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FOREWORD

We search the concepts and methods?) of the theory of deformable sotids from GArILEO
to LagraNGE. Neither of them achieved much in our subject, but their works serve as
termini: With GALILEO’s Discorsi in 1638 our matter begins?) (for this is the history of
mathematical theory), while LAGRANGE’s Méchanique Analitique closed the mechanics of

1) There are three major historical works that bear on our subject. The first is A history of the
theory of elasticity and of the strength of materials by I. TODHUNTER, ‘“‘edited and completed” by
K. PEARSON, Vol. I, Cambridge, 1886. Unfortunately it is necessary to give warning that this book
fails to meet the standard set by the histories ToDEUNTER lived to finish. Much of what TODHUNTER
left seems to be rather the rough notes for a book than the book itself; the parts due to PeArsoN are
fortunately distinguished by square brackets. Researches prior to 1800 are disposed of in the first
chapter, 79 pages long and almost entirely the work of PEARSON; as frontispiece to a work whose
title restricts it to theory he saw fit to supply a possibly original pen drawing entitled “Rupture-Sur-
faces of Cast-Iron”. While PEARSON took pains to describe a long list of worthless papers, many of
them devoted to mere speculation or to experiment yielding no definite results, he omitted mentioning
a number of major works by the BErRNouLLIs and EULER, and in general he seems to have been un-
willing to take the pains necessary to follow the more solid researches of the eighteenth century on
rational mechanics. While I have studied PEARSON’s chapter with care, in the end I have been able to
malke no use of it.

The second is the magnificent report of H. BURKHARDT, “‘Entwicklungen nach oscillirenden Func-
tionen und Integration der Differentialgleichungen der mathematischen Physik,” Jahresber. deutsch.
Math.-Ver. 10,, 1800 pp. (1901—1908). Parts I, IT, and IV concern vibrating bodies. It is difficult to
express sufficient admiration for this work, which I have used again and again. To justify my in.
cluding here a new history of the theory of vibrating bodies, presenting in some rare cases an inter-
pretation differing from BURKHARDT’s, I must explain that his emphasis lies on analysis; mine, on
mechanics.

The third is TiMosHENKO’s History of strength of materials with a brief account of the history of
theory of elasticity and theory of structures, New York, Toronto, London, McGraw-Hill, 1953. Although
this work is drawn from a rather capricious selection of sources, it is drawn from them directly and
with understanding. In the few cases where TIMOSHENKO’s subject crosses mine, I acknowledge with
gratitude the assistance his book has provided. Additional material is given by C. A. BEPHIITE#H
Ouepru mo Hemopuu Cmpowmesnott Mewanuru, Moscow, 1957. These two books sketch also the history
of statical theories of arches and frameworks, which are mentioned in the present essay only in cases
where they influence or are influenced by theories of deformable media.

While E. HorpE’s Geschichie der Physik, Braunschweig, Vieweg, 1926, is an unusual historical
work in that it concerns positive and specific achievements, evaluated by its author’s own examination
of the sources, unfortunately as far as concerns our subject HoPPE mentions but a small fraction of the
relevant material and often draws unwarranted or even false conclusions from it.

2) The only earlier mathematical theory is BEECKMAN’Ss, described in § 3; this brilliant work, while
not without influence, remained unpublished for two centuries.
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the Age of Reason with a formal treatise, since regarded universally, though most wrongly,
as the definitive repository of the best from all that went before. As will appear, the giants
of our subject are JAMES BERNoOULLI and EuLER. Here, for the first time, may be read the
story of what these men really did for the theories of flexible or elastic bodies. Modern
theories of materials are set chiefly upon the foundation laid down by CAvcHY from 1822
to 1845. Thus our account serves as preface to his researches.

The prolix speculations on the causes of elasticity, deriving from classical antiquity
and developed in mechanistic terms by GALILEO, DEscArTES, HookE, NEWTON, and many
other great philosophers and scientists before and after, often in accompaniment to the
mathematical or experimental researches described here, are excluded from this history
as being physical or philosophical rather than rational.

In an essay of this kind it is futile to attempt completeness, and hence I have not
given the elaborate citations found in modern historical monographs. The footnotes serve
rather to fill out the details and to illumine the strong personalities which must be recog-
nized if not understood in any full view of the growth of mathematics. A connected account
of the essentials may be gotten from the text alone.

To discuss the works in the order they appeared in print, when they were printed at
all, would lead to perplexities which disappear of themselves when we follow the order of
discovery, as here we do. But we must not forget that in many cases the results were
known to succeeding investigators only after delay or not at all.

For the most part, the researches are reported in quotations or paraphrases from the
originals. My own comments and interpretations I have tried to distinguish by square
brackets'). With regret, I have realized that to reproduce the original notations would
require an effort unlikely to be granted by the reader of a work of this kind. I am aware
that in reducing all formulae to a uniform modern notation I am in a measure misquoting
the sources and making everything seem too easy; now, once and for all, let the reader be
reminded that as a result it is far easier for him today to see to the heart of one of these old
researches than it was for those who first grappled with it and sought to do better.

1) E. g., in a passage paraphrasing an original, from the words “by [Hoox=r’s] law” the reader
is to infer that the author, without citing anyone, used the law now associated with HoOKE’s name;
from the words “by the [Hooxe-] LEIBNiz law,” that the author in using that law attributed it to
LEeisNiz.



PREFATORY NOTE

concerning the presumed technological origin

of the science of elasticity

In support of the currently received preconception that science arose from the needs of technology,
or upon the basis of experience gained from practical solution of technological problems, I have found
nothing as regards elasticity. Here, however, not being able to search for sources, perforce I have rested
content with secondary material. Even works on the history of engineering present accounts suggesting
more often the enthusiastic project of an early thinker than a contrivance actually built and used. In
the earlier volumes of a recent encyclopaedial) most references to elasticity and flexibility occur in
peripheral remarks?) on the scientific theories and planned experiments we shall closely analyze in the
following pages; far from answering to a call from technology, these researches had to wait decades or
even centuries until engineers saw their relevance.

Of course, some elastic phenomena have long been known and utilized in daily life and technology,
although in earliest times, as even today, the rigid body and the fluid are the primary elements of most
mechanisms. As remarked by D. ForpE?), the wooden bow, “specially interesting as the first method
of concentrating energy,” is late among primitive weapons, not being demonstrably in use before
30,000 A. C. The age of the compound bow, arising in ‘‘response to the shortness of pieces of elastic
material,” is not known; it is represented on the column of Trajan (c. 110 A. D.)4).

‘Wooden springs were used in other machines in the middle ages. E.g., VILLARD DE HONNECOURT
{c. 1250) illustrates a water-powered saw so arranged that a limb bent downward in the driven stroke
springs back to effect the return motion?3).

Wood is a particularly unfortunate material on which to try to gain experience of elasticity. Use
of horn and sinew for bows and catapults indicates familiarity with some more typical elastic materials
in antiquity. While bronze fibulae are of great age, other employment of the elasticity of metals is late.
According to A.P.UsHER®), “there is no evidence that springs of either bronze or steel came into
general use” in classical antiquity. He refers to the passage from PHILO of Byzantium that we shall
quote below, p. 17, as being “‘the first clear indication of the possible significance of the elasticity of
metals . . . Until this there is no record of the use of any form of metal spring except in [fibulae].
FELDHAUS gives no record of the use of leaf springs before the later sixteenth century, nor any record of
spiral springs in locks or other devices before the fifteenth century.”” However, another authority?)
states that metal crossbows are mentioned about A. D. 1370. Development of the spring as a driving
mechanism for clocks, and solution of the practical problem of equalizing the force, took place in 1500~

1) A history of technology, ed. SINGER, HoLMyARD, HarL, and WirLiams, Oxford, 5 Vols., 1954—
1958.

2) B.g., A. P. USHER, “Machines and mechanism [1500-1750],” op. cit. ante 3, 324-346 (1957).

3) Pp. 161-163 of ‘“Foraging, hunting, and fishing,” Op. cit. ante 1, 154-186 (1954).

4) In ch. 3 of op. cit. infra, p. 16, HERON of Alexandria refers to the zalivzove, a catapult
having a doubly curved bow, as to a thoroughly familiar object.

5) Pp. 643-644 of B. GILLE, “Machines [to A.D. 1500],” op. cit. ante 2, 628—662 (1956).

6) P. 133 of A history of mechanical inventions, Revised ed., Harvard, 1954.

7) A. R. HaLL, “Military technology,” op. cit. ante 2, 695-730 (1956); see p. 723.
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15501). The invention of the balance spring, claimed by HuveeNs, HAUTEFEUILLE, and HOOKE, came
long after scientific studies of elasticity had begun.

Among the various artillery pieces of the later Greeks which utilize the elasticity of some member,
at least two employ the effective torsional elasticity obtained by turning a rod fixed perpendicularly
within a tight bundle of cords or sinews. The idea which this device suggests, namely, that torsional
elasticity may be explained by the extensional elasticity of the longitudinal fibres, seems not to have
been taken up prior to EULER’s day (see below, p. 341).

That structural members break, and sometimes deform markedly before breaking, must be an
observation as old as the building of structures, but there is no evidence that builders’ rules of thumb
influenced the development of theories of materials, while application of even the crudest principles
of statics to the practice of construction had to wait until long after mathematical statics had become
an element of any solid scientific training.

While it would be unsafe to generalize, such information as I can find shows no ground for in-
ferring any direct influence of technology upon the early theories of elastic and flexible bodies. Rather,
it seems that the early theorists pondered over the phenomena of experience, usually simple daily
experience apparent to anyone; thereafter came scientific experiment; and only much later, after the
end of the period studied in this essay, was there interplay between science and technology. Thus the
present history will not attempt to trace the technological side of the subject.

1) UsHER, op. cit., pp. 305-307.



PROLOGUE

1. Remarks of the ancients on vibration and elasticity. From before 1600 there is
little—at least, little available to the working scientist—that survives of a concrete nature
in our subject. Nearly everything specific concerning elasticity and vibration arose in the
context of music. An account of early acoustics is given by F. V. HunT?).

Traditionally associated with the school of PYTHAGORAS is the first law of the vibra-
ting string:

1
Ratio of lengths

(1) Numerical ratio of pitches =

for a given string at constant tension. “Numerical ratio of pitches” refers to the Pytha-
gorean association of numbers to intervals, recognized by hearing: for the ‘“octave,” 2/1,
for the “fifth”, 3/2, etc.

That sound is a vibratory motion of bodies is an idea of early origin; gradually, from
Greek times onward, it gained wider support, until by 1600 it was commonly accepted.
The very idea of vibration would seem to carry with it the isochronism of the motion of a
sounding body, but I have found no early explicit statement, although a connection
between musical pitch and frequency of vibration was suggested by ArcuyTAS (c. 400 A.C.)2):
“Clearly swift motion produces a high-pitched sound, slow motion a low-pitched sound,”
but the rest of the fragment indicates confusion of the acoustical effects of frequency and
amplitude. Perhaps Evcrip (c. 350 A. C.)3) is only repeating the views of the school of
ArcryTASs and Eupoxus when he writes, ‘“Some sounds are higher pitched, being com-
posed of more frequent and more numerous motions,” but his explanation of why numerical
ratios are attached to sounds is far from clear. It is stated emphatically, repeatedly, and
very clearly by BoETHIUS) (c. 480—524 A. D.), whose writing is considered to reflect much
older views, that sound is a vibratory motion and that pitch increases with frequency, but
he gives no definite relation. This idea was well known, though not generally accepted, in
classical antiquity and subsequently. There was a gradual tendency to regard the loudness

1) Origins in acoustics, forthcoming. I am indebted to Professor HUNT for some of the material in
this section.

2) Fragm. 1, ed. DiELS, 8th ed. (1956), 1, 435, 11. 1-2. Quoted by M. R. CoHEN & I. E. DRABKIN,
A source book in Greek science, New York, Toronto, and London, McGraw-Hill, 1948.

3) Introd. to Sectio Canonis, quoted by CoHEN & DRABKIN, op. cif.

4) De institutione musica 1. 3, quoted by COHEN & DRABKIN, op. cit.
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of a sound as connected with the magnitude or violence of the displacement of the sounding
parts and thus to separate the effect of amplitude from that of frequency.

That the pitch of a string increases with its tension is immediate from experience and
could not fail to have been known to everyone?'); likewise, that the thicker string has the
lower tone, other things being equal, must have been known to every lyre player; but
these simple remarks are not to be found in the early literature. Indeed, the reader of the
fragmentary and inaccurate secondary accounts of Greek science surviving is led to con-
jecture that the pre-Socratic philosophers inferred some definite results which subsequent
philosophic schools failed to understand or at least to appreciate, as when the muddy
THEON OF SMYRNA (c. 125 A. D.)?) attributes to PYTHAGORAS an investigation of the ratios
of pitches as dependent upon the length, thickness, and tenston of the sounding strings, as
well as a study of the sounds of disks and bowls. THEON refers several times to deter-
mining consonances by weights, magnitudes, and motions, but unfortunately all that he
reports definitely is the [supposed] result that the pitches of two identical vessels partly
full of water are proportional to the empty spaces.

Sympathetic vibration, in which a body is set a-trembling when an appropriate tone
is sounded nearby, seems to have been well known to the ancients?).

[That a machine uniformly scaled from a small model does not generally perform in
the same proportion must have been learned from many a sad experience of the builder.]
The earliest scaling laws I have found are in the works of the Greek mechanicians, PHILON
of Byzantium and HERoON of Alexandria.t) The Artillery®) of PHILON gives many rules, clearly
of empirical origin, for constructing catapults of the same type but sufficient to cast
missiles of various weights. HERON’s Ariillery®) states, “It is necessary to know that the
determination of the measurements has been gotten from experience itself. For the an-

1) Of. Virruvius, De architectura 10.12.2. English transl. by M. H.MoreaN, Cambridge,
Harvard, 1926. Quoted also by CorEN & DRABKIN, op. cit. Cf. also BorTHIUS, loc. cit.

2) 2. 12—13. Quoted by CoHEN & DRABKIN, 0p. cit.

3) Virruvius, De architectura 5. 5, reports the practice of the Greek builders to set about their
theatres, so as to magnify the sound of the actors’ voices, large vessels tuned to appropriate pitchea.

4) The dates of these authors remain uncertain: PEILON, A. C. 180 to A. D. 1; HeroN, A. C. 250
to A. D. 75. Modern scholars incline toward the later dates. The matter is further complicated by
uncertainty that the same HERON is the author of both the Artillery and the Mechanics.

5) “PrILONS Belopoitka (Viertes Buch der Mechanik),” Greek text and German translation ed.
H. DieLs & E. ScERAMM, Abh. k. Preuss. Akad. Wiss. 1918, No. 16, 68 pp. (1919). Chs. 3 and 16 seem
to imply knowledge that uniform proportion does not suffice. While Ch. 13 describes a method of
effecting uniform scaling, we need not infer any mechanical rule; PHILON may intend this passage
only as an aid to construction after the proportions have been determined.

6) “HeroNs Belopoiitka (Schrift vom Geschiitzbau),” Greek text and German translation ed. H.
DieLs & E. ScaraMM, Abh. k. Preuss. Akad. Wiss. 1918, No. 2, 56 pp. See Chs. 31-33. There is a strong
likeness between HeErox’s Ch. 31 and Prrrox’s Ch. 3.
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cients, paying attention only to the scheme and the construction, reached no great range
with their artillery, since they did not select harmonic proportions. But the moderns,
reducing some parts and enlarging others, made the above described machines consonant
and efficient.” While HERON states that ‘‘the rule and principle is the bowstring,”” appar-
ently he refers only to its size, for he writes also, “Let the diameter of the machine [i.e.
the calibre of the piece] be AB, and let it be required to build a like machine which will cast a
shot, e.g., triple that of the above-stated. Since the bowstring gives rise to the cast of the
stone, the machine to be built must have a bowstring three times as great . . .”” However,
HeroN warns that not any diameter will do, and he gives and illustrates an explicit rule
for determining the sizes of the remaining members of the machine. [T am not fully able to
understand the rule; moreover, since it involves ‘“harmonic proportion”, it is scarcely
likely to be ‘“‘gotten from experience’” as HERON claims. But what is most important is
that a definite scaling law for like performance is given.]

The earliest known descriptions of elasticity, and in particular of the elasticity of
metals, are found in PHLox’s work. He advises that the bowcord be stretched so tight
“that when the machine is drawn, the diameter is lessened by a third part.” He mentions
the fatigue of the cord as a result of use and advises against the common practice of trying
to regain the tension by twisting the cord until it is tight again. He recommends “tight-
ening all the strings of the bowcord at once, in their natural straight position,” so as to
avoid weakening them by twisting. He claims the invention of bronze leaf springs and
describes their fabrication. His innovation appears to have aroused some doubts: .. . many
persons . . . say that it is impossible that curved bands [4.e. springs] when straightened out
by the force of the bow will not remain straight thereafter but will instead regain their
original curvature. While indeed by its nature horn has this property, and some kinds of
woods (and bows are made of such), bronze on the contrary is hard and stiff in its nature,
as is iron, so that when bent . . . it cannot straighten itself out. Let these persons be forgiven
for holding such an opinion without trying the details. For the production of the afore-
mentioned bands is seen by the agency of the swords called Spanish or Celtic.” After
severe bending, they spring back straight, “having no thought of curvature. Also when
[the test] is done many times, they remain straight.” [That elasticity was unfamiliar, at
least as a subject of science,] is shown by the immediately following inquiry into its cause;
while it is attributed to a choice of especially pure metal, neither too hard nor too soft,
followed by gentle cold working, no special name is given to it.?)

1) The word karevrovely, ‘to be extraordinarily well behaved,” is translated by DIELS & SCHRAMM
as “elastisch sind”; 76 77w edroviav mowoiy as ‘“‘was ihnen Spannkraft gibe.” In Ch. 44 they translate
the old word vevpwdzg, “‘sinewy”, as “‘elastisch.”

Ch. 27
18

27

43—44
46

47
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In the course of a long, dull work on statics!), HERON interposes a list of physical
questions and answers, three of which concern elasticity and rupture. “When [a bow] is
bent strongly, the bowstring with the arrow is more taut . . .,”” but HErRON does not give
an elastic law. In explaining why a stick is more easily broken against the knee, he
suggests that each portion acts as a lever, but he seems to believe the effect arises only
because the knee is not quite in the middle, so that one hand ‘“‘outweighs’’ the other.2)
“Why is a piece of wood as much weaker as it is longer, and why does its bending increase
when it is set upright upon one of its ends?’’ HERON explains, ‘“‘the whole overbalances
the fastened part . . . Hence the same effect takes place as in a short stock when some-
thing hung upon its ends bends it down. The increase of length of the stock corresponds
to the weight that draws the short stock down.”” [This is the first reference to the buckling
of a heavy vertical column, and HERON gives part of a correct explanation.

