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SUMMARY

Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of

overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic

syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to

pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic

low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R ag-

onism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is

revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain

health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the

intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R ag-

onism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a

promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.

INTRODUCTION

Recent insights into the central regulation of homeostatic

feeding have spurred the development of pharmaceutical strate-

gies aimed at effectively managing food intake as an obesity

treatment. A pivotal discovery highlights the presence of

glucagon-like peptide-1 (GLP-1)-expressing neurons primarily

located in the caudal nucleus of the tractus solitarius (NTS),1

crucial for maintaining proper energy balance.2 Remarkably,

these neurons send numerous ascending projections to hind-

brain, midbrain, and forebrain areas, integrating them into both

the hedonic and homeostatic control of food intake.3–6 Unsur-

prisingly, GLP-1 receptor (GLP-1R) agonists emerge as the

most promising targets for obesity management, prompting

the development of numerous receptor agonists such as liraglu-

tide, semaglutide, and tirzepatide.7–14 The caveat for exogenous

GLP-1 to function as an appetite suppressant is the requirement

of a supraphysiological dose with exponentially greater folds in

concentration and duration compared to endogenous GLP-1

(Figure 1). Functioning as an incretin hormone, GLP-1 plays a

key role in maintaining blood glucose homeostasis by increasing

postprandial insulin secretion and reducing glucagon secre-

tion.15 Endogenous GLP-1 delays gastric emptying, which slows

down the rate of glucose absorption and prevents insulin spikes.

Beyond this incretin role, GLP-1 signaling significantly contrib-

utes to the regulation of diverse behaviors, encompassing meta-

bolic processes and motivated behaviors such as feeding,3 fluid

intake,16 and drug consumption.17 Despite the known mediation

of these effects by central GLP-1Rs, the precise origins of

endogenous GLP-1 responsible for activating these receptors

remain a puzzle. This complexity is heightened by GLP-1’s pro-

duction in two distinct locations within the body—peripherally in

the gut,18 released into circulation, and centrally in distinct brain

regions, including the NTS and the olfactory bulb.19,20 GLP-1

binding onto hypothalamic and hindbrain centers induces

satiety, yet the exact mechanisms and pathways through which

GLP-1 enacts its effects on the brain remain elusive. Further-

more, the concentration of endogenous GLP-1 secreted and

the routes by which it enacts its effects depend on the strength

of the stimulus. For example, a normal meal leads to a postpran-

dial level of GLP-1 that triggers the afferent vagus nerve and re-

sults in a vagus relay that communicates its overall incretin ef-

fect.21 This level of plasma GLP-1 does not stimulate receptors

on target organs due to its low concentration and short half-

life. Conversely, a large meal, or post-bariatric surgery, will result

in a higher level of endogenous GLP-1 that acts on both the vagal

system and receptors on target organs. Whether postprandial

endogenous intestinal GLP-1 can reach the brain to modulate

food intake requires further elucidation. It is plausible that a

normal meal does not lead to a level of plasma GLP-1 that can

reach the brain via systemic circulation, while a large meal leads

to a more robust and prolonged release of intestinal GLP-1 that
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can act on central nodes to regulate satiety. Understanding the

interplay between these dual sources (brain and intestine) of

endogenous GLP-1 and their respective roles in modulating

physiology depending on the stimulus is critical for unraveling

the intricate signaling mechanisms associated with GLP-1.

Over the past decades, obesity has surged to pandemic levels

in Western societies.22 GLP-1R agonists have gained promi-

nence for delivering a sustained reduction in weight loss

(approximately 10%–20%).23 Individuals with overweight and

obesity often exhibit persistent chronic inflammation, both

peripherally and centrally. This inflammatory state is intimately

linked to a greater risk of developing neurological diseases, con-

necting obesity-related metabolic syndrome to cognitive decline

and neurodegeneration.24 Intriguingly, besides its role in appe-

tite regulation, GLP-1R agonism displays neuroprotective and

neurotrophic actions and minimizes neuroinflammation, such

as reduction in brain insulin resistance, microglial activation,

reactive astrogliosis, and neurodegeneration.25,26 This, coupled

with GLP-1’s ability to act both peripherally and centrally to regu-

latemetabolic health, has prompted investigations into its poten-

tial role in addressing extra-metabolic conditions. In addition to

the neuroprotective roles, GLP-1R agonism exerts microvas-

cular protection. GLP-1R agonism alleviates retinal vascular

leakage and improves brain-retinal-barrier permeability in

models of diabetic retinopathy.27–29 Given the neurovascular ef-

fects on the retina, and the existing parallelism of vascular func-

tions between the retina and the brain, it is logical to extend the

focus of GLP-1’s roles to extra-metabolic effects on the brain by

assessing comprehensively the action of GLP-1 on the neuro-

vascular unit (NVU), where neuronal, vascular, and immune sys-

tems actively communicate, coordinated by a diverse group of

cells mediating the brain-body crosstalk.30

In this review, we discuss the intersection between GLP-1R

signaling in metabolic and neurological disorders, exploring its

impact on the structure-function relationship of the neuro-glial-

vascular unit.

GLP-1RSIGNALINGACROSSTHEDIFFERENTSYSTEMS

OF THE NEURO-GLIAL-VASCULAR UNIT

Our brain constitutes only 2% of total body weight; however, it

consumes 20% of the body’s energy at rest in the form of

glucose and oxygen.31 This is achieved via an intricate network

of blood vessels that perfuses the brain and ensures a seamless

neuronal-vascular crosstalk known as neurovascular coupling

(NVC). Such a sophisticated vascular system intricately interacts

with its heterogenic pool of cellular components. This dynamic

process involves supplying energy substrates while efficiently

eliminating metabolic byproducts to uphold the brain’s homeo-

static equilibrium. The notion of the NVU underscores the phys-

ical location where the structural and functional connection

between brain cells and the microvasculature occurs to

coordinately regulate the brain-body crosstalk. The diverse

expression of GLP-1R on the different cell types of the NVU is

indicative of its multifaceted roles in overall brain function

(Figure 2).

