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Ageing represents a major risk factor for many chronic con-
ditions, including cardiovascular disease, diabetes, cancer, 
arthritis and frailty1,2. Once considered irreversible, ageing is 

in fact remarkably malleable. Indeed, inhibition of high-nutrient-
sensing pathways (for example, the insulin–insulin-like growth 
factor (IGF) and mechanistic target of rapamycin (mTOR) path-
ways) and activation of low-nutrient-sensing proteins (for example,  
5′​ AMP-activated protein kinase (AMPK) and sirtuins) extend lifes-
pan in various model organisms3,4. Diet-based interventions, such 
as dietary restriction, and pharmacological interventions, includ-
ing the mTOR inhibitor rapamycin, improve aspects of ageing even 
when administered late in life5–10. A key question is whether age-
ing of cells, tissues and organisms can be reversed or ‘rejuvenated’ 
rather than simply delayed.

A host of age-associated features have been identified, with a 
subset being potential drivers of the ageing process (extensively 
reviewed elsewhere1,2). At the molecular level, ageing hallmarks 
comprise DNA damage, epigenetic alterations, telomere attrition, 
protein aggregation and accumulation of aberrant mitochondria 
and lysosomes1,2. At the cellular and organismal level, ageing features 
include cellular senescence, stem cell exhaustion, deregulated nutri-
ent sensing and chronic low-grade inflammation1,2. Various rejuve-
nation strategies that target these hallmarks have recently emerged 
and they fall into four broad categories: systemic (blood) factors, 
metabolic manipulations, senescent cell ablation and cellular repro-
gramming. Although these approaches seemingly target very dif-
ferent ageing features11–15, a central question is whether they share 
common mechanisms of action. This Review discusses these four 
rejuvenation strategies and how they improve health and lifespan. 
We also address several key questions: which hallmarks of ageing 
are targeted by each strategy and are there commonalities in their 
modes of action? Does the rejuvenating effect come with trade-offs? 
Ultimately, can rejuvenation strategies be used to improve human 
health and longevity and target age-associated diseases?

Blood factors as targets for rejuvenation
Heterochronic parabiosis studies, in which the circulatory systems 
of a young mouse and an aged mouse are fused, have provided com-
pelling evidence that blood factors influence organismal ageing 
(Fig. 1, Table 1 and Supplementary Table 1). Heterochronic para-
biosis was initially shown to revitalize muscle stem cells in naturally 
aged mice, reversing the age-dependent decline in stem cell acti-
vation and number and improving their age-associated differentia-
tion bias16,17. Since then, heterochronic parabiosis has been shown 

to enhance muscle, liver, brain and heart function of aged mice17–24, 
by boosting the function of both stem and differentiated cells17–23. 
Sharing blood circulation with a young mouse also reduces genomic 
instability in the aged mouse20 and reverses age-associated gene 
expression signatures25. Blood factors, rather than blood cells, seem 
to play a major role in these rejuvenating effects24–26: direct injection 
of young blood plasma (devoid of cells)25 or of human umbilical 
cord plasma (also devoid of cells)26 into aged mice can recapitulate 
several aspects of heterochronic parabiosis, notably the increase in 
neurogenesis and improvement of cognitive functions25,26 (Table 1 
and Supplementary Table 1). These observations raise the possibil-
ity that blood factors (for example, proteins, metabolites, lipids and 
exosomes) could be used to reverse aspects of the ageing process, 
perhaps even in humans.

How does young blood revitalize aged organs and tissues? Young 
blood may contain pro-rejuvenation factors, or it could dilute or 
inhibit pro-ageing factors in aged blood (Fig. 2). The pro-rejuve-
nation effect of young blood on the liver, muscle and brain is less 
pronounced than the pro-ageing effect of aged blood on these tis-
sues27, suggesting the presence of potent pro-ageing factors in aged 
blood. Indeed, systemic pro-ageing factors have been identified 
through heterochronic parabiosis, including eotaxin (also known 
as CCL11)21 and β​2-microglobulin23. The levels of eotaxin and  
β​2-microglobulin increase with age, and these factors inhibit neu-
rogenesis and cognition in young mice21,23. Whether blocking pro-
ageing blood factors improves tissue function in aged mice remains 
to be shown, but aged β​2-microglobulin knockout mice exhibit 
enhanced neurogenesis and cognitive functions compared to age-
matched wild-type mice21,23. Other systemic signalling pathways 
have been implicated in mediating the pro-ageing effect of aged 
blood16,17,28–31. For example, heterochronic parabiosis reverses the 
excessive Wnt signalling underlying the differentiation bias of aged 
muscle stem cells16,29. Furthermore, systemic attenuation of trans-
forming growth factor-β​ signalling improves age-dependent decline 
in neurogenesis and myogenesis30, and inhibition of interferon sig-
nalling partially ameliorates neurogenesis and cognitive function in 
aged mice31. Thus, several pro-ageing factors have been identified 
in aged blood.

Identifying rejuvenation factors in young blood has been more 
difficult. Heterochronic parabiosis can restore the decreased Notch 
signalling that underlies the decline in muscle stem cell activation and 
number17,28, although the specific systemic factor (or factors) remains 
unclear. Growth/differentiation factor 11 (GDF11) was initially 
identified as a circulating factor whose levels decrease with age but 
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are restored through heterochronic parabiosis18. Exogenous GDF11 
can rejuvenate heart function18,32 and improve muscle and neural 
stem cell functions in aged mice20,22 (Table 1 and Supplementary 
Table 1). However, subsequent studies reported no beneficial effects 
of GDF11 on heart and muscle stem cell function33,34, and injection 
of GDF11 can induce cachexia35. Thus, although GDF11 may have 
beneficial effects under specific conditions, it is unlikely to be a 
universal mediator of rejuvenation. Another potential rejuvenating 
blood factor whose levels decrease with age is the hormone oxyto-
cin36. Its systemic administration improves muscle regeneration by 
enhancing muscle stem cell activation and/or proliferation in aged 
mice36 (Table 1 and Supplementary Table 1). As oxytocin is known 
for its role in social bonding37, it could potentially link social envi-
ronment and ageing. Finally, TIMP2, a metalloproteinase inhibi-
tor, was identified in human umbilical cord plasma26 and its levels 

have been shown to decrease with age in both mice and humans26. 
Injection of human cord blood induces hippocampal neurogenesis 
and improves learning and memory in naturally aged mice26, effects 
that are attenuated by TIMP2 depletion26. Moreover, administra-
tion of exogenous TIMP2 can improve cognitive function in aged 
mice, pointing to TIMP2 as a key rejuvenating factor26 (Table 1 and 
Supplementary Table 1).

