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Preface.

THE object of this paper is to give a satisfactory account of - the
Foundations of Mathematics, in accordance with the general method of
Frege, Whitehead, and Russell. Following these authorities, I hold
that mathematics is part of logic, and so belong to what may be called
the logical school as opposed to the formalist and intuitionist schools.
I have therefore taken Principia Mathematica as a basis for discussion
and amendment, and believe myself to have discovered how, by using
the work of Mr. Ludwig Wittgenstein, it can be rendered free from the
gerious objections which have caused its rejection by the majority of
German authorities. who have deserted altogether its line of approach.
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I. Introduction.

In this chapter we shall be concerned with the general nature of
pure mathematics*, and how it is distinguished from other sciences.

# In future by ‘*mathematics '’ will always be meant ‘‘ pure mathematics.”
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Here there are really two distinct categories of things of which an
account must be given, the ideas or concepts of mathematics, and the
propositions of mathematics. This distinction is neither artificial nor
unnecessary, for the great majority of writers on the subject have con-
centrated their attention on the explanation of one or other of these
categories, and erroneously supposed that a satisfactory explanation of
the other would immediately follow.

Thus the formalist school, of whom the most eminent representative
is now Hilbert, have concentrated on the propositions of mathematics,
such as ‘242 =4, which they have pronounced to be meaningless
formulae to be manipulated according to certain arbitrary rules, and
mathematical knowledge they hold to consist in knowing what formulae
can be derived from what others consistently with the rules. Such being
the propositions of mathematics, the account of its concepts, for example
the number 2, immediately follows. ‘‘2”" is a meaningless mark
occurring in these meaningless formulae. But, whatever may be
thought of this as an account of mathematical propositions, it is
obviously hopeless as a theory of mathematical concepts; for these occur
not only in mathematical propositions, but also in those of everyday
life. Thus ‘‘2" occurs not merely in ‘242 = 4"’, but also in ‘It is 2
miles to the station’, which is not a meaningless formula, but a
significant proposition, in which ‘2’ cannot conceivably be a mean-
ingless mark. Nor can there be any doubt that **2’’ is used in the same
sense in the two cases, for we can use ‘242 =4"" to infer from ‘‘It
is two miles to the station and two miles on to the Gogs’, that ‘‘it is
four miles to the Gogs via the station’’, so that these ordinary mean-
ings of two and four are clearly involved in ‘242 =4"". So the hope-
lessly inadequate formalist theory is, to some extent, the result of
considering only the propositions of mathematics, and neglecting the
analysis of its concepts, on which additional light can be thrown by
their occurrence outside mathematics in the propositions of everyday
life.

Apart from formalism, there are two main general attitudes to the
foundation of mathematics : that of the intuitionists or finitists like
Brouwer and Weyl in his recent papers, and that of the logicians,
Frege, Whitehead, and Russell. The theories of the intuitionists
admittedly involve giving up many of the most fruitful methods of
modern analysis, for no reason, as it seems to me, except that the
methods fail to conform to their private prejudices. They do not, there-
tore, profess to give any foundation for mathematics as we know it,
but only for a narrower body of truth which has not yet been clearly
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defined. There remain the logicians whose work culminated in
Principia Mathematica. The theories there put forward are generally
rejected for reasons of detail, especially the apparently insuperable
difficulties connected with the axiom of reducibility. But these defects in
detail seem to me to be results of an important defect in principle, first
pointed out by Mr. Wittgenstein.

The logical school has concentrated on the analysis of mathematical
concepts, which it has shown to be definable in terms of a very small
number of fundamental logical concepts, and, having given this account
of the concepts of mathematics, they have immediately deduced an
account of mathematical propositions, namely that they were those true
propositions in which only mathematical or logical concepts occurred.
Thus Russell, in the Principles of Mathematics, defines pure mathematics
as ‘‘the class of all propositions of the form p implies g, where p and ¢
are propositions containing one or more variables the same in the two
propositions, and neither p nor ¢ contains any constants except logical
constants’’*. This reduction of mathematics to symbolic logic was
rightly described by Mr. Russell as one of the greatest discoveries of our
aget; but it was not the end of the matter, as he seemed to suppose,
because he was still far from an adequate conception of the nature of
symbolic logic, to which mathematics had been reduced. I am not
referring to his naive theory that logical constants were names for real
objects (which he has since abandoned), but to his belief that any pro-
position which could be stated by using logical terms! alone must be
a proposition of logic or mathematics§. I think the question is made
clearer by describing the class of propositions in question as the com-
pletely general propositions, emphasizing the fact that they are not
about particular things or relations, but some or all things and relations.
It is really obvious that not all such propositions are propositions of
mathematics or symbolic logic. Take, for example, ‘‘any two things
differ in at least thirty ways’’; this is a completely general proposi-
tion, it could be expressed as an implication involving only logical con-
stants and variables, and it may well be true. But as a mathematical
or logical truth no one could regard it; it is utterly different from such
a proposition as ‘‘any two things together with any other two things
make four things’’, which is a logical and not merely an empirical

# Russell, Principles of Mathematics, 1 (1908), 8.

t Loc. cit., 5.

1 I.e. variables and logical constants.

§ I neglect here, as elsewhere, the arbitrary and trivial proviso that the proposition must
be of the form ‘‘ p implies g"’.
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truth. According to our philosophy we may differ in calling the one a
contingent, the other a necessary proposition, or the one a genuine
proposition, the other a mere tautology; but we must all agree that
there is some essential difference between the two, and that a definition
of mathematical propositions must include not merely their complete
generality but some further property as well. This is pointed out, with
a reference to Wittgenstein, in Russell’s Introduction to Mathematical
Philosophy* ; but there is no trace of it in Principia Mathematica, nor
does Mr. Russell seem to have understood its tremendous importance,
for example, in the consideration of primitive propositions. In the
passage referred to in the Introduction to Mathematical Philosophy,
Mr. Russell distinguishes between propositions which can be enunciated
in logical terms from those which logic can assert to be true, and gives
as the additional characteristic of the latter that they are ‘‘tautological”
in a sense which he cannot define. It is obvious that a definition of
this characteristic is essential for a clear foundation of our subject, since
the idea to be defined is one of the essential sides of mathematical pro-
positions, their content, and their form. Their content must be com-
pletely generalized, and their form tautological.

The formalists neglected the content altogether and made mathematics
meaningless, the logicians neglected the form and made mathematics
consist of any true generalizations; only by taking account of both
sides and regarding it as composed of tautologous generalizations can
we obtain an adequate theory.

We have now to explain a definition of tautology which has been
given by Mr. Wittgenstein in his Tractatus Logico-Phtlosophicus, and
forms one of the most important of his contributions to the subject. In
doing this we cannot avoid some explanation of his theory of proposi-
tions in general.

We must begin with the notion of an atomic propositiont ; this is
one which could not be analysed in terms of other propositions, and
could consist of names alone without logical constants. For instance,
by joining to ‘‘¢’’, the name of a quality, ‘‘a’’, the name of an in-
dividual, and writing ‘‘¢a’’, we have an atomic proposition, asserting
that the individual has the guality. Thus, if we neglect the fact that
““Socrates’” and ‘‘wise’’ are incomplete symbols and regard them as
names, ‘‘Socrates is wise’’ is an atomic proposition; but ‘‘All men are
wise’’, ‘‘Socrates is not wise’’, are not atomic.

* Page 205.
t+ Wittgenstein calls these ¢ elementary propositions’’; I have called them ‘‘atomic '’ in
order to follow Mr. Russell in using ‘‘ elementary ** with a different meaning.
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Suppose now we have, say, n atomic propositions p, q, 7, .... With
regard to their truth or falsity there are 2" mutually exclusive ultimate
possibilities, which we could arrange in a table like this (T signifies
truth, and F falsity, and we have taken n = 2 for brevity).

v 1q

T | T
E3E2

F | T

F | F

These 92" possibilities we will call the truth-possibilities of the =
atomic propositions. We may wish to pick out any sub-set of them, and
assert that it 1s a possibility out of this sub-set which is, in fact, realized—
that is, to express our agreement with some of the possibilities and our
disagreement with the remainder. We can do this by setting marks
T and F against the possibilities with which we agree and disagree
respectively. In this way we obtain a proposition.

Thus
“« | g ”»
T |T)\|F
T |F| T
F |, T|T
Flr|r

is the proposition ‘‘not both p and g are true’’, or ‘‘p is incompatible
with q"’, for we have allowed all the possibilities except the first, which
we have disallowed.
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Similarly “ » g ”
T T T
F T T
T F F
F F T

is the proposition “‘if p, then ¢’’.

A proposition which expresses agreement and disagreement with the
truth-possibilities of p, ¢, ... (which need not be atomic) is called a
truth-function of the arguments p, ¢, .... Or, more accurately, P is said
to be the same truth-function of p. q, ... as Ris of 7, s, ... if P expresses
agreement with the truth-possibilities of p, q, ... corresponding by the
substitution of p for r, q for s, ... to the truth-possibilities of 7, s, ... with
which R expresses agreement. Thus ‘‘p and g’ is the same truth-
function of p, g as ‘“r and s'' is of 7, s, in each case the only possibility
allowed being that both the arguments are true. Mr. Wittgenstein
has perceived that, if we accept this account of truth-functions as express-
ing agreement and disagreement with truth-possibilities, there is no
reason why the arguments to a truth-function should not be infinite in
number*. As no previous writer has considered truth-functions as
capable of more than a finite number of arguments, this is a most
irmportant innovation. Of course, if the arguments are infinite in number
they cannot all be enumerated and written down separately; but there
is no need for us to enumerate them if we can determine them in any
other way, as we can by using propositional functions.

A propositional function is an expression of the form “f%”, which is
such that it expresses a proposition, when any symbol (of a certain
appropriate logical type depending on f) is substituted for “z”. Thus
“% is a man’ is a propositional function. e can use propositional
functions to collect together the range of propositions, which are all
the values of the function for all possible values of . Thus “Z is a
man’’ collects together all the propositions ‘‘a is a man’’, “‘b is a man’’,

* Thus the logical sum of a set of propositions is the proposition that one at least of the
set is true, and it is immaterial whether the set is finite or infinite. On the other hand, an
infinite algebraic sum is not really a sum at all but a limit, and so cannot be treated as a sum
except subject to certain restrictions.
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etc.. Having now by means of a propositional function defined a set of
propositions, we can, by using an appropriate notation, assert the logical
sum or product of this set. Thus, by writing ‘‘(z) . fa’’, we assert the
logical product of all propositions of the form ‘‘fx’’; by writing
“(32).fz" we assert their logical sum. Thus ‘‘(z) .z is a man’’ would
mean ‘‘everything is a man'’, ‘‘(gz) .z is a man’’, “‘there is something
which is & man’”. In the first case we allow only the possibility that
all the propositions of the form ‘“z is a man’’ are true; in the second,
we exclude only the possibility that all the propositions of the form *‘z
is a man’’ are false.

Thus general propositions containing ‘‘all’”’ and ‘‘some’ are found
to be truth-functions, for which the arguments are not enumerated but
given in another way. But we must guard here against a possible mis-
take. Take such a proposition as ‘‘all men are mortal’’; this is not as
might at first sight be supposed the logical product of the propositions
“‘x is mortal’’ for such values of « as are men. Such an interpretation
can easily be shown to be erroneous (see, for example, Principia
Mathematica, 1st ed., I, 47). ‘‘All men are mortal’”’ must be inter-
preted as meaning '‘(z) . if x is a man, z 1s mortal’’, i.e. it is the logical
product of all the values of the function ‘‘if z is a man, x is mortal’’.

Mr. Wittgenstein maintains that all propositions are, in the sense
defined, truth-functions of elementary propositions. This is hard to
prove, but is on its own merits extremely plausible; it says that, when
we assert anything, we are saying that it is one out of a certain group
of ultimate possibilities which is realized, not one out of the remaining
possibilities.  Also it applies to all the propositions which could be
expressed in the symbolism of Principia Mathematica, since these are
built up from atomic propositions by using, first, conjunctions like
“if”’, “‘and”’, ‘‘or’’; and, secondly, various kinds of generality (apparent
variables). And both these methods of construction have been shown
to create truth-functions®*.

