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Abstract 

At the end of the 19th century Oliver Heaviside developed a formal 
calculus of differential operators in order to solve various physical problems. 
The pure mathematicians of his time would not deal with this unrigorous 
theory, but in the 20th century several attempts were made to rigorise 
Heaviside's operational calculus. These attempts can be grouped in two classes. 
The one leading to an explanation of the operational calculus in terms of 
integral transformations (Bromwich, Carson, Van der Pol, Doetsch) and 
the other leading to an abstract algebraic formulation (LEVY, MlKUSlÑSKl). 
Also Schwartz's creation of the theory of distributions was very much inspired 
by problems in the operational calculus. 
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Introduction 

Heaviside is said to be the inventor of the operational calculus in most of 
the literature from the early twentieth century dealing with this calculus. Today 
we know that this view is wrong, but it reflects the central role that Heaviside 
has played in the history of this branch of mathematics. His work became the 
starting point of the development of the operational calculus in this century, his 
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162 J. LÜTZEN 

predecessors apparently being for a period totally forgotten. Therefore this study 
will start with Heaviside after a very brief account of the previous history; for a 
more detailed discussion see Pincherle [1904-16], Koppelman [1971-72], 
Cooper [1952]. 

G. W. Leibniz' differential notation made it possible to consider the differen- 
tial operator as an algebraic quantity independent of the function operated 
upon. Several mathematicians, among them J.L. Lagrange, P.S.Laplace, 
L. Arbogast and A. L.Cauchy, employed this idea, so fundamental for the 
operational calculus. 

An explanation of the success of the algebraic treatment of the differential 
operators was sought for in other fields of mathematics. Laplace [1812] for 
example explained the operational methods by means of the Laplace transfor- 
mation, whereas Cauchy [1827] used Fourier's theorem. This knowledge of 
the relations between operational calculus and integral transformation was 
forgotten later in the 19th century but, as we shall see, it was rediscovered in the 
20th. 

Servois [1814] thought that the reason why algebraic treatment was 
applicable to differential operators was that the latter obeyed the commutative 
and distributive laws. Together with the Leibnizian notation this idea was taken 
over by the English mathematicians and was employed and developed by, 
among others, D.Gregory and G. Boole. Heaviside knew about the abstract 
algebraic approach to operational calculus from Boole's book Treatise on 
Differential Equations (1859), but he created his own personal version of this 
discipline. 

I. Oliver Heaviside (1850-1925) 
1. Heaviside's main contribution to science is his development and refor- 

mulation of Maxwell's electrodynamics, and it was in this context that his 
mathematical ideas arose. He considered mathematics as an experimental 
science on a par with physics* and his mathematical reasoning was often guided 
by physical intuition: 

we shall have, preliminarily, to work by instinct, not by rigorous rules. We 
have to find out first how things go in the mathematics as well as in the 
physics. When we have learnt the go of it we may be able to see our way to 
an understanding of the meaning of the processes... [£MT§239] 

This view was incompatible with that of the established mathematicians who, 
towards the end of the 19th century, spent much effort on rigorising mathe- 
matics. The "Cambridge mathematicians" were so indignant at Heaviside's 
unrigorous use of divergent series that they stopped the publication of a 
sequence of his papers [see Cooper 1952]. Nevertheless Heaviside continued 
to use his experimental mathematics: 

Shall I refuse my dinner because I do not fully understand the process of 
digestion? No, not if I am satisfied with the result. [EMT§ 225] 
* E.g. EMTU §223-226. In the following I shall use the abbreviation EMT for 

Electromagnetic Theory and EP for Electrical Papers. 
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Heaviside's Operational Calculus and the Attempts to Rigorise It 163 

In his scientific papers one often finds harsh attacks on the "Cambridge 
mathematicians"; more contemptuous, however, are his remarks about the 
electrical engineers who found Maxwell's and his own work too mathematical 
'_EP vol. II, preface]. 

Heaviside's style is very colorful, polemic and capricious: 

How is it possible to be a natural philosopher when a Salvation Army band 
is performing outside; joyously, it may be, but not most melodiously? [EMT 
I §4] 

This "wandering about guided by circumstances" [EMT §223] makes Hea- 
VISIDE very enjoyable to read, but at the same time it makes it most difficult to 
get a comprehensive view of his production. Heaviside himself collected his 
papers in two works: Electrical Papers [£P] containing the papers from 1873 to 
1891 and Electromagnetic Theory [EMT] (vol.1 contains papers from 1891-93; 
vol.11, 1894-1898; vol. Ill, 1900-1912). 

Heaviside's contributions to mathematics are in two fields, namely vector 
analysis and operational calculus. The importance which has been attached to 
his work in the second field can be seen from E. T. Whittaker's memorial 
paper "Oliver Heaviside" (1928): 

We should now place the Operational Calculus with Poincaré's discovery of 
automorphic functions and Ricci's discovery of the Tensor Calculus as the 
three most important mathematical advances of the last quarter of the 
nineteenth century. Applications, extensions and justifications of it constitute 
a considerable part of the mathematical activity of today.* 

In the next sections I shall give an outline of Heaviside's final version of his 
operational calculus. The account will follow Heaviside's didactic device by 
introducing the mathematics in a physical context. I shall refer and comment 
upon three physical examples taken from EMT vol.2; thereafter I shall try to 
give a systematic view of Heaviside's mathematical method. Section (1.7) will 
contain a brief sketch of the progress of the operational method in Heaviside's 
writings. 

2. Example a. In the treatment of electric networks Heaviside employed 
his method of "resistance operators". He defined the resistance operator of an 
electric system to be an operator Z transforming the current C into the voltage 
e: 1 

e = ZC or C = -e. 

The resistance operator of a pure resistance R (conductance - I is the multipli- 

cation operator R - I whereas a coil with self-inductance L has the resistance 
d ^K/ 1 ' 

operator L-, and a condenser with permittance S has Z = - j -at. Heaviside dt S 0 
* As pointed out in the introduction, the operational calculus was not discovered in 

the last quarter of the 19th century, but this was the general opinion in 1928. 
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L 

e 

Fig. 1 

used the abbreviations P = -j-, P * = J • at which allowed him to denote the two 
at o 

last mentioned operators Lp and - p"1. 

In £MT §285 Heaviside considered a coil (L), with an inner resistance (R' 
and a leaky condenser in sequence influenced by an electro-motive force e 
(Fig. 1). He wished to determine C in terms of e. He found the resistance 
operator of the connected system of Fig. 1 by applying the ordinary rules for 
connecting resistances to the resistance operators. Thus he found the resistance 

operator Z' of the leaky condenser, represented by a condenser - and a 
I SP 

resistance - in parallel, from 
K 

^; 
= K + Sp, 

yielding 

Z 
=K + Sp' 

From this he found the total resistance operator by addition: 

Z = R + Lp + (K + Sp)~i 

and hence e 
C = 

R + Lp + (K + Sp)-1' (L1) 

Heaviside called this expression for C containing the operator p the oper- 
ational solution of the problem. His aim was to transform it into a real solution, 
i.e. a function of t. For the process of transformation he invented the new term 
algebrize which in the following will be used in that special sense. 

When e is a harmonic oscillation, e = sinnt, Heaviside algebrized (1) as 
follows (in the special case where K = S = 0): 

As regards the simply periodic solutions in these cases, the working is 
perfectly simple, by means of the property p2= -n2 which obtains in simply 
periodic states, or, which is the same, p = ni, applied to reduce the resistance 
or conductance operator to the standard form a + bp... when e is given ... 
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we have 
e JR-Lp)e 

R + Lp R2+L2n2 
'_EMT §284] 

i.e. for e = sin nt 
C = - 2 - -j-j (R sinnt - Ln cosnt). (1.2) R 2 + L vi 

This algebrizing procedure is similar to an AC circuit technique which was 
relatively often used in Heaviside's time. 

To algebrize the expression (1) when e is a constantly impressed force at 

e 

0 t 

¿=0, Heaviside used another technique (again K = S = 0): 
We have 

e _ e _ 1 [ R (R'2 /ß_'3_ 1 
R + Lp~ 

_ 
I R'~R[Lp 

_ 
'Lp)+'Lpl "']*' 

() 

P'+Lp) 

This is got by expanding the fraction by division. The rest is done by 

ť 
p-»l=- 

'n 
which makes, applied to (3), 

C-R'L '2_'Ll +'±'~l) ""•}• 
[EMT §283] 

Hence we have 

c=j(1-^(-t)Y (L4) 
It should be remarked that Heaviside used the notation 1 for the Heaviside 
function H(t) and 'n_ for n ! 

He also algebrized the operational solution by expanding it in ascending 
powers of p: 

As e is constant for i>0, Heaviside assumed pne to be zero (see (I.§8)); thus 

C = {, (1.5) 
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166 J. LÜTZEN 

He noticed that (5) was the limit of (4) as t tended to infinity. The connection 
between the seemingly contradictory results (4) and (5) will be illustrated more 
clearly in the next example. 

