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Fidelity in Mathematical Discourse:

Is One and One Really Two?

The discovery of mathematical logic convinced many mathematicians

and philosophers that this was the royal road to foundations. Thus convinced, they

were anxiousto rid philosophy of mathematics of all empirical considerations.

None was more adamant than Gottlob Frege who in his masterpiece The

Foundations of Arithmetic not only sketched the logical deduction of arithmetic

but inveighed against psychologism andhistoricism in philosophy. Frege remarked

in passing

A delightful example of the way in which even mathematicians can confuse the

grounds of proof with the mental or physical conditions to besatisfied if the proof

is to be given is to be foundin E. Schroder. Under the heading ‘Special Axiom’ he

produces the following: ‘‘The principle I have in mind might well be called the

Axiom of Symbolic Stability. It guarantees us that throughout all our arguments and

deductions the symbols remain constant in our memory—orpreferably on paper”’

and so on.!

Frege’s repudiation of ‘psychologism’ has been so influential that it is with some

surprise we find Davis, nearly a century after Frege, considering a principle very

similar to Schroder’s Special Axiom.

Distinct Symbols can be Created. Instances of a given symbol can becreated.

Symbols can be processed and reproduced and concatenated with absolutefidelity.

Symbols can be recognized as distinct or identical as the case warrants.

Moresurprising is Davis’s view that it is the Fregean Platonist who must make

this assumption! Most surprising, and a sign of the radical new directions in

philosophy of mathematics, is Davis’ contention that this principle is false!

Of course Davis is aware that an orthodox foundationalist would deny the
relevance of symbolic stabilty insofar as mathematics is conceived to exist without
physical carriers such as flesh and blood mathematicians. However our only
entrance into such pure mathematics is through the practice of the mathematicians
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164 PHILIP J. DAVIS

who deliver it for philosophical inspection in the first place. Even the Platonist

must relate his or her abstraction to the practice from which it is derived: we must

not saw off the branch on which wearesitting. Nor will it suffice, as Frege

thought, to attempt to distinguish between the grounds of a proof and the mental

or physical conditions to be satisfied if the proof is to be given. For as Frege

constantly stressed, the groundsof a proof are revealed only by following through

the proof step by step in completely rigorous fashion. It is just those operations

which are necessary to follow a proof that are the concern of Davis. Contrary to

Frege, he suggests with considerable plausibility that such operations are never

absolutely certain, but performable only with a certain probability of success. There

is no perfect fidelity in mathematics, only sufficiently good approximations.

The upshot of this is that Davis discovers a new question in philosophy of

mathematics—‘‘whatis the mathematics of error?’’ Frege himself tried to outlaw

this question. Committed to the view that mathematical knowledge was a priori,

he could announce that the very idea of mathematical (i.e., a priori) error is ‘‘as

complete a nonsense as, say, a blue concept.’’ Frege’s position is reminiscent of

the neo-scholastic distinction between the Church Visible and the Church

Invisible. The Church Visible is what the layperson sees, a humaninstitution

subject to the vicissitudes of human error. The Church Invisible is the real church

whose purity is guaranteed by God. The possibility of an error in the workings of

the ChurchInvisible is as complete a nonsense as, say, a blue angel. Whateverits

merits in theology, this attitude distorts our perception of mathematics. It forces

us to ignore those many components of mathematical practice that serve to

minimize error as outside real ‘mathematics’.

Perhaps the major consequence of admitting mathematical errors into

philosophy is the different conception of proofit suggests. In the presence of

potential error the authenticity of a mathematical proof itself ceases to be

absolute and becomesonly probabilistic. Davis offers a suggestive analogy with

regard to computer proofs.

A parallel with relativity theory can be madehere. Newtonian mechanics grew up in

a regime oflow velocities and hence norelativity correction (1 — (v/ v.)?)!/?is

necessary. Conventional (precomputer) mathematics grew up in a regime in which

prooflengths were sufficiently low so that fidelity could be considered absolute and the

laws of information theory areirrelevant. It is also possible that mathematics might

moveinto a period and into a corpus of material where the proof aspect ceases to have

classical significance and where onecanlive intimately with less than perfect fidelity.