From this account we see when two propositional symbols are to
be regarded as instances of the same proposition, namely, when they
express agreement and disagreement with the same sets of truth-
possibilities of atomic propositions.

Thus in the symbolism of Principia Mathematica

“pDgi~p.D.q”, “gqvip.~p”
are both more complicated ways of writing ‘‘q’’.

* The form ‘‘ 4 believes p '’ will perhaps be suggested as.doubtful. This is clearly not a
truth-function of *‘p*’, but may nevertheless be one of other atomic progositions,
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Given any set of n atomic propositions as arguments, there are 2*
corresponding truth-possibilities, and therefore 2*" sub-classes of their
truth-possibilities, and so 2* truth-functions of » arguments, one
expressing agreement with each sub-class and disagreement with the
remainder. But among these 2% there are two extreme cases of great
importance : one in which we express agreement with all the truth-
possibilities, the other in which we express agreement with none of
them. A proposition of the first kind is called a tautology, of the second
a contradiction. Tautologies and contradictions are not real proposi-
tions, but degenerate cases. We may, perhaps, make this clear most
easily by taking the simplest case, when there is only one argument.

The tauntology is “ p 7, t.e.““pornotp”.
T T
F T

This really asserts nothing whatever; it leaves you no wiser than it
found you. You know nothing about the weather, if you know that it
is either raining or not raining®.

The contradiction is * P ”, t.e. ““p 18 neither true nor false ”.
T F
F F

This is clearly self-contradictory and does not represent a possible
state of affairs whose existence could be asserted.

Tautologies and contradictions can be of all degrees of com-
plexity; to give other examples “‘(z).¢w:D: ¢a’’ is a tautology.
“~.(g2).¢z:¢a” a contradiction. Clearly by negating a contradic-
tion we get a tautology, and by negating a tautology a contradiction. 1t
is important to see that tautologies are not simply true propositions,
though for many purposes they can be treated as true propositions. A
genuine proposition asserts something about reality, and it is true if
reality is as it is asserted to be. But a tautology is a symbol constructed

* Wittgenstein, Tractatus Log:co-Philosophicus, 4 - 461.
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s0 as to say nothing whatever about reality, but to express total ignorance
by agreeing with every possibility. The assimilation of tautologies and
contradictions with true and false propositions respectively results from
the fact that tautologies and contradictions can be taken as arguments
to truth-functions just like ordinary propositions, and for determining the
truth or falsity of the truth-function, tautologies and contradictions
among 1its arguments must be counted as true and false respectively.

€c vy

Thus, if “‘t” be a tautology, “‘¢’’ a contradiction, “‘t and p’’, “‘if ¢, then
p’. “‘c or p’’ are the same as ‘‘p”’, and “‘t or p”’. “if ¢, then p”’ are
tautologies.

We have here, thanks to Mr. Wittgenstein, to whom the whole of
this analysis is due, a clearly defined sense of tautology: but is this, it
may be asked, the sense in which we found tautology to be an essential
characteristic of the propositions of mathematics and symbolic logic?
The question must be decided by comparison. Are the propositions of
symbolic logic and mathematics tautologies in Mr. Wittgenstein's
sense ?

Let us begin by considering not the propositions of mathematics but
those of Principia Mathematica*. These are obtained by the process of
deduction from certain primitive propositions, which fall into two groups ;
those. expressed in symbols and those expressed in words. Those
expressed in words are nearly all nonsense by the theory of types, and
should be replaced by symbolic conventions. The real primitive pro-
positions, those expressed in symbols, are, with one exception, tautologies
in Wittgenstein’s sense. So, as the process of deduction is such that
from tautologies only tautologies follow, were it not for one blemish
the whole structure would consist of tautologies. The blemish is, of
course, the Axiom of Reducibility, which is, as will be shown belowt,
a genuine proposition, whose truth or falsity is a matter of brute fact,
not of logic. It is, therefore, not a tautology in any sense, and its intro-
duction into mathematics 1s inexcusable. But suppose it could be dis-
pensed with, and Principia Mathematica were modified accordingly, it
would consist entirely of tautologies in Wittgenstein's sense. And there-
fore if Principia Mathematica is on the right lines as a foundation and
interpretation of mathematics, it is Wittgenstein's sense of tautology
in which mathematics is tautologous.

But the adequacy of Principia Mathematica is a matter of detail, and,
since we have seen it contains a very serious flaw, we can no longer be

¢ This is only because Principia Mathematica may be a wrong interpretation of mathe-
matics; in the main I think it is a right one.
t See Chapter V.
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sure that mathematics is the kind of thing Whitehead and Russell sup-
pose it to be, or therefore that it consists of tautologies in Wittgen-
stein’s sense. One thing is, however, clear : that mathematics does not
consist of genuine propositions or assertions of fact which could be based
on inductive evidence, as it was proposed to base the axiom of reduci-
bility, but is in some sense necessary or tautologous. In actual life, as
Wittgenstein says, ‘it is never a mathematical proposition which we
really need, but we use mathematical propositions only in order to infer
from propositions which do not belong to mathematics to others which
equally do not belong to mathematics*’’. Thus we use *‘2x2=14" to
infer from ‘‘T have two pennies in each of my two pockets’ to ‘‘I have
four pennies altogether in my pockets”. ‘‘2x2=4" 1is not itself a
genuine proposition in favour of which inductive evidence can be re-
quired, but a tautology which can be seen to be tautologous by anyone
who can fully grasp its meaning. When we proceed further in
mathematics the propositions become so complicated that we cannot
see immediately that they are tautologous, and have to assure ourselves
of this by deducing them from more obvious tautologies. The primitive
propositions on which we fall back in the end must be such that no
evidence could be required for them, since they are patent tautologies
like ““if p then p’’. But the tautologies of which mathematics consist
may perhaps turn out not to be of Wittgenstein's kind, but of some
other. Their essential use is to facilitate logical inference; this is
achieved in the most obvious way by constructing tautologies in Witt-
genstein’s sense, for if “‘if p, then ¢’ is a tautology, we can logically

§ 09

infer “‘¢q” from ‘‘p’’, and, conversely, if ‘‘q’’ follows logically from
“p”, “if p, then ¢ is a tautologyt. But it is possible that there are
other kinds of formulae which could be used to facilitate inference ; for
instance, what we may call identities such as “‘a = b”’, signifying that
“a”’, ‘b’ may be substituted for one another in any proposition with-
out altering it. I do not mean without altering its truth or falsity,
but without altering what proposition it is. “‘242 = 4"" might well be
an identity in this sense, since ‘‘I have 242 hats’” and ‘I have 4 hats”’
are the same proposition, as they agree and disagree with the same sets
of ultimate truth-possibilities.

Our next problem is to decide whether mathematics consists of

tautologies (in the vrecise sense defined by Wittgenstein, to which we

* Wittgenstein, op. cit., 6 211.

+ This may perhaps be made clearer by remarking that if ‘“¢’’ follows logically from
“p”, “p. ~ ¢ must be self-contradictory, therefore ‘‘~ (p.~ g)"" tautologous or *»p D ¢”’
tautologous.
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shall in future confine the word ‘‘tautology’’) or of formulae of some
-other sort. It is fairly. clear that geometry, in which we regard such
terms as ‘‘point’”’, ‘‘line’”’ as meaning any things satisfying certain
axioms, so that the only constant terms are truth-functions like “‘or’,
‘“‘some’’, consists of tautologies. And the same would be true of analysis,
if we regarded numbers as any things satisfying Peano’s axioms. Such
a view would, however, be certainly inadequate, because since the
pumbers. from 100 on satisfy Peano’s axioms, it would give us no means
of distinguishing ‘“This equation has three roots” from ‘‘This equation
has a hundred and three roots.”” So numbers must be defined not as
variables but as constants, and the nature of the propositions of analysis
becomes doubtful.

I believe that they are tautologies, but the proof of this depends on
giving a detailed analysis of them, and the disproof of any other theory
would depend on finding.an insuperable difficulty in the details of its
construction. In this chapter I propose to discuss the question in a
general way, which must inevitably be rather vague and unsatisfactory.
I shall first try to explain the great difficulties which a theory of
mathematics as tautologies must overcome, and then I shall try to
explain why the alternative sort of theory suggested by these difficulties
seems hopelessly impracticable. Then in the following chapters I shall
return to the theory that mathematics consists of tautologies, discuss
and partially reject the method for overcoming the difficulties given in
Principia Mathematica, and construct an alternative and, to my mind,
satisfactory solution.

Our first business is, then, the difficulties of the tautology theory.
They spring from a fundamental characteristic of modern analysis which
we have now to emphasize. This characteristic may be called exzten-
sionality, and the difficulties may be explained as those which confront
us if we try to reduce a calculus of extensions to a calculus of truth-
functions. Here, of course, we are using ‘‘extension’ in its logical
sense, in which the extension of a predicate is a class, that of a relation
a class of ordered couples; so that in calling mathematics extensional
_wennean that it deals not with predicates but with classes, not with

“rilafions in the ordmary sense but with possible correlations, or ‘‘rela-
tions in extension,’’ as Mr. Russell calls them. Let us take as examples
of this point three fundamental mathematical concepts, the idea of a
real number, the idea of a function (of a real variable), and the idea
of similarity of classes (in Cantor’s sense).

. Real numbers are defined as segments of rationals; any segment
of rationals 1s a real number, and there are 2% of them. It is not
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necessary that the segment should be defined by any property or pre-
dicate of its members, in any ordinary sense of predicate. A real
number is therefore an extension, and it may even be an extension with
no corresponding inteusion. In the same way a function of a real variable
is a relation in extension, which need not be given by any real relation
or formula.

The point is perhaps most striking in the Cantor’s definition of
similarity. Two classes are said to be similar (i.e. have the same cardinal
number) when there is a one-one relation whose domain is the one class
and converse domain the other. Here it is essential that the one-one
relation need only be a relation in extension; it is obvious that two
classes could be similar—i.e. capable of being correlated without there
being any relation actually correlating them.

There is a verbal point which requires mention here; I do not use
the word ‘‘class’”’ to imply a principle of classification, as the word
naturally suggests, but by a ‘‘class’’ I mean any set of things of the
same logical type. Such a set, it seems to me, may or may not be
definable either by enumeration or as the extension of a predicate. If
it is not so definable we cannot mention it by itself, but only deal with
it by implication in propositions about all classes, or some classes. The
same is true of relations in extension, by which I do not merely mean
the extensions of actual relations, but any sets of ordered couples. That
this is the notion occurring in mathematics seems to me absolutely clear
from the last of the above examples, Cantor’s definition of similarity,
where obviously there is no need for the one-one relation in extension
to be either finite or the extension of an actual relation.

Mathematics is' therefore essentially extensional, and may be called
a calculus of extensions, since its propositions assert relations between
extensions. This, as we have said, is hard to reduce to a calculus of
truth-functions, to which it must be reduced if mathematics is to con-
sist of tautologies, for tautologies are truth-functions of a certain special
sort,. namely those agreeing with all the truth-possibilities of their argu-
ments. We can perhaps most easily explain the difficulty by an
example.

