) 234.68 (0.00) 
WN AIC 195.97 (0.00) 195.97 (0.23) 195.97 (0.46) 195.97 (0.02) 195.97 (0.49) 195.97 (0.11)   

Corrected Akaike Information Criteria (AICc)  
Z-T. Deception Z- Ex. Foraging Z- Innovation Z-Tool Use Z- Social Learning Z-G 

Delta AICc 188.88 (0.01) 195.58 (0.33) 198.18 (0.18) 194.87 (0.04) 198.65 (0.17) 196.23 (0.11) 
BM AICc 219.36 (0.00) 241.05 (0.00) 254.99 (0.00) 225.83 (0.00) 262.18 (0.00) 240.05 (0.00) 
OU AICc 188.53 (0.01) 195.56 (0.33) 198.19 (0.18) 194.74 (0.04) 198.34 (0.17) 196.21 (0.12) 
Pagel’s λ AICc 179.94 (0.83) 198.13 (0.09) 198.34 (0.16) 188.83 (0.86) 198.34 (0.17) 192.72 (0.65) 
Early Burst AICc 221.55 (0.00) 243.24 (0.00) 257.18 (0.00) 228.02 (0.00) 264.37 (0.00) 242.25 (0.00) 
Κappa AICc 183.39 (0.15) 203.97 (0.00) 214.77 (0.00) 195.52 (0.03) 228.64 (0.00) 202.74 (0.00) 
Mean Trend AICc 221.55 (0.00) 243.24 (0.00) 257.18 (0.00) 228.02 (0.00) 264.37 (0.00) 242.25 (0.00) 
Rate Trend AICc 214.61 (0.00) 236.13 (0.00) 249.81 (0.00) 221.28 (0.00) 257.00 (0.00) 235.06 (0.00) 
WN AICc 196.15 (0.00) 196.15 (0.25) 196.15 (0.49) 196.15 (0.02) 196.15 (0.50) 196.15 (0.12)  
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3.2. Macroevolutionary model comparison with Nonresidualized 
cognitive abilities 

Based on both AIC and AICc weights, tactical deception was found to 
have evolved under an OU selection regime. This result suggests that 
either via directional or stabilizing selection, the evolution of non-
residualzied tactical deception gravitated toward an optimal point on 
the phenotypic landscape. Although the AIC weights supported the OU 
macroevolutionary model for extractive foraging, the model comparison 
based on the AICc weights equally supported both the Delta and OU 
models. Under the Delta model, extractive foraging evolved at an 
initially accelerated rate and subsequently experienced a decline in its 
evolutionary rate. This model also suggests extractive foraging evolved 
as a lineage-specific adaptation. 

Alternatively, the OU model revealed that this cognitive ability 
evolved toward a phenotypic optimum, either via stabilizing or 

directional selection. In contrast to the previous cognitive abilities, the 
macroevolutionary model comparison identified white noise (WN) as 
the most likely model for innovation, based on both AIC and AICc 
weights. This result is not unexpected due to the trait’s low phylogenetic 
signal, an outcome often associated with developmental or ecological 
effects (Pennell et al., 2014). Across both AIC and AIC weights, Pagel’s λ 

was found to fit the evolution of tool use the best. This model follows the 
notion of rejecting a BM model but acknowledging that other macro-
evolutionary models not currently considered in the model comparison 
could have a better statistical fit. Due to its limited phylogenetic signal, 
WN fitted social learning as the best macroevolutionary model. Given its 
reliance on social transmission of information and knowledge, ecolog-
ical and ontogenetic effects are expected to contribute substantially to 
the persistence of these traits over time. Although this model assumes 
that all lineages in the phylogenetic tree share the same starting value at 
the root of the tree, over time, social learning appears to have evolved 
independently within each species. Based on both AIC and AICc weights, 
the model comparison revealed that Pagel’s λ fitted G the best. Although 
previous examinations have found that both the OU and Delta models 
had an adequate fit (Fernandes et al., 2020), by expanding the number of 
alternative models, the present study found strong support for Pagel’s λ 

as the most likely selection regime characterizing the macroevolution of 
G (Table 2). 