Computer proofs are discussed elsewhere in this anthology, but as Davis points

out, they are not the only source of possible error in mathematics. The informal

proofs considered by Wang and Lakatosare not only subject to some unthought-of

possibility for counterexample, but, in many respects, are much better adapted to

survive small errors than formal proofs in which each step is on a par. The

outline of the informal proof offers us a scaffolding from which we can patch up

details, but a formal proof, a line by line deduction, consists only of details.

There remains much to be said about probabilistic proofs and errors in

mathematics, but Davis provides us with a stimulating beginning.

NOTE

1. The Foundations of Arithmetic, Basil Blackwell, Oxford (1968), viii-ix.



FIDELITY IN MATHEMATICAL DISCOURSE

‘*T wanted certainty in the kind of way in which people wantreligious faith.

I thought that certainty is more likely to be found in mathematics than else-

where. But I discovered that many mathematical demonstrations, which my

teachers expected me to accept, were full of fallacies, and that, if certainty

were indeed discoverable in mathematics, it would be in a newfield of mathe-

matics, with more solid foundations than those that had hitherto been thought

secure. But as the work proceeded, I was continually reminded of the fable

about the elephant and the tortoise. Having constructed an elephant upon

which the mathematical world could rest, I found the elephant tottering, and

proceeded to construct a tortoise to keep the elephant from falling. But the

tortoise was no more secure than the elephant, and after some twenty years of

very arduoustoil, I came to the conclusion that there was nothing morethatI

could do in the way of making mathematical knowledge indubitable.’’

BERTRAND RUSSELL,

Portraits from Memory

1 PLATONIC MATHEMATICS

The twentieth century has not yet delineated definitively the working prin-

ciples and the broad articles of faith of what has cometo becalled ‘‘Pla-

tonic mathematics’’. Amongthese principles might be listed:

1. The belief in the existence of certain ideal mathematical entities such

as the real number system.

2. The belief in certain modes of deduction.

3. The belief that if a mathematical statement make sense, then it can be

proven true or false.

4. The belief that fundamentally, mathematics exists apart from the

human beings that do mathematics. Pi is in the sky.

These beliefs have been questioned; and in the last century a numberof

distinguished mathematicians have raised their voices against one or more

of them. These mathematicians include Kronecker, Borel, Brouwer, Gédel,

Weyl, and in morerecent times, E. Bishop. One objection raised by some

materialists is that the physical world may be completely finite, and this is

hard to accommodate to aninfinity of integers. Other objections have to do

with the axiom of choice, the axiom of the excluded middle,etc.

Asfar as No. 3 is concerned, the work of Gédel and the Logical School

has put the coup de grace onthis principle; yet-and by no meansstrangely-

it persists as a psychological prop in one’s daily work. I once asked a very

distinguished number theoretician whether he thought that Fermat’s Last

Theorem was one of the unprovable statements in the sense of Gédel. His

answer was quick and definite: ‘‘It is not. We are just too dumbto find the

proof.’’ The truth of the matter is that if mathematics were everto enterin-

to a region whereit is frustrated by too manyinteresting but unprovable

statements, then this would cast a blight on the methodologyandritual sur-

rounding the notion of proof.

The questioning of Platonic mathematics has led to other types of mathe-
matics variously called intuitionistic mathematics, constructivistic mathe-
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matics, recursive mathematics, and other names. Someof these are subsets

of the usual mathematics. The computing machine has undoubtedly reop-

ened and reinforced some of the arguments. The reception given to non-

Platonic mathematics rangesall the way from coolnessto indifference. One

recalls the story of Kronecker in the 1880s. Someone cameto him andtold

him that Lindemann had just proved that pi was a transcendental number.

