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Abstract Research on aging and lifespan-extending

compounds has been carried out using diverse model

organisms, including yeast, worms, flies and mice.

Many studies reported the identification of novel

lifespan-extending compounds in different species,

some of which may have the potential to translate to

the clinic. However, studies collectively and compar-

atively analyzing all the data available in these studies

are highly limited. Here, by using data from

the DrugAge database, we first identified top com-

pounds in terms of their effects on percent change in

average lifespan of diverse organisms, collectively

(n = 1728). We found that, when data from all

organisms studied were combined for each compound,

aspirin resulted in the highest percent increase in

average lifespan (52.01%), followed by minocycline

(27.30%), N-acetyl cysteine (17.93%), nordihy-

droguaiaretic acid (17.65%) and rapamycin

(15.66%), in average. We showed that minocycline

led to the highest percent increase in average lifespan

among other compounds, in both Drosophila

melanogaster (28.09%) and Caenorhabditis elegans

(26.67%), followed by curcumin (11.29%) and glu-

conic acid (5.51%) for D. melanogaster and by

metformin (26.56%), resveratrol (15.82%) and quer-

cetin (9.58%) for C. elegans. Moreover, we found that

top 5 species whose lifespan can be extended the most

by compounds with lifespan-extending properties are

Philodina acuticornis, Acheta domesticus, Aeolosoma

viride, Mytilina brevispina and Saccharomyces cere-

visiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in

average, respectively). This study provides novel

insights on lifespan extension in model organisms,

and highlights the importance of databases with high

quality content curated by researchers from multiple

resources, in aging research.
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Introduction

Aging is a major risk factor for many diseases in

humans; thus, the identification of compounds that

extend lifespan/healthspan or delay aging is of high

importance in aging research (Moskalev et al. 2016).

Numerous studies reported the data on lifespan-

extending compounds on model organisms including
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worms, flies, yeast and mice (Taormina et al. 2019;

Holtze et al. 2021). Some of these compounds may

have the potential to translate to the clinic, whereas

some may not, due to the presence of species-specific

mechanisms. However, species-specific effects of

each of these compounds on lifespan change are

highly understudied. Similarly, comparative analysis

of different compounds in terms of lifespan change in

particular model organisms (for example, minocycline

vs quercetin in Caenorhabditis elegans) or in diverse

species combined (for example, aspirin vs resveratrol

in all model organisms studied collectively) is also

lacking. Furthermore, which model organisms are

relatively more prone to be manipulated by aging-

related drugs in terms of lifespan extension compared

to other species has not been studied in detail,

previously, mostly due to the lack of sufficient data.

In the present study, using data from the DrugAge

database, we first compared the mean percent lifespan

change caused by different compounds by averaging

data from multiple species for each compound (Barardo

et al. 2017). We found that, when data from multiple

organisms were combined for each drug (i.e. the effect of

a compound not on a particular species but on all species

studied for that compound), aspirin (acetylsalicylic acid)

resulted in the highest average lifespan extension

percentage, followed by minocycline,N-acetyl cysteine,

nordihydroguaiaretic acid and rapamycin. Some drugs

showed different modes of distribution (such as multi-

modal distribution) in terms of percent change in average

lifespan, possibly pointing to their high species-speci-

ficity in the case of multimodal distribution. Moreover,

we found that minocycline caused the highest percent

change in average lifespan in both Drosophila melano-

gaster and C. elegans, followed by curcumin and

gluconic acid in D. melanogaster, and by metformin

and resveratrol inC. elegans. We showed that organisms

whose lifespan can be manipulated the most by the use of

compounds are Philodina acuticornis (a species of

freshwater bdelloid rotifers), Acheta domesticus (house

cricket), Aeolosoma viride (an asexually reproducing

annelid/segmented worm), Mytilina brevispina (a roti-

fer) and Saccharomyces cerevisiae (yeast), based on

currently available data. This study, by analyzing a

dataset manually curated from 469 different studies

(Barardo et al. 2017), reports different aspects of

lifespan-extending compounds on diverse model organ-

isms collectively, which are not possible with limited

data reported in a single study.

Materials and methods

Dataset

In this study, we used data from the DrugAge database

of aging-related drugs (http://genomics.senescence.

info/drugs/) [Build 3 (09/07/2019)] (Barardo et al.