3.3. Macroevolutionary model comparison with Residualized cognitive 
abilities 

Removing the G factor variance from tactical deception yielded in-
dications that the residuals of this cognitive ability evolved toward a 
phenotypic optimum either via stabilizing or directional selection. These 
results (in Table 3) strongly suggest that tactical deception residuals, net 
of G, were subject to a unique macroevolutionary selection regime, 
distinct from those characterizing G and other residualized cognitive 
abilities (Fig. 1). Furthermore, the better fit of the OU model relative to 
the WN model indicates that a specialized aspect of tactical deception 
likely has an adaptive dimension, evolving in a modular fashion. This 
pattern remained consistent across both AIC and AICc weights. Since 
controlling for the G variance diminished the intensity of the cognitive 
abilities’ phylogenetic signal, the analyses reveal that the extractive 
foraging and tool use residuals fit the WN model better than other 
competing alternatives. These differences were also captured by the 
ancestral character reconstructions evaluating the macroevolutionary 
process of these two cognitive abilities net of G (Figs. 2 and 3). Removing 
the G factor variance from innovation and social learning did not alter the 
results found using the unresidualized indicators, whereby the model 
comparison supported the WN model over the alternative models. The 
ancestral character reconstruction also evidenced these changes after 
residualizing the latter cognitive indicators for G variance (Figs. 4 and 
5). These results are expected given that these two cognitive abilities 
exhibited low phylogenetic signals, even before residualizing them for 
G. It is worth noting that the decrease of the residuals’ phylogenetic 
signal, relative to the unresidualized cognitive abilities, did not differ 
across cognitive subdomains such as physical or social cognition. Except 
for social learning, most traits were influenced by the residualization 
procedure, with an average loss of 0.248 points across all five cognitive 
abilities. The consistent support for the WN model in analyses using the 
lattert four ability residuals revealed that other factors, such as 
ecological or ontogenic effects, may be primarily responsible for the 
persistence of these traits. 

3.4. Phylogenetic generalized least squares models 

Table 4 summarizes the results of several Phylogenetic Generalized 
Least Squares (PGLS) models exploring the effect of socioecological and 
neuroanatomical indicators on the unresidualized and G residualized 
cognitive abilities. The omnibus test evaluating the influence of diet 

Table 3 
Macroevolutionary model comparison evaluating the effect of nine selection 
regimes upon five G-residualized cognitive abilities. Bolded values indicate 
those associated with the best fitting model(s).  

Akaike Information Criteria (AIC weight)  
Z-res. T. 
Deception 

Z-res. Ex. 
Foraging 

Z-res. 
Innovation 

Z-res. 
Tool Use 

Z-res. Social 
Learning 

Delta AIC 189.93 
(0.37) 

197.97 
(0.16) 

199.67 
(0.08) 

197.70 
(0.18) 

197.96 
(0.18) 

BM AIC 217.13 
(0.00) 

246.08 
(0.00) 

281.14 
(0.00) 

270.02 
(0.00) 

253.35 
(0.00) 

OU AIC 189.74 
(0.40) 

197.90 
(0.16) 

197.97 
(0.18) 

197.63 
(0.19) 

197.96 
(0.18) 

Pagel’s λ 

AIC 
191.06 
(0.21) 

196.98 
(0.26) 

197.14 
(0.27) 

197.64 
(0.19) 

197.97 
(0.18) 

Early 
Burst 
AIC 

219.13 
(0.00) 

248.08 
(0.00) 

283.14 
(0.00) 

269.97 
(0.00) 

255.35 
(0.00) 

Κappa 
AIC 

200.50 
(0.00) 

212.94 
(0.00) 

229.09 
(0.00) 

220.44 
(0.00) 

227.86 
(0.00) 

Mean 
Trend 
AIC 

219.13 
(0.00) 

248.08 
(0.00) 

283.14 
(0.00) 

272.02 
(0.00) 

255.35 
(0.00) 

Rate 
Trend 
AIC 

212.78 
(0.00) 

241.30 
(0.00) 

275.31 
(0.00) 

264.26 
(0.00) 

248.34 
(0.00) 

WN AIC 195.97 
(0.02) 

195.97 
(0.43) 

195.97 
(0.48) 

195.97 
(0.44) 

195.97 
(0.48)   

Corrected Akaike Information Criteria (AICc)  
Z-res. T. 
Deception 

Z-res. Ex. 
Foraging 

Z-res. 
Innovation 

Z-res. 
Tool Use 

Z-res. 
Social 
Learning 

Delta 
AICc 

190.30 
(0.37) 

198.34 
(0.15) 

200.04 
(0.07) 

198.07 
(0.18) 

198.33 
(0.17) 

BM AICc 217.31 
(0.00) 

246.27 
(0.00) 

281.32 
(0.00) 

270.21 
(0.00) 

253.53 
(0.00) 