2. Western researches before 1600. DunEM’s great historical studies showed that the
apparent darkness of mediaeval physics is but darkness of our knowledge of it. How great
a proportion of mediaeval work survives, and how much of that is now available, I do not
know. The only writing of value on deformable bodies that I have been able to see] is the
fourth book of JOrRDAN DE NEMORE’s Theory of Weight3) (13th Century), and remarkable it
13, Western in spirit, ambitious beyond anything in the Greek or Arab tradition?). The
seventeen propositions on fluid flow, resistance, fracture, and elasticity are all original.
While the style is mathematical, it would be unfair to expeet what JORDAN brings forward
as “proofs’ to be more than plausible reasoning alleged in favor of assertions drawn from
experience and conjecture by a scientist well trained in the ancient mathematical statics.
Only two of the propositions concern our present subject.

In Prop. 12 we are told that the coherence of a beam hung up by its two ends may or
may not suffice to keep it from breaking in the middle. The beam, whether supported in
this way or at one end only, is to be regarded as a lever. Greater bending is produced by a
body striking the beam than by the same body resting upon it. [This is the earliest dis-
tinction between static and dynamic loading in respect to deformation.]

1) Mechanics IL 34f—h, in Arabic, ed. with German translation by L.Nix & W. ScEMIDT,
Leipzig, 1900.

2) Chs. 21 and 41 of PrILON, 0p. cit. ante, p. 16, likewise attempt to apply the law of the lever to
the action of the bow, but I cannot understand what is meant.

3) De ratione ponderis, first printed at Venice in 1565 from a manuscript belonging to TARTAGLIA.
Ed. and transl. into English by E. A. MoopY, pp. 167—227 of The medieval science of weights, Madison,
1952.

4) An account of Arab views on acoustics is given by HUNT, op. cit., but the only thing concrete
I have found there beyond what is known from Greek sources is that SA¥r ArL-Dix (d. 1294) wrote, at
last, that the thinner string has a higher pitch.
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Prop. 13 reads, “When the middle is held back, the ends are more easily curved.”
The “body” is taken as a line fixed at its midpoint; the ends are supposed to receive an

(43

impulse. *“. .. since the ends yield more easily, while the other parts follow more easily
insofar as they lie closer to them, it turns out that the whole body is curved into a circle.”
[This is the earliest statement of the problem of the elastic curve or elastica. JORDAN asserts,
in modern terms, that a band clamped at one end and struck by a weight falling upon the
other assumes the form of a circular arc.

The reasoning is vague, qualitative, and insufficient if not erroneous, but the attempt
at a precise argument to prove a concrete result in a domain never previously entered is of
splendid daring. This work of the thirteenth century is better than many to be published
by learned academies in the seventeenth and even the early eighteenth.]

LroNArDO DA VINcI (1452—1519) seems to have been the first to use a light rider to
make visible a very faint tremor, and specifically
in the case of sympathetic vibration?): “The blow
given in the bell makes another, like bell answer
and move a little, and the sounded string of a lute
makes another, like string of like voice [3. e. pitch]
in another lute answer and move a little, and this
you will perceive by placing a straw upon the string
like to the one sounded.”

Moreover, from LeoNarRpo we have the
earliest known project of tests of wires and beams
for their breaking strength?). In Figure 1, sand is
poured from the hopper into the basket until the
wire breaks; thereafter, the sand is to be weighed?3).
“Note how much weight broke the wire, and note
in what part of itself the wire breaks, and do this

Onsocm horvme masng —tttgn B4
-

trial several times so as to see if it always breaks in

the same place.” LEONARDO does not state that he  Figuro 1. Lronarpo pa Viner's projected
has ever performed this test, and he expects that tester for the breaking of wires

1) MS Inst. France A, f 22v. Cf. also Codice Atlantico, f 242 v. a): ‘. .. the campanile shakes at
the sound of its bells.”

The reader must be warned that the various translations from LeEoNArRDO’s works are so inac-
curate as to be of scarcely any use in connection with science or engineering.

2) I have found helpful the account of W. B. Parsons in Ch. VI of his Engineers and Engineering
in the Renaissance, Baltimore, Williams & Wilkins, 1939, but I cannot participate in PArsons’ enthus-
iastic extrapolations beyond what LEONARDO wrote, nor do I consider his translations always just.

3) Codice Atlantico, f 82rb). This is a very clear page.
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the breaking strength will vary appreciably with the length of the wire!), [a common
error, which MERSENNE and GALILEO are later to refute (below, pp. 31, 37)].

LroNARDO wrote what is almost a small treatise on the strength of pillars, beams,
cords, and arches?), remarkable in that it gives definite rules (right or wrong) rather than
mere qualities or tendencies. This treatise is perplexing, for while LEoNARDO often speaks
of experiments, it is always in the future tense, and he gives no indication that he has ever
carried out any measurement. His rules, while showing that he was an acute observer of
experience, seem to arise from a kind of plausible rhetoric in a background of deep attach-
ment to simple proportion?).

LEeoNARDO begins?) with drawings of vertical pillars supporting a load. “If you load
a pillar erected vertically in such a way that the center of the pillar is beneath the center
of the weight, it will compress rather than bend . . .”” [While the reason given is merely one
of symmetry, we find here the first allusion since HERON’s day to a problem whose solution
is to be one of EULER’s most brilliant successes.] LEONARDO gives two rules®) for the
strength of pillars bearing a load P:

. A = cross-sectional area,
(2) P« LZA— and Poad?, d = diameter,
l = length.

[These are not consistent with one another; in LEONARDO’s crabbed writing there are few

definitions, and it is often not clear what is held constant. If we regard the second rule as

a correction for the first when [ = const., then it may follow that LEONARDO’s final ruleis
ds

3) Po—,

but this is far from certain. ]

Lroxarpo considers other kinds of support and load (cf., e.g., Figure 2). For a
horizontal beam clamped into a wall at one end and loaded at the other, he seems to
claim the same law of strength®). He proposes the problem of determining the deflection

1) Cf.Inst. France MS A, f 49r, where LEONARDO states that the strength of a cord is proportional
to its length.

2) Inst. France MS A, ff 45—55.

3) On f 45v he writes, “This is proved by reason and confirmed by experiment,’”” but the further
text supports only the former assertion, not the latter.

4) f 45v.

5) Inst. France MS A, ff 46r, 47r. PARSONS, who misquotes the second rule, states that the first is
P BJl, where B = breadth; this is a correct rule, but it is not borne out by LEONARDO’s arguments or
numerical specimens. While LEONARDO elsewhere shows his familiarity with the concept of static
moment, I fail to verify Parsons’ claim that it is applied here.

6) Inst. France MS A, f 49r.
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of a beam supported at both ends
and loaded by a weight at its
middle?). He discusses also the forces

exerted by a heavy beam on two

supports placed variously along its

length?).

Leo~arpo is the first to con-
sider the form of the catenary curve,

the figure assumed by a
cord or fine chain hung
between two points?3) (Fi-
gure 3). “The lowest point
of the arch made by a
string which is longer
than the space between
the supports holding up
the ends at two different

Rt vt BT O
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Figure 2. A project of LEONARDO DA VINcI for measuring the strength of beams

heights, will touch the earth nearer to the lower support than to the higher, and in the

k4

/

'm

K

—

!
|

!
¢

Figure 3.
LEONARDO’S
sketches for the
catenary

Pt manes

proportion that the height of the lesser
goes into the greater.” [That is, the lowest
point of the catenary is the point of inter-
section of straight lines dropped from the
supports so as to make equal angles with
the vertical. Except in the trivial case
when the supports are at equal heights,
LrEoNARDO’s assertion is false, but there
is a germ of truth in it.] In the second
drawing in Figure 3, LEONARDO concen-
trates all the weight of the string in the
middle [and thus introduces the first
discrete model for a continuous system]. For

this case, his assertion is true and determines the figure of equilibrium completely. In
another attempt?), he seems to regard the weight of the string as equilibrated by weights

1) Ibid. f 48r.

2) Codice Atlantico f 185 r a. This passage is fragmentary and vague.

3) MS Inst. France A, f 48r. Cf. also f 51v.

4) MS. Inst. France E f 60v. The text makes no reference to the weights, and the drawing is not
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hung over pulleys at the ends and infers that “A cord of whatever size or strength . ..
can never become straight if it has any weight in the middle of its length,” [anticipating
a famous proposition of GALILEO (below, p. 44)]. Moreover, LEONARDO’s drawing of the
catenary appears to be copied from fact.

The nature of resonance was first correctly explained by JERoME FrACASTORO!) in 1546.
“One unison promotes another, since when two strings are equally taut, they are fitted to
make and receive like undulations of the air. Those that are diversely taut are not in case
to be moved by the same circulations, but one circulation hinders another. The beat of
the string, the motion, is composed of two motions, by one of which the string is driven
forward, that is, toward the circulations of the air; by the other, backward, the string thus
restoring itself to its proper location. Therefore, if one moved string is to be moved by
another, in the second there must be such a proportion that the undulations and cirou-
lations of the air which impel and make the forward motion do not hinder the backward
motion of the string. Such a proportion is had only by those strings that have a like tension.
On the contrary, strings of random tension do not set each other in motion, because when
the second motion happens, that is, the return of the string backward, the second string
hinders it, and they get in each other’s way. Whence there occurs no motion except the
first impulsion, which is insensible. T myself have seen in a certain church where many wax
statues stood high up around a chapel, at a certain tinkling only one of the statues moved...
The cause was nothing else than the fact that only one was in unison.” Fracastoro then
draws an analogy to lifting a weight by rhythmic action. ‘“The same thing happens also to
those who beat bread, when two or three men alternately lift up and press down a long
heavy beam, for if indeed they do not act together, all lifting and then all pressing down,
but when one lifts another begins to press, the motion is hindered . . . In strings, however,
it is not perceived because of the speed of the circulations.”

[Thus FracasToro discerns the reciprocal or vibrating motion of musical strings and of
sound in air, observes that not only strings but also other bodies are “fitted” to take on
motion at a definite natural frequency, and asserts that sympathetic vibration occurs when
the source communicates a motion that reinforces the natural motion of the receiver.

The passage just quoted implies a knowledge of sound more precise than anything
preserved from classical antiquity. In particular, FracasToRo clearly takes it for granted
that sound is a vibratory motion of a definite frequency. His book, however, does not read

clear. LEONARDO’S mastery of statics is exaggerated by his enthusiasts. E.g., the rule stated in Codex
Forster II f 67v for finding the tensions in the two cords of the discrete model is false if taken quanti-
tatively, as seems to be LEONARDO’s meaning, and equivocal if taken only qualitatively.

1) Ch. 11 of De sympathia et antipathia rerum liber unus ..., Venice, 1546, [viii pp.] 4- 76
leaves + [vi pp.].
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like a work of an originator but seems rather to be a miscellaneous collection, though
thoughtfully presented. I am led to conjecture that future studies of mediaeval sources
will reveal a considerable knowledge of acoustics that had become common domain by the
sixteenth century.

This is borne out to some extent] by the work of JouNy BapTIsT BENEDETTI, On
musical intervals, published in 1585). At the very end he writes, “Let a monochord be ima-
gined . . .; when it is divided into two equal parts by the bridge, each part will make the
same sound . . ., because the one makes as many strikings in the air as does the other, so
that the waves of air go out in the same way and agree equally, without any intersection
or breaking of each other.

“If the bridge divides the string in thirds, so that one part is twice as long as the
other . . ., then the greater part ... will sound an octave below, for the strikings of its
ends will bear such a proportion to each other that in every second striking of the lesser
string, the greater will strike and agree with the lesser at the same instant, since there is no
one ignorant that by so much the longer is a string, by so much the slower it moves.
Wherefore, since the longer is twice the shorter, and both are equally taut, in the same
time that that longer completes one interval of trembling, the shorter will complete two
intervals.” After illustrating the idea by a fifth and by other musical intervals, BENEDETTI
concludes that ‘“the number of intervals [of trembling] of the lesser portion will stand in
the same ratio to the number of intervals of the greater as does the length of the greater
to the length of the lesser . ..”

[Thus BENEDETTI regards the number of “intervals of trembling”, or, as we say now,
the frequency of the vibration, as a measure of pitch. To speak of such ‘“‘intervals” as
associated with a sound presumes that

(4) Sonorous vibrations are isochrone.,

BenepETTI goes further; since “no one is ignorant’ that the speed of a string is in-
versely proportional to its length, other things being equal, it follows that

(5) Pythagorean ratio of pitches = ratio of frequencies.

These fundamental tenets of the theory of vibration are soon to be rediscovered by
BEECEMAN (1614—1615), MERSENNE (1623), and GaLILEO (by 1636).]

1) “De intervallis musicis,”” pp. 277—283 of Diversarum speculationum mathematicarum et
physicarum Liber, Taurini, Haered. Nic. Bevilaquae, 1585; 2nd ed., date unknown; 3rd. ed., Venetiis,
Baretium, 1599. Reprint of “De intervallis musicis,” ed. J. RE1ss, Z. Musikwissenschaft 7 (1924/5),
13—20.
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3. BEECKMAN on the suspension bridge (1614—1615), on vibration (1614—1618), and
on elasticity (1620—1630). STEvIN?), in a work published in 1608, considered a weightless
string loaded at various points by an arbitrary number of different weights, but he con-
tented himself with finding the tensions when the figure is given, and with testing the
result experimentally. In annotating this work of STEVIN in 1634, ALBERT GIRARD?)
claimed that he had proved in 1617 that the continuous string hangs in a parabola. Mean-
while, however, the problem had been taken up by the gifted but overly modest Isaac
BEECKMAN (1588—1637)%), who considered it in notes dating from 1614—16154). In 1618
DrscarTES®) writes that BEECKMAN “‘asked me if the rope acb hung up on pins a, b would
describe a part of a conic section. I have no time to look into this now.” BEECKMAN,
however, in a note®) from this period or earlier, had set up the problem of the weightless
string loaded by equal weights which seem to be equally distant along the horizontal and
had given part of a geometrical proof that the points where the weights are attached lie on a
parabola. If this interpretation of his note is correct, BEECKMAN was considering the prob-
lem of the suspension bridge and had conjectured, if not proved, its correct solution.

1) Coroll. 6, Part I (“Spartostatics”), ‘‘Byvough der Weeghconst,” part iv, 7 of Wisconstighe
Ghedachtenissen . .., Leyden, 1605—1608. Latin transl., Hypomnemata mathematica . . ., Lugduni Bata-
vorum, 1608. Dutch text and English translation of part iv, 7 = Princ. Works 1, 523—607.

2) “But one must know that STEVIN ... has seen that ... loose or very extended strings are
parabolic lines (as I proved in about the year 1617), and this I will prove below, after the next corol-
lary . . .” There is no published writing of STEvIN that substantiates this statement, and when GIRARD
later on the same page finishes with “the next corollary,” he adds only, “to discharge my promise,
since I do not have the time to copy out my whole proof, I will give it to the public on some other
occasion, by the help of God, when scientific research is more profitable than at present.”” See p. 508 of
Les (Euvres Mathématiques de SIMON STEVIN, . . . le tout reveu corrigé, et augmenté par ALBERT GIRARD,
Leyden, Bonaventure & Elsevier, 1634.

3) Journal tenu par Isaac BEECEMAN de 1604 ¢ 1634, ed. C. DE WaARD, La Haye, Nijhoff, 4 vols.,
1939—1953.

The posthumous publication of a small part of this diary in 1644 does not indicate the extent of
Berckman’s influence. It was BEECEMAN who in 1618 initiated the young DEscaRTES into physics and
encouraged him to apply his talents to the sciences. Each told the other in 1618 that he had never
theretofore met anyone who *‘joins physics precisely with mathematies” (Journal, f 100v.). (This ambi.
tion notwithstanding, most of the contents of BEECKMAN’s Journal, including all the numerous pas-
sages concerning elasticity and resistance, are philosophico-physical and devoid of mathematical
reasoning.) DESCARTES surely saw BEECKMAN’S journal in 1618 and probably also in 1628. BEECKMAN
met MERSENNE and GASSEND in 1629; in 1630 MERSENNE spent whole days studying BEECKMAN’s
notes, the contents of some of which he published. BEECEMAN corresponded both with DescarRTES and
with MERSENNE by letter.

4) Journal, f 20v.

5) Oeuvres 10, 219—228. This note was first published in 1859.

6) Journal 1, Appendix 1. The drawings, unfortunately ill copied, suggest the influence of the
published work of STEVIN. In 1613 BEECEMAN had had access to unpublished papers left by STEvIN.
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The fundamental acoustic principles (4) and (5), while implied by a passage published
three times in the sixteenth century, apparently were rediscovered independently?) by
several savants of the next. [They must have seemed natural ideas to any inquiring
mind prepared to view the doctrines of the ancients in the light of the rising mechanism
of the baroque, and we should not be surprized if they were discovered or shared by others
besides those we name.] In 1618 DESCARTES?) writes, ‘‘BEECKMAN thinks that the strings
of a lute move faster in proportion to their pitch, so that the one higher by an octave gives
out two motions while the lower gives one; likewise, one higher by a fifth gives 1}, etc.”
Every one of the many passages in BEECKMAN’s journal concerning vibration reflects the
basic principles (4) and (5), though he nowhere expresses himself so clearly as does Dus-
CARTES. In 1614—1615 he writes?) that “a sound . .. is composed of as many sounds as
there are returns of strings to their place . . . I suppose the nature of the human voice, of
whistles, of the lute, and of any musical instrument to be the same as the nature of a
string, since experience confirms that all voices can be consonant with strings. Therefore
whatever we shall prove in this matter concerning strings, we postulate could be proved
also for the remaining kinds of voices.” He attempts to prove that the frequency of half a
string subject to equal tension is twice as great. More generally,

» = frequency,

(6) veo t
! = length,

l
[for this is an immediate corollary of (1) and
(), or, conversely, if (1) is taken as a fact of
experience and if (6) may be proved from me-
chanical laws, then (5) follows.] Consider two
a e ¢ fg = » strings ahb and clb plucked into similar trian-

Figuroe 4. gular forms as in Figure 4. Since the strings
BrmoxyaN's drawing to prove (6) (1614-1615) 56 of the same material and subject to the
same tension, the restoring force at # on ahb is the same as that at I on ¢Ib and thus will
induce the same velocity in each string. When the strings are released, the point A must

travel twice as far as the point I, but at the same velocity, and hence it will require

1) As is shown below, BEECEMAN explained his ideas freely to DESCARTES, who apparently adopted
(4) and (5) at once but certainly deserves no credit for them. While it is thus possible that DESCARTES
imparted (4) and (5) to MERSENNE, there is no positive evidence that DESCARTES and MERSENNE were
even acquainted before MERSENNE published these principles in 1623. The personal correspondence of
MzERSENNE and BEECEMAN began in 1629. There seems to be no reason for doubting the independence of
GALILEO, who had cause to delay publication; his work is described in § 5 below.

2) Op. cit. ante, p. 24. This passage shows that (5) was not common knowledge in 1618.

3) Journal ff 23v—24r.
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twice as much time to reach the straight form. A parallel argument applies to two strings
whose lengths are in any given ratio. [Upon reflection, we perceive that this reasoning is
sound in principle! It applies, strictly, only to the first instant, when a finite velocity or
impulse is produced at the corner; to apply it at later instants one must know something
about the motion. BEECKMAN does not say anything about this, but from other passages
one suspects that he considers the form to remain triangular, which is false. To determine
the motion of a string plucked initially into triangular form requires dynamical principles
not known in BEECEMAN’s day; it soon became and remained a major problem, until it
was solved finally by EULER 150 years later. BEECKMAN’s achievement is great: By
furnishing the first mathematical proof of any acoustical proposition, he stands father to
the theory of vibration.]