Let us take an extensional assertion of the simplest possible sort :
the assertion that one class includes another. So long as the classes are
defined as the classes of things having certain predicates ¢ and -, there
is no difficulty. That the class of Y’s includes the class of ¢’s means
simply that everything which is a ¢ is a Y, which, as we saw in
Chapter I, is a truth-function. But we have seen that mathematics
has (at least apparently) to deal also with classes which are not given
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by defining predicates. (Such classes occur not merely when mentioned
separately, but also in any statement about ‘‘all classes’’, ‘‘all real
numbers’.) Let us take two such classes as simple as possible, the
class (a, b, c) and the class (a, b). Then that the class (@, b, ¢) includes
the class (a,b) is, in a broad sense, tautological and apart from its
triviality would be a mathematical proposition; but it does not seem
to be a tautology in Wittgenstein’s sense, that is a certain sort of truth-
function of elementary propositions. The obvious way of trying to make
1t a truth-function is to introduce identity and write ‘'(a, b) is contained
in (a,b,0)” as “@):.z=a.v.x=0b:Diz=a.v.za=b.v.e=c¢".
This certainly looks like a tautological truth-function, whose ultimate
arguments are values of ‘‘z=4a", “x =0, "z =c¢”, that is proposi-
tions like “‘a=2a"", “b=0a"", “d =0a’’. But these are not real pro-
positions at all; in ‘‘@ ="’ either ‘‘a’’, ‘‘b’’ are names of the same
thing, in which case the proposition says nothing, or of different things,
in which case it is absurd. In neither case is it the assertion of a fact;
it only appears to be a real assertion by confusion with the case when
“a” or “‘b’’ is not a name, but a description*. When “a’’, “‘b’’ are
both names, the only significance which can be placed on “‘a = 0" 1is
that it indicates that we use ‘‘a’’, **b’’ as names of the same thing or.
more generally, as equivalent symbols.

The preceding and other considerations led Wittgenstein to the view
that mathematics does not consist of tautologies, but of what he called
“‘equations’’, for which I should prefer to substitute ‘‘identities’’. That
is, formulae of the form ‘‘a = 0" where ‘‘a¢’’, ‘b’ are equivalent
symbols.  There is a certain plausibility in such an account of, for
instance, ‘‘2+4+2 =4"". Since ‘‘I have 242 hats’’, ‘I have 4 hats’’ are
the same propositiont, ‘242"’ and '‘4"’ are equivalent symbols. As
it stands this is obviously a ridiculously narrow view of mathematics,
which confines it to simple arithmetic, but it is interesting to see whether
a theory of mathematics could not be constructed with identities for
its foundation. I have spent a lot of time developing such a theory, and
found that it was faced with what seemed to me insuperable difficulties.
It would be out of place here to give a detailed survey of this blind
alley, but I shall try to indicate in a general way the obstructions which
block its end.

First of all we have to consider of what kind mathematical pro-

* For a fuller discussion of identity see the next chapter.
1 In the sense explained in Chapter I. They clearly are not the same sentence, but they
are the same truth-function of atomic propositions and so assert the same fact.
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positions will on such a theory be. We suppose the most primitive
type to be the identity ‘e = b"’, which only becomes a real proposi-
tion if it is taken to be about not the things meant by “‘a’’, ‘‘b’’, but
these symbols themselves; mathematics then consists of propositions
built up out of identities by a process analogous to that by which ordinary
propositions are constructed out of atomic ones; that is to say,
mathematical propositions are (on this theory), in some sense, truth-
functions of identities. Perhaps this is an overstatement, and the theory
might not assert all mathematical propositions to be of this form, but
it is clearly one of the important forms that would be supposed to occur.

Thus
“2?—8r4+2=0:D,:z=2.v.c =1"

would be said to be of this form, and would correspond to a verbal pro-
position which was a truth-function of the verbal propositions corre-
sponding to the arguments ‘‘z =2, etc. Thus the above proposition
would amount to “‘If ‘z?’—3z+42 means 0, ‘z’ means 2 or 1.
Mathematics would then be, in part at least, the activity of construct-
ing formulae which corresponded in this way to verbal propositions.
Such a theory would be difficult and perhaps impossible to develop in
detail, but there are, I think, other and simpler reasons for dismissing
it. These arise as soon as we cease to treat mathematics as an isolated
structure, and consider the mathematical elements in non-mathematical
propositions. For simplicity let us confine ourselves to cardinal numbers,
and suppose ourselves to know the analysis of the proposition that the
class of ¢’s is n in number (fc\(gb:z) en). Here ¢ may be any ordinary
predicate defining a class, e.g. the class of ¢’s may be the class of
Englishmen. Now take such a proposition as ‘‘The square of the number
of ¢’s is greater by two than the cube of the number of \’s’’. This
proposition we cannot, I think, help analysing in this sort of way.

(Im, n). Z(¢z)em .z (o) en . md = nd+2.

It is an empirical not a mathematical proposition, and is about the
¢’s and Y’s, not about symbols; yet there occurs in it the mathematical
pseudo-proposition m? = n’+2, of which, according to the theory under
discussion, we can only make sense by taking it to be about symbols,
thereby making the whole proposition partly about symbols. Moreover,
being an empirical proposition, it is a truth-function of elementary
propositions expressing agreement with those possibilities which give
numbers of ¢’s and Y’s satisfying m? = n*+2. Thus “‘m?® = n+42”
is not, as 1t seems to be, one of the truth-arguments in the proposition
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above, but rather part of the truth-function like “~" or “v” or
“3, m, n”’, which determine which truth-function of elementary pro-
positions it is that we are asserting. Such a use of m? =n3+2 the
identity theory of mathematics is quite inadequate to explain.

On the other hand, the tautology theory would do everything which
18 required; according to it m? = n®42 would be a tautology for the
values of m and n which satisfy it, and a contradiction for all others.

So A A
z(¢z) em . 2 (Yx) en . m* = n4+2

would for the first set of values of m, n be equivalent to

:/c\(qba:) em.z (Jx) en

.

simply, ““m? = n342" being tautologous, and therefore superfluous; and
forall other values it would be self-contradictory. So that

“(gm, n): 2 (px) em . Q(\p:c) en.m?=n84+2"
would be the logical sum of the propositions

“;'E(q&w) em.z (Yrz)en”

for all m,n satisfying m® = n342, and of contradictions for all other
m, n, and is therefore the proposition we require, since in a logical sum
the contradictions are superfluous. So this difficulty, which seems fatal
to the identity theory, is escaped altogether by the tautology theory,
which we are therefore encouraged to pursue, and to see if we cannot
find a way of overcoming the difficulties which we found would con-
front us in attempting to reduce an extensional calculus to a calculus
of truth-functions. Such a solution is attempted in Principia
Mathematica, and will be discussed in the next chapter; but before we
proceed to this we must say something about the well known contradic-
tions of the theory of aggregates which our theory will also have to
escape.

It is not sufficiently remarked, and the fact is entirely neglected in
Principia Mathematica, that these contradictions fall into two funda-
mentally distinct groups, which we will call A and B. The best known
ones are divided as follows :— '

A. (1) The class of all classes which are not members of themselves.

(2) The relation between two relations when one does not have
itself to the other.

(3) Burali Forti’s contradiction of the greatest ordinal.
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B. (4) “T am lying”".

(5) The least integer not nameable in fewer than nineteen
syllables.

(6) The least indefinable ordinal.

(7) Richard’s Contradiction.
(8) Weyl’s Contradiction about ‘‘heterologisch’*.

The principle according to which I have divided them is of fundamental
importance. Group A consists of contradictions, which, were no pro-
vision made against them, would occur in a logical or mathematical
system itself. They involve only logical or mathematical terms such as
class and number, and show that there must be something wrong with
our logic or mathematics. But the contradictions of Group B are not
purely logical, and cannot be stated in logical terms alone, for they all
contain some reference to thought, language, or symbolism, which are
not formal but empirical terms. So they may be due not to faulty logic
or mathematics, but to faulty ideas concerning thought and language.
If so, they would not be relevant to mathematics or to logic, if by
‘‘logic’”” we mean a symbolic system, though, of course, they would
be relevant to logic in the sense of the analysis of thoughtt.

This view of the second group of contradictions is not original. For
instance, Peano decided that ‘‘Exemplo de Richard non pertine ad
Mathematica, sed ad linguistica’’}, and therefore dismissed it. But such
an attitude is not. completely satistactorv. We have contradictions
involving both mathematical and linguistic ideas; the mathematician
dismisses them by saying that the fault must lie in the linguistic ele-
ments, but the linguistician may equally well dismiss it for the opposite
reason, and the contradictions will never be solved. The only solution
which has ever been given§, that in Principia Mathematica, definitely
attributed the contradictions to bad logic, and it is up to opponents of
this view to show clearly the fault in what Peano called linguistics, but

* For the first seven of these see Principia Mathematica, 1 (1910), 63. For the eighth
.see Weyl, Das Kontinuum, 2.

+ These two meanings of ‘‘ logic’’ are frequently confused. It really should be clear that
those who say mathematics is logic are not meaning by ‘‘logic’’ at all the same thing as
those who define logic as the analysis and criticism of thought.

1 Rivista di Mat., 8 (1906), 157.

§ Other so-called sclutions are merely inadequate excuses for not giving a solution.

SER. 9. VOL.25. wo. 1557, 2a
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what I should prefer to call epistemology, to which these contradictions
are due.

II. PrINCIPIA MATHEMATICA.

In the last chapter I tried to explain the difficulties which faced the
theory that the propositions of mathematics are tautologies; in this we
have to discuss the attempted solution of these difficulties given in
Principia Mathematica. I shall try to show that this solution has three
important defects, and the remainder of this essay will be devoted to
-expounding a modified theory from which these defects have been
removed.

The theory of Principia Mathematica is that every class or aggregate
(I use the words as synonyms) is defined by a propositional function—
that is, consists of the values of z, for which *‘¢z’* is true, where ‘¢z’
is a symbol which expresses a proposition if any symbol of appropriate
type be substituted for ‘““z’’. This amounts to saying that every class
has a defining property. Let us take the class consisting of a and b;
why, it may be asked, must there be a function ¢z such that “ga’, *‘¢b”’
are true, but all other ‘‘¢x’’ ’s false? This is answered by giving as
such a function “z =a.v.z =1"0"". Let us, for the present, neglect the
difficulties connected with identity, and accept this answer; it shows
us that any finite class 1s defined by a propositional- function con-
structed by means of identity, but as regards infinite classes it leaves
us exactly where we were before, that is, without any reason to suppose
that they are all defined by propositional functions, for it is impossible
to write down an infinite series of identities. To this it will be answered
that a class can only be given to us either by enumeration of its
members, in which case it must be finite, or by giving a propositional
function which defines it. So that we cannot be in any way concerned
with infinite classes or aggregates, if such there be, which are not
defined by propositional functions.* But this argument contains a
common mistake, for it supposes that, because we cannot consider a
thing individually, we can have no concern with it at all. Thus,
although an infinite indefinable class cannot be mentioned by itself, it
is, nevertheless, involved in any statement beginning ‘‘All classes’ or
““There is a class such that’’, and if indefinable classes are excluded the
meaning of all such statements will be fundamentally altered.

Whether there are indefinable classes or not is an empirical ques-

* For short, I shall call such classes *‘ indefinable classes’’.
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tion ; both possibilities are perfectly conceivable. But even if, in fact,
all classes are definable, we cannot in our logic identify classes with
definable classes without destroying the apriority and necessity which
is the essence of logic. But in case any one still thinks that by classes
we mean definable classes, and by “‘there is a class’’, “‘there is-a defin-
able class,”” let him consider the following illustration. This illustra-
tion does not concern exactly this problem, but the corresponding
problem for two variables, the existence of relations in extension not
definable by propositional functions of two variables. But this question
is clearly so analogous to the other that the answers to both must be
the same.

Consider the proposition “Z(px)smZ(yx)” (i.e. the class defined by

¢fc\ has the same cardinal as that defined by 3&:11:\); this is defined to
mean that there is a one-one relation in extension whose domain is
3:\(@;) and whose converse domain is 3;\(\/1@'). Now if by relation in
extension we mean definable relation in extension, this means that two
classes have the same cardinal only when there is a real relation or
function f(z,y) correlating them term by term. Whereas clearly what
was meant by Cantor, who first gave this definition, was merely that
the two classes were such that they could be correlated, not that
there must be a propositional function which actually correlated them*
Thus the classes of male and female angels may be infinite and equal in
number, so that it would be possible to pair off completely the male
with the female, without there being any real relation such as marriage
correlating them. The possibility of indefinable classes and relations in
extension is an essential part of the extensional attitude of modern
mathematics which we emphasized in Chapter I, and that it is
neglected in Principia Mathematica is the first of the three great defects
in that work. The mistake is made not by having a primitive proposi-
tion, asserting that all classes are definable, but by giving a definition
of class which applies only to definable classes, so that all mathematical
propositions about some or all classes are misinterpreted. This mis-
interpretation is not merely objectionable on its own account in a general
way, but is especially pernicious in connexion with the multiplicative
axiom, which is a tautology when properly interpreted; but when mis-
interpreted after the fashion of Principia Mathematica becomes 4
significant empirical proposition, which there is no reason to suppose
true. This will be shown in Chapter V.