OU AICc 190.11 
(0.40) 

198.27 
(0.16) 

198.34 
(0.17) 

198.01 
(0.18) 

198.33 
(0.17) 

Pagel’s λ 

AICc 
191.44 
(0.21) 

197.35 
(0.25) 

197.51 
(0.26) 

198.02 
(0.18) 

198.34 
(0.17) 

Early 
Burst 
AICc 

219.50 
(0.00) 

248.46 
(0.00) 

283.52 
(0.00) 

270.35 
(0.00) 

255.72 
(0.00) 

Κappa 
AICc 

200.88 
(0.00) 

213.31 
(0.00) 

229.46 
(0.00) 

220.82 
(0.00) 

228.24 
(0.00) 

Mean 
Trend 
AICc 

219.50 
(0.00) 

248.46 
(0.00) 

283.52 
(0.00) 

272.40 
(0.00) 

255.72 
(0.00) 

Rate 
Trend 
AICc 

213.16 
(0.00) 

241.68 
(0.00) 

275.68 
(0.00) 

264.63 
(0.00) 

248.72 
(0.00) 

WN AICc 196.15 
(0.02) 

196.15 
(0.45) 

196.15 
(0.50) 

196.15 
(0.46) 

196.15 
(0.50)  
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Fig. 1. Ancestral character reconstructions illustrating the phylogenetic difference between unresidualized and G residualized cognitive abilities: Standardized 
tactical deception (left) relative to standardized tactical deception residuals (right). 

Fig. 2. Ancestral character reconstructions illustrating the phylogenetic difference between unresidualized and G residualized cognitive abilities) Standardized 
extractive foraging (left) relative to standardized extractive foraging residuals (right). 
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Fig. 3. Ancestral character reconstructions illustrating the phylogenetic difference between unresidualized and G residualized cognitive abilities: Standardized tool 
use (left) relative to standardized tool use residuals (right). 

Fig. 4. Ancestral character reconstructions illustrating the phylogenetic difference between unresidualized and G residualized cognitive abilities: Standardized 
innovation (left) relative to standardized innovation residuals (right). 
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breadth, brain mass, and social group size on tactical deception reached 
statistical significance (F2, 55 = 14.22; R2 

= 0.341; p < .0001). Brain 
mass had a positive and sizeable influence on this cognitive ability. The 
PGLS analysis with the residualized tactical deception values remained 
statistically significant (F2, 55 = 3.98; R2 

= 0.126; p = .0243), with brain 
mass having a positive and significant influence. These results suggest 
that tactical deception net of G has an adaptive dimension that is posi-
tively predicted by brain mass. The omnibus test evaluating the influ-
ence of diet breadth, brain mass, and social group size on extractive 
foraging reached statistical significance (F2, 55 = 7.13; R2 

= 0.206; p =
.0018). Diet breadth and brain mass positively predicted this cognitive 
ability. The PGLS analysis with the residualized extractive foraging values 
remained statistically significant (F2, 55 = 4.00; R2 

= 0.127; p = .0239), 
with adult brain mass negatively influencing this cognitive ability. The 
omnibus test evaluating the influence of diet breadth, brain mass, and 
social group size on innovation reached statistical significance (F2, 55 =
8.56; R2 

= 0.237; p = .0006), with diet breadth and brain mass positively 
predicting this cognitive ability. The PGLS analysis with the residualized 
innovation values remained statistically significant (F2, 55 = 6.25; R2 

=

0.185; p = .0036), with adult brain mass and social group size negatively 
influencing this cognitive ability. The omnibus test evaluating the in-
fluence of diet breadth, brain mass, and social group size on tool use 
reached statistical significance (F2, 55 = 13.22; R2 

= 0.326; p < .0001) 
with both diet breadth and brain mass positively predicting this cogni-
tive ability. Alternatively, the omnibus test exploring the influence of 
the latter predictors on the residualized tool use values did not reach 
statistical significance (F2, 55 = 1.14; R2 

= 0.018; p = .6111). The 
omnibus test evaluating the influence of diet breadth, brain mass, and 
social group size on social learning reached statistical significance (F2, 55 
= 4.91; R2 

= 0.152; p = .0109) with brain mass positively predicting this 
cognitive ability. Alternatively, the omnibus test exploring the influence 
of the latter predictors on the residualized social learning values did not 
reach statistical significance (F2, 55 = 1.14; R2 

= 0.040; p = .3276). 

