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The world’s rapidly ageing population has become one 
of society’s greatest challenges1. By 2050, it is projected 
that in many parts of the world 25% of the population 
will be aged >65 years2, yet steady increases in life expec-
tancy (lifespan) are not concomitant with an equivalent 
increase in healthspan (disease-free, healthy lifespan). 
Instead, the ageing population exhibits rising morbidity 
rates and a decline in quality of life3,4, which comes at 
social and economic costs1,5.

Ageing is the time-dependent decline in functional 
capacity across the lifespan, characterized by the accu-
mulation of molecular damage resulting from a dimin-
ished damage-repair capacity6–8. Such damage includes 
changes that impair the structure and function of all tis-
sues over chronological time (that is, primary ageing), as 
well as deleterious changes that are aggravated by envi-
ronmental perturbation and disease (that is, secondary 
ageing)9–11. Theories of ageing can be grouped into two 
main schools of thought12. One theory is that ageing is 
a tightly regulated, programmed process, the patholog-
ical consequences of which are an extension of normal 
biological processes, such as growth and development. 
The second theory is that ageing is a consequence of 
accumulated, lifelong damage and stochastic errors that 
eventually impair the capacity for tissue maintenance. 
In either case, pan-tissue deterioration associated with 
ageing is hypothesized to be underpinned by a common 
set of cellular and molecular defects, considered the 
‘hallmarks of ageing’, which can be grouped into three 
categories, namely the primary hallmarks that cause 
the damage; the antagonistic hallmarks that com-
pensate for the primary hallmark-induced damage; 
and the integrative hallmarks responsible for age-
ing phenotypes, which emerge when the damage 
accumulation caused by the primary and antago-
nistic hallmarks can no longer be compensated for7. 

Alterations to the epigenome are considered primary  
hallmarks of ageing7.

The epigenome is a dynamic maintenance system 
operating via a range of chemical modifications that 
control chromatin organization and regulate gene 
activity without altering the DNA sequence13,14. The 
best characterized epigenetic mark is DNA methyl-
ation (DNAm), which is the covalent attachment of a 
methyl group to the fifth carbon of a cytosine residue 
(5-methylcytosine (5mC)). In mammals, DNAm usu-
ally occurs at cytosine–guanine dinucleotides (CpGs)6 
and carries out distinct functions in different genomic 
regions15. Patterns of DNAm (the ‘methylome’) are laid 
down early during embryonic development and are 
maintained through cell divisions to preserve cell iden-
tity. As such, the methylome strongly differs between cell 
types within the same tissue and between tissues16,17. In 
addition, throughout the lifespan, DNAm can be added 
by DNA methyltransferases (DNMTs) or removed by 
ten–eleven translocation (TET) enzymes14 and, because 
the methylome operates at the interface between the 
genome and the environment6, it can ‘shift’ in response 
to environmental stimuli18, such as exercise19–21, diet22,23, 
smoking24–26 or pollutants27,28. Moreover, the integrity 
of the methylome is closely associated with healthy 
ageing, with altered DNAm patterns being associated 
with a broad range of age-related diseases, including 
Alzheimer disease29–33, cardiovascular disease (CVD)34–36 
and cancer37–40.

Despite our current understanding of the ageing 
methylome, several critical questions remain unresolved. 
Indeed, it is unclear which differences in DNAm are 
associated with primary and secondary ageing, whether 
the methylome ages differently in different tissues and 
which biological mechanisms underpin changes in 
DNAm throughout the lifespan. This Review aims to 
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answer these questions by painting a comprehensive pic-
ture of the ageing human methylome. First, we review 
the different types of changes in DNAm that have been 
observed with age, including those occurring at the level 
of individual CpGs (such as differential and variable 
DNAm) and those that occur at the level of the whole 
methylome, including epigenetic clocks, entropy and 
correlation networks. We also describe the strength of 
evidence linking these changes to age-related diseases. 
Then, we propose molecular mechanisms that explain 
these changes and show how environmental factors that 
accelerate or decelerate age-related changes in DNAm 
can provide evidence that helps to demonstrate these 
mechanisms. Finally, we propose future directions for 
the field.

The ageing human methylome

Our understanding of DNAm changes that accrue 
over time is bound by the statistical and computational 
methods used to quantify these changes (TAble 1). Two 
common approaches to quantify age-related DNAm 
changes are to look for CpG sites displaying differ-
ences in average DNAm levels or in DNAm variance 
between younger and older individuals17. Although these 
approaches are widely used, they are one-dimensional 
measurements that focus only on individual, rather than 
multiple, CpGs. Changes at the whole methylome level 
can also be quantified using single measurements, such 
as entropy, or changes in coordinated DNAm levels at 
multiple CpGs, such as correlation networks41–43.

Changes in average DNAm

Early studies investigating global changes in DNAm, 
using various chromatography techniques, reported 
that a global loss of DNAm occurs with age in certain 
human and rodent tissues44–47. However, later stud-
ies using advanced sequencing technologies, such as 
whole-genome bisulfite sequencing, reported conflicting 
evidence. Whereas a global decrease in DNAm with 
ageing has been observed in human T cells48, studies 
in other human cell types (for example, in cells of the 
brain, epidermis, muscle, heart and liver) and rodent tis-
sues (for example, in the liver and hippocampus) have 
observed no notable shifts in global DNAm levels during 
ageing49–54. These discrepancies suggest that the overall 
effect of global DNAm might be dependent on the inves-
tigative methods used, which involve vastly different 
detection techniques, or the specific tissue of interest.

Technological advancements, such as microar-
rays, reduced representation bisulfite sequencing and 
whole-genome bisulfite sequencing, have since prompted 
the development of epigenome-wide association studies 
(EWAS), which have revealed predictable and consist-
ent shifts in DNAm at specific CpG sites (termed dif-
ferentially methylated positions (DMPs)) across the 
lifespan27,40,55–58. DMPs exhibit a ‘shift’ in their average 
methylation level as humans age17 (FiG. 1), with DNAm 
either increasing (hypermethylation) or decreasing 
(hypomethylation) at the CpG site59,60. Age-related DMPs 
can be identified with linear models, implemented in 
packages such as limma61 (TAble 1). Differential meth-
ylation can also occur over a whole genomic region, as 

CpG sites within ~500 bp are typically highly correlated; 
these regions form age-related changes in mean DNAm 
levels over multiple, contiguous CpGs, and are referred 
to as differentially methylated regions (DMRs)17. 
Various statistical algorithms can detect DMRs, such as 
DMRcate62, bumphunter63, comb-p64, blockFinder65 and 
Probe Lasso66. Given that DMPs and DMRs are closely 
correlated with chronological age, these sites capture 
age-associated changes in DNAm over the lifespan67.

Epigenetic clocks: predictors of age

Subsets of DMPs have been used to build both 
multi-tissue and tissue-specific ‘epigenetic clocks’ capa-
ble of predicting the chronological age of a sample with 
high accuracy60,68–71. The first epigenetic clocks, includ-
ing the saliva clock by Bocklandt et al.71, Hannum et al.’s 
whole blood clock41 and Horvath’s pan-tissue clock60, 
were developed using a machine learning algorithm 
trained to predict chronological age. By computation-
ally distilling the widespread DMPs shared by individ-
uals across the lifespan, these algorithms can accurately 
select several CpG sites that predict chronological 
age, a parameter known as ‘DNAm age’ or ‘epigenetic 
age’41,60,67,72. The majority of epigenetic clocks are built 
using the elastic net regression algorithm67,73,74 (TAble 1). 
Typically, chronological age (or a transformed version of 
age or mortality risk) is regressed on a set of CpG sites 
and the algorithm selects the most informative CpGs 
from a pool of tens of thousands of potential sites to 
make an age prediction72,75.

A multitude of specialized epigenetic clocks have been 
developed, including tissue-specific clocks70,76–78, clocks 
for different animal species79–90 and even multi-tissue, 
multispecies clocks56. For example, a multi-tissue epige-
netic clock captures the DNAm changes that are intrin-
sic to the ageing methylome, reflected by age-related 
DNAm patterns that are consistently observed across 
many tissues and cell types55,60,76,91–93. Conversely, 
tissue-specific clocks capture intrinsic changes as well 
as extrinsic or within-tissue DNAm changes, including 
those that reflect age-related changes in tissue or cell 
composition72,92,93. In the last year, a novel statistical 
framework for profiling epigenetic age at the single-cell 
resolution, ‘scAge’, was introduced, providing novel 
insights into the heterogeneity in epigenetic ageing of 
individual cell types94.

Notwithstanding the ability of epigenetic clocks to 
predict chronological age, it is important to remember 
that each clock is simply a multivariate age predictor 
generated from a subset of CpGs and does not capture 
the entire ageing methylome95. Indeed, the specific CpG 
sites selected by different clocks often do not overlap 
and different epigenetic clocks capture different biolog-
ical signals67. As such, the clock concept should not be 
confused with global methylation signatures of ageing.

