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A
ging is characterized by several canonical hallmarks, 
including epigenetic alterations at CG dinucleotides (CpG 
sites)1,2. Changes in CpG methylation with age can now be 

assayed using a variety of approaches, ranging from hybridization 
arrays to genome-wide or targeted next-generation sequencing 
methods3–7. These techniques enable quantitative examination of 
the dynamic DNA methylation landscape at single-base resolution 
in the tissues of organisms, such as mammals, that evolved this 
type of regulation.

Since their inception in the past decade, predictive multivariate 
machine learning models based on DNA methylation (DNAm) lev-
els, termed ‘epigenetic clocks’ have revolutionized the aging field4,8–12.  
First built strictly as estimators of chronological age, these clocks 
can now also integrate and predict various measures of biological 
aging and disease risk, underscoring their clinical relevance13–15. 
Excitingly, several pan-tissue mammalian clocks recently developed 
can profile epigenetic age in virtually any tissue across eutherians 
with remarkable precision, suggesting strong conservation of epi-
genetic aging patterns across species16. Epigenetic clocks are also of 
keen interest within the fields of lifespan extension and cell repro-
gramming, as many of these models detect changes in biological age 
resulting from these interventions11,12,17–21.

However, while individual cells are the units of life, all existing 
epigenetic clocks rely on measurements derived from bulk samples 
(that is, samples containing many cells), for both the creation and 
application of these models19. Historically, the use of bulk samples 
for DNA methylation analysis has been an inherent requirement 
of the methodologies available, which demanded large amounts 
of input DNA material due to degradation of nucleic acids dur-
ing bisulfite conversion22. While the use of bulk samples enables 
analyses of average methylation patterns in tissues, it simultane-
ously obscures the epigenetic heterogeneity that exists among indi-
vidual cells19,23. A recent study characterized the transcriptomic 
changes in murine aging at single-cell resolution, but age-associ-
ated CpG methylation changes in single cells of mammals remain  
mostly unexplored24.

Advances in epigenomic sequencing methods have now made it 
possible to evaluate limited methylation profiles in single cells. Since 
the inception of these techniques in the previous decade, a variety of 
methods have surfaced, including single-cell whole-genome23,25 and 

reduced-representation bisulfite sequencing (RRBS)26. Excitingly, 
approaches for measurement of gene expression, DNA methylation 
and chromatin accessibility in the same single cell have recently 
surfaced, allowing for robust integration of multiomic analyses and 
comprehensive characterization of individual cell states27–30.

Despite this remarkable progress in single-cell omics, intrin-
sic issues of sparsity remain. In the case of whole-genome meth-
ylation profiling, only a small fraction of CpGs covered with bulk 
sequencing methods can currently be assayed at once in any single 
cell25. Furthermore, the most widespread protocols for single-cell 
methylome profiling—those involving genome-wide interrogation 
of DNA methylation patterns—suffer additionally from effectively 
random coverage of reads22. Several robust imputation and clus-
tering strategies have been developed to address this constraint, 
employing Bayesian or deep learning approaches to fill in miss-
ing methylation states for CpGs not covered in any given cell31,32. 
However, these tools require building complex, time-intensive, 
dataset-specific models, which may introduce some bias.

This sparsity in single-cell DNAm profiles poses profound limita-
tions for the creation of single-cell epigenetic clocks. Building these 
predictive models has traditionally relied on collection of methyla-
tion levels of CpGs covered consistently across samples of different 
ages4,11,12,33,34. In bulk tissue, this enables the assembly of large meth-
ylation matrices that can be directly harnessed for machine learn-
ing, particularly elastic net regularization35. Currently, however, 
sparse and binarized methylation profiles of single cells severely 
complicate the use of this conventional approach19.

Here we report scAge, an epigenetic clock framework capable of 
profiling biological age at single-cell resolution. Due to inconsis-
tent CpG coverage between cells, our approach instead employs a 
ranked intersection algorithm that is independent of which CpGs 
are covered in each cell. By harnessing the relationship of methyla-
tion levels with age in a subset of CpGs, we compute a likelihood 
profile that quantifies the epigenetic age of a cell. Our method reca-
pitulates the chronological age of tissues while also uncovering the 
intrinsic epigenetic heterogeneity that exists among individual cells. 
We anticipate that the use of these epigenetic clock approaches may 
open up exciting new avenues for ultra-low-input organismal age 
profiling, as well as research on biological aging at the previously 
elusive level of single cells.
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results
Designing scAge: a single-cell epigenetic clock framework. Major 
challenges in the assessment of epigenetic age in single cells are their 
sparse and binarized methylation profiles. Contrary to bulk sam-
ples, sequence reads typically cover different parts of the genome of 
each single cell (Fig. 1a). This results in limited overlap among cell 
profiles, particularly with genome-wide methods, precluding the 
use of conventional elastic net approaches that rely on consistent 
CpG coverage across samples (Supplementary Fig. 1). To overcome 
these limitations, we introduce scAge, a framework for profiling of 
epigenetic age using single-cell methylation data (Fig. 1b–e). To 
develop this single-cell clock approach, we first assumed that the 
methylation levels of highly covered CpG sites in bulk sequenc-
ing or DNAm array profiling of a tissue offer an estimation of the 
probability of binary methylation at these particular CpG sites in 
any single cell derived from this tissue. Hence, if we measure a bulk 
methylation level of 0.7 at a single CpG and pick a random single 
cell from this tissue, we can assume that there is a 70% chance this 
particular cell will be methylated at this locus. Using training data 
derived from highly covered bulk RRBS, we generated reference 
datasets of deterministic linear models that estimate the average 
change in methylation levels based on chronological age for each 
CpG.

Next, to overcome the intrinsic sparsity of single-cell methy-
lomes, we designed a ranked intersection algorithm that isolates 
the common CpG sites between any single-cell profile and a refer-
ence dataset (Fig. 1c). From this common set of sites we selected 
the most age-associated CpGs, ranking them based on the absolute 
magnitude of their Pearson correlation with age in the bulk training 
data. Since different CpG sites are covered in each cell, a distinct 
collection of age-associated CpGs is chosen by the algorithm per 
individual cell. For each selected age-associated CpG site we com-
puted the probability of observing a methylated or unmethylated 
state in a single cell for each age within a wide range (Fig. 1d). In 
essence, we compare the methylation status (0, unmethylated versus 
1, methylated) of the single cell with the estimate from the bulk-
derived linear regression model, and use the difference between the 
model’s prediction and the single-cell methylation value as a prob-
ability estimate. Our method inherently leverages the notion that if 
bulk methylation at a certain CpG increases with age, we expect to 
find more cells methylated at this locus in aged tissues compared 
to young ones and, conversely, if methylation shows an opposing 
trend.

To obtain a single probability value for each age assessed by 
our algorithm, we first assume that binary methylation states of all 
CpGs in a single cell are independent, and multiply the CpG-wise 
probabilities together to obtain the overall likelihood of observing 
the entire filtered age-associated methylation profile. Practically, we 

calculate this via logarithmic sums rather than fractional products 
to circumvent underflow errors. Finally, following generation of an 
age-likelihood distribution for each cell, we assign the age of maxi-
mum likelihood as the predicted epigenetic age for this cell (Fig. 1e). 
We found that this framework, which we designate scAge, permits 
accurate epigenetic age profiling in single cells with dramatically 
different and sparse methylome profiles. To assess epigenetic age 
in murine single cells, we trained linear model reference datasets 
using filtered bulk RRBS methylation matrices from C56BL/6J mice 
of different ages in three individual tissues (liver, blood and muscle), 
as well as with a multi-tissue matrix (Fig. 2a and Extended Data 
Figs. 1 and 2)34.

scAge tracks aging in hepatocytes and embryonic fibroblasts. 
We first applied scAge to a dataset of 26 single cells, consisting of 
11 hepatocytes from 4-month-old mice, ten hepatocytes from 
26-month-old mice and five mouse embryonic fibroblasts (MEFs) 
(Fig. 2b)23. Due to inherently random and sparse coverage, single-
cell methylome profiles contained limited common CpGs between 
any given pair of cells; in fact, this effect was greatly accentuated 
when sites in all cells were progressively intersected, leading to min-
imal final overlap (Fig. 2c).