Neurons

Centrally, GLP-1 is primarily produced by neurons in the NTS,

with projections to multiple regions, most notably the hypothal-

amus.32 The role of central GLP-1 in feeding behavior is well

established, while its influence on glucose homeostasis

requires more elucidation.33GLP-1R neurons in the dorsomedial

hypothalamus (DMH) lower blood glucose levels by increasing

insulin release through an NTSGLP�1-DMHGLP�1R-dorsal motor

nucleus of the vagus nerve (DMV)-pancreas pathway.33 In

contrast, GLP-1R neurons in the paraventricular hypothalamus

(PVH) suppress food intake via an NTSGLP�1-PVHGLP�1R

pathway.34 The divergence in GLP-1R populations in mediating

physiological versus pharmacological responses to GLP-1

further highlights the complexity of GLP-1 signaling and intro-

duces the concept of regional and temporal specificity with

GLP-1 central nodes responding differently to varying metabolic

shifts.35 Beyond appetite regulation and glucose homeostasis,

additional neuronal roles for GLP-1R signaling include the regu-

lation of energy expenditure and the ability to modulate the auto-

nomic nervous system, as well as the brain’s reward system. In

brief, central stimulation of GLP-1R leads to the activation of

brown adipose tissue thermogenesis, resulting in weight loss

independently of its effects on food intake.36Additionally, central

GLP-1R signaling directly regulates adipocyte lipid metabolism

by modulating sympathetic outflow.37 Selective deletion of

GLP-1R in the PVH reduces hypothalamic-pituitary-adrenal

axis responses to acute and chronic stress.38 GLP-1R acts on

the reward circuitry to diminish cocaine-seeking behavior.39,40

Such hedonic effects of GLP-1R signaling extend to a less se-

vere form of addiction, such as alcohol use disorder. Treatment

Figure 1. GLP-1R expression and function on the neuro-glial-
vascular unit
Endogenous and exogenous GLP-1 (GLP-1R agonist) share overlapping and
distinct physiological properties. Both act as incretin hormones to maintain
glucose homeostasis and reduce gastric emptying. Exogenous GLP-1 en-
hances satiety and demonstrates neuroprotection through its anti-inflamma-
tory properties. Whether endogenous GLP-1 can act centrally remains un-
known due to its short half-life.
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with GLP-1R agonists in alcohol-preferring non-human primates

reduces voluntary alcohol drinking.41 In summary, GLP-1R

signaling has a broad effect on the brain to regulate whole-

body systemic metabolism. Whether these effects are exclu-

sively conveyed by neurons or are partly mediated by other com-

ponents of the NVU remains to be elucidated.

Glial cells are a heterogenic pool of cells (astrocytes, micro-

glia, and oligodendrocytes) that integrate all aspects of CNS

development and formation. During the maturation process of

neural circuits, glial cells allow efficient synaptic communication,

adapting to changes in plasticity, maintaining internal homeosta-

sis, and regulating the overall network-level activity within the

CNS.42Moreover, glial cells are responsible for providing periph-

eral information into the neuronal network and have a significant

impact on whole-body metabolism.43 Though GLP-1R is primar-

ily expressed in neurons, it is also expressed in a variety of glial

cells with distinct roles on each cell type.

Astrocytes

Astrocytes are the most abundant glial cells in the brain. Being a

diverse group of cells with regional and temporal specificity, the

main role of astrocytes is themaintenance of tissue homeostasis

at all levels of CNS organization, extending frommolecular (regu-

lation of metabolites and neurotransmitters) to organ (mainte-

nance of the blood-brain barrier (BBB) and glymphatic sys-

tem).44 In astrocytes, GLP-1 plays a multifaceted role by

inhibiting glucose uptake, promoting fatty acid utilization, and

ensuring the maintenance of mitochondrial integrity and func-

tion.45 The absence of GLP-1R signaling in astrocytes leads to

the production of fibroblast growth factor 21, resulting in

improved systemic glucose homeostasis and memory forma-

tion.45 Furthermore, GLP-1 enhances the supportive capacity

of astrocytes to neurons by mediating a metabolic shift

from oxidative phosphorylation to aerobic glycolysis.46 GLP-1-

induced astrocytic-lactate generation increases neuronal

viability as well as dendrite and axon growth.46 Notably, the acti-

vation of GLP-1R in astrocytes within the NTS is implicated in the

control of energy balance through the regulation of food intake.47

Treatment with GLP-1R agonist liraglutide plays a role in modu-

lating astrocyte polarization by increasing the number of A2

reactive astrocytes, which are crucial for neuronal development,

plasticity, and survival.48 A similar finding is reported in a mouse

model of glaucoma, where treatment with GLP-1R agonist

NLY01 substantially reduces A1 astrocyte transformation and

retinal ganglion cell dealth.49 Interestingly, GLP-1 (9–36), a natu-

ral cleavage product of GLP-1, binds to insulin-like growth factor

1 receptor and activates the downstream phosphatidylinositol

3-kinase (PI3K)/protein kinase B/AKT pathway in astrocytes

during oxygen-glucose deprivation/reoxygenation injury.50 In

conclusion, GLP-1R signaling in astrocytes regulates both cen-

tral and peripheral metabolism, extending from energy balance

to neuroplasticity.

Microglia

Microglia are the resident immune cells of the CNS, with the most

pronounced diversity during CNS development and following dis-

ease or injury.51 Though the primary source of central GLP-1

stems from the NTS, GLP-1-positive cells colocalize with the mi-

croglial marker CD11b and are seen in the mouse cortex, indi-

cating a distinct expression of GLP-1 compared to canonical

GLP-1-expressing NTS neurons.52 In microglia, GLP-1R activa-

tion reverses microglial polarization from M1 to M2 subtypes by

suppressing AKT and nuclear factor kB (NF-kB) phosphorylation,

thereby mitigating microgliosis and astrogliosis.53,54 This reversal

Figure 2. GLP-1R expression and function on the neuro-glial-vascular unit
The broad expression of GLP-1R across the different cell types of the NVU works in tandem to enact its multifactorial effect on the brain and body.
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leads to enhanced neurite complexity and spine morphology in

primary cortical neurons.54 Additionally, the activation of micro-

glial GLP-1R in the trigeminal nucleus caudalis suppresses the

central sensitization of chronic migraine by inhibiting the down-

stream PI3K/AKT pathway.55 This inhibits microglial cell prolifera-

tion, morphological changes, and inflammatory cytokine produc-

tion, further supporting the role of GLP-1 in inducing a quiescence

state in microglial cells.55 Intriguingly, the neuroprotective effects

against microglia-mediated inflammation in neurodegenerative

diseases are observed upon the activation of microglial GLP-

1R.56 In a mouse model of sporadic Parkinson’s disease, treat-

ment with NLY01 protects against dopaminergic neuronal loss

and motor dysfunction primarily through the inhibition of micro-

glial-mediated conversion of astrocytes to an A1 neurotoxic

phenotype.57 However, in a 36-week randomized, double-blind,

placebo-controlled study, treatment with NLY01 in participants

with early untreated Parkinson’s disease did not lead to improve-

ments in motor or non-motor features compared with placebo.58

It is possible that reduction in microglial activation and astrocytic

conversion alone might not alter pathology. Whether modulation

of glial activity is more robust in younger participants remains to

be elucidated. To conclude, GLP-1R signaling onmicroglia atten-

uates neuroinflammation by suppressing the polarization of mi-

croglia to a proinflammatory state.

Oligodendrocytes

Myelin is the structure that surrounds individual axons and main-

tains saltatory impulse propagation.59 The insulation provided by

myelin not only enhances the speed of electrical conduction but

also acts as a protective barrier, shielding axons from potential

damage caused by external forces or inflammatory responses.

Oligodendrocytes are the CNS glial cells responsible for assem-

blingmyelinandprovidingmetabolic support tomyelinatedaxons.