These studies suggest the presence of both pro-ageing and anti-
ageing factors in the blood, which can be targeted to reverse age-
related decline in multiple tissues. However, many open questions 
remain. Which cell types secrete these factors and could these cells 
be targeted to achieve similar effects? Do circulating factors drive 
rejuvenation of all tissues or do they have tissue-specific action? 
Comprehensive analysis of the response of multiple organs to 
blood factors will be required to address this question. Testing 
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Fig. 1 | Comparison of emerging strategies for organismal rejuvenation and lifespan. A comparison of the four emerging rejuvenation strategies: blood 
factors, metabolic manipulation, ablation of senescent cells and cellular reprogramming. The figure depicts the features that improve when treatment in 
mice is initiated at midlife or later. The top panel shows organs or tissues that exhibit a rejuvenated phenotype in wild-type (WT) mice. For rapamycin, 
features that have been shown to improve also in young mice following treatment are indicated with an asterisk (*). The effect on lifespan, proposed 
primary mode (or modes) of action and possible trade-offs of these strategies are also presented. Finally, the translational potential in humans is indicated 
by the increasing number of plus signs (+​) based on present evidence in human ageing and current feasibility. NT, not tested. Question marks indicate 
possible modes of action and trade-offs. Figure adapted from ref. 188.
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Table 1 | Summary of studies testing rejuvenation interventions at midlife or later in naturally ageing mice

Intervention Age at 
intervention 
(months)

Metric output Comparison points (control) Ref.

Blood factors
Parabiosis 2–3, 19–26 Skeletal muscle (MuSC) and liver 

regeneration
Old-old and young-young parabionts 17

Parabiosis 4–6, 24–26 Muscle regeneration (MuSC and 
fibrosis)

Old-old and young-young parabionts 16

Parabiosis 3–4, 18–20 Neurogenesis and cognitive function Old-old and young-young parabionts 21

Parabiosis 1–2, 10–12 Spinal cord remyelination Middle-aged-middle-aged and young-
young parabionts

24

Parabiosis 2, 23 Cardiac metrics Old-old and young-young parabionts 18

Parabiosis 2, 15–16 or 21 Neurogenesis and cognitive function Old-old and young-young parabionts 22

Parabiosis 2–3, 22–24 Muscle regeneration (MuSC) and 
function

Old-old and young-young parabionts 20

Parabiosis 3, 18 Synaptic plasticity and gene expression Old-old parabionts 25

Parabiosis 3, 19 Bone regeneration Old-old and young-young parabionts 19

Parabiosis 3, 18 Neurogenesis and cognitive function Young-young parabionts 23

Young blood injection 18 Cognitive function and gene expression Old blood 25

Human plasma injection (cord, 
young and elderly)

8–10, 13–14 Neuronal and cognitive functions and 
gene expression

Age-matched vehicle control, young (22 
years of age) and old (66 years of age) 
human plasma

26

TIMP2 administration 18 Synaptic plasticity and cognitive 
functions

Age-matched vehicle control 26

Oxytocin administration 2–4, 22–24 Muscle regeneration (MuSC and 
fibrosis)

Age-matched vehicle and antagonist (only 
young) control

36

GDF11 administration 23–24 Cardiac metrics Age-matched vehicle control 18

GDF11 administration 21–23 Neurogenesis and cognitive function Age-matched vehicle control 22

GDF11 administration 2–3, 22–24 Muscle regeneration (MuSC) and 
function

Age-matched vehicle control 20

GDF11 administration 23 Muscle regeneration (MuSC) Age-matched vehicle control 34

GDF11 administration 24 Cardiac metrics and function 2 months of age, 3 months of age and age-
matched vehicle treated

33

GDF11 administration 2, 22 Cardiac metrics and body weight Age-matched vehicle control 32

Metabolic manipulation
Short-term dietary restriction 5–8, 28–30 Vasculature metrics Age-matched ad libitum 43

Short-term dietary restriction 2, 18 Skeletal muscle (MuSC) Age-matched ad libitum 7

Fasting-mimicking diet 16 Organ size and regeneration 16 months of age and age-matched ad 
libitum

5

Fasting-mimicking diet 16 Immunosenescence 4 months of age, 16 months of age and age-
matched ad libitum

5

Fasting-mimicking diet 16 Cognitive function Age-matched ad libitum 5

Fasting-mimicking diet 16 Bone density 12 months of age and age-matched ad 
libitum

5

Fasting-mimicking diet 16 Cancer and inflammation Age-matched ad libitum 5

Ketogenic diet 12 Physiological and metabolic metrics; 
physical, behaviour and cognitive 
functions

Age-matched ad libitum and low-
carbohydrate non-ketogenic

9

Ketogenic diet 12–14 Cognitive and motor function and frailty 
index

12 months of age and age-matched ad 
libitum

8

Ketogenic diet 12–14 Cognitive and motor function 12 months of age and age-matched ad 
libitum

8

Rapamycin 22 Immune system (HSC and immunity) 2 months of age and age-matched vehicle 
control

48

Rapamycin 4, 13, 20–22 Comprehensive organismal assessment 
(>​25 tissues)

3–6 months of age and age-matched 
vehicle control

49

Continued
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the interaction between individual factors, including pro-ageing 
and rejuvenation factors, could identify the main contributors and 
allow for combinatorial treatments to revitalize tissues and organs. 
A central question is whether young blood or specific blood fac-
tors can extend organismal lifespan. Although initial studies using 
young blood in aged mice or GDF11 in progeroid mice reported 
little effect on overall lifespan38,39, a thorough investigation of the 
effect of blood factors on mammalian lifespan will be important.