In 1618!) BEECKMAN gives a convincing physical argument in support of (4). “Since
the string comes to rest at last, we must believe that the space through which it moves at
the second stroke is shorter than that at the first stroke; and thus the spaces of the strokes
diminish. But, since to the ears all sounds seem the same up to the end, it is necessary
that all the strokes are always distant from one another by an equal interval of time, and
therefore the following motions move more slowly . . ., since the string crosses a little
space in the same time it formerly used to cross a greater one.”” Then?) he compares the
vibration of a string to the motion of “‘chandeliers hung from a rope,”” which he says is
isochrone in a vacuum. He seems to have done experiments on this, and he gives a sort
of theory.

After remarking that only properly tuned strings are resonant, and that a string may
set into resonance another tuned an octave higher?), BEECKEMAN gives a correct physical

1) Journal £ 102r. Cf. also ff 105r (1618), 367r (1630—1631), and the repetition of this argument
by MERSENNE, quoted below, p. 31.

2) Journal f 105v.

3) Journal f 54v (1616—1618).

Here we take note of some passages in Frawcis Bacox’s Sylva Sylvarum, or a Naturall Historie,
London, 1627, republished in the various collected editions of his works. § 279 describes as “‘a common
observation’ resonance of a string tuned to like pitch or an octave higher, made visible by a superincum-
bent straw; BACON uses words almost the same as LEoONARDO’S (above, p. 19). He discusses the tones
of strings as follows: “So we see in strings: the more they are wound up and strained, (and thereby
give a more quick start-back) the more treble is the sound; and the slacker they are, or less wound up,
the bager is the sound. And therefore a bigger string more strained, and a lesser string less strained,
may fall into the same tone” (§ 179). Bacon says that shortening a string raises its pitch, since it
causes the string “‘to give a quicker start” (§ 181). He proposes an experiment on the effect of tautness
by recording the pitches corresponding to 1, 2, 3, . . . turns of the peg, so as to discover “both the pro-
portion of the sound towards the dimension of the winding; and the proportion likewise of the sound
towards the string, as it is more or less strained.” Far from anticipating the work of MERSENNE,
BacoN seems to know less than the ancients regarding the tones of a monochord and a pipe. He
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explanation!): “If . . . the other string, however it is struck, always moves equally to the
first, and both end their motions at the same time (which is the nature of unison), this
happens if the air impinging upon the quiet string movesit, even invisibly. But when the
air strikes this string a second time . . ., something is added to the [same] motion. Thus
again for the third and fourth time, and thus finally the motion becomes visible.”

Also?), “. .. when a bell is sounding, its . . . parts tremble so that the parts in the
midst of it push quickly inward and outward again and again . . . Today I saw an experi-
ment of this. There was a glass half full of water or wine and a wet finger pressing the
edge was drawn around it. While this happened, a sound was heard coming out of the glass,
and at the same time the water near the edge jumped and cast up little drops . . . The water
seemed to boil around the sides but to lie quiet in the middle, and the boiling was drawn
around, following the motion of the finger.”” In 1618 BEECKMAN writes3) that DESCARTES
showed him that the low strings of a lute can excite the higher ones, but not vice versa;
also, that a sounding string will excite another tuned up a fifth, but not one tuned a fourth
higher. BEEcKMAN then gives his former explanation more clearly : While the second string
tuned an octave and a fifth higher makes three vibrations, the first string makes one, so
that the vibrations ‘“agree alternately”’. In 1635 MERSENNE%) published this passage
almost word for word, attributing its content to BEECKMAN.

In considering the bending of a beam, BEECKMAN in 1620 recognizes that the parts on
the convex side are extended, while those on the concave side are contracted, but he does
not attempt to formulate a theorys5).

In 1630 BEECKMAN®) informs MERSENNE that when a weight is attached to a string,
“the longer is the string, the more the weight descends . ..” That is,

(7) e = éli = const. when F = const.

presents 189 ‘‘experiments” or pronouncements on sound and music; while not the only early writer
who prefers projecting experiments to performing them, he shows talent for missing essentials while
reporting trivia, and his book exemplifies the vacancy of experiment and speculation undisciplined by
mathematics.

1) Journal £ 67r (1616—1618).

2) Journal ff 86v—=8T7r (1618).

3) Journal ft 100r—101v. Cf. also f 105r. On f 128r (1619) is an unsatisfactory discussion which
seems to indicate that BEECKMAN may have the idea that the same body may resonate at different
frequencies.

4) Harmon. Libri 12 (cited below, p. 29), Lib. IV, Prop. 29. Cf. also Prop. 29.

5) Journal ff 137 bis v, 139 bis v.

6) Journal f 362r. DESCARTES writes to MERSENNE in January 1630 that a string stretched slowly
will break in the middle; quickly, at the ends. This seems to be first recorded observation since HERON’s
day that the static and dynamic strengths of a body may differ.
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[Thus BEECKMAN perceives that it is strain e, rather than merely elongation 417, that
measures the effect of a force in stretching a string of given material and cross-section.]

4. MERSENNE on vibration and rupture (1623-1636). In 1623 MERSENNE, before he
met BEECKMAN or saw his work, published?) (4), (5), and (6). Moreover, MERSENNE writes
that a bell can give out three tones at once: its proper sound, the octave, and the twelfth,
and possibly also two more. He thinks he distinguishes the same phenomenon in organ
pipes and other instruments. [That is, a vibrating body may emit several definite tones simul-
taneously?).] That different methods of blowing cause a pipe to emit a sequence of different
tones had long been known from musical experience, and it seems that MERSENNE connects
these phenomena and proposes the problem of determining the sequence of overtones of a
vibrating body?), e. g., a string.

In 1625 MersENNE*?) published rules of proportion equivalent to the law

(8 o L VT T = tension or stretching weight,
) 4 TV

A = cross-sectional area or “‘thickness’,

which he had inferred from experiment. [This beautiful discovery of MERSENNE, gener-
alizing (6), may fairly be recognized as the first concrete result in the science of vibratory
motion.] The circumstances of finding it are not known?).

1) Cols. 15569—1561 of Quaestiones celeberrimae in Genesim, Paris, 1623. I have never been able to
see this work; for the specific attribution, I am content to cite pE Waarp, Note 1 on p. 161 of BEECK-
MAN's Journal 3.

In an entry dated 12 August 1630 (Journal f 362r) BEECKMAN writes that MERSENNE asked him
the reason why (6) holds, and BEECEMAN replied along the lines he had written in 1614—1615 (above,
pp. 25—26).

2) According to MATTEEW YOUNG, op. cit. infra. p. 294, there is a letter of 1618 from DESCARTES
to MERSENNE (cited by Youna as “Ep. P. 2 Ep. 106”’) referring to ‘‘the different tones which are pro-
duced at the same instant by the same string,” but no such letter is printed in Correspondence du
P. MariN MERSENNE, ed. DE WAARD, 1 (1617—1627), 1932; 2 (1628—1630), 1936; 8 (1631—1633),
1946; 4 (1634), 1955.

3) MERSENNE is a rather vague writer, and besides this it is necessary to infer the question from
the replies sent him by various correspondents from 1625 onward, since MERSENNE's relevant letters
are lost. A feeble explanation is given by DESCARTES about 1626 (Corresp. de MERSENNE, No. 51):
‘. .. all the higher sounds are present in the lower ones, just as the shortest strings are in the longest,”
etc., and ‘‘sound is easier to divide in two parts,” etc.

4) P. 616 of Vérité des Sciences, Paris, 1625. I have never been able to see this work; for the
specific attribution, I am content to cite b8 WAARD, Note 2 on p. 98 of BEECKMAN’s Journal 3.

DESCARTES communicated (8) to BEECKMAN in 1628—1629 (Journal f 334r), at the same time
characteristically disposing of it as ‘“no wonder . . ., since a string twice as thick behaves in the same
way as two simple strings separately.”

5) In the twenty-five published letters to and from MERSENNE prior to 1625, (8) is not mentioned.

Evidently in answer to questions from MERSENNE, there are discussions of sympathetic vibration
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On 28 February 1629 MERSENNE proposes!) to BEECKMAN the problem of determining
the motion of a vibrating string; in particular, of calculating the ratio of successive ampli-
tudes. On 13 November and 18 December 1629 DESCARTES writes to MERSENNE that the
amplitudes diminish in geometric progression. DESCARTES?2) considers the restoring force to

(3

be proportional to the deflection; hence ... the force which makes the string return is
greater in proportion as the string is pulled away from its straight line, and, being unequal,
it makes the diminution of the returns likewise unequal, and that is the geometric pro-
gression.” [If the remarks of DESCARTES are unsatisfactory, the reader should recall that an
adequate theory of the viscous and frictional damping of a vibrating string remains to this
day unknown?).]

In 1635 MERsENNE published a great treatise on acoustics and musie, his Books on
harmonic matters®). Book II gives a disordered list of propositions on vibrating bodies;
[these show that MERSENNE is now somewhat beyond his depth in attempting to generalize
from the definite results he had inferred from experiments on strings.] Prop. 1: The dif-
ference of sizes and shapes of bodies makes the difference of their sounds. Prop. 2: By so
much the moister is a body, by so much lower is its sound. Prop. 3: By so much the harder
is a body, by so much the higher is its sound. Prop. 4: The loudness and pitch of sounds are
not always as the weight of the sounding body. Prop. 5: The denseness and rareness of
bodies make different sounds, but not proportionally. Prop. 6: As the length of one body
is to that of another body of like material, or as the volume to the volume, so is sound to

in the letters from CLAUDE BREDEAU of 30 January 1625 and from JEaN CHATELIER of 12 April 1625;
the lattor shows that sympathetic resonance of a string tuned an octave, a twelfth, ete., above the sound-
ing string was more or less well known.

Later letters of MERSENNE contain hundreds of references to problems of vibration.

The book of R. LENOBLE, Mersenne ou la naissance du mécanisme, Paris, 1943, furnishes little
or no information regarding MERSENNE’s work on acoustics and strength of materials.

1) Letter of MERSENNE to ANDRE RIvVET. BEECKMAN’s replies of March, June, and 1 October 1629
do not go beyond his old work on this problem (above, pp. 25-—26).

2) DESCARTES also tells MERSENNE sarcastically that he had explained sympathetic vibrations
in a treatise he had left with BEECKMAN for eleven years (s. e., since 1618), “and if that time suffices
for copying it, he has the right to attribute it to himself.”” DEscarTEs had indeed written such a treatise
and left it with BEECKMAN, but BEECKMAN had written his explanation (above, pp. 25—26) in his
Journal long before the entry stating that DESCARTES was in the course of writing the treatise (Journal
f 104v); DESCARTES’ explanation to MERSENNE is precisely the same as BEECKMAN’s.

3) Even for the motion of a pendulum in air the question of frictional damping is one of cele-
brated difficulty. The first quantitative treatment is to be given by EULER, E569, “De motu penduli
circa axem cylindricum, fulcro datae figurae incumbentem, mobilis, habita frictionis ratione. Dissertatio
altera,” Acta acad. sci. Petrop. 1780: II, 164—174 (1784); presentation date: 19 August 1776. In this
work EULER finds that the amplitudes decrease in geometric progression.

4) Harmonicorum librs . . ., Paris, Baudry, 1635, [xii] + 184 pp.
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sound. [As we shall see below, the former statement of this “‘broadest . . . of all proposi-
tions in music” is true, but the latter statement seems obviously to contradict it.]

Props. 7—13 and 18 state (8) and its various consequences at length. In commenting
on Props. 8 and 9, MERSENNE writes that in order to increase by an octave the pitch of a
string stretched by a 1 Ib. weight, we have to stretch it not by 4 lbs. but by 41 Ibs.
[This may represent the correction arising from the slight stiffness of real strings.]

Props. 14—17 and 19 give evidence for (4) and are the source whence this basic
acoustical law was immediately diffused. ‘... experiment always confirms that if two
strings of brass, hemp, or gut are stretched until they are in unison, they make their
returns in the same time, however their lengths and thicknesses may differ; whence it
follows that the ratio of the sounds is the same as the ratio of the number of returns.”” For
the “number of returns’” MERSENNE introduces the term frequency. The pitch of an organ
pipe may be defined as the frequency of a consonant string.

Prop. 21 seeks to establish “an exemplary and stable sound by which we may delimit
the other sounds” [:i.e. a standard of frequency]. The figure MERSENNE gives here and
at several later points in the book suggests he thinks the shape of an initially triangular
string remains triangular during the motion?). Coroll. 1 to Prop. 26, which asserts (4),
states in effect that the frequency of large oscillations is about 3%, less than that of small
oscillations, caeferis paribus. Prop. 29: “All the returns of a string are approximately
isochronous; that is, they occur in the same amount of time.” The explanation shows
that MERSENNE is thinking not so much of two different motions started with different
amplitudes but of the successive vibrations in the same motion as it is damped. Thus
Prop. 30 demands the time taken by the ““whole motion”. According to Prop. 32, repeated
experiments show that the ratio of successive amplitudes decreases, but MERSENNE
[following DESCARTES, cf. above, p. 29] considers that in a vacuum this ratio would be a
constant, which his experiments suggest should be 20/19. [All of MERSENNE’s statements
about strings are interwoven with remarks on the motion of a pendulum; like BEECRMAN
and GALILEO, he senses but cannot prove a connection.]

Warming to the subject of frequency, in Prop. 33 he writes, “Since this [concept of]
frequency is applicable not only to strings but also to other bodies giving out a sound, as
bells, organs, flutes, bands, efc., let us now discuss only sinews or strings, from which the
judgment of the rest may be gathered.” Prop. 37: “To determine whether a sinew gives
out a lower tone at the end than at the beginning of its motion . . .”” Experiment shows that
the amplitude decreases but the frequency remains the same; therefore the speed decreases.

1) DEscARTES objected not only to this but also to considering the motion as plane rather than
whirling. Cf. his letter to MERSENNE of 15 May 1634.
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If the pitch depended on the speed of the motion, it would thus decrease, but we hear no
such effect. MERSENNE regards this argument [due to BEECKMAN, above, pp. 256 —26] as
crucial in favor of (5). A still better one follows: The points nearer the fixed ends of the
string move at far lesser speed than those in the middle, yet the string gives out but one
note. Finally, Coroll. 7 to Prop. 36 asserts that frequency is as ‘‘the Lydian stone” for
everything concerning sound.

In Book III, Prop. 2 discusses the proportions to be assigned to the strings of an
instrument so that it will give out an equable tone. According to Prop. 3, a musical string
should be stretched to half the tension under which it breaks. Prop. 7 lists the results of
experiments on the breaking strength of strings but reaches no definite conclusion, while
Prop. 16 [contrary to the expectation of LEONARDO DA VINCI, above, pp. 19—20] asserts
that experiments show the breaking strength of a long string to be the same as that of a
short one, with some reservations.

A final attempt to determine the motion of a vibrating string, in Prop. 21, leads to
nothing.

In the next year appeared MERSENNE’s Universal harmony'), written in his own idiom
and for the most part a still more diffuse account of what was in his Latin treatise. Prop. 8
of Book IIT asserts that ‘... strings and all other kinds of bodies make three or four
different sounds at the same time, and these are harmonious.” [To explain the former
statement from mechanical principles while disproving the latter is to be DANIEL BER-
NOULLI’s great achievement a century later.]

At the end of Prop. 8 MERSENNE writes, ‘. .. it does not follow that other bodies
of cylindrical or other form obey the same law with respect to sounds as do strings, though
many have believed so hitherto...” Prop.9, after remarking upon the difficulty of
experiments on cylinders and repeating that their various tones are harmonious, gives
experimental results which seem to imply that for similar prismatic bars having cross-
sections that are circles, squares, triangles, efc., we have

(9) v X —i— , @ = typical linear dimension.

E. g., to get a bar that sounds an octave higher than a given one, we are to cut down both
the length and the diameter by 3. [This law is correct?), though by the restriction to simul-

1 Harmonie universelle . . ., Paris, Cramoisy, 1636. The date of the Privilége is 13 October 1629.
From MERSENNE’s letter of 20 March 1634 to PEIRESC we learn that the book was complete then and
had cost ten years of work. I have never been able to consult the French and Latin treatises simultane-
ously; thus my citations do not imply that any particular statement in the one is not also in the other.

2) By dimensional analysis, for a material having elastic modulus E, density g, and charac-
teristic linear dimension a¢, we have 1 V‘—l'i

yoC — |/ —.
are
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taneous proportional change of all linear dimensions it falls short of later results. In Prop.
10 MERSENNE notes that a cylinder is not held tense by “‘a weight or any other foreign
force, but only by its own consistency.” Coroll. 1 discusses inconclusively the effects of
length, breadth, and depth on the vibrations of bars of tin or iron. Coroll. 2 proposes what
seems to be the general law » o 1/a?, [but this!) contradicts both (9) and the law that
follows from (8), viz, v « 1/a?].

Prop. 11 gives the results of experiments on bars of many materials. Since all woods
give out nearly the same tone, as do both hard steel and soft iron, MERSENNE decides that
little can be determined about a material by the sounds it emits. Prop. 16 attempts to cor-
relate the pitch with the material of the sounding body, but offers only vague speculation.

Prop. 15 discusses the breaking strengths of beams in four tests: extension, trans-
verse load in the middle, longitudinal thrust, and impact in the middle. We gather that
MEersENNE does not consider his experiments complete, for he is hesitant to draw any
conclusion. He thinks that for horizontal beams supported at both ends, the breaking force
is inversely as the length.

A sequel to the Universal Harmony, published along with it, is the T'reatise on Instru-
ments. In Book IV, Prop. 11 asserts that ‘‘the string struck and sounded freely makes at
least five sounds at the same time, the first of which is the natural sound of the string and
serves as the foundation for the rest . . .”” All these sounds ““follow the ratio of the numbers
1, 2, 3, 4, 5, for one hears four sounds other than the natural one, the first of which is the
octave above, the second is the twelfth, the third is the fifteenth, and the fourth is the
major seventeenth.”” Then there is ““a fifth one higher yet, that I hear particularly toward
the end of the natural sound, and at other times a little after the beginning; it makes the
major twentieth with the natural sound.” Of all these, ‘“none is ever heard that is lower
than the natural sound of the string, for all are higher ... They follow the same pro-
gression as the jumps of the trumpet.” [Thus MERSENNE is the first to determine the
sequence of overtones of the vibrating string?).]

In Book VII, Props. 7 and 10 claim to correct the bad practice of the bell makers by a

The rule (8) is not included because, as MERSENNE in effect remarks, the transverse vibrations of a

. N 11/T
string are not elastic vibrations. From (8), or rather its generalization (10) below, follows vcc - ]/?

when all linear dimensions of the string are scaled proportionally, and this gives »cc 1/a? in place of (9).

1) Cf. the second, false alternative in Prop. 6 of Book II of the Latin treatise, above, pp. 20—30.

