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Major depressive disorder and bipolar disorder are highly prevalent and disabling conditions. Cognition
is considered a core domain of their psychopathology and a principle mediator of psychosocial
impairment, disproportionately accounting for overall illness-associated costs. There are few in-
terventions with replicated evidence of efficacy in treating cognitive deficits in mood disorders. Evidence
also indicates that cognitive deficits are associated with obesity and involve significant impairment
across multiple domains. Conversely, weight-loss interventions, such as physical exercise and bariatric
surgery, have been shown to beneficially affect cognitive function. This convergent phenomenology
suggests that currently available agents that target metabolic systems may also be capable of mitigating
deficits in cognitive functions, and are, therefore, candidates for repurposing. The incretin glucagon-like
peptide-1 (GLP-1) is a hormone secreted by intestinal epithelial cells. GLP-1 receptors (GLP-1R) are
widely expressed in the central nervous system. Activation of GLP-1R leads to facilitation of glucose
utilization and antiapoptotic effects in various organs. Pre-clinical trials have demonstrated significant
neuroprotective effects of GLP-1, including protection from cell death, promotion of neuronal differen-
tiation and proliferation; and facilitation of long-term potentiation. Liraglutide is a GLP-1R agonist that
has been approved for the treatment of type 2 diabetes mellitus and obesity. Convergent preclinical and
clinical evidence, including a proof-of-concept pilot study from group, has suggested that liraglutide may
improve objective measures of cognitive function in adults with mood disorders. The safety and avail-
ability of GLP-1R agonists indicate that they are promising candidates for repurposing, and that they may
be viable therapeutic options for mood disorders.
This article is part of the Special Issue entitled ‘Metabolic Impairment as Risk Factors for Neurode-
generative Disorders.’
© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Mood disorders (i.e. major depressive disorder [MDD] and bi-
polar disorder [BD]) and metabolic disorders (e.g. type 2 diabetes
mellitus [T2DM], obesity, metabolic syndrome) are amongst the
major causes of disability and mortality worldwide. Individually,
these conditions are responsible for high levels of chronic disability
and healthcare-related costs (Mathers et al., 2006; Vos et al., 2012;
Whiteford et al., 2013); however, their co-occurrence represents a
particular challenge for patients, families, providers and healthcare
systems (O'Neil et al., 2013; Comino et al., 2015; Liu et al., 2017).
Meta-analytic studies have documented that individuals with
mood disorders have an approximately 2-fold increased risk of
T2DM, relative to the general population (Vancampfort et al.,
2015a). It is estimated that the prevalence of T2DM in individuals
with mood disorders is between 8 and 10% (Vancampfort et al.,
2015a, 2015b), whereas the prevalence of metabolic syndrome is
approximately 30% (Vancampfort et al., 2015c). As a result, mood
disorders are associated with excessive and premature mortality,
mainly driven by cardiovascular disease and/or diabetes compli-
cations (Westman et al., 2013; Kessing et al., 2015; Osby et al.,
2016). It is estimated that individuals with mood disorders have a
reduced life expectancy of between 10 and 15 years, the majority of
it, even for adolescents and young adults, accounted by natural
causes (Kessing et al., 2015; Laursen et al., 2016).

Convergent lines of inquiry also indicate that the mood-
metabolic disorders association is bidirectional (Luppino et al.,
2010; Pan et al., 2012; Mannan et al., 2016). For example, it is re-
ported that adults with T2DM have an approximate 2—3 fold
greater risk for subsequently declaring MDD or BD Wahlqvist et al.,
2012. The co-occurrence of metabolic and mood disorders is asso-
ciated with a more complex illness presentation. Individuals with a
mood disorder and comorbid obesity, insulin resistance (IR) or
T2DM have an unfavorable course of mood disorders, characterized
by an overrepresentation of atypical features, a predominance of
chronic/persistent trajectories, higher risk of suicide, treatment
resistance and functional disability (Calkin et al., 2015; Ruzickova
et al., 2003; Goldstein et al., 2013; Mansur et al., 2016; Handley
et al., 2015; Shapiro et al., 2016). In T2DM cohorts, the presence
of mood syndromes and/or symptoms has been associated with
elevated incidence of complications and all-cause mortality (Nefs
et al,, 2012, 2016).