3. Example b. Most of Heaviside's work is devoted to the treatment of 
continuous systems with which he became acquainted when he worked as an 
operator for The Great Northern Telegraph Company. For instance in EMT 
§§238-42 he considers a semi-infinite cable and a network with resistance 
operator Z in sequence, operated upon by an e.m.f. e = H(t) (Fig. 2). Here 
Heaviside neglects self induction in the cable and therefore finds that the 
potential K(x, t) and the current C(x, t) are connected by the equations 

-d-± 
dx 

= SpV, -d-^ dx 
= RC, (1.6) dx dx 

I - VAV » ---- 
t o x 

mm. Fis- 2 
S being the permittance and R the resistance per unit length. Eliminating C, he 
gets 

d2V 
7-T 

= RSpV = q>V (1.7) 

where q is defined by 
q2 = RSp. (1.8) 

Treating q as a constant, he obtains the operational solution of (7) 

V(x,t) = Aeqx + Be-qx, (1.9) 

A and B being arbitrary functions of t. They are determined from the boundary 
conditions at x = 0 and x = oo yielding 

V(x,t)=Voe-qx, (1.10) 

where Vo is the impressed e.m.f. at the end (x = 0). 
From (10) and (6) Heaviside gets 

C c - - -p-QxV e -C - i^oe p~4x C c - - -p-QxV e v0 -C - i^oe 

n 

Co expresses the current at the end of the cable. By applying (8) to Vo = - Co, he 
finds that / j? ' ± "•-(£) / j? ' ± c° (U1) 

/ R '± and concludes that the resistance operator of the cable is I- I . 
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So if Z is put between the cable and the earth with the impressed voltage 
acting, we have 

to express the current through Z and entering the cable. This is because the 
/R '* 

operators are additive like resistances. Also we have Vo= ' 
- I ^o as 

before; consequently by (12) 
' ̂Sp' 

This finds Vo, the potential at the beginning of the cable, in terms of e [EMT 
§242]. 

Heaviside supposes that Z is a pure resistance r and that e is a constant 
impressed force at r = 0 (i.e., e = eH(t)). He then algebrizes (13) by expanding in 
ascending powers of p: 

As in the previous examples he puts p"e = 0 when « is a natural number and 
obtains 

f / r2Sp rAS2p2 ' (Sp'i) 

Heaviside was then faced with the problem of fractional differentiation. He 
treated it experimentally, proving that 

p±H(t) = (nt)-* (E M T chap. 7). (1.16) 

This formula was known to Lacroix (1819), but Heaviside apparently made 
its discovery independently.* 

From (15) and (16) it follows that 

/ s '* f r2s lr2s'2 } 
v°=e-er'jü?) 

/ s '* 
i1-^1-3 
f r2s 

fe) 
lr2s'2 

-■■■}• 
} (U7) 

Heaviside expressed in his own way the fact that (17) gave an asymptotic series 
for V(t) for r->oo, without using the term asymptotic series. He never employed 
any of the theories about divergent series which were introduced at the end of 
the 19th century, but he proceeded quite formally. This caused him a great deal 
of trouble with the "Cambridge mathematicians". 

He commented upon (17) in the following way: 

* For the history of fractional differentiation see Ross 1977. 
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168 J. LÜTZEN 

(17) is unsuitable when t is small enough to make the initial convergency be 
insufficient. It is said that every bane has its antidote, and some amateur 
botanists have declared that the antidote is to be found near the bane. We 
have an example here. The antidote is got by algebrizing (13) in a different 
way. [EMT §242] 

Heaviside then expanded the expression in (13) in descending powers of p 

/ R I R '2 ' (r2Sp'± 

0 i R i R '2 ' 

and applying (16) he obtained 

/ Rt '* f 2Rt 1 ¡2Rt'2 } / Rt ' /T1cn 

We see now that we can calculate Vo conveniently when t is small. But (18) is 
bad when t is big. Then we may consider (18) the bane and (17) the antidote. 
They are complementary, though not mutually destructive. 

Returning to Example a, we see that (5) is the asymptotic expansion of (4) for 
r->oo so that the connection between (4) and (5) is also covered by the above 
remarks. 

4. Example c. For a finite cable of length / operated upon by an e.m.f. e 
= H(t) at one end A and isolated at the other end B Heaviside found the 

j-î 
 ? 

e -r 

^^ Fig. 3 

operational expression for the voltage at any point of the cable to be 

^r) = COshf-x)l=g^^//(r) cosh l cossi (1.19) cosh q l cossi 
where 

s2=-q2=-RSp. 

He obtained this result from (10) by adding up all the reflected waves from both 
ends of the cable. (A more direct mathematical way to obtain (19) would be to 
determine A and B in (9) from the boundary conditions.) In order to algebrize 
solution (19) Heaviside used his expansion theorem: 

The method may be briefly (though imperfectly) stated as follows: Let e 
= ZC be the operational solution of an electromagnetic problem; say, for 
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definiteness, that C is the current at a certain place due to an impressed 
force, e, at the same or some other place. Let the form of Z be such as to 
indicate the existence of normal solutions for C. Then, when e is steady, 
beginning at the moment ř = 0, the C due to e is expressed by 

e Fpt * 

to be understood thus: - 
In the first place, the Z in the operational solution is an operator, a 

function of p the time differentiator. But in equation (20) Z is entirely 
algebraical. Thus, Zo is the algebraical function obtained by putting p = 0 in 
Z. It is the effective steady resistance to e when, as supposed, e is a voltage, 
and it is at the place of C. Otherwise it is more general. Then, in the 

A 7 

summation, -- is the ordinary differential coefficient of Z with respect to p dp 
as a quantity. Lastly, the summation ranges over all the roots of the 
algebraical equation Z = 0, which is, in this respect, the determinantal 
equation, though Z itself is much more. These special values of p are to be 

dZ used in - - as well as explicitly. [EMT §282] dp 
If we apply the operator Y(p) on both sides of (20), we find that the operational 
expression 

Y Y 

is algebrized by 

C-Ä 
Z1UJ 

+ I ^-. LEMT §285] ,1.21) 
Z1UJ zu)=o 2ãZj 

dp P=x 

Heaviside employed this extension of the expansion formula to algebrize (19): 
F = coss(/-x) 

y^ [EMT §288]. He found the denominators in the cossi Z(p) 
sum (21) to be 

dZ d ds d 1 1 , . , 
p- - = p-- cossi = p- - - coss/= 1 - - s Ism , s I , 

dp dp dp ds 2 

so that from (21) 

K=i_rcos^-x)ep(=i_2zsin^ep( si jslsmsl si 

where p is determined from RSp=-s2 and the summation ranges over the 

positive roots of coss/ = 0, i.e. s = -- , - - , ... (the negative roots would only 
lead to repetition). 

* £pt = exppi 
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The expansion theorem is Heaviside's most important tool in algebrizing 
procedures. For instance he also used it to give an alternative algebrization of 
(1). 

In Electromagnetic Theory Heaviside gave no proof of the expansion 
theorem, but in Electrical Papers he presented two different proofs. The first 
proof, which led to the discovery of the theorem, is a beautiful example of the 
experimental mathematics that lay so near to Heaviside's heart. This proof, 
however, I shall save for an appendix as it does not throw any light on the 
operational calculus. On the other hand, the second proof is an operational 
proof, the final version of which can be found in a footnote in EP II, p. 226. 

Y(p) . 
Developing  into 

. 
partial fractions, Heaviside gets 

Z(p) 

mHm. z ™ „,„. (1.23) 
Z(p) zuJto , }àZ " " 

dp P=x 
He then inserts 

-LH(f)=-I(l-^'), 
p 

- Á A 

which can be obtained from (3) and (4), in (23), yielding 

Z(p) zuT=o .dZ ^dZ 
A - - A- - 

dp p=x dp p=x 

Y(0) 
Putting p equal to 0 in (23), he saw that the first term of (24) was equal to  ; 
hence (21) is achieved. Z(°) 

The above deduction of (21) evidently presupposes that Z(p) is a polynomial 
of higher order than Y(p) and that the former has no multiple or zero roots. 
Heaviside knew very well that (21) was not universally correct, but he never 
specified the necessary conditions for its application. 

Now it would be useless to attempt to state a formal enunciation to meet 
all circumstances. Even supposing that an absolutely perfect knowledge of 
the subject made it possible to do so, it would be very unpractical. It would 
be worse - far worse - than that very lengthy enunciation of a theorem in 
the 5th Book of Euclid, which may be read and re-read fifty times without 
properly grasping its meaning, which is not much, after all; only something 
in compound proportion that the modern schoolboy does in a minute or two. 
It is better to learn the nature and application of the expansion theorem by 
actual experience and practice. A theorem which has so wide an application 
is a subject for a treatise rather than a proposition. [£MT II §282] 

5. The methods seen in the three examples are typical of Heaviside's way of 
solving physical problems, which can briefly be described in the following 
diagram: 
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Step 1) Formulation of differential equation 
Step 2) Operational solution 
Step 3) Algebrizing 

3.1) Harmonic impressed force 
3.2) Impressed force = H(t) 

3.2.1) Expansion in descending powers of p 
3.2.2) Expansion in ascending powers of p 
3.2.3) Expansion formula. 

Before I comment on the methods contained in the diagram, I would like to 
emphasize that this schematic arrangement does not claim to cover all of 
Heaviside's work but only the very essential part related to the operational 
calculus. 

Stepl. The three physical examples we have seen all deal with electrical 
systems, the most common problem Heaviside's work. However, he also 
treated other topics in an operational way, for example the problem of the age 
of the earth [EMT§ 223-237]. He mostly worked with physical systems in- 
fluenced by one external force. He supposed that this force described the system 
completely; this implies that in cases where he did not explicitly state the initial 
values he implicitly assumed them. 

