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II. " On a Meteoric Stone found at Makariwa, near Invercar-- 

gill, New Zealand." By G. H. F. ULRICH, F.G.S., Pro- 
fessor of Mining and Mineralogy in the University of 

Dunedin, N.Z. Communicated by Professor J. W. JUDD. 
F.R.S. Received December 14, 1892. 

(Abstract.) 

The specimen described in this memoir was found in the year 1879 
in a bed of clay which was cut through in making a railway at In- 

vercargill, near the southern end of the Middle Island of New 
Zealand. Originally this meteorite appears to have been about the 
size of a man's fist, and to have weighed 4 or 5 lbs., but it was 
broken up, and only a few small fragments have been preserved. The 
stone evidently consisted originally of an intimate admixture of 
metallic matter (nickel iron) and of stony material, but much of the 
metallic portion has undergone oxidation. Miicroscopic examination 
of thin sections shows that the stony portion, which is beautifully 
chondritic in structure, contains olivine, enstatite, a glass, and prob- 
ably also magnetite, and through these stony materials the nickel 
iron and troilite are distributed. The specific gravity of portions of 
the stone was found to vary between 3'31 and 3'54, owing to the un- 

equal distribution of the metallic particles. A partial chemical 
examination of this meteorite was made by the author and Mir. James 
Allen, but the complete analysis has been undertaken by Mr. L. 
Fletcher, F.R.S., of the British Museum. The analysis, which when 
finished will be communicated to this Society, has gone so far as to 
show that the percentage mineral composition of the Makariwa 
meteorite may be expressed approximately by the following numbers : 
nickel iron 1, oxides of nickel and iron 10, troilite 6, enstatite 39,. 
olivine 44, 

III. "On Operators in Physical Mathematics. Part I." By 
OLiVER HE2VISIDE, F.R.S. Received December 15, 1892. 

Connexion between a Flux and a Force through an Operator. 

1. In the investigation of physical questions we often have to 
answer such a question as this: Given a force f, a function of the 
time, acting at one place in a connected system, find the effect F, of 
some given type, produced by the force at its own or some other 

place. Or it may be that it is not an impressed force that is given, 
baut displacement of some kind. Or, in order to produce m athe- 
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matical simplicity, we may have a space-distribution of force or of 

displacement given, whose effect is required. 
To answer the question, we may investigate the general differential 

equation of the system, find its solution (series, integrals, &c.), and 
then introduce special values of constants or of functions to limit the 

generality of the problem, and bring the solution to satisfy the re- 

quired conditions. Details may differ according to circumstances, 
but this may serve to describe the usual process. 

2. There is, however, a somewhat different way of regarding the 
question. We may say that we have no special concern with the 
general solution which would express the disturbance anywhere due 
to initial energy throughout the system; but that we have simply a 
connected system, a given point (for example) of which is subjected 
to impressed force, communicating energy to the system, and we 
only want to know the effects due to this force itself. Since, 
therefore, the connexions are definite, we must have some definite 
connexion between the "flux " F and the " force "f, say 

F= Yf, (1) 

where Y is a differentiating operator of some kind, a function of d/dt, 
the time-differentiator, for instance, when the connexions are of a 
linear nature. Here f is some given function of the time, and Y 
indicates the performance upon f of certain operations, whose result 
should be to produce the required function F. 

3. An important point to be noted here is that there is, or should 
be, no indefiniteness about the above equation. The operator Y 
should be so determined as to fully eliminate all indeterminateness, 
and so that the equation contains in itself the full expression of the 
connexion between the force and the flux, without any auxiliary con- 
ditions, or subsequent limitations, except what may be implicitly 
involved in the equation itself. 

Determinateness of a Solzttion through the Operator. 

4. But as soon as we come to distinctly recognize this determin- 
ateness of connexion, another point of important significance presents 
itself. It should be possible to find F completely from f through the 

operator Y without ambiguity and without external assistance. 
That is to say, an equation of the form (1) not only expresses a 
problem, but also its solution. It may, indeed, not be immediately 
interpretable, but require conversion to some other form before its 
resultant meaning can be seen. But it is, for all that, a particular 
form of the solution, usually a condensed form, though sometimes it 

may be of far greater complexity than the full ordinary solution. In 
this respect the nature of the function f is of controlling importance. 
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We need not assert that the determinateness of F from equation (1) 
is true for all forms of the function Y that may be written down 
arbitrarily; but that it is true in the forms presenting themselves in 
dynamical problems seems to be necessitated. 

5. We have, therefore, presented to us the problem of solving this 
equation for any particular form of Y that occurs. This may be 
very easy and obvious, or it may be excessively difficult and obscure. 
In the latter case it may be so merely because we do not know how 
to do it. Then we should find out. As our argument is that Y finds 
F from f definitely, there should be definite rules for the manipula- 
tion of the operator Y, or of the expression Yf, for its conversion to 
the form of an ordinary mathematical function, which will be the 
solution in the usual sense, freed from differentiating operations. We 
may find how to work by experiment. For, if two different methods 
lead to different results, one of which we find to be correct by in- 
dependent tests, we can safely assert that one of the methods was 
partly wrong, whilst the other may have been wholly correct. So by 
practice we may come to know something about it. 

6. Again, the function Y, regarded as an algebraical function, may 
admit of different forms of expression. These are algebraically 
equivalent, but to what extent they may be equivalent in their ana- 

lytical aspects-for instance, one series involving differentiations 

equivalent to another involving integrations, and leading to results 
which are either identical or equivalent-cannot be safely said 
beforehand. It is, in its generality, a rather difficult and obscure 
matter. In special cases I find that forms of Y which are algebrai- 
cally equivalent are also analytically equivalent; but I have not 
succeeded in determining the amount of latitude that is permissible 
in the purely aigebraical treatment of operators. No doubt there are 
definite limitations, but they have to be found. I have, however, 
extensively employed the algebraical treatment experimentally,* sub- 
ject to independent tests for guidance. It proved itself to be a 
powerful (if somewhat uncertain) kind of mathematical machinery. 
We may, for exaiple, do in a line or two, work whose verification 
by ordinary methods may be very lengthy. On the other hand, the 

very reverse may be the case. I have, however, convinced myself 
that the subject is one that deserves to be thoroughly examined and 
elaborated by mathematicians, so that the method may be brought 
into general use in mathematical physics, not to supplant ordinary 
methods, but to supplement them; in short, to be used when it is 
found to be useful. As regards the theory of the subject, it is in- 

teresting in an unusual degree, and the interest is heightened by the 
mystery that envelops certain parts of it. 