Metabolic-induced rejuvenation
Long-term dietary restriction extends healthspan and lifespan 
across several species12,40. Less-restrictive diet regimens and drugs 
that mimic the metabolic effects of dietary restriction also have 
beneficial effects on lifespan5,8–10,41,42. Until recently, it was unclear 
whether these interventions could reverse ageing features in aged 
individuals. Initial studies on short-term dietary restriction (5 days 
to 12 weeks) in middle-aged or old-aged mice revealed improved 
function in multiple tissues, including muscle, bone, liver, brain, vas-
culature and immune system5,7,43 (Fig. 1, Table 1 and Supplementary 
Table 1), consistent with the possibility that dietary interventions 
could indeed reverse functional decline. Here, we focus on dietary 
interventions or mimics that are initiated at middle age or later and 
on their potential rejuvenation effects on ageing hallmarks.

The periodic fasting-mimicking diet (FMD) consists of cycles of 
very low caloric intake for 4 days, repeated twice per month, with ad 
libitum feeding in between5. When initiated in 16-month-old mice, 
FMD reverses age-associated haematopoietic differentiation bias, 
increases hippocampal neurogenesis and improves hippocampus-
dependent memory5 (Table 1 and Supplementary Table 1). FMD 
also increases median lifespan and decreases cancer incidence and 
inflammatory diseases, including ulcerative dermatitis5. Some of the 
beneficial effects of FMD are probably mediated by an increased 
proliferative capacity and number of stem cells5. The refeeding por-
tion of FMD may play a key role in this, as it results in a boost in 
cell proliferation5. Whether FMD also improves tissue function by 
selecting against dysfunctional cells is unclear. The proliferation 
boost following refeeding may favour youthful cells, diluting out 
damaged ones and improving overall tissue function. Given that 
FMD (and the ketogenic diet, discussed below) reduces cancer inci-
dence5,9, such regimens may also select against cancerous or precan-
cerous cells.

The ketogenic diet involves the same caloric intake as a normal 
diet but with reduced carbohydrate consumption. This diet mim-
ics many of the metabolic changes occurring in mice under dietary 
restriction or fasting8,9,44. Both fasting and a ketogenic diet decrease 
blood glucose levels and increase ketone body levels and fatty acid 

Intervention Age at 
intervention 
(months)

Metric output Comparison points (control) Ref.

Metformin 12 Serum biomarkers Age-matched ad libitum and dietary restricted 41

Metformin 12 Physical performance Age-matched ad libitum 41

Metformin 12 Liver, muscle and gene expression Age-matched ad libitum and dietary restricted 41

Resveratrol 12 Physiological metrics and gene expression Age-matched untreated controls 54

Resveratrol 18 Renal function and histology Age-matched untreated control 53

Ablation of senescent cells
Ablation of p16-positive cells 18 Adipose tissue metrics Age-matched wild-type treated 88

Ablation of p16-positive cells 12 Kidney, heart and adipocyte metrics 
and function

12 months of age and age-matched vehicle 
control

62

Ablation of p16-positive cells 24 Vasculature function Age-matched vehicle control 82

Ablation of p16-positive cells 12 Cartilage degeneration Age-matched vehicle control 67

Ablation of p16-positive cells 24 Fat accumulation in liver Age-matched vehicle control 64

Ablation of p16-positive cells 12, 20 Bone metrics and loss Age-matched vehicle control 69

Ablation of p16-positive cells >​25 Renal function Age-matched vehicle control 61

Dasatinib +​ quercetin 24 Cardiac metrics and function Age-matched vehicle control 68

Dasatinib +​ quercetin 24 Vasculature function Age-matched vehicle control 82

Dasatinib +​ quercetin 24 Fat accumulation in the liver Age-matched vehicle control 64

Dasatinib +​ quercetin 20 Bone metrics and loss Age-matched vehicle control 69

Dasatinib +​ quercetin 20 Physical performance Age-matched vehicle control 70

ABT263 21–22 Immune system (HSC) and muscle 
(MuSC) function

2 months of age and age-matched vehicle 
control

65

UBX0101 2–3, 19–20 Cartilage regeneration Age-matched vehicle control 67

FOXO4-DRI 24 Renal function and frailty Age-matched vehicle control 61

Cellular reprogramming
Transient reprogramming 12 Pancreas regeneration Age-matched vehicle control 105

Transient reprogramming 12 Muscle regeneration Age-matched vehicle control 105

An extended version of this table with more details regarding the method of administration or procedure, duration of intervention, mouse strain and sex is available as Supplementary Table 1. HSC, 
haematopoietic stem cell; MuSC, muscle stem cell.

Table 1 | Summary of studies testing rejuvenation interventions at midlife or later in naturally ageing mice (Continued)
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oxidation8,9,44 (Table 1 and Supplementary Table 1). Interestingly, 
alternating between a ketogenic and a control diet weekly in mid-
dle-aged mice improves recognition memory and midlife survival8. 
A non-cyclic ketogenic diet also increases median lifespan and 
improves motor function in aged mice while decreasing cancer inci-
dence9. Although not explicitly stated in these studies, some mea-
surements are similar or better post-treatment compared to those 
at the time of treatment initiation, suggesting not only a delay but 
also a reversal of the measured features9,10. Thus, manipulating diet 
content may constitute an effective approach for reversing ageing 
hallmarks and may be easier to implement in humans than long-
term dietary restriction.