The mathematical models corresponding to his problems could be either 
ordinary or partial differential equations. Typically, discrete finite networks 
would lead to ordinary differential equations, whereas continuous systems 
would give partial differential equations. 

Step 2. The substitution -rxp transformed the ordinary differential equa- dt 
tions into algebraic equations, and the partial differential equations into differ- 
ential equations in the space variables only. Treating p as an algebraic quantity, 
Heaviside solved these equations and obtained the operational or symbolic 
solution to the problem. In this step Heaviside proceeded as if the calculations 
took place in a field. Still he remarked [EMT §251] that the commutative law 
was not universally valid for the differential and integral operators, but he made 
no attempt to find the limits of its validity. As Example a shows, Heaviside 
often mixed Steps 1 and 2. 

Step 3. Heaviside algebrized the operational solutions 

C = Z(p)F(tl 

i.e. he converted them into ordinary functions of i, for two types of impressed 
forces F(t): 

3.1) F(t) = sinnt and 3.2) F(t) = H(t). 

3.1. In this case the algebraization was obtained by interpreting p2 to be 
equal to - n2 (cf. Example a). The initial-value conditions were here replaced by 
the assumption that C(t) varies harmonically with the same frequency as F(t). 
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This is a reasonable assumption because it is fulfilled for all dissipative systems 
for large values of t irrespective of prescribed initial values. 

3.2. Heaviside only occasionally considered A-C circuits. He was more 
interested in the transient behavior which could be studied by the aid of the 
steady impressed force F(t) = H(t). His extensive use of this function justifies the 
name "Heaviside function" and the symbol H (t) later attached to it. When the 
impressed force was H(t' Heaviside assumed the system to be at rest for f <0. 
If we confine ourselves to positive times, this physical requirement is equivalent 
to the following initial-value condition: the unknown function (C in Example a 
and V in Examples b and c) and its derivatives to a certain order are 0 for i = 0, 
the order being defined by the requirement that the further development of the 
system shall be well determined. 

ť 
3.2.1. The expansion in descending powers of p and the rule p~nH(t) = - 

would normally give the solution in a power series of t. 

3.2.2. By expanding in ascending powers of p and interpreting pnH(t) to be 0, 
Heaviside achieved an asymptotic expansion of the solution. Often the algeb- 
rizing procedures 3.2.1 and 3.2.2 led to fractional differentiations, which he 
managed by using the formula p*H(t) = (nt)-*. I shall not investigate the 
questions regarding divergent series or fractional differentiation but only point 
out that Heaviside's procedures have been partly justified by Doetsch (1937). 

3.2.3. The expansion theorem was, as I have already remarked, the most 
powerful tool in the algebrizing procedure. Although his operational proof of it 
applied only to rational functions, Heaviside used it also for transcendental 
functions (cf. Example c). 

6. As a final example of Heaviside's methods I am going to show how they 
apply to a general finite network. Heaviside just sketched this general pro- 
cedure [EMT §245]. Although general networks were very essential in his 
discovery of the expansion theorem, he treated only special networks after 
having made the discovery. Many of Heaviside's successors, however, treated 
his methods and especially the expansion theorem in connection with general 
networks, so the following example will have a central position in the next 
sections. 

Example d. We consider a finite network consisting of resistances, coils and 
condensers. It can be treated by the aid of Kirchhoff's circuit law, which 
states that the sums of the potential drops in each mesh equal the impressed 
e.m.f. Thus, if we put 

xj(t) = ' Cj(t)dt (1.25) 
0 

where C, is the current in the ith mesh, we get a system of differential equations 
of the form 
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(«li Jš+b" ďí +Cl1) *iW + -+ (ai»ďp+bi»ďt+ci») *»(0=fi(0, 

{a21j^ + b2l- + 
c2l)jxl(t)+---+(a2„^I 

+ b2n - + 
c2n]jxn(t) 

= F2(t) = 0, 

(«-i^ 
+ *-ié + c-i)^W+-+(«..^ 

+ *..^ + 
c1I1I)xB(ř) 

= F.(ř) = O 
(1.26) 

where the constants aij9 bij9 ci} represent inductances, Ohmic resistances and 
capacitances and the F£'s are impressed e.m.f.'s; we have followed Heaviside 
and put all but Fx equal to zero. The solution to the problem when there is more 
than one impressed force can be found as a superposition of such solutions. 

d 
The substitution of p = - in (26) yields at 

eííxí+eí2x2 + ~>+eínxn = Fí9 
e2lxl+e22x2 + ---+e2nxn = 0, 

where eij = aijp2 + bijp + cij. 
This algebraic system of equations is solved by 

where D(p) is the determinant and Dtj is the i,fh subdeterminant of (27). 
Application of the expansion theorem (21) yields the algebrized version of (28): 

J 0(0) DitoAdD_ 
dp P=x 

To make a comparison, let us outline how (26) was and still is traditionally 
solved. First the solution to the corresponding homogeneous equation is found 
as a linear combination of exponentials of the form ejÁt where the jÀ's are the 
roots of the determinantal equation D(jÀ) = 0. This solution presupposes that 
D {À) has no double roots, a requirement we also meet in the "proof" of the 
expansion theorem. The general solution of (26) is then obtained by adding one 
solution to the inhomogeneous equation. At last the coefficients of the e>Ai's are 
determined by the prescribed initial value conditions. 

Heaviside's expansion theorem gives immediately the full solution (29) of 

(26), _*•? being a special solution of the inhomogenious equation, and, what is 

more important, it automatically adjusts the arbitrary constants so that xJ.(0) = 0 
and x'j(0) = 0. Heaviside pointed out that this was a great advantage as it could 
often be a hard job to adjust the arbitrary constants in the traditional way. 
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7. In the preceding sections we have seen what Heaviside's operational 
calculus looked like in 1894-98. In this section I shall make a few remarks on 
the development of the operational method in Heaviside's writing. 

In his early work from the period 1872-1881 he used only traditional 
mathematical methods. The first trace of an operational way of thinking can be 
found in the paper "On Induction between parallel Wires" (1881) [EPT p. 125] 

d d 
where he used the notation D for - and A for -- . In the same article 

dt dx 
Heaviside derived from the conjugate property the arbitrary constants in the 
solution of a homogeneous system of differential equations in terms of the initial 
values (cf. the Appendix). Although in 1884 he used resistance operators in 
dealing with the differential equations for a general network (a system similar to 
that of §6), Heaviside before 1886 only now and then treated his systems 
operationally. 

Before 1886 Heaviside mostly employed the symbol D in connection with 
the subsidence factor eDt on which D operates as a multiplication operator. But 
as he gradually began to name the subsidence factor ep' it also became natural 
for him to let p denote the time differentiator, which he did from the end of 
1886. At the same time Heaviside's interest in the arbitrary constants in 
homogenous systems led him to the first version of the expansion theorem, 
which he proved with the condenser method* in "On the Self Induction of 
Wires, III" (1886). Only one month later did he prove the expansion theorem 
operationally by a development in partial fractions. 

Thus the expansion theorem was the first algebrizing rule Heaviside 
discovered. This is understandable because he at first considered p in connection 
with ept. Expansions of an operator Z(p) in descending powers of p are found in 
"On Electromagnetic Waves" (1888) [£P II 426-27] whereas I have not found 
examples of expansions in increasing powers of p before 1892, when it occurs in 
"On Operators in Physical Mathematics". 

The Heaviside function can be traced back to Heaviside's early works. Its 
importance was still increasing, and in 1892 it obtained its central position in 
the operational calculus in the above-mentioned series of papers. 

8. In Example a (§2) we saw that Heaviside put pH(t) = 0. In other con- 
nections, however, he often showed a deeper understanding of pnH(t) consider- 
ing it the "function" similar to what we denote by ön~l [EMT §249, 251, 253, 
267, 271]. Heaviside called pH(t - x) "an impulsive function at the moment t 
= x" and the higher derivatives were termed "multiple impulses". Thus Hea- 
viside (1893-95), along with Kirchhoff (1891), was the first to introduce the 
¿-function. 

By means of the operational calculus Heaviside was in a position to treat 
systems in which the impressed force was a ¿-function; for if the symbolic 
solution equalled Z(p)ò(t) = Z(p)pH(t' the three algebrizing rules could be 
applied to Z(p)p. This solution, which Heaviside termed the impulsive so- 
lution, is nowadays called the fundamental solution: 

* See the Appendix. 

This content downloaded from 185.44.77.40 on Wed, 18 Jun 2014 23:15:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Heaviside's Operational Calculus and the Attempts to Rigorise It 175 

But knowing the developed impulsive solution ... the solution for a con- 
tinued force varying anyhow with the time is at once expressible by a definite 
integral, because the continued force may be regarded as consisting of an 
infinite series of successive infinitesimal impulses. [£M7 §251] 

In modern notation Heaviside here states that since 

$Hy-t)f(y)dy=f(t) (1.30) 

for every continuous function / (explicitly stated in EMT §267), we obtain, by a 
formal application of Z(p' 

Z(p)f{t) = SZ(p)ô(y-t)f(y)dy = (E*f){t) (I.31) 

where E(t) = Z(p)ô(t) is the fundamental solution. Heaviside, however, did not 
attach great importance to this equation, which is so central in the modern 
theory of differential equations. 