The second defect in Principia Mathematica represents a failure to

* Cf. Johnson, Logic, 2 (1922), 159.
242
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overcome, not, like the first, the difficulties raised by the extensionality
of mathematics, but those raised by the contradictions discussed at the
end of Chapter I. These contradictions it was proposed to remove by
what is called the Theory of Types, which consists really of two distinct
parts directed respectively against .the two groups of contradictions.
These two parts were unified by being both deduced in a rather sloppy
way from the ‘‘vicious-circle principle’’, but it seems to me essential
to consider them separately.

The contradictions of Group A are removed by pointing out that
a propositional function cannot significantly take itself as argument,
and by dividing functions and classes into a hierarchy of types according
to their possible arguments. Thus the assertion that a class is a member
of itself is neither true nor false, but meaningless. This part of the
theory of types seems to me unquestionably correct, and I shall not
discuss it further. '

The first part of the theory, then, distinguishes types of proposi-
tional functions by their arguments; thus there are functions of
individuals, functions of functions of individuals, functions of functions
of functions of individuals, and so on. The second part designed to
meet the second group of contradictions requires further distinctions
between the different functions which take the same arguments, for
instance between the different functions of individuals. The following
explanation of these distinctions is based on the introduction to the
second edition of Principia Mathematica.

We start with atomic propositions, which have been explained in
Chapter I. Out of these by means of the stroke (p/q = not both p and ¢
are true) we can construct any truth-function of a finite number of
atomic propositions as arguments. The assemblage of propositions so
obtained are called elementary propositions. By substituting a variable
for the name of an individual in one or more of its occurrences in an
elementary proposition we obtain an elementary function of individuals.
An elementary function of individuals, “¢§ ” is therefore one whose
values are elementary propositions, that is, truth-functions of a finite
number of atomic propositions. Such functions were called, in the first
edition of Principia Mathematica, predicative functions. We shall speak
of them by their new name, and in the next chapter use ‘‘predicative
function’ in a new and original sense, for which it seems more appro-
priate. In general, an elementary function or ‘‘matrix’’ of one or more
variables, whether these are individuals or not, is one whose values are
elementary propositions. Matrices are denoted by a mark of exclamation

after the functional symbol. Thus “F!($! 9, \'/\,! 2, 3, g//\)” is a matrix
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having two individuals and two elementary functions of individuals as
arguments.

From an elementary function “¢! 2" we obtain, as in Chapter I, the
propositions “(2).¢! x” and “(3z).¢! 2" which respectively assert the
truth of all, and at least one of the values of “¢! z”. Similarly from an
elementary function of two individuals ¢!(:’£, Q) we obtain functions of
one individual such as (y).</>!($, Y)s (3y).¢!(§, y). The values of these
functions are proposilions such as (y). ¢!(a, y) which are not elementary
propositions; hence the functions themselves are not elementary functions.
Such functions, whose values result from generalizing a matrix all whose
values are individuals, are called first-order functions, and written ¢l§ .

Suppose @ is a constant, Then “¢! a” will denote for the various
values of ¢, all the various elementary propositions of which a is a
constituent. We can thus form the propositions (¢).¢! a, (3¢).¢! a
respectively asserting the truth of all, and at least one of the above
assemblage of propositions. More generally we can assert by writing
(¢) . Fl(p! 2), (3¢). F(g! %) the truth of all and at least one of the values
of Fl(p! 2). Such propositions are clearly not elementary, so that such
a function as (¢). F!(¢! %, z) is not an elementary function of z. Such
a function involving the totality of elementary functions is said to be of

the second order and written ¢,z. By adopting the new variable ¢, ‘‘we
shall obtain other new functions

(o) S22, 2) (I - f (a2, @),

which are again not among values for $.lx (where ¢, is the argument),
because the totality of values of ¢, which is now involved, is different
from the totality of values of ¢!, which was formerly involved. However
much we may enlarge the meaning of ¢, a function of = in which ¢ occurs
as apparent variable has a correspondingly enlarged meaning so thaf,
however ¢ may be defined, (¢).f!(¢9, x) and (3¢).f!(¢9, z) can never
be values for $x To attempt to make them so is like attempting to catch
one’s own shadow. It is impossible to obtain one variable which embraces
among its values all possible functions of individuals " *.

For the way in which this distinction of functions into orders of
which no totality is possible is used to escape the contradictions of
Group B, which are shown to result from the ambiguities of language
which disregard this distinction, reference may be made to Principia

* Principia Mathematica, 1 (1925), 2 ed., xxxiv.
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Mathematica*. Here it may be sufficient to apply the method to a con-
tradiction not given in that work, which is peculiarly free from irrelevant
elements; I mean, Weyl's contradiction concerning ‘‘heterologisch™t,
which must now be explained. Some adjectives have meanings which
are predicates of the adjective word itself; thus the word ‘‘short’ is
short, but the word ‘‘long’’ is not long. Let us call adjectives whose
meanings are predicates of them, like ‘‘short’’, autological ; others hetero-
logical. Now is ‘‘heterological’’ heterological? If it is, its meaning
is not a predicate of it, that is, it is not heterological. But if it is not
heterological, its meaning is a predicate of it, and therefore it is hetero-
logical. So we have a complete contradiction.

According to the principles of Principia Mathematica, this contradic-
tion would be solved in the following way. An adjective word is the

symbol for a propositional function, e.g. “‘¢’’ for gb%. Let R be the
relation of meaning between ‘‘¢’’ and ¢.§. Then “‘w is heterological’

is “(3¢).wR(¢a’E).~¢w”. In this, as we have seen, the apparent
variable ¢ must have a definite range of values (e.g. the range of ele-
mentary functions), of which Fz =1:.(3¢): zR(ng) . ~ ¢x cannot itself
be a member. So that ‘‘heterological’’ or ““F’’ is not itself an adjective

(X3 ?

in the sense in which “¢’’ is. We do not have (3¢).“F” R(¢fc\)
because the meaning of ““F’’ is not a function included in the range
of ““¢"’. So that wheén heterological and autological are unambiguously
defined, ‘‘heterological’’ is not an adjective in the sense in question, and
is neither heterological nor autological, and there is no contradiction.
Thus this theory of a hierarchy of orders of functions of -individuals
escapes the contradictions, but it lands us in an almost equally serious
difficulty, for it invalidates many important mathematical arguments
which appear to contain exactly the same fallacy as the contradictions. In
the first edition of Principia Mathematica it was proposed to justify these
arguments by a special axiom, the axiom of reducibility, which asserted
that to every non-elementary function there is an equivalent elementary
function}. This axiom there is no reason to suppose true, and if it were
true, this would be a happy accident and not a logical necessity, for it
is not a tautology. This will be shown positively in Chapter V; but for
the present it should be sufficient that it does not seem to be a tautology
and that there is no reason to suppose that it is one. Such an axiom

* Principia Mathematica, 1 ed., 1 (1910), 117.

t+ Weyl, Das Kontinuum, 2.

+ Two functions are called equivalent when the same arguments render them both true
or both false. (German umfangsgleich.)
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has no place in mathematics, and anything which cannot be proved
withcut using it cannot be regarded as proved at all.

It is perhaps worth while, parenthetically, to notice a point which
is sometimes missed. Why, it may be asked, does not the axiom of
reducibility reproduce the contradictions, which the distinction between
elementary and other functions avoided? For it asserts that to any non-
elementary there is an equivalent elementary function, and so may
appear to lose again whatever was gained by making the distinction.
This is not, however, the case, owing to the peculiar nature of the
contradictions in question; for, as pointed out above, this second set of
contradictions are not purely mathematical, but all involve the ideas
of thought or meaning, in connexion with which equivalent functions
(in the sense of equivalent explained above) are not interchangeable ;
for instance, one can be meant by a certain word or symbol, but not the
other ; and one can be definable, and not the other*. On the other hand,
any purely mathematical contradiction which arose from confusing
elementary and non-elementary functions would be reinstated by the
axiomn of reducibility, owing to the extensional nature of mathematics,
in which equivalent functions are interchangeable. But no such con-
tradiction has been shown to arise, so that the axiom of reducibility does
not seem to be self-contradictory. These considerations bring out clearly
the peculiarity of this second group of contradictions, and make it even
more probable that they have a psychological or epistemological and not
a purely logical or mathematical solution; so that there is something
wrong with the account of the matter given in Principia.

The principal mathematical methods which appear to require the
axiom of reducibility are mathematical induction and Dedekindian
section, the essential foundations of arithmetic and analysis respectively.
Mr. Russell has succeeded in dispensing with the axiom in the first caset,
but holds out no hope of a similar success in the second. Dedekindian
section is thus left as an essentially unsound method, as has often been

* Dr. L. Chwistek appears to have overlooked this point that, if a function is definable,
the equivalent elementary function need not also be definable in terms of given symbols. In
his paper “ Uber dic Antinomien der Prinzipien der Mathematik'' in Math. Zeitschrift,
14 (1922), 236-243, he denotes by § a many-one relation between the natural numbers and the
classes defined by functions definable in terms of certain symbols. ¢ being a non-elementary
function of this kind, he concludes that there must be an 7, such that nS2(p2). This is,
however, a fallacy since 1.5z (¢z) means by definition

(3Y):Yle=,9z.08(y! 2)

and since ¥ ! 7 is not necessarily definable 1n terms of the given symbols there is no reason for
there being any such n.
T See Principia Mathematica, 1 (1925), 2 ed., Appendix B.
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emphasized by Weyl*, and ordinary analysis crumbles into dust. That
these are its consequences is the second defect in the theory of Principia
Mathematica, and, to my mind, an absolutely conclusive proof that there
18 something wrong. For as I can neither accept the axiom of reducibility
nor reject ordinary analysis, I cannot believe in a theory which presents
me with no third possibility.

The third serious defect in Principia Mathematica is the treat-
ment of identity. It should be explained that what is meant is numerical
identity, identity in the sense of counting as one, not as two. Of this
the following definition is given :

“z=y.=i(¢):plz.D.¢ply: DIt

that is, two things are identical if they have all their elementary pro-
perties in common.

In Principia this definition is asserted to depend on the axiom of
reducibility, because, apart from this axiom, two things might have all
their elementary properties in common, but still disagree in respect of
functions of higher order, in which case they could not be regarded as
numerically identical!. Although, as we shall see, the definition is to
be rejected on other grounds, I do not think it depends in this way on
the axiom of reducibility. For though rejecting the axiom of reducibility
destroys the obvious general proof that two things agreeing in respect
of all elementary functions agree also in respect of all other functions,
I think that this would still follow and could probably be proved in any
particular case. For example, take a typical function of the second order

@:fUP! 2, 2, (@P).fl(p! 7, 2).
Then, if we have @):iplz.=.¢ly @=y)
it follows that @): 1 2, 2).=.f1 (9! 2, ),
because f!(¢! Z, z) is an elementary function of z. Whence
@) . fl(p! 2, @) =1(9). f1(g! 2, )
and @) .f! (9! 2, D1 =139 1! 2, Y.

# Seo H. Weyl, Das Kontinuum, and *‘ Ueber die neue Grundlagenkrise der Mathe-
matik'’, Math. Zeitschrift, 10 (1921), 39-79.

+ 18.01.

t Principia Mathematica, 1 ed., 1 (1910), 177.
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Hence rejecting the axiom of reducibility does not immediately lead to
rejecting the definition of identity.