Identifying novel treatments for mood disorders remains a
pressing need as approved evidence based treatment options are
limited. Although most individuals with MDD respond to phar-
macological and/or psychosocial treatments, the majority of the
patients do not achieve remission (Jakobsen et al., 2011; Cuijpers
et al., 2011; Casacalenda et al.,, 2002; Rocha et al., 2012), and
approximately 80% of the patients experience at least 1 more
episode after their first episode of depression (Fava et al., 2006;
Steinert et al., 2014). Limited efficacy of the available therapeutic
options, characterized by a low rate of recovery and a high rate of
recurrence, was also reported in BDJudd et al., 2005; Geddes and
Miklowitz, 2013. In addition, there are insufficient empirically
supported interventions to prevent, manage or mitigate the detri-
mental effects of metabolic comorbidities in the mood disorders
population. Underscoring the lack of progress in this area is data
from epidemiological studies, which have documented that the

aforementioned gap in life expectancy between individuals with a
mood disorders and the general population has increased in the
past decades (Osby et al., 2016; Lawrence et al., 2013).

2. Cognition, metabolism and mood disorders

Cognition is considered a core dimension/domain of psycho-
pathology in both MDD and BDSnyder, 2013; Bourne et al., 2013;
Mann-Wrobel et al., 2011; Lee et al., 2012. Cognitive dysfunction
has been consistently demonstrated across multiple studies and
approximately 25—50% of patients exhibit pronounced deficits
(defined as more than 1 or 2 standard deviations below the mean
on at least one cognitive domain) (Gualtieri and Morgan, 2008;
Martino et al., 2008). Notably, cognitive deficits in mood disorders
have been found to be a principal mediator of psychosocial
impairment and disability, independently of concurrent mood
symptoms (Depp et al., 2012; losifescu, 2012; McIntyre et al., 2013a;
Andreou and Bozikas, 2013), and to disproportionately account for
overall illness-associated costs (Greenberg et al., 2003; Kessler
et al., 2008; Kleine-Budde et al., 2014). Currently approved treat-
ments for mood disorders (e.g. antidepressants, mood stabilizers,
antipsychotics) have been shown to be mostly ineffective at treat-
ing cognitive impairment, and, as a result, recovery from mood
symptoms is often not accompanied by improvement in cognitive
symptoms (MclIntyre et al., 2013a; Dias et al., 2012; Trivedi and
Greer, 2014; Rosenblat et al., 2016).

Although evidence indicates that executive function impair-
ment is an independent feature of mood disorders, several mod-
erators have been reported, such as socio-demographic and clinical
features (Snyder, 2013; Bourne et al., 2013; Mann-Wrobel et al.,
2011; Lee et al., 2012; McIntyre et al., 2013a). More recently, the
moderational effect of metabolic comorbidities has been increas-
ingly reported (Bove et al., 2013; Gluck et al., 2013; Kenna et al.,
2013; Karlamangla et al., 2014; Nazaribadie et al., 2014; Samaras
et al,, 2014; Sanz et al., 2013; Sun et al., 2014; Yogi-Morren et al.,
2014; Geijselaers et al., 2014). Multiple metabolic abnormalities
are independently associated with poor executive function. Studies
with clinical and healthy control populations have shown that
impaired glucose metabolism and insulin resistance (Gluck et al.,
2013; Kenna et al., 2013; Nazaribadie et al., 2014; Samaras et al.,
2014; Sanz et al., 2013; Yogi-Morren et al., 2014; Geijselaers et al.,
2014), visceral adiposity (Bove et al., 2013; Sanz et al., 2013), dys-
lipidemia (Karlamangla et al., 2014; Yogi-Morren et al., 2014) and
high blood pressure (Karlamangla et al., 2014; Sun et al., 2014) are
independently associated with impaired executive function. Over-
weight/obesity, metabolic syndrome and T2DM have all been
consistently shown to negatively impact a variety of cognitive do-
mains (Gunstad et al., 2007, 2010; Taylor and MacQueen, 2007;
McCrimmon et al., 2012; Vincent and Hall, 2015).

Convergent evidence also indicates that, within individuals with
a mood disorder, neurocognitive dysfunction is more impaired in
overweight/obese individuals, when compared to normal weight
patients (McIntyre et al., 2013a; Watari et al., 2006; Yim et al., 2012;
Depp et al., 2014; Restivo et al., 2017). A recent offspring study
documented that at-risk individuals (i.e. defined as having a first-
degree relative with BD and concurrent symptoms) were more
likely to display cognitive dysfunction as a function of increasing
overweight status (McIntyre et al., 2017). Moreover, a detrimental
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effect of metabolic comorbidities on cognitive function is also re-
ported in individuals with schizophrenia (Lindenmayer et al., 2012;
Takayanagi et al., 2012; Guo et al., 2013). Overall, cognitive function
has been a domain of psychopathology consistently associated with
metabolic dysfunction.