Coverage varied widely among the cells, ranging from 0.4 to 
>8 million CpGs per cell (Extended Data Fig. 3a). Mean methyla-
tion was consistent between young and old hepatocytes, but MEFs 
showed nominally decreased global methylation compared to both 
groups of hepatocytes (Fig. 2d). We applied our scAge framework, 
trained on liver, blood or multi-tissue datasets, to profile epigen-
etic age in all 26 cells (Extended Data Fig. 3b,c). Our tool produced 
distinct likelihood distributions for each cell, enabling quantifica-
tion of predicted epigenetic age and confidence intervals in a cell-
specific manner (Extended Data Fig. 4 and Supplementary Fig. 2). 
As expected, the liver-trained model showed the highest accuracy 
with a Pearson correlation coefficient of 0.88 based on the hepa-
tocyte data. The multi-tissue model showed a significant differ-
ence between young and old hepatocytes but was less robust, with 
Pearson r = 0.63. Interestingly, application of scAge trained exclu-
sively on blood samples to this data showed no significant dif-
ference in the predicted ages of both groups of hepatocytes. This 
suggests the presence of tissue-specific methylation trajectories, and 
indicates that scAge is likely to be most accurate when trained on 
the tissue from which the single cells of interest originate. With all 
models, MEFs displayed the lowest predicted epigenetic age, trend-
ing towards 0 in both liver and multi-tissue clocks.

Interestingly, the highly accurate liver scAge model predicted the 
epigenetic age of one hepatocyte in the young group to be around 
20 months. This hepatocyte, along with another cell in the old 
group, were identified as outliers in the original paper23. Both cells 

Fig. 1 | Designing the scAge framework. a, Schematic representation of the distinction between single-cell and bulk methylation sequencing outputs. 

With bulk approaches (right), read coverage is high and consistent between samples. In single cells (left), read coverage is low (often 1) and inconsistent 

between single cells, resulting in limited, distinct methylome profiles. b, Schematic representation of the scAge framework. The input (left) consists of 

binary single-cell methylome profiles coupled with a training reference dataset constructed from bulk samples across a wide age range (top). In turn, the 

algorithm outputs epigenetic age predictions for each single cell (right). c, Schematic of the intersection and ranking components of the framework. Left, 

binary single-cell profiles are intersected with a bulk reference, and only CpGs that are common between a particular single cell and the reference data 

are retained. Right, a ranking step is implemented that orders and selects CpGs based on their absolute Pearson correlation |r| with age. Common CpGs 

are filtered depending on the chosen parameter, producing binary matrices of age-associated CpG sites for each single cell (bottom). Different CpGs are 

denoted by letters (z, p, f, b, etc.). d, Schematic of the probability computation step of the framework. Linear regression equations relating methylation 

and age are computed based on bulk data (purple line). Using the observed methylation status of a cell (methylated, orange; unmethylated, green), the 

probability of observing a particular state is computed as 1 minus the distance between the binary methylation status and the regression line estimate for 

a particular age. e, Schematic of the maximum likelihood estimation step of the framework. In theory, the product of individual CpG probabilities (left) 

is taken (assuming independence between CpGs), generating a single probability value for each age. Practically, these fractional products are replaced 

by logarithmic sums to circumvent underflow errors in computation. An age-likelihood distribution is then obtained for every cell (right), and the age of 

maximum likelihood is interpreted as the epigenetic age of the cell (blue, young cell; red, old cell). Prk denotes the methylation probability for a specific 

CpG k at a particular age, summed from 1 CpG up to N total CpGs.
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are also identified as 'very old' outliers using the multi-tissue model. 
Since coverage was relatively high in these cells, we hypothesized 
that our results may be reflective of an accelerated aging trajectory 
(that is, senescence; Extended Data Fig. 5a). This is supported by the 
global hypomethylation observed in these cells compared to others 
in the study, which is known to be a factor of senescence progres-
sion (Extended Data Fig. 5b)36. While senescence may explain the 
aberrant epigenetic age predictions for these cells, dimensionality 
reduction performed in the original study23 classifies these two cells 
as clear outliers, which may simply suggest that these predictions 

result from aberrant methylation profiles caused by technical arti-
facts during isolation or sequencing.

When these two outliers were removed from the analysis, the 
accuracy of liver and multi-tissue clocks increased drastically, with 
Pearson r = 0.95 (median absolute error = 2.1 m) and 0.86 (median 
absolute error = 4.5 m), respectively (Fig. 2e). Outlier removal 
also induced a marginally significant difference between MEFs 
and young hepatocytes across both models (Fig. 2f). Regardless 
of whether these outlier cells are included or not, we observed no 
significant relationship between predicted epigenetic age computed 
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by any of three models and either mean global methylation or total 
CpG coverage (Extended Data Fig. 5c,d). Recent liver-specific and 
multi-tissue clocks built using elastic net regression on bulk murine 
samples displayed an average error of 2–4 months, comparable to or 
greater than that observed with our single-cell method12,37. In turn, 
these findings suggest that our prediction framework is accurate 
and generally robust to the technical variability that can arise from 
single-cell methylome sequencing.

One of the main parameters of our algorithm is the fraction of 
age-associated CpGs included in the likelihood profile computed by 
scAge to output a predicted epigenetic age for every cell (Fig. 1c–e). 
We benchmarked results of the algorithm across two methods for 
CpG selection. In both cases, we first rank CpGs based on their 
absolute Pearson correlation with age. Then, the algorithm picks 
either a defined number n of highly ranked CpGs or the top x per-
centage of age-associated CpGs for every cell. Although the results 
between both selection methods are comparable, we find that the 
latter method (based on percentiles) better accounts for technical 
differences in coverage frequently observed in single-cell methy-
lome profiling (Extended Data Fig. 6). Interestingly, with either 
mode, we find that increasing the number or fraction of CpGs taken 
as input to the algorithm results in poorer performance when using 
the liver model, wherein predictions for old hepatocytes progres-
sively decrease in accuracy (Extended Data Fig. 7). For the multi-
tissue model we observed a gain in precision as more CpGs were 
taken as input to the algorithm. We attribute this difference primar-
ily to the distinct distributions of linear association metrics in sin-
gle- versus multi-tissue training datasets: correlation and regression 
coefficients are much weaker in the latter (Extended Data Fig. 8).

Muscle stem cells display attenuated epigenetic aging. To inves-
tigate the unique applicability of our approach to rare cell popula-
tions, we applied scAge to young and old muscle stem cell (MuSC) 
data38. This dataset consisted of 136 and 139 MuSCs from 1.5- and 
26-month-old B6D2F1/JRj mice, respectively (Fig. 3a). As was 
done in the original study, we omitted cells with <500,000 CpGs 
covered to discard low-quality dropout cells; this resulted in a final 
filtered dataset of 116 young and 89 old MuSC methylation profiles 
(Extended Data Fig. 9a). Mean methylation was slightly elevated in 
old cells (Fig. 3b). We computed epigenetic age predictions in these 
MuSCs using three training models, including muscle, blood and 
multi-tissue datasets. The muscle and multi-tissue clocks showed a 
slim but significant increase in epigenetic age between both groups, 
while the blood clock demonstrated no difference between young 
and old MuSCs (Fig. 3c). As expected, the muscle-trained model 
was the most accurate, with the lowest median absolute error 

compared to the other models. Analysis of the relationship between 
global methylation and predicted epigenetic age uncovered a small 
positive correlation between both variables using the muscle and 
multi-tissue training datasets (Fig. 3d). Furthermore, inclusion of 
all 275 unfiltered cells for predictions revealed that scAge is a robust 
profiling tool for cells with modest to high coverage, but outputs 
aberrant and highly variable predictions when coverage is dramati-
cally low (Extended Data Fig. 9b).