The real objection to this definition of identity is the same as that
urged above against defining classes to be definable classes, that
it is a misinterpretation, that it does not define the meaning with which
the symbol for identity is actually used. This can be easily seen in the
following way : the definition makes it self-contradictory for two things
to have all their elementary properties in common. Yet this is really
perfectly possible, even if, in fact, it never happens. Take two things,
o and b. Then there is nothing self-contradictory in @ having any self-
consistent set of elementary properties, nor in b having this set, nor
therefore, obviously, in both a and b having them, nor therefore in a and
b having all their elementary properties in common. Hence, since this
is logically possible, it is essential to have a symbolism which allows us
to consider this possibility and does not exclude it by definition.

It is futile to raise the objection that it is not possible to distingnish
two things which have all their properties in common, since to give
them different names would imply that they had the different properties
of having those names. For although this is perfectly true, that is to
say, I cannot, for the reason given, know of any two particular indis-
tinguishable things. yet 1 can perfectly well consider the possibility, or
even know that there are two indistinguishable things, without knowing
which they are. To take an analogous situation : since there are more
people on the earth than hairs on any one person’s head, 1 know that
there must be at least two people with the same number of hairs, but
I do not know which two people they are.

These arguments are reinforced by Wittgenstein’s discovery that the
sign of identity is not a necessary constituent of logical notation, but can
be replaced by the convention that different signs must have different
meanings. This will be found in Tractatus Logico-Philosophicus, p. 139 ;
the convention is slightly ambiguous, but it can be made definite, and
is then workable, although generally inconvenient. But even if of no
other value, it provides an effective proof that identity can be replaced
by a symbolic convention, and is therefore no genuine propositional
function, but merely a logical device. '

We conclude, therefore, that the treatment of‘identity in Principia
Mathematica is a misinterpretation of mathematics, and just as the
mistaken definition of classes is particularly unfortunate in connexion
with the Multiplicative Axiom, so the mistaken definition of identity is
especially misleading with regard to the Axiom of Infinity; for the two
propositions, ‘‘There are an infinite number of things’” and ‘‘There are
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an infinite number of things differing from one another with regard to
elementary functions’’, are, as we shall see in Chapter V, extremely
different.

ITI. PREDICATIVE FUNCTIONS.

In this chapter we shall consider the second of the three objections
which we made in the last chapter to the theory of the foundations of
mathematics given in Principia Mathematica. This objection, which is
perhaps the most serious of the three, was directed against the ‘‘Theory
of Types,” which seemed to involve either the acceptance of the illegi-
timate Axiom of Reducibility, or the rejection of such a fundamental
type of mathematical argument as Dedekind section. We saw that this
difficulty came from the second of the two parts into which the theory
was divided, namely that part which concerned the different ranges of
functions of given arguments, e.g. individuals, and we have to consider
whether this part of the theorv of types cannot be amended so as to get
out of the difficulty. We shall see that this can be done in a simple
and straightforward way, which is a natural consequence of the logical
theories of Mr. Wittgenstein.

We shall start afresh from part of his theory of propositions, of which
something was said in the first chapter. We saw there that he explains
propositions in general by reference to atomic propositions, every pro-
position expressing agreement and disagreement with truth-possibilities
of atomic propositions. We saw also that we could construct many
different symbols all expressing agreement and disagreement with the
same sets of possibilities. For instance,

nqu”, tc~p.v.‘qn' “"":P-“"Q”s “"’Q-Do’\P”

are such a set, all agreeing with the three possibilities
“p.q”, H~p‘q”’ “~p.~q”’

but disagreeing with ‘“‘p.~ q.””. Two symbols of this kind, which
express agreement and disagreement with the same sets of possibilities,
are sald to be instances of the same proposition. They are instances of
it just as all the ‘‘the’’ ’s on a page are instances of the word ‘‘the’’.
But whereas the ‘‘the’’ ’s are instances of the same word on account of
their physical similarity, different symbols are instances of the same
proposition because they have the same sense, that is, express agree-
ment with the same sets of possibilities. When we speak of propositions



1925.] THE FOUNDATIONS OF MATHEMATICS. 368

we shall generally mean the types of which individual symbols are in-
stances, and we shall include types of which there may be no instances.
This is inevitable, since it cannot be any concern of ours whether anyone
has actually symbolized or asserted a proposition, and we have to consider
all propositions in the sense of all possible assertions whether or not they
have been asserted.

Any proposition expresses agreement and disagreement with com-
plementary sets of truth-possibilities of atomic propositions; conversely
given any set of these truth-possibilities, it would be logically possible
to assert agreement with them and disagreement with all others, and the
set of truth-possibilities therefore determines a proposition. This pro-
position may in practice be extremely difficult to express through the
poverty of our language, for we lack both names for many objects and
methods of making assertions involving an infinite number of atomic
propositions, except in relatively simple cases, such as ‘‘(z) . ¢2'’, which
involves the (probably) infinite set of (in certain cases) atomic proposi-
tions, ‘‘¢pa’’, “‘¢b’’, &c. Nevertheless, we have to consider propositions
which our language is inadequate to express. In ‘‘(z). ¢z’ we assert
the truth of all possible propositions which would be of the form *‘¢z’’
whether or not we have names for all the values of z. General proposi-
tions must obviously be understood as applying to everything, not merely
to everything for which we have names.

We come now to a most important point in connection with the
‘Theory of Types. We explained in the last chapter what was meant
by an-elementary proposition, namely one constructed explicitly as a
truth-function of atomic propositions. We have now to see that, on the
theory of Wittgenstein, elementary is not an adjective of the proposition
type at all, but only of its instances. Xor an elementary and a non-
elementary propositional symbol could be instances of the same
proposition. Thus suppose a list was made of all individuals as

“a”, b7, ..., “2”’. Then, if ¢£ were an elementary function,
“¢a.¢b ... ¢z”’ would be an elementary proposition, but ‘‘(z). ¢z’
non-elementary ; but these would express agreement and disagreement
with the same possibilities and therefore be the same proposition. Or
to take an example which could really occur, “¢a’’ and “‘¢a : (32) . ¢z’
which are the same proposition, since (3%) . ¢z adds nothing to ¢a. But
the first is elementary, the second non-elementary.

Hence some instances of a proposition can be elementary, and others
non-elementary ; so that elementary is not really a characteristic of the
proposition, but of its mode of expression. ‘‘Elementary proposition’’
1s like “‘spoken word’’; just as the same word can be both spoken and
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written, so the same proposition can be hoth elementarily and non-
elementarily expressed.

After these preliminary explanations we proceed to a theory of pro-
positional functions. By a propositional function of individuals we mean

a symbol of the form * f('a\c, 3, 'z\, ...)" which is such that, were the names

. . . . A A A . . :
of any individuals substituted for “z”, “y”, “2”, ... in i, the result

would always be a proposition. This definition needs to be completed by
the explanation that two such symbols are regarded as the same
function when the substitution of the same set of names in the
one and in the other always gives the same proposition. Thus if
“fla,b,c)” ‘“‘gla,b,c)”’ are the same proposition for any set of
a, b, c, f(ﬁc\, ;'1}, 3) and g(ﬁ,g’), 9) are the same function, even if they are
quite different to look at.

A function* “¢'z\” gives us for each individual a proposition, in the
sense of a proposition type (which may not have any instances, for we
may not have given the individual a name). So the function collects
together a set of propositions, whose logical sum and product we ussert
by writing respectively “*(3z). ¢z, ““(z) . ¢2’’. This procedure can be
extended to the case of several variables. Consider “¢(z, 7)"'; give y
any constant value 5, and “rf)(ﬁ, n)”’ gives a proposition when any
individual name is substituted for ?, and is therefore a function of one
variable, from which we can form the propositions

“(3). plx, )7, @) Pplx, W)

. A : . .
Consider next “(3z).¢(r, y)”; this, as we have seen, gives a proposi-
tion when any name (e.q. ‘‘»’’) is substituted for ‘‘y’’, and is therefore
a function of one variable from which we can form the propositions

Q) :(32).¢(e, y) and (y):(32). ¢z, ).

As so far there has been no difficulty, we shall attempt to treat
functions of functions in exactly the same way as we have treated
functions of individuals. I.et us take, for simplicity, a function of one
variable which is a function of individuals. This would be a symbol
of the form “f(?ﬁ)”, which becomes a proposition on the substitution fox

“$§” of any function of an individual. “f(¢Z)” then collects together

* By ‘‘ function ’’ we shall in future always mean propositional function unless the con-
trary is stated.
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a set of propositions, one for each function of an individual, of
which we assert the logical sum and product by writing respectively
“9).fPD)", “(g). f(pE)".

But this account suffers from an unfortunate vagueness as to the
range of functions ¢z giving the values of f(¢z) of which we assert
the logical sum or product. In this respect there is an important differ-
ence between functions of functions and functions of individuals which
is worth examining closely. It appears clearly in the fact that the
expressions ‘‘function of functions’’, ‘“‘function of individuals’ are not
strictly analogous; for, whereas functions are symbols, individuals are
objects, so that to get an expression analogous to ‘‘function of func-
tions’’ we should have to say ‘‘function of names of individuals’’. On
the other hand, there does not seem any simple way of altering *‘function
of functions’’ so as to make it analogous to ‘‘function of individuals’,
and it is just this which causes the trouble. For the range of values of
a function of individuals is definitely fixed by the range of individuals,
an objective totality which there is no getting away from. But the
range of arguments to a function of functions is a range of symbols, all
symbols which become propositions by inserting in them the name of an
individual. And this range of symbols, actual or possible, is not objec-
tively fixed, but depends on our methods of constructing them and
requires more precise definition.

This definition can be given in two ways, which may be distinguished
as the subjective and objective methods. The subjective* method is that
adopted in Principia Mathematica; it consists in defining the range of
functions as all those which could be constructed in a certain way, in
the first instance by sole use of the ‘/’’ sign. We have seen how it
leads to the impasse of the Axiom of Reducibility. I, on the other hand,
shall adopt the entirely original objective method which will lead us to a
satisfactory theory in which no such axiom is required. This method
is to treat functions of functions as far as possible in the same way as
functions of individuals. The signs which can be substituted as argu-
ments in “¢5s\ ”’, & function of individuals, are determined by their mean-
ings ; they must be names of individuals. I propose similarly to determine
the symbols which can be substituted as arguments in f(«?;ﬁ) ” not by
the manner of their construction, but by their meanings. This is more
difficult, because functions do not mean single objects as names do, but
have meaning in a more complicated way derived from the meanings

* T do not wish to press this term ; I merely use it because I can find no better.
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of the propositions which are their values. The problem is ultimately
to fix as values of f(¢£) some definite set of propositions so that we can
assert their logical product and sum. In Principia Mathematica they
are determined as all propositions which can be constructed in a certain
way. My method, on the other hand, is to disregard how we could
construct them, and determine them by a description of their senses or
imports; and in so doing we may be able to include in the set pro-
positions which we have no way of constructing, just as we include in
the range of values of ¢z propositions which we. cannot express from
lack of names for the individuals concerned.

We must begin the description of the new method with the defini-
tion of an atomic function of individuals, as the result of replacing by
variables any of the names of individuals in an atomic proposition
expressed by using names alone ; where if a name occur wore than once
in the proposition it may be replaced by the same or different variables,
or left alone in its different occurrences. The values of an atomic
function of individuals are thus atomic propositions.

We next extend to propositional functions the idea of a truth-function
of propositions. (At first, of course, the functions to which we extend it
are only atomic, but the extension works also in general, and so I shall
state 1t in general.) Suppose we have functions gbl(;:\, ;1'/\), ¢2(:/c\ , 1//\), ete.,
then by saying that a function (z,3) is a certain truth-function
(e.g. the logical sum) of the functions ¢1(3:\,-§), ¢2(fc\, ,1'/\), etc., and the
propositions p, g, &c., we mean that any value of Y (z,y), say J(a,b),
is that truth-function of the corresponding values of ¢,(z, ¥), ¢o(z, ¥),
etc., v.e. ¢,(a, b), ¢y(a, b), etc., and the propositions p, q, etc. This
definition enables us to include functions among the arguments of any
truth-function, for it always give us a unique function which is that
truth-function of those arguments, e.g. the logical sum of " ¢,(Z), ¢y(Z), ..
is determined as Y(z), where (a) is the logical sum of ¢;a, ¢z4a, ..., a
definite proposition for each a, so that () is a definite function. It is
unique because, if there were two, namely Y (z) and Yu(z), Y1(a) and
Yra(a) would for each a be the same proposition, and hence the two func-
tions would be identical.