* The reader will find examples in my 'Electrical Papers,' vol. 2, of the treat- 
ment of irrational as well as rational operators. 
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Electromagnetic Operators. 

7. Perhaps the best way of beginning the subject, to obtain a 
good idea of the nature of the operators and the advantages 
attending their use, is through the theory of a connected system 
of linear electrical conductors. For the electrical equations seem 
to be peculiarly fitted for the illustration of abstract dynamical 
properties in a clear manner, even when quite practical electro- 

magnetic arrangements are concerned. We know that we may, by 
the application of Ohm's law to every conductor (or to circuits of 

conductors), express the steady current Cn in a conductor n due to an 

impressed force em in a conductor m by an equation 

C0 == Ym,,e,, (2) 

where Ymn is some algebraical function of the resistances of the con- 

ductors-usually of all the resistances, although in special cases it 

may become independent of the values of some of them. Now, 
suppose it is not the steady current that is wanted, but the variable 
current when em varies. The answer is obviously given by the same 

equation when the function Y involves only resistances; that is, when 
there is no storage of electric or magnetic energy, so that Y is a con- 
stant not involving d/dt. Then the flux and the force keep pace 
together, and their ratio does not vary. It is, however, less obvious 
that the same equation should persist, in a generalized form, when 

every branch of the system is made to be any electromagnetic 
arrangement we please which would, in the absence of its connexions 
with the rest of the system, be a self-contained arrangement. To 
obtain the generalized form of Ymn we have merely to substitute for 
the resistances concerned the equivalent resistance operators. That 
is, instead of V = RC, where V is voltage, C current, and R resist- 
ance, we have an equation V = ZC in general for every conductor, 
where Z is the resistance operator appropriate to the nature of the 
conductor, which may be readily constructed from the electrical 
particulars. These Z's substituted in Y,, in place of the R's make 
equation (2) fully express the new connexion between the flux C, 
and the force em. There is much advantage in working with resis- 
tance operators because they combine and are manipulated like 

simple resistances. Of course (2) is really a differential equation, 
though not in the form usually given. To make it an ordinary 
differential equation we should clear of fractions, by performing such 

operations upon both sides of (2) as shall remove denominators and 
all inverse operations. It is then spread out horizontally to a great 
length (usually) and becomes very unmanageable. Also, we lose sight 
of the essential structure of the operator Y. 

8. By arrangements of coils and condensers in our linear system 
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we may construct an infinite variety of resistance operators, and of 
conductance operators, such as Y,,n above. They are, however, always 
algebraical functions of p, and are finite. If expanded, equation (2) 
always becomes an ordinary linear equation of a finite number of 
terms. But if we allow conduction in masses, or dielectric displace- 
ment in masses (with allowance for propagation in time), the finite 
series we were previously concerned with become infinite series. 
This, at first, appears a complication, but it may be quite the reverse, 
for an infinite series following an easily recognized law may be more 

manageable than a finite series. Still, however, the equivalence to 

ordinary differential equations persists, provided our arrangement is 
bounded. But when we remove this restriction, and permit free dis- 

sipation of energy in space (or equivalently), another kind of operators 
comes into view. The complexity of the previous, due to the reaction 
of the boundaries, is removed; simpler forms of operators result, and 

they do not necessarily admit of the equations taking the form of 

ordinary differential equations, as they may be of an irrational nature. 
This brings us necessarily to the study of generalized differentiation, 
concerning which, more presently. 

Operators admitting of Easy Treatment. 

9. In the meantime, notice briefly some of the ideas and devices 
that occur generally in the treatment of operators. First of all, we 

may obtain the steady state of F due to steady f, when there can be 
a steady state of F, by simply putting p = in the operator Y con- 

necting them, p meaning d/dt. Even when there is no resultant 

steady state of the flux, as when reflections from a boundary continue 
for ever, the term F = Yof has its proper place and significance. 

Next, we may notice that if the form of Y should involve nothing 
more than separate differentiations, as in 

F = (a+ b+2 +....)f, (3) 

then all we have to do is to execute the differentiations to obtain F 
from f. When f is a continuous function, this presents nothing 
special. When discontinuous, however, a special treatment may be 
needed. 

In a similar manner, there may be only separate integrations or 
inverse differentiations indicated in Y, as when 

F = (a + b-l + p-2 + .... ). (4) 

Since f is a definite function of the time, so are its successive time- 

integrals. In this case, f may be discontinuous, and yet present no 
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difficulty. Suppose it is zero before and constant after the moment 
t = o. Then we shall have 

In 
p-1y=t &c., 2p = J ( ) 

A combination of direct and inverse operations, which frequently 
occurs in the theory of waves, is exemplified in 

F = c-,rlv(a + bp-1 + cp2 + .... )f. (6) 

Here we may perform the integrations first, getting the result 

0(t) say, and then let the exponential operate, giving, by Taylor's 
theorem, 

F = 0(t-r/v). (7) 

Or we may let the exponential operator work first, and then perform 
the integrations. This may be less easy to manage, on account of 
the changed limits. 

Two important fundamental cases, which constitute working 
formulse, are 

F - P , and --F - f, (8) 
p-a p+a 

with unit operand, that is, f= 0 before and constant after t =o. 
Here we may expand in inverse powers of p, getting, in the first 
case 

F = (1+ ap-'+a2-2^+ ....) ca , (9) 

and in the second case E-"t. The latter expresses the effect of a 
unit impulse in a system having one degree of freedom, with friction, 
as when an impulsive voltage acts upon a coil. 

Solutionsfor Simple Harmonic, Impulsive, and Continued Forces. 