How do these diet regimens rejuvenate aged tissues? Nutrient-
sensing pathways, including mTOR and insulin–IGF signalling, 
could play a key role3,45–47 (Fig. 2). Periodic FMD was proposed to 
act by reducing insulin–IGF1 signalling and inhibiting the activity 
of mTOR and protein kinase A6. Short-term treatment (6 weeks) 
with rapamycin, an mTOR inhibitor, improves haematopoietic stem 

cell function in aged mice (although not to the level of 2-month-old 
mice) and extends lifespan48 (Table 1 and Supplementary Table 1). 
The insulin and mTOR signalling pathways are also known to regu-
late autophagy3,45–47, and FMD can indeed counteract the decline 
in autophagy-related proteins in ageing muscle5. This points to an 
important role of mTOR in mediating the beneficial effects of these 
regimens and raises the possibility that mTOR inhibitors could be 
used to rejuvenate ageing tissues. Although the effect of rapamycin 
on lifespan is well established45, whether it is a rejuvenating com-
pound remains debated. A comprehensive assessment of ageing 
phenotypes following long-term (1 year) treatment of young and 
aged mice showed that rapamycin improves several features, includ-
ing memory and learning49. However, it also ameliorates some of 
these features in young mice, suggesting that it may have age-inde-
pendent positive effects49.

Similarly to periodic FMD, the ketogenic diet also inhibits mTOR 
and insulin–IGF signalling8,9. Interestingly, although a short-term 
ketogenic diet (1 month) does affect the expression of genes related 
to insulin signalling and fatty acid synthesis, an extended keto-
genic diet (14 months of cyclic diet) does not affect these genes8. 
Thus, repeated cycles may become less effective on signalling path-
ways8. Ketogenic effects could be mediated by increased circulating  
β​-hydroxybutyrate levels, a ketone that inhibits histone deacetylases 
and may thereby link metabolism, epigenetics and rejuvenation8,9. 
Hence, β​-hydroxybutyrate could represent an effective longevity 
and rejuvenating compound50,51.

Other nutrient-sensing pathways could also be involved in the 
rejuvenation effects of dietary regimens (Table 1 and Supplementary 
Table 1). For example, metformin, which increases AMPK activ-
ity42,47, preserves mitochondrial function and decreases inflamma-
tion when administered starting at middle age41. Resveratrol, which 
can activate sirtuins (and other nutrient-responsive pathways), also 
improves cognitive and renal function and reduces inflammation 
in rodents when initiated at mid-to-late life42,52–54. Whether these 
improvements represent a true reversal of pre-existing ageing phe-
notypes remains an open question.

Ablation of senescent cells to restore tissue youthfulness
Cellular senescence is a cell-intrinsic mechanism induced by stress 
that prevents propagation of damaged cells55,56. Initially identified as 
a barrier against tumour development56, senescence is now known 
to be involved in tissue remodelling during embryogenesis57,58, 
wound healing59,60 and ageing61–70. Senescence markers include 
senescence-associated β​-galactosidase activity, the cell-cycle inhibi-
tors p16INK4a and p21CIP1, and many secreted inflammatory factors 
(collectively referred to as the senescence-associated secretory 
phenotype (SASP))55,56,71. Senescent cells are heterogeneous72,73 and 
do not always exhibit all markers, and, conversely, some markers 
are also present in non-senescent cells71,74. Senescent cells accu-
mulate in ageing tissues across organisms, including primates and 
rodents, and in age-related pathologies, such as atherosclerosis and 
Alzheimer’s disease75–79. Accordingly, senescence has long been 
thought to contribute to organismal ageing56, although whether it 
is a cause or consequence is only starting to be resolved. Indeed, 
mouse models and compounds that trigger senescent cell elimina-
tion have revealed that targeting senescent cells can reverse or delay 
aspects of the ageing process61–70 (Fig. 1).

The first evidence that senescent cells can actively contribute to 
ageing came from genetically modified mice that allow for induc-
ible elimination of p16-positive cells in the context of a progeroid 
disease63. In INK-ATTAC transgenic mice that express a drug-
inducible form of caspase 8 under the Cdkn2a (which encodes 
p16Ink4a) promoter, drug administration triggers caspase-8-medi-
ated apoptosis in p16-positive cells63. In a progeroid mouse model 
(BubR1), caspase-8-mediated ablation of p16-positive cells starting 
from early life delays the onset of age-associated features, including 
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Fig. 2 | Potential common mechanisms and target cells of the rejuvenation 
strategies. A comparison of the proposed underlying mechanisms of action 
and target cell types influenced by each of the rejuvenation strategies. 
These include subcellular mechanisms (for example, chromatin changes, 
induction of autophagy pathways and alteration in mitochondrial function), 
cellular functions (such as revival of stem cell populations, attenuation of 
the deleterious effects of senescent cells and changes in connective tissue 
cells (for example, endothelial cells, fibroblasts and adipocytes)) and 
intercellular features (for example, decrease in inflammation, perturbation 
of nutrient-sensing pathways and changes in blood factors). The circles 
below each feature are colour-coded for each rejuvenation strategy and 
represent the current level of evidence for the effect of the corresponding 
strategy on the feature. Solid/dark circles, strong evidence. Dotted/light 
circles, mostly indirect evidence. Question marks, no evidence as of now.
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loss of fat and skeletal muscle and cataract development63. Even 
later in life, ablation of p16-positive cells reduces age-associated 
fat and skeletal muscle loss63. Follow-up studies in naturally ageing 
mice showed that the removal of p16-positive cells starting from 
12 months of age (midlife) through to 18 months of age attenuates 
age-associated decline in adipocyte, kidney and heart function62 
(Table 1 and Supplementary Table 1). Importantly, the removal 
of p16-positive cells from midlife to end of life extends median 
lifespan by 24–27%62. Similar health benefits were observed with 
another model. In p16-3MR mice that express thymidine kinase 
from herpes simplex virus under the Cdkn2a promoter, administra-
tion of the thymidine kinase substrate ganciclovir initiates apoptosis 
of p16-positive cells59. In both mouse models, apoptosis induction 
in p16-positive cells late in life for at least 3 weeks improves liver, 
kidney, bone and adipocyte metrics and function61,64,69. Although 
not specifically stated, some metrics seem to be better after treat-
ment than at initiation61,64, suggesting that senescent cell ablation 
may reverse ageing features. However, high p16 expression has also 
been observed in non-senescent cells, notably macrophages71,74. 
Hence, the beneficial effects of this intervention might partially 
be due to targeting macrophages, which are known to change with 
age1,2,80. Despite the promise of these initial findings, more remains 
to be learned about the optimal times for treatment initiation and 
duration for maximal effects, and about specificity to senescent ver-
sus immune cells.