We can now give the most important definition in this theory, that
of a predicative function. I do not use this term in the sense of Principia
Matheratica, 1st ed., for which I follow Mr. Russell’s later work in
using ‘‘elementary’’. The notion of a predicative function, in my
sense, is one which does not occur in Principia, and marks the essential
divergence of the two methods of procedure. A predicative function of
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individuals is one which is any truth-function of arguments which,
whether finite or infinite in number, are all either atomic functions of
individuals or propositions*. This defines a definite range of functions
of individuals which is wider than any range occurring in Principia. It
is essentially dependent on the notion of a truth-function of an infinite
number of arguments; if there could only be a finite number of argu-
ments our predicative functions would be simply the elementary func-
tions of Principia. Admitting an infinite number involves that we do
not define the range of functions as those which could be constructed
in a certain way, but determine them by a description of their meanings.
They are to be truth-functions, not explicitly in their appearance, but
in their significance, of atomic functions and propositions. In this way
we shall include many functions which we have no way of constructing,
and many which we construct in quite different ways. Thus, supposing
¢(§;\, g?) is an atomic function, p a proposition,

¢@, 1), 9@ D.v.p, @).p&, )

are all predicative functions. [The last is predicative because it is the
logical product of the atomic functions ¢(z, y) for different values of y.]
For functions of functions there are more or less analogous defini-
tions. First, an atomic function of (predicativet) functions of individuals
and of individuals can only have one functional argument, say ¢, but
may have many individual arguments, z, y, &c., and must be of the
form ¢(z,y,..., a,b,...) where “a’’, “b”’, ... are names of individuals.
In particular, an atomic function f(¢?2) is of the form ¢a. A predicative
function of (predicative) functions of individuals and of individuals is
one which is a truth-function whose arguments are all either proposi-
tions or atomic functions of functions of individuals and of individuals

A
e.g. Qa .D.ybivip (a function of ¢, V),

(). %x, the logical product of the atomic functions $a, $b, etc.

It is clear that a function only occurs in a predicative function through

* Before ** propositions '’ we could insert ¢ atomic '’ without narrowing the sense of the
definition. For any proposition is a truth-function of atomic propositions, and a truth-
function of a truth-function is again a truth-function.

t I put ‘“predicative’’ in brackets because the definitions apply equally to the non-
predicative functions dealt with in the next chapter.
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its values. In this way we can proceed to define predicative functions
of functions of functions and so on to any order.

Now consider such a proposition as (¢). f(c/)Q) where f(%’:);) is a
predicative function of functions. We understand the range of values
of ¢ to be all predicative functions; i.e. (¢). f (¢§) is the logical pro-
duct of the propositions f (¢$ ) for each predicative function, and as this
is a definite set of propositions, we have attached to (¢). f(¢z) a
definite significance.

Now consider the function of , (¢). f(¢2,®). Is this a predica-
tive function? It is the logical product of the propositional functions
of , f (952,1!) for the different ¢’'s which, since f is predicative, are
truth-functions of ¢ and propositions possibly variable in ¢ but constant
in z (e.g. ¢pa). The ¢z’s, since the ¢’s are predicative, are truth-func-
tions of atomic functions of x. Hence the propositional functions of

z, f(¢9, z) are truth-functions of atomic functions of = and proposi-
tions. Hence they are predicative functions, and therefore their logical
product (¢). f (42, x) is predicative. More generally it is clear that by
generalization, whatever the type of the apparent variable, we can
never create non-predicative functions; for the generalization is a truth-
function of its instances, and. if these are predicative, so is it.

Thus all the functions of individuals which occur in Principia are in
our sense predicative and included in our variable ¢, so that all need
for an axiom of reducibility disappears.

But, it will be objected, surely in this there is a vicious circle ; you
cannot include Fr = («p).f(qb?. %) among the ¢'s, for it presupposes
the totality of the ¢’'s. This is not, however, really a vicious circle.
The proposition Fa is certainly the logical product of the propositions
f(¢/z\,a), but to express it like this (which is the only way we can) is
merely to describe it in a certain way, by reference to a totality of
which it may be itself a member, just as we may refer to a man as the
tallest in a group, thus identifying him by means of a totality of which
he is himself a member without there being any vicious circle. The
proposition Fa in its significance, that is the fact it asserts to be the
case does not involve the totality of functions; it is merely our symbol
which involves it. To take a particularly simple case, (¢) . gpa is the
logical product of the propositions ¢a, of which it is itself one; but this
is no more remarkable and no more vicious than is the fact that p.q
1s the logical product of the set p, q, p . q, of which it is itself a member.
The only difference is that, owing to our inability to write propositions
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of infinite length, which is logically a mere accident, (¢). ¢a cannot,
like p . q, be elementarily expressed, but must be expressed as the logical
product -of a set of which it is also a member. If we had infinite
resources and could express all atomic functions as Yz, ¥z, then we
could form all the propositions ¢a, that is all the truth-functions of
Y@, Yaa, etc., and among them would be one which was the logical
product of them all, including itself, just as p.q is the product of
2,4, pvq, p.q. This proposition, which we cannot express directly,
that is elementarily, we express indirectly as the logical product of them
all by writing ““(¢) . ¢a’’. This is certainly a circuitous process, but there
is clearly nothing vicious about it.

In this lies the great advantage of my method over that of Principia
Mathematica. In Principia the range of ¢ is that of functions which
can be elementarily expressed, and since (¢). f(¢ 'Z, €) cannot be so
expressed it cannot be a value of ¢ !; but I define the values of ¢ not
by how they can be expressed, but by what sort of senses their values
have, or, rather, by how the facts their values assert are related to their
argurnents. I thus include functions which could not even be expressed
by us at all, let alone elementarily, but only by a being with an infinite
symbolic system. And any function formed by generalization being
actually predicative, there is no longer any need for an axiom of
reducibility.

It remains to show that my notion of predicative functions does not
involve us in any contradictions. The relevant contradictions, as I
have remarked before, all contain some word like ‘‘means”, and I
shall show that they are due to an essential ambiguity of such words
and not to any weakness in the notion of a predicative function.

Let us take first Weyl's contradiction about * heterological”’, which
we discussed in the last chapter. It is clear that the solution given there
‘is no longer available to us. For, as before, if R is the relation of

meaning between ‘¢’ and ¢5s\, “z is heterological” is equivalent to

“(3¢)- xR(¢2) .~ ¢x”, the range of ¢ being here understood to be that
of predicative functions. Then

3¢ ::cR(tplz\) .~ ¢z,
which I will call Fz, is itself a predicative function.
SO 1 Fn R(Fig)

and (39): “F” R(gz),
8ER. 2, VOL. 25, No. 1558, 2B
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and therefore FOeF?Y.=. ~F*"F"),
which is a contradiction.

It will be seen that the contradiction essentially depends on deducing
(3¢):“F"R(¢§) from “F”R(Fa'c‘). According to Principia Mathematica
this deduction is illegitimate because Fz is not a possible value of o2
But if the range of ¢.$ is that of predicative functions, this solution
fails, since FZ is certainly a predicative function. But there is obviously
another possible solution—to deny ‘‘F’’ R(Fz) the premiss of the deduc-

tion. “‘F’’ R(FZ) says that “F’" means FZ. Now this is certainly trne
for some meaning of ‘‘means’’, so to uphold our denial of it we must
show some ambiguity in the meaning of meaning, and say that the
sense in which “F’’ means FZ, i.e. in which ‘heterological”’ means
heterological, is not the sense denoted by ‘R, d.c. the sense wlich
occurs in the definition of heterological. We can easily show that this
is really the case, so that the contradiction is simply due to an ambiguity
in the word “‘meaning’’ and has no relevance to mathematics whatever.

First of all to speak of ‘‘F’’ as meaning Fz at all must appear verv
odd in view of our definition of a propositional function as itself a
symbol. But the expression is merely elliptical. The fact which we try
to describe in those terms is that we have arbitrarily chosen the letter
“F" for a certain purpose, so that ‘‘Fz’’ shall have a certain meaning
(depending on z). As a result of this choice “F’’, previously non-
significant, becomes significant; it has meaning. But it is clearly an
impossible simplification to suppose that there is a single object F, which
it means. Its meaning is more complicated than that, and must he
further investigated.

Let us take the simplest case, an atomic proposition fully written
out “‘aSb’’, where ‘‘a’’, ‘‘b’’ are names of individuals and ‘S’ the name
of a relation. Then “‘¢’’, “b”’, “S” mean in the simplest way the
separate objects a, b, and S. Now suppose we define

¢z.=.aSzx Df

Then *‘¢’’ is substituted for ‘‘aS’’ and does not mean a single bbject,
but has meaning in a more complicated way, in virtue of a three-termed
relation to both @ and S. Then we can say ‘‘¢’’ means «SZ, meaning
by this that ‘‘¢’’ has this relation to @ and S. We can extend this
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account to deal with any elementary function, that is, to say that ‘¢ !”
‘Teans ¢! Z means that “¢ 1"’ is related in a certain way to the objects
a, b, etc., involved in ¢! z.
But suppose now we take a non-elementary functional symbol, for
example,
¢1x: = () .yRx Df.

Here the objects involved in ¢13 include all individuals as values of y.
And it is clear that ““¢,”’ is not related to them in at all the same way,
as ““¢!” 1s to the objects in its meaning. For ‘¢ 1"’ is related to a, b,
etc., by being short for an expression containing names of a, b, etc.
But ““¢,”’ is short for an expression not containing ‘‘a’’, *‘b’’, ..., but
only an apparent variable, of which these can be values. Clearly “‘¢,”
means what it means in quite a different and more complicated way
from that in which *‘¢!”” means. Of course, just as elementary is not
really a characteristic of the proposition, it is not really a characteristic

of the function; that is to say ¢1:'c\ and ¢!z may be the same function,
because ¢« is always the same proposition as ¢ !z. Then *‘¢,"",‘¢ !”
will have the same meaning, but will mean it, as we saw above, in
quite different senses of meaning. Similarly a ‘“‘¢s’’ which involves
functional apparent variable will mean in a different and more com-
plicated way still*.

Hence in the contradiction which we were discussing, if ‘‘R’’, the
symbol of the relation of meaning between ‘‘¢”’ and ¢5;\ , is to have any
definite meaning, ‘‘¢’’ can only be a symbol of a certain type meaning
in a certain way; suppose we limit ‘‘¢’’ to be an elementary function,
by taking R to be the relation between ‘¢ I’ and ¢!Z.

Then “Fz” or “(3¢):zR(pz). ~¢xz” is not elementary, but is
a“ gy,

Hence “F” means not in the sense of meaning denoted by “R”
appropriate to ‘“ ¢! ”’s, but in that appropriate to a ““ ¢,”", so that we have
~ " F” R(Fz), which, as we explained above, solves the contradiction for
this cuse.

The essential point to understand is that the reason why

(3¢):“ F” R(¢z)

"

* Herc the range of the apparent variable in ‘‘ @,’’ is the set of predicative functions not
as in Principia Mathematica the set of elementary functions.

282
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can only be true if *“ F'” is an elementary function, is not that the range
of ¢ is that of elementary functions, but that a symbol cannot have R to a
function unless it (the symbol) is elementary. The limitation comes not
from “3¢”, but from “R”. The distinctions of “¢!”s, “¢,”s, and
“ ¢9 '8 apply to the symbols and to how they mean but not to what they
mean. Therefore I always (in this section) enclosed “¢!”, “¢,” and
“¢9 " in inverted commas.
But it may be objected that this is an incomplete solution ; for.suppose
. we take for R the sum of the relations appropriate to “ ¢!”’s, “ ¢, ”’s, and
“¢y"’s. Then “ F”, since it still only contains 3¢*, is still a *“ ¢,”, and

we must have in this case “F” R(Ffz:\) ; which destroys our solution.