9. What was the new aspect of Heaviside's treatment of the operational 
calculus? First of all, as he pointed out clearly, it was highly applicable to 
electrical engineering. Some historians of mathematics have reduced 
Heaviside's contributions to the operational calculus to this single point, 
claiming that he just applied Boole's well known theory without adding 
anything new (see e.g. Cooper 1952). To show that Heaviside's investigations 
contained more than that, let us again consider the three steps in his operational 
calculus (see the scheme in § 5 above). Step 1 had been a traditional step in 
mathematical physics since 1700; Step 2 had been characteristic of the oper- 
ational calculus also before Heaviside, but in Step 3 Heaviside blazed his own 
trail. The introduction of the standard operand H(t) and the three algebrizing 
rules were his original contributions to the operational calculus. 

His experimental, unrigorous mathematics brought the operational mathe- 
matics into disrepute among most contemporary mathematicians, but in the 
long run it proved to be a challenge to mathematicians to explain how this 
peculiar method could lead to correct results.* 

II. The Method of Function Theory 

1. During the sixteen years following the publication of EMT II noone, 
neither mathematician nor engineer, seems to have used Heaviside's ideas, but 
in the second decade of this century interest in the operational method revived. 
Heaviside was considered the inventor of the operational calculus, and the 
studies in the field were at the beginning concentrated on his work. The favorite 

* In Kuhnian (Kuhn 1962) terminology: Heaviside solved physical puzzles within a 
mathematical paradigm which was a personal rearrangement of an otherwise abandoned 
paradigm from about 1800. In the Mathematical paradigm of 1900 his solutions were 
considered puzzles which were successfully solved in two different ways in the 20th 
century. 
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subject was the expansion formula which was mostly known from £MT§282, 
where it is stated without proof. Until Wagner in 1925 and Vallasta in 1926 
independently found Heaviside's first proof, it was the general opinion (except 
for Bromwich) that Heaviside had no proof of the expansion theorem. For 
this reason it was regarded as important to find a proof and further to extend 

the theorem to the case where the denominator of the operator  had double 
or zero roots. ^ 

The English mathematician T.J.I'A. Bromwich and the German electrical 
engineer K.W. Wagner were the first to publish justifications of Heaviside's 
work; their works were independent but quite similar, both using function 
theory. Wagner [1915-16] concentrated on the expansion formula, whereas 
Brom wich [1916] gave a broader explanation of the operational calculus. 
Moreover, since Bromwich's paper was the more influential, I shall here 
outline his ideas. 

2. Bromwich began to think about the operational calculus when he had 
read EMT II, and after sixteen years he gave his interpretation of it in the article 
"Normal Coordinates in Dynamical Systems" (1916). At first he considers the 
homogeneous system of differential equations characteristic of a discrete, isolat- 
ed physical system: 

eiiXi+eí2x2 + >~+eínxn = 0, 

^21*1 + e22x2 + ~'+e2nxn = 09 (III) 
enixi+en2x2 + "-+ennxn = 0, 

where 
d2 d 

eij = aijJ? + bijJt+Cij' /=1'2' '"'"' ;=1>2'"-'n 

with prescribed, inhomogeneous initial values, 

Xj(0) = Uj, j¡xj(0) 
= vj. (II.2) 

Bromwich then assumes the x/s to be given by the complex integral: 

x^èi[^ìdkt (IL3) 
K being a closed curve enclosing all the poles of ¿^(A). By inserting (3) into (1) he 
finds the equations for the c^'s: 

jV'p.¿U = 0, i=l,2,...,n, (II.4) 
where . , „ 

¿lld+¿12C2 
. 

+ -+¿l,.C,. 
, „ = Pl> 

¿2lCl+^22C2 + -"+^2nČ,í=P2> 
(n 5) 
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l^aijtf + bijX + Cij. 

To find the pf's in terms of the initial values, Bromwich expands C7(/1) in a 
Laurent series for large values of 'À': 

positive powers being omitted because they do not contribute to (3). From (3) 
and (2) we get 

u>=2Tilt>dX> "'-iTtlW' (IL7) 
hence 

Xj = Uj, Yj = vj. 

To make pv satisfy the requirement (4) Bromwich assumes the pf's to be 
polynomials. They can then be found by inserting 

in the Equations 5 and by omitting negative powers of X: 

pi = (ank + bn)ui + anvi+---^aink + bi1)un + ainvn. (II.8) 

The solution of (5) considered as equations in the £¡s yields 

^¿{DliWPl+í)2iWí)2 + '""+í)"iPJ (IL9) 
where the p£'s are found from (8) and the D^-'s are the subdeterminants of the 
determinant D corresponding to the system (5). To check that the boundary 
conditions are not violated by assuming p. to be a polynomial Bromwich 
proves (7) from (9). 

When the ç/s have been found, a calculation of residues determines Xj from 
(3) and the homogenous equation (1) is solved. 

3. Bromwich next treats an inhomogenous system with homogenous in- 
itial-value conditions, a problem that is much more closely related to the 
Heaviside calculus. The impressed forces are assumed to have the form P.e*1*: 

ellx1+el2x2 + '"+elnxn = Plefi' 
e21xl+e22x2 + ~-+e2nxn = P2e*t, 

(H?I / 

eniXi+en2x2 + - +ennxn = Pnellt. 

Again (3) is substituted in (T) yielding 

'ektpidX = Pie^' i=l,2,...,n, (11.10) 
K 
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the Pi s being defined from (5) as before. Equation (10) is satisfied by 

'■'Ay «"•"> 
p 

Of course any analytic function could be added to l , but a test shows that 
(A - fi) 

(11) leads to the required homogeneous initial values. By applying (11) to (5) the 
equations for the ç/s are obtained: 

¿llC1+¿12C2+"-+¿ln^ = 
^1-, A - A - fi 

A - fi 

and they have the solution 

from which Xj can be found from (3). 
Bromwich then considers the special case treated by Heaviside, where one 

constant force is impressed at r = 0. For r>0 this is equivalent to putting P2 = ̂ 3 
= "=Pn = 0 and jU = O in (1'). In this case (9') inserted into (3) gives 

*'-¿7 «£&•*"■ "u2> 
If D(À) has no multiple or zero roots a calculation of residues leads to 
Heaviside's expansion theorem (1.29). Bromwich's formula (12) however, is 
more comprehensive as it allows him to treat multiple and zero roots as well. 
From (12) it is also possible to derive Heaviside's other algebrizing rules. This 
was done by Jeffreys [1927]. 

4. Letting r tend to infinity in the path K shown in Fig. 4, Bromwich 
transforms the integral (3) into 

^ ^ * c - i oo 

for ř>0 when all the poles of Çy lie to the left of the line Re À = c. This 
transformation is correct only if ̂ (X) tends quickly to zero for |/|->oc, for 

instance as O I Ty I, a requirement that is fulfilled when the initial values are 

homogeneous. 
The formula (3") proves valuable when Bromwich applies his method to the 

solution of partial differential equations. For it often happens that the ç/s have 
infinitely many poles which cannot be enclosed in a closed path {e.g., §1 
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J > 

r 0 x^i ^ 

Fig. 4 

Example c). In normal physical systems, however, the real part of the poles will 
be bounded from above - in dissipative systems bounded by zero - so that a 
path as in (3") can still be used. Bromwich remarks about the treatment of 
partial differential equations: 

It will be observed that the foregoing does not profess to give a complete 
proof of (3"): all that we have done is to establish an analogy between (3") 
and the formulae which we have proved for discrete systems. 

The main idea in the method of function theory is that the integral repre- 
sentation of Xj, (3) or (3"), transforms the given normal system of differential 
equations into a system of algebraic equations - or a partial differential equa- 

d 
tion into a differential equation one degree lower - the differential operator - - 

being transformed into multiplication by the independent variable L Moreover 
the initial values will enter the new equations (5) and (8). However, the 
application of the method is difficult because the inverse of (3) or (3"), which 
would transform the given equation into the easier one, is not given explicitly. 

5. In his article of 1916 Brom WICH presented the method of function theory 
as a substitute for Heaviside's calculus. In a long series of applications 
published in the Proceedings of the London Mathematical Society and the 
Proceedings of the Cambridge Philosophical Society (references in Jeffreys 
1927), however, he realized that Heaviside's operational method was the easiest 
one to use; thus he recommended its application. But for two reasons the paper 
of 1916 was still central in Bromwich's work. First, because it contained "the 
final rigorous proof" of Heaviside's operational calculus; second, because 
Brom WICH could derive a new algebrizing rule from (12) as follows. 

From (1.28) we know that the operational solution of (1') when P2 = P3 = ... 
= Oand" = OlS 

Dij{p)Pi 
x>=wT' (IU3) 

and from (12) that the ordinary solution is 
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Therefore, if the operational solution of a problem is /(/?), Bromwich could 
find the ordinary solution g(t) from the integral: 

gW^^-l-e^dp. (11.14) 

When the operand for f(p) is not stated explicitly, it is assumed to be H(t' i.e. 
g(t) = f(p)H(t). In 1927 Bromwich proved that the Heaviside function was 
given by the integral 

' 
tf + ioo 

ept 

H(t) = ̂  Í -dp, (7,í>0, (II.15) 
¿Kl a-ioo P 

and by applying f(p) formally inside the integral sign in (15) he had a short 
proof of (14). A similar idea was the basis of Wagner's proof of Heaviside's 
expansion theorem. 