Cognitive dysfunction is thought to be subserved by abnor-
malities in distributed brain circuits (Snyder, 2013; Collette et al.,
2006; Niendam et al., 2012). Evidence suggests that, in mood dis-
orders, mechanisms of neural plasticity and cellular resilience un-
derlie the dysregulation in brain circuits (McIntyre et al., 2013a;
Strakowski et al., 2012). Accumulating evidence indicate that al-
terations in metabolic pathways may be relevant to neurocognitive
decline in subpopulations of individuals with BD and MDD. Hy-
perglycemia and hyperinsulinemia have been reported to influence
pathways involved in neuroplasticity (Trudeau et al., 2004; Bosco
et al,, 2011). Imbalances in regulatory neurohormonal and related
systems (i.e., pro-oxidant/anti-oxidant system, immune-
inflammatory pathways and glucocorticoids function and activity)
may alter pro-apoptotic intracellular signaling cascades thereby
resulting in neuronal/glial loss and neurocognitive decline
(McIntyre et al., 2008, 2013a; Maritim et al., 2003; Reagan, 2012;
Tran et al., 2012; Karunakaran and Park, 2013). Conversely, multiple
studies indicate that global disorders of metabolism (i.e. T2DM and
obesity) can affect brain structure and function. Neuroimaging and
neurophysiology studies of T2DM have demonstrated widespread
patterns of white matter abnormalities in discrete pathways (Kodl
et al.,, 2008; Hsu et al., 2012; van Duinkerken et al., 2012a; Reijmer
et al., 2013a; Reijmer et al., 2013b), and alterations in functional
connectivity (Cooray et al, 2011; Musen et al, 2012; van
Duinkerken et al.,, 2012b). Moreover, insulin resistance in non-
diabetic populations has been associated with lower hippocampal
volume and altered default mode network activity (Kenna et al.,
2013; Rasgon et al.,, 2011). Obesity has also been associated with
functional abnormalities in several regions, including temporal
lobe and fronto-occipital networks and the default mode network
(Garcia-Garcia et al., 2012; Kullmann et al., 2012).

In summary, cognitive function is considered a core feature of
mood disorders psychopathology and a leading cause of morbidity.
To date, no interventions have been demonstrated to be reliably
and robustly effective for the cognitive deficits of mood disorders.
Treatment development has been hindered about the lack of in-
formation regarding the mechanistic pathological processes that
contribute to abnormalities in the neural substrates subserving
cognitive function. Available evidence indicates that metabolic
disorders result in alterations in the structure, function, and
neurochemical composition of the CNS regions/structures that are
convergent with structures implicated in the cognitive dysfunction
observed in normal weight adults with mood disorders. The fore-
going collections of observations provide the basis for hypothe-
sizing that interventions capable of mitigating molecular targets
relevant to primary metabolic disorders may have a repurposing
opportunity in positively affecting CNS structures implicated as
subserving cognitive functions in adults with mood disorders.

3. Glucagon-like Peptide-1 (GLP-1) and cognitive function

Incretins are endogenous hormones synthesized and secreted
by intestinal L-cells in the ileum and colon after meals. Several
endogenous incretins have been identified, including, but not
limited to, glucagon like peptide 1 (GLP-1). Activation of GLP-1
receptors (GLP-1R) leads to facilitation of glucose utilization and
anti-apoptotic effects in various organs (Cabou et al., 2008; Drucker,
2003; During et al., 2003; McClean et al., 2010). Pre-clinical evi-
dence indicates GLP-1 and its canonical receptors are identified in
CNS structures and regions relevant to general cognitive processes

(e.g. prefrontal cortex, hippocampus, amygdala) (Alvarez et al.,
2005; Farr et al,, 2016). Indeed, multiple studies have demon-
strated that GLP-1 and GLP-1R agonists (e.g., exendin-4 [Ex-4], lir-
aglutide, exenatide) are capable of crossing the blood-brain barrier
(BBB) Kastin et al., 2002; Hunter and Holscher, 2012; Secher et al.,
2014; Christensen et al., 2015, and act centrally to modulate food
intake (D'Alessio et al., 2005), glucose homeostasis (Sandoval et al.,
2008), the hypothalamic stress response (Rinaman, 1999), and
regulation of blood pressure and heart rate (Yamamoto et al., 2002).