2) MERSENNE’s recognition of the pitches of these tones seems to date only from 1633, since in
that year he proposed to several correspondents the problem of explaining them. On 30 May 1633
BerCEMAN replied that the “‘globules of air” may be broken into 1, 2, 3, ... parts, etc. On 21 June 1633
BoULLIAUD transmitted MERSENNE’s observation to GASSEND in a letter full of the new enthusiasm for
science: “I hope to be able to prove something physically and geometrically by a cylinder and a cone
inscribed in it . . .” Of. also the replies of DESCARTES, 22 July 1633, and pE VILLIERS, September 1633.
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better rule relating the tone of a bell with its dimensions [but what the rule is, I cannot
determine.] In a later work!) MERSENNE asserts that for ‘bells, cylinders, and other bodies
of the sort used in harmony” we have »ccl /VW, where W is the weight. [This is but
another expression for (9).

There are few figures in the history of science so appealing as MErRsENNE. His work is
often belittled for its errors, its contradictions, and its disorder. However, his positive
achievements?), obtained not only before there was any theory but also long before
any reasonable standards had been set for experiments, are the greatest ever goﬂten from
purely experimental study of vibrations.] '

1) Prop. III of “Harmoniae liber primus,” Art. I1, in Cogitata physico-mathematica in quibus tam
naturae quam artis effectus admirands certissimis demonstrationibus explicantur, Paris, Antonius Bertier,
1644.

2) A discussion of MERSENNE’s work on acoustics, including some of the topics we have pre-
sented and also his discovery, description, and explanation of beats, is given on pp. 35—58 of H. Lup-
wic's MARIN MERSENNE und seine Musiklehre, Halle-Saale and Berlin, Buchhandlung des Waisen-
hauses, 1935.
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Part I. The earliest speeial problems, 1638—1730

5. The vibrating string, the breaking of a beam, and the catenary in GALILEO’s Discorsi
(1638). Since they were read by everyone, GALILEO’s Discourses and mathematical demon-
strations regarding two new sciences concerning mechanics and local motions') must be given
greater notice here than their content or novelty would otherwise deserve?).

a. The vibrating string. At the end of the First Day, Salviati emphasizes that a pen-
dulum can oscillate only at one determined frequency and describes what would now be
called the phenomenon of resonance. [The example given ismuch the same as that published
by FrRACASTORO almost a century earlier, but GALILEO’s writing is brilliant:] A single man
by pulling the rope successive times at proper intervals can sound a great bell whose
motion suffices to lift four or six men off the floor. This allows us to explain ‘‘the wonder-
ful problem of the string of a guitar or harpsichord which causes to move and resound
another, not only one in unison with it but also one at the octave or the fifth” [i. e. twelfth.
Here, t00, GALILEO’s explanation is much like that of FracasToro;] he mentions explicitly

1) Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica ed %
moviments locali, Leiden, Elsevier, 1638 = Opere (Ed. Nazionale) 8, 39—318 (page references are to
this edition). In English, Dialogues concerning two mew sciences, transl. H. CREW & A.DE SALVIO
(with use of technical terms sometimes suggesting GAariLEO had had the benefit of a freshman course in
physics), New York, MacMillan, 1914, and later reprints, besides two earlier translations by others.
German transl., Unterredungen und mathematische Demonstrationen . . ., Ostwalds Klassiker Nos. 11,
24, 25, Leipzig, 1890—1891.

2) There is much evidence that some of the contents of the Discorsi dates from 1602 or earlier,
but in GarLEO’s correspondence I have been able to find nothing whatever concerning the vibrating
string or the catenary prior to the book itself, which was written, apparently, in 1630--1635.

Not so with the material on beams, for on 11 February 1609 Garireo writes to ANTonIo DE’
Mepicr as follows: “I have recently finished finding all the conclusions, with proofs, concerning the
strengths and resistance of beams of various lengths, sizes, and shapes, and by how much they are
weaker in the middle than at the ends, and how much more weight they will sustain if it is distributed
along the beam rather than in one place only, and what shape they should have so as to be equally
sturdy all along; which science is very necessary in making machines and all kinds of buildings, but
there is no one who has treated it.”

On 17 September 1633 N1cCOLO ARRIGHETTI communicates to GALILEO his views on the breaking
of a heavy horizontal bar supported at its middle. His words are interpretable in two ways, one of
which is consistent with the theory of heavy beams GALILEO published later in the Discorsi, 4. e., with
(14), which GALILEO states, more or less, in his answer of 27 September 1633.

In March 1635 GALILEO writes to ANTONIO DE VILLE an emphatic refutation of the prejudice in
favor of scaling by simple proportion. Suppose a bridge can bear 1000 lbs. ‘It is desired to know . . . if
another bridge, made of the same wood but with all its members increased fourfold . . . will be strong
enough to bear 4000 Ibs. There I say no; and I say no even thus far, that it could happen that such
a bridge would not even be able to support itself, but would collapse from its own weight,” efc. GALILEO
writes of the Second Day as if it were then complete.

(The three letters just described were first published in 1718.)
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that “‘the string tuned to unison with the one touched is disposed to make its vibrations

b

in the same time,” etc., [but he says nothing to explain the sympathetic vibration of a
string tuned to the octave or the twelfth?).] ‘The undulation, spreading out through the
air, moves and causes to vibrate not only strings but also any other body disposed to
tremble and vibrate with the same [periodic] time as that of the trembling string, so
that if one fixes upon the case of the instrument little pieces of bristle or other flexible
material, when the harpsichord sounds it will be seen that now this, now that little body
trembles too, according as is touched that string of the harpsichord whose vibrations
occur in the same time: The others will not move at the sound of this string, nor will that
one tremble at the sound of another.” [Thus GALILEO perceives that a bristle has a
natural period, but he gives no attention to determining it.] The sounding of an appro-
priate tone on a musical string causes a glass nearby to emit the same tone, and if the
glass is partly full of water, this same act induces standing waves on the surface. *“. .. and
sometimes it happens that the tone of the glass jumps up by an octave, and at the same
moment I have seen each of those waves split in two, which effect most clearly shows the
form of the octave to be the double?).”

Into the mouth of Sagredo [and hence perhaps to be regarded as accepted science of
the day] GALILEO puts the statement that in order to make a string emit a tone higher
by an octave it is sufficient (1) to shorten it by one half, (2) to quadruple the stretching
weight, (3) to diminish its greatness?) fourfold, other things being equal. [We are tempted
to conclude that MERSENNE’s formula (8) was common knowledge. This is not so.] Sagredo
is not convinced when the authors “who have written learnedly on music . .. say that
the octave is contained in the double, . . . the fifth in the three halves’ part.” From the
facts (1), (2), (3) one could just as well consider the octave as the quadruple [or as the inverse
quadruple]. But since to number the vibrations of an audible sound is “entirely impos-
sible,” we could never know if “the string an octave higher really makes twice as many
vibrations in the same time,” were it not shown by the standing waves on the water glass.
[Thus GALILEO regards (8), or at least the satisfactory establishment of it, as his own.]
Indeed, after recounting the celebrated observation that an iron file which emits a tone
when scraping brass leaves parallel and equidistant seratches, the closer together the higher
the sound, Salviati goes on to correct (8). The effect Sagredo refers to greatness “‘ought
more properly to be attributed to weight”’; Salviati then states clearly that

1) Thus it is unlikely that GALILEO was influenced by the more complete idea of resonance which
BeeckMAN had developed in 1618 and which MERSENNE had published in 1635.

2) This remark was to be appropriated by BLONDEL in 1681; see Hist. acad. sci. Paris 1666—1699,
1, 4to ed., Paris, 322 (1733).

3) I translate “grossezza’ by ‘‘greatness’; from the context it is plain that GALILEO here means
“cross-sectional area’’, while in the Second Day he means ‘“‘depth”.

143

143

148—144

144—146



146—147

147—149

36 EARLIEST SPECIAL PROBLEMS

(10) Y % I/_G—T? , og = pAg = weight per unit length,
independently of the material. [This capital refinement of (8) GALILEO may have inferred
from experiment?).]

Salviati goes on to say that ‘‘the nearest and immediate reason [or rule?] for the
forms of musical intervals is neither the lengths of the strings nor the tension nor the bulk,
but rather the proportion of the numbers of the vibrations . . . Consonant and pleasantly
received will be those pairs of sounds that strike upon the tympanum of the ear with some
order?), which order requires first that the blows made within the same time be commen-
surable in number, so that the cartilege of the tympanum shall not have to be in a per-
petual torment, bending itself in two different ways so as to agree and obey the ever
discordant beating.” To this Simplicio, who has long been silent, says “I should like this
matter explained with greater clearness.”” [The following explanation is most confusing]:
the amplitude is at first taken proportional to the period, but it seems this is only a device
for visualizing the period as a line. Without actually stating an analogy between the vibrat-
ing string and a pendulum, GALILEO plays upon the effect of resonance noted above;
the “order” of the commensurable vibrations seems to consist in the fact that the two
oscillating points if started at the same time will reach their maximum displacements
simultaneously after a stated number of periods.

[GALILEO’s contribution to the science of vibration has been exaggerated. His

1) This is not proved by his explanation, which in addition to asserting a comparison between
the tones of harpsichords fitted with brass and gold strings, respectively, draws an analogy to the
different resistances attributable to the weight and the size of a body moving in a medium.

MersENNE did not know the correct dependence of v on ¢ at this time, as is shown by his refer-
ences to ‘“‘thickness and material”’ in Prop. 18 and the discussion of the effect of qualities such as
hardness in Props. 41 and 42 of Book II of Harmonicorum libri (cited above, p. 29). In Prop. 4 of
Book III MERSENNE gives a table of measured frequencies of strings as a function of their weights
when T, A, and [ are the same; while these measurements may be seen to verify (10), MERSENNE does
not perceive this proportion.

In Props. 17—18 of Book III of his French treatise (cited above, p. 31), MERSENNE in reporting
experiments on various kinds of vibrating bodies writes that it is very difficult to determine the effect
of the density, and his results seem to contradict any simple dependence upon it.

In his Cogitata (cited above, p. 33), published after the appearance of GALiLEo’s work, MERSENNE
states (10) in Prop. II of Art. II of Harmoniae liber primus.

MERSENNE expressed great admiration for GALILEO, who did not reciprocate. MERSENNE attempted
to correspond with GALILEO from about 1625 onward, but with little success. MERSENNE took careful
account of everything GAriLeo published and had knowledge of some of GALILEO’s unpublished work.
There is no indication that GALILEO took any notice of the work of MERSENNE.

2) This is not a new idea, being merely a mechanical paraphrase of the PYTHAGOREAN views,
which were held, in one form or another, also by many other scientists, e. g., by BEECKMAN.
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adopting (5), which was not new, doubtless hastened its widespread acceptance. His
formula (10) is an important refinement of MERSENNE’s formula (8), but he gives no
evidence of knowing many of the experimental facts observed and published by MERSENNE.
For example, while he barely mentions harmonic resonance, he states nothing regarding
the overtones of a string. On the other hand, there is no hint of mathematical proof or
even theory. Like BEECKMAN, GALILEO sets the sonic motions side by side, as it were,
with the swinging of a pendulum, but he does not apply mechanical principles at all and
does not even state (4) explicitly, although it is presumed by (5). In regard to the vibrating
string, GALILEO is inferior to MERSENNE as an experimenter, inferior to BEECKMAN as a
theorist, but superior to both in imagination and in persuasive writing.]

b. The breaking of beams. The Discorsi open with Salviati’s statement that “the com- 50
mon opinion”’ that a machine proportionately larger is also proportionately stronger is
“absolutely wrong”. [In a word, GALILEO will initiate us into the mysteries of scaling
laws.] He begins by considering the breaking of a column by pulling it, but he is diverted to 55
other subjects; when he returns, we find that he considers the breaking strength of a barin 156—157
tension to be independent of the length. He has told us that the coherence of some solids, §54—05
at least, is like that of a rope, in reference to which he gives the following argument.
Salviati says, “I fear, Simplicio . . ., that . . . you are making the same mistake as many 161—162
others; that is, if you mean to say that a long rope . . . cannot hold up so great a weight
as a shorter length . .. of the same rope.” He attaches a weight C (Figure 5) just suf-
ficient to break the rope and asks Simplicio where the break will occur, and
Simplicio replies, “Let us say at D ..., because at this point the rope is
not strong enough to support, say, 100 Ibs.” Salviati then, fixing the rope
at F, just above D, and attaching the weight at Z, points out that at D
the rope is still subject to the same pull, and thus the short segment FE
will break again at D, by Simplicio’s admission. [While this reductio ad
absurdumis in itself unsound, it convinced many readers and has been repeat-
ed by many later authors. To complete the argument one has to assume
that the section of rope DB has no function but to transmit the force of
the weight, and this is tantamount to assuming the conclusion. The value
of this passage lies in its considering the whole effect at D of the rope and
weight DC to be a force in the direction DEB. In replacing the action of the
system below D on that above D by one force, it furnishes the first
primitive example of the stress principle of continuum mechanies?).]
Figure 5. Sketch for GALILEO’s argument to show that a long rope is as strong as a Sho(rf(;%%?

1) By later authors and historical writers GALILEO’s arguments on beams are sometimes pre-
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Shortly after the beginning of the Second Day, GaLILEO takes up the problem of a
prismatic beam built in at one end and loaded by a weight at the other (Figure 6). He
regards the beam as a compound lever with fulerum at the under side B; the length BC
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Figure 6. GALILEO’s figure for the breaking of a beam by terminal load (1638)

is one arm, on which acts the weight H, and [half of] the greatness [¢. e. depth] AB is
the other arm, “in which resides the resistance.”” The first proposition is, ‘The moment of
the force at C to the moment of the resistance . . . has the same proportion as the length
CB to the half of BA, and therefore the absolute resistance to breaking ... is to the
resistance [in the present case] in the same proportion as the length BC to the half of
AB...” The “absoluteresistance” is ‘“‘that which occurs when the beam is pulled straight
on, since then there is as much motion in the mover as that of the moved.” [This last

seni',ed in terms of the concept of stress, but it is not to be found in GALILEO’s own words. See esp.
p- 159, where the temptation is great.
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is difficult to understand; we infer that] GALILEO’s ‘‘absolute resistance” is the weight
P, required to break the beam by direct pulling. Thus the proposition reads?)

P, = “absolute resistance” or
breaking force in tension,

(1) Py _ P, = breaking force in bending
by terminal load,

1 = length,

D = depth or thickness.

While GALILEO says this follows ‘‘from the things asserted”, the preceding passage merely
describes the actions of levers and mentions the common experience that a long beam is
broken by a lesser weight transversely than directly. In order to take the weight of the 1567158
beam into account, add half of it to Py .

When a beam is loaded first in the direetion of its thickness D and then in the direction 158
of its breadth B, by (11) we see that the breaking strengths P, in the two cases stand in
the ratio D/B, explaining why a rule supports a much greater weight when stood on edge
than when laid flat.

“There is no doubt” that the [absolute] resistances P, of two cylinders are to each 160
other as the base areas, “‘since by so much greater are the fibres, the filaments, or the
tenacious parts that hold together the parts of the solid.” [That is,

(12) P, = KA,

where 4 is the area of the cross-section and where K is a constant depending only on the
material, not on the shape.] From (11) follows

2
—A%Q—, or P, DlB s

(13) Py

where the latter form is asserted for rectangular beams. An argument supporting the so
far unproved basic formula (11) is now supplied. The filaments are “scattered over the
whole surfaces” of the cross-sections, so they may be regarded ‘‘as if all were reduced to
the centers.” [Thus we see that (11) results from the balance of moments about the lower
edge of the beam. The moment of the load E is Py l; this equals the moment of the absolute
resistance P,, thought of as concentrated at the mid-point of the base; therefore

P,l=P,.}D.

Later writers will replace this ecrude approximation by an integral over the base (see below,

1) The lengths B and D are defined here for consistent later use; they are not to be confused with
the points labelled B and D in Figure 6.
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pp. 61—62, 102—104).] Taking A4 o d®, where d is now the diameter or typical linear
dimension of the cross-section, since Do d GALILEO obtains from (13) the rule (3), [known
at least in part to LEONARDO DA VINcI].

To analyse the bending of a beam due to its own weight, GALILEO considers the weight
W concentrated at some unspecified point, so that (3) applies. Since P, d? by (12), it
follows from (13) with W« P, that

(14) Wi ds o (PYF

a result which GALILEO interprets as asserting that the ratio of the bending moments
exerted by similar heavy beams is as the § power of their breaking strength in tension.
“Among heavy prisms and cylinders of similar figure, there is one and only one which
under the stress of its own weight lies just on the limit between breaking and not break-
ing . . .” There follows a [mysterious] passage in which GALILEO tries to apply (14) so as to
determine the scaling rule for a beam to break under its own weight, or, more generally,
to determine the laws under which an arbitrary relation between bending moment and
resistance is preserved. [Much of his reasoning is correct, but his summary of it is not?).
Writing M for the bending moment, replace (11) by M = « DP,, and for bending of a
heavy beam take M = BWI, where « and B are constants?); since W = pgAl, by (12)
follows Bogl? = x« KD, or

(15) D2 ]

Thus “not only art, but also nature cannot make its machines grow to a vast immensity”’
unless harder and harder materials are found, for to make a beam of greater length have a
proportionately greater strength requires a disproportionate thickening, as GALILEO
illustrates by a figure of a little bone and one three times as long and sufficiently strong as
to “perform the same function”. [GALILEO does not disclose what the function is, and he
carefully avoids saying what scaling law he uses. Measurement of his figure indicates
that he takes Doc 3. Be this as it may,] GALILEO concludes that “if the size of a body is
diminished, the strength of that body is not diminished in the same proportion; indeed,
the smaller the body the greater its relative strength.”” [This may be true, but it is a
flowing generalization of the very special results he has obtained.]

By an appeal to symmetry, GALILEO infers that if a beam is just long enough to break

1) The error is not noted in any edition or translation I have seen. Both toward the end of
p- 167 and at the beginning of p.169 GALILEO states that d®coc Py, contradicting his own result (14),,
which is stated in his Prop. VI. The passage is hard to understand because of shifty wording and may
be corrupt.

2) On pp. 157—158 GaLLEO has said that B = }. The formula M = }pgA? is the essential
content of his Prop. 3.
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when built in at one end, a similar beam twice as long is just long enough to break when
simply supported at its middle or at its two ends. [This is the first occurrence of an
argument later to be used frequently in connection with elastic curves.]

Toward the end of the day GALILEO proposes the problem of the solid of equal resis-
tance. Such a solid is so shaped that its absolute resistance at each cross-section is just
sufficient to balance a fixed load of a given type. From (13) we see that for a weightless
beam loaded by a weight at one end, the general equation of such a solid is

(16) AD|l = const.

GALILEO assumes the solid to be a cylinder with horizontal generators normal to the plane
of bending; then 4 o« D, and from (16) the generating curveis D?/l = const., a parabola.
[To the problem of calculating solids of equal resistance subject to various loads and geo-
metrical conditions a large subsequent literature was devoted?).]

1) GaLiLEO’s theory is applied to different shapes and different loads by V. Viviawni, “Trattato delle
reststenze,”’ completed by G. GraNDI, Opere di GaLiLro 8, 193—305, Firenze, 1718 = Opere di GALILEO
3, 213—307, Padova, 1744. A diffuse account and elaboration of GAaLiLEO’s theory is given by FABRI,
Lib. V of Tract. IT of Physica, id est, scientia rerum corporearum ... [1], Anisson, Lugduni, 1669.
According to MUSSCHENBROER, FABRI is often in error.