4. Discussion 

Among the unresidualised abilities, tactical deception and tool-use 
both mirror G in terms of their affinity for the Pagel’s λ macroevolu-
tionary mode. This suggests a relatively conservative selection regime 
that is not evolving the trait toward an optimum, and is likely merely 
proxying selection acting at the level of G. The other abilities seem to be 
characterized by divergent macroevolutionary modes. Specifically, 
extractive foraging is best characterized by the OU model, which in-
dicates selection is acting to optimize the trait level across species 
consistent with the action of either stabilizing or directional selection. 
Innovation and social learning on the other hand are best characterized 
by the WN model. This is a non-phylogenetic source of variation among 
species, associated with the influence of ontogenetic and ecological 
factors. Brain mass positively predicted variation in tactical deception, 
extractive foraging, innovation, and social learning. In addition to this it 
was found that diet breadth positively predicted variation in extractive 
foraging, innovation, and tool use. 

The results from the analyses employing unresidualised abilities are 
not especially informative, as many of their associations might be 
confounded with those of G. The differential affinity of some of these 
abilities (considered independently) for different macroevolutionary 
modes and socioecological and neuroanatomical correlates suggest that 
when G is applied to solving problems in specific domains, different 
patterns of selection might start to act on the trait within those narrow 
ecological contexts. This might also explain why diet breadth is posi-
tively correlated with innovation, tool use, and extractive foraging, but 
not with social learning and tactical deception. The need to efficiently 
secure a wide-array of food-stuffs might be expected to favor manifes-
tations of G in the form of greater innovation and tool-use capability, 
especially as it pertains to the use of physical object-based innovations in 
hunting (i.e., sticks for ant-fishing). More social cognition-oriented 
manifestations of G, such as tactical deception and social learning, 
might not be as useful in terms of accessing a wider variety of food- 

Fig. 5. Ancestral character reconstructions illustrating the phylogenetic difference between unresidualized and G residualized cognitive abilities: Standardized social 
learning (left) relative to standardized social learning residuals (right). 
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stuffs, however larger brains may well promote these specific manifes-
tations of G, in that they may enhance the capacity for primates to 
capture and model complex social dynamics. The predominance of the 
WN model in characterizing the narrow macroevolution of innovation 
and social learning is logical, given the dependence of these abilities 
upon ‘epigenetic’ vertical (e.g., cultural and ecological) transmission of 
acquired knowledge, which might be expected to condition manifesta-
tions of G in these domains. The affinity of extractive foraging for the OU 
model suggests that within this narrow ecological domain, G is under 
optimizing selection. This might be because for any given niche there is a 
consistently strong fitness premium associated with the capacity to 
efficiently and maximally exploit dietary resources. 

More informative, and more interesting are the macroevolutionary 
modes and associations involving the residualised abilities. As these are 
free of the confounding influence of G, their macroevolutionary prop-
erties can be said to better capture the sorts of processes that condition 
the evolution of distinct cognitive modules. The residual of tactical 
deception was found to exhibit an affinity for the OU model, which in-
dicates that, unlike in the case of the unresidualised form of this ability, 
there is a tendency toward adaptive optimization. This suggests that 
independently of G (which shares an affinity for a common macroevo-
lutionary model with unresidualised tactical deception), there is highly 
domain specific selection acting on tactical deception favoring the for-
mation of a primary module (where individuals within a species are 
optimized with respect to some domain specific aspect of tactical 
deception). The positive association of residualised tactical deception 
with brain size suggests that, wholly independently of G, larger brained 

primates are better tactical deceivers, possibly because larger brains can 
accommodate greater cortical real-estate that can be given over to the 
development of a dedicated primary module. The other ability residuals 
all show greater affinity for the WN model. This suggests that variation 
among primate species with respect to these, independently of G is 
largely a function of processes operating via ontogeny, likely in response 
to ecological contingencies. This pattern is consistent with these being 
secondary modules, whose domain specific manifestations owe more to 
non-phylogenetic processes acting in ontogenetic time (such as via 
vertical transmission pathways). More interesting still are the unusual 
affinities that these secondary modules exhibit for neuroanatomical and 
social-ecological factors. The residuals of extractive foraging and inno-
vation both exhibit negative associations with brain mass, and social 
group size negatively predicts the innovation residual. An implication of 
these findings is that the positive association of unresidualised extrac-
tive foraging and innovation with brain mass is entirely a function of G. 
Independently of this, smaller brains seem to better facilitate manifes-
tations of these secondary modules. One possible explanation for this is 
that among small brained primates, the need to innovate and be efficient 
extractive foragers might be more contingent upon predictable ecolog-
ical pressures acting on ontogeny (smaller brained primates tend to be 
found occupying narrower and less variable habitats characterized by 
smaller home ranges and more limited activity periods; Powell, Isler, & 
Barton, 2017). The existence of low environmental variability might 
therefore allow for these narrow secondary modules to be cultivated in 
the absence of higher-levels of G. A similar logic might obtain in the case 
of the negative association between social group size and the innovation 