2017). This dataset (n = 1823) contains data on the

effect of different compounds on average or maximum

lifespan change in diverse organisms. For some com-

pounds, data for different drug concentrations/dosages

are available; however, we combined data for all

concentrations of each compound in the analysis, and

analyzed altogether. Sample sizes (n) are 1782 and

556 for average lifespan change and maximum lifes-

pan change, respectively; thus, based on its larger

sample size, we focused on the effects of compounds

on the average lifespan change percentage. Data for

average lifespan change is available for 27 different

species [A. domesticus (n = 8), Aedes aegypti (n = 5),

A. viride (n = 5), Anastrepha ludens (n = 25), Apis

mellifera (n = 1), Asplanchna brightwelli (n = 15),

Bombyx mori (n = 2), Brachionus manjavacas

(n = 6), C. elegans (n = 962), Ceriodaphnia affinis

(n = 1), Daphnia pulex clone TCO (n = 4), D.

bipectinata (n = 6), D. kikkawai (n = 8), D. melano-

gaster (n = 469), D. virilis (n = 12), Mus musculus

(n = 104), Musca domestica (n = 4), M. brevispina

(n = 4), Nothobranchius furzeri (n = 3), N. guentheri

(n = 6), Paramecium tetraurelia (n = 5), Philodina

cFig. 1 Top compounds in terms of their effects on average

lifespan change in diverse organisms collectively. Percent

change in average lifespan of organisms treated with longevity-

extending compounds, when data from all organisms studied

were combined for each compound. Top plot: Compounds were

ordered as the compound which caused the highest percent

increase in average lifespan in all organisms combined, given at

the top of the plot. Data points for each species were given a

different color. Yellow vertical line indicates no change (0%) in

average lifespan. Vertical lines in boxplots indicates the median

value. Legend shows the color code for each species. Bottom

plot: Distribution of the percent change in average lifespan for

each drug, when data from all organisms studied were combined

per compound. Yellow vertical line indicates no change (0%) in

average lifespan. Values in red at the end of x axis for every

y value indicate mean percent change in average lifespan for

each compound. Compounds were ordered as the compound

which caused the highest percent increase in average lifespan

(aspirin, 52.01%) in all organisms combined, given at the top of

plot. Legend shows the color scale indicating percent change in

average lifespan
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(n = 1), P. acuticornis (n = 3), Podospora anserina

(n = 1), Rattus norvegicus (n = 29), S. cerevisiae

(n = 51) and Zaprionus paravittiger (n = 42)].

When we group by compounds, we filtered out

compounds with less than or equal to 10 data points;

whereas when we group by species, we filtered out

species with less than or equal to 2 data points. In all

figures, the mean of percent change in average lifespan

decreases from top to bottom of the plot, in terms of

compounds (Figs. 1 and 2) or species (Fig. 3). Mean

values of percent change in average lifespan for each
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variable (compound or species) were given at the end

of x axis (at the right) for each variable at the y axis.

We should also note that certain strains of D.

melanogaster and C. elegans are represented more in

the dataset, whereas some strains are highly under-

represented. We indicated strain-wise distributions in

Fig. 2 to highlight this issue.

Data analysis and visualization

Data analysis and visualization was performed in R

programming environment [R version 4.0.2 (2020-06-

22)] in the present study (R Core Team 2020;

Grolemund and Wickham 2017). Following R pack-

ages were used throughout the study: tidyverse

(Wickham et al. 2019), readxl (Wickham and Bryan

2019), ggridges (Wilke 2021), magick (Ooms 2021),

ggpubr (Kassambara 2020), gt (Iannone et al. 2021),

knitr (Xie 2021) and rmarkdown (Allaire et al. 2021;

Xie et al. 2020).

tidyverse package is an opinionated collection of

following R packages: ggplot2 (Wickham 2016),

dplyr (Wickham et al. 2021), tidyr (Wickham

2021a), readr (Wickham and Hester 2021), purrr

(Henry and Wickham 2020), tibble (Müller and

Wickham 2021), stringr (Wickham 2019) and forcats

(Wickham 2021b). R code was provided with this

paper as a supplementary document for reproducibil-

ity purposes (Marwick 2017).