10. A very important case, admitting of simple treatment, occurs 
when the force is simple periodic, or a sinusoidal function of the 
time. It may happen that the resulting state of F is also sinus- 
oidal. For this to occur, there must be dissipation of energy, to 
allow the initial departure from the simple periodic state to subside. 
We then have p2 = -n2 applied to F as well as f, where n/2 v is the 

frequency; so that the substitution of ni for p in Y brings equation 
(1) to the form 

F = (Yo+YIi)f = (Yo + Y1n-'p)f, (10) 

where Yo and Y1 are functions of n2. We now find F by a simple 
direct operation. This case is so important because its application 
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is so general, and its execution usually presents no difficulties, whilst 
the interpretation of the result may be valuable and instructive 

physically. 
A continued constant force of unit strength, commencing when 

t = o, may be represented by 

= t + m- t i-t2 (1i) 

using a well-known integral. We may apply this to equation (1), if 
desired, and obtain a particular form of solution. And from (11) we 
see that a unit impulse is represented by 

p-= 
- G|cosu t. dn (12) 

acting at the moment t = . This is, of course, the basis of Fourier's 
theorem. But, instead of the application of the fully developed 
Fourier's theorem, it is more convenient to use (12) itself. Thus, 
when f0 is an impulse acting when t 0, we have the equation 

= Ypfo, 

.pfo representing the force. So, by (12), 

F = f Ycos nt.dn (13) 

gives us a particular form of the solution arising from an impulse. 
Take p = ni in Y to convert the quantity to be integrated to an 

algebraical form. 
Since a continuously varying force may be represented by a suc- 

cession of infinitesimal impulses, we see that a single time-integration 
applied to (13), fo being then a function of the time, gives us a form 
of solution of the equation F = Yf, for any kind of f and Y that can. 
occur. It is, however, a theoretical rather than a practical form of 
solution. For it usually happens that the definite integral is quite 
unamenable to evaluation. The same may be often said of the solu- 
tion (13) for an impulse, and in such cases it may be questioned 
-whether the form F = Yf itself is not just as plain and intelligible. 
In fact, in certain cases, a very good way to solve (or evaluate) a 
solution in the form of a definite integral is to undo it, or convert it 
to the symbolical form 1 = Yf, and then solve it by any way that 

may be feasible. Nevertheless, it is interesting to know that we may 
have a full solution, and the definite integrals are sometimes practic- 
ally workable, or may be transformed to easier kinds. 
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Partial Fractions and Normal Solutions. 

11. There is also the method of partial fractions. It is not always 
applicable, and is especially inapplicable when the removal of 
boundaries drives the roots of the determinantal equation into con- 

tiguity. But the application is very wide, nevertheless. Put 
Z = Y-1; then the solution of F = Yf, when f is constant, starting 
when t = 0, is 

={o + X 
(,dZ/Ip) (Ib 

where Zo is the steady Z, got by taking p = 0 in Z, and the summa- 
tion ranges over the roots of the equation Z = 0, considered as an 

algebraical equation in p. That is, p is entirely algebraical in (14). 
Similarly, the effect of an impulse fo is represented by 

F = f X S (15) 

and from this again, by time-integration, we can obtain an expression 
for the effect due to any varying f, which may be quite as un- 
manageable as the previous definite integral for the same. On the 
other hand, (14) and (15) furnish the most direct and practical way 
of investigating certain kinds of problems, whether there be but a 
few or an infinite number of degrees of freedom. This method is 
the real foundation of all formulra for the expansion of arbitrary 
functions in series of normal functions. For, find the impressed 
forcive that would keep up the arbitrary state. We may then apply 
the above to every element of the forcive to find its effect, and by 
integration throughout the system get the arbitrary functions ex- 
panded in normal functions. Or, without reference to impressed 
force, find the differential equation connecting any element of the 
initial state and the effect it produces later. It will be of a form 
similar to our F = Yf, and it may be similarly solved by a series, 
which contains the expression of the expansion of the initial state in 
the proper functions. 

Or we may investigate the normal functions themselves, and em- 

ploy their proper conjugate property to obtain the expansion repre- 
senting any initial state. But this method does not apply very 
naturally to equations of the form we are considering. 

Decomposition of an Operator into a Series of Wave Operators. 

12. There is also another method which contrasts remarkably with 
the previous, viz., to decompose the operator Y into a series of other 

operators of a certain type expressing the propagation of waves. This 
is best illustrated by an example. Suppose the question is, given an 
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impressed force acting at one part of a long telegraph circuit, find the 
effect produced. One way would be to first find the effect due to a 
simple periodic force; from this the effect of an impulse follows; and 
from the latter the effect due to any f. A second way is by means of 
the normal functions, either through the conjugate property or by 
partial fractions. Lastly, we may decompose the operator Y into 

operators of the form which would exist were the circuit infinitely 
long, so that the effect of terminal reflections and absorptions does not 

appear. Say we have 

F =(Y +Y,+Y2+....)f. (16) 

Then F = Yof will represent the initial wave from the source f, 
whilst the rest will express the succeeding reflected waves from the 
terminations of the circuit. The operators Y0, &c., may be all of the 
same type, so that it suffices to solve F = Y0f, that is, convert it to 
an ordinary algebraic functional form, to obtain that form of the 

complete solution which has the greatest physical meaning, inasmuch 
as it shows in detail the whole march of F in terms of f. So does the 
solution in terms of normal functions, but not immediately, because 
the successive waves are expressed in the form of an infinite series of 
vibrating systems. Their resultant effect cannot be seen at once. 
'We might, indeed, almost say that the form of solution in successive 
(or simultaneous) waves was the solution, being of the most explicit 
nature. Should, however, the impressed force be of a distributed 
nature, of the type suggested by a normal function, for example, 
then clearly it is the expression in terms of waves that becomes com- 

plex and unnatural. We also see that, although a direct transforma- 
tion from one form of solution to another may be wholly impracticable 
algebraically, yet it may be readily carried out through the function 
Y as intermediary. 

Treatment of an Irrational Operator. Solutions in Ascending Series. 

13. The above general remarks are necessarily very sketchy. Some 
of the matters mentioned may be returned to, but the object of the 
preceding is merely to prepare the mind of the reader for the more 
transcendental matter to follow. Let us now consider how to treat 
irrational operators directly, without the assistance of definite integ- 
rals. The first form that presented itself to me was that exhibited 
by 

Y = +L2/ ' (17) 

where p is d/di and R, S, K, IL are constants. It occurs in the theory 
of a submarine cable or other telegraph circuit, and in other problems. 
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R and IL are themselves differentiating operators of complicated form 
in general, or, more strictly, R+Lp is a resistance operator, say R", 
of very complex form. But it is quite sufficient to take the form 
R1+ Lp, where R is the effective resistance and L the inductance per 
unit length of circuit. S and K mean the permittance and leakage 
conductance per unit length. 