Results from preclinical studies indicate that GLP-1 agonism
results in pro-cognitive effects. For example, mice injected daily for
8 weeks with liraglutide exhibited significantly enhanced learning
and memory in object recognition and water maze tasks (McClean
et al., 2011; Porter et al., 2010). Another study observed that mice
after a single injection of GLP-1 were more capable of spontaneous
alteration in the Y-maze task, suggesting that GLP-1 also improves
cognitive flexibility, a component of executive function (Iwai et al.,
2009). Studies that examined mice fed a high-fat diet, a model
which typically results in decreased cognitive performance
(Stranahan et al., 2008), documented a protective effect of GLP-1
analogues (Gault et al., 2010; Lennox et al., 2014). In keeping with
these observations, GLP-1R—/— knockout mice demonstrate
impaired spatial learning and memory, as shown by their worse-
than-controls performance in the Morris water maze task, longer
time to completion, and poorer recall of landmarks (Abbas et al.,
2009). GLP-1R —/— mice did not, however, show any differences
in exploratory behavior on an open field assessment task, indi-
cating that behavior is not generally impaired, but that the im-
pairments are specific to cognitive processes implicated in memory
(Abbas et al., 2009).

3.1. Cellular effects of GLP-1R agonists

Pre-clinical evidence indicates that the potential effects of GLP-1
on cognitive function may be secondary to its effects on neuronal
excitability, survival and proliferation (McIntyre et al., 2013b; Liu
and Pang, 2016). Activation of GLP-1R has been shown to modu-
late synaptic transmission in various regions, including the meso-
limbic systems and fronto-limbic pathways (Liu and Pang, 2016;
Hsu et al., 2017). For example, it is reported that GLP-1 signaling
regulates neurotransmitters release (e.g. glutamate, gamma-
aminobutyric acid [GABA] and dopamine) in hippocampal and
striatal neurons (Oka et al., 1999; Korol et al., 2015; Reddy et al.,
2016; Fortin and Roitman, 2017).

Studies using in vitro cultured cells have demonstrated that pre-
treating cells with GLP-1R agonists can protect them against cell
death caused by amyloid beta (AP) plaque accumulation, a
biomarker for Alzheimer's disease (AD) (Perry et al., 2003; Li et al.,
2009; McClean and Holscher, 2014; Cai et al.,, 2014). Multiple
studies administering GLP-1R agonists have since shown the po-
tential for protecting long-term potentiation (LTP) from deficits
induced by multiple agents. Administration of GLP-1 prior to AB
treatment protected LTP from impairment in mouse models of AD
(Gault and Holscher, 2008; Gengler et al., 2012; Wang et al., 2010).
Liraglutide was also demonstrated to prevent synapse loss and
deterioration of synaptic plasticity (McClean et al., 2011); and to
rescue hippocampal LTP from deficits induced by an acute high fat
diet (Porter et al., 2010; Gault et al, 2010). Most significantly,
administration of liraglutide was found to rapidly facilitate LTP in
healthy rats (McClean et al.,, 2010). In contrast, GLP-1R —/— mice
had significant impairments in LTP, compared to controls (During
et al., 2003; Abbas et al., 2009).

GLP-1R agonists have been implicated in the proliferation and
differentiation of neural stem/progenitor cells. PC12 cell cultures
treated with nerve growth factor (NGF) tend to develop
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morphological characteristics similar to neurons (e.g. long and
branching membranes). GLP-1 treated cells also develop neuron-
like properties (Perry et al., 2002). Administration of Ex-4 in-
creases proliferation of neural stem/progenitor cells, a process
central to neurogenesis (Bertilsson et al., 2008). Progenitor cell
division, important for differentiation, was enhanced in mouse
models by 100—150% after injection of a GLP-1R agonist (McClean
et al,, 2011; Hamilton et al., 2011).