Increase in DNAm variance

Some CpG sites exhibit increased variability in DNAm 
with age and are known as age-associated variably meth-
ylated positions (VMPs)41,59,96–101. This phenomenon of 
‘epigenetic drift’ in ageing was first identified in twin stud-
ies, which found that the methylomes of monozygotic 
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twins diverge as they get older97,102–104. VMPs therefore 
capture the stochastic changes in DNAm that accu-
mulate with age59 and are largely driven by differences 
in exposure to environmental factors that accumulate 
throughout the lifespan27,93,97,105. Unlike DMPs, VMPs do 

not necessarily display shifts in their mean DNAm over 
time but, instead, show increases in DNAm variance, as 
a result of aberrant and unpredictable changes (that is, 
divergence from the mean)17,41,59,97,98 (FiG. 1). Although 
some overlap between DMPs and VMPs does exist, 

Table 1 | Statistical tests and software for analysing age-associated changes in DNAm

Feature 
(description)

Statistical test Software package 
(function)

Advantages Disadvantages Refs

DMP (CpG site 
that changes in 
average DNAm 
with age)

Linear model limma (lmFit) Provides a genome-wide view 
of methylome shifts shared by 
individuals over time

Useful for age-prediction algorithms

Building blocks of epigenetic clocks

Detected in relatively small sample 
sizes

Analysis excludes informative 
CpGs that change in variance 
as a function of age but not in 
average methylation

59,61,282

DMR (region 
of multiple, 
contiguous DMPs, 
such as of CpGs)

Different software use 
different statistical 
approaches

minfi (DMRcate, 
blockFinder), 
bumphunter, 
comb-p, ChAMP 
(Probe Lasso)

DNAm within ~500 bp is typically 
highly correlated

DMR analysis reduces spatial 
redundancy

DNAm altered over a region may 
offer better functional relevance 
(that is, directly linking to gene 
expression changes)

Isolated CpG sites that might 
be informative are discarded

Methylation arrays offer 
unequal coverage, potentially 
limiting the number of 
important regions discovered

17,63–66, 

283–285

VMP (CpG site 
with increased 
variability in 
DNAm with age)

Breusch–Pagan test and 
White test to identify 
VMPs with age as 
continuous variables; 
Bartlett’s test, Levene’s 
test and Brown–Forsythe 
test to identify VMPs 
between discrete groups

lmtest (bptest), 
DiffVar (modelled 
off Levene’s test)

Individual CpGs that change in 
variability with age inform of 
DNAm changes that differ between 
individuals over time

Large sample sizes across a 
broad age range are required 
for sufficient statistical power

Sparsity of large data sets in 
tissues other than blood could 
hamper detection of VMPs 
across different tissues and cells

17,59,99

VMR (genomic 
region of CpGs 
displaying 
variable DNAm 
changes with age)

Different software 
packages use different 
statistical approaches

minfi (DMRcate) Genomic regions that are rich in 
VMPs may offer better functional 
relevance

Isolated CpGs that might be 
informative are discarded

Methylation arrays have limited 
coverage, which could exclude 
regions of importance

59,62,65

Entropy (a single 
quantifiable 
measure of the 
methylome-wide 
DNAm changes 
for a sample at a 
point in time)

A Shannon entropy 
probability formula 
adapted for DNAm data

None currently 
available

A single entropy value provides 
a snapshot of the amount of 
epigenetic ‘noise’ or information loss 
for a single sample at a particular age

Can be calculated for a specific set 
of CpGs to identify regions of high 
versus low methylation disorder 
associated with ageing

Two samples of the same age 
from two different batches are 
difficult to compare

41,59, 

109,111

Correlation 
networks (clusters 
of co-methylated 
CpGs form 
‘modules’ that 
change with age)

Pairwise correlations 
are used to construct 
co-methylation 
networks; modules 
are identified using 
hierarchical clustering

WGCNA Adopts a systems biology approach 
to explore the interconnectedness of 
the entire methylome, alleviating the 
burden of testing individual CpGs

Multiple data sets can be 
simultaneously analysed as a 
network-based meta-analysis 
technique

Technique does not assess 
modules that become 
disconnected with age

42,43,126

Epigenetic age 
(output of an 
epigenetic clock, 
which estimates 
age from a 
subset of CpGs 
correlated with 
chronological age 
and age-related 
phenotypes)

Machine learning 
algorithms, such as 
elastic net regression

glmnet Easy method of obtaining the 
epigenetic state of a single sample 
at a point in time

Clocks that capture biological 
ageing parameters can predict 
healthspan and mortality risk

Clocks are used to assess the success 
of longevity interventions and 
rejuvenation experiments

A narrow measure of the 
methylome

Age estimation depends on 
the data sets used to build the 
clock, as well as parameters 
that the clock was trained 
against

72,286

CpG, cytosine–guanine dinucleotide; DMP, differentially methylated position; DMR, differentially methylated region; DNAm, DNA methylation; VMP, variably 
methylated position; VMR, variably methylated region; WGCNA, weighted gene correlation network analysis.
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characterized by CpG sites that display both a change in 
mean DNAm and variance with age, a notable proportion 
of VMPs are independent of differential DNAm shifts,  
and represent their own class of age-related DNAm 
changes59. Intriguingly, although the overwhelming 
majority of VMPs increase in variance across the lifespan, 
a small proportion of VMPs decrease in variance with 
age41,97–99,101, with a tendency to approach fully methyl-
ated or unmethylated states (a methylation fraction of 0 or 
100%)101. Nonetheless, we cannot rule out the possibil-
ity that variability relates to differences in technologies, 
which can show more error at intermediate DNAm levels 
(DNAm levels near 50%).

Various statistical tests have been used to identify 
VMPs, all of which detect heteroscedastic VMPs (that 
is, change in variance) (TAble 1). For example, to test for 
heteroscedasticity in DNAm with age as a continuous 
variable, either the breusch–Pagan test41,59,100,106,107 or the 
White test102 can be used. To test for heteroscedasticity in 
DNAm between discrete groups (for example, between 

newborns and centenarians), bartlett’s test, levene’s test 
or the brown–Forsythe test can be employed17,97. The 
R package DiffVar has been developed to detect VMPs 
in microarray data modelled off Levene’s test99. Variably 
methylated regions (VMRs), which are genomic regions 
of CpGs displaying variable DNAm, can be detected 
using packages such as DMRcate17,62,65. Thus, unlike 
DMPs, VMPs increasingly diverge from chronologi-
cal age, and may therefore capture the inter-individual 
variation in DNAm that occurs with age.

Increase in DNAm entropy

Although DNAm is binary in nature, the DNAm frac-
tion of a particular CpG site is often measured over a 
population of cells and is represented as a gradient (from 
0 to 100%). In the mammalian genome, CpG sites are 
typically highly methylated or unmethylated, with 
few sites showing intermediate levels of methylation. 
However, at many CpG sites, methylation levels shift 
over time from states of high or low methylation to an 
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Fig. 1 | Linear models classify age-associated changes in DNAm. Linear 

plots (top) and corresponding density plots (bottom) represent 

chronological changes at individual cytosine–guanine dinucleotides (CpGs) 

during ageing. CpGs that change in mean methylation are classified as 

differentially methylated positions (DMPs). A young individual with high 

methylation fraction at a particular DMP can be distinguished from an older 

person with low methylation at the same DMP. DMPs are identified using 
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in variability with age. All VMPs are heteroscedastic. For example, older 

individuals will show striking variability in methylation status at a particular 
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Breusch–Pagan statistical test, which is a two-way linear regression formula. 

First linear model regresses DNA methylation (DNAm) against age and other 

confounders, second linear model regresses the squared residuals of the 

first model against age. α, y intercept; β, regression coefficient for each 

predictor variable. Figure adapted with permission from ReF.41, Elsevier.
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intermediate fraction of ~50%, representing a ‘smooth-
ening’ of the epigenetic landscape41,67 (FiG. 2). CpG sites 
that are hypermethylated or hypomethylated in youth 
become less ordered and predictable at older ages41,67. 
Ageing is therefore associated with a reduction in the 

stringency of epigenetic maintenance systems6,108, where 
small perturbations at individual CpG sites (that is, at 
DMPs and VMPs) cumulatively result in the inability 
of youthful DNAm patterns to be maintained through-
out the lifespan. This observation has been described as 
‘epigenetic chaos’, or loss of information, which increases 
with age109,110.

Studies in blood have quantified these methylome- 
wide DNAm changes as a single measure of ‘entropy’, or 
methylation disorder41,59,100,109,111,112 (TAble 1). Entropy is 
a scientific concept, as well as a quantifiable measure 
of randomness, uncertainty or disorder. Information 
can be subject to entropy, as first introduced by Claude 
Shannon in 1948 as ‘Shannon entropy’ or ‘information 
entropy’, which measures the amount of information in 
a given variable, such as a set of CpG sites113. Entropy 
is low if it is easy to predict the information stored in a 
given variable, because there is less surprise or uncer-
tainty. Entropy increases if a parameter is difficult to 
predict, as it takes on many possible values, and thus 
there is more uncertainty with an increasing number 
of possible outcomes113. For clarity, the uncertainty of a 
single CpG associated with entropy is distinct from the 
stochasticity of a VMP. Whereas VMPs capture a vari-
able change with age, entropy is linked to the ability to 
predict the methylation status of a CpG for any given cell 
(FiG. 2). For instance, estimating the CpG status by sam-
pling a pool of cells, where half of the cells are methy-
lated and the other half are unmethylated, would yield 
a high entropy value because there is only a 50% chance 
one could accurately estimate the methylation fraction.

In a single measure, Shannon entropy can therefore 
estimate the amount of information within a set of CpG 
sites and quantify the total accumulation of differen-
tial age-related changes in DNAm at all CpG sites41,109 
(FiG. 2). An increase in Shannon entropy with age implies 
that the ageing methylome shifts to an epigenetic state 
of high disorder (that is, it tends towards a methylation 
fraction of 50%), displaying increased ‘chaos’ or infor-
mation loss over time41,59,84,109,112,114. Shannon entropy is 
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measured using a probability formula, which has been 
adapted to handle DNAm data115.