Using single-cell RNA sequencing, GLP-1R expression in oligo-

dendrocytes is found in the hypothalamus.60Mature oligodendro-

cytes (Olig2+PDGFRa�) express GLP-1R in the corpus cal-

losum.61 Whether GLP-1 has a direct effect on oligodendrocyte

and myelin homeostasis or an indirect effect by regulating other

components of the NVU still requires clarification. Future studies

aimed at characterizing GLP-1R expression in oligodendrocytes

on a brain-wide scale will allow us to understand the functions of

GLP-1R signaling in oligodendrocytes with spatiotemporal speci-

ficity and how this signal is integrated with the rest of the NVU.

Endothelial cells

The brain is one of themost highly perfused organs.62 Intriguingly,

it forms a fundamental structure, the BBB, which selects the size

and type of molecules that can access the brain parenchyma.

While fundamental for brain function, such a barrier frustrates

pharmacological interventions. Importantly, in the context of this

review, bothGLP-1 andGLP-1R agonists are capable of crossing

the BBB.63 Structurally, the brain vascular layer is comprised of

endothelial cells, adjacent vascular smooth muscle cells

(VSMCs), and pericytes. Central endothelial GLP-1R regulates

the uptake of GLP-1 and its analog into the brain parenchyma.64

GLP-1R agonists prevent tight junction protein degradation, a

protective feature for ischemic stroke inmiddle cerebral artery oc-

clusion (MCAO) and injury models. This process is achieved via

binding to endothelial GLP-1R and stabilizing theBBB.65Colocal-

ization of GLP-1Rwith endothelial cell marker vonWillebrand fac-

tor (vWF) is observed onmicrovessels of the ipsilateral basal cor-

tex after subarachnoid hemorrhage induction.66 Moreover,

glutamate excitotoxicity plays a vital role in causing neuronal

death during ischemic stroke and is implicated in various neuro-

degenerative disorders. Studies on animal models of stroke

show that administering exendin-4 and liraglutide, either before

or after cerebral ischemia, can reduce infarct size, alleviate oxida-

tive stress, and enhance endothelial function.67 The combination

of single-cell RNA-sequencing analysis and immunostaining un-

veils a high expression of GLP-1R in mouse retinal endothelial

cells, which is reduced under diabetic conditions.68 Treatment

with GLP-1R agonist exendin-4 restores receptor expression

and leads to improvements in retinal degeneration, vascular tortu-

osity, avascular vessels, and vascular integrity. Due to the similar-

ity between the retinal and brain vasculature, this finding begs the

question of whether GLP-1R’s protective effects on retinal endo-

thelial cells can also be observed in brain endothelial cells in the

context of metabolic dysfunction. Whether endothelial cells regu-

late the uptake of endogenous GLP-1 in the context of a strong

stimulus to mediate energy balance remains unknown. Further

elucidation of GLP-1R signaling in endothelial cells can assist in

the explanation of stimulus-dependent endogenousGLP-1 trans-

port to and signaling in the brain.

Mural cells

Mural cells are the counterparts to endothelial cells, located on the

abluminal side of the vasculature.69 The advent of novel tools,

including high-resolution intravital optical imaging, calcium imag-

ing, and single-cell transcriptome analysis, has allowed the classi-

fication of this heterogeneous cell population.70 The two broad

types of mural cells are VSMCs and pericytes. VSMCs surround

15% of the brain microvessels, primarily arterioles and precapilla-

ries, and express the contractile smooth muscle protein actin.

Pericytes, on the other hand, surround 85% of the microvascula-

ture,primarilycapillaries,anddonotexpresssmoothmuscleactin.

In the hypothalamus, GLP-1R-expressing mural cells are largely

VSMCs, while glucose-dependent insulinotropic polypeptide re-

ceptor (GIPR)-expressingmural cells aremostly pericytes.60Addi-

tionally, GLP-1Rs are expressed by VSMCs lining cortical

arterioles.71 Importantly, the demonstrated protection accom-

plished by GLP-1R agonism on ischemic stroke may result from

vasodilation, impacting tissue perfusion of the infarcted brain tis-

sue—amural-mediated effect. Transcriptomic assessment quan-

tifies a significant increase in receptor expression under diabetic

conditions.72 Activation of GLP-1R enhances pericyte function,

restoring vascular integrity and BBB permeability in diabetic con-

ditions.Exendin-4’s effects onalleviatingdiabetes-inducedcogni-

tive impairment in rodents can arise from this mechanism. Recent

studies outline a protective role of GLP-1 on pericytes in diabetic

retinopathy. In diabetic rats, treatment withGLP-1Ragonist lixise-

natide prevents retinal pericyte loss.73 These discoveries uncover

the existence of GLP-1R on retinal pericytes.74 Further investiga-

tions on GLP-1R signaling in both brain and retinal pericytes will

allow the comparison between regional-specific actions of GLP-

1R on the BBB and blood-retinal barrier (BRB).

Overall, the role of GLP-1R signaling on central vascular cells

remains relatively unknown in comparison to theperipheral vascu-

lature. Similarly, vascular dysfunction in obesity and metabolic
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syndrome has been primarily focused on the periphery. In the

following sections, we highlight the effects of overnutrition and

obesity on the brainmicrovasculature and proposemicrovascular

dysfunction as a nexus between obesity and neurological

diseases.

OBESITY-INDUCED NEUROVASCULAR UNCOUPLING

AND MICROVASCULAR DYSFUNCTION

A hallmark of human obesity is chronic exposure to a high-fat

diet (HFD), which can trigger neuroinflammation and cognitive

decline, posing a risk factor for neurodegeneration. A HFD’s

impact on the cerebral vasculature includes compromised

BBB integrity and neurovascular uncoupling and remodel-

ing.75–78 Higher BMI is associated with decreased cerebral

perfusion in resting and concentration single-photon emission

computed tomography scans.79 Young adults with metabolic

syndrome exhibit decreased macrovascular and microvascular

cerebral blood flow (CBF) due to smaller vessel cross-sectional

area and lower mean blood velocity.80 The CBF reduction is

attributed to a loss of cyclooxygenase (COX) vasodilation, with

similarities in cerebrovascular impairments observed in middle-

aged adults with metabolic syndrome.81,82 The reduction in

CBF in younger adults with metabolic syndrome mirrors the

reduction seen in normal aging for middle-aged adults, indi-

cating that metabolic syndrome accelerates cerebrovascular

health deterioration.83 Additionally, the albumin quotient, indi-

cating the ratio of cerebrospinal fluid (CSF) albumin to serum al-

bumin, is higher in patients with type 2 diabetes mellitus (T2DM),

positively correlating with CSF biomarkers of angiogenesis and

endothelial cell dysfunction such as vascular endothelial growth

factor (VEGF).84 While it is evident that reduced CBF serves as a

marker for vascular dysfunction, it is crucial to emphasize that

both an increase and decrease in CBF can indicate a shift in ho-

meostasis and act as markers for a disease state.85

The ability of overnutrition to shape the neurovascular land-

scape raises questions about the reversibility of diet-induced

microvascular dysfunction. As for all interventional studies, it is

crucial to determine the appropriate age of the subjects and the

optimal dose and length of treatment. For example, in juvenile

mice, 8 weeks of HFD is insufficient to induce neurovascular im-

pairments; however, alterations are observed after 16 weeks of

HFD.86 Likewise, 11weeks ofHFD leads to cognitive impairments

only in juvenile mice but not in adult mice.87 These discrepancies

in phenotypes are crucial to avoid any false positives and nega-

tives. With that in consideration, recent studies have demon-

strated improvements in diet-induced NVU impairments using

pharmacotherapy. Treatment with telmisartan, a common angio-

tensin II receptor blocker, normalizes diet-induced neurovascular

uncoupling and CBF reduction in juvenile mice.86 The potential to

useGLP-1R agonismas a pharmacological tool to shape the neu-

rovascular landscape is explored in the following sections.