The antiapoptotic and neuroprotective effects of GLP-1 are
thought to be, at least partially, mediated through improvements in
the cellular metabolic milieu. Ex-4 intervention in T2DM rats was
shown to prevent tau hyperphosphorylation, another pro-
apoptotic marker of AD, through increased insulin signaling (Xu
et al.,, 2015). Vildagliptin, a drug that inhibits the inactivation of
GLP-1 by the enzyme dipeptidyl peptidase-4 (DPP-4), was shown to
prevent neuronal insulin resistance by improving neuronal insulin
receptor phosphorylation, and to improve brain mitochondrial
function in rats fed a high-fat diet (Pipatpiboon et al., 2013). A study
of GLP-1 treated cell cultures demonstrated that GLP-1 treatment
protected neurons from apoptosis induced by methylglyoxal (MG),
a marker of oxidative imbalance and a product of chronic hyper-
glycemia (Xu et al., 2015). In particular, one study found that GLP-1
and Ex-4 treatment protected cells from hypoxia-induced
apoptosis, a protective effect that was not observed in cells
cultured from GLP-1R —/— knockout mice (Li et al., 2009).
Furthermore, studies have reported that liraglutide and exenatide
treatment reduced inflammatory activation in a mice model of AD
and cerebral ischemia (McClean and Holscher, 2014; Darsalia et al.,
2012; Teramoto et al., 2011).

3.2. Central effects of GLP-1R agonists

Preliminary evidence suggests that GLP-1R agonism may result
in increased activation of neural circuits in specific areas. Animal
studies have reported that peripheral GLP-1 administration
induced a significant increase in the neuronal activity of the hy-
pothalamic ventromedial and paraventricular nuclei, and the par-
abrachial nucleus (Parkinson et al., 2009; Katsurada et al., 2014;
Richard et al., 2014). A recent animal study documented that hip-
pocampal glutamatergic neurons that provide excitatory input to
the medial PFC express GLP-1R; and that its activation modulated
behavior (i.e. food motivation) (Hsu et al.,, 2017). In humans, an
increase in hypothalamic connectivity was shown 2 h after a single
intravenous dose of exenatide in obese male volunteers (Schlogl
et al.,, 2013). A separate study showed increased brain responses
in reward-related brain regions (insula and amygdala) following
administration of exenatide, with the effects being largely blocked
by prior GLP-1R blockade (van Bloemendaal et al., 2014). Of note,
GLP-1 and GLP-1R agonists effects on brain activation have been
shown to be context-dependent, with evidence indicating that
metabolic status (e.g. obesity vs. normal weight), metabolic medi-
ators (e.g. glucose and leptin levels) and task (e.g. food anticipation
or consumption) modulate the response of brain regions to GLP-1R
activation (Farr et al., 2016; van Bloemendaal et al., 2014; Gejl et al.,
2014; van Bloemendaal et al., 2015a; van Bloemendaal et al., 2015b;
Heni et al., 2015).

Evidence from preclinical studies indicates that GLP-1 analogues
may improve brain insulin sensitivity and glucose metabolism.
Reduced levels of brain insulin resistance following administration
of GLP-1R agonists, were reported (Bomfim et al., 2012; Long-Smith
et al., 2013; Bassil et al., 2017). One recent study documented that
peripheral exposure to liraglutide resulted in increased insulin
sensitivity in the hippocampus of patients with mild cognitive
impairment (MCI) (Talbot and Wang, 2014). The administration of
GLP-1R agonists was reported to raise the cerebral metabolic rate in

various brain regions (Gejl et al., 2012; Daniele et al., 2015). Inter-
estingly, in hyperglycemic conditions, which were shown to
enhance ischemic damage and to worsen the clinical outcome after
ischemic stroke (Bellolio et al., 2011), continuous infusion of GLP-1
reduced cerebral glucose uptake and increased glucose clearance
rates. These effects were largely absent in hypoglycemic conditions
(Gejl et al., 2013), indicating that GLP-1 has a regulatory, plasma
glucose concentration-dependent effect on brain glucose meta-
bolism, possibly by attenuating the fluctuations in plasma and brain
glucose, which is likely to be neuroprotective (Gejl et al., 2014).