Our current understanding of epigenetic entropy and 
age is largely derived from studies in blood. Considering 
that tissues age at different rates116, future investigations 
should explore whether these tissue-specific differ-
ences are underpinned by differing rates of entropic 
decay. Moreover, our understanding of the mechanisms 
underlying entropy are confined to studies on bulk tis-
sue, rather than single cells. As cell to cell heterogeneities 

increase with age117, it is plausible that increases in 
entropy measured at the tissue level might simply reflect 
DNAm variability between individual cells. Indeed, 
novel approaches to estimate the epigenetic age of single 
cells suggests that individual cell types do not age at the 
same rate94. Thus, measuring entropy at the single-cell 
resolution might reveal interesting entropy dynamics 
compared with whole tissue analyses, such as whether 
cells exhibiting a reduced epigenetic ageing rate have a 
slower rate of entropic decay.
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Correlation networks

The identification of DMPs and VMPs provides valu-
able insights into the shift of DNAm patterns with 
age at individual CpGs. However, the methylome 
forms a complex network of coordinated CpG sites 
that show similar methyl ation status (that is, they are 
co-methylated)54,58,118–120. CpG co-methylation can 
have a physical explanation, as CpGs tend to influence  
the methylation status of other nearby CpGs, owing to the  
presence of DNMT and TET enzymes that maintain 
co-methylation dynamics and epigenetic status during 
cell divisions119,121. Long-range co-methylation relation-
ships also exist118,122,123, as distal CpGs can be brought 
into spatial proximity upon chromatin folding120. Both 
local and long-range CpG correlations reflect the 
three-dimensional architecture of DNA, and such coor-
dinated DNAm patterns play an important role in regu-
lating cellular activities118,120,123. As such, co-methylation 
between individual CpGs can reflect which biological 
pathways are active, and thus regulate cellular functions, as 
the activity of these pathways depends on the coordinated  
activation and silencing of multiple genes17,124.

DNAm analysis may therefore benefit from adopting 
a ‘systems biology’ approach that encompasses the inter-
connectedness of the entire methylome42,125. Focusing on 
interconnected CpGs narrows the focus on a reduced 
set of entities, which alleviates the issues associated with 
making multiple statistical comparisons (consider that 
typical DNAm data contain hundreds of thousands of 
CpGs) and enhances biological signals. Weighted cor-
relation network analysis, also known as weighted gene 
correlation network analysis (WGCNA), has been used 
to identify clusters of co-methylated CpG sites (mod-
ules) that are associated with ageing in humans, both in 
single tissues, such as saliva71, and across tissues such as 

brain and blood43. WGCNA constructs co-methylation 
networks by measuring the pairwise correlations 
between CpG sites (FiG. 3) and then transforming this 
correlation into a measure of proximity (that is, network 
interconnectedness)42,126 (TAble 1). Highly interconnected 
CpGs are then clustered into modules that typically 
contain hundreds or thousands of CpGs. To represent 
a sample’s profile at each of these modules, DNAm 
levels at the CpGs contained within each module are 
‘summarized’ using a data reduction technique such as 
singular value decomposition (SVD). For a given module, 
each sample’s profile is then represented by the module 
eigengene, which represents a ‘summary’ of the DNAm 
levels at the CpGs within that module. Module mem-
bership, which is measured by the correlation between 
a CpG and the module eigengene, determines the con-
nectivity of the CpGs in the module. CpGs with high 
module membership are considered highly connected 
‘hub’ genes42,126,127. Modules that are present in multiple 
data sets represent common and robust CpG relation-
ships that reflect true underlying biology and not tech-
nical noise. These data can be used to determine whether 
older individuals display distinct DNAm patterns at 
those modules (that is, at highly correlated CpGs)72 and 
what biological pathways these modules reflect.

Although WGCNA reveals whether interconnected 
CpGs become simultaneously hypomethylated or hyper-
methylated with age, it does not show whether there are 
CpGs that become increasingly disconnected with age. 
This disconnect would translate to CpGs that are highly 
correlated in young people but poorly correlated in older 
people (FiG. 3). Such loss in connectivity could impact 
cellular function, owing to a loss of coordinated gene 
expression and the reduced activation of biological path-
ways. Few studies have assessed methylome connectivity 
using methodologies other than WGCNA48,124. However, 
in one such study comparing the correlation patterns of 
neighbouring CpGs by calculating Spearman’s rank cor-
relation coefficient, reduced correlations in the methyl-
omes of centenarians compared with neonates were 
observed48. As the interdependence between neighbour-
ing CpGs ensures epigenetic fidelity during mitosis119,121, 
neighbouring CpGs that lose their correlation with age 
could gradually introduce noise that is propagated dur-
ing subsequent cell divisions. Coordinated changes in 
DNAm can also give rise to differential transcription  
factor–DNA binding during ageing91, due to altered 
DNAm at transcription factor binding sites compromising 
binding of transcription factors91,128.

DNAm changes as hallmarks of ageing

Despite identical rates of chronological ageing, there 
are marked disparities in individual rates of biologi-
cal ageing3,129,130. As such, biological age represents the 
functional status of body tissues and the organism as a 
whole, as well as the age-associated risk of disease and 
disability3,8,67,68, all of which are influenced by intrinsic fac-
tors (for example, sex and genetics) and the cumulative,  
lifelong exposure to environmental stimuli105.

In this section, we review the evidence that DNAm 
is a hallmark of ageing against the previously published 
criteria7 that changes arise during normal ageing, the 

White test

A statistical test for 

heteroscedasticity of the  

errors in a regression model. 

Unlike the breusch–Pagan  

test, the White test can be 

used to identify both linear  

and non-linear forms of 

heteroscedasticity.

Bartlett’s test

A statistical test for 

heteroscedasticity between 

two discrete groups. This test 

assumes normality for each 

group and is thus sensitive  

to departures from normality.

Levene’s test

A statistical test for 

heteroscedasticity that 

compares deviations from  

the mean between groups.

Brown–Forsythe test

A statistical test for 

heteroscedasticity that 

compares deviations from  

the median between groups.

R package

A collection of functions,  

code, documentation and data 

bundled into a standardized 

format that can be downloaded 

and installed by R users.

Singular value decomposition

(SVD). A technique used to 

reduce the dimensionality of  

a data matrix. This is useful for 

identifying sources of variation.

Fig. 3 | Correlation networks reveal connectivity in the ageing methylome. a | Highly 

correlated cytosine–guanine dinucleotides (CpGs) that exhibit coordinated methylation 

changes with age (top panel; raw DNA methylation (DNAm) matrix and graph) can 

be summarized into highly informative modules (bottom right) using weighted gene 

correlation network analysis (WGCNA). The WGCNA package measures strength  

of correlation between CpGs, taking into account the methylation fraction (MF) for each 

sample at each CpG. First step involves constructing a similarity matrix from the raw 

DNAm matrix, a matrix of absolute values of correlation coefficients between CpGs. 

Note that s is similarity measure of MFs for ith and jth CpGs. This is followed by 

constructing an adjacency matrix, that uses a soft-thresholding parameter to measure 

strength of connection, whilst preserving underlying correlation relationship. Adjacency 

measure (a) for ith and jth CpGs calculated by raising the similarity measure to the power 

of β, the soft-thresholding parameter. For module detection, a topological overlap measure 

(TOM) is used to measure interconnectedness (proximity) of CpGs and is combined  

with unsupervised hierarchical clustering to organize CpGs with similar co-methylation 

dynamics. Gradient of TOM represents degree of interconnectedness, whereby white 

denotes low TOM (or low interconnectedness) and red denotes higher TOM (or higher 

interconnectedness). Modules then defined by ‘cutting’ branches of identified clusters, 

using methods such as Dynamic Tree Cut, which cuts branches of a module based on their 

shape. b | Module eigengenes are a mathematical construct used to summarize module 

connections into a single value using a dimensionality reduction technique such as 

singular value decomposition (SVD) (left). This is useful because modules often contain 

hundreds or thousands of CpGs. Module eigengenes can be correlated to specific traits  

of interest, such as age (right). Module eigengene that is positively correlated with  

age implies that all CpGs within that module become similarly hypermethylated with age.  

PC refers to the principal component; the output of the dimensionality reduction 

technique. The first PC is the module eigengene. c | Future work could investigate 

co-methylation relationships that become disconnected with age.
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experimental acceleration of epigenetic ageing acceler-
ates ageing or the experimental deceleration of epigenetic  
ageing slows ageing down.

Age-related changes in DNAm and disease

Altered DNAm patterns, compared with healthy indi-
viduals, have been observed for many age-related dis-
eases. Changes in DNAm are seen in left ventricles 
and blood of patients with CVD34–36. Individuals with 
atherosclerosis show aberrant DNAm patterns in blood 
(for example, monocytes) and in endothelial and vas-
cular smooth muscle cells (for example, aorta and 
arteries)131–134. Changes in blood DNAm patterns are 
associated with hypertension135 and are suggested to be 
linked to blood pressure alterations136. DNAm changes 
are also observed in adipose, liver and pancreatic islets 
in individuals with type 2 diabetes (T2D)137–140. There 
are DNAm changes in cartilage in individuals with 
osteoarthritis141,142 and in bone in individuals with oste-
oporosis and osteoarthritis143. Changes in DNAm in 

multiple brain regions have been reported in individ-
uals with Alzheimer disease29–33 and are likely to play 
a functional role in Alzheimer disease pathogenesis31. 
DNAm changes in the lens epithelium can cause alter-
ations in gene expression that are associated with the 
development of cataracts144. Moreover, aberrant DNAm 
is a feature across multiple types of cancer145–149.