Now we may readily obtain the simple periodic solution out of (17), 
by the before-mentioned substitution p = ni; and in doing so we may 
use the general operator R", for that will then assume the form 
R + Lp. From this solution a wholly uninterpretable definite integral 
can be derived to express the effect of an impulse or of a steady im- 

pressed force. The question was, how to obtain a plain understand- 
able solution from (17) itself to show the effect of a steady force. 
To illustrate, we may here take merely the case in which K = 0, whilst 
R and L are constants, because the inclusion of K (to be done later) 
considerably complicates the results. We have then to solve 

F 
=(a +) 

(18) 

where a is a constant and p = d/dt. The operand is understood to 
be unity, that is, f = 0 before and =1 after t = o. It is needless to 
write unit operands, and it facilitates the working to omit them. 
Now, the first obvious suggestion is to employ the binomial theorem 
to expand the operator. This may be done either in rising or in 

descending powers of p. Try first descending powers, since by ex- 
perience with rational operators we know that that way works. We 
have 

~F (, + aa a1.3 a2 1.3.5 a3 F = (i+ap1-)-t = - 1 .. 2(19) 
p 2212 p2 2313 p3 

The integrations, being separated from one another, can be imme- 
diately carried out through p-~ =t t"j/n, giving the result 

at 1 . 3 atj\ 1.3 .5 at\ (20) 
2- (12)2/2 (J3)2 2/ 

or, which is the same, 
at 

at 
F = 2 IO ) (21) 

where Io is the well-known cylinder function. Now, that this re- 
sult is correct may be tested independently, viz., by its correctly 
satisfying the differential equation concerned and the imposed con- 
ditions. We therefore obtain some confidence in the validity of the 
process employed. 
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In a precisely similar manner we may show that 

p 2.-at )- (22) 

Further modifications are confirmatory. Thus, by making use of 

f ( p)cat = catf(p+ a), (23) 

we can shift ea and similar functions back and forth. Also using the 
stock formula 

P = 
cat,- = - (23a) 

p-a p+a 

we have the following transformations, 

( -p )\S _ 
/ 

-at Ct l \ - a 
t 

\ P P- 

In this we may use the result (22), and so come round to (21) again. 
From the above we see that 

To(at)= -2a+p ) -2 ; (25) 

and further, by shifting the exponentials to the right, to make them 
the operands (instead of t0), 

Io(at)(= ( ̂ --; = ( I cat; (26) 
p4?a= F- . ~-a/ 

and now further again, by employing (23a) in place of the exponen- 
tials, we obtain 

Io(at) = 
(p -a-- 

- - (27) 
\pa _ p/-a (p2-a ()2 

which is an entirely different kind of operator, since the square of p 
occurs under the radical sign, instead of the first power. But (27) 
may be readily tested and found to be not wanting. For expand by 
the binomial theorem, thus, 

a_ a2 1.3 a4 
(p a -( jp) 

= 1+2 I+2^ + . (28) 

This may be immediately integrated, giving as result the series 

Io(at) + ()2 (t , , (29) 
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the well-known formula for lo(at) in rising powers of the square of 
the variable, as required. 

Transformation to a Descending Series. 

14. There is such a perfect harmony in all the above transforma- 
tions, without a single hitch, that you are tempted at first to thlink that 

you may do whatever you like with the operators in the way of alge- 
braical transformation. There is a considerable amount of truth in 
this, but it is not wholly true. I shall show later some far more 

comprehensive and surprising transformations effected by simple 
means. At the same time I should emphasize the necessity of 
caution and of frequent verification, for no matter how sweetly the 

algebraical treatment of operators may work sometimes, it is subject 
at other times (owing to our ignorance) to the most flagrant failures. 

But in the above we only utilized one way of effecting the binomial 

expansion. There is a second way, viz., in ascending powers of the 
differentiator. The two forms are algebraically equivalent so far as 
the convergency allows, but we have, so far, no reason to suppose 
t,hat they are analytically equivalent. But on examination we find 
that they are. Thus, using the first of (25) and expanding, we 

get 

l,(at) = (l ( c+ = 1( +( )( 
',(al)=( \ 2a+p \ 2 ta 2/ 

-_ (t-P- 1.3 
( 30) \ 

4a 2 \4/ j\2a 

Here the operand is to or unity. Or we may make it (p/2a)z if we 

please. If we know its value, as a function of t, the rest of the work 
is easy, as it consists merely of differentiations. But nothing that 
has gone before gives any information as to the meaning of p', let 
alone its value. We may, however, find it indirectly. We may 
prove independently that when at is very big, It(at) tends to be re- 

presented by cat(27rat)~. From this we conclude that the value of 

pm must be (7t)->. Then (30) becomes 

I0(at) = al- +a-2 \4 
" 

(2 ,t)' (30a) 

and now performing the rest of the differentiations, we arrive at 
c 
at{r 1i232 123252 

Io(at) = 2 m at+ }. (31) (2 r-at) 8at 12(8at)2 13(8 at)( 

which, on test, is found to be equivalent to the ascending series (29). 
Of course only the convergent part of the series can be utilized for 

VOL. L11. 2 
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calculating the value of the function. It is, however, the series for 

practical use when at is big enough to make calculation by the con- 

vergent ascending series very lengthy. Stop when the convergency 
of (31) ceases. The result will be too big. Leave out the last 
counted term, and the result is too small. Counting only half the 
last convergent term, the result is nearly right, being a little too 

big. There seems no possible way of hitting the exact value. But 
still, when at is big, we can get quite close enough, to four or 
more figures, or any other number we please when at is sufficiently 
increased. 

Fractional Differentiation. 

15. Knowing in the above manner p, the values of pi, p:, &c., follow 

by complete differentiations. But although, on the basis of the above, 
a considerable amount of work may be done, and extensions made, 
yet it is desirable to stop for a moment. For the whole question of 

generalized differentiation is raised. The operator pl presents itself 
in analogous problems, along with p4, &c. We want a general method 
of treating pn, when n is not confined to be integral. Notice, however, 
in passing a remarkable peculiarity of the above investigation. If 
we had put L = Oin (17), as well as K = 0, we should have had the 
form Y = p2 to consider at the beginning, with no evident means of 

treating it. By taking, on the other hand, a more general case, as we 
did, we avoided the fractional differentiation altogether, and easily 
obtained a convergent solution, viz., (21), through (18), (19), and 
(20). It is not always that we simplify by generalizing. 