‘‘Very interesting,’’ said Kronecker, ‘‘but pi doesn’t exist.’’ This skepticism

was largely ignored. At a series of recent lectures on non-Platonic mathe-

matics, a typical comment was ‘‘Well presented, but irrelevant. Let’s get

back to our (Platonic) drawing boards.’’ Undoubtedly in 1971, one can earn

a living with Platonic mathematics, and if mathematician A spouts some

Platonism to mathematician B andthelatter responds in kind, then thereis

at least humansignificance in the act. The emperor maybe walking around

in his underwear, but if the court is also, they can make life together.

It is the object of this essay to present additional aspects of the non-Pla-

tonicity of mathematics.

Several years ago I did some experiments using the computer to prove and

derive theorems in elementary analytic geometry.2 These experiments in-

evitably led to speculation on the difference in the level of credibility of a

theorem which has been proved or derived by machine as opposed to one

which has been ‘‘hand crafted’’ in the traditional fashion. This essay is an

outcomeof this experience. The particular arguments made here have not

been put forth elsewhere at any length, and lead to the conclusion that

mathematics, in some ofits aspects, takes on the nature of an experimental

science.

2 SYMBOLS

It is commonplace that mathematics is done with symbols. Figures, words,

graphs, special symbols ofall sorts litter the mathematical page. The most

common modeofoperation is from the sheet of paper, the blackboard,the

sandpit in the case of Archimedes, the TV computer screen in the case of a

latter day Archimedes, into the brain through the eye and the optic nerve.

Presumably, when this symbolic information enters the brain, it leaves a

physical trace there. The symbols are then processed by the brain and hard

copy output may be madevia hand or mouth.If there were never any oral

or written or action output (such as with the educated horse who when cued

stamps with his foreleg in answerto arithmetic problems) then mathematics

might exist, but not in the manner in which we know it.

The principal symbol of mathematics, then, is the graphical symbol, per-

ceived by the eye. There are blind mathematicians of first rank (such asL.

Pontryagin) and it would be interesting to hear whathe hasto say abouthis

manner of symbol formulation, manipulation, and space percepton. I am

not aware of any mathematicians whoare blind and deaf mutes, but I pre-

sume that Helen Keller who graduated from Radcliffe coyld do sums.

If one believes in Platonic mathematics, then it is possible to free mathe-

matics from the symbols that carry it. After all, the spoken word ‘‘two’’

and the Arabic symbol‘‘2’’, the Braille symbol for two, have a common in-
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terpretation. Hence, there must be, so the argument goes, a concept of

twoness whichis symbol-free. As Plato put it, mathematical objects are per-

ceived by the soul. Bethis as it may, I cannot give a simple instance of sym-

bolless, soul mathematics. Even if I knew one, how could I communicateit,

short of telepathy?

3 PROOF

One of our most precious inheritances from Greek mathematics is the no-

tion of proof. Certain statements are derivable from other statements by

means of ‘‘pure reason’’, and a corpus of connected material can be built

up in whichall statements are derived from a few fundamental statements

known as axioms. This is the program set forth in Euclid, and this, after

2300 years, remains the beau ideal of mathematical exposition. In fact,

some authorities believe that this is the hallmark of mathematics. Now,

whatis the purpose of a proof and howis a proof carried out? If you read

Plato (Meno, 87) you find Socrates going through a derivation with a slave

boy. Using the famous Socratic method,he leads the boy by the nose,so to

speak, to the result that in a 45°, 45°, 90° triangle, the area of the square on

the hypothenuse has double the area of the square on the short side. This

dialogue creates the impression first of all of the derivation of new knowl-

edge ex nihilo (or ex very little), and secondly of establishing firmly on the

basis of a few easily accepted premises a statement whichis far less trans-

parent. To proveis to establish beyond the question of doubt, and mathe-

matics has been thought capable of just such a thing. History does not prove,

sociology does not prove, physics does not prove, philosophy does not prove,

religion (if we can forget the church’s unrequited seven hundred year love

affair with Aristotelianism) does not prove. Mathematics alone proves, and

its proofs are held to be of universal and absolute validity, independent of

position, temperature or pressure. You may be a Communist or a Whig or a

lapsed Muggletonian, but if you are also a mathematician, you will

recognize a correct proof when you see one.