Thus in his later works Brom wich proceeded as follows: he calculated with 
d 

P = -j- as an algebraic quantity (cf. Heaviside's Steps 1 and 2) and finally 

interpreted the symbolic solution by the aid of (14) or by Heaviside's algebriz- 
ing rules. This second version of the method of function theory was applied by a 
lot of engineers and was published in a book by one of Bromwich's fellow 
mathematicians at St. John's College, Cambridge: Harold Jeffreys (1927). 
Function theory seems to have troubled some engineers, for instance Heaviside 
to whom Bromwich sent his method. [See H.J.Joseph's notes in EMT III, 2nd 
ed.] Other scientists gravitating more toward mathematics advocated the orig- 
inal version of the method of function theory as presented in Bromwich's paper 
of 1916. Among these was Carslaw who discussed this with Brom wich and 
Jeffreys in a very interesting article in the Mathematical Gazette 1928-29. 
Jeffreys concluded: 

Whether it is better to introduce them [the complex integrals] for this 
purpose when the operational solution has been found, as Bromwich and I 
would do, or to bring them in at the very beginning, as Prof. Carslaw does, 
is a matter of taste and printing expenses. No logical question is involved. 

III. Carson's Integral Equation 

1. John R. Carson, who worked for the American Telephone and Tele- 
graph Company, developed another significant reformulation of Heaviside's 
operational calculus in a series of papers. He collected his ideas in the book 
Electric Circuit Theory (1926). We shall follow the development of his version of 
the operational calculus, beginning with his first paper on the subject: "On a 
General Expansion Theorem for Transient Oscillations of a Connected System" 
(1917) in which the following traditional proof was given, to all appearances 
independently of Bromwich's and Wagner's proofs. To a network with the 
equation (1.26) Carson applied the impressed force F1(t) = E1ept, where p is a 
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complex constant. He then assumed the solutions to be of the form xj(t) = £jep' 
and by cancelling ept in the system (1.26) he obtained a system of algebraic 
equations in the Ç7's. Carson solved that by traditional means and found the 
following particular solution to (1.26), 

x'(t)=El^iW~e"' 
(IIL1) 

and the general solution by adding the solution of the homogeneous equation, 

D(kp)=O 

By developing lj in partial fractions and adjusting kAj so that Xj(0) 

= - Xj(0) = Q he obtained the following expansion theorem: 

Xj-El'D(p) Dá=o(p-kP)D'(kp)e /• 
(IIU) 

For p = 0 this is reduced to Heaviside's expansion formula (1.29) about which 
Carson wrote in the main text: "Heaviside states this theorem without 
proof." However, in a footnote he corrects this statement: "Since the above was 
written Mr. H.W.Nichols has called my attention to the fact that Heaviside 
derives his Expansion theorem in his Electrical Papers vol.11, p. 373". The 
current produced by a constant impressed e.m.f. at i = 0 was called the indiciai 
admittance by Carson. It is the derivative of the above mentioned solution Xj 
(cf. I.25). The importance of the indiciai admittance A(t) was stressed in 
Carson's next paper [1919] where he showed that the current I(t) correspond- 
ing to an arbitrary force Fl(t) = E(t) could be determined by the aid of the 
formula 

I(t) = ̂ -]A(t-T)E(T)dT=J-'E(t-T)A(T)dT (III.4) at 0 at Q 

(cf. Heaviside's formula (1.31)). 
In a footnote in his book of 1926 he stated 

This important theorem, independently derived and published by the author, 
is actually the equivalent of a much older theorem in dynamics due to 
Duhamel. 

2. But not until his paper in the Bell System's Technical Journal of 1922 can 
we find the most essential element in Carson's reinterpretation of the oper- 
ational calculus, namely an integral equation for the indiciai admittance. He 
deduced this by applying Duhamel's principle to a network with the impressed 
e.m.f. E{t) = ept. From (III.l) and (III.2) Carson knew that this e.m.f. cor- 
responded to a current 

/W = ^r+ Z(P) 
I A',*"' (III.5) 

Z(P) Z(kP)=0 
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where Z(p) is the impedance of the system ( =  - ). From (III.4) Carson 
got t 

{ pD"{p)l 

I(t) = -ept]A(T)e-pxdT 
t 

at o 

= - iept 
' J A(x)e~pxdx-ept J A(x)e-pxdT) I (III.6) at ' g t I 

x¡ oči 

= p^' J ̂(Tj^-^dr-p^' f A(x)e~pxdx + A(t). 
0 ř 

By combining (III. 5) and (III. 6) for I(t) and dividing through by epx he found 

Z(P) Z(kp)=O 
X1 X 

= p j A(T)e~pxdT-p J A{x)e-pxdT + A(t)e-pt. 
0 r 

This equation is valid for all values of t. Consequently if we set t= oo and if 
the real part of p is positive, only the first term on the right and the left hand 
side of the equation remain [as Re(fcp)>0 in all dissipative systems] and we 

iw=lA(t)e~p'dt- (IIL7) 
This is an integral equation valid for all positive real values of p which 
completely determines the indiciai admittance A(t). 

[Carson 1926, p. 19] 

Having proved (III. 7), Carson proceeded as follows toward the solution of 
circuit problems: He first found the operational expression of the indiciai 
admittance 

A=^-H(t) Z(p) 

in the same way as Heaviside did in Steps 1 and 2. Then he determined the 
indiciai admittance from the integral equation (III. 7), and at last he found the 
current resulting from the given e.m.f. from Duhamel's integral (III.4).* 
Carson's method was applicable only to homogeneous initial values in contrast 
to the original method of Bromwich. 

3. To facilitate the operational solution C ARSON in his book of 1926 
tabulated solutions to (III. 7) for different Z(p). More solutions could be obtained 
from the tabulated ones by means of the following theorem due to Borel: 

If the functions f(t), fx(t' f2(i) are defined by the integral equations 

* (III.7) can be found in EMT §526, but Heaviside used it to calculate integrals by 
the aid of operational methods. 
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F(p) = ]f(t)e-"dt 
0 

0 

F2(p)=]f2(t)e-»tdt 
0 

and if the functions F, Fx and F2 satisfy the relation 

F(p) = Fl(p)F2(p) 
then 

f{t) = 'fl{T)f2{t-x)dx. o 

The Borel theorem enabled Carson to calculate the response to an arbitrary 
e.m.f., without taking the detour around the indiciai admittance: 

If the operational equation 

h=mp) 

expresses the response of a network to a "unit e.m.f." and if an arbitrary 
e.m.f. E impressed at time ř = 0 is expressible by the operational equation 

E=V(p) 
or the infinite integral 

]E(t)e-"dt=V-^ 
0 P 

then the response x of the network to the arbitrary force is given by the 
operational equation 

_ V KP) 
X~H(p) 
_ 

and x(t) is determined by the integral equation 

Carson also proved that Heaviside's three algebrizing rules could be derived 
from (III. 7) under certain conditions. 

From a modern point of view Carson's procedure can be interpreted in 
terms of integral transformations; however it should be pointed out that 
Carson did not consider (III. 7) to be a transformation of a function of t into a 
function of p. 

4. Bromwich, Wagner, and Carson were not the only ones who worked 
with Heaviside's ideas, but from a mathematical point of view their results 
were by far the most interesting. It is difficult to explain why so many people 
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suddenly took an interest in Heaviside's methods, which had remained un- 
noticed for a long period after their publication. On the other hand there can be 
no doubt that the long period of neglect was due to Heaviside's obscure way of 
presenting them, for soon after the methods had been presented in a clearer way, 
they were taken up by the engineers. From 1920 onwards periodicals of 
electrical engineering and physics were full of operational calculations; appli- 
cations to electrical engineering were in the majority, but there were others as 
well. 

The growth in the applications of the operational calculus was intensified 
after the publication of textbooks at the end of the twenties [Carson 1926, 
Jeffreys 1927, Berg 1929, Bush 1929]. 

IV. Integral Transformations 

1. Bromwich's second method and Carson's method treat differential 
equations with H(t) as the right-hand side in a similar way. First the operational 
solution f(p) is obtained by using Heaviside's Steps 1 and 2, and thereafter the 
ordinary solution h(t) is found. At this last step the methods differ. If the method 
of function theory is used, h(t) is found directly from the complex integral 

1 c+l0° f(r>) 
h(t) = ̂ ~. 2rc» 

1 
' J-^-e"'dp 

f(r>) 
(IV.l) ^~. 2rc» C-ÍOO P 

whereas Carson found h(t) indirectly as the solution of the integral equation 

f(p) = p]h(t)e-»'dt. (IV.2) 
0 

We have seen that the connection between these two methods and Heaviside's 
method had been clear from the very beginning; but the relations between them 
were not derived explicitly until 1927, by H.W.March. He remarked that the 
Fourier-Laplace theorem, 

•J c + i oo oo 

v(x) = - í e*y¡e-yzv(z)dzdy, (IV.3) 
¿nl c-ioo 0 

implied that h(t) found from Bromwich's formula (1) was a solution to 
Carson's integral equation (2), as should be if both methods were correct. In 
other words, (1) and (2) are inverse integral transformations.* We shall call (2) 
the modified Laplace transformation and denote it by L. 

In Sections II and III we saw that Bromwich used the inverse of L', and 
Carson implicitly used L', but without considering it to be a transformation. 