But this is not so because the extra complexity involved in the new R
makes “ F’’ not & ““ ¢,”’, but a more complicated symbol still. For with
this new R, for which * ¢9”R(¢2§), since “ ¢y " is of some such form as
(3¢). f(¢/z\, z), in (3¢).“F ”R(¢a’v‘) is involved at least a variable function
f(qb?, z) of functions of individuals, for this is involved in the notion of a
variable “ ¢, ”’, which is involved in the variable ¢ taken in conjunction
with R. For if anything has R to the predicative function q&:;:‘, ¢§ must
be expressible by either a “¢!” or a “¢,” or a “¢,”.

Hence (3¢)."F ”R(¢fc\) involves not merely the variable ¢ (predicative
function of an individual) but also a hidden variable f (function of
a function of an individual and an individual). Hence “Fz” or
“(3¢).xR(¢:/c\).~¢:c” is not a “¢;”, but what we may call a “¢;”,
1.e. & function of individuals involving a variable function of functions
of individuals. (This is, of course, not the same thing as a “¢y” in the
gsense of Principia Mathematica, 2nd edition.) Hence “F’ means in
a more complicated way still not included in E and we do not have
“F” R(Fz) so that the contradiction again disappears.

What appears clearly from the contradictions is that we cannot obtain
an all-inclusive relation of meaning for propositional functions. What-
ever one we take there is still a way of constructing a symbol to mean
in a way not included in our relation. The meanings of meaning form
an illegitimate totality.

By the process begun above we obtain a hierarchy of propositions
and a hierarchy of functions of individuals. Both are based on the
fundamental hierarchy of individuwals, functions of individuals, functions
of functions of individuals, etc. A function of individuals we will call

* The range of ¢ in 3¢ is that of predicative functions including all ““¢,’'s, *“¢.''s, etc.,
50 it is not altered by changing R.
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a function of type 1; a function of functions of individuals, a function
of type 2, and so on.
We now construct the hierarchy of propositions as follows :—

Propositions of order O (elementary), containing no apparent variable.
,, 1, containing an individual apparent variable.

v v 2, containing an apparent variable whose values
are functions of type 1.

v ,» , N, containing an apparent variable whose values
are functions of type n—1.

From this hierarchy we deduce another hierarchy of functions, irrespec-
tive of their types, according to the order of their values.

Thus functions of order 0 (matrices) contain no apparent variable ;
’s v »s 4 1 contain an individual apparent variable;

and so on; ¢.e. the values of a function of order n being propositions of
order n. For this classification the types of the functions are immaterial.

We must emphasize the essential distinction between order and type.
The type of a function is a real characteristic of it depending on the
arguments it can take; but the order of a proposition or function is not
a real characteristic, but what Peano called a pseudo-function. The
order of a proposition is like the numerator of a fraction. Just as from
“z=19" we cannot deduce that the numerator of = is equal to the
numerator of y, from the fact that ‘“p’’ and ‘‘q’’ are instances of the
same proposition we cannot deduce that the order of ‘‘p’’ is equal to
that of “‘¢”’. This was shown above (p. 363) for the particular case of
elementary and non-elementary propositions (Orders 0 and > 0), and
obviously holds in general. Order is only a characteristic of a particular
symbol which is an instance of the proposition or function.

We shall now show briefly how this theory solves the remaining
contradictions of group B*.

* It may be as well to repeat that for the contradictions of group A my theory preserves
the solutions given in Principia Mathematica.
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(@) ‘I am lying”’.

This we should analyse as “(3 ‘p’, p); I am saying ‘p’. ‘p’ means
p.~p”. Here to get a definite meaning for means* it is necessary
to limit in some way the order of ‘‘p"’. Suppose “‘p’’ is to be of the
nth or lesser order. Then, symbolizing by ¢,, a function of type =,
“p"’ may be (Ipa) . pus1(gn)-

Hence 3‘‘p”’ involves 3¢,41 and ‘I am lying” in the sense of
“I am asserting a false proposition of order n’’, is at least of order n+1I
and does not contradict itself.

(b) (1) The least integer not nameable in fewer than nineteernt
syllables.

(2) The least indefinable ordinal.
(3) Richard’s Paradox.

All these result from the obvious ambiguity of ‘‘naming” and ‘‘de-
fining”’. The name or definition is in each case a functional symbol which
is only a name or definition by meaning something. The sense in which
it means must be made precise by fixing its order ; the name or definitior
involving all such names or definitions will be of a higher order, and
this removes the contradiction. My solutions of these contradictions
are obviously very similar to those of Whitehead and Russell, the differ-
ence between them lying merely in our different conceptions of the order
of propositions and functions. For me propositions in themselves have
no orders ; they are just different truth-functions of atomic propositions—
a definite totality, depending only on what atomic propositions there
are.. Orders and illegitimate totalities only come in with the symbols:
we use to symbolize the facts in variously complicated ways.

To sum up : in this chapter I have defined a range of predicative
functions which escapes contradiction and enables us to dispense with
the axiom of reducibility. And I have given a solution of the contradic-
tions of group B which rests on and explains the fact that they all contain
some epistemic element. '

* When I say ‘‘‘p’ means p’’, I do not suppose there to be & single object p meant by *“p’’.
The meaning of *‘p’’ is that one of a certain set of possibilities is realized, and this meaning
results from the meaning-relations of the separate signs in ‘‘p’’ to the real objects which it is
about. It is these meaning-relations which vary with the order of ‘‘p’’. And the order of
“p" is limited not because p in (Jp) is limited, but by ‘' means’* which varies in meaning with
the order of “‘p’’,
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IV. PROPOSITIONAL FUNCTIONS IN EXTENSION.

Before we go on, let us look round and see where we have got to.
We have seen that the introduction of the notion of a predicative function
has given us a range for ¢ which enables us to dispense with the axiom
of reducibility. Hence it removes the second and most important defect
in the theory of Principia Mathematica ; but how do we now stand with
regard to the other two difficulties, the difficulty of including all classes
and relations in extension and not merely definable ones, and the difficulty
connected with identity ?

The difficulty about identity we can get rid of, at the cost of great
inconvenience, by adopting \Wittgenstein’s convention, which enables
us to eliminate ‘‘="" from any proposition in which it occurs. But this
puts us in a hopeless position as regards classes, because, having
eliminated ‘‘="" altogether, we can no longer use * =y as a proposi-
tional function in defining finite classes. So that the only classes with
which we are now able to deal are those defined by predicative functions.

It may be useful here to repeat the definition of a predicative function
of individuals; it is any truth-function of atomic functions and atomic
propositions. We call such functions ‘‘predicative’’ because they corre-
spond, as nearly as a precise notion can to a vague one, to the idea that
¢a predicates the same thing of a as ¢b does of b. They include all the
propositional functions which occur in Principia Mathematica, including
identity as there defined. It is obvious, however, that we ought not to
define identity in this way as agreement in respect of all predicative
functions, because two things can clearly agree as regards all atomic
functions and therefore as regards all predicative functions, and yet they
are two things and not, as the proposed definition of identity would
involve, one thing.

Hence our theory is every bit as inadequate as Principia Mathematica
to provide an extensional logic; in fact, if we reject this false definition
of identity, we are unable to include among the classes dealt with even
all finite enumerated classes. 'Mathematics then becomes hopeless be-
cause we cannot be sure that there is any class defined by a predicative
function whose number is two; for things may all fall into triads which
agree in every respect, in which case there would be in our system no
unit classes and no two-member classes.

It we are to preserve at all the ordinary form of mathematics, it
looks as if some extension must be made in the notion of a propositional
function, so as to take in other classes as well. Such an extension is
desirable on other grounds, because many things which would naturally
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be regarded as propositional functions can be shown not to be predicative
functions.
For example

F(z,y) = Something other than z and y satisfies ¢2.

(Here, of course, ‘‘other than’’ is to be taken strictly, and not in the
Principia Mathematica sense of ‘‘distinguishable from’’.)

This is not & predicative function, but is made up of parts of two
predicative functions :

(1) For z s+ y

F(,y) is ¢z.¢y.:>.Nc’3(¢z) 8

>8:.
Pr. ~y.v.¢y.~¢x:D:Nc'Z(p2) > 2:.
> 1.

~¢T.~ ¢y D:Nc’g(z/)z) 1
This is a predicative function because it is a truth function of ¢, ¢y and
the constant propositions N ¢'Z(¢2) > 1, 2, 8, which do not involve z, y.

) Fora =y

F(z,z) is ¢).D. Nc”z\(¢z)

which is a predicative function.

But F(z, y) is not itself a predicative function; this is perhaps more
difficult to see. But it is easy to see that all functions of this kind cannot
be predicative, because if they were we could find a predicative function
satisfied by any given individual a alone, which we clearly cannot in
general do.

For suppose fa (if not, take ~ fZ).

Let a =z (fz),
B = a—(a).
Then ¢x = ‘‘There is nothing which satisfies fz except z, and members

of B’ applies to ¢ and a alone. So such functions cannot always be
predicative.



1925.] THE FOUNDATIONS OF MATHEMATICS. 877

Just as F(z,y) above, so also ‘‘z = y’’ is made up of two predicative
functions :

(1) For z+ ¥

“z=y” may be taken to be (9¢).¢z. ~ ¢2:(3¢). dy. ~ ¢y,
1.e. & contradiction.

@) Forz=y

“z=y" may be taken to be (¢):.¢z.v.~¢zi¢y.v.~ ¢y,
t.e. a tautology.

But “2 = y” is not itself predicative.

It seems, therefore, that we need to introduce non-predicative pro-
positional functions. How is this to be done? The only practicable way
is to do it as radically and drastically as possible; to drop altogether the
notion that ¢a says about a, what ¢b says about b; to treat propositional
functions like mathematical functions, that is, extensionalize them com-
pletely. Indeed, it is clear that, mathematical functiong being derived
from propositional, we shall get an adequately extensional account of
the former only by taking a completely extensional view of the latter.

So in addition to the previously defined concept of a predicative
function, which we shall still require for certain purposes, we define, or
rather explain, for in our system it must be taken as indefinable, the
new concept of a propositional function in extension. Such a function
of one individual results from any one-many relation in extension be-
tween propositions ‘and individuals ; that is to say a correlation, practic-
able or impracticable, which to every individual associates a unique
proposition, the ‘individual being the argument to the function, the
proposition its value.

Thus ¢ (Socrates) may be Queen Anne is dead.

¢ (Plato) ' Einstein is a great man.

¢$ being simply an arbitrary association of propositions ¢z to
individuals z.

A function in extension will be marked by a suffix e thus ¢,§ .

Then we can talk of the totality of such functions as the range of
values of an apparent variable ¢,.

Consider now (@) : e = o, y.

This asserts that in any such correlation the proposition correlated with
z is equivalent to that correlated with y.
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If z =y this is a tautology (it is the logical product of values of
P=p)

But if £ 3£ 9 it is a contradiction. For in one of the correlations some
p will be associated with z, and ~ p with y.

Then for this correlation f,z, f.z is p, f,y is ~p, so that f,z =f.y
is self-contradictory and (¢.). ¢z = ¢,y is self-contradictory.

So (¢o). ¢ = ¢y is a tautology if z =y, a contradiction if z = y*.

Hence it can suitably be taken as the definition of z = y.

z =1y is a function in extension of two variables. Its value is
tautology when z and y have the same value, contradictions when z,y
have different values.

We have now to defend this suggested range of functions for a variable
¢. against the charges that it is illegitimate or leads to contradictions.
It is legitimate because it is an intelligible notation, giving a definite
meaning to the symbols in which it is employed. Nor can it lead to
contradictions, for it will escape all the suggested contradictions just as
the range of predicative functions will. Any symbol containing the
variable ¢, will mean in a different way from a symbol not containing
it, and we shall have the same sort of ambiguity of ‘‘meaning’’ as in
Chapter III, which will remove the contradictions. Nor can any of the
first group of contradictions be restored by our new notation, for it will
still be impossible for a class to be a member of itself, as our functions
in extension are confined to definite types of arguments by definition.