These two aspects of Socrates’ teaching: proof as a program ofcertifi-

cation—let’s not call it establishing truth—and proof as a program ofdis-

covery and of new mathematics formation are present in today’s mathe-

matics. The most charming instance of success of the first part of Euclid’s

program is undoubtedly contained in John Aubrey’sbrief life of the phi-

losopher Thomas Hobbes:

He (Thomas Hobbes) was 40 years old before he looked on Geometry; which

happenedaccidentally. Being in a Gentleman’s Library, Euclid’s Elements lay

open,and ‘twasthe 47 El. libri I. He read the Proposition. ByG . . . , sayd he

(he would now and then sweare an emphatical Oath by way of emphasis) thisis

impossible! So he reads the Demonstrationof it, which referred him back to a

Proposition, which Proposition he read. That referred him back to another,

which he also read. Et sic deinceps [and so on] that at last he was demon-

Stratively convinced of that trueth. This made him in love with Geometry.

But the facts of the matter are somewhatdifferent. If you think you could

talk to your favorite bartender and lead him bythe nose 4 la Socrates and
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have him arrive at the Stone-Weierstrass theorem, think again. The path

would turn him off the way I am turned off by Spinoza’s proofsin ethics.

As Poincaré observed, the ability to follow a mathematical argument is

spread unevenly through the populace. For the professional mathematician,

proof may be less a matter of convincing oneself psychologically of the

truth of a statement than of merely assigning the tags ‘true’ or ‘false’ to the

statement. But a balance must be struck. For as N. Bourbaki has written,

**Indeed, every mathematician knowsthat a proof has not been ‘understood’

if one has done nothing more than verify step by step the correctness of the

deductions of which it is composed and hasnottried to gain a clear insight into

the ideas which haveled to the construction of this particular chain of deduc-

tions in preference to every other one.”’

Secondly, mathematics can and has been donein a ‘‘proofless’’ atmos-

phere. The Egyptians and Babylonians hadpiled up a considerable body of

mathematics before even the Greeks came along with their proofs. If one

reads Ptolemy one sees how proofless material can exist side by side with the

mathematics of proof. In today’s world, the physicist and engineer often

work in absence of proof, it being sufficient to work formally and sym-

bolically and have the work backed by a physical intuition or by an experi-

mental confirmation.

Despite these two mathematical worlds, which have for a long time ex-

isted side by side, mathematicians, and in particular mathematical logicians

have over the past century systematized and madeprecise the notion of a

proof. Without attempting the technicalities, the matter seems to come

downto this. The axioms,i.e., the primitive statements or assumptions are

representable as certain strings of atomic symbols. The theoremsare rep-

resentable as certain other strings of atomic symbols. Proving is the process

of passing form an axiom string to a theorem string by a finite sequence of

allowable elementary transformations. To verify that the next man’s

putative theorem is, in fact, the theorem heclaimsit to be, is merely to

verify that the sequence of string transformations are in order. The whole

thing is in principle perfectly mechanizable and is work for a slave boy or

our modern equivalent, the computer. From this point of view to verify an

advanced statement is similar to establishing the arithmetic theorem

123 +456 = 579. We merely process the data. Proofis at once the glory of

mathematics and its least human aspect.

A proof can be compared with a program. The axiomsare analogous to

the input. The theorem is analogousto the output while the proofis the pro-

gram. To find a proof consists of finding a program. Toverify a given proof

we need only rerun the program.

4 FIDELITY

I come nowto the nub of my argument. Mathematics, as we haveseen, pro-

ceeds through symbols and symbol manipulation. It therefore assumesthat

we can create distinct symbols, recognize strings of symbols, reproduce

symbols, concatenate symbols. A symbol hasa physical trace. It is a blob of
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ink or a vibration in the air, etc. If I mark down two 1’s these 1’s may be
identical on the macroscopic level, but not at the microscopic. It is impos-
sible to create identical symbols. Like snowflakes, they are all different. If
they are ‘‘nearly’’ identical, they maybe perceived variously. The eye may
be dim,the ear heavy, the brain fatigued. The computer mayslip a pulse,its
voltages may drop, it may be communicated with over a noisy channel.