The sum total of the whole information contained in my mathe- 
matical library on the subject of generalized differentiation is con- 
tained in the remark made on p. 197 of the second part of Thomson 
and Tait's 'Natural Philosophy,' paragraph (n), relating to the 

process by which spherical harmonics of any degree may be derived 
from the reciprocal of a distance :-" The investigation of this gene- 
ralized differentiation presents difficulties which are confined to the 
evaluation of P,, and which have formed the subject of interesting 
mathematical investigations by Liouville, Gregory, Kelland, and 
others." 

I was somewhat struck with this remark when I first read it, in 

trying to plough my way through the fertile though rather heavy field 
of Thomson and Tait, but as the subject was no sooner mentioned than 
it was dropped, it passed out of mind. Nor did the absence of any 
reference to the subject in other mathematical works, and in papers 
concerning mathematical physics generally, tend to preserve my re- 
collection of the remark. Only when the subject was forced upon my 
attention in the above manner did I begin to investigate it, and not 

having access to the authorities quoted, I was compelled to work it out 

[Feb. 2, 516 Mr. 0. Heaviside. 

This content downloaded from 62.122.79.21 on Thu, 12 Jun 2014 14:40:25 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1893.] On Operators in Physical Mathemnatics. 517 

myself. I cannot say that my results are quite the same, though there 
must, I think, be a general likeness. I can, however, say that it is a very 
interesting subject, and deserves to be treated in works on the Integral 
Calculus, not merely as a matter concerning differentiation, but 
because it casts light upon mathematical theory generally, even upon 
the elements thereof. And as regards the following brief sketch, 
however imperfect it may be, it has at least the recommendation of 

having been worked out in a mind uncontaminated by the prejudices 
engendered by prior knowledge acquired at second haond. I do not 

say it is the better for that, however. 

Differentiation Generalized. 

16. The question is, what is the meaning of Vn, if V signify d/dx, 
when n has any value ? This is, no doubt, partly a matter of con 
vention; but apart from all conventions, there must be fundamental 
laws involved. Now observe that the effect of a whole differentiation 
V upon the function x~ is to lower the degree by unity. This applies 
universally when n is not integral. When it is integral, there seem 
to be exceptions. But we can scarcely suppose that there is a real 
breach of continuity in the property. We also observe that a whole 
differentiation V multiplies by the index, making Vxy = nxn-1; and 
again there are apparent exceptions. Now the first thing to do is to 

get rid of the exceptions. Next, the obvious conclusion from one V 
lowering the index by unity, v2 by two, and so on, is that vi lowers 
the degree n times, whether n be integral or fractional. Further, since 

in 9,n--1 

V In |n-, (32) 

when n is positively integral, and In is the factorial function 

1.2.3 .... n; and, similarly, 

v, - = I(33) 

whatever positive integer n may be, it is in agreement with the 

previous to define generalized differentiation by the last equation, for 
all values of n, provided we simultaneously define Iz to be given by 

In = n|n-1, (34) 

for all values of n from -co to +co, and to agree with the factorial 
function when n is integral, that is, [1 = 1, 12 = 1. 2, 13 = 1. 2. 3, 
&c. We shall still call In the factorial function, and (In)-~ the inverse 
factorial. 

2 xM 2 
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Now, by the above 

| I=, lo 9II 10 

if xz be positive, as we shall suppose throughout. We conclude that 

10-= 1. 
lFurther differentiations give 

-7Xo 2 -;7 !! = --- 7 &c. - 

X- 2 
_we = V?~ _ = - &c. (36) 

We, therefore, conclude that (1--1)-1= 0, (t-2)-~ 0, &c., or that 

the inverse factorial function vanishes for all integral negative values 
of n. We therefore know the value of the inverse factorial for all 
integral values of the variable, and a rough curve can be readily 
dravwn. Say 

y= K (' (37) 

y being the ordinate, and n the abscissa. It has evidently a hump 
between n = o and v, 1, is positive for all + values of n, asymptotic- 
ally tending to the n axis as n is increased, and is oscillatory on the 
other side of the origi.n. This is not demonstrative, but only highly 
probable so far. 

The Inverse Factorial Function. 

17. Now seek an algebraical function with equidistantly spacec 
roots on one side (either side) only of the origin. The function 

( )\(,-2})( -;. .).... (-r) (38) 

vanishes at = 1, 2, 3, &c., up to r. It has no other roots, and is 

positive when n is negative. Also, its value at n 0= is 1. Similarly 
the f'unction 

( Io)(. +2)(l +3)** (1+r) (39) 

vanishes at n -1, -2, &c., up to -r; is unity at n =n 0, and is 

positive when -t is positive. These functions are identically the 
samie as 

+ n(n-) n t( -1i)(n-2)) q,(- .. .(n-r +1) n 
-12 

+ 

1) 
and 

n (?2 + ) , ( + ) (n +- 2) [ ( + 1)... * + - ) 
1. + n +- + -- 

- +- (41), 
_^ 

* 
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where (40) corresponds to (38) and (41) to (39). At first sight, 
therefore, these functions might represent the inverse factorial, 
positive or negative, on making r infinite, for the value at the origin 
is correct, and the vanishing points are equidistantly spaced with 
unit step all the way to infinity on one side only of the origin. But 
something else happens when r is made infinite. The value of (38), 
by (40), becomes (l-1l)), meaning the binomial expansion in rising 

powers of the second 1. It is, therefore, zero for all positive and. 
infinity for all negative values of n. Similarly, (39) becomes (l--I)- , 
which is zero for all negative and infinity for all positive values 
of n. That is, from vanishing at detached points, the functions vanish 
all the way between them as well. Besides, a.part from this, we cannot 
have the value of In correct when n is integral. 