Many age-associated DMPs overlap with the changes 
in DNAm that are associated with disease, such as in 
Alzheimer disease32, T2D137 and cancer40,148–150. A 
potential causal role of age-associated DNAm in endo-
metrial cancer pathogenesis has also been suggested151. 
Epigenetic age acceleration (that is, the difference 
between chronological age and epigenetic age esti-
mated by epigenetic clocks) is associated with Alzheimer 
disease152,153, dementia152, blood pressure154, cancer155,156, 
CVD68, frailty68,157, insulin68,154, osteoarthritis158,159 and 
Parkinson disease160. Similarly, age-associated VMPs 
have been reported in cancer59,161. Higher entropy has 
been associated with chronic lymphocytic leukaemia, a 
cancer affecting older people162. Moreover, an age-related 
co-methylation module present in blood and brain tis-
sue contains CpGs associated with early Alzheimer 
disease43. Considering the importance of methylome 
integrity to health, it is plausible that ageing phenotypes 
are the downstream consequences of disrupted DNAm 
patterns163,164.

The precise mechanisms by which DMPs and VMPs 
each contribute to ageing are not well defined. Two indi-
viduals with identical chronological ages (and therefore 
similar patterns at DMPs) may display divergent pat-
terns across VMPs59 (FiG. 4); these divergent patterns 
might reflect the introduction of additional noise at key 
genomic regions that become naturally dysregulated 
with age. As such, identifying DMPs might pinpoint 
sites, genes and pathways related to primary ageing, 
whereas VMPs might pinpoint those related to second-
ary ageing6. If this holds true, the stochasticity intro-
duced by VMPs could reflect mosaicism in ageing cells 
and tissues, reflecting the inter-individual variation in 
risk of disease, in addition to the age-related changes 
that more or less track chronological age67. In support 
of this hypothesis, age-associated epigenetic heterogene-
ity (or epigenetic ‘chaos’) is associated with an increase 
in age-related gene expression noise (for example, 
transcriptional variation during ageing)13. Moreover, a 
discernible relationship between VMPs and gene expres-
sion exists, that is, VMPs associate with the expression 
of genes in trans59.

Heterogeneity in biological ageing, and therefore 
age-associated risk of disease, is mirrored at the epige-
netic level. An individual whose biological age deviates 
from their chronological age, due to either positive (for 
example, exercise or healthy diet) or negative (for exam-
ple, pollution) environmental influences, could display 
patterns of VMPs that more closely resemble the methyl-
ome of a younger or older individual, respectively (FiG. 4). 
We propose that homoscedastic DMPs represent DNAm 
changes that precisely track chronological ageing (that 
is, primary ageing), whereas VMPs represent DNAm 
changes that reflect intrinsic and environmental fac-
tors (that is, biological and secondary ageing)8,41,59,105,165. 
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Fig. 4 | DMPs and VMPs reflect primary and secondary ageing processes. Differentially 

methylated position (DMPs) represent changes in DNA methylation (DNAm) that are 

shared across the lifespan (top left). Variably methylated positions (VMPs) represent DNAm 

changes that differ across the lifespan (top right). Two individuals of same chronological 

age may have similar patterns of DMPs but display divergent patterns across VMPs. DMPs 

likely track a primary ageing process (intrinsic age-related deterioration occurring with 

chronological time), whereas VMPs likely track a secondary ageing process (additional  

and heterogeneous age-related changes accelerated or decelerated by environmental 

influence, genetics or disease). VMPs may therefore represent biological ageing at the 

epigenetic level. ‘Maximum lifespan’ indicates that longevity interventions delay DNAm 

changes associated with primary and secondary ageing. Dashed arrows indicate direction 

of effect on the methylome. For example, dietary restriction and longevity compounds 

attenuate age-associated erosion of the methylome. Conversely, unfavourable 

environmental influences and disease can accelerate erosion of the methylome.

Homoscedastic

The variance of the residuals of 

a variable is constant across a 

range of values.

www.nature.com/nrg

R E V I E W S



0123456789();: 

This, however, remains a hypothesis that is yet to be 
tested. Whereas primary and secondary ageing are con-
sidered two distinct processes at the level of DNAm, 
the overlap that exists between DMPs and VMPs could 
reflect biological processes that are part of normal pri-
mary ageing and that are susceptible to erroneous, sec-
ondary changes. As such, these processes may not be 
completely independent of one another.

Evidence to support this hypothesis stems from the 
link between age-associated DNAm variability and can-
cer, whereby VMPs that undergo age-associated changes 
overlap with VMPs in healthy tissue that will go on to 
develop cancer161. Ageing and cancer might share a com-
mon origin166, which hints at a causal role for DNAm in 
cancer initiation that might extend to other diseases93, as 
suggested by the correlation between DNAm variability 
and predisposition to type 1 diabetes167.

Despite numerous studies linking ageing with wide-
spread changes to the methylome, some studies inves-
tigating the associations of DNAm with age-related 
disease have not yielded similar results, identifying only 
a handful of disease-related CpGs36,135–137. One possibility 
is that disease-affected tissues (for example, pancreatic 
islets and heart) are often difficult to obtain in large 
sample numbers, and blood might not serve as a useful 
surrogate. Cell-type heterogeneity that is unaccounted 
for could also obscure findings168,169. Moreover, EWAS 
have so far been largely limited to identifying DMPs. 
A shift in focus to VMPs, entropy and co-methylation 
networks in the context of human disease will help to 
answer important questions related to the biology of age-
ing, such as whether age-related diseases have different 
rates of entropic decay, which co-methylation networks 
and underlying mechanisms become disrupted with 
diseases of ageing and whether VMPs display different 
patterns across cell types and tissues.

The lack of causality is another major challenge in 
the interpretation of DNAm studies. The relationship 
between DNAm and gene expression is complex and 
improving our knowledge of how DNAm functions in 
different genomic contexts is necessary to accurately 
interpret how these DNAm changes affect ageing and 
disease170. Confounding variables, including cell-type 
heterogeneity, genetic variation and reverse causation 
(that is, where DNAm is a consequence, rather than 
cause, of a given phenotype), can challenge the under-
standing of DNAm alterations117,169. Whereas causal 
inference can be improved using multi-omics17, few 
DNAm data sets with matched gene expression and 
other omics data are available. Moreover, functional 
studies are not straightforward, as DNAm changes that 
arise during ageing are spread throughout the methyl-
ome. Whether DNAm changes at a single locus or multi-
ple loci cause a particular phenotype is therefore difficult 
to determine.

Longevity-promoting interventions

If accumulated alterations to the methylome have a causal 
role in age-related decline, then such changes should, in 
theory, be alleviated or reversed by longevity-promoting 
interventions. This concept underlies certain dietary, 
drug and epigenetic rejuvenation strategies.

Dietary restriction. Dietary restriction entails limiting 
the quantity or timing of food intake. Calorie restric-
tion is the long-term reduction of calories below stand-
ard requirements without incurring malnutrition, and 
is a well-known longevity-enhancing strategy171–173. 
In humans, calorie restriction reduces the risk of 
age-associated diseases, including T2D, cancer and 
CVD, and extends both healthspan and lifespan in 
mammals171,172,174. Intermittent fasting, or time-restricted 
feeding, also seems to promote healthy ageing171. Because 
calorie restriction and fasting are often combined during 
dietary restriction strategies171, future interventions, par-
ticularly in humans, should explore which is necessary 
to reap benefits.

Several animal studies in rodents and monkeys 
have investigated the effect of calorie restriction on 
the DNAm signatures of ageing, reporting that calorie 
restriction shifts the methylome to a younger profile by 
attenuating the age-related DNAm alterations in several 
tissues, such as the blood114,174, liver53,175, kidney176 and 
hippocampus177. For instance, a study in liver tissue of 
female mice reported that calorie restriction increased 
methylation at DMPs that usually become hypomethyl-
ated with age and decreased methylation at DMPs that 
usually become hypermethylated with age53. Another 
study in rhesus monkeys and mice reported that calo-
rie restriction counteracts epigenetic drift in the blood, 
shifting the methylation patterns of calorie-restricted 
older mice and monkeys to resemble their younger 
counterparts174. Moreover, calorie restriction deceler-
ates epigenetic ageing by directly affecting the DNAm 
changes that underpin the epigenetic clock84,174. 
Co-methylation networks exploring the effects of calo-
rie restriction on conserved ageing modules in multiple 
species and tissues have also reported that calorie restric-
tion leads to DNAm changes in the opposite direction 
to age (for example, CpGs within a module that become 
hypermethylated with age exhibit a decrease in DNAm 
following calorie restriction)178.

Although the evidence outlined above is limited, 
it suggests that calorie restriction promotes longev-
ity, at least in part, by slowing the epigenetic changes 
associated with primary ageing. However, data on cal-
orie restriction and longevity in humans are needed  
to confirm this hypothesis. More research is required to  
determine whether the influence of calorie restriction 
on DNAm is the causative factor underpinning the 
healthspan and lifespan-extending properties of dietary 
restriction. To our knowledge, no studies have examined 
the influence of dietary restriction on age-related DNAm 
signatures in humans.

Longevity drugs. Longevity drugs with promise to slow 
ageing, and their influence on the hallmarks of ageing, 
have been previously reviewed179. Here, we focus on 
drugs that have been shown to act directly upon the 
methylome and/or its machinery.