* In fact (3) is valid only if x >0 while the integrals yield 0 if x <0. This is so because 
the correct integral formula is 

1 C + i OC OC) 

v(x) = - - J exy J e~yzv(z)dzdy. (IV.3') 
¿m c-iao - oo 
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The first to use this transform consistently as a substitution for and an 

explanation of Heaviside's operational calculus was van der Pol, who was 

employed in the "Philips Gloeilampenfabriken" in Holland. In a sequence of 

papers starting in 1929 he solved differential equations in t by transforming 
them by means of L', i.e. into equations in p, the solution of which he trans- 
formed back into the t domain by the transformation L'"1, i.e. (1). 

ordinary differential equation , . 
t domain . , ,._ . , . .  -»solution , . 

(partial 
. , differential ,._ . , 

equation) 
. 

algebraic equation , . 
p domain . . L1 . .  > solution , . 

(differential equation 
. 

in 1 variable L1 less) 

Fig. 5 

Van der Pol introduced the notation 

f(p)^h(t) 

for the connection (2) or (1). For a differential equation with constant coef- 
ficients, homogeneous initial- value conditions and H{t) as the right-hand side it 
is evident that van der Pol by transforming the equation into the p domain 
obtained Heaviside's operational equation. Hence the two methods were 
equivalent when they were both applicable. However the transformation method 
had several advantages: 

1) Heaviside's formal rules for the formation of the operational equation, 

that is - rxp and the dropping of H(t' were replaced by the rigorous appli- 
dt 

cation of (2). 
2) It was easier to delimit th ^thod; for instance (2) should be defined for 

all the functions entering into the quation. 
3) Van der Pol's method was applicable to equations with non-constant 

coefficients and non-constant right-hand sides. 

4) Also non-homogeneous initial values could be taken into account. That 
had also been the case with the method of function theory (Section II), but there 
the initial values had entered into the equations in a rather strange way. It 
became much more straightforward when the transformation (2) was directly 
applied; for if f(p) = h(t) a partial integration shows that 

pf(p)-ph(O) = 
j-th(t). (IV.4) 

Therefore by repeated use of partial integration the initial values would enter 
directly into the transformed equation. 
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Van der Pol made long tables of functions and their modified Laplace 
transforms and published a textbook on the transformation method (1950).* His 
work made it much easier for users to learn the operational calculus. 

2. There was, however, another person who contributed even more to the 
spreading of integral transformation theory in connection with the operational 
calculus, namely the German mathematician Gustav Doetsch. The mathema- 
ticians or electricians we have considered until now were all led from 
Heaviside's operational calculus towards integral transformations. Doetsch 
went the opposite way. He had already applied the LAPLACE transformation 

f(p) = L(h)(p) = ]h(t)e-^dt o 

to the solution of integral and differential equations before connecting it with 
the operational calculus. This he first did in a review (1930) of Carson's book 
Electric Circuit Theory** It is therefore only natural that he did not accept the 
unrigorous operational method, and he pointed out that CARSON ought to have 
transformed the equations from the start instead of postponing the integral 
equation to the last step in the argument. 

In his book Theorie und Anwendung der Laplace-Transformation (1937) his 
remarks about the Heaviside calculus were very deprecatory. He considered his 
predecessors' works from a point of view of Laplace transformations, and 
although he proved several of Heaviside's procedures, he thought that it was 
just an accident that they worked [p. 338]. From the preceding sections and 
from the following comments on MiKUSlÑSKl's book it should be clear that this 
judgment was much too hard. 

Doetsch's book is a very rigorous and clear compilation of what was 
known about the Laplace transformation in 1937. To make the applications as 
broad as possible he sought to minimise the assumptions of the theorems, for 
which reason the proofs are often very complicated. For engineers and others 
who were not so interested in a high standard of rigor, he published several 
practically orientated books on the subject and some tables of functions and 
their Laplace transformations. The engineers quickly learned the method, and 
from about the middle of the thirties most works on the operational calculus 
dealt with the Laplace transformation or with the modified Laplace transfor- 
mation. This change in the meaning of the expression "operational calculus" 
must be due to van der Pol, who used this term for his method, and to the 
engineers, who regarded the transformation method as a reformulation of 

* In the textbook "Operational Calculus Based on the Two-sided Laplace-Integral" 
van der Pol applied the transformation (2) with the integration interval ] - oc, oc[. This 
had the advantage that the transformation (1) became the proper inverse, also for 
functions which were not 0 for f<0. On the other hand the treatment of initial value 
problems was complicated because all entering functions had to be multiplied by H(t). 

** It would be very interesting to know how the theory of the Laplace transfor- 
mation developed from the time of Laplace till that of Doetsch, a development which 
was apparently without connection with the operational calculus. 
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Heaviside's ideas. Doetsch made a sharp distinction between the unrigorous 
operational calculus and his own method. 

3. Even before the Laplace transformation had been considered in con- 
nection with the operational calculus, Norbert Wiener had made the Fou- 
rier transformation - or an extension of it - the basis of a treatment of the 
operational calculus (1926). His paper was praised by many other writers for its 
rigor, but in practice the method was too difficult. Further, the method was not 
fit for a treatment of the initial-value problem, which was of such great practical 
importance, because it used the two-sided FOURIER transformation (with the 
range of integration (- oo, oo)); this can easily be seen from (4). 

4. Common to all the integral transformations employed in connection with 

the operational calculus is the transformation of the time differentiator - into at 
the multiplication operator otp (plus possible initial value terms) where a is a 
constant. In his doctoral dissertation from 1934 the Dutch mathematician 
H.B.J. Florin showed that an integral transformation of the form 

f(p) = ¡K(p9t)h(t)dt (IV.5) 

had this property if its kernel is of the form 

K(p,t) = e-*ptB(p). (IV.6) 

If the transformed formulae are to be in accordance with Heaviside's symbolic 
formulae we must require also that the transform of H(t) be 1. FLORIN showed 
that this is the case when a=l and B(p) = p, i.e. if (5) is the modified LAPLACE 
transformation (2). 

If a=l and B{p)=' in (6), then (5) is the Laplace transformation. It is 
therefore clear that Heaviside's and Doetsch's formulas differ by a factor p. 

If a = i and B(p)=l we get the FOURIER integral. 

5. Bromwich's and Carson's work led to a reinterpretation and an expla- 
nation of the operational calculus in terms of integral transformations. This 
development rested heavily on Heaviside's introduction of a standard operand 
H{t). For when the operator f(p) always operated on the same operand, this 
operand could be left out, as Heaviside himself did, and f(p) could then be 
interpreted as a function of the variable p, namely the modified Laplace 
transform of the function 

h(t) = f(p)H(t). 

As a curiosity it can be mentioned that if Heaviside had chosen the impulsive 
function ô(t) as his standard operand instead of H(t), the corresponding integral 
transformation would have been the Laplace transformation. 
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V. Algebraic Explanations, Mikusinski's Operational Calculus, 
and Schwartz's Theory of Distributions 

1. In the preceding three sections we have followed the development of 
Heaviside's methods that led to the integral transformations. Another "proof" 
of Heaviside's procedures consisted in showing that more traditional methods 
lead to the same results as those obtained by Heaviside. Carson's first proof 
of Heaviside's expansion theorem (III. 1) provides such an example. A similar 
one was given by Casper [1925]. Most engineers, however, sought the expla- 
nation of Heaviside's calculus in algebra. Heaviside's results were often 
explained by formal algebraic manipulations with the operator symbols [see e.g. 
Cohen 1922], but these investigations cannot be considered justifications of the 
operational methods, but are only applications of them. 

Other authors went into the problem more deeply. They examined which 
algebraic laws were used in the operational calculus and tried to prove that 
differential and integral operators obeyed these laws. The commutative law 
made a smooth interpretation along these lines impossible, because the differen- 
tial and integral operators do not commute, as had been stated by BOOLE in his 
book on differential equations [BOOLE 1859]. Thus 

p-1pf = '^-f(s)ds = f(t)-f(O) (V.I) o as 
whereas 

p~lpf = i;^ at f(*)ds = f(t). (V.2) at o 

These difficulties were overcome in different ways. 
Some authors accepted this non-commutative algebra and calculated within 

it (for instance Gauster 1930, Locher 1934). One of the rules for calculations 
with differential and integral operators, which was emphasized by Gauster, 
was that one was allowed only to reduce a fraction "von rechts oben nach links 
unten". 

Other authors tried to avoid the difficulties by changing the operators or the 
operands so that the commutative law was fulfilled. 

Thus the American E.J. BERG, in his book Heaviside's Operational Calculus 
(1929), pointed out that the commutative law can be obtained if all operands are 
multiplied by H(t) and H(0) is defined to be 0. Namely, we have 

p-1pf(t)H(t) = '^-{f(s)H(s))ds 0 as 
t t 

= 'f'(s)H(s)ds + $f(s)H'(s)ds 
(V.3) 

= íf(s)H(s)J0-¡ f(s)H'(s)ds + ' f(s)H'(s)ds 
0 0 

= f(t)H(t)-f(0)H(0) = f(t)H(t) 
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and also 

pp-if(t)H(t) = j- at 'f(s)H(s)ds = f(t)H(t). (V.4) at o 

Therefore all the normal algebraic rules could be applied; only one problem 
remained which was the meaning of H'. 