We may, however, readily set the matter right. To get rid'of the 

infinity on one side and vanishing all over on the other side of the 
origin, multiply the functions (38), (40) by rsi and (39), (41) by r-'. 
Take 

1n \ ... \ 

1= 
Tr'(1--1)'= r'~ (1+n )K+0 

3-2)...., 
(42) 

-- I - ---(pl. _ r ( ()( ( i (43) 

We now satisfy all the requirements of the case, and when r is infinite 
make the inverse factorial curve (37) be a continuous carve from --o 
to +co, subject to (34), in agreement with the known values when n 
is positively integral, and harmonizing with the generalized' dif- 
ferentiation in (33). 

TMultiplying (42) and (43) together, we obtain 

In 1 - (, ,-) 4 (/ "- 9 - s 

The multiplication therefore brings all the equidistant roots into play, 
on both sides of the origin. 

This gives us the value of I-n in terms of In. Only the values 
of In' from n = 0 to n = 1 need be calculated, since (34) or (44) gives 
all the rest. But if we take n -= in (44) we obtain 

therefore -- = r, (45) 

a fundamtental result. We now know the value of 1l-~-1 when n is 

any integer, and this brings the matter down to the deterlmination 
of In from n = ( to n -= -}, for which a formula may be used. 
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.Interpretation of Vanishing Differential Coefficients. 

18. It should be noted that when we say that 

9n 
V'- 1, (46) 

In 

for all values of n, the right member is really x?/lo, and means 0 on 
the left, and 1 on the right side of the origin of x. That is, it is the 

limiting form of the function xl/ln, when n is infinitely small positive. 
It is convenient in the treatment of equations of the form F = Yf to 
have the functionf zero up to a certain point, with consequently F 
also zero, and then begin to act. Similarly, the expression vx?/lo, or 

Vl or x-1/l-1, although it has the value zero for all positive values 
of x, is infinite at the origin. But its total amount is finite, viz., 1. 
Imagine the unit amount of a quantity spread along an infinitely long 
line to become all massed at the origin. Its linear density will, in 
ithe limit, be represented by, as (12) is derived from (11), 

If? 
v1 = -t' cos mx dx. (47) 

'J o 

It is zero except at x =0. But its integral is still finite, being 
V?l or 1. If we draw the curve y = axl/ln, with n infinitely small, 

consisting of two straight lines, with a rounded corner, the curve 
derived from,it by one differentiation will nearly represent the func- 
tion 7l, being nearly all heaped up close to the origin, and of integral 
amount i. Similarly .V21 means a double infinite point, v31 a triple 
infinite point,,and so on. But it is the function Vl that is most 
useful in connexion with differentiating operations, whilst the others 
are less prominent. 

But when n is taken to be;infinitely small negative in y = xn/ln, 
then y drops from -oo to 1 near the origin, or the corner is turned the 
other way. That is, the function zn is unstable when n is zero. It 
is the difference of the curves y = xn with n infinitely small positive, 
and the same with n infinitely small negative, that makes the 
logarithmic tfunction, rhen infinitely magnified. But we should try 
to keep away from the logarithm in the algebraical treatment of 
operators. 

Connexion between the Factorial and Gamma FLtunctions. 

18A. It will be seen by (42) that our factorial function is the gamma 
function of Euler somewhat modified and extended. Thus, when n is 
greater than -- we have 

520 [Feb. 2, 
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and this is also expressed by the definite integral 

ix _- = 1. (49) 
Jo 1= 1. 

But when n is less than -1 we have the oscillatory curve of tl 
inverse factorial, given by (44). We cannot use the definite integral 
to express In when n is less than -1. The one-sided reckoning of 
the gamma function expressed in In = F(n + 1) is so exceedingly 
inconvenient in generalized differentiation that the factorial function 
had better be used constantly. For completeness and reference, we 
may add the general formula. Take the logarithm of (42) and 
arrange the terms suitably, and we obtain 

2 3 

log w = -nC + S2-3 S+...., (50) 2 3 

1 1 
where Sm =1 ^- + ...., (51) 2?A 3W 

and C = Si- log r = 0'5772; (52) 

it being understood in (42) and (52) that r is made infinite. 
From (50) we may obtain a series for the inverse factorial in rising 

powers of n. Thus, 

1= 1 + Cn+ (C2_ S2) + (C3-3 CS2 + 2 S3)3 
in 2 3 

+(C4-6C2S2+ 8CS3+3S22-6S4)+ ..... (53) 

As before remarked, only the value of in from n = 0 to I needs to 
be calculated. Any number of special formulae for In may be obtained 
from algebraical expansions involving this function. 

A Suggested Cosine Split. 
19. The above split of the function (sin 7r)/n7r into l/ln and 

1/l-n, suggests other similar splits. In passing, one may be briefly 
noticed, the cosine split. Thus, take 

(n) = (r- -) I( ) (....(, (54) 

and letf(-n) be the same with the sign of n changed. Then, when 
r = oo, we shall have 

1893.] 521 
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By changing 1 to n- + we find that 

2n + 2 r + I 
f(n + () = ( 2n +) (56) 

(2(ni + 1)2n j +r 

so that when r co, 

f(n + 1) = . (57) 

or ( -) f(n) =f(n-1). (58) 

When n = 0, (54) gives f(o) = 1. Then (58) gives f(n) for any 
16 

integral n. Thus f(l) = 2, f(2) = -, f(3) -- X- f(4) -_ .5. &c. 

And on the negative side we have f(--) = , f(-l) = --, 
f(-1 ) = 0, f(-2 ) == , f(--2) _= 0, -3) S&c. The curve 

is similar to that of the inverse factorial, but with a much bigger 
llump on the positive side, near n, = 1. But I have not found 

any use for this cosine split, and we may now return to the other 
on1e. 

The Exponential Theorem Generalized. 

20. Althongh we cannot, owing to its limited applicability, use 
Euler's integral to express In generally, we may employ it when 
found convenient, within its own range, and supplement the informa- 
tion it gives by other means. Thus, we know that 

x --dx, (59) 

when n is over -1. Now the indefinite integral may be exhibited in 
two different ways, say 

x =-<jjj < '-+ -4--+... ) = W, (60) 
J IV, \n41 |^+2 1+3 I 

in ascending powers of x multiplied by the exponential function, 
and by 

C-[xxn 7, , xn-I X 
\-2 

J |(-n ( 
-x 

+ |+- + w-- 2+...) = 2. (61) 
JI\n I\n In-I -2 / 

These are true for all values of n. Subtracting (61) from (60) we 
see that the function wl + w,, or w say, must have the same value at 

any two finite limits we may choose for the integral. That is, the 
value of w is independent of the value of z. 