Our results are remarkably similar to a previous analysis that 
employed a pseudobulk grouping approach to overcome the cover-
age sparsity in single-cell MuSC methylomes38. That analysis simi-
larly found a slim increase in epigenetic age on the order of a few 
weeks, far lower than the ~24-month chronological age difference 
between the two groups of mice. In turn, both methods, employed 
independently, suggest that MuSCs display minimal aging as mea-
sured by DNA methylation patterns. It is, however, known that 
MuSCs lose functionality and regenerative capacity with age, partly 
as a result of autophagy-mediated shifts from prolonged quiescence 
to irreversible senescence and Hoxa9-dependent activation39,40. It 
was also recently suggested that human MuSCs are refractory to 
aging, hinting that these cell populations probably have distinct bio-
logical aging patterns across mammals compared to differentiated 
muscle cells41. Integrating these functional data with our epigenetic 
age results may shed light on the complex temporal trajectories that 
govern MuSC biology. Overall, our results agree with the previously 
reported epigenetic aging dynamics of MuSCs, but offer enhanced 
single-cell resolution to the data.

Culture conditions impact embryonic stem cell epigenetic age. 
We next sought to evaluate scAge on single-cell methylation data-
sets profiling pluripotent embryonic stem cells (ESCs). Using con-
ventional clock approaches, bulk ESC samples and their induced 
pluripotent stem cell (iPSC) counterparts generally show very low 
predicted epigenetic ages trending towards zero4,11,12,20,42. Of note, 
ESCs may be cultured under a variety of conditions—most com-
monly in media supplemented with leukemia inhibitory factor (LIF) 
and serum, or in serum-free '2i' medium supplemented with LIF 
and two small-molecule inhibitors of the MEK and GSK3β path-
ways (Fig. 4a). Culture of cells in 2i medium was previously shown 
to drive rapid global hypomethylation in ESCs, producing epigen-
etic profiles concordant with migratory primordial germ cells43.

As expected, we observed significant global hypomethylation 
among 2i cells following reanalysis of two datasets25,27 (Fig. 4b). We 
profiled epigenetic age in 28 2i ESCs and 85 serum ESCs from these 
studies with scAge trained on liver, blood and multi-tissue datasets. 
We selected these particular training models for embryonic cells, 

Fig. 2 | scAge tracks aging in hepatocytes and embryonic fibroblasts. a, Schematic representation of the training scheme for the framework. scAge linear 

regression models were trained on three tissue-specific methylation matrices (liver, muscle and blood) and a multi-tissue matrix. Further information on 

training dataset composition can be found in Extended Data Fig. 1. b, Schematic representation of cells analyzed in this figure. The dataset23 consisted of 

26 cells, including five embryonic fibroblasts, 11 hepatocytes from young animals (4 months old) and ten hepatocytes from old animals (26 months old). 

c, Boxplots depicting progressive intersection of all single-cell profiles23 (n = 26 single cells). The y axis shows the number of common CpGs between a 

certain number of profiles, shown here in log scale. The order of intersection of single-cell profiles was permuted 100 times to generate a distribution 

for each additional cell added (n = 100 intersection sets per box). Color spectrum reflects a gradient on the x axis, from few intersections (yellow) to 

many intersections (purple). d, Mean global methylation in all embryonic fibroblasts (green, n = 5), young hepatocytes (blue, n = 11) and old hepatocytes 

(red, n = 10). Two-tailed Welch’s t-test with Bonferroni correction was used for statistical testing. e, Predicted epigenetic age versus chronological age in 

young hepatocytes (blue, n = 10) and old hepatocytes (red, n = 9) across liver (left), multi-tissue (middle) and blood (right) models. Jitter was applied to 

chronological age, strictly for visualization purposes. Two outliers, one from each group, were removed based on aberrant PCA clustering in the original 

study23. Plots and metrics with outliers are shown in Extended Data Fig. 3b. Pearson correlation (r), the associated P value (P) and median absolute error 

(MedAE) are shown. Two-tailed Pearson correlation analysis was applied for statistical testing, with statistics for each model computed independently 

without correction. Violin plots depict kernel density estimations, with the median value highlighted by a black line. Dashed lines depict the identity line 

between scDNAm age and chronological age. f, Predicted epigenetic age for MEFs (green, n = 5), young hepatocytes (blue, n = 10) and old hepatocytes 

(red, n = 9) across liver (left), multi-tissue (middle) and blood (right) models. Dashed lines represent the chronological age of animals (blue, 4 months; 

red, 26 months). Two-tailed Welch’s t-test with Bonferroni correction was used for statistical testing. Boxplots highlight median levels and the first and 

third quartile, with whiskers depicting observations up to 1.5× interquartile range; dots depict individual cells.
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based on the notion that conventional mouse clocks built on these 
sets of tissues have previously shown the capacity to accurately profile 
epigenetic age in ESCs and iPSCs near zero and/or discern the effect 
of longevity/reprogramming interventions11,12,33,37. Interestingly, we 
observed remarkably coherent results across the liver and blood 
clocks, which showed a low epigenetic age close to zero for serum-

grown ESCs and significantly increased epigenetic age in 2i ESCs 
(Fig. 4c). This trend is consistent with a recent analysis of epigenetic 
aging patterns in ESCs at the bulk level42. We observed a strong neg-
ative correlation between mean methylation and predicted ages with 
both of these models, suggesting that large-scale global methylation 
shifts probably play a role in the predicted epigenetic age of the cell 
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as assayed by our method (Fig. 4d). The multi-tissue clock profiled 
low epigenetic ages in both culture conditions but did not detect a 
significant difference between 2i and serum ESCs.

A stratified rejuvenation event during mouse gastrulation. 
We then investigated a dataset profiling mouse gastrulation at 

single-cell resolution, consisting of 758 cells isolated from murine 
C57BL/6Babr embryos ranging from embryonic day (E) 4.5 to 
7.5 (Fig. 5a)28. To remove dropout cells with low-quality data, we 
again discarded those with <500,000 CpGs covered, resulting in 
a final dataset of 495 single cells across four developmental stages 
(Extended Data Fig. 9a). Mean global methylation varied drastically 
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and third quartile, with whiskers depicting observations up to 1.5× interquartile range. A single two-tailed Welch’s t-test was used for statistical testing. c, 

Predicted epigenetic versus chronological age in young (blue, n = 116) and old (red, n = 89) MuSCs across muscle (left), multi-tissue (middle) and blood 

(right) models. Median absolute error is shown considering either all cells (MedAEall: both 1.5- and 26-month-old cells) or young cells only (MedAE1.5m: only 

1.5-month-old cells). Jitter on the x axis was applied purely for visualization purposes. Pearson correlation (r) and the associated P value (P) are shown. 

Violin plots depict kernel density estimations of the data, and inner black lines show median predictions. Two-tailed Pearson correlation analysis was 

used for statistical testing, with statistics for each model computed independently without correction. d, Predicted epigenetic age versus mean global 

methylation for both young (blue) and old (red) MuSCs (n = 205) across muscle (left), multi-tissue (middle) and blood (right) models. Regression lines 

(gray) are shown with 95% confidence intervals (light gray). Two-tailed Pearson correlation analysis was used for statistical testing, with statistics for each 

model treated independently without correction. Pearson correlation coefficient (r) and the associated two-tailed P value (P) are shown. Individual dots 

depict single cells throughout the figure.
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during this early period of mouse embryogenesis, with E4.5 cells 
characterized by global hypomethylation compared to the three 
subsequent developmental stages (Fig. 5b).