These initial proof-of-concept studies spurred the field to iden-
tify compounds that can relatively specifically kill senescent cells 
based on their unique molecular profiles. Several classes of such 
‘senolytic’ drugs have been identified, including Bcl protein family 
inhibitors (for example, navitoclax, also known as ABT263)65, kinase 
inhibitors (for example, dasatinib and quercetin)68, heat shock pro-
tein 90 inhibitors (for example, 17-DMAG)66 and inhibitors of the 
p53–MDM2 interaction (for example, UBX0101)67,81. Dasatinib 
and quercetin68 and 17-DMAG66 improve healthspan in the Ercc1–/– 
progeroid mouse model. In naturally aged mice, senolytics enhance 
cardiovascular, vascular, bone, liver and physical functions (dasat-
inib and quercetin)64,68,69,82, revitalize haematopoietic and muscle 
stem cell populations (ABT263)65, enhance cartilage regeneration 
(UBX0101)67 and even extend median lifespan (dasatinib and 
quercetin)70 (Table 1 and Supplementary Table 1). A forkhead box 
protein O4 peptide (FOXO4-DRI) also has senolytic effects. This 
peptide blocks the sequestration of p53 by FOXO4, which seems to 
be senescence specific, thus allowing p53 activation and cell death 
in senescent cells61. FOXO4-DRI restores fitness, fur density and 
kidney function in both progeroid (XpdTTD/TTD) and naturally aged 
mice61 (Table 1 and Supplementary Table 1). Whether FOXO4-DRI 
acts on all types of senescent cells without targeting healthy cells, a 
common challenge for senolytic drugs14,68,83–85, remains to be deter-
mined. Many senolytics were initially identified as cancer drugs 
because cancer cells exploit similar anti-apoptotic pathways, nota-
bly overexpression of Bcl family proteins84,86. Thus, some beneficial 
effects of senolytics may originate from the elimination of precan-
cerous and cancerous cells.

How does the removal of senescent cells rejuvenate tissues and 
extend lifespan? Senescence could contribute to the decline in tis-
sue homeostasis and function by inducing a permanent cell-cycle 
arrest in proliferative cell populations. Senescence of reparative 
stem and progenitor cells may lead to a decline in tissue regenerative 
potential. Senescence could also act through SASP, which promotes 
local and systemic inflammation55,56. SASP factors could contrib-
ute to stem cell exhaustion or dysfunction, infiltration and altera-
tion of immune cells, insulin resistance, damage of tissue structure 
and even propagation of the senescent phenotype in neighbouring 
cells56,87. Elimination of senescent cells can revive stem cell popula-
tions in naturally aged mice65,88 (Fig. 2), and p16 depletion resets age-
ing features in aged muscle stem cells89. Moreover, SASP inhibition  

by the Janus kinase 1/2 inhibitor ruxolitinib reduces systemic and 
adipose tissue inflammation and increases insulin sensitivity in 
naturally aged mice69,88,90. Senescent cell removal can delay cancer 
development, which could be a source of the observed lifespan 
extension in mice62. Elucidating the mechanisms by which senolyt-
ics ameliorate tissue function will be important in identifying addi-
tional senolytic compounds and in determining how best to use 
them. Importantly, senescent cells can have beneficial effects, for 
example, by facilitating tissue repair after injury and preventing tis-
sue fibrosis59,60,91. Identifying mechanisms that distinguish between 
the beneficial and harmful effects of senescence could help to iden-
tify therapeutic strategies to specifically target the latter.

Reprogramming back to a youthful state
Cellular reprogramming is the conversion of terminally differenti-
ated somatic cells into induced pluripotent stem cells (iPSCs)92, for 
instance by the expression of the transcription factors OCT4 (also 
known as POU5F1), SOX2, KLF4 and MYC (OSKM)92. Cellular 
reprogramming allows for the generation of in vitro models to 
study ageing and age-associated diseases and the development 
of autologous stem cell therapies to replace ageing tissues93–95. 
Reprogramming also resembles to some extent the process of fer-
tilization, during which the chronological age of the parent cells is 
effectively reset such that the resulting offspring has a normal lifes-
pan96. Hence, cellular reprogramming has emerged as a potential 
rejuvenation strategy15,96.

Reprogramming to pluripotency can erase several ageing fea-
tures in vitro. iPSCs derived from aged cells show extended telo-
meres, improved mitochondrial morphology, number and fitness 
(ATP production and membrane potential) and restored nuclear 
morphology15,95,97,98. iPSC reprogramming of aged cells also resets 
heterochromatin marks and transcriptomic profiles15,95,97,99. After 
re-differentiation of these iPSCs into neurons or fibroblasts, tran-
scriptomic changes, improvements in nucleocytoplasmic compart-
mentalization, nuclear morphology and (in the case of fibroblasts) 
proliferative potential largely remain in the rejuvenated state95,97,99. 
This suggests that the youthful state is not exclusive to pluripotency 
and can persist after re-differentiation. Although most age-asso-
ciated phenotypes tested are reversed by in vitro reprogramming, 
iPSCs generated from aged human cells can retain a DNA meth-
ylation signature of their age, which can be erased with additional 
passaging100. Thus, some features of ageing may be harder to reju-
venate than others, and some aspects, such as pre-existing genetic 
mutations, cannot be reverted94,100. The ability to rejuvenate age-
ing traits may be specific to reprogramming to a pluripotent state 
because direct reprogramming to a differentiated state (for example, 
neurons) was less effective at erasing ageing marks99. Future studies 
should explore the extent and time course of molecular rejuvenation 
by iPSC reprogramming, to determine whether there is dependency 
between different age-associated features.