3.3. GLP-1R agonists in clinical trials

To date, there are three published clinical trials directly evalu-
ating the effect of GLP-1R agonists on cognitive function in humans.
A 6-month, placebo-controlled randomized trial in individuals with
AD did not detect an effect of liraglutide on measures of cognitive
function (Gejl et al., 2016). A 3-month trail with once-weekly
exenatide for obese, antipsychotic-treated patients with schizo-
phrenia spectrum disorder did not observe improvement in the
Brief Assessment of Cognition in Schizophrenia (BACS) and the Rey-
Osterreith complex figure test (REY) (Ishoy et al., 2017). Our group
recently published results of a 4-week, pilot, proof-of-concept,
open-label study (Mansur et al., 2017a). We documented signifi-
cant improvements in the Trail Making Test-B (TMTB) standard
score (age and education corrected) (Cohen's d = 0.64, p =0.009)
and in a composite Z-score comprising multiple cognitive tests (i.e.
Digit Symbol Substitution Test [DSST], Rey Auditory Verbal
Learning Test [RAVLT], Stroop test) (Cohen's d =0.77, p < 0.001). In
addition, we also observed improvements in anhedonic symptoms,
using the Snaith-Hamilton Pleasure Scale (SHAPS) (Cohen's
d =0.64, p=0.010). There were significant methodological differ-
ences between these studies, including in the sample composition
(i.e. elderly with manifested AD, young and middle-aged adults
with psychotic or mood disorders), agents (i.e. liraglutide and
exenatide) and neurocognitive tests used, that could explain the
discrepancies between results. For example, there is no data on
once-weekly exenatide CNS penetration in humans, whereas lir-
aglutide has been shown to cross the BBB (Kastin et al., 2002;
Hunter and Holscher, 2012; Secher et al., 2014; Christensen et al.,
2015). Nonetheless, one of the most important features of the
positive trial from our group was the pre-treatment stratification.
Our sample was enriched for executive dysfunction, only subjects
with below-average (i.e. 1 SD below norm) performance in the
TMTB were enrolled; 101 individuals were screened; of those, 47
(46.5%) met this criteria. Moreover, we also observed moderating
effects of pre-treatment BMI and IR on treatment response. The
foregoing observation suggests that there are particular subgroups
which may be more responsive to GLP-1R agonist's therapy.

Reinforcing the hypothesis that GLP-1R agonists may be useful
agents are the results pertaining biological targets. The study of Gejl
et al. (2016) (Gejl et al., 2016) reported that liraglutide adminis-
tration prevented the decline of cerebral glucose metabolism,
which has been consistently associated with AD's pathological
progression and, consequently, cognitive impairment (Engler et al.,
2006; Mosconi, 2005). Our pilot study observed that 4-week
treatment with liraglutide resulted in increases in subcortical
structures and frontal gray matter (GM) volumes in multiple re-
gions, including the nucleus accumbens and the lateral orbito-
frontal (Mansur et al., 2017b). Body weight loss had a moderational
effect on these volumetric changes, insofar as increases in frontal
and striatal volumes were positively correlated with weight loss in
most regions and changes in BMI moderated changes in the right
amygdala, nucleus accumbens and rostral middle frontal region. As
expected, changes in regional volumes were associated with
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improvement in executive function (Mansur et al., 2017b).

GLP-1R agonists have been approved by the U.S. Food and Drug
Administration (FDA) and the European Medicines Agency (EMA)
to treat diabetes for over a decade and, more recently, for weight
loss. Multiple clinical trials have demonstrated that liraglutide is
well-tolerated by healthy controls and patients with metabolic
conditions. While there were initial concerns about incretin ther-
apy increasing the risk of developing pancreatitis and pancreatic
cancer, recent review of pre-clinical and clinical studies has not
borne this hypothesis out, and the FDA and EMA have provided
reassurance for the clinical and research use of these agents (Egan
et al.,, 2014). Indeed, GLP-1R agonists were well-tolerated in three
clinical trials in clinical populations (Gejl et al., 2016; Ishoy et al.,
2017; Mansur et al., 2017a). There were no serious adverse events
reported and discontinuation rates were relatively low (10—13%).
Overall, the evidence indicates that GLP-1R agonists are safe for
further testing in mood disorders and/or cognitively impaired
populations.

4. Conclusion

Overall, the currently available preclinical and clinical evidence
is consistent with GLP-1R agonists as important modulators of the
molecular and cellular processes (e.g. neuronal survival) that are
thought to underlie cognitive function. Moreover, GLP-1R agonists
have been shown to penetrate the CNS in humans and exert
measurable and physiologically relevant actions. Among these ac-
tions, it is well documented that liraglutide promotes body weight
loss, which has been shown to be beneficial for cognitive function.
Taken together, these observations suggest that further investiga-
tion is warranted in examining the potential beneficial effects of
GLP-1R agonists, specifically liraglutide, in measures of cognitive
function in a mood disorders population. The safety and availability
of GLP-1R agonists also indicate that they are promising candidates
for repurposing, and that they may be viable therapeutic options
for brain disorders.
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