Results

Top compounds in terms of their effects on percent

change in average lifespan of diverse organisms

collectively

Using a curated database of lifespan-extending drugs

and compounds (DrugAge, http://genomics.

senescence.info/drugs/) (Barardo et al. 2017), we

ordered different compounds in terms of percent

changes in the average lifespan in diverse organisms to

which these drugs were given/applied, from highest to

lowest. We found that aspirin [acetylsalicylic acid, a

nonsteroidal anti-inflammatory drug (NSAID)] resul-

ted in the highest percent increase in average lifespan

15.5

33.9−

55.4

90.82

−0.56

92.11

Metformin

Resveratrol

Epicatechin

Gluconic acid

Curcumin

Minocycline

−40 0 40
Average lifespan change %

C
om

po
un

d

Strain
Canton S
Canton−S
Dahomey
Ives
Oregon
Oregon R
Ra
w1118
Wild 1−A

Drosophila melanogaster
A

10.21−

8.91

26.32−

85.9

−11.63

21.8

65.62

−7.83

15.82

76.62

Plumbagin

EUK−8

Glucose

Caffeine

Colanic acid

Oxoline

Quercetin

Resveratrol

Metformin

Minocycline

−100 −50 0 50
Average lifespan change %

C
om

po
un

d Strain
CB5586
isp−1(qm150)
N2
nuo−6(qm200)

Caenorhabditis elegans
B

Fig. 2 The most effective compounds in terms of their effect on

average lifespan change in D. melanogaster (A) and C. elegans
(B). Top compounds resulting in the highest percent increase in

average lifespan for D. melanogaster (left) and C. elegans
(right), when data from different studies or experimental setups

were combined for each compound per organism. Yellow

vertical line indicates no change (0%) in average lifespan.

Legend shows the color code for each strain. Values in blue at

the end of x axis for every y value indicate mean percent change

in average lifespan for each compound in that model organism.

Compounds were ordered as the compound which caused the

highest percent increase in average lifespan given at the top of

plot (minocycline for both species)
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among other compounds, when the effect of each

compound on different organisms were combined

(Fig. 1; here, please note that every compound were

tested on the different sets of organisms). Aspirin led

to a 52.01% increase in average in lifespan in tested

organisms, followed by minocycline (? 27.30%), N-

acetyl cysteine (? 17.93%), nordihydroguaiaretic

acid (? 17.65%) and rapamycin (? 15.66%) (Fig. 1,

bottom plot). Aspirin at certain concentrations caused

more than 100% increase in A. domesticus (house

cricket) (Fig. 1, top plot).

Although the percentage of average lifespan change

caused by certain compounds such as vitamin E,

colanic acid and oxoline showed a unimodal distribu-

tion (distributions with one clear peak); the percentage

of average lifespan change caused by some com-

pounds such as aspirin, metformin and plumbagin

displayed a multimodal distribution [distributions with

distinct peaks (local maxima)] (Fig. 1, bottom plot).

Multimodal distribution observed for these com-

pounds might be due to the differential effect of a

particular compound on the average lifespan of

different organisms such as in aspirin, or due to the

differential effect of a particular compound in the

same organisms at different concentrations or at

experimental conditions (different studies) such as in

EUK-8 and plumbagin (Fig. 1). Within compounds

included in this dataset (also, we only included

compounds with more than 10 different data points

in the analysis, and filtered out others), plumbagin

resulted in the highest decrease in average lifespan

(- 23.62%) when data from different studies/exper-

imental conditions were combined, followed by

sodium hypophosphite (- 16.67%) and EUK-8

((Salen)manganese(III) chloride) (- 12.01%)

(Fig. 1). Please note that all the data for some

compounds (including plumbagin, sodium hypophos-

phite and EUK-8) come from experiments performed

on the same model organisms (Fig. 1, top plot, points

with the same color).

We also summarized the modes of action of these

compounds in terms of lifespan extension (Table 1);

however, this list shows only some of the possible

mechanisms responsible for the changes in the lifes-

pan. It should also be noted that some of these

proposed mechanisms might be species-specific,

meaning that a compound might extend lifespan

through different pathways in two different organisms.