GLP-1R AGONISM REPAIRS METABOLIC-ASSOCIATED

NEUROVASCULAR UNCOUPLING AND

MICROVASCULAR DYSFUNCTION

The extensive impact of central GLP-1 on feeding behavior,

glucose homeostasis, and cognitive function prompts an explo-

ration of the mechanisms through which GLP-1 enacts its exten-

sive neurophysiological effects. This section dives into the

impact of GLP-1 signaling on the intricate relationship between

the neuro-glial-vascular unit.

Postprandial increases in plasma GLP-1 align with increased

regional CBF in the left dorsolateral prefrontal cortex and hypo-

thalmaus.88 Under basal and hyperglycemia conditions, GLP-1

(1–37) improves BBB integrity, elevating the expression of the

tight junction proteins occludin and claudin-5 via the cyclic

AMP/protein kinase A (PKA) pathway in cultured brain micro-

vascular endothelial cells (BMVECs).65 In HFD-fed mice, exe-

natide (a long-acting GLP-1R agonist) mitigates cortical neuro-

inflammation and behavioral deficits by modulating microglial

M2 polarization.89 Cultured human astrocytes treated with ex-

enatide exhibit reduced glial fibrillary acidic protein (GFAP)

expression in both normo- and hyperglycemic conditions.90

Treating diabetic rats with exendin-4 ameliorates functional

and structural alterations in the BBB and blood-CSF barrier

by increasing protein levels of tight junctions and aquaporins.91

In patients with T2DM, liraglutide demonstrates cognitive

improvement by activating the dorsolateral prefrontal cortex

and orbitofrontal cortex brain regions.92 Liraglutide treatment

also reverses the reduced diameter and functional density of

brain capillaries in HFD-fed rats.93 In streptozotocin (STZ)-

induced diabetic rats, liraglutide attenuates inflammatory

markers in the cerebral microvasculature without impacting

blood glucose levels or body weight.94 In a mixed murine

model of Alzheimer’s disease (AD) and T2DM, 20 weeks of lir-

aglutide administration reduces vascular damage, brain atro-

phy, and neuronal loss and alleviates cognitive impairment.95

Linagliptin, a dipeptidyl peptidase-4 inhibitor, improves dia-

betes-induced cerebrovascular dysfunction by reducing endo-

thelin-1 (ET-1) plasma levels and cerebrovascular hyperreactiv-

ity.96,97 In 12-month HFD-fed mice, linagliptin treatment

restores BBB integrity and pericyte coverage and counters

the angiogenic effect of T2DM.98 Moreover, using diabetic

Goto-Kakizaki rats, treatment with linagliptin for 4 weeks re-

stores cerebral perfusion and improves insulin-induced cere-

brovascular relaxation and vascular remodeling but does

not affect short-term hippocampus-dependent learning.99 In

this case, the lack of cognitive improvement might be attrib-

uted to the duration of intervention. Linagliptin does not cross

the BBB and increases GLP-1 levels; therefore, its associated

neuroprotection is hypothesized to arise from GLP-1R

signaling.100 Notably, chronic linagliptin treatment demon-

strates neuroprotective effects even in mice lacking GLP-

1Rs, suggesting a central action for linagliptin beyond its role

in incretin regulation.101

In sum, GLP-1R agonism demonstrates promising effects to

counteract obesity-induced neurovascular uncoupling and

microvascular dysfunction by ameliorating CBF, BBB integrity,

and vascular remodeling in humans, rodents, and in vitromodels

(Figure 2). A pilot study assessing the effect of a single dose of

exenatide on healthy nondiabetic subjects found no effect on ce-

rebral and peripheral vasculature or on inflammatory bio-

markers.102 This indicates that the effect of GLP-1R agonism

on NVC and the cerebral vasculature might require long-term

treatment in the context of metabolic shifts to have a clinically

relevant effect. Further research is needed to optimize the onset
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and duration of GLP-1R agonism to both prevent and treat an

altered microvasculature.