Of. MERSENNE, Props. 18—19 of “Tractatus mechanicus theoricus et practicus,” included in his
Cogitata, cited above, p. 33.

Cf. also Ricer’s letter to TorrICELLI of 18 July 1643.

GarLeo’s results are attacked by BLONDEL in two discourses dated 1657 and 1661, being the
fourth part of ‘““Resolution des quatre principaux problémes d’architecture,” Paris, 1676 or 1677 = Mém.
acad. sci. depuis 1666 jusqu’s 1699, 5, 355—530 (1729). HuYGENs saw this work, and in his letter to
Lopewirk Huovarns of 10 August 1662 he expressed a low opinion of it: “ . . . at least for me, these are
very easy things.” HuYGeENS himself, in notes dating from 1671, Oeuvres complétes 19, 70—72,
considered a rectangular beam fixed obliquely into a wall, as had FABRI. A. MARCHETTI, De resistentia
solidorum, Vangelisti & Martini, Florence, 1669, [xii] + 127 pp., claims in his preface to disprove
GALILEO’s proposition that the prismatic solid of equal resistance is parabolic. According to MUSSCHEN-
BROEK, there are errors in MARCHETTI’s work.

Examination reveals that MARCHETTI adopts (13), spins out endless corollaries and generalizes it
to beams of various simple shapes, including non-prismatic ones, but I do not find in his text either
errors or the source of his criticism of GALILEO. His Props. LXXXII sqq. on parabolic beams seem to
agree with GALILEO’s theory.

G. GRANDI’s Risposta apologetica . . ., Lucca, Pellegrino Frediani, 1712, [xvi] -+ 288 pp., is a most
wordy answer to MARCHETTI. Pp. 45—47 give a chronology of the work of BLONDEL and MARCHETTI
from 1649 to 1673. Lib. IT, Cap. VII, gives seven propositions which are claimed to correct those of
MARCHETTI on solids of equal resistance.

It is difficult to find sense or interest in this diffuse literature. It exemplifies the common
historical experience that once mechanical principles, right or wrong, sufficient to set definite and not
too difficult mathematical problems are proposed by a recognized authority, an abundant harvest of
taediosa follows.

Further bibliography is given by PEARSON, § 5 of op. cit. ante. p. 11.

178—181
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“But, in order to bring our daily conference to an end, I wish to discuss the strength
of hollow solids, which are employed in art, and still oftener in nature, . . . so as greatly to
increase strength without adding to weight. Examples are seen in the bones of birds and in
many kinds of reeds . . . For if a stem of straw which carries a head of wheat heavier than
the entire stalk were made up of the same amount of material in solid form it would offer
less resistance to bending and breaking.”” Comparing a hollow cylindrical tube with a solid
one of equal area and length, since by (12) P, is the same for each, we see by (11) that their
breaking strengths P, for bending are in the ratio of their diameters. “Thus the strength of a
hollow tube exceeds that of a solid cylinder in the ratio of their diameters . . .2),”” and the
more general proportion (13); applies for all eylinders of the same material.

[In summary, GALILEO takes account of the effect of a load on a beam only through
its moment. He recognizes that the resistance of the beam is due to the mutual action of
its fibres but is unable to formulate a mathematical theory in which these fibres occur.
He tacitly regards a solid body as rigid and undeformable prior to rupture. In accord with
this, he takes it as self-evident that the criterion for failure?) is the magnitude of the load.

While GALILEO proves the various corollaries following from (11) with elaborate rigor,
for the basic law (11) itself he gives only some mysterious juggling?). It is sometimes said
that GALILEO regarded the stress in the beam as uniformly distributed over the cross-
section; while this false assumption suffices to derive (11), GALILEO himself uses no concept
of interior stress, and his regarding P, as acting at the midpoint of the base is no more than
a guess or a postulate. Since all his subsequent results are proportions such as (13), the

1) Garmeo does not notice the paradoxical corollary that the strongest tube of given area is of
infinite radius and zero thickness.

2) Cf. also the discussion at the beginning of the First Day, esp. p. 5. The modern literature
often attributes to GALILEO the idea that a solid fails when a certain maximum stress is attained;
indeed, this is a natural modern inference from his expressed viewpoint, but of course nothing of a
local character oeccurs in his work.

3) The two weak points in GALILEO’s theory of strength, namely, (12) and the factor % in (11),
were pointed out by Barrani, who in his letter of 1 July 1639 to GALILEO writes, “I wish you had
explained ever so little more,” etc. GALILEO’s answer of 1 August 1639 gives a vague allusion to the
symmetry of the cross-section and the law of the lever but does not face the issue.

In his celebrated critique of the Discorsi, sent to MERSENNE on 11 October 1638, DESCARTES
pounces upon (11): that “. . . the force . . . is like a lever with fulerum at the middle of its thickness . . .
is not at all true, and he gives no proof of it.”

As regards the catenary, ‘‘His two means of describing the parabola are merely mechanical, and
in good geometry they are false.” (Doubtless DESCARTES knew of BEECKMAN’s partial proof that the
parabola corresponds to uniform load per unit horizontal length (above, § 3), whence it is clear that the
catenary is not a parabola.)

Most of DESCARTES’ criticisms are ill taken, however, as when he denies the dependence on ¢
as given by (10), asserting instead that strings of different materials vibrate at different frequencies
in consequence of the differences of hardness.
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error introduced by the factor } is cancelled out, but the error resulting from neglect of the
bending of the beam is not. According to GALILEO’s theory, in effect, the dimensionless
scaling parameter is KAD|IP, , where K is the mean stress for rupture in tension; according
to the BERNOULLI-EULER theory (below, § 60), the parameter is KADZ?/I*P,, where
K is the stress required to produce a specified elastic strain of the fibres. By dimensional
. . KA ,(A D

analysis alone, the general parameteris ——f| =, <

Py, "\D*’ |

tion to be determined by some hypothesis of elasticity or rupture. In engineering practice
it is customary to take f(,n) = 7*, where 1 < a < 2; in a sense, that is, to interpolate
between (GALILEO’s theory and the BErNoULLI-EULER theory.

The central concept of modern theories of materials is the stress vector, introduced in
its final generality by Cavcry in 1822. In this history we shall follow with especial care

, where fis a dimensionless func-

and interest the preliminary concepts from which it grew. To this end, the properties
defining it must be distinguished :

i. Its dimensions are [force]/[area].
ii. In elasticity theory, there is a material constant of the same dimensions.
iii. The constant mentioned in (ii) represents a specified stress required to produce a
specified elastic strain.
iv. The stress vector represents the action of interior parts of the body upon one another.
v. The stress vector may subtend an arbitrary angle with the (imagined) boundary
across which it aets.

All these properties are independent of each other and belong to varying levels of sophis-
tication in mechanics.

The equation (12), described in words by GALILEO, introduces properties (i) and (ii);
in this sense, we may say that GALILEO initiated the theory of stress. But in his work there is
no trace of any of the further properties, except for the hint toward (iv) mentioned on
p. 37. In particular, while K in (12) is a material constant having the dimensions of
stress, it is not an elastic modulus, being rather the stress such that, if uniformly applied
over a cross-section, it will rupture a body heretofore rigid.]

c. The hanging cord. Among other means of describing a parabola, GALILEO mentions
the following. “Fix high up on a wall two nails equally distant from the horizontal . . . and
from them hang a little thin chain .. .; this little chain will bend itself into a parabolic
figure!).” [Thus GALILEO’s ideas are inferior to the unpublished work of BEECKMAN on the

1) On pp. 369—370 of vol. 8 of the Ediz. Naz. is a fragment indicating that GALILEO’s motive
for this supposition is an analogy with the motion of a projectile, which he knew to be parabolic: Just
as the parabola of a projected body is described by two motions, horizontal and perpendicular, so the
form of the little chain results from two forces: horizontal, from what pulls it at the end, and per-

186
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catenary?').] The Discorsi close with GALILEO’s proof that any string, no matter how
tightly stretched, sags somewhat in the middle. To this end GALILEO considers the weight
of the string as concentrated at its center, [as had LEONARDO?).

d. GQarizro’s method. To the reader without preconceptions, GALILEO’s writings on our
subject bring a strange experience. A complete absence of mathematical proof at essen-
tial points?) is set against a background of an almost Platonic love of regular geometrical
figures and strict demonstration of trivial details, accompanied by a complete absence of
reference to specific experiment. Experiments, indeed, can scarcely have entered the pro-
cess, since most of the physical assertions GALILEO makes are not consonant with later
experiments. Rather, it is difficult to regard his work as more than a sequence of ingenious
conjectures, brilliantly described and eloquently pled. .

In contrast to earlier writers, GALILEO here avoids seeking causes and never attributes
anything to ‘“tendencies”. Not only are his words usually clear and concise, but also he is
the first to put forward any considerable body of definite, quantitative statements,
capable of subsequent proof or disproof by reason or experiment.

For his application of statical principles to the problem of rupture of a beam he deserves
to be regarded as the founder of the theory of strength of materials. His great achievement
here is refutation of the common idea (indeed, common even today) that all effects are
proportional to the sizes of the members, and his construction of a theory of scaling.
That his proportions are correct only subject to a hypothesis not generally verified in prac-
tice is less important than that he did obtain definite scaling laws, right or wrong. Herein
lie his enormous insight and originality.]

6. The unpublished work of HuvcENs on the suspension bridge (1646), the breaking
of a beam (1662), the vibrating string (1673), and the vibrating rod (1688).

a. The suspension bridge. On 28 October 1646 HuycENs?), seventeen years old, writes
to MERSENNE, “In another letter I will send you the demonstration that a suspended chain

pendicularly downward, by its own weight. The same reason is advanced somewhat less clearly at the
end of the Fourth Day, pp. 309—310.

1) According to LEIBNIz, JoacHIM JUNG ‘“‘excluded the parabola by calculations begun and
experiments finished, but could not find the true line.” I have never been able to see the book of
Juna, Geomeiria empirica, Rostock, 1627; later eds., Hamburg, 1630, 1642, 1649.

On 18 June 1645 Riccr writes to TORRICELLI that a friend wished to measure depths by the fall
of a line hung from the two sides. RIccI suggests letting a weight run freely over the line; he can prove
that the two sides of the string will then be inclined equally to the horizontal. This is a rediscovery of
the result of LEoNARDO DA VINCI (above, p. 21).

2) The proofs and drawings of GALILEO and LEONARDO here are similar.

3) Of. footnote 3, p. 42.

4) All works of HuvaeNs are cited from his (Buvres complétes, where the letters and pre-
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or string is not at all parabolic, and what must be the pressure on a mathematical or
weightless string in order to hang so, of which I have found the demonstration not long
since.” MERSENNE replies on 16 November 1646, * . . . if you can adjoin also the way in
which to press it so as to make it hyperbolic or elliptic, you will surpass yourself.”” [The
importance placed on familiar curves seems frivolous today, but was scarcely avoidable
prior to the ‘“calculation of curves”, as the infinitesimal calculus was often called in its
early days?).]

In his analysis, not published during his lifetime, HuyaENS considers the weightless
string loaded by discrete weights, [as had BEEcKMAN]. He sketches treatments starting

Figure 7. HuvaENS’ drawing for
STEVIN’S theorem (1646)

from two different statical principles. The first
method?) is based on a theorem?) he attributes
to SteEvin: When the weights G and H in
Figure 7 are equal, the vertical through the
midpoint of a segment meets the two adjacent
segments produced. The second treatment?)
rosts on an ewtremal principle: “The center of Figure 8. Huverns’ drawing for the problem
of the suspension bridge (1646)
gravity descends as far as possible.” To dis-

prove GALILEO’s claim, HUYGENS passes a parabola through three points and then shows it

viously unpublished fragments are printed in chronological order; thus detailed citation is usually
superfluous. Most of the correspondence between HuveENs and LErBN1z was published also in LE1s-
Nizens math. Schriften 2.

1) Cf. the comments HUYGENS was to apply many years later to JaAMEs BERNOULLI’S solution of
the problem of the elastica, below p. 97, and also footnote 2, p. 68.

2) Pieces No. 20 and 21, which, despite being written in different languages, form a single work.
They date from November, 1646, as does No. 22; according to a note on p. 811 of (Euvres 10, by
15 June 1646 DEscARTES had seen and approved some form of HuvaENs’ work.

3) Proof of a generalization is given below, p. 67.

4) Piece No. 22. Throughout his life Huvyaens made much use of this principle.
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cannot pass through the rest. Proposition 10 of the first treatment asserts that the figure of
a continuous chain does not differ appreciably from that of one composed of infinitely
many links. [No real limit process is involved.] Propositions 11 and 12 assert that if from a
wetghtless string equal weights are suspended at equal horizontal intervals, the poinis where they
are suspended will lie on a parabolat) (Figure 8). Hence the limit form for the continuous cord
subject to uniform weight per unit horizontal length is also a parabola. HuYGENS asserts
also that if equal parallelograms are placed upon the string as shown in the figure, the points
of application again lie upon a parabola; [this, as he himself was to note in 1668, is false?)].
For a more condensed presentation in final form, HuveEns selected the approach based
on STEVIN’s theorem, but his little treatise was not published during his lifetime3).
HuyeENs’ arguments, resting heavily on special properties of conic sections, are hard to
follow. He gives no hint of how he
was led to suspect the particular kind

of loading that would yield & para-
bolic figure?).

b. The breaking of a beam. The
problem of fracture of a heavy rect-

Figure 9. angular beam supported at two points
Huveens’ drawing for the breaking of a supported beam (1662) (Fi gure 9) is considered by HuveENs

1) A proof is given below, p. 67.

2) Since the pressure of the parallelogram on a frictionless string is normal, the tension 7' is
constant; thus, in the notation to be used below in connection with the catenary, we are to integrate
Ten=1T % — ka2, where 7' is constant; the result is a circle.

3) “De catena pendente,” (Euvres complétes 11, 37—44. Our figures are reproduced from this
version,

4) Between 8 December 1646 and 3 January 1647 MERSENNE received some version of Huy-
GENS’ solution. On 24 January 1647 MERSENNE writes that he accepts the results but not all the proofs.
In particular, HuyGENs had established equilibrium by asserting that “there is no cause for them to
change their position;”’ MERSENNE objects that “Just because you see no cause, it does not follow
that none exists, we do not see all at the first glance, and what does not appear to us at one time
often does appear at another, it is enough that we can doubt whether there be any cause.” Another
fragment by HUYGENs, from 1647, treats the subject along the same lines. On 15 May 1648 MERSENNE
writes, “will you permit the printing of the little treatise . .. on the string or chain hung equally?
But it would be necessary to add the demonstration of what I wrote you about it.” On 12 July 1648
HuvYeENs replies that he will finish the treatise within another week; he regards STEVIN’s proof of the
statical principle as insufficient, and he will include a new proof of it. This is the end of the correspond-
ence; MERSENNE died on 1st September 1648.

Presumably the version cited in the preceding footnote was that intended for publication. It is on
its margin that HuveeNs noted in 1668 that the solution is incorrect for the loading by parallelo-
grams; see the note on pp. 43—44 of Buvres 11. It seems that aside from this one remark in 1668,
HUYGENS gave no attention to the problem of the hanging cord in the years 1647—1689.
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in a notel) from the year 1662. He regards the beam as bent only at the point of fracture
A . His hypotheses seem to be: (a) Wherever the fracture occurs, the angle y between the
two parts of the beam is the same, and (b) rupture occurs at the point such as to render the
“descent of gravity’”’ a maximum. [The ‘‘descent of gravity” is the loss of potential energy
due to the descent of the centers of gravity of the two segments. We see here a first
glimmering of an energy criterion for failure, with elastic energy of course neglected. It
can be shown?) that this potential energy = 97y, where 97 = the moment exerted by
the support and the weight of either segment, taken about the point where rupture occurs.
Thus HUYGENS’ proposal is equivalent to the more plausible idea that the beam breaks at
the point where the moment of the applied load is greatest. In all this, it seems most arti-
ficial that the angle y should be assumed constant, but this angle disappears in the cal-
culation, yielding a unique point of rupture,] which HuyeENs obtains in a special case.

¢c. The vibrating string. Since his earliest youth, HuveENs had been incited by MER-
SENNE to provide a theory for the vibrating string?). Ina work published in 1673, HuvcENs*)

1) Buvres complétes 16, 381—383. The same problem is treated in a fragment from 1688—1689,
(Euvres complétes 19, 74—75.

2) See the editors’ explanation, (Buvres complétes 16, 333—336, which determines the point of
fracture in general according to Huvamns’ proposal. It results that the point of fracture is such as to
render the weight borne by each support equal to the weight of the portion of the beam resting upon it
after the brealk.

3) On 16 November 1646 MERSENNE proposes to HuvcENs the problem of explaining the law
o Vﬁ/l . “I foresee that your foundations of mechanics show that to make a motion twice as fast,
perhaps four times as much force is required . . .”” HuveEens replies that he has thought about the
matter often, but the solution would be very difficult. On 8 January 1647 MERSENNE proposes the
problem anew, recalling that the successive amplitudes decrease in geometric progression (cf. above,
p- 30).

(In February of 1645 MERSENNE had proposed to TORRICELLI the proof that »cC VT is a con-
sequence of mechanical laws. TORRICELLI’s reply, written in the same month, suggests that there may
be some analogy to his hydrodynamical theorem.) '

A letter of 12 January 1647 from MERSENNE to CoNsTANTIN HUvaENS, the father of CERISTIAAN,
says that the explanation of the simultaneous harmonic sounds is “‘the greatest difficulty I have en-
countered in music.”

A letter from MARIOTTE to HUYGENS on 1st February 1668 shows that no advance on the problem
of the vibrating string beyond GALILEO’s work was known to MARIOTTE at that time.

In a fragment written in 1675 (@Euvres 19, 366—367), HuYGENS, after describing the sequence of
overtones of the string, writes “And it is probable that these [harmonic] tremblings still occur, though
feebly, when the whole string is sounded freely, and since there are so many ways of making this 12th
[4. e. the second harmonic], that is the reason why one hears it always along with the sound of the string
sounded freely.” :

4) Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geo-
metricae, Paris, 1673 = (with accompanying French translation) (Buvres complétes 18, 69—368. See
Pars Secunda, Prop. XXYV.
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had shown that motion of a body sliding down a cycloid is isochronous. The proof does
not involve any calculation of forces; rather, HuveENs approximates the cycloid by
tangents, to which he applies GALILEO’s laws for motion on an inclined plane. In a fragment
written in the same year or the next?!), he states and proves as a corollary of the above
that the ‘“‘gravity’ [accelerating force] of a body resting on a cycloid is as the length of arc
from the bottom. [This apparently puts him in mind of proving the isochrony of other
types of motion by showing that the accelerating force is proportional to the displacement,
but this he left to his editors to say for him.] With this much in hand he strove to render
definite [BEECKMAN, MERSENNE, and GALILEO’s] analogy between the vibrations of a
string and the oscillations of a pendulum. As a model for a vibrating string he considers
a werghtless cord loaded by a single central weight, intended to represent the mass of the string

£ <

Figure 11.
HuveENs’ second
model for the
vibrating string

Figure 10 (1675-1676)

Huveens’ first model for the vibrating string (1675-1676)
(Figure 10). First he considers a horizontal string in circular vibration,
which he finds to be isochronous if the radius is small enough. Then he
considers a vertical cord stretched by a weight (Figure 11); he neglects

the difference of tensions in the two parts of the string caused by the
weight in the middle. In effect, HuYGENS constructs a cycloidal pendulum
such that the restoring force equals the resultant force of the tension
on G. Knowing the period of a cycloidal pendulum, HuycENs is then
able to write down the period of the system shown in Figure 11. His
result, [here expressed in modern notation, is the correct one,] viz

1 i 1 1/T M = mass of G‘:jol,
(17) v=—\Var=a1 V4 I = length of string,
T 7 ? T = tension exerted by K.