The concept of hormesis in terms of longevity-

extending drugs was also discussed below.
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Fig. 3 Species whose lifespan can be extended the most by

compounds with aging-related properties. Organisms whose

average lifespan can be manipulated to the highest percentages

by the application of compounds. Species were ordered as the

species whose lifespan can be extended the most given at the top

of the plot. Values in blue at the end of x axis for every y value

indicate mean percent change in average lifespan for each

species. Colored data points indicate different data which were

obtained from different studies or experimental setups (different

compound concentration, etc.). Each color represents different

compound
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Table 1 Some of the possible modes of action of longevity-extending compounds included in the present study

Compound Possible modes of action to increase longevity References

Aspirin Autophagy (by mimicking caloric-restriction, by

inhibiting acetyltransferase EP300), metabolism

Castoldi et al. (2018, 2020), Pietrocola et al.

(2018a, b) Huang et al. (2017), Song et al. (2017),

Wan et al. (2013)

Minocycline SIRT1 activation; reduced protein aggregation due

to preferential attenuation of the translation of

highly translated mRNAs; lower concentration of

nascent aggregation-prone proteins, leading to a

relative increase in protein-folding capacity; higher

activity of superoxide dismutase (SOD) and lower

levels of nitric oxide (NO), hydrogen peroxide

(H2O2) and mitochondrial malondialdehyde

(MDA) (i.e. decreased lipid peroxidation)

Wu et al. (2020), Solis et al. 2018, Mora et al.

(2013, 2014), Bonilla et al. (2012)

N-acetyl cysteine Free radical scavenger; increased expression and

activity of catalase, glutathione peroxidase and

glutathione S-transferase (GST) (key enzymes to

fend off reactive oxygen species (ROS) assaults);

increased resistance to oxidative stress, heat stress,

and UV irradiation

Brack et al. (1997), Niraula and Kim (2019), Savion

et al. (2018), Oh et al. (2015)

Nordihydroguaiaretic

acid

Inhibition of p300 and activation of autophagy;

reduced hypothalamic inflammation in a sex-

specific manner; augmented immunoproteasome

function; altered energy homeostasis; potent

reducing agent

Tezil et al. (2019), Sadagurski et al. (2017),

Pickering et al. (2015), Spindler et al. (2015),

Richie et al. (1986)

Rapamycin Reduced translation errors/increased fidelity of

protein synthesis; blockade of mTOR signaling;

reduced tumor burden; increased autophagy and

proteostasis; decreased mitochondrial ROS

production at complex I, decreased oxidative

stress, lower accumulation of mtDNA fragments

inside nuclear DNA and lower lipofuscin levels

Martinez-Miguel et al. (2016, 2021), Ehninger et al.

(2014), Saxton and Sabatini (2017), Kim et al.

(2011), Vilchez et al. (2014)

Vitamin E Antioxidant action; decrease in MDA and increase in

catalase and peroxidase activities; decreased

glucotoxic effects; inhibition of lipid peroxidation

Driver and Georgeou (2003), Kakkar et al. (1996),

Schlotterer et al. (2020), Sakamoto et al. (2020)

Curcumin Blockade of alcohol-induced damage to longevity

and DNA methylation; protection against

neurodegeneration; enhanced superoxide

dismutase (SOD) activity, decreased

malondialdehyde (MDA) and lipofuscin levels (i.e.

reduced oxidative stress); increased SIRT1 activity

Rasmussen et al. (2021), Cheng et al. (2021), Zia

et al. (2021), Iside et al. (2020), Chen et al. (2018),

Seong et al. (2015)

Metformin Improved nutrient sensing; enhanced autophagy and
intercellular communication; protection against

macromolecular damage; delayed stem cell aging;

modulation of mitochondrial function; regulation

of transcription; lower telomere attrition and

senescence

Kulkarni et al. (2020)

Colanic acid Protection of intestinal mitochondria from stress-

induced hyper-fragmentation; regulation of

mitochondrial dynamics and unfolded protein

response (UPRmt)

Hartsough et al. (2020), Han et al. (2017)

Oxoline Through stress hormesis mechanisms Hunt et al. (2011)
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The most effective compounds in terms of their

effect on percent change in average lifespan, for D.

melanogaster and C. elegans

Next, we identified compounds which are most

effective in terms of their impact on average lifespan

in two model organisms, for which the largest sample

sizes are available in the dataset, namely, D.

melanogaster and C. elegans. We found that minocy-

cline is the most effective compound for both species

among other compounds, in terms of lifespan exten-

sion (Fig. 2). This compound increased lifespan in D.