EFFECT OF METABOLIC DYSFUNCTION ON

CEREBROVASCULAR RISK AND RECOVERY

Cerebral ischemia-reperfusion injury (CIRI) exacerbates stroke

outcomes due to rapid reperfusion, posing a persistent chal-

lenge in recovery due to the limited treatment options and a nar-

row time window for intervention.103 The obesity paradox sug-

gests better cardiovascular outcomes for patients with obesity

or overweight compared to lean individuals,104 a notion that is

still debated in the cerebrovascular field. This pattern is also

seen in AD, wheremidlife weight gain increases the risk of neuro-

logical complications, while late-life weight gain is proposed as a

protective factor.105 Metabolic syndrome prevalence worsens

cerebral microvascular rarefaction and endothelial dysfunction

induced by CIRI.106 In rats, early exposure to HFD correlates

with impaired NVC and cerebrovascular dysfunction, leading to

increased cerebral injury and unfavorable stroke outcomes.107

Hyperglycemia, an independent risk factor for poor ischemic

stroke outcomes, heightens BBB disruption and activates

matrix metalloproteinase-9 (MMP-9), a family of extracellular

matrix remodeling endopeptidases.108,109 Inhibiting MMP-9 ac-

tivity counteracts HFD-induced cerebrovascular remodeling,

reducing hemorrhagic volumes and improving neurological out-

comes post-stroke.109 Hyperglycemia also elevates hypoxia-

inducible factor 1 alpha (HIF-1a) and VEGF expression, markers

of angiogenesis, in brain microvessels after ischemic reperfu-

sion.110 Knocking out endothelial HIF-1a ameliorates BBB

leakage and brain infarction in diabetic mice.110 Hyperbaric ox-

ygen preconditioning attenuates brain infarct and hemorrhagic

transformation (HT) by downregulating HIF-1a andMMP-1 in hy-

perglycemic MCAO rats.111 Weight loss before stroke enhances

recovery by normalizing fasting glucose and insulin resis-

tance.112With T2DMbeing amajor risk factor for stroke develop-

ment, diabetes treatments addressing cerebrovascular risk and

recovery have garnered significant attention. To optimize inter-

ventions, understanding spatiotemporal variations in cerebro-

vascular changes associated with metabolic-induced neurolog-

ical impairments is essential for targeted interventions.113

REPURPOSING OF GLP-1 AGONISTS FOR THE

TREATMENT OF CEREBROVASCULAR DISEASES

Stroke

Stroke stands as a major contributor to both fatalities and inca-

pacitation, placing a substantial economic burden on Western

societies.114 Thrombolysis has been a standard treatment for

acute ischemic stroke for a quarter century. However, its efficacy

is confined to less than 10% of patients treated within a 4-h win-

dow from stroke onset.115 In recent decades, endovascular

thrombectomy has emerged as a valuable therapy, showcasing

benefits in early recanalization and reperfusion, but its wide-

spread use and enduring effectiveness remain constrained.116

Despite these strides, there persists a need for neuroprotective

agents to extend the treatment time window and enhance func-

tional outcomes in ischemic stroke. Diabetes exacerbates the

risk of stroke and is implicated in roughly 20% of diabetes-

related deaths, underscoring the interconnected mechanisms

of diabetes and stroke. Given the broad usage of GLP-1R

agonists for the treatment of obesity and T2DM and its roles in

neuroprotection, it offers a promising avenue for future therapeu-

tic breakthroughs in cerebrovascular therapy. In a mouse cere-

bral ischemia model, there is an increase in GLP-1R expression

in the CA1 region after stroke, suggesting a compensatory

mechanism for neuronal protection.117 Interestingly, GLP-1R

expression exhibits a biphasic response, peaking within

24–48 h after the ischemic insult, followed by a drop, and then

a subsequent increase after 1–2 weeks.117 This biphasic

response parallels findings for VEGF-A in response to

ischemia.118 However, conflicting reports indicate a decrease

in GLP-1R expression at various time points after stroke induc-

tion.119 A possible explanation is that GLP-1R expression in-

creases as a compensatory mechanism to the physiological

insult and drops back to the homeostatic level after vascular re-

modeling is established. The parallelism between GLP-1R and

VEGF-A expressions further reinforces the link between GLP-

1R signaling and cerebral vascular plasticity.

Preclinical studies indicate treatment with GLP-1R agonists as

potential complementary interventions to canonical cerebrovas-

cular interventions. Exendin-4 treatment in hyperglycemic mice

inhibits MMP-9 activation, reducing infarct growth after cerebral

ischemia.108 In a rat MCAO model, exendin-4 attenuates neuro-

logical deficits, brain edema, infarct volume, and BBB perme-

ability, attributed to GLP-1R activation of the Wnt/b-catenin

signaling pathway involved in sprouting and nonsprouting

angiogenesis, vasculogenic mimicry, and mosaic vessel forma-

tion.120,121 This pathway inhibits MMP-9 activation, lowers

reactive oxygen species (ROS), and mitigates leukocyte infiltra-

tion.120 Exendin-4’s protective effects extend to cortical arteri-

oles with lasting increases in brain tissue partial pressure of ox-

ygen (pO2) via modulation of CBF.71 Warfarin-associated HT

after cerebral ischemia is a consequence attributed to increased

BBB permeability.122 Exendin-4 ameliorates warfarin-associ-

ated HT, preserves BBB integrity, and suppresses oxidative

DNA damage, lipid peroxidation, microglial activation, and

neutrophil infiltration through the inhibition of the PI3K/AKT/

glycogen synthase kinase 3 beta (GSK-3b) pathway.122 Astro-

cyte-dependent mechanisms mediate exendin-4’s ability to

preserve BBB integrity, reducing astrocyte-derived VEGF-A

and increasing tight junction protein expression.123 Chronic

exendin-4 treatment normalizes microvessel density, pericyte

coverage, and fibrotic scar formation in MCAO T2DM mice.124

In retinal ischemia-reperfusion injury, exendin-4 suppresses

BRB breakdown by targeting inflammatory genes (e.g., inter-

leukin-1 beta [IL-1b], tumor necrosis factor alpha [TNF-a], and

C-C motif chemokine ligand 2 [CCL2]).125 Long-lasting exen-

din-4-loaded microspheres demonstrate greater improvement

in various neurovascular parameters when compared to regular

exendin-4, such as cortical CBF, cerebral microcirculation,

cognitive deficits, brain edema area, and levels of ROS,

aquaporin, and GFAP expression.126 In an acute ischemic

stroke, liraglutide dose-dependently reduces infarct size.127

Proteomics mass spectrometry analysis post-MCAO in mice re-

veals alterations in oxidative stress, cell growth, apoptosis,

and inflammatory response after liraglutide administration.128

The neuroprotective effect of liraglutide involves inhibiting
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pyroptosis via the nucleotide-binding domain, leucine-rich-con-

taining family, pyrin domain-containing-3 (NLRP3)/Caspase-1/

IL-1b pathway.129 GLP-1R knockdown abolishes liraglutide’s

protective effect, implicating nuclear factor erythroid 2-related

factor 2 (Nrf2) activation and M2 polarization.130 NLRP3 inhibi-

tion improves diabetes-mediated cognitive impairment and

vascular integrity, preventing the hypoxia-mediated decrease

in BDNF (brain-derived neurotrophic factor) secretion.131

GLP-1 alleviates NLRP3 inflammasome-associated inflamma-

tion in perivascular adipose tissue, suggesting a similar interac-

tion between GLP-1 and NLRP3 in the cerebral vasculature.132

Of note, BDNF-mediated mitophagy alleviates hyperglycemia-

induced BMVEC injury.133 Interestingly, GLP-1R/BDNF/

(tropomyosin receptor kinase B) TrkB signaling modulates hip-

pocampal neuroplasticity in HFD-induced diabetic mice,134

contributing to GLP-1’s neuroprotective effects on cerebrovas-

cular remodeling.134–136 In diabetic rats with MCAO, treatment

with liraglutide augments Nrf2 and heme oxygenase 1 (HO-1)

expression in the cerebral ischemic tissue.137 Pretreatment for

2 weeks reduces infarct volume in both diabetic and nondiabetic

rats,138 while post-treatment enhances VEGF expression

without altering cortical CBF.139 Delayed administration of lira-

glutide improves microvessel density and endothelial cell prolif-

eration and upregulates the expression of VEGF.140 When the

administration is extended, liraglutide treatment increases the

number of neuronal nuclei, GFAP, vWF, and GLP-1R in the cere-

bral ischemic area.141 In both delayed scenarios, there is neuro-

vascular remodeling accompanied by improvements in glucose

metabolism and neurological function.140,141 Both exendin-4

and liraglutide enhance CBF and reduce oxidative stress and

cognitive deficits inMCAOdiabetic mice.142 In short, GLP-1’s in-

fluence on the cerebral vasculature is primarily mediated by its

anti-inflammatory properties that prevent detrimental insults

from an overactive inflammatory response.