Rapamycin is a lifespan-extending compound that 
inhibits the mammalian target of rapamycin complex 1  
(mTORC1), a master regulator of metabolism and cell 
growth179. In mice, repression of mTORC1 using rapa-
mycin slows ageing by extending the lifespan180,181 and 
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healthspan by protecting against age-related diseases, 
such as Alzheimer disease182, cancer183 and T2D184. 
However, one study in mice reported that, although 
rapamycin protects against many ageing traits, some 
ageing phenotypes remained unaltered or worsened fol-
lowing treatment with rapamycin185. Moreover, not all 
tissues respond equally to rapamycin treatment181, and 
species-specific differences exist. In dogs, rapamycin 
improved several healthspan parameters, including car-
diac function186, but in non-human primates, long-term 
rapamycin treatment had few metabolic consequences in 
adipose or liver tissue187. Notably, in humans, rapamy-
cin seems to have geroprotective properties, such as the 
ability to improve immune function in older people188. 
At the epigenetic level, rapamycin slows the epigenetic 
ageing of human keratinocytes in culture189 and, in vivo, 
age-associated DNAm changes are supressed in mouse 
livers after rapamycin treatment84. However, rapamycin 
has no apparent effect on the epigenetic age of marmo-
sets according to a marmoset-specific epigenetic clock89, 
possibly due to tissue-related differences. Interestingly, 
rapamycin seems to be less effective at protecting against 
ageing than calorie restriction53,84, suggesting that calorie 
restriction and rapamycin operate through independent 
mechanisms to slow epigenetic ageing.

Metformin is a drug widely used to treat T2D that 
is known to target several key nutrient-sensing path-
ways such as AMP-activated protein kinase (AMPK) 
and mTORC1 (ReFS179,190). Metformin also seems to 
protect against ageing phenotypes, such as cancer and 
inflammation190. Animal studies support metformin as a 
promising drug for extending healthspan and lifespan190. 
The Targeting Ageing with Metformin trial (TAME trial) 
has been initiated to investigate the effect of metformin 
in delaying age-related diseases in humans179. Showing 
some promise, one study in humans reported that a 
cocktail of drugs, including growth hormone, met-
formin and dehydroepiandrosterone (DHEA), reversed 
epigenetic ageing in thymus tissue and increased the 
predicted human lifespan by approximately 2 years, as 
measured by the GrimAge clock191. However, these results 
should be interpreted with caution owing to the small 
sample size and lack of an appropriate control group. 
It is also difficult to tease apart the effect of each drug 
on their own. Preliminary evidence from another small 
study reported that metformin slows epigenetic ageing 
of peripheral blood in patients with T2D192.

Nicotinamide adenine dinucleotide (NAD+) plays 
a central role in metabolism, acting as an essential 
co-enzyme for redox reactions193. In humans, NAD+ 
levels have been shown to decline with age in the skin194, 
brain195, liver196 and blood197. Indicating a causal role of 
NAD+ decline in ageing, dietary supplementation with 
nicotinamide riboside (NR) and nicotinamide mon-
onucleotide (NMN), two NAD+ precursor molecules, 
can ameliorate age-associated diseases and extend the 
healthy lifespan179,198. Although the mechanisms of these 
effects are not fully understood, it is likely relevant that 
NAD+ serves as a cofactor for various NAD+-dependent 
enzymes that coordinate epigenetic modifications, 
such as sirtuins, CD38 and poly(ADP-ribose) poly-
merases (PARP)193. For example, NAD+ is required for 

the activity of epigenetic regulators, such as sirtuin 1 
(SIRT1), and a decline in NAD+ causes changes to his-
tone modifications, altering chromatin structure and 
gene expression193,199. Moreover, SIRT1 affects DNAm 
at regions that become specifically altered with age200. 
To our knowledge, no studies to date have explored 
the influence of NAD+ enhancers on the global DNAm 
signatures of ageing.

α-Ketoglutarate (α-KG) is a key metabolite in the 
Krebs cycle, but also assists in demethylation as a cofac-
tor for TET enzymes201. In mice, supplementation with 
α-KG decreases the severity of ageing phenotypes, such 
as osteoporosis202, delays the age-related decline in 
fertility203 and extends both healthspan and lifespan204. 
Altered levels of α-KG during ageing may alter the activ-
ity of TET enzymes required for regulating patterns of 
DNAm, and supplementation with α-KG may increase 
its availability to act as a cofactor for TET enzymes67,205. 
A recent study in humans reported that a cocktail con-
taining α-KG and vitamins, known as Rejuvant, taken 
for 4–10 months decreased biological age, measured by 
the TruAge clock, by an average of 8 years206. More robust 
evidence from placebo-controlled experiments is needed 
to corroborate these results.

Spermidine is a naturally occurring polyamine that 
has an essential role in metabolism179,207. Spermidine 
synthesis declines during ageing in both humans and 
mice208. In mice, spermidine supplementation extends 
the lifespan and healthspan, offering cardioprotective 
benefits209 and preventing liver fibrosis and hepatocel-
lular carcinoma210. In humans, spermidine intake is cor-
related with lower blood pressure and reduced incidence 
of heart disease209, and lowers the mortality risk by up to 
5.7 years211. Spermidine might promote these effects by 
altering DNAm208. Indeed, studies in mice have shown 
that lifelong consumption of a polyamine-rich diet inhib-
its aberrant age-associated DNAm212. Mechanistically, 
elevated polyamine metabolism increases the avail-
ability of essential substrate S-adenosylmethionine 
(SAM), which favourably alters the activity of the 
DNMT enzymes that maintain patterns of DNAm212–214. 
Although these effects seem to be driven by increases 
in the levels of spermine (a derivative of spermidine), 
more research is required to determine the influence of 
spermidine supplementation, particularly in humans, on 
the DNAm signatures of ageing.

Epigenetic rejuvenation. DNAm is at the core of epi-
genetic reprogramming experiments, which aim to 
‘reset’ epigenetic patterns to youthful states by revers-
ing cellular age. Overexpression of four transcription 
factors (OCT4, SOX2, KLF4 and MYC, collectively 
termed Yamanaka factors or OSKM factors) is the most 
common strategy for cellular reprogramming and epi-
genetic rejuvenation215. By inducing these four factors 
in vitro, somatic cells can regain pluripotency and reset 
their DNAm age to zero, as measured by the pan-tissue 
epigenetic clock13.

One issue with reprogramming a somatic cell to a 
pluripotent state is a loss of original cell identity, and 
therefore function. Continuous expression of OSKM 
in vivo also induces teratomas (a type of rare tumour)215. 

GrimAge clock

An epigenetic clock that is a 

predictor of both lifespan and 

healthspan. DNA methylation 

(DNAm) GrimAge is the output 

of an epigenetic clock, which 

utilizes a machine learning 

algorithm trained against  

a linear combination of 

chronological age, sex, 

DNAm-based surrogate 

biomarkers for seven plasma 

proteins and smoking 

pack-years.

TruAge clock

A direct-to-consumer 

epigenetic age test built using 

a machine learning algorithm 

trained to predict chronological 

age of a saliva sample from  

a limited number of cytosine–
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To overcome this issue, transient reprogramming exper-
iments (that is, partial reprogramming) have been 
introduced to achieve rejuvenation while maintaining 
somatic identity215. In mouse retinas, in vivo overexpres-
sion of just three of the four Yamanaka factors (OSK) 
showed that global DNAm signatures arising from both 
normal ageing and following injury can be reversed such 
that cells do not lose their identity, yet recover youthful 
DNAm signatures216. Moreover, this strategy yields a 
younger transcriptome and restores youthful vision in 
old, vision-impaired mice216. Interestingly, TET demeth-
ylating enzymes were necessary for this reprogramming 
to occur, as evidenced by knockdown experiments, sug-
gesting that DNAm changes are intrinsic to the ageing 
process and its reversal216. Similarly in human dermal 
fibroblasts, early evidence suggests that in vitro tran-
sient reprogramming using OSKM induces a marked 
reduction in DNAm age by approximately 30 years, 
measured by the pan-tissue epigenetic clock; transient 
reprogramming also rescued the transcriptional and 
morphological features of youthful fibroblasts217. These 
experiments highlight a very important aspect of epige-
netic ageing, that is, youthful epigenetic information can 
be recovered, a feat that requires maintenance methyla-
tion enzymes. How the ‘lost’ information is recovered to 
reprogramme the methylome is not completely under-
stood, but could involve persistent epigenetic memory 
at enhancer regions that allows cells to restore their 
initial identity217.

Exercise. Another promising healthspan-promoting 
strategy is exercise. The effect of exercise on the global 
DNAm signatures of ageing in humans is largely 
understudied, despite the plethora of healthy ageing 
benefits offered by exercise218. Future work should 
determine whether exercise (and if so, which type of 
exercise) retards the ageing process by directly target-
ing the methylome. Tightly controlled human exer-
cise studies, such as Gene SMART (Skeletal Muscle 
Adaptive Response to Training)219 and the Wellderly 
Project220, which include large biobanks of skeletal mus-
cle and blood epigenetic data across the lifespan for 
healthy males and females, are well designed to answer 
this question.

In summary, DNAm alterations satisfy, at least to 
some degree, the criteria to be considered a hallmark 
of ageing7: they arise during normal ageing in, argu-
ably, every cell, tissue and species; DNAm ageing can 
be accelerated experimentally in model organisms 
and is associated with many age-related phenotypes 
in humans and animal models; longevity interven-
tions rescue age-associated DNAm changes in model 
organisms; and resetting the methylome is necessary to 
reverse the age of a cell in mouse models and human 
cells. More evidence that longevity interventions (such as 
exercise training or dietary restriction) or unfavourable 
lifestyle changes modify DNAm would further solidify 
DNAm as a true hallmark of ageing in humans. More 
data are also required to determine whether DNAm 
alterations are a primary hallmark (and cause) of ageing 
or whether they are a consequence of another feature of 
ageing, such as molecular damage.

Origins of age-related DNAm changes

Location of age-related methylome changes

EWAS have identified hypermethylated or hypomethyl-
ated DMPs associated with ageing in multiple human tis-
sues and cell types, for example whole blood, monocytes, 
mesenchymal stem cells and buccal, brain and skeletal 
muscle, to name a few27,40,55,57,76,78,137,148,221,222. Although 
tissues and cells have unique DNAm ageing signatures, 
there are conserved DNAm changes across cell types 
during ageing60,76,93.