melanogaster 28.09% in average, and in C. elegans

26.67% in average, when data from different studies

Table 1 continued

Compound Possible modes of action to increase longevity References

Tannic acid Amino acid metabolism; through TGF-beta and the

p38 MAPK pathways; through DAF-12;

mimicking calorie restriction and hormetic

properties; through mitogen-activated protein

kinase kinase SEK-1 (SAPK/ERK kinase)

Pietsch et al. (2012), Saul et al. (2010, 2011)

Rhodiola rosea Increased stress resistance; induction of translocation

of the DAF-16 into the nucleus, suggesting a

reprogramming of transcriptional activities leading

the synthesis of proteins functioning in stress

resistance (such as the chaperone HSP-16); high

level of antioxidant capacity

Wiegant et al. (2009), Shen et al. (2013)

Gluconic acid Removal of hydroxyl radicals Massie and Williams (1979)

Epicatechin Stimulation of stress response mechanisms via the

insulin/IGF-1 signaling pathway; reduced

oxidative damage

Proshkina et al. (2016), Ayuda-Durán et al. (2019)

Resveratrol Sirtuin activation; enhanced induction of mitophagy

mediators; induction of mitonuclear protein

imbalance and mitochondrial unfolded protein

response; modulation of the expression of pro- and

anti-apoptotic factors; neutralization of free radical

species; chelation of redox-active transition metal

ions and prevention of protein aggregation

Bonkowski and Sinclair (2016), Varghese et al.

(2020), Houtkooper et al. (2013), Yessenkyzy et al.

(2020), Lagouge et al. (2006)

Quercetin Oxidative stress resistance (lower levels of reactive

oxygen species, glutathione oxidation, protein

carbonylation and lipid peroxidation); through

metabolome; through TGF-beta signaling, insulin-

like signaling and p38 MAPK pathway; improved

neuroinflammation

Belinha et al. (2007), Pietsch et al. (2012), Gómez-

Linton et al. (2019), Li et al. (2021), Kampkötter

et al. (2008)

Caffeine Protection against acute oxidative stress; promotion

of proteostasis through induction of the heat shock

response; scavenging of free radicals; resistance to

proteotoxic stress

Li et al. (2019), Brunquell et al. (2018), Czachor

et al. (2020), Sutphin et al. (2012)

Butylated

hydroxyanisole

Increased catalase activity; reduced MDA content;

reduced the levels of hepatic DNA damage; ROS

suppression

Bains et al. (1998), Lawson and Stohs (1985), Ro

et al. (2014), Stohs et al. (1986)

Glucose Enhanced intestinal barrier integrity; via sirtuin and

insulin signaling; modulation of immunity

Galenza and Foley (2020), Shintani et al. (1999),

Galenza et al. (2016)

EUK-8 Mimicking superoxide dismutase (SOD); resistance

to the oxidative stress-inducing agent, paraquat and

to thermal stress

Sampayo et al. (2003)

Sodium

hypophosphite

Increased catalase activity, alterations in peroxidase

activity

Wadhwa and Sharma (1987), Wadhwa et al. (1988)

Plumbagin Through stress hormesis mechanisms Hunt et al. (2011)
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were combined (Fig. 2). For D. melanogaster, the

second most effective compound for extending aver-

age lifespan is curcumin (? 11.29%), followed by

gluconic acid (? 5.51%), whereas for C. elegans, the

second most effective compound is metformin

(? 26.56), followed by resveratrol (? 15.82%) and

quercetin (? 9.58%), again when data from different

studies for each compound were analyzed collectively

(Fig. 2). Although metformin and resveratrol were

found to extend average lifespan in C. elegans,

resveratrol had no effect on average lifespan

(- 0.56%) and metformin decreased average lifespan

around 10% in D. melanogaster, highlighting species-

specific effects of certain compounds in terms of their

impact on average lifespan (Fig. 2). However, glu-

cose, EUK-8 and plumbagin was found to decrease

lifespan in C. elegans (in average, - 11.63%,

- 12.01% and - 23.62%, respectively), when all

the data points from multiple sources were combined

(Fig. 2).