Other GLP-1 analogs also have been demonstrated to reduce

ischemic damage after CIRI. Semaglutide, with a longer half-life

than liraglutide, demonstrates greater protection against

ischemic damage.127 Semaglutide treatment reduces inflamma-

tory M1 microglia and A1 astrocytes after ischemic stroke.143 In

this context, complement (C)3d+ A1 astrocytes block BBB

permeability in the neuroinflammatory response. The capability

of semaglutide to block the astrocyte phenotype conversion

suggests that GLP-1R agonists may treat uncontrolled neuroin-

flammatory-induced neurological disorders143 since the extinc-

tion of neuroinflammation is complemented by improved growth

factor signaling and neurogenesis in hippocampal areas.144 Im-

mediate and delayed lixisenatide treatment, an analog of exena-

tide, upregulates VEGF and endothelial nitric oxide synthase

(eNOS) expression. This effect is blocked by exendin (9–39).145

Similarly, lixisenatide administration in diabetic rats reduces ce-

rebral infarct volume, neuronal apoptosis, oxidative stress, and

inflammation.146,147 Chronic treatment with linagliptin pre- and

post-stroke decreases ischemic brain damage in both middle-

aged diabetic and nondiabetic mice.148 In the genetically dia-

betic-obese (db/db) mice, chronic post-treatment with linagliptin

improves CBF, BBB integrity, and cognitive performance and at-

tenuates cerebral oxidative stress and brain atrophy.149 The

improvement in functional outcome after stroke is attributed to

the stromal cell-derived factor 1 alpha (SDF-1a)/C-X-C motif

chemokine receptor 4 (CXCR4) pathway involved in wound heal-

ing, angiogenesis, and proliferation.150,151 Using in vitro

BMVECs, linagliptin ameliorates the lack of proliferative and

migratory abilities of BMVECs by enhancing the sirtuin 1

(SIRT1)/HIF-1a/VEGF pathway.152 Sitagliptin, with a shorter

half-life relative to linagliptin, offers protection against CIRI

through the GLP-1R-mediated transient recptor potential

(TRP)/calcitonin gene-related peptide (CGRP) signaling pathway

involved in vasodilation.153,154 Of note, overexpression of CGRP

protects against hyperglycemia-induced BMVEC damage by

suppressing extracellular signal-regulated kinase (ERK)/HIF-1/

VEGF signaling.155 The pathways mediated by GLP-1R signaling

converge into a common theme: anti-inflammatory-mediated

cerebral vascular remodeling.

Traumatic brain injury

Compared to CIRI, traumatic brain injury (TBI) due to mechanical

impact is caused by different primary insults with similarities in

the pathogenesis of these cerebral injuries.156 TBI induced by

controlledcortical impact (CCI)mimicscerebral edemaseen inhu-

man TBI. Chronic HFD feeding worsens functional outcomes and

decreases brain recovery post-TBI by aggravating neuroinflam-

mation and oxidative stress.157 Higher plasma GLP-1 levels are

associated with a greater risk of TBI-induced mortality and may

indicate severe central resistance to endogenous GLP-1 in non-

survivors compared to survivors.158 Expression of GLP-1R levels

decreases significantly after TBI.159 Exendin-4 restores BBB

integrity, reduces neuronal apoptosis, and improves cognitive

impairment after mouse TBI induction.160 A similar effect is seen

in rats, with exendin-4 treatment promoting neurological, cogni-

tive, andCBF recovery by attenuating inflammatory responses.161

Impairment of the glymphatic system is a major contributor to the

neuropathological changes and cognitive impairment following

TBI due to the accumulation of various neurotoxic substances

suchasamyloid beta and tauprotein.162 Intriguingly,GLP-1Racti-

vation in TBI improves glymphatic system dysfunction, alleviating

reactive astrogliosis and loss of perivascular aquaporin-4.160

Post-treatment with liraglutide after CCI improves BBB integrity

and sensorimotor function, reduces cerebral edema, and limits

cortical tissue loss.163,164 Neuroinflammation reduction is evident

in lowermicroglial expression, althoughastrogliosis remains unaf-

fected, possibly due to the observed time point.165 Additional

research contrasting the effect of GLP-1R agonism on different

types of cerebrovascular disease will clarify the overlapping and

distinct pathways impacted by GLP-1’s anti-inflammatory-

induced vascular plasticity.

Overall, repurposing GLP-1 for cerebrovascular diseases of-

fers an innovative approach to address these challenging health

issues (Figure 3). More research is needed to explore the usage

of other metabolic drugs, such as sodium/glucose cotransporter

2 (SGLT2) inhibitors and metformin, to lower cerebrovascular

risk factors and treat cerebrovascular diseases and their associ-

ated comorbidities.

EXTENSION OF NEUROVASCULAR REMODELING TO

MYELINATION AND CSF DYNAMICS

The capability of GLP-1 to influence the neurovascular land-

scape suggests a connection to its role in mediating cognitive
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function, as neurovascular dysfunction is correlated with

cognitive impairments in various neurological diseases.166 Al-

terations in the brain vasculature correlate with changes in

myelin composition, impacting cognitive performance.167,168

Chronic overnutrition is associated with lower white matter

integrity and cerebral myelin content,169 indicating a possible

link between obesity and neurological diseases.170 Consump-

tion of excess HFD leads to oligodendrogliopathy and im-

pedes oligodendrocyte differentiation in the brain and spinal

cord.171 HFD-induced demyelination is mediated through

astrocyte-linked indirect nicotinamide adenine dinucleotide

(NAD+)-dependent mechanisms.172 Inhibition of cluster of dif-

ferentiation 38 (CD38), an NAD+-degrading enzyme, enhances

remyelination in regular chow-fed mice and increases astro-

cytic expression of Glp1r and Igf1, indicating improved lipid

metabolism and insulin signaling.45,172 While a minimal effect

of CD38 inhibition is seen in HFD-induced demyelination, a

combination of CD38 inhibitor and GLP-1R agonist might

work in tandem to induce remyelination in obesity. Moreover,

caloric restriction promotes remyelination by increasing

oligodendrocyte survival and differentiation and decreasing

astrogliosis and microgliosis.173 Supplementation with nicotin-

amide, a caloric restriction mimetic, induces myelin produc-

tion and ameliorates gliosis.174 The intimate link between the

brain vasculature and nutrient consumption on myelin compo-

sition indicates that GLP-1 might have an impact on the mye-

lination process.