Florin, who also gave an account of the algebraic approach to the 
operational calculus, obtained commutativity by redefining the operator p. In 

d 
some connections he used p for - just as Heaviside had done, but in the 

dt d 
treatment of differential equations he translated - / into pf-pf(0). He then 
achieved 

p-1pf(t) = 'pf(s)ds = ' ° (j-f(s) 
+ pf{0)'ds 

° ° 
! (V.5) = ñt)-f(0) + p-1pf(0) = f{t) 

if we define p~ * pf{0) to be /(0) and 

Pp-'f{t) = j- 'f(s)ds + p]f(s)ds = f(t). (V.6) at o o 

From the algebraic investigations it became evident, just as in transformation 
theory, that the initial values played a special part. Heaviside's method had 
yielded solutions with homogeneous initial values, because in his calculations he 
had made operations which assumed / and some of the derivatives to vanish in 
0. 

2. In 1926 Paul Levy opened a different approach to the algebraic treat- 
ment of the operational calculus by connecting it with the convolution integral 

(f*g)(t) = 'f(t-u)g{u)du. (V.7) 
o 

Corresponding to a function / LEVY introduced the convolution operator F, 
which acts on a function g as follows: 

F(g) = f*g. 

To the constant function 1 corresponds the integral operator 

Ig(t) = ]g(u)du, (V.8) o 

and 1 * 1 * • • • * 1 (a times) corresponds to 

Fg{t) = '{t~"l i W 
g(u)du. (V.9) o i W 
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Then LEVY introduced the operators I~n such that 

/-»/* = /«-» for a>0 (V.10) 

and he thought that "il faut convenir que I~n représente une dérivation d'ordre 
h". In fact this definition of /"" does not follow from (10) and it gave the usual 
non-commutativity 

/n/-" = 
/(ř)-(/(O)+/'(O)ř+-..+^r"J. (V.11) 

In Levy's paper an operator F was thus identified with an element in the 
convolution ring with the compositions 

(f+g)(t) = f(t) + g(t), (V.I 2) 
t 

(f*g)(t) = ¡f(u)g(t-u)du. (V.13) 
0 

This idea, however, did not become very fertile for the understanding of the 
operational calculus until it was extended to a direct treatment of operators of 
the form 

F 
G' 

LEVY was not able to do this. He extended the ring by the differential 

operators I~n but he could only interpret other expressions of the form - by G 
making a doubtful expansion rather like what Heaviside had done. There was 
another defect in Levy's work - as well as in most of his predecessors' - namely 
that the underlying class of functions was not specified. 

3. From the middle of the thirties it seems that the only accepted approach 
to the operational calculus was that using the LAPLACE-transformation, and the 
algebraic one was apparently abandoned until 1950. In that year the Polish 
mathematician Mikusinski published his paper "Sur les fondements du calcul 
opératoire". His ideas, which were developed in a textbook in 1953 (translated 
into English in 1959), were a rediscovery, a perfection, and an extension of 
Levy's ideas. However, Mikusinski does not refer to Levy. He considers the 
ring of continuous complex-valued functions defined for i^O with the com- 
positions (12) and (13). According to Titchmarsh (1926) this ring has no zero 
divisors, so that it can be extended to a field. Mikusiñski calls the elements in 
the smallest field-extension operators and shows that the inverse of the unit 
function 1 with respect to * is an operator s whose product with an absolutely 
continuous function is given by 

5*/ = s*/(0)+/' (V.14) 

where /(0) is a function with the constant value /(0). Thus the inverse of the 
integral operator 1 * • is not just the differential operator but includes the 
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addition of a term depending on /'s initial value. The formula (14) is the same 

as Florin's translation rule for - , but in Mikusiñski's treatment (14) is a at 
consequence of a fundamental idea whereas for Florin it was only an ad hoc 
hypothesis. 

In the field of operators, which encloses both functions and differential and 
integral operators in one algebraic structure, MiKUSiÑSKl can now rigorously 
use the methods which had until then only had a formal character. Formula (14) 
even enables him to extend the differential operator to continuous functions that 
are not differentiable in the classical sense. For example the Heaviside function 
H(t) (=1 in the considered domain i^O) has the "derivative" s*l, which 
according to the definition of s is the unit element in the field of operators. 
Hence this unit element is the rigorization of the mysterious ¿ "function" which 
Heaviside's unit operand had introduced in to the operational calculus (for a 
further account of Mikusiñski's method see Freudenthal 1969). 

4. However, MlKUSlÑSKl was not the first to rigorize the ¿-function. His 
work had been preceded by Schwartz's theory of distributions. 

As early as 1925 the American J.J. Smith made an attempt to solve the 
problem of the ¿-function, which he saw as the main challenge of the oper- 
ational calculus. In a series of papers in Journal of the Franklin Institute he 
developed a new kind of analysis, the "Theory of //-Functions", the main object 
of which was the treatment of pointwise multiple-valued or infinite functions. 
But his theory of //-functions was both unrigorous and unfitted for practical 
computation. 

At the end of the twenties the problem of the ¿-function became more 
important because DiRAC had made it a central tool in the quantum mechanics 
[Dirac 1926]. It was he who gave it the name ¿-function. He used it as a 
counterpart to Kronecker's ¿ in the description of continuous systems of 
orthogonal eigenvalues. J. VON Neumann avoided the mathematical difficulties 
with "Dirac's" ¿-function by formulating the quantum mechanics in terms of 
operators in abstract spaces [1927], but nevertheless Dirac's formulation 
remained in use. 

A desire to solve the increasingly urgent problem of the ¿-function was an 
important motive for SCHWARTZ in his development of the distribution theory 
[1945]. He also wanted to put Heaviside's calculus on a firm basis, but his 
approach was not so directly guided by the operational ideas as was 
Mikusiñski's. First of all Schwartz wanted to enlarge the concept of function, 
and for this purpose he considered the space Q)' of all continuous linear 
functionals on ^C°°(IR), the infinitely often differentiable real functions with 
compact support. He called the elements of Q)' distributions. L'oc (the space of 
locally integrable functions) was considered a subspace of @' by identifying a 
L'oc function / with the functional 

OÜ 

(p^ Í f(x)<p(x)dx. 
- oo 
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The ¿-distribution was defined as 

ô((p) = (p(0) for q>e<g?(R). 

Schwartz pointed out that õ does not correspond to any L'oc function, but 
still, if symbolically we write 

oo 

ò(<p)= í ô(x)(p(x)dx, 
- 00 

then ô(x) must have the properties characteristic of the ¿-"function". SCHWARTZ 
extended differentiation to all of 3i' making it the transpose of differentiation in 

T'((p)=-T((pf) for Te@' cpe^. 

He also introduced convolution for distributions whereby the operator Dn 
was represented by ¿"*. This enabled him to treat distributions in a way similar 
to the one used later by MiKUSlÑSKl in dealing with operators. Therefore 
distribution theory gave a rigorization of the algebraic approach to the oper- 
ational calculus. 

Distribution theory was also useful for the approach to operational calculus 
employing integral transformations, as it proved to be a problem that the 
domain of definition for the transformations was not so large as could be 
wished. Beginning with his first paper, from 1945 onward Schwartz tried to 
extend the Laplace and Fourier transformations, but not until two years 
later did he find the space of "tempered" or "spherical" distributions Sf' 
[Schwartz 1947], which is the space best suited to describing these transfor- 
mations. He extended the FOURIER transformation to an isomorphism of £f' 
onto itself and the Laplace transformation to all distributions T for which 
there exists a £oeIR such that e^Te^' for all ç> Co- 

in modern applications of the operational calculus the most used approach 
is the method of Laplace transformations with the extension made by 
Schwartz. 

Final Remarks 

I have followed the development of operational calculus without mentioning 
the theory of linear operators in HlLBERT and Banach spaces and the theory of 
VON Neumann algebras which developed in the period 1900-1940. The reason 
is that apparently the development of the two types of operator theory did not 
influence each other noticeably. This may seem strange, but several reasons can 
be mentioned for this lack of interaction. 

First, there is the historical reason that the two theories developed from 
different problems. The operational calculus had its source in the practical 
manipulation of differential equations, whereas operators in Banach spaces 
developed from a theoretical interest in the solution of integral equations. 

Secondly, it can be noticed that the problem in the two theories were of a 
different nature. The operational calculus was a method successful in practice 
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but lacking a natural rigorous interpretation, whereas the theory of integral 
equations had clear concepts but no effective methods. 

Closely connected with this there was a social reason for the separation of 
the two theories. As we have seen, the operational calculus developed at the 
fringe of the main mathematical stream and was partly used by practitioners, 
whereas the theory of operators in Banach spaces occupied a central position 
in the mathematics of the 20th century and was created by "real" mathema- 
ticians. 

The development of the operational calculus gives an illustrative example of 
how a practical problem - long distance telegraphy - influenced a mathematical 
theory. It shows that one must be very cautious not to simplify the relations 
between technology and mathematics. I have already pointed out in the in- 
troduction that it was not the technological problems which gave rise to the 
invention of the operational calculus, and it has just been noted that this 
practically inspired discipline was never integrated in the theory of operators 
developing from internal mathematical problems. However, the engineering 
method inspired one essential field of mathematics, namely the theory of 
distributions, but one should keep in mind that there were several other sources 
for this theory. These I shall discuss in another paper. 

Appendix 

Heaviside's First Proof of His Expansion Theorem 

This proof is a most illustrative example of how physically guided experi- 
mental mathematics may lead to the discovery of new mathematical theorems. 
The steps leading Heaviside to the theorem are scattered over several papers 
from the period 1881-1886. The succeeding account partly follows V ALL ART A 
[1926]. 