Or we may proceed thus, and determine the value. Let n be 
greater than --1, and divide the integral (59) into two, one going 
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from o to x, the other from x to co. For the first use (60), since 
wl = 0 when x = 0; an I for the second use (61), since w2 =- 0 when 
z = c. We then get, by (59), 

= (w1+ w2), (62) 

or, which is the same, 

, n Xn+l ,rn+2 e<l --1 X>-2 

x_ _+ + ... + +(63) 
nI fIn+1 In a+2 n-i |n(-26 

This is proved when n is greater than -1. But the change of n 
to n--1 in the series on the right of (63) makes no alteration. We 
therefore conclude that the series expresses et for all values of n. 

When n - 0 or any integer, positive or negative, we have the usual 

stopping series for ex. When n is fractional, we obtain semi-con- 
vergent series. Of course we obtain the whole series of forms by 
making n pass from 0 to 1. The most interesting case is that of 
bn = . This gives 

= 
X-IC I-? + + + .... L_- \ 

(1 8 3 3.5 3.5.7 

1 1 1.3 1.3.5 \ 
+2x (2 x)2 (22 x) (2x)~ ) . (x4) 

where the value of I we know to be --g =- 7r, by (45). 
By means of this series we may pass from one to the other of the 

two forms of evaluation of Friesnel's integrals, due to Knochenhauer 
and to Cauchy respectively, which are given in works on Physical 
Optics. 

21. The function called v^, above we may obtain in a series of 
rising powers of x without the exponential factor in the following 
manner:- 

=, - v ,-i ? = V-*-V i.- := v-(V + 1)-a,- 

= V-(V+l) --V = (V+1)-(', (65) 
V-I- 

which is immediately integrable by the binomial expansion; thus 

w = v-('+ (n + )V-(+2) + (n + 1) (t+ 2) v-+ + 2). 

_.L;+1 ~+~ :n+2 (n+ i)(3n+2) X4+3 

1n+1 ^Th+1nV4?2n-. . - .(66) |n+ l \n+2 12 
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To corroborate the method of getting (65) we may use (60). For 
this gives 

w1 =---XV(nf+(l - +V- +V-+ . .) = -xv-(+ ) = (+ 1)-+1 , (67) 

again, as in (65). Now if we endeavour to express w2 in a similar 
manner, we find that it will not work. Bat direct multiplication of 
the series in the brackets in (61) by the usual expansion of c-- 
gives 

V n { n(n--) (n-)(n-2) 

I3+ Lf1 i7-(n-1)- + _ _ 

in2 ..2 ...} 

54+l{r 2)j(n+l) .n (n+1). (- ( 
+ -%+ 

+ 2 13 

. 

x+2 f ( 2)( (n 3 ) (n + 2) (n + )n 
g+i t- 

----- - +** * * +... (68) 

or, which is the same, 

Xn Xn-1~ X (+lI 

t. == (l-l)n t+ (1- ) -. +.... + | + (l -) +... 
In+ (+) (+2) +n-i In?1 

-n+l - (n1))(n-2) Xn+3 xn+2 
??? ? (69) 

In+1 ( n+2 12 In+3 () 

Now the last line we know to express --w. Therefore, by (62), 
we get 

yXn_ X?1n+1 
I I1 (-= 0(-l) -+... . 7q )+ (ll+... , (70) n In-i n?in 

and this is the result we shall obtain by multiplying the series on the 
right of (63) by the usual expansion of c-". But (70) is only a 

special form of a more general formula that will appear later. We 

may use (44) to convert (70) to circular functions. 

A Bessel Function Generalized. 

22. The generalized expansion of ex may be at once applied to 

generalize other formlula. Thus, we know that the solution of 

(vv2+ - = (71) 
\ x 
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in rising powers of x is 

X2 X4 X6 

I0 = () = + + ++ ... (72) 

Put x2/4 y, and it becomes 

_y_ q- y2 y3 Io (x)= + + l +.... . (73) 
(l1)2 (12)2 (13)2 (73) 

Let the differentiator d/dy be called A. Then (73) may be at once 
written 

A-1 A-2 A-3 
Io (x=) + + + ....+= - . (74) 

There is nothing hypothetical about this. What is, however, 
entirely speculative in the absence of trial is whether it is legitimate 
to substitute the generalized exponential for the ordinary, and there- 
fore generalized for complete differentiations. But on trial it will be 
found to work. Thus, using (63) with A-1 in place of x, we convert 

(74) to 
A-m ^-(m+l) A-(m-l) 

u= + --+---+- ++* * * , (75) 
|_ Irn+1l Im-1 

writing u for the result; or, which means the same, 

ym yM+l ym--1 Y=(- ( m +- 1 ):yq - .., (76) 
(Im)2 (|mn+ 1)v (76) 

where, as before, y = a2/4 in connexion with the Bessel function. 
Or 

=\j (x\ +2 ..-2 
u 21 \\ + 

()+<) 2++ n21 2, (77) 

if n = 2m. We have Um, - u,,tn for all values of m, and Uo = L((x). 
To test the validity when m is fractional, take 2- = or = 1, 

then, by (77), we obtain 

2/ ,x3 x5 x7 1 I2 132 123252 =- X( +- + +a- **+ . ?3 ....+ (78) v ( 32 3252 325272 + + 3 2: +7 

This will by numerical calculation be found to give the same value as 
the series (72) for Io(x). When x is as large as 10 the values agree 
to the fourth place by the convergent series in (78) alone, the semi- 

convergent series in (78) having a relatively small value. The value 
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I make to be 2815-71 by the ordinary formula, and 2815-75 by (78), 
including the semi-convergent part. But the last two figures are 

probably wrong, as there is a good deal of figuring involved in the 
calculation of both (72) and the convergent series in (78). 

WVhen smaller values of x are taken, the numerical agreement per- 
sists as far as the initial convergency of the descending series permits, 
as in the case of the series (31), for example. Later on I will co- 
ordinate (78) and (72) with the descending formula (31). 