Species whose lifespan can be extended the most

by compounds with aging-related properties

To identify which species’ lifespan can be extented the

most by treatment with available aging-related com-

pounds, we grouped data by species (also filtered out

species with less than or equal to 2 data points), then

ordered species in terms of lifespan extention due to

the applications of compounds, and found that the

lifespan of P. acuticornis (a species of freshwater

bdelloid rotifers) can be extented the most, 211.80%,

compared to the other species studied (Fig. 3). We

showed that lifespan of A. domesticus (house cricket)

can be extended by 76% in average (the second

highest), that of A. viride (an asexually reproducing

annelid/segmented worm) by 70.26%, that of M.

brevispina (a rotifer) by 55.18% and that of S.

cerevisiae (yeast) by 45.71% in average (Fig. 3).

Therefore, these species can be considered as organ-

isms whose lifespan can be most easily manipulated

by the application of certain drugs, i.e. species most

prone to manipulations by aging-related compounds.

Discussion

The treatment of the general aging population with

geroprotectors, compounds that delay aging, was

hypothesized to provide numerous benefits to the

society, including a reduction in the prevalence of

some age-related diseases or a delay in the onset of

these diseases including cancer (Janssens and Hout-

kooper 2020). Many compounds that extend lifespan

in model organisms have been identified to date, and

the number of studies in this research area has been

accelerating at an unprecedented rate, mostly due to

the more common use of short-lived model organisms,

the development of novel high-throughput technolo-

gies and new computational drug screening

approaches (Janssens and Houtkooper 2020; Strous-

trup et al. 2013; Carretero et al. 2015; Janssens et al.

2019; Calvert et al. 2016; Petrascheck et al. 2007; Ye

et al. 2014). However, studies collectively analyzing

data from these studies which were performed on

different model organisms or at distinct experimental

conditions are highly limited. Therefore, there is a

need to combine all the data reported in all these

studies and to analyze these data collectively in a

broader perspective, in order to gain novel insights on

the effect of lifespan-extending compounds on the

lifespan of model organisms. These studies will

help to increase the translatability of these compounds

from model organisms to the clinic (Moskalev et al.

2016; de Magalhães 2014).

In this study, we first identified top compounds in

terms of their effects on the percent change in the

average lifespan of diverse organisms, by combining

data from multiple studies performed using each

compound on different sets of organisms. We found

that aspirin increases the average lifespan the most,

when data from multiple organisms are collectively

analyzed, followed by minocycline, N-acetyl cysteine,

nordihydroguaiaretic acid and rapamycin. Here, it

should be noted that data for each compound is based

on different sets of organisms; for some compounds,

data is even based on different studies performed using

a single species. By combining data for different

species altogether per compound, we tried to get an

idea on the average effect of particular compounds on

the lifespan of model organisms in a species-indepen-

dent manner. This is of importance since compounds

with high effect on lifespan even when data from

different species were combined, might have higher

translatability to other species including humans.

These compounds might be prioritized to be studied

in other species. For instance, the health improving

effects of aspirin depend on autophagy, at least in
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mice, since these effects were observed only in

autophagy-competent mice but not in two different

models of genetic autophagy-deficiency (Castoldi

et al. 2020). Since autophagy mechanism is also

present in A. domesticus for which aspirin caused the

highest increase in lifespan in this study, it can be

speculated that organisms with active autophagy

might potentially benefit from aspirin in terms of

lifespan extension (Rost-Roszkowska et al. 2010).

Compared to compounds which works through more

species-specific mechanisms, compounds that stimu-

late evolutionarily more common processes might

extend lifespan in a broader set of organisms, from

worms to humans. Thus, these compounds can be

more likely to be translated to the clinic.

Many of the studied lifespan-extending compounds

seem to work by the process of hormesis which is

described as the collection of evolutionarily conserved

adaptive responses of biological systems (a cell or an

entire organism) to moderate environmental or inter-

nal challenges through which the system enhances its

functionality and/or tolerance against more severe

future challenges, meaning that prior exposure to low

(sublethal) doses of an insult protects from a higher,

normally harmful or lethal dose of the same insult in

the future (Calabrese and Mattson 2017; Rattan and

Demirovic 2009; Cornelius et al. 2013; Le Bourg

2009; Calabrese et al. 2015, 2019; López-Martı́nez

and Hahn 2014; Rattan 2018). For this reason, the

concentration of a particular compound used in aging

studies matters, due to the presence of specific

hormetic dose responses of that drug in diverse

organisms. However, since we focused on the effects

of lifespan-extending compounds on multiple species

in the present study, we could not study the concen-

tration-dependent effects of these compounds in these

species due to low sample sizes in terms of concen-

tration. Most studies reported the use of specific

concentrations of a compound; therefore, longevity

data for a range of concentrations of a particular

compound are mostly not available, restricting the

analysis of dose responses in the majority of species.