Aspart of the assumptions of Platonic mathematics we should therefore
list:

IIA A TIT D4
FIG. 1. Are all the symbols above instances of the same symbol?
Asof 1971, high fidelity recognition by machine of hand written
characters has proved to bedifficult.

0. Distinct Symbols can be Created. Instances of a given symbol can be
created. Symbols can be processed and reproduced and concatenated with
absolute fidelity. Symbols can be recognized as distinct or identical as the
case warrants.

An orthodox Platonist might say the aboveis unnecessary insofar as
mathematics exists without physical carriers. A non-Platonist, particularly
one who has been exposed to communication theory, will say this is non-
sense. We can dothesethings only with a certain probability of success. The
probability maybe very high indeed, but there may be occasionalfailure.
Whatis the mathematics of failure? Without making too manydistinctions,
let us agree indifferently to call an act of recognizing, reproducing, or pro-
cessing one symbol ‘an operation.’ Let the probability of carrying out an
operation with perfect fidelity be p. The number p satisfies the inequality

O<p<l

and weshall think of p as being very close to 1. A realistic value of p de-
pends upon whoor whatis doing the symbol processing and under whatcir-
cumstances. I know that in doing sumsor in typing up an IBM card myper-
sonal probability may be around

p= 1 —-10-2,

I have heard figures around

p=~1-— 10-%top = 1 — 10-2

quoted for computing machines. Nowif the probability of success in one
elementary operationis p, then, assuming independence, which may or may
not be true, the probability of success in a sequence of n operationsis p”.
Thusif 7 is very large, this probability goes down considerably. Now what
probability of failure will you tolerate? One in a thousand? Then you want

p" = 1 —- 10-3 orn log p = log (1 — 10-3),
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Ifnow p=1 - i,
m

then we want

log (G — 1)
1000°

log (G —~)

Since log (1 — h) ~ — A for small h, we need

 

mn
1000

n=z=

In other words, to keep within the required confidence limits, we should not

carry out more than m/1000 operations. Now the number of operations

which go on inside a computer are enormous, so that the chance offailure is

not infinitesimal in terms oflifetime probabilities. (In ‘“Computer Program-

ming for Accuracy,’’ Proceeding of the 1968 Army Numerical Analysis Con-

ference, U.S. Army Research Office, Durham, North Carolina, J.M. Yohe

lists 38 types of errors that may occur in carrying out a computer computa-

tion. These are grouped under seven major categories as follows: Errors due

to hardware limitations, errors due to software limitations, errors due to

hardware failure, errors due to software failure, errors due to program

failure, errors due to faulty operation, errors due to inadequate planning. A

similar list for mathematics produced in the conventional handcrafted

fashion would surely be interesting.)

Repeating a computation by way of check helps, of course. If a compli-

cated computation is carried out with a probability of success of 1 — 1/r

(r > 1), and is performed independently »v times, then the probability of at

least one success in the » blocks of computation is 1 — (1/r)’. Thus, the

level of confidence is raised.

Consider then simple addition of numberscarried outin the usual way. If

there are too many digits in the numbers, then the probability of a com-

putation being accurate (or of discovering which of a block of indepen-

dently arrived at answers is the correct one) might be small. The reader need

only insert his favorite probabilities for himself and for his machinein the

above formulas. Perhaps we need to take a numberof over a million digits

or over a billion digits to make success unlikely. No matter. Platonic

mathematics guarantees an unlimited numberof integers and each integer

has a decimal representation.