The companion formula to (78) is 

2/1 1 1232 1.-23252 2 9a 3 ,x5 v = 
(-_--- 

- 3 .... 
-). (a-a-+ 

.- . . 
)* (79) 

7r X x3 xIs x7 7r 32 325 

We might expect this to be a form of the oscillatory function Jo(x). 
13ut it is not. It represents the oscillatory companion to Jo(x), say 
Go(z), which may be exhibited in an ascending series of the whole 

powers of x2 together with a logarithm, so standardized as to vanish 
at infinity. This function will appear later. The double series (79) 
occurs in Lord Rayleigh's 

' Sound.'* The series (78) I have not come 
across. 

The Binomnial Theorem Generalized. 

23. Let us next generalize the binomial theorem in a similar 
nanner. We have 

(I +,x)n0 1 x- x2 ( +4 ____ + -.... (80) 
|-_ - I, + I-i1 In-1 2 In-2 

in ascending powers of x. Or 

-(+? - 1 V- -- , V- e _ V Vn-1 ( ~_-- +.. - w17 '.. (s]) 
n i In In - 2 VI n- I 

But in descending powers of x, which is the only other form gener- 
ally known, we have 

(x + 1)t _ xn. x-n - ~-2 _~ _._ = + -+ -- +. In IJa -1 12 i|n-2 

~7ZV |2 3 
() 

That we may use the generalized exponential we might infer from 
the two forms (80) and (82) being equivalent, combined with previous 

* See p. 154, vol. 2. That (79) is Go(x) is not explicitly shown there, but it may 
be readily deduced. 
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experience relating to the Bessel function. Using it in (82) we 
find 

(1+ ) __ 1 /V1 v+ l vm-1 
-- ?-"-l--- ?+ - .... + (3) 

\?n V't | +mt- 1 ?+1 I M- .- + 

which by immediate integration gives 

(1+ ) __X) 
^ x- n-m+l n- 

\12 |mb I|n- m Itm- I -1- -n t+1 jI+|21 \In-m-1 

+ *.... (84) 

for all values of vq. 
The case m = 0 or any integer is that of (82), and m n n is that 

of (80). The whole series of forms ranges between m = 0 and in = 1, 
because they recur. When n =- we have 

(I X)n x?zt-- ss- 

=l+ _fL^ + -^ ?+ -+ ... (85) tn - t--~2cn-+- 1-i In+ I .... 

If in this we take n = 1, we find that the terms can be arranged 
in pairs, thus 

i xi+ 1?x- x -?xi - =L, -, 4--l . - l + +. , (86) 
12 1i -2 _ i- I2 

or, which is the same, 

4- (l+v,)= [lf+ X--' x+ -~q XX-+ ' --3 .... (87) 
(4 + (+. 3 3 . 55.7 

The best value of x is obviously 1. 
When two variables x and y are used in the binomial theorem, we 

have, using V for d/dx and A for d/dy, 

(y' + X)-n x-1 xn-2 " 2 vt/ / 
r-+r- -7+ r-oi+ _ + V--,A-~) _* + 

| |In In-1- + .L-2 12 

=- =- nV 
= - = v = A- (88) 

We may use any of these forms. Selecting the last hut one, and 

using the generalized exponential, we have 

EYVV -n - (YV)m (+ ) m(lV) YV-1 +(V) ; (89) 
l. n-i |a+. | l 
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therefore 

(x + y)n _ y?/rxn-m y m-y-lx-m+l ^ my+ Xn--n-l _ v + 
1m+- I-- \n Im In-m Imm-- In-n -4-1 m+l n--1 

+- ...., (90) 

where i may have any value, and x, y may be exchanged. 

Taylor's Theorem Generalized. 

24. We may also apply the generalized exponential to Taylor's 
theorem for the expansion of a function in powers of the variable. 
For this theorem is expressed by 

f(x + h) = clvf(x), (91) 

and, if this be true generally, irrespective of the wholeness of the 
differentiations, we must have 

f( +h) = -V+ V{ +1 *+ .... + -- 'V-n + f(). 

(92) 

Whether this is true for any function f(x), with the usual limitations, 
I cannot say. There are probably other necessary limitations. 

As examples, take f(x) = 1. Then we obtain 

nX -n h-x 1l-n |n+l X-n--1 

1h' +l~ +rl t- h1+ . . ... 

Here put c = h/x; then, by using (44), we have the result 

c 
in n7 ce+ sil (n + )r + csin (n-1)7r 1 = c? ~---l-^+c^l sln^+l)'^+.... t ^wln-- ...., (94) 

n7r (n+1)7r (n-1)7r 

where c is to be positive. When n = -, this reduces to 

- a 
( 

+- a3+ a 5 -+ .... (95) 

where a is written for cl. It is obviously right when a = 1. 
The formula (70) may be derived from (94) by the use of (44). 

Special Forinulce for Factorials. 

25. The binomial generalization before given is, of course, a special 
case of (92), namely, f(x) = xa/jln. It will be observed that the series 
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it gives may be convergent. Thus we may obtain convergent special 
formulse for In. Thus, take m = 4, n = 1 in (84). We obtain 

(+1 )- x = m + x-- -+ 3(x + x-2) 3.- .7 ( + X-3) } (6) 
"IT"" I ID2! x+-^-- 5.9 

" 
K, aI -^IS----- J} (96) 

and when x = 1, we have the series 

(- )(14) 
1 + I - I- i2r 

(1 1I T (97) 
7) 

Similarly, mn = -, n =, = 1, gives 

d 1- (4 7 - - - 1--7 ; (98) 

and so on. 

Property of the Generalized Exponential. 

26. Notice that the operation Vm performed upon the generalized 
ev reproduces it when m is integral, but gives an equivalent series 
when m is fractional. If, then, we take the special form of the 

ordinary stopping series for v"t to work upon, we require to imagine 
that the zero terms are in their places, thus, 

= ....+ - +1+x+-+.... . (99) 
1-2 --1 j2 

All terms before the 1 are zero, but not their rates of variation with 
x in the generalized sense, if we are to have harmony with the 
behaviour of the general form of ce. This is transcendental: and 
there is much that is transcendental in mathematics. 

The above generalizations are somewhat on one side of our subject 
of the treatment of operators, though suggested thereby. I propose 
to continue the main subject in a second paper. 
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