Recent studies using mouse models of doxycycline-inducible 
reprogramming factor (OSKM) expression have demonstrated that 
somatic cells can be reprogrammed to pluripotency in vivo101–104, 
suggesting that the rejuvenating effects of cellular reprogramming 
might be recapitulated in an organism. A major limitation of initial 
studies was that persistent expression of OSKM led to teratoma for-
mation101–103. Thus, an important step was to determine whether the 
rejuvenating aspect of reprogramming could be uncoupled from its 
dedifferentiating, teratoma-inducing properties96. Interestingly, this 
uncoupling was recently shown to be possible105. Short-term OSKM 
induction (‘partial reprogramming’) in fibroblasts from progeroid 
mice (LmnaG608G) erased features of ageing, including DNA damage, 
dysregulation of histone marks, expression of senescence-associated 
genes and nuclear envelope abnormalities105. When applied in vivo, 
cyclic partial reprogramming (2-day induction with 5-day with-
drawal) starting at 8 weeks of age extended both healthspan and 
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lifespan (median ~30%, maximum ~20%) of these mice, without 
teratoma or cancer development105 (Fig. 1). In vivo partial repro-
gramming applied to naturally ageing mice at midlife also improved 
glucose tolerance and the regenerative capacity of muscle and the 
pancreas after injury105 (Table 1 and Supplementary Table 1). These 
observations underscore the potential of cellular reprogramming to 
rejuvenate cells and tissues in vivo, although more work is needed 
in the context of naturally aged mice. Indeed, some of the positive 
OSKM effects in muscle at midlife could be age independent, as the 
regenerative potential of muscle has not declined yet at this stage of 
life36,106. Whether partial reprogramming can reverse tissue decline 
in the absence of injury or disease and/or extend lifespan in natu-
rally aged mice also remains to be determined.

How does cellular reprogramming rejuvenate aged cells and tis-
sues? At the molecular level, epigenetic remodelling is a key factor 
in iPSC reprogramming107,108, and histone modifications have been 
proposed to mediate the rejuvenating effects of partial reprogram-
ming105 (Fig. 2). At the tissue level, partially reprogrammed mice 
have increased numbers of muscle stem cells after injury105. Hence, 
enhanced regenerative capacity and stem cell function could con-
tribute to the lifespan extension observed in the context of pre-
mature ageing105. Reprogramming could also act by eliminating 
dysfunctional cells in tissues or by diluting them through prolifera-
tion of healthy cells. The extent to which rejuvenating effects per-
sist after in vivo reprogramming remains an important direction 
for future studies. Although some reprogramming-induced epi-
genetic and transcriptomic remodelling persists following doxycy-
cline withdrawal101, the increase of histone 3 lysine 9 trimethylation 
(H3K9me3) levels reverts within 8 days of withdrawal in vitro105. 
Thus, whether transient reprogramming leads to transient or per-
sistent rejuvenation remains to be determined.

Common or distinct mechanisms of rejuvenation
One key question is whether the four rejuvenation strategies 
described above share modes of action or whether they use distinct 
mechanisms (Fig. 2). Common pathways could be harnessed to 
induce rejuvenation more directly, whereas differing ones could be 
targeted in combination to enhance it.

Inflammation. Inflammation could be directly or indirectly affected 
by most rejuvenation strategies. Heterochronic parabiosis reduces 
inflammatory factors and pathways, such as eotaxin and inter-
feron signalling21,31. FMD and dietary restriction (DR)-mimicking 
drugs have anti-inflammatory effects by suppressing the onset of 
senescence and the secretion of pro-inflammatory cytokines109–111. 
Senolytics could exert their beneficial effects by reducing inflam-
mation, as senescent cells contribute to inflammation through 
SASP56,87. Finally, although age-associated activation of nuclear 
factor-κ​Β​ signalling impairs cellular reprogramming112, activation 
of innate immunity and inflammatory factors, such as interleukin-6 
(IL-6), promote reprogramming102,104,113–115. These observations 
highlight inflammation as a critical target for rejuvenation strate-
gies. Chronic inflammation (‘inflammaging’) has emerged as a key 
feature of ageing and age-associated diseases1,2,116, and its genetic 
and pharmacological targeting has been shown to extend healths-
pan and lifespan across multiple species117–121. Interestingly, stimu-
lation or blocking of hypothalamic nuclear factor-κ​Β​ activity was 
shown to accelerate or decelerate ageing, respectively122, suggesting 
a potential key role of the hypothalamus in modulating inflam-
mation and ageing. Future studies should aim at investigating the 
interplay between rejuvenation strategies and inflammation, and 
exploring potential synergistic effects of rejuvenating compounds 
with anti-inflammatory drugs.

Nutrient-sensing pathways. The insulin–IGF1, mTOR and AMPK 
pathways have been extensively studied in the context of longev-

ity1–3,45–47 and are key candidates for relaying rejuvenating effects. 
The anti-ageing diets discussed inhibit mTOR and/or elicit a 
drop in circulating insulin and IGF1 levels5,8,9. DR-mimicking 
drugs also inhibit insulin–IGF1 and mTOR signalling and acti-
vate AMPK41,49,123. However, evidence for the involvement of these 
pathways in heterochronic parabiosis, the elimination of senes-
cent cells and cellular reprogramming is mostly circumstantial. 
The shared circulatory system and organs in parabiosis may affect 
glucose–insulin homeostasis and IGF1 signalling124. Moreover, the 
IGF1 and mTOR pathways promote senescent cell survival and 
regulate SASP125–127, whereas AMPK pathway activation suppresses 
the development of senescence128. Finally, insulin–IGF1 signalling 
inhibits reprogramming15,129,130, although the role of AMPK in cel-
lular reprogramming is still debated15. An intriguing possibility is 
that nutrient-sensing pathways may be more important for delaying 
ageing than reversing it.

Epigenomic remodelling. The epigenomic landscape of a cell 
reflects not only its identity but also its health and biological age131–133.  
Senescent cells exhibit a characteristic chromatin state134,135, and 
their secreted factors (for example, IL-6) have been shown to induce 
epigenomic changes136,137. The rejuvenating effect of cellular repro-
gramming has been proposed to occur through epigenomic remod-
elling105. Moreover, dietary interventions and DR-mimicking drugs 
affect the epigenome131,138,139, although whether these changes are 
necessary for rejuvenating effects is unclear. Finally, while chro-
matin changes have not yet been reported in the context of heter-
ochronic parabiosis, chromatin changes could relay some effects13. 
Whether restoring a youthful epigenome holds the key to a pro-
longed rejuvenated state is a compelling question.