Myelination

Neurovascular dysfunction with BBB breakdown and reduced

CBF is a prominent feature in demyelinating diseases, and ther-

apeutics to modulate the NVU is a potential avenue for prevent-

ing demyelination and inducing remyelination.175 Obesity is a

risk factor for multiple sclerosis (MS), and obesity in patients

with MS is associated with higher disease severity and a poorer

outcome.176GLP-1’s impact on myelination is evident in preclin-

ical studies where GLP-1R agonists promote remyelination in

models of MS. In a cuprizone-induced mouse model of MS,

co-treatment with cuprizone and liraglutide for 4 weeks induces

remyelination by stimulating oligodendrocyte progenitor cell

(OPC) differentiation via anti-inflammatory mechanisms.177 Co-

treatment with cuprizone and NLY01 does not impact demyelin-

ation in the corpus callosum.61 Additionally, post-treatment with

NLY01 after cuprizone intoxication does not alter myelin compo-

sition or the number of mature oligodendrocytes.61 Of note, the

inflammatory environment and immune trafficking are stable be-

tween the vehicle and the treated groups, indicating that post-

treatment with NLY01 fails to minimize neuroinflammation and

might overshadow its direct impact on oligodendrocytes. In a

chronic experimental autoimmune encephalomyelitis (EAE)

Figure 3. GLP-1 ameliorates neurovascular uncoupling and promotes cerebrovascular remodeling
GLP-1R signaling ameliorates obesity-induced neurovascular uncoupling and cerebrovascular risk through improvements in CBF, BBB integrity, and vascular
remodeling. Treatment with GLP-1R agonists in both humans and rodents mitigates glial polarization and neuroinflammation. The induction of an anti-inflam-
matory state reduces vascular damage and neuronal loss and increases tight junction expression, pericyte coverage, and insulin-induced cerebrovascular
relaxation. GLP-1 treatment upregulates the expression of VEGF and induces vascular plasticity in cerebrovascular diseases such as CIRI and TBI.
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mouse model of MS, pretreatment with NLY01 delays the onset

and attenuates the severity of EAE by inhibiting immune cell traf-

ficking into the CNS.178 The reduction in leukocyte recruitment is

likely attributed to the anti-inflammatory effects of NLY01, lead-

ing to improvements in BBB integrity. In symptomatic EAE mice,

treatment with exendin-4 leads to remyelination in the lumbar

spinal cord.179 Linagliptin reduces cuprizone-induced demyelin-

ation by modulating the adenosine 50 monophosphate-activated

protein kinase (AMPK)/SIRT1 and Janus kinase 2 (JAK2)/signal

transducer and activator of transcription 3 (STAT3)/NF-kB path-

ways.180 The potential of GLP-1R agonism to prevent demyelin-

ation or induce remyelination is promising, with further research

needed to dissect the role of GLP-1R signaling on oligodendro-

cytes and OPCs (Figure 4). Whether GLP-1 has a direct effect on

myelin composition or indirectly through the alterations of the

other components of the NVU remains to be elucidated.

Glymphatic homeostasis

The intricate relationship between GLP-1R signaling and the ce-

rebral vasculature extends to CSF dynamics, crucial for nutrient

delivery andwaste removal. Neuronal activity-induced functional

hyperemia drives CSF dynamics during sleep, and neural activity

driven by visual stimulation modulates CSF flow, emphasizing

the role of a healthy cerebral vasculature in maintaining cerebral

metabolic levels and turnover.181,182 Interestingly, dynamic

changes in arterial diameter in the absence of neural activation

drive perivascular glymphatic CSF inflow and clearance.183

Furthermore, alterations in CSF homeostasis and intracranial

pressure (ICP) heighten the susceptibility to and are observed

in various neurological diseases.184 In T2DM rats, glymphatic

dysfunction contributes to cognitive decline by hindering the

clearance of neurotoxic molecules.185,186 Idiopathic intracranial

hypertension (IIH), characterized by increased ICP and optic

disc swelling, is linked to CSF circulation failure and sinus vein

obstruction.187,188 Obesity is a major risk factor for IIH develop-

ment, with greater occurrence in womenwith obesity.189 In over-

weight women with IIH, there is an increase in intracranial CSF

volume that accumulates in the extraventricular subarachnoid

space with greater venous outflow resistance.190 In rats, HFD in-

creases CSF secretion without changes in the resistance to CSF

drainage compared to the control diet.191 The sexual dimorphic

phenotype is observed only in female rats, consistent with the

high rates of female patients with IIH and obesity, and demon-

strates a 55% increase in ICP.192 Importantly, weight loss inter-

ventions are effective approaches to minimize the risk of IIH and

treat patients with IIH.193GLP-1R agonism demonstrates poten-

tial in IIH management, with GLP-1R expression in the choroid

plexus influencing CSF secretion.194 In fact, exendin-4 modu-

lates CSF production in vitro.194 In rodents, this CSF lowering ef-

fect translates into exendin-4 reducing ICP in a dose-dependent

manner, with effects lasting for 24 h.194 Intriguingly, clinical

studies support the efficacy of GLP-1R agonists in reducing

Figure 4. GLP-1 restores CNS remyelination capacity
GLP-1R agonism enhances remyelination by stimulating OPC differentiation. Treatment with GLP-1R agonists inhibits immune cell trafficking into the CNS and
attenuates inflammation-induced demyelination.
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ICP, highlighting their potential in treating conditions with

elevated ICP. For instance, a case report of IIH caused by

Ramadan intermittent fasting led to the hypothesis that a drop

in GLP-1 concentration triggers a decrease in GLP-1R activation

in the choroid plexus.195 This results in increased CSF secretion

and ICP. Furthermore, in a phase II randomized, double-blind,

placebo-controlled trial, exenatide treatment results in clinically

meaningful reduction in ICP with improvements in headaches

and visual acuity.196Unsurprisingly, GLP-1R agonism is now be-

ing explored in IIH as a phase III clinical trial to overcome raised

ICP (NCT05347147). Lastly, in an open-lab, single-center, case-

control pilot study, supplementing semaglutide or liraglutide with

usual care weight management improves headache frequency

compared to usual care weight management alone.197 In pa-

tients with IIH after bariatric surgery, there is an association be-

tween a reduction in ICP and an increase in meal-stimulated

GLP-1 levels.198

Together, it is evident that GLP-1R signaling impacts CSF dy-

namics and ICP (Figure 5). Commonly used off-label ICP-

lowering drugs, such as acetazolamide, spironolactone, and

topiramate, worsen cognitive function. However, treatment

with exenatide in a cohort of patients with IIH reduces ICP

without affecting cognition.199Nevertheless, while these results

are encouraging, whether GLP-1R agonism can improve cogni-

tive function through a decrease in ICP for IIH still needs to be

validated. Evaluating the mechanistic differences of GLP-1R

signaling on various neurological conditions characterized by

increased ICP is a critical first step. The capacity of GLP-1 to

impact the glymphatic system is currently an early but prom-

ising approach to target neurological disorders with glymphatic

dysfunction. Being that the glymphatic system is intimately in-

tertwined with the neuro-glial-vascular unit, cerebral vascula-

ture, and myelin composition, the potential of GLP-1 to affect

all these different modalities of the brain due to a positive dom-

ino effect highlights GLP-1 as an ideal representative of drug re-

purposing.