Gains in methylation with age accrue more frequently 
in CpG-rich regions, as these regions tend to be natu-
rally unmethylated. Specifically, hypermethylated DMPs 
occur at the promoters of key developmental genes har-
bouring both active and inactive histone marks (known 
as bivalent chromatin domains), as well as in regions 
actively repressed by Polycomb complexes40,55,57,78.

Polycomb group proteins form Polycomb repressive  

complexes (PRCs) that associate with DNA and chro-
matin to control developmental regulators223,224. In 
embryonic stem cells, PRCs maintain pluripotency 
by repressing developmental genes that are prefer-
entially activated upon cellular differentiation223. 
Hypermethylation might therefore be associated with 
decreased plasticity due to the permanent silencing of 
genes required for differentiation57.

By contrast, hypomethylation occurs preferentially 
in regions of low CpG density, often at intronic and 
intergenic regions148. Hypomethylated DMPs generally 
harbour active histone marks that are associated with 
enhancers97,148. Compared with gains in methylation, 
losses of methylation are less conserved across tissues 
and are functionally enriched for disparate pathways55,148. 
For example, in a study comparing CpG methylation 
across blood, brain, kidney and skeletal muscle tissues, 
only hypomethylated DMPs in the kidney and blood 
were enriched for a similar pathway related to immune 
response, and hypomethylated DMPs in skeletal muscle 
were strongly enriched for muscle-specific pathways55. 
These differences are possibly owing to the role of 
enhancers in tissue-specific gene expression15,55.

Convincing evidence recently came from a large 
meta-analysis of age across multiple species and tissues 
corroborating results from individual EWAS56. This 
study confirmed that hypermethylation in CpG islands 
(CGIs) is conserved across tissues, and the majority of 
universal hyper-DMPs are proximal to genes encoding 
transcription factors that bind to Homeobox domains. 
These transcription factors are involved in central 
developmental processes (that is, morphogenesis and 
cell differentiation), and many of the hyper-DMPs are 
located in regions targeted by the PRCs and in bivalent 
chromatin domains56. Moreover, hyper-DMPs were 
enriched across tissues compared with the number of 
hypo-DMPs. This observation echoes previous find-
ings suggesting that hypo-DMPs reflect tissue-specific 
operations. For example, hypo-DMPs in brain and cer-
ebral cortex tissues were enriched for circadian rhythm 
pathways, but not in other tissues such as skin or blood56.

Although VMPs are less well characterized when com-
pared with DMPs, a study in blood reported increases in 
DNAm variability with age at bivalent regions and sites 
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residing in Polycomb-repressed regions59. Similar to 
hyper-DMPs, VMPs that increase in both mean methyl-
ation and variance were strongly enriched for CGIs, and 
VMPs that decrease in mean methylation but increase 
in variability were enriched for non-CGIs59. In another 
smaller study of mesenchymal stem cells, increases in 
DNAm variability with age were preferentially located 
at non-CGIs and intergenic regions97. VMPs do not 
appear to be driven by changes in cell composition dur-
ing ageing59. Interestingly, a significant proportion of 
VMPs are associated with gene expression changes in cis 
in pathways involved in neuron differentiation and neu-
ron development, whereas VMPs associated with gene 
expression in trans (that is, the CpG and gene are located 
on different chromosomes or on the same chromosome 

>5 Mb apart) correspond to pathways such as metab-
olism, apoptosis and the DNA damage response59. 
Although there is evidence from cancer studies that 
‘epigenetic drift’ occurs in other healthy tissues, such as 
the colon, these studies were not focused on identifying 
and characterizing age-related VMPs225,226. More stud-
ies using large sample sizes across a broad age range are 
needed to characterize VMPs in other tissues and in the 
context of ageing.

Co-methylation network analysis corroborates the 
EWAS results for hyper-DMPs in ageing mammals56,178. 
WGCNA was recently used to cluster co-methylated 
CpGs across 63 tissues and in 176 mammalian species, 
including humans. Pooling DNAm data from ~11,000 
samples, 55 co-methylation modules were identified, 
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several of which were associated with biological traits, 
such as chronological age, sex and maximum lifespan178. 
To harmonize chronological ageing between species, 
relative age was used, defined as the ratio between age of 
the organism and maximum lifespan of the species (for 
example, the relative age of a 40-year-old human is 0.33 
because the maximum human lifespan is 122.5 years). 
Strikingly, the most conserved module in mammalian 
tissues was positively correlated with the relative age of 
all mammalian species, meaning that CpG sites within 
this module are correlated with each other and are col-
lectively hypermethylated with age across all tissues and 
species. This module was enriched for pathways such 
as those that regulate embryonic stem cells, axonal fas-
ciculation, angiogenesis and diabetes-related processes. 
An earlier study of co-methylation networks in blood 
and brain tissue of humans had reported similar find-
ings43. In both studies, the top ‘hub’ CpGs (that is, the 
most highly connected CpGs in the module occupying 
central network positions) reside in genomic regions 
adjacent to Polycomb targets and repressive histone 
marks. This observation is indicative of a conserved age-
ing phenomenon across tissues and species, whereby a 
subset of highly correlated CpGs that are unmethylated 
in young people become methylated with age at distinct 
regions that control development56,178.

Mechanisms of the ageing methylome

Pinpointing the precise mechanisms that underpin the 
ageing methylome, as well as those that control how fast 
the methylome ages, is challenging. Nonetheless, sev-
eral tenable hypotheses have been put forward and are 
discussed below.

The epigenetic clock theory of ageing. It has been hypoth-
esized that the ageing methylome reflects an innate 
process that is intricately linked with development and 
differentiation75. In support of this hypothesis, epigenetic 
clocks can estimate chronological age with remarkable 
accuracy and across a broad spectrum of the lifespan, 
from prenatal mammals to the oldest living mammals on 
earth56,60. Furthermore, the epigenetic clock can provide 
an accurate estimation of gestational age, which involves 
a highly coordinated developmental process with little 
noise perturbing the system227, and can even measure 
rejuvenation events that occur during embryogenesis, 
marking the beginning of organismal ageing94,228 (FiG. 5). 
As such, the epigenetic clock reflects an ageing process 
that is not monotonous but, instead, aligns with the 
non-linear periods of growth and development75,229,230. 
For example, the epigenetic clock is accelerated during 
the first few years of life and slows after puberty, paral-
leling the human developmental process231. Consistent 
with these observations, the fundamental processes 
established in early life ultimately cause an organism 
to age75,231.

A tenable hypothesis to explain this phenomenon was 
proposed in a recent review231. Albeit limited in mecha-
nistic evidence, a link between stemness and epigenetic 
ageing has been proposed, whereby the ‘ticking’ of the 
epigenetic clock represents a measure of asymmetric 
stem cell or progenitor cell divisions (that is, when a stem 
cell gives rise to two daughter cells, one which retains 
stemness of the mother cell and one which becomes a 
non-stem cell) (FiG. 5), or the change in stem cell numbers 
in different tissues231,232. Epigenome-wide investigations 
substantiate this hypothesis, finding that the dysregula-
tion of developmental genes that govern cell identity is a 
conserved feature of mammalian ageing40,55–57,78. Simply, 
the methylome is precisely altered in the genomic loca-
tions that function to preserve stem cell identity and 
function. Further support for this hypothesis comes 
from recent evidence from profiling epigenetic age in 
individual murine cells, showing that epigenetic ageing 
is precisely tracked in hepatocytes (that is, epigenetic 
age increases in old versus young hepatocytes), whereas 
muscle stem cells display minimal changes in epigenetic 
age94, suggesting that the epigenetic clock ticks when 
stem cells are stimulated to divide117.

A study in humans analysing the methylome and 
transcriptome of CpGs from four epigenetic clocks 
reported that DNAm of some of the clock CpGs asso-
ciated with gene expression in trans, and that the genes 
involved have a role in T cell processes233. It was pro-
posed that the differences in DNAm between immune 
cells, namely naïve T cells, activated T cells and natu-
ral killer cells, may drive the progression of epigenetic 
clocks. However, these conclusions were drawn from 
only a subset of clock CpGs and it remains unknown 

Fig. 5 | Proposed mechanisms of epigenetic ageing. Epigenome maintains 
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what percentage of the clock’s predictive capability is 
attributable to T cells and natural killer cells.

Although the maintenance of DNAm patterns estab-
lished during development is key to maintaining youthful 
epigenetic states and robust cell identity, this mainte-
nance is challenging due to the plasticity of DNAm234.  
DNAm dynamically responds to environmental cues, 
DNA repair, transcription and replication. Consequently, 
failures in DNAm maintenance and tissue homeostasis 
can have detrimental effects on the organism, leading 
to ageing and age-associated disease232,234. Molecular 
damage, metabolism or activated developmental pro-
grammes, for example, can alter the methylome of adult 
stem cells, leading to stem cell dysfunction and a decline 
in tissue and organ function232. The clock theory of  
ageing therefore proposes that the widespread decay 
of the methylome reflects an ‘epigenetic maintenance 
system’ that is operating to support development, cell 
differentiation and maintenance of cell identity60,75.

The importance of TET and DNMT enzymes in 
maintaining DNAm patterns is highlighted by genetic 
disorders underpinned by mutations in their genes. For 
example, mutations in TET2 and DNMT3A are impli-
cated in the early onset of haematological malignancies 
in older humans235. Unlike other Mendelian disorders, 
conditions associated with DNMT1 mutations uniquely 
display a gradual and progressive onset of symptoms, 
such as hearing loss and dementia, that are absent in 
youth but manifest in adulthood236,237. It is plausible that 
supplementation with longevity drugs, such as α-KG 
and polyamines, could promote methylation mainte-
nance by altering the activity DNMT and TET enzymes 
and the methylation of their substrates205,213. Evidence 
from epigenetic rejuvenation experiments, albeit in 
mice, also suggests that TET and DNMT enzymes are 
necessary for reprogramming an aged cell to a youthful 
epigenetic state216.