Ordinary arithmetic is one of the most elementary of the mathematical

disciplines. Among the theoremsof arithmetic are the various sums.Hereis

a theorem in arithmetic: 12345 + 54321 = 66666. If this theorem does not

excite you particularly, this is your value judgment andis extraneousto the

mathematical structure. It might excite a Kabalist or an incometax consul-

tant. Now, as we have observed,the arithmetic of excessively large numbers

can be carried out only with diminishing fidelity. As we get away from trivial
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sums, arithmetic operations are enveloped in a smog of uncertainty. The
sum 12345 + 54321 is not 66666. Itis not a number.It is a probability dis-
tribution of possible answers in which 66666is the odds-on favorite. (A some-
whatless transparent example is this. Consider the popularsolitaire game
called ‘‘Canfield’’. If the rules are fixed, and theline of play specified un-
ambiguously, then the expected value of Canfield constitutes a mathemati-
cal theorem which is of considerable interest in some quarters. As far as I
am aware, because of the complexity of Canfield, no one has been able to
use the elementary textbook theorems on combinatorial probability to ar-
rive at the expected value. Yet, all we have to do in principle is to examine
each of the 52! gamesthat are possible and averagetheir values.)

Thereis a parallel with the limitations of physical measurement. Thereis
wisdom in the primitive counting system one, two,three, many, myriads.

PROBLEM: Given

A = 11777777711171717171777171 1717111111177717177711771 1771717171717771717771717171717771411717111111717777111717171111717177171

B= PTTTIVIAVTVATTTTTTTAAL LALA LAT7TAIVTATITITVIVTITITALATATLL LAIVI1171717771111111717177777777111717177771111777117177771

Find A + B.

The numbers 4 and B cannot be reproduced with perfectfidelity, let alone added.

5 FIDELITY IN PROOFS

The authenticity of a mathematica] proofis established by verifying that a
sequenceof transformations of atomic symbolstringsis legitimate. In point
of fact, proofs are not written in terms of atomic strings. They are written ina
mixture of commondiscourse and mathematical symbols. Definitions are
madeto serve as abbreviations for longer combinations of words and sym-
bols. Lemmasare introduced as temporary platformsandscaffoldings from
which one can arguewith less fatigue and hence greater security. Corollaries
are introduced for the psychologicallift of obtaining deep theoremscheaply.

Splicing two theoremsis standard practice. In the course of a proof, onecites Euler’s Theorem, say, by way of authority. The onus is now on thereader to supply the particular theorem of Euler that the authoris talkingabout andto verify that all the conditions (in their most modern formulation)which are necessary for the applicability of the theorem are, in fact, present.
If splicing is commonto lend authority, then skipping is even more com-mon. By skipping, I mean the failure to supply an important argument.Skipping occurs becauseit is necessary to keep downthelength of a proof,because of boredom (you cannot really expect meto go througheverysinglestep, can you ?), superiority (the fellows in myclub all can follow me) or outof inadvertence. Thus, far from being an exercise in reason, a convincingcertification of truth, or a device for enhancing the understanding, a proofin a textbook on advanced topics is often a stylized minuet which the authordanceswith his readers to achieve certain social ends. What begins as reasonsoon becomesaesthetics and winds up as anaesthetics.
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To go from the foundations of mathematics to any of the advancedtopics

on the frontier can be done in about 5 or 6 books. Perhaps 1500 pages of

proof text of current style. This is humanely broken into smaller bits. The

lengths of these smaller bits vary from discipline to discipline. Perhaps

numbertheory hasthe longest individual proofs. I know one proof in Lan-

dau which is over a hundred pages long. I have before me a book on ad-

vancedtopics in analysis just off the press. The average length of the proofs

seems to be about 10 lines. This mirrors the sitzfleisch of the contemporary

reader.

I do not know many people who would volunteer to check a fifty page

proof. Value judgments would enter; it would depend on whatis at stake. A

purported proof of the Riemann Hypothesis might attract more checkers

than the sum of two excessively long integers. But one doesn’t have to deal

with fifty page proofs: most proofs in research papers are unchecked other

than by the author. But then, most theoremsare withoutissue: the last of a

line of noble thought. They remain uncheckedin the light of usage. They

are loaded with errors.