In the special case when Mg = 7', HUYGENS finds the frequencies
of circular and lateral oscillation to be the same?). [This is in fact true
in the greatest generality3).] Returning to (17), HUYGENS says that ex-

1) (Buvres complétes 18, 489—495.

2) HUYGENS says that the time of one complete vibration is twice as great in the circular case,
but this is only because as in all early work the “time” of a lateral oscillation is the half-period.

8) For let the resultant outward force from all statical causes (other weights, tensions, efc.) be F';
the equation of transverse motion for the mass M is then F + F; = 0, where F; is the inertial force,
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periments should be tried rather with a horizontal string and gives directions on how the
experiment should be done ; while he does not report any measured values, he says that (17)
“agrees very well with experiments.”

Finally HuYcENS considers the weightless string loaded by many weights (Figure 12). 7
He sketches the first steps of such a treatment, in which not only does he assume that
“the curve SAQC is a parabola, from which it differs insensibly,”
but also he assumes a distribution of velocities not possible unless
all masses are in simple harmonic oscillation at the same period and
phase. The mechanical principle he applies is the conservation of
energy?).

d. The vibrating rod. In 1688—1689 HuveENS?) considers
vibrations of a bar resting upon two supports so placed as to

breaking (above, pp. 46—47). He writes that a bar so supported
gives the clearest sound when struck and that, in effect, these points
of support remain at rest [i.e., they are modes]. His theoretical
value for the fractional distance from the end to a support is
%(1/5 — 1)~ -1% ~+; the chime makers, he says, use the value g,
“which agrees well enough.”” [This is an example of experiment
confirming a false theory. While the difference between % and T26 +
might seem experimentally negligible, in fact for free vibrations
of arod the theoretical value (from the theory of DanIEL BERNOULLI

Fi 2.
and BEuLER, see below, pp. 198, 328) for the fractional distance to HUYGENlBg’uﬁ,;:d model

for the vibrating string

the node is 0,224 ~ %. HuyeEns’ theory, since it employs no (1675—1676)

dynamical principle and is merely a conjecture based upon a

statical result itself precarious, is unsound, but it deserves notice for its recognition of the
nodes®) of a vibrating body and the first attempt to calculate anything concerning the
vibrations of a rod.

and where F i8 the same in both problems considered. Let y be the transverse displacement. For trans-
verse harmonic oscillations of circular frequency onwe have Fj = — M§ = M wiy. For circular
oscillations at angular velocity we, the centrifugal force is Fj = M wiy. Hence we= wn [7.e.,
each transverse frequency is also the frequency of a possible circular motion].

1) On pp. 494—495 of his (Buvres 18, the editors carry through what they conjecture HuyGENS’
ideas to have been. Their resultis » = Ln_l—g . 2% l/—’g , in the notation used in (17); this is close to the
correct value (75) for the continuous string.

2) Buvres complétes 19, 74—75.

38) It is safe to presume that HuvgENS had read WALLIs’ paper on the nodes of strings, published
in 1677 (see § 16 below).



LXXIIT

50 EARLIEST SPECIAL PROBLEMS

None of these brilliant studies of HuYGENS was published during his lifetime. Despite
some measure of communication through letters and conversation, they remained unknown
and do not seem to have influenced later work.]

7. PARDIES’ essays on the catenary and on elastic beams (1673). In 1673 appeared the
first general treatise on theoretical mechanics, an incomplete posthumous work by a man
now forgotten even to historians of science, the Jesuit IeNACE-GAsToN PArDIES?Y). In the
preface PARDIES says he wishes to make “one body” of mechanics, and his description
organizes well all aspects of the subject then investigated, but unfortunately he did not
live to carry out all his promises?). While he appears to have performed many experiments,
he always attempts mathematical proof; [here he fails almost invariably, for he seems
insensible to the difference between proof and persuasion. The scorn bestowed upon his
work by his great contemporaries is easy to understand, since this is the sort of book
that, in a sense, ought never to have been written. With a show of the right facts and often
even the right principles, little is done cleanly, yet the virginity of the subject has been
defiled. As we shall see, while LEIBN1Z and the BERNOULLIs scarcely take note of PARDIES
they had read his work and profited from it3).]

At the beginning of his treatment of flexible bodies, PARDIES introduces the continuous
string and applies all arguments to it without the intermediary of a discrete model. Like
nearly all writers of the day, he uses infinitesimal constructions, [but he is a poor mathe-
matician, unable to do better then guess at the results of what we now call differentiation

1) “La statique ou les forces mouvantes,” Paris, 1673, being the sequel to an earlier treatise on
“local motion”, mainly impact. I have seen this work only in the second edition, Paris, Mabre-Cramoisy,
1674, [xxiv] + 240 pp., in the third edition, 4bid. 1688, [xxii] 4+ 240 pp., and in Parpies’ (Euvres,
Lyon, Bachelu, 1696, and second edition, 1709, where “La statique” occupies pp. 199-298, while its
preface occurs among the unnumbered pages at the beginning of the volume. Also in Latin, Opera, Jena,
1693-1694, where this treatise occurs on pp. 87-211. There is also a third edition of PARDIES’ (Buvres,
La Haye, 1710.

2) In particular, the fifth discourse, which was to concern vibration, is lacking. PARDIES said he
could prove from properties of the pendulum that the vibrations of a string are isochronous and that
the frequency obeys the law voc YT A[l; this last is surely a misprint for (8), since PARDIES seemed
to be generally well informed. However, the erroneous statement is repeated on p. 6045 of the English
review quoted in the next footnote.

3) It was favorably reviewed in Phil. trans. London 8, No. 94, 6042—6046 (1673). After remark-
ing that PArRDIES was “‘cut off by an intimely Death; being regretted by those that knew his frankness
and strong inclinations to promote philosophic knowledge,” the anonymous reviewer continues,
‘“‘Besides, the Author treats of Bodies suspended, fastned at one or both Ends; of the manner how they
are broken; of the figure they take in becoming curve; and particularly of the Cases, where Cords
extended will be Parabolical, Hyperbolical, Elliptical, or Circular. More-over, he examins the force of
Towers and Pyramids, and shews in what part they are weakest; he determins the figure they ought
to have to render them perfect and able every where to resist equally to the violence of Winds...”
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and integration.] PARDIES observes that
the form of the string remains unchanged
if we solidify any part, or, further, if we
replace the parts above two points 4 and
a, on each side, by suitable forces acting
along the tangents at A and a. [This we
recognize as the first occurrence of the
tension in a curved flexible line ; PARDIES
does not calculate these forces, but in the
concept we see the first of the two devices
whereby JoEN BERNOULLI was to achieve
his solution of the catenary problem
(below, p. 74, especially Figure 25).] PARr-
DIES’ statical principle is [the continuous

Figure 13. PARDIES’ theorem (1673)

analogue of a generalization of the theo-
rem of STEVIN mentioned above,] viz, the point of intersection of any two tangents lies on the
vertical through the center of gravity of the included portion of the cord (Figure 13), no matter
what the line weight may be. [Since some shadow of a correct proof is given?),] we may
justly call the result the theorem of Parpirs. As we shall see, it forms the basis of Lers-
N1z’s solution for the catenary2) (below, p. 71). This principle is particularly suited to
solving all problems concerned with flexible lines subject to vertical load only, since, as
was assumed tacitly by PArDIES and later writers, the fact that the supports can exert
any desired tension makes it sufficient as well as necessary for equilibrium.]

ParDIES then asserts that the figure of the uniformly heavy cord is not a parabola.
“For one can imagine that the chain is now fixed at @ and b (Figure 14) ; then this part aC'b
would remain in the same location as it was when attached freely at the ends @ and 4.”
[This is the second of the two devices to be used by Joa~x BERNoULLI (below, Figure 26).]
“Thus the center of gravity of the chain ab would be at C*’ [careless wording for “on the
line DC E”’]. “But if the figure a C'b were parabolic, the line DCE would divide aF just
in half, but the part aC of the parabola would be greater than C'b, and it is very easy
to prove that the center of gravity of the parabola cannot be at C'.” [To replace it is

1) Granted ParpiES’ preceding statement, the result is obvious, since the weight of the segment
is equipollent to a concentrated force acting at the center of gravity, and the lines of action of three
equilibrated forces must intersect. We must not lose sight of the times we are describing: In the discrete
case for two equal weights, HuvcENs had had trouble finding an adequate proof, and only years later
did he obtain the generalization to unequal weights.

2) Also of the first correct published proof of that solution, viz, Prop. XVIII, Prob. XIII in the
book of TAYLOR, op. cit. infra p. 86.
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very easy to prove,” we note that the re-
quired property of the center of gravity is

jx= —él;- Jzds ; equivalently, s o z, and this

characterizes the straight line.]

“But if we conceive a thread without
weight, on which rest an infinity of equally
heavy lines EC, ec, parallel and equally
distant from each other, then the thread
aCbA will be perfectly parabolic.” For then
the center of gravity of the load acting on
a(Cb lies on the line DC E bisecting a F, and
““the geometers know” that the parabola is
the only curve such that the tangents from 4
and from b intersect at a point upon this
bisector.

[Tt is possible that Parp1Es had heard?)
of HUYGENS’ results on these problems, but
the line of thought is distinct from HuycENs’ ,
and yields the simplest correct proofs ever .B

obtained from that day to thjs.] Figure 14, Drawing for PARDIES’ arguments regard-
ing the catenary and the suspension bridge (1673)

If the string is elastic, says PARDIES, in
order to assume a parabolic form it must be loaded by uniform forces directed toward a
fixed center ; also, a taut elastic string always assumes an approximately parabolic form
in the small sagging due to its own weight. For such a string to be hyperbolic, it must
be drawn by uniform forces directed toward a center below it ; elliptic, toward a center
above it. [For these results only the vaguest of reasons are given?).]

PArpIEs then considers the problems of breaking strength proposed by GALILEO,
[but from a basically different standpoint. While GALLEO had considered the beam as
rigid prior to rupture,] PARDIES attributes everything to elasticity. Indeed, he goes so far as
to try to reduce all phenomena of bending and even of compression to extension. For

1) Either through MERSENNE or from HuveENs himself while he was in Paris. At the end of the
treatise on statics, PARDIES gives a proof of the isochrony of motion on a cycloid, ‘“‘so that after
Mr. HuvgENs has published his proof, I can see if I have been fortunate enough to compete with so
great a man.” PARDIES’ ingenious proof is valid and is distinct from that published by HUYGENS in the
same year (above, pp. 47—48).

2) It is strange that the editors of HuveeNs’ (Euvres 18, p. 487, cite this dubious material but
give no hint of the solid ideas of PARDIES on the immediately preceding pages.
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example, he claims that in compression of a beam the longitudinal fibres bulge outward and
try to extend the annular fibres ; from the resistance of these to extension arises the great
compressive strength of beams, which can be further increased very notably by iron rings?).
As for the form of a beam built at one end and loaded by a weight at the other, “it is easy
to prove” that it is a parabola. There follows a long list of specific rules regarding ‘‘the
effort a body makes to break itself by its own weight”’. Then inclined beams are considered.
Finally there is a long study of solids of equal resistance.

[Thus to PARDIES, and to him alone, belongs the credit of first attempting to introduce
the elasticity of a beam into calculation of its resistance. His mathematical tools were far
from sufficient to carry out his ambitious program of deriving results on the basis of his
hypotheses. This is all the more evident in that he claims to calculate definite numerical pro-
portions, yet he proposes no specific law connecting the extensions with the forces which
produce them.]

8. Hooke’s law of spring (1675, 1678) and researches on the arch (1675), on ropes
(1669), and on sound (1675-1681). At the end of a work published in 1675 on another
subject?), after a “Postscript”’ claiming priority for the “Spring to the Ballance of a
Watch, for the regulating the motion thereof,” against “some unhandsome proceedings”
on the continent, HOOKE wrote :

“To fill the vacancy of the ensuing page, I have here added a decimate of the centesme
of the Inventions I intend to publish . . .

3. The true Theory of Elasticity or Springiness, and a particular Explication thereof
wn several Subjects vn which v vs to be found : And the way of computing the velocity of Bodies
moved by them. ceiiinosssttuwu. ..

“9, A mew sort of Philosophical-Scales, of great use in Experimental Philosophy.
cdeiinnmnoopssstiuu”

1) The ingenious qualitative arguments I have not tried to follow. The problem had been men-
tioned by TORRICELLI in his letter of 2 January 1643 to Ricci. ToRRICELLI asserts that a ring suffi-
ciently strong to prevent bulging at the center of & column in compression may be determined by the
following rule, apparently empirical:

Tension in ring — i

Load on column [
TORRICELLI’S letter to Riccr of 20 January 1643 suggests some analogy to the spreading of & crack in
a wall.

2) R. HOOKE, A description of helioscopes, and some other instruments, London, T. R. for John
Martyn, 1676; reprinted, pp. 119—152 of R. T. GUNTHER, Early science in Oxford 8 (1931). The date
1676 is an error; on 15 October 1675 OLDENBURG sent the printed work, including the “‘postscript”,
to HuYGENS; OLDENBURG'S review is printed in the Phil. trans. No. 118, 25 October 1675 = (Euvres
complétes de HuyeENs 7, No. 2075.

CIII
CIV—CVI
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[1] 331 Three years later he published a treatise on elasticity?),
beginning : ‘“The Theory of Springs, though attempted by
divers eminent Mathematicians of this Age has hitherto not
been Published by any. It is now about eighteen years since
I first found it out, but designing to apply it to some parti-
cular use, I omitted the publishing thereof.” The anagram
in No. 3 deciphered reads : “ut tensio sic vis; That is, The
Power of any Spring is in the same proportion with the
Tension thereof . . . Now as the Theory is very short, so
the way of trying it is very easie.” With admirable clarity
and directness, HoOKE describes his experiments, whose
nature is made clear by Figure 15. Necessary experimental

precautions and procedures are included.

[3] 335 “The same will be found, if trial be made, with a piece
of dry wood that will bend and return, if one end thereof
be fixt in a horizontal posture, and to the other end be
hanged weights to make it bend downwards.” [I. e., the
elasticity of bending is also linear.] Corresponding experi-
ments for the compression and rarefaction of air he
published fourteen years ago. [Thus HookE’s statement is

{
(18) 7o Al F = applied force, ﬁ

A4l = elongation or change in length.]

IAREALE RL Y

Figure 15.

[4] 336 “From all which itis very evident that the Rule or Law HoOKE’s g;rperiments on
] . . tensi

of Nature in every springing body is, that the force or power extension (1678)

1) R. HoOKE, Lectures de potentia restitutiva, or of spring explaining the power of springing bodies,
London, John Martyn, 1678; reprinted, pp. 331—388 of R.T. GUNTHER, Early science in Oxford
8 (1931). Page references are to the reprint.

According to records of the Royal Society published by GUNTHER, Early science in Oxford 6-7,
Oxford, 1930, on January 27, 1663/4 HoOKE was ordered to perform experiments on springs in rarefied
or condensed air. On February 3 he reported that no alteration in the elasticity was discernible in
springs left in the open for some time. On December 17, 1668, Hook® was “desired to bring in what he
had considered of the cause of springiness.”

The following entries in The diary of RoBerr Hooke M. A., M.D., F. R. S.1672-1680, ed.
H. W. RoBinNsoN & W. Apams, London, Taylor & Francis, 1935, refer to elasticity :

September 2, 1675. ‘‘All springs at liberty bending equall spaces by equall increases of weight.”

September 3, 1675. ‘“Perfocted Philosophicall Scales to show to the King.”

September 21, 1675. “Dind with Sir Chr, WREN . . . Discoursd about Springs.”

October 3, 1675. . . . adjusted Demonstration of the equality of the motion of Springs.”

October 6, 1675. “Walkd into the Park with Sir Chr. WrEN. The King calld me to him, bid me
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thereof to restore itself to its natural position is always proportionate to the Distance or
space it is removed therefrom, whether it be by rarefaction, or separation of its parts the
one from the other, or by a Condensation, or crowding of those parts nearer together. Nor
is it observable in these bodys only, but in all other springy bodies whatsoever, whether
Metal, Wood, Stones, baked Earths, Hair, Silk, Bones, Sinews, Glass, and the like.
Respect being had to the particular figures of the bodies bended, and the advantagious
or disadvantagious ways of bending them.” [While HookE does not say explicitly that
the moduli of extension and contraction are the same, this seems to be his opinion ; in the
case of air, the only material for which he says he has measured condensation, this is true.]

Conversely, the anagram in No. 9 is the law of the spring scale : “Ut pondus sic
tensio,” affording an absolute rather than merely relative measure of the weights of
bodies. With its aid, HoOORE has sought to measure the variation of the earth’s gravity
with altitude, but on church towers and in deep mines no effect was discerned.

In terms of his views on the causes of elasticity, HookE writes that *“ . . . it will be
very easie to explain the compound way of springing, that is, by flexure, supposing only
two [elastic] lines joyned together as at GHI K (Figure

16), which being ... bended into the form LMNO, & el
LM will be extended, and NO will be diminished in
proportion to the flexure, and consequently the same y e K

proportions and Rules for its endeavor or restoring it I
self will hold.” [Thus HookE remarks, as had BEeckmMax L "':“ M&-m"---{:.%"‘% M
before him, that the outer fibres of a bent beam are - ot .,%é:?
strotohed and the inner ones compressed. This “com-  f o
pound way of springing” is the main problem of Figure 16. Hooxw’s drawing to show
elasticity for the century following, but HOOKE gives ° °§ﬁ’;§i‘(’)’f‘ :ﬁgn:‘;;t;gf%&gf the
no idea how to relate the curvature of one fibre to the
bending moment, not to mention the reaction of the two fibres on one another.]

“It now remains, that I shew ... the Vibrations of a Spring, or a Body moved by a

shew him experiment. Followd him through tennis court garden &c. into closet. Shewd him the Experi-
ment of Springs. He was very well pleasd. Desired a chair to weigh in.”

According to records of the Royal Society published by GUNTHER, loc. cit. ante, at the meeting on
August 1, 1678, HookE showed his experiments on “a tubical spring of brass wire,and . .. a spiral
spring of steel . ..,” and on August 22 he demonstrated the law (18) with “a spring of brass wire,
about thirty-six or thirty-seven feet long, extended by weights hung at the lower end thereof . ..”
Also, “about three years since his Majesty was pleased to see the experiment . . .” The diary entries for
these dates confirm these facts. Also, on August 20, 1678, “Met Sir Chr. WREN . . ., discoursd about
equation of Springs, etc.,” and August 21, “To Sir Chr. WREN . . . Discoursd much about Demon-
stration of spring motion . . . I told him my philosophicall spring scales . . .”