CONCLUSIONS

The intimate link between metabolic and cognitive health sheds

light on brain-body communication and redefines certain disor-

ders as neurometabolic. The concept of repurposing antidia-

betic drugs for the treatment of neurological diseases is gaining

popularity, with metabolic disorders being a major risk factor for

neurodegeneration. In recent years, repurposing of GLP-1 mi-

metics to treat neurological diseases holds promise due to their

anti-inflammatory, neuroprotective, and neurotrophic proper-

ties. The expression of GLP-1R on diverse cell types and its abil-

ity to influence the neurovascular landscape make GLP-1 an

ideal candidate to bridge the brain-body and neuro-metabolic

crosstalk. Whether GLP-1’s effects on these cell types are direct

or indirect still requires further clarification, as well as the precise

mechanisms by which GLP-1 activates NVC, cerebral vascular

remodeling, myelination, and CSF dynamics. A deeper under-

standing of the pivotal role played by GLP-1R signaling en-

hances the potential to address both metabolic and neurological

disorders, potentially complementing treatments for both types

of conditions simultaneously.
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(2009). Direct control of peripheral lipid deposition by CNS GLP-1 recep-
tor signaling is mediated by the sympathetic nervous system and blunted
in diet-induced obesity. J. Neurosci. 29, 5916–5925. https://doi.org/10.
1523/JNEUROSCI.5977-08.2009.

38. Ghosal, S., Packard, A.E.B., Mahbod, P., McKlveen, J.M., Seeley, R.J.,
Myers, B., Ulrich-Lai, Y., Smith, E.P., D’Alessio, D.A., and Herman, J.P.
(2017). Disruption of Glucagon-Like Peptide 1 Signaling in Sim1 Neurons
Reduces Physiological and Behavioral Reactivity to Acute and Chronic
Stress. J. Neurosci. 37, 184–193. https://doi.org/10.1523/JNEUROSCI.
1104-16.2016.

39. Hernandez, N.S., Ige, K.Y., Mietlicki-Baase, E.G., Molina-Castro, G.C.,
Turner, C.A., Hayes, M.R., and Schmidt, H.D. (2018). Glucagon-like
peptide-1 receptor activation in the ventral tegmental area attenuates
cocaine seeking in rats. Neuropsychopharmacology 43, 2000–2008.
https://doi.org/10.1038/s41386-018-0010-3.

40. Hernandez, N.S., Weir, V.R., Ragnini, K., Merkel, R., Zhang, Y., Mace, K.,
Rich, M.T., Christopher Pierce, R., and Schmidt, H.D. (2021). GLP-1 re-
ceptor signaling in the laterodorsal tegmental nucleus attenuates
cocaine seeking by activating GABAergic circuits that project to the

VTA. Mol. Psychiatr. 26, 4394–4408. https://doi.org/10.1038/s41380-
020-00957-3.

41. Thomsen, M., Holst, J.J., Molander, A., Linnet, K., Ptito, M., and Fink-
Jensen, A. (2019). Effects of glucagon-like peptide 1 analogs on alcohol
intake in alcohol-preferring vervet monkeys. Psychopharmacology (Berl)
236, 603–611. https://doi.org/10.1007/s00213-018-5089-z.

42. Allen, N.J., and Lyons, D.A. (2018). Glia as architects of central nervous
system formation and function. Science 362, 181–185. https://doi.org/
10.1126/science.aat0473.

43. Nampoothiri, S., Nogueiras, R., Schwaninger, M., and Prevot, V. (2022).
Glial cells as integrators of peripheral and central signals in the regulation
of energy homeostasis. Nat. Metab. 4, 813–825. https://doi.org/10.1038/
s42255-022-00610-z.

44. Verkhratsky, A., Butt, A., Li, B., Illes, P., Zorec, R., Semyanov, A., Tang,
Y., and Sofroniew, M.V. (2023). Astrocytes in human central nervous sys-
tem diseases: a frontier for new therapies. Signal Transduct. Targeted
Ther. 8, 396. https://doi.org/10.1038/s41392-023-01628-9.

45. Timper, K., del Rio-Martin, A., Cremer, A.L., Bremser, S., Alber, J., Gia-
valisco, P., Varela, L., Heilinger, C., Nolte, H., Trifunovic, A., et al.
(2020). GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid
Oxidation, Mitochondrial Integrity, and Function. Cell Metabol. 31,
1189–1205.E13. https://doi.org/10.1016/j.cmet.2020.05.001.

46. Zheng, J., Xie, Y., Ren, L., Qi, L., Wu, L., Pan, X., Zhou, J., Chen, Z., and
Liu, L. (2021). GLP-1 improves the supportive ability of astrocytes to neu-
rons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Me-
tabol. 47, 101180. https://doi.org/10.1016/j.molmet.2021.101180.

47. Reiner, D.J., Mietlicki-Baase, E.G., McGrath, L.E., Zimmer, D.J., Bence,
K.K., Sousa, G.L., Konanur, V.R., Krawczyk, J., Burk, D.H., Kanoski, S.E.,
et al. (2016). Astrocytes Regulate GLP-1 Receptor-Mediated Effects on
Energy Balance. J. Neurosci. 36, 3531–3540. https://doi.org/10.1523/
JNEUROSCI.3579-15.2016.

48. An, J.R., Liu, J.T., Gao, X.M., Wang, Q.F., Sun, G.Y., Su, J.N., Zhang, C.,
Yu, J.X., Yang, Y.F., and Shi, Y. (2023). Effects of liraglutide on astrocyte
polarization and neuroinflammation in db/dbmice: focus on iron overload
and oxidative stress. Front. Cell. Neurosci. 17, 1136070. https://doi.org/
10.3389/fncel.2023.1136070.

49. Sterling, J.K., Adetunji, M.O., Guttha, S., Bargoud, A.R., Uyhazi, K.E.,
Ross, A.G., Dunaief, J.L., and Cui, Q.N. (2020). GLP-1 Receptor Agonist
NLY01 Reduces Retinal Inflammation and Neuron Death Secondary to
Ocular Hypertension. Cell Rep. 33, 108271. https://doi.org/10.1016/j.cel-
rep.2020.108271.

50. Huang, J., Liu, Y., Cheng, L., Li, J., Zhang, T., Zhao, G., and Zhang, H.
(2020). Glucagon-like peptide-1 cleavage product GLP-1(9-36) reduces
neuroinflammation from stroke via the activation of insulin-like growth
factor 1 receptor in astrocytes. Eur. J. Pharmacol. 887, 173581. https://
doi.org/10.1016/j.ejphar.2020.173581.

51. Vecchiarelli, H.A., and Tremblay, M.È. (2023). Microglial Transcriptional
Signatures in the Central Nervous System: Toward A Future of Unraveling
Their Function in Health and Disease. Annu. Rev. Genet. 57, 65–86.
https://doi.org/10.1146/annurev-genet-022223-093643.

52. Kappe, C., Tracy, L.M., Patrone, C., Iverfeldt, K., and Sjöholm, Å. (2012).
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