Table 4 
Phylogenetic Generalized Least Square Models, with hierarchical partitioning of variance, evaluating the influence of diet breadth, adult brain mass, and social group 
upon unresidualized and G residualized cognitive abilities.  

Z-T. Deception Z-res T. Deception 
Predictors β Std. Error F-value Pr(>F) Predictors β Std. Error F-value Pr(>F) 
Z-Diet breadth 0.044 0.111 0.80 0.3738 Z-Diet breadth −0.148 0.128 1.01 0.3189 
Z-Adult Brain mass (g) 0.552 0.118 27.33 0.0000 Z-Adult Brain mass (g) 0.273 0.136 6.22 0.0157 
Z-Social group size 0.065 0.118 0.30 0.5842 Z-Social group size 0.116 0.136 0.73 0.3971   

Z- Ex. Foraging Z-res Ex. Foraging 
Predictors β Std. Error F-value Pr(>F) Predictors β Std. Error F-value Pr(>F) 
Z-Diet breadth 0.294 0.122 7.11 0.0100 Z-Diet breadth 0.223 0.128 1.93 0.1700 
Z-Adult Brain mass (g) 0.294 0.130 6.91 0.0111 Z-Adult Brain mass (g) −0.329 0.136 4.28 0.0433 
Z-Social group size 0.063 0.130 0.24 0.6289 Z-Social group size 0.182 0.136 1.79 0.1866   

Z-Innovation Z-res Innovation 
Predictors β Std. Error F-value Pr(>F) Predictors β Std. Error F-value Pr(>F) 
Z-Diet breadth 0.281 0.119 7.97 0.0066 Z-Diet breadth 0.197 0.123 2.76 0.1025 
Z-Adult Brain mass (g) 0.385 0.127 7.55 0.0081 Z-Adult Brain mass (g) −0.148 0.132 4.49 0.0387 
Z-Social group size −0.161 0.127 1.60 0.2109 Z-Social group size −0.301 0.131 5.26 0.0256   

Z-Tool Use Z-res Tool Use 
Predictors β Std. Error F-value Pr(>F) Predictors β Std. Error F-value Pr(>F) 
Z-Diet breadth 0.226 0.112 6.52 0.0135 Z-Diet breadth 0.073 0.135 0.43 0.5161 
Z-Adult Brain mass (g) 0.512 0.120 2.02 0.0000 Z-Adult Brain mass (g) 0.109 0.145 0.50 0.4824 
Z-Social group size −0.038 0.119 0.10 0.7522 Z-Social group size −0.037 0.144 0.07 0.7974   

Z-Social Learning Z-res Social Learning 
Predictors β Std. Error F-value Pr(>F) Predictors β Std. Error F-value Pr(>F) 
Z-Diet breadth 0.053 0.126 0.60 0.4404 Z-Diet breadth −0.194 0.134 2.18 0.1454 
Z-Adult Brain mass (g) 0.391 0.134 9.15 0.0038 Z-Adult Brain mass (g) −0.023 0.143 0.06 0.8037 
Z-Social group size −0.036 0.134 0.07 0.7870 Z-Social group size −0.026 0.142 0.03 0.8532  

M.A. Woodley of Menie et al.                                                                                                                                                                                                                



Intelligence 92 (2022) 101645

11

residual. Constrains on overall group size might be reflective of the ac-
tion of ecological processes that facilitate the development of an 
innovation-specific secondary module independently of the action of G. 

It is clear that measures of cognitive ability across species are a 
highly meaningful source of information on macroevolutionary pro-
cesses and correlates. This holds even in cases where the abilities are 
residualised for their common-factor variance. The use of such residuals 
furthermore permits an empirically novel distinction to be made be-
tween primary and secondary modules via their affinities for different 
macroevolutionary modes. In keeping with the overarching theme of 
this special issue, it is therefore demonstrated that in the case of 
comparative psychology, going beyond (in this case) G yields substan-
tially novel information that adds additional depth to the understanding 
of the evolution of cognition. 
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