337—338
[6—6]

347 [15]

348 [16]
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Spring, equally and uniformly shall be of equal duration whether
they be greater or less.” To this end, HookE introduces ‘the
aggregate of the powers of the spring” [¢. e. the work done by it]. /
To prove the isochrony, HookEe gives two distinct arguments,
[both fallacious?). The error is now difficult to understand, since
GavrILEO had given the correct solution for the mathematically
analogous problem of small oscillation of a pendulum. It must

be remembered that problems of this kind were still extremely

difficult ; such analogies were not obvious, because it was not
yet customary to think of motions as determined directly by
assigned forces. We may conjecture that HOOKE observed the
isochrony in his experiments and devised some sort of reasoning
to conform to it.

So far as I know, there is no other early treatment of simple
harmonic motion in an elastic context. We have mentioned f
(above, pp. 47 —48) the roundabout argument of HUYGENS to con- 3
clude the isochrony and calculate the period. To the modernreader * s
of NEWTON’s Principia (1687)%) it is abundantly clear that for Figure 17.

HooxkEe’s incorrect results

NEwron simple harmonic motion was a familiar and completely on the motion of a body
attached to a spring (1678)

mastered concept. To the original readers3) of his book, however,
it must have appeared rather different.] The results are stated as follows?) : “Supposing

1) The dynamical principle Hook® uses to find the speed v of a mass M starting from rest is
» o< VW, which is correct since in fact

2 8
v= Vﬂ{ ras = |5

where W is the work done. However, HOOKE’s first argument is based on the formula s < VW, which is
correct only for motion starting at the equilibrium position of the spring, not from a point where v = 0.
Hooxxr's second argument, based on the correct formula for the work done by spring when released
from rest at amplitude A, viz. W = 3} K(2Us — s?), obtains the correct formula 2o 2WAs — s2 for
the speed, shown by the circle and the ellipses in Figure 17. Both arguments assume # = sfv rather
than the correct kinematical formula ¢ = | ds/v. It would seem that the resulting “S-like Line of
times” CIIIF in HooKE’s figure would have aroused his physical intuition, since it has a point of in-
flection, implying that the velocity first increases and then decreases in each quarter period.

2) Philosophiae naturalis principia mathematica, London, 1687. There are many reprints and
translations. OQur references are to the first edition, with variants in later editions noted in parentheses.

3) As is shown below, p. 61, LErsNiz failed to see in NEwWTON’s book anything concerning the
vibrations of springs. The very brief mention of sonorous vibrations of solid bodies in the Scholium
after Prop. L, Probl. XIII (in later eds., Probl. XII) of Lib. II adds nothing.

4) Lib. I. Prop. XXXVIII, Theor. XII, p. 121.
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that the centripetal force be proportional to the altitude or distance of the places from the
center, I say that the times of falling, the speeds, and the spaces traversed are as the arcs,
the versed sines, and the sines respectively.”” For proof we are told only to use Proposition
X in the same way that Proposition XXXII was proved from Proposition XI. This means
that we are to pass to the limit in results already derived for motion on an ellipse. [This
oblique and scarcely illuminating approach to a problem which now seems fundamental
reflects NEWTON’s concentration on celestial mechanics.] In his proof of the isochrony of a
cycloidal pendulum and his discussion of a simple pendulum?), NEWTON is content to show
that the restoring force is proportional to the arc ; everything then follows from the above.
[What & modern reader would consider a straightforward treatment of simple harmonic
motion, based on the differential equation Mz = — Kz, seems first to have been given
many years later by JoEN BERNOULLI (see p. 134, below).]

Returning to the “decimate of the centesme’ published in 1675, we read as No. 2,
“The true Mathematical and Mechanichal form of all manner of Arches for Building, with
the true butment necessary to each of them. A problem which no Architectonick Writer hath
ever yet attempted, much less performed.” The anagram, when deciphered?), reads
“Ut pendet continuum flexile, sic stabit contiguum rigidum inversum,” <. e., as hangs the
flewible line, so but inverted will stand the rigid arch. [While none of the available papers
of HooxkkE reveals how he reached this conclusion, there is no reason to doubt that he had
sufficient mastery of statics to show that an arch of infinitely small stones in order to
exert purely tangential thrust should be formed like an inverted catenary subject to in-
verted loads. Thus the problems of the catenary and the arch are reduced to one, but
neither is solved.]

According to records of the Royal Society?), on July 8, 1669, ‘“Mr, Hoox® proposed an
experiment about the strength of twisted cords, compared with untwisted ones, to be
tried at the next meeting . . .”” On July 15 “Mr. HookE made an experiment of comparing
together the strength of twisted and untwisted silk, and it appeared by the several trials

1) Lib. I, Prop. LI, Theor. X VIII and Prop. LII, Probl. XXXTV, pp. 1561-153 (note the important
corollary added to Prop. LI in the 2nd. ed.).

2) The solution seems first to have been published by RICHARD WALLER in his introduction to the
Posthumous Works of Roperr Hookre, M. D.,S. R.S., 1705, included among other writings about HOOXE
printed by GUNTHER, 0p. cit. ante, p. 54, b, 1—68; see p. XXI of the original or p. 51 of the reprint.
In Hooke’s diary as published by GUNTHER in the same volume, the arch is mentioned in the entries for
December 8 and 15, 1670, for January 12 and 19, 1670/1, and for December 14, 1671; Hooke demon-
strated something to the Society but disclosed the proof of it only to the president. In HoOKE’s later
diary, cited above, p. 54, the entry for June 5, 1675, mentions “my principle about arches”, and on
September 26, “Riddle of arch, of pendet continuum flexile, sic stabit grund Rigidum.” Doubtless there
is an error of transcription.

3) GUNTHER, op. cit. ante, p. 54.
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made of it, that a certain number of threads untwisted proved stronger than so many
twisted. Whence Mr. HookE concluded, that cables made faggot-wise would be stronger
than when twisted.

“To this it was objected, that cables would not then be so manageable ; and that
certainly people had not been wanting to make trials of this nature, but had doubtless
found, that, all things compared, the inconvenience would prove greater in the use of
untwisted than twisted threads.” [The “inconvenience” depends on the use. It is precisely
Hooxz’s “cables made faggot-wise” that PamLon had found superior in use on ballistae
many centuries before (above, p. 17).]

“Mr. HookE remarked upon this, that the belief of the superior strength of twisted
threads to that of untwisted had doubtless proceeded from trials made upon flax, which
having but short pieces held not therefore so well untwisted as twisted.” [GALILEO had
explained the apparent strength of ropes?) but had not stated any definite relation between
the total and partial strengths. HookE’s result is to be rediscovered in 1711 by bpE
RiavMUR?2).]

Hooxr was also a leading proponent of some of the now accepted ideas regarding
sound, [but he made no advance beyond BEeckMAN and MERSENNE]. He devised an ex-
periment for producing sound by toothed wheels, [but exactly what he did is hard to as-
certain?)].

1) Pp. 55—58 of op. cit. ante, p. 54.

2) “Eaxperiances pour connoistre si la force des cordes surpasse la somme des forces des fils qui com-
posent ces mosmes cordes,”” Mém. acad. sci. Paris 1711, [2nd.] 4to ed., Paris, 6—16 (1730). DE REAUMUR
reports a sequence of experiments ending with one on a silk cord composed of 832 fibres.

3) In HooxkEe’s diary, cited above, p. 54, in the entry for January 15, 1675/6, we read, “To Sir
Chr. WaeNs, Dr. HoLpER and I discoursd of musick, he read my notes and saw my designs, then he read
his which was more imperfect. I told him but sub sigillo my notion of sound, that it was nothing but
strokes within a Determinate degree of velocity. I told them how I would make all tunes [%. e. tones]
by strokes of a hammer. Shewed them a knife, a camlet coat, a silk lining. Told them that there was no
vibration in a puls of sound, that twas a puls propagated forward, that the sound in all bodys was the
striking of the parts one against the other and not the vibration of the whole. Told them my experiment
of the vibrations of a magicall string without sound by symphony that touching of it which made the
internall parts vibrate—caused the sound, that the vibrations of a string were not Isocrone but that
the vibration of the particals was. Discoursd about the breaking of the air in pipes, of the musick of
scraping trenchers, how the bow makes the fidle string sound, how scraping of metall, the scraping the
teeth of a comb, the turning of a watch wheel &c., made sound.” Cf. also the entry for January 8.

The records of the Royal Society, as published by GUNTHER, op. ¢it. ante, inform us that on July
27, 1681, HookE “showed an experiment of making musical and other sounds by the help of teeth of
brass wheels; which teeth were made of equal bigness for musical sounds, but of unequal for vocal
sounds.” On p. xxiii of the original edition of WALLER’s life of HoOKE, p. 57 of GUNTHER’S reprint,
it is stated that in July of 1681 Hook= “shew’d a way of making Musical and other Sounds, by the strik-
ing of the Teeth of several Brass Wheels, proportionally cut as to their numbers, and turned very fast
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9. MARIOTTE and LEIBNIZ on elastic beams (1684). [Before taking up the more im-
portant work of LEIBNIZ to which it apparently gave rise, we must mention the attempt of
MARIOTTE, especially since he is one of those writers who, for some unaccountable reason,
has been read and cited often.] The second discourse of Part V of MARIOTTE’s Treatise on
the motion of water and other fluid bodies'), published two years after his death in 1684,
concerns “the force of pipes of conduct, and the thickness which they ought to have,
according to their matter, and the height of the reservatories.” [This seems to be the
first treatise on the experimental strength of materials ; it describes many intelligent experi-
ments carried out with some care.] MARIOTTE says that his tests on wood and glass do not
conform to GALILEO’s proposition (11); instead of the factor §, he finds a value between
4 and }. He undertakes to derive a better result by starting from the assumption that the
“Fibres and Ramous Particles” of a body “may be extended more or less by different
Weights : And, Lastly, That there is a Degree of Extension which they can’t bear without
breaking.” [Thus MARIOTTE, like PARDIES, considers the deformation of a beam prior to
rupture ; his criterion for failure is the magnitude of the elongation.]

As a model, MARTOTTE proposes a rigid lever tied down by little strings which break
when they suffer a certain elongation (Figure 18). [His reasoning is incomprehensible ;

N

&)

Figure 18. MARIOTTE’s figures supposedly representing the forces in a terminally loaded beam (1684)

]

round, in which it was observable, that the equal or proportional stroaks of the Teeth, that is, 2 to 1,
4 to 3, &c, made the musical notes, but the unequal stroaks of the Teeth more answer’d the sound of
the Voice in speaking.”

1) Traité du mouvement des eauzx et des autres corps fluides, [xiv] 4 408 + [xx] pp., Paris, Estienne
Michallet, 1686. The date of the permit is 4 July 1685. This posthumous work is edited by DE LA HIRE;
particularly the last parts were not in order. Qur page references are to the first edition. There is a “New
corrected edition,” xii 4 390 4 xiv pp., Paris, Jean Jombert, 1700. A new edition, “corrected and
augmented by rules for fountains,” same publisher, 1718, xii + 414 4 xiii pp. is reset but seems to
carry no changes in the part described above; a reprint from the Paris memoirs of 1693 is added. In
the (Buvres of MARIOTTE, 2 vols. paginated as one, xii 4+ 701 4 xxxiii pp., Leiden, Pierre Vander Aa,
1717, the Traité occupies pp. 321—476. Our quotations are taken from the English translation by
J. T. DESAGULIERS, The motion of water, and other fluids, being a treatise of hydrostaticks, London,
J. Senex, 1718, xxiv 4 290 pp.
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apparently the fact that the little transverse strings are stretched in proportion to their dis-
tance from C in the first figure is intended to justify the assumption that] the [longitu-
dinal?] fibres “resist in Proportion to their Distance from the Point D’ in the second figure.
By some mysterious juggling!) with a numerical progression appropriate to a special case,
Mar10TTE concludes that % should replace } in (11).

In a further discussion MARIOTTE says ‘‘you may conceive that from D to I, which is
half the Thickness 4D, the Parts are pressed together by the Weight L ; those that are
near D, more than those toward I ; and that they are extended from I to 4, as has been
before explain’d ; and the same Reasoning about the little Cords may be applied to the
Part T A ... and it is very probable that these Compressions resist as much as the Exten-
sions . . . whence will follow the same thing as if all the Parts were extended . ..” [It is
still not clear whether transverse or longitudinal fibres are intended. In the traditional
interpretation?) of MARTIOTTE’s work, it is the latter ; if so, then MarIOTTE implies but does
not state that there is an unextended or neutral fibre within the beam and infers that
agsuming the central fibre to be the neutral one yields the same resistance to bending as
when the lowest fibre is neutral. This is false. Nevertheless, MARIOTTE’s dubious or false
calculation may be considered as some advance beyond the clearer though unsupported
statement of HookE (above, p. 55)].

MARIOTTE’s experiments show that in fact all materials, even glass, deform before
breaking ; moreover, a glass rod returns to its original length when the stretching weight
is removed. Several of GALILEO’s assertions resting on the assumption that a given moment,
however applied, suffices to break a body, are verified by MARIOTTE’s experiments. “These
Rules are of use for brittle solids, as dry Wood, Glass, Marble, Steel, etc. But for supple and
pliable Substances, that are broken by Traction alone ; as Paper, Tin, Ropes, etc. other
Rules are necessary . ..” E.g. “lists [:. e. bands] of Paper, Tin, and such kinds of Bodies
break equally whether they be long or short.”” An experiment with a spiral spring not
only verifies [HooKE’s law of] proportionality between elongation and stretching weight
but shows also that this rule applies as well to a part of the spring as to the whole of it.
For the rupture of vessels under water pressure, MARIOTTE asserts that the breaking
strength is proportional to the thickness of the walls.

[From the remarks in the paper to be discussed now, it is plain that LEiBN1z knew of
MarroTTE’s work before it was published.] LersNiz is the first to attain a mathematical
theory taking account of the elastic tension of the fibres of a beam. His New proofs con-
cerning the resistance of solids®) begins by considering a cubical beam, for which GALILEO’s

1) PARENT, § 17 of op. cit. infra, footnote 1, p. 111, finds “an error of geometry” here.
2) Deriving from VaRiGNoON and BULFFINGER, op. cit. infra, pp. 102, 103.
3) “Demonstrationes novae de resistentia solidorum,” Acta erudit. Leipzig, July 1684, 319—325 =
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formula (11) yields P, = }P,. LEIBNIZ interprets GALILEO as supposing the resistance
[¢. e. moment] of the fibres varies linearly with their height above the lower edge. Inte-
gration over a square base then indeed yields the factor . But, says LEIBNIZ, experiments
show that P, < {P,. GALILEO’s reasoning is correct, but his hypothesis is false. “The
cause of this can be nothing else than that he considered
the beam as perfectly rigid, so as to break off entirely in one D
moment at the place where its resistance is exceeded, while 1B}
in fact all bodies . . . give way considerably before they can
be ruptured.” This was observed by MARIOTTE, who by ‘“‘an
ingenious calculation” concluded that!) P, = }P,, “butas *H
soon thereafter as I found leisure to search the matter more 4
deeply and to subject it to the laws of the geometers, I found
the true proportions . . .”

To consider the elasticity of a beam, LEIBNIZ supposes

each fibre acts as a spring (Figure 19) connecting the beam El
to the wall. “From the hypothesis elsewhere substantiated,

that the extensions are proportional to the stretching forces?),”

he concludes that the resistances [moments] of the fibres are &g 15 s fgwre for

as the squares of their distances from the lower edge, since (a) acting on the cross-section of a
q £e, e (a) terminally loaded beam (1684)

the weights required for stretching a given amount are pro-

LEIBNIZens math. Schriften 6, 106—112. The account of this work given by Prarson, § 11 of op. cit.,
p- 11, so little squares with the contents that I am tempted to conjecture he saw some other version
of it.

1) While MARIOTTE’s work is obscure, the result he seems to conclude by his theory, if such it
may be called, is Pp = 3 Pt. See above, p. 60. Since the publication of MARIOTTE’s work is subse.
quent to LE1BN1z’s, LEIBNIZ may be citing an earlier version, or he may be citing from memory. Cf. the
criticism of BULFFINGER, § 11 of op. cit. infra, p. 103.

2) Since he cites no source for the linear elastic law, later Continental writers often named it
after him. It is plain, however, that LErsNiz considered the linear relation neither as his own nor as
important.

An attitude very different from that often attributed to LEIBNIZ is revealed by his long corres-
pondence with HUYGENS concerning the experimental laws of elasticity. In October 1690 LEIBNIZ
writes: “I am not yet entirely content with the elastic laws which are given out, since it seems that
experiment does not sufficiently agree with the rule that the extensions of strings (for example) are
as the stretching forces. For this reason I should like to know your opinion.” 2 March 1691: “Mr.
NewToN has not discussed the laws of spring; it seems to me that I have heard you say formerly that
you had examined them and that you had proved the isochrony of the vibrations.”” Also: “I prefer a
LEEUWENHOEK who tells me what he sees to a CarTEsian who tells me what he thinks. But it is neces-
sary to join reasoning to observation.” HUYGENS replied on 26 March 1691: ‘I have a proof of the
isochrony of the vibrations of a spring, supposing that it yields in proportion to the force that presses it,
as experience shows constantly.” The preliminary note for this letter adds: “HOOKE has discussed it
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portional to the distance from the fulcrum 4, and (b) the extension varies as the force. [We
should now say that since the force varies as the extension, and the extension of the fibres
at a cross-section pivoted about the fulcrum varies linearly with the distance, the moments

1
about the fulerum vary as the square of the distance.] Integration yields [ y2dy = %, so
0
(19) Py = }P,

(for a cube). [While LEIBNIZ is somewhat hard to follow, we see he is not only the first to
apply HooxkE’s law in a correct calculation of the equilibrium of moments but also the first
to obtain, in a special but typical case, the celebrated formula

I = Bending Moment,

20
(20) Ml I = Geometrical Moment of Inertia of the Cross-Section.

This, indeed, is the product to be expected from the first apphcatlon of calculus to the
theory of continuous bodies.

For understanding of later developments, we may describe LEIBNIZ’S procedure as
taking account of the elastic tension of the fibres while neglecting the bending which accompanies
the tension!). GALILEO, it may be recalled, had neglected both the deformation and the
variation of tension to which it gives rise. Since very large forces produce very small
deflections in bodies used for structural ends, LEIBNIZ’s approach is natural, though of
course later experience will reveal it to be insufficient.]