As shown in Table 1, many studies reported that

certain compounds may extend longevity through

stress-response hormesis mechanisms, in which sub-

lethal exposure to a compound induces a response that

results in stress resistance and ultimately in extended

lifespan.

Different methods of application of these long-

evity-extending compounds to various species might

also influence species-specific effects of these com-

pounds in terms of lifespan extension, at least to a

certain extent. For instance, C. elegans might be given

bacteria containing the compound, or organisms living

in water can be treated by the addition of the

compound into water, or mice can be treated either

by the addition of compound to its food or drinking

water. Therefore, the effect of a particular compound

on lifespan in different species might be influenced by

the way it is given to that species, since these mediums

(for instance, nematode growth medium or mice food)

might alter the biological properties of that compound,

its exposure to ambient temperature and moisture

before it is taken up, and also change the final

concentration of that compound available for the

organism. This also complicates the cross-species

analysis of a lifespan-extending compound. Although

our understanding of the effects of these different

methods of application of these longevity-extending

compounds on longevity (if any) is highly limited,

potential influence of these variables on longevity

must be kept in mind when performing a cross-species

analysis of lifespan-extending compounds.

We also identified compounds which are most

effective in terms of extending average lifespan in D.

melanogaster and C. elegans, the two most commonly

studied model organisms in aging research, by com-

bining available data from different studies. We found

that minocycline (a second-generation tetracycline

with anti-inflammatory properties) resulted in the

highest increase (more than 25%) in average lifespan

in both organisms, among other compounds studied,

when data from multiple resources were collectively

analyzed. Solis et al. showed that minocycline reduces

protein aggregation by decreasing mRNA translation

by ribosomes in the cytoplasm, preferentially attenu-

ating the translation of highly translated mRNAs

specifically, in C. elegans (Solis et al. 2018). Authors

proposed that minocycline extends C. elegans lifes-

pan, since it lowers the concentration of newly

synthesized aggregation-prone proteins, leading to a

relative enhancement of protein-folding capacity

without the need to activate protein-folding pathways

(Solis et al. 2018). They also reported that minocycline

attenuates mRNA translation even in human cells

(Solis et al. 2018). Thus, the inhibitory effect of

minocycline on the translation of highly expressed,

123

Biogerontology



aggregation prone proteins might not be specific to C.

elegans, it might also be functioning in other organ-

isms as evolutionarily distant as humans, due to the

high conservation of translation machinery between

these species. This might explain, at least in part, the

fact that minocycline extend average lifespan the most

in both C. elegans and D. melanogaster, and that

minocycline results in the second highest increase in

average lifespan following aspirin, among all other

compounds, when all species are included in the

analysis.

Furthermore, we identified species whose lifespan

can be extended the most by compounds with lifespan-

extending properties. We found that lifespans of top 5

species, namely, P. acuticornis, A. domesticus, A.

viride, M. brevispina and S. cerevisiae can be

extended by 211.80%, 76%, 70.26%, 55.18% and

45.71% in average, respectively. The lifespan of P.

acuticornis (a rotifer) can be extended at a much

higher percentage, compared to other species, more

than two fold in average, by the application of

compounds (Poeggeler et al. 2010). Why lifespan of

P. acuticornis can be manipulated the most, among all

organisms studied, is currently not known. However,

this observation points that rotifer species (M. bre-

vispina is also a rotifer) can be more commonly used in

aging research due to the fact that their lifespans might

be increased to relatively higher levels by compounds,

thus enabling and simplifying the study of lifespan-

extending molecules in model organisms (Snare et al.

2013; Gribble and Welch 2013; Gribble 2021; Lee

et al. 2018; Bock et al. 2019). Further research is

needed to better understand the extension of lifespan

in rotifers (Snell 2014; Snell et al. 2015).