It was recently suggested that embryogenesis may be charac-
terized by an initial decrease in biological age to a point termed 
'ground zero', after which organismal aging formally begins44. 
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Fig. 4 | Culture conditions influence epigenetic age in single eSCs. a, Schematic representation of single cells analyzed in this figure25,27. Cells were grown in 

medium supplemented with serum, or in serum-free medium with the addition of two small-molecule inhibitors (2i) for the MEK and GSK3β pathways. b, 

Mean global methylation profiles of single ESCs grown under either 2i (yellow, nAngermueller = 16, nSmallwood = 12) or serum culture conditions (purple, nAngermueller = 65, 

nSmallwood =20). Two-tailed Welch’s t-test was used for statistical testing, with statistics for each dataset treated independently without correction. Boxplots 

highlight median levels and the first and third quartile, with whiskers depicting observations up to 1.5× interquartile range. c, Predicted epigenetic ages in 

2i (yellow, nAngermueller = 16, nSmallwood = 12) and serum-grown ESCs (purple, nAngermueller = 65, nSmallwood = 20) across liver (top), multi-tissue (middle) and blood 

(bottom) models. Two-tailed Welch’s t-test was used for statistical testing, with statistics for each model and dataset treated independently without 

correction. Boxplots highlight median levels and the first and third quartile, with whiskers depicting observations up to 1.5× interquartile range. d, Scatterplot 

relationship between predicted epigenetic age and mean global methylation among all ESCs (yellow, n2i = 28; purple, nserum = 85). Regression lines (gray) are 

depicted with 95% confidence intervals (light gray). Pearson correlation (r) and the associated P value (P) are shown. Two-tailed Pearson correlation analysis 

was used for statistical testing, with statistics for each model and dataset treated independently without correction. Boxplots show median levels and the first 

and third quartile, and whiskers show 1.5× interquartile range. Dots depict individual cells, with symbols denoting the study of origin.
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Fig. 5 | An epigenetic rejuvenation event during mouse embryogenesis. a, Schematic representation of cells analyzed in this figure28. Single cells from 

mouse embryos at four developmental stages (E4.5, E5.5, E6.5 and E7.5) were isolated and sequenced. Only cells with at least 500,000 CpGs covered 

were retained for downstream analysis (see Extended Data Fig. 9a for additional details). b, Mean global methylation profiles in single cells across all 

four developmental stages assayed (purple, nE4.5 = 94; dark blue, nE5.5 = 101; dark green, nE6.5 = 145; light green, nE7.5 = 155). Two-tailed Welch’s t-test was 

used for statistical testing, and Bonferroni corrections were applied to correct for multiple testing. Violin plots depict kernel density estimations of the 

data, and inner boxplots (gray) depict median levels and the first and third quartile, with whiskers extending up to 1.5× interquartile range. Dots depict 

individual cells. c, Predicted epigenetic ages for cells in all four developmental stages (nE4.5 = 94, nE5.5 = 101, nE6.5 = 145, nE7.5 = 155), across liver (top), multi-

tissue (middle) and blood (bottom) scAge models. Colors correspond to those detailed in b. Two-tailed Welch’s t-test was used for statistical testing, 

with Bonferroni corrections applied to correct for multiple testing. Violin plots depict kernel density estimate of the data, and inner boxplots (gray) depict 

median levels and the first and third quartile, with whiskers extending up to 1.5× interquartile range. Dots depict individual cells. d, Scatterplot depicting 

the relationship between mean global methylation and predicted epigenetic age across all cells (n = 495) in liver (top), multi-tissue (middle) and blood 

(bottom) models. Colors correspond to those in b and in the legend at top right. Regression lines (gray) are depicted with 95% confidence intervals 

(light gray). Pearson correlation (r) and the associated P value (P) are shown. Two-tailed Pearson correlation analysis was used for statistical testing, with 

statistics for each dataset treated independently without correction.
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Consistent with this idea, recent application of epigenetic clocks 
to bulk samples revealed a significant reduction in biological age 
(that is, rejuvenation) during the early stages of embryogenesis, fol-
lowed by an increase in later stages42. This finding also agrees with 
the notion that damage accumulation inevitably occurs during the 
lifespan of an organism, even in germ cells. Thus, a rejuvenation 
event is thought to take place during embryogenesis to ensure the 
continuous generation of new, biologically young individuals.

To investigate this hypothesis at single-cell resolution, we applied 
the same scAge models used on ESCs to individual embryonic cells 
from the four developmental stages assayed. Across all models we 
observed a steady and significant reduction in the predicted age 
from E4.5 to E7.5, consistent with the notion of a rejuvenation event 
(Fig. 5c). Interestingly, there was a strong negative correlation across 
all three models between mean global methylation and predicted 
epigenetic age (Fig. 5d). This suggests an important association 
between the de novo methylation event that occurs during embryo-
genesis and the apparent decrease in biological age.

To further refine the resolution of this rejuvenation event, we 
integrated lineage information for each cell in the dataset based on 
precomputed assignments derived from mapping of gene expres-
sion patterns of single embryonic cells to a recent atlas of mouse 
gastrulation (Fig. 6a,b)28,45. This increase in resolution revealed that 
cells mapped to the epiblast lineage accounted for the majority of 
the rejuvenation signal, showing a strong initial decrease in biologi-
cal age trending towards or below zero during gastrulation (Fig. 6c). 
Moreover, newly formed germ layers (endoderm, mesoderm and 
ectoderm) showed a low biological age near 0. Interestingly, extra-
embryonic ectoderm and visceral endoderm cells showed signifi-
cantly higher predicted ages compared to other embryonic cell types 
of the same developmental stage. These findings may suggest spatio-
temporal stratification of the rejuvenation event; this process may 
be specific to cells that predominantly go on to form the embryo 
proper and excludes those fated to become supportive extra-embry-
onic lineages. Cells failing to show evidence of rejuvenation also 
retain partially unmethylated profiles (Fig. 6d). This further sug-
gests a deep link between differential demethylation, de novo meth-
ylation and the observed lineage-resolved epigenetic age decreases.

Together, these striking results suggest that a stratified rejuve-
nation event occurs during mid-embryogenesis and that individual 
cells may be rejuvenated through natural means. The lowest single-
cell epigenetic age corresponds approximately to the stage of gastru-
lation and is associated with de novo hypermethylation, hinting that 
to rejuvenate cells it may be important to first carefully demethylate 
and subsequently remethylate the genome.

Discussion
In this work we report scAge, an approach enabling single-cell epi-
genetic age predictions. Our framework leverages bulk methylation 

data to train linear models that predict methylation levels from age 
across a large number of CpG sites. An intersection and ranking 
algorithm selects informative CpGs covered jointly in a single cell 
and a reference dataset, followed by computation of a cell-specific 
likelihood profile across a range of ages. We then assign the age of 
maximum likelihood as the final epigenetic age of a cell. This method 
solves the complex challenges of sparse and binarized methylation 
profiles in single cells, which previously precluded attempts to esti-
mate epigenetic age in individual cells. Indeed, all bulk epigenetic 
clocks to date require defined sets of CpG sites for their application, 
an approach that is currently not feasible to employ in the case of 
single cells.

This method enables accurate age prediction of single hepato-
cytes and MEFs with high resolution on models trained on liver or 
multi-tissue datasets. We find that age predictions are most accurate 
and precise when scAge is trained on the tissue to which a particular 
cell belongs, and that training exclusively on certain other tissues 
may preclude robust assessment of biological aging; this highlights 
the importance of tracking tissue- or cell-type-specific epigen-
etic aging patterns. We also demonstrate that multi-tissue datasets, 
despite depicting much weaker linear associations with age, are still 
able to estimate biological age in single cells with reasonable accu-
racy. This provides utility in the case where the cell type is unknown 
or if no tissue-specific reference data are available, and may also 
track tissue-independent CpG methylation trajectories.