In summary, the epigenetic maintenance system 
responsible for primary ageing is also susceptible to the 
gradual accumulation of errors or biological ‘noise’, lead-
ing to changes associated with secondary ageing. The 
biological ageing process is therefore proposed to reflect 
the unintended consequence of both developmental and 
maintenance programmes (that is, the ability of the stem 
cell niche to maintain tissue homeostasis)75,231. However, 
it is not yet clear how epigenetic enzymes lose their abil-
ity to perform their function with advancing age, what 
mechanistic insight can be gained from single-cell epi-
genetic age analyses or whether a single or multifaceted 
upstream mechanism drives these changes.

Metabolic signalling and chrono-epigenetic ageing. The 
circadian system is an autonomous internal oscillator 
that provides rhythmic coordination to physiological, 
behavioural and metabolic processes, synchronizing 
the external environment with internal processes to 
maintain organismal health238. Ageing is accompanied 
by the loss of robust circadian oscillations and the desyn-
chronization of these processes, which has been linked 
with metabolic disorders and multiple ageing patholo-
gies in humans and in mice239,240. On the contrary, inter-
ventions that restore circadian rhythms in rodents are 

associated with longevity239. ‘Chrono-epigenetics’ is the 
umbrella term used to describe the circadian dynamics 
of the epigenome, which affect histone modifications, 
chromatin architecture and DNAm241. Specifically, 
CpGs exhibit circadian behaviour, which is facilitated 
by the rhythmic action of DNMT and TET enzymes241. 
Studies in mice suggest that the light entrainment of 
the circadian clock is dependent on DNAm, support-
ing the role of DNAm as a mediator between the exter-
nal environment and internal rhythms242. Moreover, 
experiments in liver and lung tissue of mice, as well as 
in human neutrophils, have shown that CpGs exhibit 
rhythmic oscillations that markedly overlap with CpGs 
that are differentially methylated with age243,244 (FiG. 5). 
One caveat of these findings is that, even if DNAm oscil-
lations are detected in a ‘purified’ cell type, the overlap 
with age-associated DNAm could reflect subtle shifts 
in cell subtypes if adjustments for cell-type heterogene-
ity are imperfect. Enrichment of oscillating CpGs was 
observed at distal regions and enhancers of both highly 
expressed and circadian genes243,244. Notably, oscillat-
ing CpGs preceded age-dependent changes in CpGs, 
and the amplitudes of the oscillating CpG correlated with  
the magnitude of the linear age-dependent change243,244 
(FiG. 5). The authors characterized CpGs that oscillate 
consistently between individuals as DMPs and those 
under more lenient control (and that are more suscepti-
ble to environmental perturbation) as VMPs241. In sup-
port of this, there are linear age-dependent DNAm  
changes in the CLOCK gene, which is one of the 353 CpGs  
in Horvath’s pan-tissue clock60.

The role of enhancers in coordinating rhythmic 
expression might shed light on shared mechanisms 
between circadian disruption and epigenetic ageing. 
In mammals, a ‘core clock’ involving four key factors 
(the transcription factors CLOCK and BMAL1, and the 
genes cryptochrome (CRY) and period (PER)) regulates 
the 24-h cycles via a transcription–translation feedback 
loop245,246. In addition, cell-autonomous peripheral 
clocks drive tissue-specific rhythmic gene expression by 
coordinating the activity of cell-specific enhancers247–249. 
Age-associated hypomethylation at enhancers of highly 
expressed genes might therefore involve the reduced 
precision of DNMT and TET following circadian 
disruption, altering gene–enhancer interactions (that 
potentially disturb co-methylation networks) and gene 
regulation67.

If disruption of the chrono-epigenome is a proxi-
mal cause of ageing, it remains unclear what drives this 
disruption in such a precise manner that it parallels the 
‘ticking’ of the epigenetic clock. We hypothesize that 
metabolic processes are part of this equation. Indeed, the 
circadian clock and metabolism have a reciprocal rela-
tionship, in that the rhythmicity of metabolic processes 
is an output of the clock, and metabolic signals and states 
feed back to the clock245. Many metabolic genes that oscil-
late in tissue-specific rhythms encode proteins that 
participate in the same metabolic pathways implicated 
in both ageing and longevity239,245 (FiG. 5). For example, 
dietary restriction extends the lifespan through benefi-
cial effects on nutrient sensors that are under circadian 
control, including the inhibition of pro-ageing factors 
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such as insulin-like growth factor 1 (IGF1), and the 
activation of the longevity factors AMPK, sirtuins, nico-
tinamide phosphoribosyltransferase (NAMPT) and the 
forkhead transcription factors (FOXOs)171,250. Similarly, 
‘longevity drugs’ mimic the longevity effects of dietary 
restriction by targeting the same metabolic pathways239. 
Animal studies have demonstrated that calorie restric-
tion can restore the tissue-specific circadian rhythmicity 
of key metabolic genes, suggesting that longevity bene-
fits involve the restoration of healthy circadian cycles239. 
Polyamines also show circadian rhythmicity and, in turn, 
regulate the circadian period. In mice, supplementation 
with spermidine counteracts the age-associated decline 
in circadian cycles by regulating the interaction between 
the core clock factors251.

A vital link between ageing, metabolism and circa-
dian rhythms is NAD+, the central catalyst of metab-
olism. A reciprocal relationship between NAD+ and 
circadian rhythm exists, meditated by the rate-limiting 
enzyme in NAD+ biosynthesis, NAMPT193. In mice liv-
ers, NAD+ reprogrammes metabolic and stress-response 
pathways by restoring circadian function that declines 
with age252. Mechanistically, NAD+ acts through SIRT1, 
an NAD+-dependent enzyme, which interacts with 
the core clock components to restore robust circadian 
oscillations252 (FiG. 5). PARP1 is another NAD+-dependent 
enzyme that has been linked to entrainment of the cir-
cadian clock253,254, although whether PARP1 also par-
ticipates in the reprogramming of circadian rhythms is 
unknown. As well as supplementation of its precursors, 
NAD+ levels are increased by dietary restriction and 
interventions, exercise and healthy circadian cycles193. As 
discussed above, NAD+ levels decline with age, although 
the mechanism is poorly understood, and likely involves 
multiple pathways, such as altered metabolic activity 
and inflammatory processes. PARP enzymes also assist 
with DNA repair processes, which likely contributes to 
the depletion of the NAD+ pool (and decline in SIRT1 
activity) during ageing193,255.

Considering the above evidence, daily metabolic 
stress might contribute to the gradual deteriora-
tion of circadian function that explains, in part, the 
age-dependent DNAm changes associated with primary 
ageing. If so, a natural consequence might be that such 
changes would be exaggerated in situations of more 
severe metabolic and circadian disruption, driving var-
iability in the rates of epigenetic ageing. Future work 
should determine how different stimuli (for example, 
light, nutrients or DNA damage) regulate DNMT and 
TET activity and the associated temporal changes in 
methylation and demethylation, and thus how main-
tenance enzymes modulate these epigenetic, circadian 
and metabolic processes. Moreover, elucidating whether 
longevity interventions (for example, calorie restriction, 
exercise and supplementing with NAD+ enhancers) 
can restore CpG oscillations to youthful states would 
contribute to our understanding of ageing from a 
chrono-epigenetic–metabolic perspective.

DNA damage and the re-localization of chromatin 

modifiers. There is also emerging evidence that DNA 
damage, particularly in the form of double-stranded 

breaks (DSBs), might drive the ageing process110,256,257. 
DNA damage causes various DNA lesions, arising from 
both exogenous (for example, ultraviolet, chemicals 
and X-rays) and endogenous (for example, oxidative 
stress, metabolic stress, replication errors and sponta-
neous hydrolytic reactions) sources7,257. The accumula-
tion of DNA damage leads to a collection of molecular 
consequences, such as genomic instability and epige-
netic alterations, that underpin a spectrum of ageing 
phenotypes257.

DSBs activate the DNA damage and repair machin-
ery257. DSB signals recruit epigenetic modifiers, such 
as sirtuins and PARP enzymes, from their native loci 
to repair damaged loci and remodel the epigenetic 
landscape258,259 (FiG. 5). Epigenome integrity is restored 
after DNA repair, which preserves cell identity and 
function234. However, according to the ‘re-localization 
of chromatin modifiers hypothesis’, during ageing the 
incomplete return of these epigenetic modifiers to their 
original positions introduces noise into the epigenome 
at predictable locations, such as at key developmental 
regions that govern cell identity, and further increases 
genome susceptibility to more DSBs110,256. Taken 
together, in addition to their role in NAD+ metabolism, 
sirtuins and PARP1 also form part of the DNA damage 
and repair machinery, suggesting that the regulation of 
DNA repair and cellular metabolism are coordinated260 
(FiG. 5). In worms and mice, PARP1 is chronically acti-
vated during ageing, potentially due to overactivation of 
DNA repair enzymes. This point is important because 
the increased requirements for DNA repair that acti-
vate PARP1 deplete NAD+ pools and inhibit sirtuin 
activity255, both of which are required for maintaining 
healthy metabolic and circadian processes.

The role of sirtuins in the re-localization of chroma-
tin modifiers has been described in yeast and mice261. In 
a recent study, it has been experimentally shown in mice 
that non-mutagenic DSBs cause the loss of cell identity 
and accelerate the epigenetic clock, and it is hypothe-
sized that the re-localization of chromatin modifiers, 
such as sirtuins, may underly this process110,256. This is 
an attractive hypothesis to explain how ‘random’ DNA 
damage can induce a precise and predictable pattern of 
DNAm changes and contribute to mammalian ageing.