We recently studied Chordata species with excep-

tional longevity among taxa and the evolution of

longer lifespans in chordates using another curated

database from the same group (AnAge database)

(Berkel and Cacan 2021; de Magalhães and Costa

2009; Tacutu et al. 2018). We believe that this type of

big data compilations with high quality content from

multiple resources, curated by researchers will help us

to gain deeper insights in the biology of aging and

lifespan, and also to translate findings in model

organisms to humans (Budovksy et al. 2013; Avelar

et al. 2020). Datasets with even larger sample sizes and

with data for more diverse organisms will provide a

better understanding of aging, which is previously not

quite possible. However, it should be noted that both

species-specific and the pan-species mechanisms of

ageing were reported in many previous studies; and

these set the limits for cross-species extrapolation in

terms of longevity, for example from model organisms

to humans (Rattan 2020). Mechanistic details of

lifespan-extending interventions in model organisms

might be worked to infer their applicability to humans;

since, for instance, a drug which manipulates a certain

pathway in a model organism to extend lifespan might

fail to do so in humans, and thus a different drug

should be evaluated and used to manipulate that

particular pathway for the same purpose. Therefore,

considering the certain limitations of model systems,

findings based on studies performed on species other

than humans might be carefully evaluated before

attempting to translate these findings to human aging.
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Ayuda-Durán B, González-Manzano S, Miranda-Vizuete A,
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RI, Stroustrup N, Nollen EAA, Riedel CG (2019) Tran-

scriptomics-based screening identifies pharmacological

inhibition of Hsp90 as a means to defer aging. Cell Rep

27(2):467-480.e6. https://doi.org/10.1016/j.celrep.2019.

03.044

Kakkar R, Bains JS, Sharma SP (1996) Effect of vitamin E on

life span, malondialdehyde content and antioxidant

enzymes in aging Zaprionus paravittiger. Gerontology

42(6):312–321. https://doi.org/10.1159/000213809

Kampkötter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y,

Proksch P, Wätjen W (2008) Increase of stress resistance

and lifespan of Caenorhabditis elegans by quercetin.

Comp Biochem Physiol B 149(2):314–323. https://doi.org/

10.1016/j.cbpb.2007.10.004

Kassambara A (2020) ggpubr: ‘ggplot2’ based publication ready

plots. R package version 0.4.0. https://CRAN.R-project.

org/package=ggpubr

Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR
regulate autophagy through direct phosphorylation of

Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.

1038/ncb2152

Kulkarni AS, Gubbi S, Barzilai N (2020) Benefits of metformin

in attenuating the hallmarks of aging. Cell Metab

32(1):15–30. https://doi.org/10.1016/j.cmet.2020.04.001

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C,

Daussin F, Messadeq N, Milne J, Lambert P, Elliott P,

Geny B, Laakso M, Puigserver P, Auwerx J (2006)

Resveratrol improves mitochondrial function and protects

against metabolic disease by activating SIRT1 and PGC-

1alpha. Cell 127(6):1109–1122. https://doi.org/10.1016/j.

cell.2006.11.013

Lawson T, Stohs S (1985) Changes in endogenous DNA damage

in aging mice in response to butylated hydroxyanisole and

oltipraz. Mech Ageing Dev 30(2):179–185. https://doi.org/

10.1016/0047-6374(85)90006-5

Le Bourg E (2009) Hormesis, aging and longevity. Biochim

Biophys Acta 1790(10):1030–1039. https://doi.org/10.

1016/j.bbagen.2009.01.004

Lee MC, Park JC, Yoon DS, Han J, Kang S, Kamizono S, Om

AS, Shin KH, Hagiwara A, Lee JS (2018) Aging extension

and modifications of lipid metabolism in the monogonont

rotifer Brachionus koreanus under chronic caloric restric-

tion. Sci Rep 8(1):1741

Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M (2019)

Pro-oxidant and lifespan extension effects of caffeine and

related methylxanthines in Caenorhabditis elegans. Food

Chem X 1:100005. https://doi.org/10.1016/j.fochx.2019.

100005

Li H, Chen FJ, Yang WL, Qiao HZ, Zhang SJ (2021) Quercetin

improves cognitive disorder in aging mice by inhibiting

NLRP3 inflammasome activation. Food Funct

12(2):717–725. https://doi.org/10.1039/d0fo01900c
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