Additionally, we show consistency between predictions from our 
model and previous work in MuSCs, which display attenuated epi-
genetic aging in comparison to their chronological age. This result, 
and our single-cell method, offer exciting future avenues for dis-
secting the role of epigenetic aging and differentiation across mam-
malian tissues. Particularly, this framework may prove useful in 
quantification of biological aging in complex differentiation hier-
archies and in uncovering the impact of cell state on epigenetic age 
predictions. We also find that while ESCs are generally predicted 
to have low epigenetic age, this differs depending on the culture 
condition and its downstream effect on global methylation patterns. 
Finally, our data provide further evidence for the recently proposed 
ground zero hypothesis of aging by showing a strongly significant 
decrease in the epigenetic age of single cells at the time of gastru-
lation. We find that this rejuvenation event is stratified, wherein 
only cells destined for intraembryonic lineages display a significant 
reduction in epigenetic age.

Despite its utility for single-cell profiling, scAge presently has 
important limitations that need to be acknowledged. For one, 
binary methylation states of CpGs were here assumed to be com-
pletely independent of each other, because previous work suggested 
that this was the case when analyzing single reads from bulk sam-
ples3,7. However, a more thorough analysis of this behavior specifi-
cally in single cells may reveal biological insights suggesting a more 

Fig. 6 | Lineage-specific resolution reveals stratification in the epigenetic rejuvenation event. a, Schematic representation of the transcriptomic mapping 

procedure used to assign lineage annotations to individual cells, based on multimodal omics data obtained in this study28 and a reference single-cell gene 

expression atlas of mouse gastrulation45. b, Bar plot of the count of different cell lineages across the four developmental stages, based on lineage annotations 

provided by the authors28. Color scale defines the developmental stage (E4.5, purple; E5.5, dark blue; E6.5, dark green; E7.5, light green). c, Predicted 

epigenetic ages for single embryonic cells across liver (top), multi-tissue (middle) and blood (bottom) datasets, grouped by assigned lineage and colored 

by developmental stage (as detailed in b). Number of cells for each lineage-stage pair is shown graphically in b: epiblast, nE4.5 = 56, nE5.5 = 78, nE6.5 = 94, 

nE7.5 = 21; primitive endoderm, nE4.5 = 33; primitive streak, nE6.5 = 28, nE7.5 = 19; endoderm, nE7.5 = 24; mesoderm, nE6.5 = 5, nE7.5 = 63; ectoderm, nE7.5 = 27; visceral 

endoderm, nE5.5 = 23, nE6.5 = 9; extra-embryonic ectoderm, nE6.5 = 8. Gray-bordered rectangle denotes supportive extra-embryonic tissues that appear not 

to undergo rejuvenation. Two-tailed Welch’s t-test was used for statistical testing, and Bonferroni corrections were applied to account for multiple testing. 

Violin plots depict kernel density estimate of the data, and inner boxplots (gray) depict median levels and the first and third quartile, with whiskers extending 

up to 1.5× interquartile range. Dots depict individual cells. d, Mean global methylation for single embryonic cells grouped by assigned lineage and colored 

by developmental stage (as in b). Number of cells for each lineage-stage pair is shown graphically in b and is the same as described in c. Gray-bordered 

rectangle denotes supportive extra-embryonic tissues. Two-tailed Welch’s t-test was used for statistical testing, and Bonferroni corrections were applied to 

account for multiple testing. Violin plots depict kernel density estimation of the data and inner boxplots (gray) depict median levels and the first and third 

quartile, with whiskers extending up to 1.5× interquartile range. Dots depict individual cells. UMAP, uniform manifold approximation and projection.
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complex inter-CpG relationship. Additionally, the exclusive use of 
linear regression may be suboptimal when considering the poten-
tially vast set of mathematical relationships that best model CpG 
methylation levels and age. In tandem, we observe that some bulk 
methylation distributions are truncated as a result of their loca-
tion near the edges of the unit interval, which may have an impact 
on the creation of linear models and downstream age predictions 
(Extended Data Fig. 2). Our method also makes use of observed 

methylation values in bulk data in a deterministic manner to con-
struct linear models, as opposed to random probabilistic modeling 
of methylation distributions. Despite these limitations, we find that 
our approach is nevertheless an accurate tool enabling robust epi-
genetic age profiling in single cells, based on both real single-cell 
data and simulation analyses (Extended Data Fig. 10).

We note also that we have not explored the effect of cell composi-
tion when creating bulk reference datasets. This may be important, 

a b

c

d

Lineage

mapping

80

40

30

30

20

20

10

10

0

0

UMAP1

–10

–10

–20

–20

U
M

A
P

2

–30

–30

E4.5

E4.5

Epiblast

E5.5

E6.5

E7.5

E5.5

E6.5

E7.5

P = 1.56 × 10–25

P = 6.47 × 10–14

P = 1.54 × 10–20

P = 1.09 × 10–52

P = 0.48

P = 0.15

P = 0.36

P = 0.35

s
c
D

N
A

m
 a

g
e

 (
m

o
n

th
s
)

s
c
D

N
A

m
 a

g
e

 (
m

o
n

th
s
)

s
c
D

N
A

m
 a

g
e

 (
m

o
n

th
s
)

M
e

a
n

 m
e

th
y
la

ti
o

n

30

20

10

0

–10

–20

40

30

20

10

–10

–20

40

30

20

10

–10

–20

1.0

0.8

0.6

0.4

0.2

0

0

0

60

40
C

e
ll 

lin
e

a
g

e
 c

o
u

n
t

20

0

Cell lineage

Epi
bl
as

t

Prim
iti
ve

en
do

de
rm

Primitive endoderm

Vis
ce

ra
l

en
do

de
rm

Visceral endoderm

Ext
ra

-e
m

br
yo

ni
c

ec
to

de
rm

Extra-embryonic

ectoderm

Prim
iti
ve

st
re

ak

Primitive streak

End
od

er
m

Endoderm

M
es

od
er

m

Mesoderm

Ect
od

er
m

Ectoderm

Epiblast Primitive

endoderm

Visceral

endoderm

Extra-embryonic

ectoderm

Primitive

streak

Endoderm Mesoderm Ectoderm

Epiblast Primitive

endoderm

Visceral

endoderm

Extra-embryonic

ectoderm
Primitive

streak

Endoderm Mesoderm Ectoderm

NATure AGiNG | www.nature.com/nataging

http://www.nature.com/nataging


TECHNICAL REPORTNATURE AGING

as cell composition is known to change with age in many tissues1,24. 
However, to our knowledge, there are currently no cell-type-specific 
RRBS mouse methylation datasets with a wide age range that we 
could use as the input reference dataset of our scAge approach, or 
as input to reference-based, cell-type deconvolution algorithms46. 
Reference-free deconvolution algorithms may hold promise in this 
regard, but in our testing the lack of definitive cell-type labels, com-
bined with the large influence of age on methylation patterns at crit-
ical CpGs, currently precludes the robust use of these techniques47. 
It also remains to be explored how epigenetic age interfaces with 
differentiation at the cellular level, how individual aging trajectories 
of cells change with time, how biological age is transferred during 
events such as mitosis and, finally, how these predictions reflect the 
fundamental biological state of cells.

Taken together, we find that the aggregation of multiple single-
cell predictions provides an accurate average measure of the age of a 
particular tissue. However, our single-cell clock framework concur-
rently uncovers some heterogeneity in the aging trajectories of indi-
vidual cells. It was previously suggested that current bulk epigenetic 
clocks may function partly by tracking changes in tissue composi-
tion with age, and this new approach may serve to elucidate to what 
extent this occurs at single-cell resolution4,38. Our current results hint 
that some cells may undergo accelerated or decelerated epigenetic 
aging, which was previously impossible to ascertain. Nevertheless, 
the age of the majority of differentiated cells was consistent with the 
age of the tissue, arguing against the idea of altered tissue composi-
tion as the sole basis for existing bulk clocks. Thus, scAge revealed 
that individual cell lineages within organisms indeed age.