Autophagy. Autophagy, which includes the process of delivering 
damaged proteins and organelles to lysosomes for degradation, is 
key for cellular homeostasis140 and could play an important role in 
mediating rejuvenation. Most diet regimens and DR-mimicking 
drugs induce autophagy5,140,141, and the blood factor GDF11 was 
shown to enhance this process20. Senescent cell ablation could 
eliminate autophagy-deficient cells142,143. Finally, autophagy is also 
induced early in the reprogramming process129. Whether autophagy 
is necessary for the rejuvenation effects of cellular reprogramming 
remains unclear15,129, but reactivation of the lysosome–autophagy 
pathway in aged stem cells improves their function144–146. These 
observations suggest a link between the lysosome–autophagy path-
way and rejuvenation strategies, but the extent to which autophagy 
promotes rejuvenation remains to be explored.

Mitochondria. Mitochondrial function could also be central to 
rejuvenation strategies. Cellular reprogramming increases mito-
chondrial fitness98,147 and GDF11 can improve mitochondrial 
morphology and function20. Senescent cells have dysfunctional 
mitochondria with increased generation of reactive oxygen species, 
which in turn promote SASP and can induce senescence in neigh-
bouring cells148–150. Mitochondria in senescent cells were recently 
suggested to have reduced ability to metabolize fatty acids, con-
tributing to increased hepatic fat deposition with age and a decline 
in liver function64. Hence, the removal of senescent cells with poor 
mitochondrial function could be beneficial by reducing reactive 
oxygen species levels in the microenvironment and perhaps also 
by improving overall mitochondria function in ageing tissues and 
organs. However, rejuvenation strategies could also act by reduc-
ing mitochondrial function. Indeed, reduced mitochondrial activ-
ity extends lifespan in Caenorhabditis elegans, Drosophila and 
mice151–155. In addition, metformin, which inhibits mitochondrial 
function141, can extend healthspan and/or lifespan in multiple 
organisms41,141. Future studies should explore how this organelle 
relays the rejuvenating effects of these different strategies.
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These observations suggest that the four rejuvenation strate-
gies could act through common molecular pathways. However, 
the degree to which these pathways are modulated and whether 
each strategy targets them directly or indirectly remain unclear. 
Investigating the regulation and sequential order of these path-
ways following each intervention will help to identify the mecha-
nisms that are critical for restoring youthfulness and that could 
be targeted for greater effect. Different rejuvenation approaches 
could also act via diverse mechanisms, which could be combined 
to achieve synergistic effects. Broader conceptual questions also 
remain: is the rejuvenation process the direct opposite sequence of 
events that lead to ageing? Do rejuvenation strategies target the root 
cause of ageing or simply its consequences? Can these interventions 
affect overall lifespan?

Target cells for rejuvenation
Which cell types are primarily targeted by rejuvenation strategies 
and mediate their beneficial effects? Adult stem cells are an attrac-
tive candidate as they provide a renewable source of cells to repair 
damaged tissues (Fig. 2). Indeed, most rejuvenation approaches also 
improve stem cell functions5,17,21,22,25,65,105,110,156, although whether 
these effects are direct or indirect remains unclear. The inherent 
plasticity of stem cells may make them more susceptible to the reju-
venating effects of cellular reprogramming, for example.

Stem cell state may also dictate susceptibility to ageing and reju-
venation. For example, quiescent stem cells exhibit increased age-
related features compared to actively proliferating stem cells146,157, 
raising the possibility that quiescent cells might benefit more from 
rejuvenation strategies. In fact, a proliferative state could itself reset 
ageing features (for example, DNA damage and protein aggregates) 
in stem cell populations146,157. In addition, these rejuvenation strat-
egies could indirectly affect stem cells. For example, young blood 
was proposed to enhance neurogenesis in aged mice by improv-
ing endothelial cells and thereby the vasculature of the neural stem 
cell niche22. Moreover, although the senolyte ABT293 is thought to 
improve aged haematopoietic and muscle stem cells by eliminat-
ing senescent stem cells65, it could also act by clearing senescent 
niche cells, such as endothelial cells and fibroblasts. In line with this 
notion, niche endothelial cells were shown to contribute to haema-
topoietic stem cell ageing, and transplantation of young endothe-
lial cells could partially reverse these changes158. Thus, the primary 
target of rejuvenation approaches may be vascular and connective 
tissue cells. As these cells are present throughout the organism, tar-
geting them may have broader organismal effects. Teasing apart the 
effects of rejuvenation strategies on different cell types and states 
will help efforts to improve tissue function and health and could 
identify strategies to simultaneously target both differentiated and 
stem cell populations for enhanced treatments.

Other attractive candidate cells for rejuvenation are senescent 
cells. Beyond their direct elimination by genetic means or seno-
lytics, senescent cells may also be targeted by other rejuvenation 
strategies. The pro-ageing factor eotaxin21 has been associated with 
senescence159, potentially linking the beneficial effect of senescent 
cell ablation to changes in systemic factors. Moreover, FMD, DR and 
DR-mimicking drugs suppress senescence onset and pro-inflamma-
tory cytokine levels109–111,160. Although speculative, it is also plausible 
that the proliferation bursts induced by FMD or partial reprogram-
ming could dilute and/or trigger senescent cell clearance. Indeed, 
many of the age-associated features that are reverted by partial 
reprogramming are related to senescence105. Cellular reprogram-
ming has been suggested to rejuvenate senescent cells97. However, 
the relationship between reprogramming and senescence is com-
plex. Reprogramming factors can trigger cellular senescence161,162; 
conversely, senescence promotes cellular plasticity of neighbouring 
cells through SASP (for example, IL-6)102,104,115,163. In line with these 
observations, induction of reprogramming factors for 7 days results 

in more teratomas in aged mice than in young mice102–104, possi-
bly due to the presence of senescent cells in aged tissues. Finally, 
senescent cell removal using senolytic drugs or an inducible genetic 
system decreases in vivo reprogramming efficiency115. It will be 
interesting to elucidate the interplay between senolytic and repro-
gramming strategies for rejuvenation.