‘We have now to take the two notions we have defined, predicative
functions and functions in extension, and consider when we shall want
to use one and when the othert. First let us take the case when the
arguments are individuals : then there is every advantage in taking the
range of functions we use in mathematics to be that of functions in
extension. We have seen how this enables us to define identity satis-
factorily, and it is obvious that we shall need no axiom of reducibility,
for any propositional function obtained by generalization, or in any
manner whatever, is a function in extension. Further it will give us
o satisfactory theory of classes, for any class will be defined by a function
in extension, e.g. by the function which is tautology for any member
of the class as argument, but contradiction for any other argument, and
the null-class will be defined by the self-contradictory function. So
the totality of classes can be reduced to that of functions in extension,

* On the other hand (¢) . ¢x = ¢y (¢ predicative) is a tautology if « =y, but not a con-
tradiction if z =£ y.

+ Of ocourse, predicative functions are also functions in extension ; the question is which
range we want for our variable function.
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and therefore it will be this totality which we shall require in
mathematics, not the totality of predicative functions, which corre-
sponds not to ‘‘all classes’’ but to ‘‘all predicates’’ or ‘‘all properties’

On the other hand, when we get to functions of functions the situa-
tion is rather different. There appears to be no point in considering any
except predicative functions of functions; the reasons for introducing
functions in extension no longer apply. For we do not need to define
identity between functions, but only identity between classes which
reduces to equivalence between functions, which is easily defined. Nor
do we wish to consider classes of functions, but classes of classes, of
which a simpler treatment is also possible. So in the case of functions
of functions we confine ourselves to such as are predicative.

Let us recall the definition of a predicative function of functions; it
is a truth-function of their values and constant propositions*. All
functions of functions which occur in Principia are of this sort, but *‘I
believe (z) . ¢z’ as a function of qs? is not. Predicative functions of
functions are extensional in the sense of Principia, that is if the range

of f(?;g) be that of predicative functions of functions,

Gt =, ot D o) = f(re).

This is because f(¢,5:\) is a truth-function of the values of ¢,z which
are equivalent to the corresponding values of .z so that f(¢,5;\) i8
equivalent to f(YeZ).

If we assumed this we should have a very simple theory of classes,
since there would be no need to distinguish z (¢ex) from ¢,:'c\. But
though it is a tautology there is clearly no way of proving it, so that we
should have to take it as a primitive proposition. If we wish to avoid
this we have only to keep the theory of classes given in Principia based
on ‘‘the derived extensional function’. The range of predicative functions
of functions is adequate to deal with classes of classes because, although,
as we have seen, there may be classes of individuals which can only be

* It is, I think, predicative functions of functions which Mr. Russell in the introduction
to the second edition of Principia tries to describe as functions into which functions enter
only through their values. But this is clearly an insufficient description, because ¢ only
enters into F(¢&) = ‘I believe ¢pa '’ through its value ga, but this is certainly not a function
of the kind meant, for it is not extensional. I think the point can only be explained by
introducing, as I have, the notion of a truth function. To contend, as Mr. Russell does, that
all functions of functions are predicative is to embark on a futile verbal dispute, owing to the
ambiguity of the vague term functions of functions which may be used to mean only such as
are predicative or to include also such as F(¢z) above.
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defined by functions in extension, yet any class of classes can be defined
by a predicative function, namely by f(a) where

f(@2) = Zy(¢et = \pe),

i.c. the logical sum of ¢,z =, .z for all the functions \//ef which define
the members of the class of classes. Of course, if the class of classes
is infinite, this expression cannot be written down. But, nevertheless,
there will be the logical sum of these functions, though we cannot
express it*.

So to obtain a complete theory of classes we must take the range of
functions of individuals to be that of functions in extension; but the
range of functions of functions to be that of predicative functions. By
using these variables we obtain the system of Principia Mathematica,
simplified by the omission of the axiom of reducibility, and a few corre-
sponding alterations. Formally it is almost unaltered; but its meaning
has been considerably changed. And in thus preserving the form while
modifying the interpretation I am following the great school of
mathematical logicians, who, in virtue of a series of startling definitions,
have saved mathematics from the sceptics, and provided a rigid
demonstration of its propositions. Only so can we preserve it from the
Bolshevik menace of Brouwer and Weyl.

V. THE AXIOMS.

I have shown in the last two chapters how to remedy the three
principal defects in Principic Mathematica as a foundation for
mathematics. Now we have to consider the two important difficulties
which remain, which concern the Axiom of Infinity and the Multiplicative
Axiom. The introduction of these two axioms is not so grave as that
of the Axiom of Reducibility, because they are not in themselves such
objectionable assumptions, and because mathematics is largely inde-
pendent of the Multiplicative Axiom, and might reasonably be supposed
to require an axiom of infinity. Nevertheless, we must try to determine
the logical status of these axioms, whether they are tautologies or
empirical propositions or even contradictions. In this inquiry I shall

# A logical sum is not like an algebraic sum ; only a finite number of terms can have an
algebraic sum, for an ‘“‘infinite sum’’ is really a limit. But the logical sum of a set of
propositions is the proposition that these are not all false, and exists whether the set be finite
or infinite.
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include, from curiosity, the Axiom of Reducibility, although, since we
have dispensed with it, it no longer really concerns us.
Let us begin with the Axiom of Reducibility, which asserts that all

functions of individuals obtained by the generalization of matrices are
equivalent to elementary functions. In discussing it several cases arise,
of which I shall consider only the most interesting, that, namely, in
which the numbers of individuals and of atomic functions of individuals
are both infinite. In this case the axiom is an empirical proposition,
that is to say, neither a tautology nor a contradiction, and can therefore
be neither asserted nor denied by logic or mathematics. This is shown
as follows :—

(a) The axiom is not a contradiction, but may be true.

For it is clearly possible that there should be an atomic function
defining every class of individuals. In which case every function would
be equivalent not merely to an elementary but to an atomic function.

(b) The axiom is not a tautology, but may be false.

For it is clearly possible that there should be an infinity of atomic
functions, and an individual ¢ such that whichever atomic function we
take there is another individual agreeing- with @ in respect of all the
other functions, but not in respect of the function taken. Then
(¢). ¢!z = ¢! a could not be equivalent to any elementary function of x.

Having thus shown that the Axiom of Reducibility is neither a
tautology nor a contradiction, let us proceed to the Multiplicative Axiom.
This asserts that, given any existent class I of existent classes, there is
a class having exactly one member in common with each member of
K. If by “‘class’’ we mean, as I do, any set of things homogeneous in
type not necessarily definable by a function which is not merely a function
in extension, the Multiplicative Axiom seems to me the most evident
tautology. I cannot see how this can be the subject of reasonable doubt,
and I think it never would have been doubted unless it had been
misinterpreted. For with the meaning it has in Principia, where the
class whose existence it asserts must be one definable by a propositional
function of the sort which occurs in Principia, it becomes really doubtful
and, like the Axiom of Reducibility, neither a tautology nor a contradic-
tion. We prove this by showing

(a) It is not a contradiction.

For it is clearly possible that every class (in my sense) should be
defined by an atomic function, so that, since there is bound to be a
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class in my sense having one member in common with each member of
K, this would be also a class in the sense of Principia.

(b) It is not a tautology.

To show this we take not the Multiplicative Axiom itself but the
equivalent theorem that any two classes are commensurable.

Consider then the following case : let there be no atomic functions
of two or more variables, and only the following atomic functions of
one variable :—

Associated with each individual ¢ an atomic function ¢r,,:/3 such that

Pz .=, = Q.

One other atomic function ﬁ such that fv\(fw), 2(~ fx) are both infinite
classes.
Then there is no one-one relation, in the sense of Principia, having

either g(f:c) or 2 (~ fx) for domain, and therefore these two classes are
incommensurable.

Hence the multiplicative axiom, interpreted as it is in Principia, is
not a tautology but logically doubtful. But, as I interpret it, it is an
obvious tautology, and this can be claimed as an additional advantage in
my theory. It will probably be objected that, if it is a tautology, it ought
to be able to be proved, i.e. deduced from the simpler primitive proposi-
tions which suffice for the deduction of the rest of mathematics. But it
does not seem to me in the least unlikely that there should be a tautology,
which could be stated in finite terms, whose proof was, nevertheless, in-
finitely complicated and therefore impossible for us. Moreover, we can-
not expect to prove the multiplicative axiom in my system, because my
system 1s formally the same as that of Principia, and the multiplicative
axiom obviously cannot be proved in the system of Principia, in which it
is not a tautology. ,

We come now to the Axiom of Infinity, of which again my system
and that of Principia give different interpretations. In Principia, owing
to the definition of identity there used, the axiom means that there are
an infinity of distinguishable individuals, which is an empirical proposi-
tion ; since, even supposing there to be an infinity of individuals, logic
cannot determine whether there are an infinity of them no two of which
have all their properties in common; but on my system, which admits
functions in extension, the axiom of infinity asserts merely that there is
an infinite number of individuals. This appears equally to be a mere
question of fact; but the profound analysis of Wittgenstein has shown
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that this is an illusion, and that, if it means anything, it must be either
a tautology or contradiction. This will be much easier to explain if we
begin not with infinity but with some smaller number.

Let us start with ‘‘There is an individual’’, or writing it as simply
as possible in logical notation,

“(r).z==z"

Now what is this proposition? It is the logical sum of the tautologies
z =z for all values of z, and is therefore a tautology. But suppose
there were no individuals, and therefore no values of z, then the above
formula is absolute nonsense. So, if it means anything, it must be a
tautology.

Next let us take ‘‘There are at least two individuals, or

“(az,y).xaFy".

This is the logical sum of the propositions x 3=y, which are tautologies
if z and y have different values, contradictions if they have the same
value. Hence it is the logical sum of a set of tautologies and contradic-
tions ; and therefore a tautology, if any one of the set is a tautology, but
otherwise a contradiction. That is, it is a tautology if = and y can take
different values (i.e. if there are two individuals), but otherwise a con-
tradiction.

A little reflection will make it clear that this will hold not merely of
2, but of any other number, finite or infinite. That is, ‘“There are at
least n individuals’’ is always either a tautology or contradiction, never
a genuine proposition. We cannot, therefore, say anything about the
number of individuals, since, when we attempt to do so, we never
succeed in constructing a genuine proposition, but only a formula which
is either tautological or self-contradictory. The number of individuals
can, in Wittgenstein’s phrase, only be shown, and it will be shown by
whether the above formulae are tautological or contradictory.

The sequence *‘‘There is an individual’’.
““There are at least 2 individuals’’.
“‘There are at least n individuals’’.
"*There are at least n, individuals’’.

” ”»” " Nl 1)

begins by being tautologous ; but somewhere it begins to be contradictory,
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and the position of the last tautologous term shows the number of
individuals.

It may be wondered how, if we can say nothing about it, we can
envisage as distinct possibilities that the number of individuals in the
world is so-and-so. We do this by imagining different universes of dis-
course, to which we may be confined, so that by “all” we mean all in
the universe of discourse and then that such and such a universe con-
tains so and so many individuals is a real possibility, and can be asserted
in a genuine proposition. It is only when we take, not a limited universe
of discourse, but the whole world, that nothing can be said about the
number of individuals in if.

We can do logic not only for the whole world but also for such limited
universes of discourse; if we take one containing n individuals,

Ne'z@@=2)>n will be a tautology,
Nc’g(x = z) > n+1 a contradiction.

Hence Nc¢'7 (=) = n+1 cannot be deduced from the primitive pro-
positions common to all universes, and therefore for a universe containing
n+1 individuals must be taken as a primitive proposition.

Similarly the axiom of infinity in the logic of the whole world, if it
1s a tautology, cannot be proved, but must be taken as a primitive
proposition. And this is the course which we must adopt, unless we
prefer the view that all analysis is self-contradictory and meaningless.
We do not have to assume that any particular set of things, e.g. atoms,
is infinite, but merely that there is some infinite type which we can
take to be the type of individuals.