These findings are particularly in line with recent work that 
uncovered bulk and single-cell cross-tissue gene expression changes 
with age in mice24,48, and with the notions of asynchronous and digi-
tal aging recently put forth49. scAge further showed that certain cells 
destined to become part of the embryo during the process of gastru-
lation are naturally rejuvenated. It would be of particular interest to 
uncover the mechanisms underlying this process, which may form 
the basis of putative rejuvenation therapies.

Our single-cell approach, scAge, may have profound clinical 
applications for mammalian somatic, germline and cancer cells, as 
it may be possible to epigenetically discriminate and map 'young' 
and 'old' cells within heterogeneous tissues via this approach. 
Additionally, our method may be instrumental in assessing the 
rejuvenation process following epigenetic reprogramming, as well 
as in other processes that generate extensive cell-to-cell heterogene-
ity. We present here a framework to profile epigenetic age in single 
cells, with exciting applications at the interface of aging, rejuvena-
tion and emerging single-cell technologies.

Methods
Ethics and animals. Our study complies with all relevant ethical regulations. 
We used publicly available datasets of murine single cells isolated by the original 
authors of the studies, each certifying compliance with local ethical committees 
and regulations. In one study23, hepatocytes were isolated from six C57BL/6J 
mice (three aged 4 months and three aged 26 months). In another38, MuSCs were 
isolated from six C57BL/6;DBA2 F1/JRj mice (three aged 1.5 months and three 
aged 26 months) and, in a third28, embryos were collected from several female 
C57BL/6Babr mice.

Single-cell data processing. For the first study mentioned above23, sequence data 
were downloaded from SRA with sratoolkit 2.10.8 under accession no. SRA344045. 
FASTQ files were pretrimmed before deposition to the SRA. Trimmed sequences 
were mapped to the mm10/GRCm38.p6 genome using Bismark 0.22.3 with the 
option –non_directional, as suggested by the Bismark User Guide v.0.21.0 for 
Zymo Pico-Methyl scWGBS library preparations. Reads were deduplicated, and 
methylation levels for CpG sites were extracted with Bismark50.

For the studies of Hernando-Herraez et al.38, Angermueller et al.27, Smallwood 
et al.25 and Argelaguet et al.28, processed coverage files containing extracted 
methylation levels generated by Bismark were downloaded directly from the 
GEO database with GNU wget 1.17.1 under accession nos. GSE121436 (ref. 38), 
GSE68642 (ref. 27), GSE56879 (ref. 25) and GSE121690 (ref. 28), respectively.

All coverage files were then further processed to scale methylation level to a 
ratio between [0, 1]. While single-cell methylation profiles were almost entirely 
binary, technical considerations such as PCR amplification bias resulted in the 
presence of some intermediate methylation values. To address this, uncertain 
methylation calls of 0.5 were removed before downstream analysis and remaining 
methylation values were rounded to 0 or 1. Only genomic positions on the 
19 mouse autosomes were retained for analysis. Coverage was interpreted as the 
total number of covered methylated and unmethylated cytosines in a CpG context 
on both DNA strands. Average global methylation in single cells was computed as 
the mean of all binary methylation states observed.

Due to the technical considerations of single-cell methylome sequencing, the 
number of CpGs covered in each cell is highly variable (Extended Data Fig. 9a). To 
maximize the numbers of cells for inclusion in our analysis and, while also filtering 
out low-quality dropout cells, we applied a coverage filter of at least 500,000 CpGs 
covered per cell, as previously done by others38. A summary of the single-cell 
datasets used, their accessions and the final cell types and numbers analyzed is 
provided in Supplementary Table 1.

Bulk data processing. To power the predictive capacity of scAge, we created bulk 
reference datasets that estimate the relationship between age and methylation level 
for a large set of CpGs. We downloaded processed bulk RRBS data from the study 
of Thompson et al. deposited in the GEO database under accession no. GSE120132 
(ref. 34). This dataset consists of 549 samples from liver, lung, blood, kidney, adipose 
and muscle tissues with age ranging from 1 to 21 months across three strains of 
mice. Since most single-cell datasets we analyzed were composed of cells from 
C57BL/6J or related mice, we exclusively isolated samples from this strain, resulting 
in 196 samples across six tissues with roughly equal tissue and age distributions. 
These samples formed the basis of the multi-tissue reference dataset. From this 
group, we selected tissue-specific samples for liver, blood and muscle, each with a 
consistent age distribution from young to old (Extended Data Fig. 1).

Methylation fractions in the bulk data were taken as the number of reads 
supporting a methylated status for a CpG over the total number of reads that 
covered this cytosine. To maximize the accuracy of bulk methylation levels 
while also preserving as many sites as possible, only CpG sites for which 90% 
of samples had at least fivefold coverage were retained33. This resulted in a 
final multi-tissue matrix of 196 samples across 748,955 positive-strand CpGs 
on autosomic chromosomes, with some missing values. Of note, the authors of 
the study by Thompson et al.34 concatenated negative-strand CpG information 
to the positive strand, explaining why only positive-strand CpGs formed the 
basis of our training datasets. From this multi-tissue dataset, we created tissue-
specific matrices for liver, blood and muscle tissues. We applied dimensionality 
reduction via principal component analysis (PCA) on all CpG sites to identify 
and remove outlier samples in single-tissue datasets. This also confirmed that 
tissue identity is the main component of variance in bulk methylation data 
(Extended Data Fig. 1b). We created filtered liver-, blood- and muscle-specific 
DNA methylation matrices containing 29 liver samples, 50 blood samples and 
24 muscle samples with ages ranging from 2 to 21 months based on the same 
set of 748,955 positive-strand CpGs, as well as a multi-tissue matrix based on 
196 samples across six tissues.

The scAge framework. To devise an algorithm to ascertain epigenetic age in single 
cells, we were inspired by recently published age predictors of individual bisulfite-
barcoded-amplicon sequencing reads from bulk samples3,7. To begin, we used 
multi-tissue and tissue-specific methylation matrices to compute linear regression 
equations and Pearson correlations between methylation level and age for each 
CpG. These equations were in the form:

f

CpG

(age) = Met = m

CpG

∗ age + b

CpG

where age is treated as the independent variable predicting methylation (Met), and 
m and b are the slope and intercept of the CpG-specific regression line, respectively. 
This enabled the creation of reference linear association metrics between 
methylation level and age for each CpG covered in the training datasets (Fig. 1c).

Next, we intersected binarized methylation profiles of single cells with the 
reference data, producing a set of N common CpGs shared across both datasets 
(Fig. 1c). For each cell, we filtered these N CpGs based on the absolute value of 
their Pearson correlation with age, selecting the most age-associated CpGs in every 
cell. We evaluated several options to perform this selection. On the one hand, 
a specific number n of CpGs sites can be chosen for every cell. However, since 
coverage can vary widely among single cells, we instead opted to use a percentile-
based approach: the top x% age-associated CpGs were selected per cell. We found 
that this enabled more consistent correlation distributions among single-cell 
profiles compared to an arbitrary number n of CpGs for every cell (Extended Data 
Fig. 6). Benchmarking revealed that single-tissue scAge clocks are most accurate 
when few, strongly age-associated CpGs are profiled (top 1%), while multi-
tissue clocks improve in precision as slightly more CpGs are included (top 10%) 
(Extended Data Fig. 7). Due to this, we opted to use a top-1% age-associated CpGs 
cutoff in single-tissue predictions, and top-10% age-associated CpGs cutoff for 
multi-tissue predictions.
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For each selected CpG per cell, we iterated through age in steps of 0.1 months 
from a minimum age to a maximum age parameter. In this work, we selected 
−20 and 60 months as the minimum and maximum values, respectively, to cover 
well past the lifespan of a typical mouse in both directions, and to prevent any 
computation bias in our predictions. These parameters may be changed when 
running the algorithm to any desired resolution and age range. Using the linear 
regression formula calculated per individual CpG in a training set, we computed 
the predicted methylation, f

CpG

(age) which, by the nature of the data, normally 
lies between 0 or 1. If this predicted value was outside of the range (0, 1), it was 
instead replaced by 0.001 or 0.999 depending on the proximity to either value. This 
ensured that predicted bulk methylation values were bounded in the unit interval, 
corresponding to a range between fully unmethylated (0) and fully methylated 
(1). Next, we assumed that the probability of observing a methylated single cell 
derived from a tissue of a given age was approximately equal to f

CpG

(age)—that 
is, Pr

CpG

(age) = f
CpG

(age). As an example, if a particular bulk tissue is 70% 
methylated (methylation, 0.7) at one CpG site, we expect that any random single 
cell from this tissue has a 70% chance of being methylated at that same CpG locus. 
Thus, the probability that a single cell was methylated at that CpG is f

CpG

(age) 
and, conversely, the probability that a single cell was not methylated at that CpG 
is 1 – f

CpG

(age) (Fig. 1d). This provided an age-dependent probability for every 
common CpG retained in the algorithm. An important limitation to consider 
with this approach is that methylation distributions for some CpGs lie close to 
the boundaries of the unit interval, revealing truncated Gaussian distributions 
(Extended Data Fig. 2).