Potential trade-offs of rejuvenation
Ageing disrupts the balance of key biological processes that main-
tain organismal homeostasis and function. Hence, reversing it is not 
as simple as turning off these processes, but rather involves the need 
to restore a balance. For example, although age-associated senes-
cence and/or chronic inflammation could impair tissue function, 
they are also critical for normal tissue repair and remodelling59,60. 
Accordingly, counteracting senescence and/or inflammation could 
reduce the ability of the organism to perform these processes (Fig. 1).  
Indeed, elimination of senescent cells impedes tissue repair and 
promotes tissue-specific fibrosis59,60,91. Similarly, DR-related inter-
ventions impair the immune response to infections and reduce 
wound healing164, although refeeding after DR or DR-mimicking 
drugs can restore or even potentiate these responses164,165. DR regi-
mens, when started too early, can also interfere with growth and 
fecundity and lead to amenorrhea and osteoporosis12. Importantly, 
excessive perturbation of a specific feature may ultimately lead to 
tumorigenesis and cancer progression. As senescence is a criti-
cal barrier against tumorigenesis56, preventing its induction could 
increase cancer risk. Similarly, sustained expression of reprogram-
ming factors could lead to tumour formation101. Senescent cells also 
exploit anti-apoptotic pathways, such as Bcl-2, that are important 
for the survival of healthy cells (for example, lymphocytes and 
platelets)166–168. Consequently, compounds that are used to target 
senescent cells (for example, pan-Bcl inhibitors) are also associated 
with gastrointestinal symptoms and haematopoietic system toxic-
ity83,84. Hence, the risk/benefit ratio of these rejuvenation strategies 
must be taken into account before considering them as a viable 
anti-ageing treatment.

Future perspectives
There is now compelling evidence that the ageing process is plas-
tic and that it is possible to revive aged cells and tissues. Although 
the four strategies discussed here have received much attention 
in recent years, other approaches may also turn out to have reju-
venating effects. Genetic perturbations such as the expression of 
telomerase in middle-aged and old-aged mice improves health-
span (for example, insulin sensitivity and osteoporosis) and 
extends median lifespan169. Similarly, life-long increased dosage of 
p16INK4 and p53 can have beneficial effects to counter ageing170–172. 
Hence, inducible telomerase, p16 or p53 expression later in life 
could be future rejuvenation strategies. Environmental interven-
tions that have benefits on healthspan and lifespan could also be 
leveraged for rejuvenation. For example, exercise improves hip-
pocampal neurogenesis and muscle function in aged rodents173–175. 
Lowering core body temperature extends lifespan in invertebrates 
and African killifish3,176–178 and even in mice179. Finally, the transfer 
of young microbiome in middle-aged killifish was recently shown 
to extend both healthspan and lifespan180. However, whether these 
potential strategies revert ageing hallmarks or delay the appear-
ance of such characteristics remains to be tested. It will also be 
interesting to determine whether key organs or systems, such 
as the hypothalamus, orchestrate ageing in a centralized man-
ner by integrating environmental inputs and secreting systemic 
factors36,122,181. These systems could then be targeted to achieve 
whole-organism rejuvenation.

The question also emerges of whether rejuvenation interven-
tions, which were mainly tested in mice, may benefit human health 
and longevity (Fig. 1). Metabolic approaches have reached furthest 
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in testing this possibility and have shown promise in benefiting 
humans. FMD in individuals ranging from 20 to 70 years of age 
was shown to improve physiological readouts that are altered with 
age, including body weight, blood pressure, cholesterol and IGF1 
levels5,182. FMD and DR-mimicking drugs, such as metformin and 
rapamycin, can improve risk factors associated with age-related 
diseases, such as cancer, diabetes and cardiovascular disease182–185. 
Clinical trials are underway using metformin and rapamycin to 
target ageing141 (ClinicalTrials.gov identifiers: NCT02432287 and 
NCT02874924) and rapamycin analogues are being tested in the 
elderly in the context of response to vaccination165 and respira-
tory tract infection (ClinicalTrials.gov identifier: NCT03373903). 
Currently, there are no data showing beneficial effects of blood fac-
tors, senolytic drugs or reprogramming in humans. However, the 
levels of the pro-ageing blood factors eotaxin and β​2-microglobu-
lin are increased in the plasma of elderly humans21,23 and the reju-
venation factor TIMP2 is enriched in human umbilical plasma26. 
Moreover, most senolytic drugs identified can eliminate human 
senescent cells in vitro61,65,66,68,85,186. Similarly, cellular reprogram-
ming can revert ageing features of human cells in vitro95,97–100,105, 
raising the possibility that these approaches may also prove benefi-
cial for human ageing. Indeed, some of these approaches are now 
being explored in the context of human age-associated diseases. 
For instance, young blood is being tested in Alzheimer’s disease 
(ClinicalTrials.gov identifier: NCT02256306). Although the initial 
trial showed only a minor improvement187, larger trials are under-
way to better assess efficacy. Several senolytics are currently used 
in the clinic as anticancer drugs84,86 and are being tested on chronic 
kidney disease (ClinicalTrials.gov identifier: NCT02848131) and 
osteoarthritis (ClinicalTrials.gov identifier: NCT03513016). Initial 
findings are encouraging, but many challenges remain before these 
strategies can be used successfully in the clinic. The optimization of 
therapeutic dosage with minimal side effects will be key to trans-
lational efforts. It will also be critical to establish reasonable end 
points and robust biomarkers of healthy ageing to assess interven-
tion efficacy.

These studies provide compelling evidence that the ageing pro-
cess is malleable and that it is possible to revive aged cells, tissues 
and organs. They also raise the exciting possibility of translation 
to address human ageing and age-associated diseases. The coming 
years will undoubtedly see exciting developments in ongoing efforts 
to better understand, delay and potentially reverse ageing.
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