If computing machines are employed either to check manipulation worked

out by hand, or as has been done in some instances, to develop new theo-

rems, the same remarksapply, but the probabilities may be altered. An in-

teresting aspect of the problem of fidelity arises in programming. There are

programswhich are hundreds of thousands of words and instructions long.

Such programsare frequently written by batteries of programmers and the

parts are spliced together. Now the problem is this: what in fact does the

program do? Well, ask the programmers whatit does. ‘“My part works,”’

says the first programmer over the phone from a laboratory 2000 miles

away wherehe hasjust taken a new job. ‘‘So does mine,”’ says the second

programmerwhoisstill around but whose program is loaded with bugs that

have not yet emerged. The third programmer: alas for flesh and blood, he

died several months ago.

The program itself is the only complete description of what the program

will do. This assumes that you know howthe machineitself interprets a pro-

gram—andthisis not always the case. There may be no absolutely complete

description of what the machine will do in a given instance. Andall of this

assumes that the machinetreats its electronic symbols with perfect fidelity.

(To add to the indeterminacy, in a poorly designed computational system,

the way the computer processes, my input may depend upon what my col-

league downthehall is doing on his terminal. Of the concepts of fuzzy lan-

guages, algorithms, and environments,see, e.g., Zadeh.*) This leads one to

the pragmatic solution: run the program and you will see. You may learn

that the performanceis acceptable. In other cases you may not even be able

to judge the quality of the output rationally. It may be a matter of faith.

Extremely long programsrepresent theorems of a kind. They maybefar

less trivial than some current frontier mathematics of conventional sort in

terms of their distance from atomic symbolisms. But the problem is that we

do not know and cannot know what the theorem says.

The upshotof this discussion is that the authenticity of a mathematical

proofis not absolute, but only probabilistic. Proofs have attached to them-
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selves lists of discoverers, sponsors, users, checkers, authenticators, rear-
rangers, generalizers, simplifiers, rediscoverers, swamis, communicants,
and historians. Theselists are all incorporated into the scholarly apparatus
of publication and in the constant exposure that goes on the blackboard.

Proofs cannot be too long, else their probabilities go down and they
baffle the checking process. To put it in another way: all really deep
theoremsare false (or at best unproved or unprovable). All true theorems
are trivial.
A parallel with relativity theory can be made here. Newtonian mechanics

grew up in a regime of low velocities and hence no relativity correction
(1 — (v/v,)2)1is necessary. Conventional (precomputer) mathematics grew
up in a regime in which proof lengths were sufficiently low so that the fj-
delity could be considered absolute and the laws of information theory are
irrelevant. It is also possible that mathematics might moveinto a period and
into a corpus of material where the proofaspect ceases to havetheclassical
significance and where onecanlive intimately with less than perfectfidelity.

6 ON THE OBSERVED INCIDENCE OF ERROR
WhatI haveto say hereis largely a collection of gossip. Since the subjectistouchy, I shall begin at home.

0
9

FIG. 2. A digitalized Santa is a mathematical object and its
transformations are analogousto theorems. Theaesthetic appeal
of such theorems mayhave a different basis than thatof classical
mathematics. Less than perfect fidelity in processing is probably
not very damaging.

The original printing of Davis, Interpolation and Approximation, con-tained at least 4 typewritten pages of errata. These range all the way fromminortyposto errors of more mathematical substance. Thereis at least onebad proof and one theorem erroneously worded whichif taken literally, isfalse. Davis and Rabinowitz, Numerical Integration, a smaller book whosegalleys were proofread by both authors, has about a typewritten pageofer-rors. One formulais just plain wrong. It was copied, without checking fromthe original author who worked it out wrong. Othererrors areless easilyalibied.
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Theoriginal printing of A Handbook ofMathematical Functions, a thou-

sand page compendium of formulas and tables which was put out by the

National Bureau of Standards and which has sold more than 100,000 copies

to date, contained more than several hundrederrors. In the old days, when

table making was a handcraft, some table makers felt that every entry in a

table was a theorem (andsoit is) and must be correct. Others took a relaxed,

quality control attitude. One famous table maker used to put in errors de-

liberately so that he would beable to spot his work when others reproduced

it without his permission.