Assuming that all CpGs are independent from each other, the product of each 
of these probabilities will be the overall probability of the observed methylation 
pattern:

P(age) =

n∏

k=1

Pr

k

(age)

where k represents individual CpGs (Fig. 1d,e). Our goal is then to find the 
maximum of that product among different ages (that is, to find the most probable 
age for observing a particular methylation pattern). Practically, we compute 
the sum across CpGs of the natural logarithm of the individual age-dependent 
probabilities, preventing underflow errors that result from large-scale fractional 
products. This gave us:

P(age) =

n∑

k=1

ln(P
k

(age))

for each age step. By harnessing the relationship of methylation level and age at 
many CpGs, these logarithmic sums ultimately provide a single likelihood metric 
for every age that a single cell comes from a bulk tissue of that age. Finally, we select 
the age of maximum likelihood as our predictor of epigenetic age for a single cell 
(Fig. 1e).

Single-cell profile simulations. To corroborate our findings, we investigated the 
capacity of scAge to profile epigenetic age in simulated single-cell profiles. For 
this, we used the 29 filtered bulk liver samples described above (Extended Data 
Fig. 1) and created ten simulated binary single-cell methylome profiles for each 
sample using a random Bernoulli distribution, with the probability parameter set 
to the bulk methylation level (Extended Data Fig. 10a). We observed that mean 
methylation patterns between simulated profiles and bulk data were consistent, 
despite shifting from a fractional to a binary data modality (Extended Data Fig. 
10b). When we applied scAge to simulated profiles comprising the entire set 
of 748,955 CpGs in the bulk data, we observed strong predictive performance 
(r = 0.96) across all age groups with minimal variation between simulated 
cells (mean s.d. = 0.78; Extended Data Fig. 10c). To better account for the low 
and differential coverage observed in real single-cell profiles, we randomly 
downsampled these simulated profiles by a factor of ten and reran the scAge 
algorithm with identical parameters. This simulation similarly showed very strong 
predictive accuracy (r = 0.96), although prediction variance was increased as a 
result of random downsampling (mean s.d. = 1.36; Extended Data Fig. 10d).

Computational and statistical analyses. All analyses were performed using Python 
3.9.2, running with numpy 1.20.2 and pandas 1.2.4 for mathematical computing. 
Figures were generated using matplotlib 3.4.1 in combination with seaborn 0.11.1. 
Welch’s two-tailed t-test assuming unequal variances, implemented in statannot 
0.2.3 and scipy 1.6.3, was used to perform statistical tests between groups. Two-
tailed Pearson correlation analysis was also used for statistical tests. Bonferroni 
corrections were employed to correct for multiple testing where indicated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in this work were obtained from publicly available repositories. 
Processed single-cell coverage matrices were downloaded from GEO under the 

following accession nos.: GSE68642 (ref. 27), GSE121436 (ref. 38), GSE56879 (ref. 25) 
and GSE121690 (ref. 28). Trimmed sequencing files for the hepatocyte/MEF study 
were downloaded from the SRA under accession no. SRA344045 (ref. 23). Bulk 
processed methylation data used for model training were downloaded from GEO 
under accession no. GSE120132 (ref. 34).

Code availability
The scAge framework is publicly available at https://github.com/alex-trapp/scAge.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Bulk training data characteristics and dimensionality reduction. a) Age distributions for bulk training data in liver (n = 29), blood 

(n = 50), muscle (n = 24), and multi-tissue (n = 196) datasets, stratified by gender (female, blue; male, orange). b) Principal component analyses (PCA) 

across 748,955 CpG sites in liver, blood, muscle, and multi-tissue methylation matrices. For single-tissue datasets, black circles encompass samples that 

were retained for linear model training to exclude outliers and improve model accuracy. The number of samples before and after filtration is shown in the 

bottom right of each panel. Color scales depict the age in months of the animal (from young, yellow to old, purple). c) Age distribution in the multi-tissue 

dataset (n = 196), stratified by tissue type (blood, red; liver, orange; muscle, green; kidney, brown; adipose, yellow; lung, pink).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | relationship between age and bulk methylation level in age-associated CpG sites in liver. a) Kernel density estimation plots for 

the top 5 positively and negatively age-correlated CpG sites in the bulk liver data (based on n = 29 samples). CpG genomic positions are shown above 

each panel, along with the Pearson correlation coefficient (r) between methylation level and age. Colors correspond to the ages of mice (2 m, blue; 10 m, 

orange; 20 m, red). b) Representative scatterplots showing the relationship between age and methylation level in strongly positively (left) and negatively 

(right) age-associated CpG sites. Jitter was applied to the x-axis (age) purely for visualization purposes. Regression lines (grey) with 95% confidence 

intervals (light grey) are shown. Pearson correlation coefficients (r) and associated p-values (p) are shown. Two-tailed Pearson correlation analysis was 

employed for statistical testing, with statistics for each model treated independently without correction. Colors correspond to the ages of mice (2 m, blue; 

10 m, orange; 20 m, red).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Global methylation, coverage, and scDNAm predictions in embryonic fibroblasts and hepatocytes with outliers. a) Bar plot of 

mean global methylation (top) and CpG coverage (bottom) in single mouse embryonic fibroblasts and hepatocytes. Each bar represents one cell. MEFs are 

shown in green, young hepatocytes in blue, and old hepatocytes in red. b) Predicted epigenetic age versus chronological age (top) in all young hepatocytes 

(blue, n = 11) and old hepatocytes (red, n = 10) across liver (left), multi-tissue (middle) and blood (right) models. Jitter was applied to x-axis (chronological 

age) strictly for visualization purposes. Pearson correlation (r), the associated p-value (p) and the median absolute error (MedAE) are shown. Two-tailed 

Pearson correlation analysis was employed for statistical testing with statistics for each model treated independently without correction. Violin plots show 

kernel density estimation of the data, with the median displayed by a black line. Further analysis of outliers is shown in Extended Data Fig. 5. Dots depict 

individual cells. c) Predicted epigenetic age, grouped by cell type, across liver (left), multi-tissue (middle) and blood (right) models for MEFs (n = 5, green), 

young hepatocytes (n = 11, blue), and old hepatocytes (n = 10, red). Two-tailed Welch’s t-test was used for statistical testing, and Bonferroni correction was 

applied to correct for multiple testing. Box plots show median levels and the first and third quartile, whiskers show up to 1.5× the interquartile range. Dots 

depict individual cells.
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Extended Data Fig. 4 | Likelihood distributions in young and old hepatocytes. Likelihood distributions for all young (blue, n = 11) and old (red, n = 10) 

hepatocytes, based on scDNAm results from the liver model sampling the top 1% age-associated CpGs per cell. Black lines indicate age of maximum 

likelihood (predicted epigenetic age), which is depicted numerically in the top right or left corners of each panel. Labels indicate cell identifier, as given in 

the study metadata on the SRA. Likelihood was calculated by taking the exponential of the log-likelihood profiles, which was subsequently scaled between 