1. The problem is to express how a physical system reacts to an impressed 
force at i = 0. But in his approach to the theorem Heaviside considered nothing 
but isolated systems and introduced the impressed force only in the final 
argument from 1886. This shows that he was not consciously hunting for the 
expansion theorem until this year. Let the isolated system be described by the 
differential equations (1.26) and (1.27) with ̂=0. Heaviside considers these 
equations to be representatives of both an electrical system as in (I § 6) and a 
mechanical system with the generalized coordinates xt. If the determinant D(p) 
of the system has n different roots 1p, 2p, 3p, . .. , np then the homogeneous 
equation (1.26) has the "normal" solutions 

jXi(t) = jqi exp(jpt) ij=l, 2, ..., n, (A.I) 

and thus the general solution is 

xM^jAfiiexpijpt). (A.2) 
j 
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(In the following the indices behind the letters enumerate the generalized 
coordinates, and indices in front of the letters enumerate different roots of D{p) 
or different normal systems.) Heaviside wants to find an expression for the jA's 
corresponding to a given initial state. 

2. For this purpose he uses the conjugate property, which was discovered 
independently by RouTH and Heaviside. Heaviside first mentions the proper- 
ty in 1881 {EPl, p. 127-29) in connection with an electrical system and later on 
uses it in 1882 in different connections [£PI, p. 141-48], and in 1885 [£PI, 
p. 520-25]. In 1886 [£PII, p. 201-26] he derived it from mechanics in the 
following way: 

The equation of total activity in the system (1.26) is, with all Ff = 0, 

0 = lF;x, = Ô + l/ + r (A.3) 
i 

where 

the dissipativity Q = bllx' + 2bl2xlx2+b22x22 + ... , 
the potential energy I) = '(clix' + 2cl2xlx2 + c22x22 + ...), (A.4) 
the kinetic energy T='(allx' + 2a12xix2 + a22x' + ...) 

if aij = ajh bij = bji and cij = cji which will be supposed in the following. 
We now suppose that the system oscillates as a superposition of two normal 

solutions iX( + 2xi where !*, = 1qiexp(1pt) and 2x¿ ̂ 2^l exp (2p í). Then the dissi- 
pativity and the potential and kinetic energy can be decomposed 

6 = 10 + 20 + 120, í/=1l/ + 2I/ + 12C7, T=xT+2T+l2T 

where }Q, jU, fT are the energies of the systems j (/= 1, 2) existing separately and 

12Q=2(bll 1xì2x1+b22ìx22x2 + bì2(lxì2x2 + lx22xì) + ...), 
12^ = ̂ 11 1x12x1+c221x22x2 + c12(1x12x2 + 1x22x1) + ..., (A.5) 

l2T=all 1x12xl+a221x22x2 + aí2(íxl2x2 + 1x22xí) + ... 

are called the mutual energies. 
If, instead of (3), we calculate the mutual activities ]T lFi 2xi and £ 2¥i lxi and 

i i 

insert iFi from equation (1.26), we get for ̂ = 0 

0 = 1 A 2x;= ' 12Q + 2p i2U+lPi2T, (A.6a) 
i 

0 = X.2Fii*i=ìi2Q+iPi2U + 2Pi2T (A.6b) 
I 

because differentiation with respect to t in system j consists of a multiplication 
with jp. By subtracting (6 a) from (6 b) we have 

0 = (1p-2p)(12C/-12r). 
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Thus for different normal states {lp + 2P) 

This equality of the mutual potential and kinetic energy is called the conjugate 
property. 

3. The problem of determining the jA's in (2) from the conjugate property 
was taken up by Heaviside in 1881 in the article where the conjugate property 
was presented for the first time. Since this first note is difficult to follow, I shall 
outline his derivation from 1885 (£PI, pp. 520-25). 

The mutual potential and kinetic energies of the rth normal system in (2) and 
the given initial state, that is (5) with rx¡ substituted for 1x¿ and x¿(0) substituted 
for 2x¿, have the form 

OrU = lAlrU + 2A2rU + 3A3rU + ..., (A.7a) 

0rT = l¿lrT + 2¿2rT + 3¿3rU + .~. (A.7b) 

By subtraction we get 
orU-oJ = rA(rrU-„T) (A.8) 

because all the terms (jrU - jrT) for j + r are zero according to the conjugate 
property. Whence 

rA = oJJzoSr (A9) 
rrU ~rrl 

4. In 1886 (EPll, pp. 215-218) Heaviside used what he called the con- 
densor method to derive the effects of an impressed force from (9). I shall go 
through his clarified and generalized version from the following year (EP II, 
pp. 371-74). Suppose that (1.26) is the system of equations corresponding to an 
electric network in which one e.m.f. Fl = Vl=e(t) is impressed in the first mesh 
where it produces the current Cl (System 1). 

I  Z  » 

System 1 

V1 and C1 are then connected through Ví=Z(p)Cí, the resistance operator Z{p) 
being given by (1.28) and (1.25) 

Z{P)-J^ÃP)' 
If D(p) has no zero root, the normal systems x¿ Qxp(jpt) of the corresponding 
homogeneous equation are determined by Z(Jp) = 0. 
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In order to apply the conjugate property Heaviside replaces the external 
e.m.f. '' by a condensor with permittance S and initial voltage e, thus creating 
the following isolated auxiliary System 2: 

 Z  

System 2 

System Z is supposed to be free from current and charges at f = 0. Differentiat- 
ing (2) and putting jwl =jpjq1, we get the current Cl in System 2 

ci=P*i= I A-Wiexp(;pí) (A.IO) 
Z'(jp)=O 

where the resistance operator Z'(p) of the total System 2 is 

Z'(p) = (Sp)-1+Z(p). (A.ll) 

A current in mesh one of the form jwl Qxp(jpt) gives rise to a voltage over the 
condensor of magnitude 

.•w« 1 exp(;/?i) ťV^; 
jUl exp(jPt)= -J .•w« 1 exp(;/?i) ťV^; (A.12) 

so that the total voltage over the condensor is 

K= Z ,^,1exp(J.př)= I -i^l^l. ¿ jP 
(A.13) 

Z'Op)=O Z'(jp)=O ¿ jP 

Next, Heaviside determines the A?s from (9) and the following physical 
arguments 

a. The Numerator. The mutual kinetic energy OrT is zero since the initial 
current is supposed to be zero. At i = 0 there is only accumulated charge on the 
condensor so that 

0,17-0,7 = 0,17 = 5*,«!. (A.14) 

b. The Denumerator. From Maxwell's equations HEAVISIDE derives 

(EPU, p. 203-06). Whence 

Ir T Vw1 sWJ (Z'(rp)-Z'(sP)) 
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Heaviside lets sp tend to rp and obtains 

„"-„T - (,*,)' ^ dp 
• (A.15) 

dp p=rP 

Combining (14) and (15) with (9), he gets 

A- S^e 

dp p=rP 

According to (12) rw1 = - Srprul9 implying that 

A=  e_  
dZ'(p) 

rWlrP-, 
 

dp p=rP 

which inserted into (10) gives 

Ci= s -¡žk a¿ KP) 
- exp(^ř)- (A-16) 

z'(jp)=o a¿ KP) 
dp p=jP 

"Now increase S infinitely, keeping e constant. Z' ultimately becomes Z; but in 
doing so one root of Z' = 0 becomes zero". For if Z'(p) = 0, (11) is reduced to 

pZ(p)=~; 

hence 

pZ(p) = 0 for S = oo; 

from this we see that Z'(p) has the same roots as Z(p) plus the root p = 0. "We 
have, by (11), and remembering that Z' = 0 

PJpZ'{p)=~{Sprl+PJpZ{p) 
= 
Z{pHpJpZ{p) (A-17) 

d d 
so, when S =00 and Z = 0, we have p--Z'(p) = p--Z(p) for all roots except the 

dp dp 

one just mentioned [i.e. 0], in which case p tends to zero and -Z(p) is finite, 
dp 

making in the limit --Z'(p) = Z(0) by (17)... . Therefore finally" 
dp 

Cl=Ž70i+ £ -^ expOpí). (A.18) 

dp p=jp 
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In the limit S =00 the condensor is converted into a constant e.m.f., so that 
(18) expresses the current in System 1. Thus Heaviside has derived the expan- 
sion theorem (1.20) in the case where 7=1. 

Note added in proof. Professor Truesdell has drawn my attention to the 
work of H. Bateman on the Laplace transformation. Bateman was among the 
pioneers of the application of Laplace transformation to differential equations. 
He published on it as early as 1910 in Proc. Cambridge Phil. Soc. vol. 15, 
pp. 423-27. According to his own statement he sent a short list of Laplace 
integrals to G.R.Carson in which he recommended the use of the Laplace 
transformation after the appearance of Carson [1919] (cf. Erdélyi's Obituary 
Notice "Harry Bateman 1882-1946" in Obituary Notices of Fellows of the 
Royal Society vol.5, 1948, p. 598 and Footnote 111 in Bateman's paper "The 
Control of an Elastic Fluid" Bull. Amer. Math. Soc. vol.51, 1945, pp. 601-646). 
Thus it seems likely that Carson's use of (III 7) was inspired by Bateman. 
However, Carson did not refer to Bateman. 

I am most grateful to Lektors Kirsti Andersen and Lars Mejlbo of Aarhus 
University for their valuable criticism and suggestions. 
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