I have before me a highly important book on advancedtopics on analysis

published about 15 years ago. After the book appeared, the author circu-

lated to his friends an errata sheet of about 10 pages.

I have before mealso the mimeographed1925 notes of E.H. Moore of the

University of Chicago on Hermitian matrices. One hundred eighty pages of

notes are followed by 26 pages oferrata.

There is a story to the effect that when B.O. Peirce’s popular A Table of

Integrals had just appeared, Professor Peirce offered a dollar to any student

who discovered an error in it. Allowing an inflation rate of 3 or 4to 1, I

doubt whether any prudent author today would make

a

similar offer for his

book. (D.E. Knuth has an open offer of this sort for his series of books on

the art of computer programming.)

A recent issue of the Notices of the American Mathematical Society ran

abstracts of about 130 papers: Five papers werelisted as ‘Withdrawn.”’

Presumably some of them had mistakes.

The Mathematical Reviews of December 1970, reports a paper entitled

“The Decline and Fall of a Theorem of Zarankiewicz.”’

A past editor of the Mathetical Reviews once told me—somewhat in

jest—that 50% of all mathematics papers printed are flawed.

A colleague reports refereeing a paper whose main theorem wasinvalid

because the author spliced onto an erroneously stated theorem in a major

reference book in topology. The words ‘closed’ and ‘open’ had inadver-

tently been interchanged in the reference.

There is a book entitled Erreurs de Mathématiciens by Maurice Lecat,

published in 1935 in Brussels. This book contains more than 130 pages of

errors committed by mathematicians of the first and second rank from antiq-

uity to about 1900. There are parallel columns listing the mathematician,

the place where his error occurs, the man whodiscovers the error and the

place where the error is dicussed. For example, J.J. Sylvester committed an

error in ‘‘On the Relation between the Minor Determinant of Lineraly

Equivalent Quadratic Factors,’’ Philos. Mag., (1851) pp. 295-305. This er-

ror was corrected by H.E. Baker in the Collected Papers of Sylvester, Vol.

I, pp. 647-650.

In 1917 H.W. Turnbull calculated a system of 125 invariants of two quater-

nary quadratic forms. In 1929 Williamson found that three were reducible.

In 1946, Turnbull himself found that five more were reducible, while in

1947, J.A. Todd found a further reducible one. Does it matter?

A mathematical error of international significance may occur every twenty

years or so. By this I mean the conjunction of a mathematician of great



FIDELITY IN MATHEMATICAL DISCOURSE

reputation and a problem ofgreat notoriety. Such a conjunction occurred
around 1945 when H. Rademacher thought he had solved the Riemann Hy-
pothesis. There wasa report in Time magazine. Another instance was around
1860 when Kummer, following in the erroneous footsteps of Cauchy and
Lamé, thought he had solved the Fermat Last Theorem.

7 CONCLUSIONS

Symbols and operations do not have a precise meaning, but only a proba-
bilistic meaning.
A derivation of a theorem or a verification of a proof has only proba-

bilistic validity. It makes no difference whetherthe instrumentof derivation
or verification is man or a machine. The probabilities may vary, but areroughly of the same order of magnitude when comparedwith cosmic prob-
abilities.

E. Borel once suggested that the following chances constitute an unobservable
event:

On the humanscale: 1 chance in 106
Ontheterrestrial scale: 1 chance in 10!5
On the cosmic scale: 1 chance in 105°
Absolute zero: 1 chance in 105

Mathematics has some of the aspects of an experimental science. We aresaved from chaos by the Stability of the universe which implies the repeat-ability of experiments and the self-correcting features of usage.
Mathematics has been Platonic for years. Does this rob it of a certainfreedom andvitality which might be obtained by openly recognizing itsprobabilistic nature?
It is possible that a new type of mathematics might develop in which the*‘Derivations’’ or the ‘“processes’’ are so enormously long that the proba-bilistic nature of the result will be an integral feature of the subject.
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