0 and 1 to normalize distributions between cells.
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Extended Data Fig. 5 | Outlier analysis and lack of relationship between scDNAm age and technical covariates in hepatocytes and fibroblasts. a) 

Scatterplot depicting the strongly linear relationship between CpG coverage in a single cell (x-axis) and the number of CpGs intersecting with the liver 

training dataset (y-axis) for embryonic fibroblasts (green, n = 5), young hepatocytes (blue, n = 11) and old hepatocytes (red, n = 10). Regression line (grey) 

is shown with a 95% confidence interval (light grey). Outlier samples based on scDNAm predictions and PCA analysis in the original study are within the 

black circle, highlighting these cells are not outliers in regard to CpG coverage. Pearson correlation coefficient (r) and the associated two-tailed p-value 

(p) are shown. b) Mean global methylation of embryonic fibroblasts (green, n = 5), young (blue, n = 11) and old hepatocytes (red, n = 10). Outlier samples 

detected during dimensionality reduction and age predictions are circled in black. c, d) Scatterplots depicting the relationship of mean global methylation 

(left) and CpG coverage (right) with predicted epigenetic age (scDNAm age) for single embryonic fibroblasts (n = 5, green) and hepatocytes (young, 

n = 11, blue; old, n = 10, red) across liver and multi-tissue datasets with the two outliers included (c) and with the two outliers excluded (d). Regression lines 

(grey) are shown with a 95% confidence interval (light grey). Two-tailed Pearson correlation analysis was used for statistical testing, with each analysis 

treated independently without correction. Pearson correlation coefficients (r) and associated two-tailed p-values (p) are shown. No significant relationship 

is observed in any comparison. The legend in panel (a) applies to all of the panels in this figure.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pearson correlation distributions and predicted ages in single cells based on various CpG selection parameters. a) Violin plots 

depicting the distribution of the Pearson correlation coefficient of scAge-chosen CpGs in embryonic fibroblasts (n = 5, green) and hepatocytes (young, 

n = 11, blue; old, n = 10, red) based on the selection method. On the left, a percentile-based method is employed, wherein the top x% absolute age-

associated CpGs are chosen in every cell. On the right, a defined number of CpGs is chosen across every cell, leading to more uneven distributions due 

to differential cell CpG coverage. Various parameters for both methods (grey boxes) and their effects on the distributions are shown. Violin plots depict 

kernel density estimations of the data. Inner boxplots depict median levels (white dot) and first and third quartiles, with whiskers extending up to 1.5x the 

interquartile range. The central legend applies to all subpanels in this panel. b) Predicted epigenetic ages using the liver model for all embryonic fibroblasts 

(n = 5) and hepatocytes (young, n = 11; old, n = 10), based on the selection method (left, percentile; right, defined number of CpGs) and parameter. Colors 

depict the % or number of CpGs chosen for scAge computations (top 0.5% or 100 CpGs, blue; top 1% or 500 CpGs, orange; top 5% or 1,000 CpGs, green; 

top 10% or 5,000 CpGs, red).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Single-cell epigenetic age predictions differ based on selection mode and training dataset. Predicted epigenetic ages in all 

embryonic fibroblasts (green, n = 5), young hepatocytes (blue, n = 11) and old hepatocytes (red, n = 10) using the liver model (left two columns) and multi-

tissue models (right two columns) across different CpG selection modes and parameters. Parameters are labeled in grey boxes above the plots. Bonferroni 

corrections were applied to account for multiple testing. Pearson correlation (r), its associated p-value (p), and the median absolute error (MedAE) are 

shown for each panel. Two-tailed Pearson correlation analysis was employed for statistical testing. Dashed lines represent the chronological age of animals 

from which hepatocytes were obtained (4-months-old, dark blue; 26-months-old, dark red). Boxplots depict median levels and the first/third quartile, with 

whiskers extending up to 1.5x the interquartile range. Individual cells are depicted as points.

NATure AGiNG | www.nature.com/nataging

http://www.nature.com/nataging


TECHNICAL REPORT NATURE AGINGTECHNICAL REPORT NATURE AGING

Extended Data Fig. 8 | Distribution of Pearson correlation coefficients and linear association metrics across training datasets. a, b) Kernel density 

estimation plots for (a) Pearson correlation coefficients and (b) linear regression coefficients in processed training reference data for liver (orange), blood 

(red), muscle (green), and multi-tissue (magenta) datasets. Individual distributions are labeled on the upper right side to indicate which tissue is depicted.

NATure AGiNG | www.nature.com/nataging

http://www.nature.com/nataging


TECHNICAL REPORTNATURE AGING TECHNICAL REPORTNATURE AGING

Extended Data Fig. 9 | Single-cell coverage distributions and the effect of coverage on scAge predictions. a) Distributions of single-cell CpG coverage 

across all 5 datasets analyzed in this study. Dotted lines represent the cutoff value that was used for downstream analysis (at least 500,000 CpGs 

per cell), in line with previous work38. Given the low sample size and relatively high coverage, no filtration was applied to cells from the Gravina et al. 

study23. The number of cells passing the filtration cutoff in each dataset is further detailed in Supplementary Table 1. Violin plots depict the kernel density 

estimation of the data. Inner boxplots depict the median (white dot), as well as the first/third quartile (grey box), with whiskers extending up to 1.5x the 

interquartile range. Individual dots depict single cells. Colors align with those presented in main figures (Gravina et al: MEFs in green; young hepatocytes in 

blue; old hepatocytes in red; Hernando-Herraez et al: young MuSCs in blue, old MuSCs in red; Angermueller et al and Smallwood et al: 2i ESCs in yellow, 

serum ESCs in pink; Argelaguet et al: E4.5 cells in purple, E5.5 cells in dark blue, E6.5 cells in dark green, E7.5 cells in light green). b) Scatterplot depicting 

the relationship between CpG coverage and predicted epigenetic ages in all unfiltered muscle stem cells38 (n = 275). Dotted black line represents the cutoff 

of 500,000 CpGs per cell, after which predictions greatly stabilize. MuSCs from young animals are shown in blue, and those from old animals are shown in 

red.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Single-cell profile simulations and epigenetic age predictions. a) Heatmap of methylation values in bulk and simulated single-

cell profiles. 100 CpGs were randomly selected from a bulk liver sample34, and random Bernoulli distributions were used to generate 10 simulated binary 

profiles per bulk sample. As the bulk methylation level (top) of CpGs increases from left to right, more simulated single-cell profiles are methylated as 

opposed to unmethylated. Color scale depicts methylation level from unmethylated (0, black) to methylated (1, white). b) Mean global methylation of 

bulk samples (blue) and 10 simulated full binary profiles per sample (orange) across 29 bulk liver RRBS samples, arranged from young (left) to old (right). 

Simulated binary profiles cluster with their bulk source, despite shifting from a fractional to a binary data modality. c, d) Predicted epigenetic age for each 

simulated binary profile with (c) full coverage of 748,955 CpGs per simulated profile and (d) randomly 10x downsampled coverage of 74,896 distinct 

CpGs per simulated profile. Profiles are arranged from young (left) to old (right). Age of the animals is denoted by the color of the points (2 m, light green; 

10 m, dark green; 20 m, dark blue). Two-tailed Pearson correlation analysis was employed for statistical testing, with statistics for each simulation treated 

independently without correction. The Pearson correlation coefficient (r), the associated two-tailed p-value (p), median absolute error (MedAE) and mean 

of the standard deviations for each sample (μ(σ)) are shown. Violin plots in (c) and (d) depict the kernel density estimation of the data. Inner boxplots 

depict the median (white dot), as well as the first/third quartile (grey box), with whiskers extending up to 1.5x the interquartile range. Individual dots 

depict simulated single cell profiles.
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