The specific mechanism that causes DSBs to accel-
erate the epigenetic clock is unclear, but might involve 
the re-localization of methylation enzymes to sites of 
DNA repair110,256 (FiG. 5). DNMTs, including DNMT1 
and DNMT3B, along with other chromatin modifiers, 
namely SIRT1, PARP1 and Polycomb group proteins, 
are recruited to DSBs and sites of oxidative damage262,263. 
Localization of these repressive proteins might inhibit 
transcription at damage sites to prevent interference 
with repair. Most DNAm alterations that occur during 
repair are likely transient and can be restored through 
demethylation; however, chronic DNA damage (that 
is, DNA damage that occurs during ageing) might lead 
to DNAm modifications that accumulate with age264. 
Specifically, promoter regions are susceptible to persis-
tent repressive DNAm262 and it has been postulated that 
transcription protects promoter regions from silencing; 
even transient inhibition of transcription would lend 

NATURE REVIEWS | GENETICS

R E V I E W S



0123456789();: 

promoters more vulnerable to an increase in stable 
silencing events264. Interestingly, CpG-rich regions are 
preferentially targeted by the proteins recruited to sites 
of damage, which are translocated away from CpG-poor 
regions; this targeting could explain the age-associated 
hypermethylation at CGI promoters and hypomethyla-
tion at CpG-poor regions263,265. It has also been hypoth-
esized that Polycomb group target genes are susceptible 
to hypermethylation due to age-related degradation of 
the Polycomb machinery. This degradation might lead 
to PRCs being unable to recognize and target unmethyl-
ated CpG-rich regions. Unmethylated CpG-rich regions 
ordinarily protected by PRCs become increasingly acces-
sible to de novo DNMT3A and DNMT3B, facilitating 
increased methylation at these sites266. The pattern of 
Polycomb histone marks also alters during ageing; for 
example, trimethylation of histone H3 on lysine 27 
(H3K27me3) changes in a context-dependent manner267. 
How Polycomb histone marks play a role in the DNA 
damage and re-localization of chromatin modifiers pro-
cess may depend on specific loci and cells, and remains 
an interesting avenue for exploration.

DNA damage-induced re-localization of chromatin 
modifiers as a driver of ageing neatly positions itself in 
the ageing puzzle, alongside the developmental, met-
abolic and chrono-epigenetic hypotheses. Sources of 
DNA damage are ubiquitous in daily life, even arising as 
early as embryonic development268, with an estimated 
rate of ~50 DSBs per cell per cell cycle269. The DNA 
repair process might therefore begin during early devel-
opment, with insidious DNA damage ensuing through-
out life. An overly simplistic explanation is therefore that 
certain enzymes and proteins orchestrate DNA repair 
with other crucial processes, including epigenetic main-
tenance, metabolic regulation and circadian control. The 
hyperactivity of the repair machinery during ageing is, 
unfortunately, at the cost of these processes. From this 
perspective, the DNAm changes that arise during age-
ing are the response to damage, signalling to the cell to 
suppress instability, yet result in the unintended conse-
quence of introducing epigenetic noise, compromising 
cell identity, impairing transcription and, ultimately, 
causing biological ageing.

Pioneering epigenetic research

Much remains poorly understood about the upstream 
causes of the mammalian ageing process, despite ageing 
itself driving the progression of most chronic diseases1. 
Although we know that the methylome is extensively 
remodelled over the lifespan, the full extent to which 
chronological and biological ageing is reflected at the 
DNAm level is far from complete. In recent years, much 
attention in this field has focused on building epigenetic 
clocks; however, we propose that instead of building new 
clocks, the emphasis should be placed on breaking down 
the entire ageing methylome into its individual parts to 
first understand the mechanistic processes underling 
the extraordinary phenomenon of epigenetic ageing. 
Despite attempts to separate the clocks into their various 
components155,156,270, we propose that teasing apart the 
global changes in DNAm, by measuring DMPs, VMPs, 
co-methylation networks and entropy, in multiple tissues 

is needed to obtain a better understanding of the ageing  
methylome in its entirety. The separation of these fac-
tors, down to specific sets of CpGs, could bring new 
mechanistic insights into both the chronological and 
biological ageing process, such as which mechanisms are 
responsible for age-related hypomethylation at enhancer 
regions.

At the epigenome-wide level, focusing only on pat-
terns of DMPs is limiting when trying to understand 
aspects of biological ageing, particularly when making 
sense of why individuals of the same age may display 
vastly different biological ageing rates. However, there 
is a lack of research focusing specifically on VMPs in 
different tissues. Importantly, the classification of CpGs 
as DMPs and VMPs largely depends on the specifics of 
the cohort under investigation. For example, smoking 
exposure changes the mean methylation status at cer-
tain CpGs (that is, at DMPs) that can be used to pre-
dict smoke exposure145,271; however, in the context of 
ageing, it is plausible that these CpGs might be VMPs. 
Important questions to consider are to what extent 
variable methylation underpins biological ageing and 
whether there are tissue-specific differences. As very 
large sample sizes distributed across a broad age range 
are required to detect VMPs, this gap in knowledge is 
likely owing to the difficulty in sampling tissues other 
than blood, which can easily be sampled. Nonetheless, 
uncovering VMPs presents a promising avenue for iden-
tifying markers of biological age41,59. Future experiments 
could then investigate whether slowing down ageing at 
DMPs will lengthen the lifespan or, conversely, whether 
slowing down ageing at VMPs will lengthen healthspan.

Many conclusions related to the ageing methylome 
are drawn from mechanistic studies and longevity inter-
ventions on laboratory animals, which may or may not 
extrapolate to humans272. One potential remedy to this 
limitation is the use of third-generation dual-species 
epigenetic clocks, which are based on CpGs that are 
highly conserved across mammals273 and can be used in 
both humans and model organisms such as rats, mice, 
pigs, sheep and primates56,81,82,87,89,90,274. Experiments in 
humans that can measure the effect of age-supressing or 
anti-ageing interventions at the DNAm level would be an 
invaluable contribution to the field. Furthermore, explo-
ration of whether age and sex need to be considered when 
adopting different longevity protocols (for example, inter-
mittent fasting) is largely unknown. This point brings to 
the forefront another challenge in epigenetic research, 
that is, we know surprisingly little about sex-specific 
differences in ageing. There is consistent evidence that 
females tend to outlive males275, suggesting the existence 
of a robust feature of biology at play. Multi-tissue epige-
netic clocks have also shown that males exhibit acceler-
ated epigenetic ageing when compared with females41,69. 
Less understood, however, are the global patterns of 
DNAm that diverge between sexes across the lifetime.

Cell-type heterogeneity, which we have not addressed 
extensively in this Review, is also a notable confounder 
in experiments involving solid tissues and blood, and is 
therefore a major challenge in epigenetic research17,276. 
Considering that cell-type proportions change with age, 
tackling the issue of cellular heterogeneity would be of 

www.nature.com/nrg

R E V I E W S



0123456789();: 

great benefit to the ageing field. Recent advancements in 
single-cell DNAm analysis stem from the development 
of a novel computation tool capable of delineating the 
differences in cell type-specific epigenetic ageing94,117. 
This technology has the potential to accelerate our 
understanding of the functional and mechanistic conse-
quences of DNAm changes during ageing117, an exciting 
prospect for future explorations into biological ageing.

The potential confounding effect of 5-hydroxy-
methylcytosine (5hmC) in DNAm studies is also not 
covered in this Review. Some platforms, such as the 
widely used Illumina HumanMethylation arrays, rely  
on bisulfite sequencing, which cannot distinguish 
between 5mC and 5hmC277,278. This issue has been 
shown in brain tissue279, highlighting the possibility that 
age-related changes in DNAm attributed to 5mC could 
be due to changes in 5hmC.

Pioneering epigenetic research cannot be achieved 
without access to large amounts of data from multiple 
human tissues. Epigenetic data sets of sufficient size 
in healthy, non-diseased human tissues across a broad 
age range are in short supply, and even more so in tis-
sues other than blood. Nonetheless, existing data sets 
present a valuable resource for omics research, which 
relies on large sample sizes to detect small effect sizes. 
Large-scale meta-analyses overcome many limitations 
from small study designs, and are a valuable tool in 
epigenetic research280. Lastly, DNAm does not act in 
isolation but is simply a cog in a very large epigenetic 
machine. Future work on the ageing methylome should 

consider the entire epigenetic network, such as histone 
marks and chromatin changes, which may become 
disrupted with age.

Conclusions

The goal of ageing research is to target biological pro-
cesses that make us live longer and help us to do so in a 
more youthful state. An important step towards achiev-
ing this goal is to identify the epigenetic processes that 
‘unravel’ across the lifespan.

Although the manifestations of ageing are a feature 
of later life, age-associated alterations to the methylome 
show that the underlying cellular and molecular changes 
begin much earlier, even during development116,281. 
Arguably the most astounding feature of the ageing 
methylome is the consistency with which DNAm 
changes universally track chronological ageing60, hint-
ing at the existence of a molecular clock ticking inside 
our cells. However, the picture of biological ageing is far 
from complete.

Making sense of the ageing methylome is not an easy 
feat. It requires the application of computational tools 
that accurately analyse and interpret the versatile DNAm 
marks that change across the lifespan. Notwithstanding 
the challenges, we are at the precipice of major gerosci-
ence discoveries, but extensive collaborate efforts from 
researchers across multiple fields, sharing ideas and data, 
are needed to collectively move the ageing field forward.
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