LEereN1z finds that according to his theory, as according to GALILEO’s, the cylindrical
solid of equal resistance to end load is parabolic ; to uniformly distributed load, linear. He
attacks the problem of a beam of arbitrary cross-section and gives geometrical construction
for its resistance. He asserts that the surface of revolution forming a solid of equal resistance
is a paraboloid. For most of these propositions he gives no proofs, but he observes “that

fallaciously.” Luisniz on 20 April 1691: “In England they have published a little book on springs, I
believe by Mr. Hook[E], but it seems to me I found something wrong in it. I beg you to tell me the
experiments you say you have made on this subject.” On 5 May 1691 HuvaeNs replied: “I have seen
earlier the treatise of HOOKE on the spring, and I noticed a paralogism in it, which I could find among
my papers.” No such paper has been found. HUYGENS agrees with HOOKE’s result, but only for slight
extension. ‘“‘But in the spring of air the proportion is always perfect, for which there are experiments in
the books of Mr. BOYLE.” For HOOKE’s error, see above, p. 56. The nearest approach to a statement
and proof that has been found in HuYGENS’ manuscripts is described above, p. 61.

The foregoing exchange makes it plain that in 1691, after the dissemination of calculus and after
the publication of NEwWTON’s Principia, simple harmonic motion was not thoroughly understood even
by the foremost scientists.

I have been unable to find any early correct proof of isochrony referred to an elastic context.

Later views of LEIBNIZ on elasticity are given below, pp. 96, 127—128.

1) That Leisniz fully understood what he was doing is shown by his letter quoted below, p. 64.
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by these few considerations all this matter may be reduced to pure geometry, which in
physics and mechanics is uniquely to be desired.”

Lersniz states also, [contrary to MERSENNE’s inference from his experiments,] that
the elastic and acoustic properties of bodies are connected. “And that there is nothing so
rigid but that it is bent a little by the lightest stroke follows from the nature of sound,
which is a certain trembling or reciprocal bending of the parts of the sounding body. The
more rigid and indiscernible is the restitution, the higher is the sound, since the tremulous
parts are the shorter and the tenser, and they constitute the harder body?).”

[This paper establishes LEIBN1Z as the father of the mathematical theory of elasticity.

It had also a second great function in our subject; not only did it excite JAMES
BERNOULLI to the study of elasticity but also it was the means that drew him into the
higher analysis.] His first letter?) to Leisniz, dated 15 December 1687, relates that an
expert mechanic of Basel had consulted him regarding the construction of wagons; in
LErBn1z’s paper BERNoOULLT had sought and found help. However, he decided to test by
experiment LEereniz’s hypothesis that the elongations are proportional to the stretching
weights. The results of BERNOULLI’s experiments on a gut string do not conform to this
hypothesis at all. But LersNiz has written that the experiments of others support the
linear law. What is the reason for the discrepancy ? Was BERNOULLI insufficiently careful ?
Or are the fibres of which LEIBNIZ considers hard bodies to be composed different from
such a string?

But there is another trouble. LEIBNIZ’s assumptions imply that the beam is broken or
bent at the wall, while the said mechanic asserts that for iron bars the bending (which
seems to be nothing else than an incipient break) takes place mainly in the part one third
to one half the distance from the built-in end to the free end.

This letter LErBN1zZ, absent on a long journey, received only after a delay of three
years. On 24 September 1690 he replies, in effect, that the relation between extension and
stretching force should be determined by experiment; in particular, the table of values
BrrNoULLI had sent to him seems to fit a hyperbolic curve. The ratio P,/ P,, says LEIBNIZ,
will be altered if the assumed relation between force and extension is altered. But the
dependence of P, and P, upon the dimensions of [similar] cross-sections, as he proceeds
to show by what would now be called a dimensional argument, is unaltered, and thus in
particular his results concerning the solid of equal resistance remain valid?).

1) In symbols, » is an increasing function of K, where E is an elastic modulus. This statement of
LersNi1z foreshadows the correct and general law » oc VE.

2) All letters between LEeisNiz and the brothers JAMES and JoEN BERNoULLI are cited from
LEeisN1zens mathematische Schriften 3.

3) In an undated letter to V. BODENHAUSEN, reprinted in LEIBNizens math. Schriften 7, 356,
LrrsNiz mentions having sent this proof to BERNoULLI. “I have also explained to him what the figure
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LEersNiz is indeed aware of the bending undergone by a beam prior to its failure.
“But in my reasoning I preferred not to consider the bending of the whole beam, or
rather I assumed a shape already reduced, through the prior bending caused by the weight,
to the [straight] form we attributed to it ...” [In this latter explanation we first en-
counter a view that has recently proved most useful in problems of finite deflection : The
forces are referred to the actual, deformed condition of the body.] ‘“However, consideration
of the bending would furnish a new and by no means inelegant problem.”

[JAMES BERNOULLI was not quite ready for this not inelegant problem.] In the years
between query and answer, he had pondered and fathomed the Lerssizian calculus and
had proved his mastery by his own researches, published in the Acta Eruditorum, the
very journal to which LrrBN1z had consigned his few enigmatic abstracts of the differential
algorithm. Indeed, BErNoULLI had gone further. Four months before receiving the long-
delayed letter to which the above is a reply, LEiBNiz had read in the Acta a challenge
JamEs BErNOULLI directed to the learned world, but certainly by implication especially to
him : ¢o find the catenary curve. LEIBN1z now answers, ‘. . . I think I can satisfy you regard-
ing the catenary curve as well.”” In fact he had answered two months earlier, also before
receiving BERNOULLI’S letter—answered in print. We now step backward four months in
this history to follow from the start the discovery of the catenary.

10. The contest to find the catenary (1690). In the Acta Eruditorum for May 1690,
at the end of a paper on another subject!), JAMES BERNOULLI writes, ‘“And now let this
problem be proposed : T'o find the curve assumed by a loose string hung freely from two fized
points. I assume also that the string is a line which is easily flexible in all its parts.” So
begins the great contest to find the catenary.

LEIBN1z is quick to reply2). In the July issue, after restating the problem, he remarks :
“It is supposed also that the string remains of the same length, like a chain, rather than
being stretched or contracted like a wire. This problem, proposed by GALILEO and famous
since his time, has not yet yielded to solution . .. Therefore I should rightly be excused
from the burden imposed, especially since I am much drawn into other matters. But the
humanity of that most enlightened man is such that I should not wish to fail of his first

of equal resistance must be when the beam is loaded not only by its own weight but also by a foreign
weight . . ., which I omitted in my paper, and which he could scarcely find, since it involves the higher
analysis.”

1) “J. B. Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi
percurrendae uniformiter, sic ut temporibus aequalibus aequales altitudines emetiantur : et alterius cujus-
dam Problematis Propositio,” Acta Erud. Leipzig, May 1690, 217—219 = Opera omnia 1, 421—424.

2) “Q. Q. L. ad ea, quae vir clarissimus J. B. in mense Majo nupero in his Actis publicavit, res-
ponsio,” Acta erud. Leipzig, July 1690, 358—360. Not reprinted in LErBNizens math. Schriften.
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summons. Therefore I have attacked [the problem], which I had hitherto not attempted,
and with my key [4. e. differential calculus] happily opened its secret approaches.

“However, this problem is a little more involved than my former one and displays
a certain singular use of our method ; thus I have thought it worthwhile, before publishing
my solution, to give time also to others for exercising their skill. By this as by the Lydian
stone we shall know the best methods; which bears much on the improvement of thescience;
especially since here it is not a matter of elaborate calculation, hut rather of artifice.-
First of all the most noble D. T. [Count TSCHIRNHAUSEN], who promises splendid things
of this kind, is to be asked whether he wishes to try the strength of his method here too?).
But if no one indicates before the end of the year that he has found a solution, I will give
mine, God willing.”

On 9 October 1690 HuyeENs writes to LEIBNIZ, “But to judge better of ... your
algorithm, T await with impatience . . . what you have found regarding the line of the string
or hanging chain, which Mr. BERNoULLI has proposed for you to find, for which I am
grateful to him, since this line includes singular and remarkable properties. I had con-
sidered it formerly, in my youth, when I was but fifteen [recte seventeen], and I had proved
to Father MERSENNE that it is not a parabola, and had found what the pressure should
be in order for it to be a parabola. [See § 6, above.] This has caused me to be tempted now
to examine the problem, and here is the cipher of what I have found. I have written it in
such a way that you can interpret it somewhat if you have made the same discoveries, and
I think to give you more pleasure thus, than if I were to send you everything explained.
I beg you to send me your cipher in return, and let us shorten between ourselves the term
of a year that you have allowed to the geometers . . .”” The cipher follows. On 13 October
LEeewiz replies, <. .. I find some relation to my caleulation, but also some difference’ ;
the difference is one of sign, [and it is plain that LE1BNIZ has unravelled the cipher]. In
his letter of 18 November, HUYGENS again requests LEIBniz’s cipher; for the curve he
proposes the name catenary [already used by LEIBNIZ].

On 23 February 1691 HuyeENs again demands LEIBNIZ’s cipher. On 2 March LEIBNIZ
replies that Mr. BERNouLLI also has found the solution. “I think that knowledge of my
calculus helped him a little, for although this problem is not one of the most difficult, I
suspect it is not too easy to solve without something equivalent to that calculus. I have
not seen his solution, but I do not doubt he has succeeded. Mr. TSCHIRNHAUSEN has not
bitten . ..” On 26 March and 21 April HuyeENS again demands LriBNiz’s cipher and
BerNouLLI’s as well. Finally on 5 May HuveENs sends his solution, sealed, to LEIBNIZ,
to be transmitted to the Acta for publication. On 27 May LEIBNIzZ replies that he had sent
in HuveENS’ solution and his own at the same time.

1) To this challenge TSCHIRNHAUSEN did not reply.
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The Acta Eruditorum for June 1691 printed not only the solutions of LErBniz and
HuveEexs but also one by a new protagonist from whom we are to hear much more, JAMES
BERNOULLI’s younger brother JoHN, then 24 years old!). As the editor explains in a notice
titled Solutions of the problem proposed by J. B.2), “The benevolent reader will have no
trouble in remembering the problem proposed by the most enlightened Professor JAMES
B....of Basel. .. The most celebrated G. G. L. promised to publish a solution obtained
by his method, if no one also had solved it by the end of the year ... But in fact the
brother of the proposer, Mr. JoEN BErNouULLI, candidate in medicine and much versed
in these studies, solved it and sent us his solution last December ; and through his brother
he most kindly required us to add it to that of LEIBNIZ, in its time. Thence it has happened
that we have urged the most celebrated man above-mentioned to publish his solution . . .
Also Lord CurisTiaaN HuveENS has deigned ... to ornament this our Journal with
his solution of the problem. Therefore we shall give you, benevolent reader, the two
solutions of these illustrious peers and that of BERNOULLI, but in the order in which they
reached our hands.”

[For 1690, these three solutions, in the order received, exhibit the mathematics of the
future, the present, and the past ; therefore we discuss them here in reverse order.]

The note of HuYGENS?) gives “‘only the solutions . . . for special cases, in a desire to
avoid prolixity, and since I do not doubt that the learned will sufficiently exhibit
the general rules. And if anything further of ours is wished, I will freely send it.”
[Indeed, it is incomprehensible.] Only special points, often with numerical values, are
considered. HuYGENS asserts that the catenary can be constructed by means of the
quadrature of either of a certain pair of quartics but does not explain further. The only

statement of principle contained seems to be equivalent to —‘:— = ]‘(%), where s is arc

length and z and y are rectangular co-ordinates, [but this is not correct]. A little later4),
however, HUYGENS published something more specific : “it is easy to prove” that the
slopes of the segments of a weightless chain with links of uniform length, uniformly

1) Thus our subject includes the problem By whose solution JOEN BERNOULLI established him-
self, overnight, as the peer of HUyGENS and LErBN1z. It was this solution, as Professor SPIESS remarks,
that served the young giant as a passport to enter the learned society of Paris in 1691. See p. 136 of
Der Briefwechsel von JoHANN BERNOULLI, Basel, 1955, where part of JoEN BERNOULLI’S autobio-
graphical letter to bE MONTMORT of 21 May 1718 is quoted.

2) Acta erud. June 1691, p. 273.

3) “CurisTiaNI HUGENII, dynastae in Ziilechem, solutio ejusdem problematis,” Acta erud. June
1691, 281—282 = (Buvres complétes 10, 95—98 = LEiBN1zens math. Schriften 5, 251—252.

4) Letter of February 1693 to BasNAGE DE BEAUVAL, Hist. des Ouvrages des Scavans, Number
for Dec. 1692 and Jan.—Feb. 1693, 244—267 = (Euvres complétes 10, No. 2793.
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weighted at the junctions, increase in arithmetic progression). In the limit as the lengths of

the segments approach zero, this becomes % o« s, [which we recognize as the correct

1) While not attempting to follow HuyGENS’ intricate argument, I append here a simple treat-
ment along the lines introduced a half century later by EULER in connection with problems of motion
(§ 30, below). With notations as in Figure 20, equilibrium of horizontal and vertical forces acting at the
point (%, y;), where W, is attached, yields

Tk+1 sin 0k+1 —_ Tk sin Bk = ch

Tk+1 cos 9k+1 —_— Tk cos Gk =0.

Hence
Wy -
Ty cos 0 = tan Ox4+1 — tan 0;,
Figure 20. Sketch for modern proof of HuvGENS’ theorem
so that Wit W
_ x
tan O 42 — tan Ogy1  tanOg41 — tanf; °

When Wiiy= W, =W for all £, it follows that tan 0x4s — 2 tan 0x4+1 -+ tan 6, = 0. This yields
Huvaeens’ theorem:

(H) tan 0, = Ak + B,
which is thus seen to follow from statics alone as a statement that the weights, however they be spaced,

are equal.
The geometrical constraints are

1
BT R = by = Oy e
tan 0y
=0, .
E77F Y11 tan® 6,

z
©)
Yp —Yk—1 = b, tan 0

If by, — b forallk, then from (C),,; and (H) follows @) — #g—1 = b, ¥y, —yk—1 = b(4dk + B),
so that
2, =bk + xz, ,

Yp = b [3AR* + k) + BE] + yo 5
therefore the points («}, ;) lie upon a parabola. This is the solution of the suspension bridge problem.
If a, = a for all k, then from (C),,, and (H) follows
1

aQq—— F)

V1+(4k + B)?

Ak + B

A .

V1 + (4k + B)?

Ly — Tp—1 =

Y — Yk—-1 =

HuyeeNs’ problem is equivalent to summing these difference equations explicitly, or at least to
showing that the limiting form of any curve through these points is the ordinary catenary.
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differential equation]. HuyeENSs’ extant notes?) enable us to reconstruct his solution. The
statical principle is the same theorem of STEVIN as was used in HuYGENS’ earlier work
described in § 6. A part of the complexity of the analysis lies in HUYGENS’ insistence on
first calculating the figure of the equilibrium of the weighted cord, then passing to the limit.
An equal part, however, lies in the geometrical method ; [nowadays we admire a person
who could think correctly in such an elaborate way2).

1) Appendix 1 to the letter of 9 October 1690 to LErBNIzZ, (Buvres complétes 9, 560—501, explains
the cipher (conjectured date, September 1690); Appendix 2, of the same date, 502—510, explains the
solution, but even with the aid of the editors’ copious notes it remains extremely difficult to follow.
Another fragment of 1690, emphasizing the statement italicized in the text above, is given in Buvres
complétes 19, 66—68. Another is the appendix to the letter of LriBNiz of Oct.—Nov. 1690, (Buvres
complétes 9, 541—543; here the quartics are discussed. There is also a later explanation, written
presumably in 1691, (Buvres complétes 10, No. 2724, and perhaps a first draft for the publication
cited in footnote 4, p. 66.

2) It seems pointless to follow in detail the further discussion that fills much of Huvceexs’
Euvres complétes 10, but we add & summary of it. LEiBN1zZ, convinced indeed correctly but as yet
without sufficient reason that BerNouULLI has used differential calculus, triumphs in the power of his
“key”. Also, his solution and BErNoULLI’s, unlike HuveeNs’, do not presuppose the quadrature of any
curve [except the hyperbola] (see especially his letter of 24 July 1691). HuvceENS at firet expresses
great admiration for the work of LEIBNIZ and BERNOULLI. In the notes for his letter of 1 September
1801 he writes, “The additional properties you and Mr. BERNouLLI have discovered I did not even
search for . ..since I thought them incomparably more difficult to find than in fact they are.” He
would like to follow their methods. He begins to think that after all the differential calculus may have
some advantages. In time, however, he grows suspicious that LrrsNiz had achieved the solution only
after getting a prior hint of BERNoULLI’Ss method—a suspicion that would be the last to enter a modern
reader’s mind. HuvaeNs begins to consider his own solution, using only “‘ordinary geometry”, as the
bost, but ho continues to beg to see LErsNiz’s and BERNOULLI’s methods. For LEIBNIZ’s final response,
see p. 71 below.

A great part of the discussion concerns special cases and reflects a passion for special properties
of special curves that the modern reader is unable to share. The mechanical principles on which the
three solutions rest are scarcely mentioned.

LE1sN1z seized the opportunity to advertise his calculus by publishing in three countries his sum-
maries of the results and the methods the several authors had used to obtain them: “De solutionibus
problematis catenarii vel funicularis in actis Junis A. 1691, aliisque a Dn. J. B. propositis,” Acta erud.
Sept. 1691, 435—439; “De la chainelte, ou solution d’un probléme fameux proposé par Galilei, pour
servir d’essai d’une nouvelle analise des infinis, avec son usage pour les logarithmes, et une application d
Pavancement de la navigation,” Journal des Sgavans 20 (1692), Amsterdam ed. 218—226 (1693);
“Solutio 4illustris problematis a Galilaeo primum propositi de figura chordae aut catenae e duobus
extremis pendentis, pro specimine novae analyseos circa infinitum,” Giornale de’ Letterati, Modena,
1692, 128—132; all three are reprinted in LEIBN1zens math. Schriften 5, 255—266.

In the first of these, LEIBN1Z says that HUYGENS’ method rests on use of the radius of curvature,
but this must have been a conjecture, since LErsN1z had not seen HuyGENS’ proof or any real expla-
nation of it—in fact, in his correspondence with HuyeENs he showed no curiosity of his elderly friend’s
line of thought, which must surely be based on the “ordinary geometry”’ LEiBN1z wished to supplant.
As we shall see below, the intrinsic equations were found later by James BErRNoULLI but not published.
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It is curious that the catenary was both the first and the last problem HuveEeNs
attacked ; but it is not without parallel that his departure from the world of mathematics
fell below the brilliance of his entry. This is less a measure of the man than of the meth-
od : While HuvyeENS’ notes show that this problem strained his mathematical equip-
ment, which was limited to “ordinary geometry’’, to the utmost, we shall see now that for
the possessors of the new calculus the determination of the continuous catenary, while not
trivial, fell quickly before a determined attack. In fairness to HUYGENS we must admit that
he solved first, at least in principle, the
more difficult problem of determining the g' . g L L.De ﬁru:a Catenaria

form of the weighted string.]

In his paper, Leisniz!) writes that 2&*2’{ O e‘,‘,{%“"}é’&“"“:}‘%
Jams BerNovrzr had “publicly asked R mjm%“”:‘;;g" "
me to try whether our kind of calculus ﬁ%@' ! &%M,
could be applied to this kind of prob- 4 L
lem ... Having tried the matter for his : ;J ‘ é
sake, not only did I have so great success 3 A ©
as to be the first . . . to solve this illustrious B / &
problem, but also I found that this line \ : 4
has extraordinary uses . ..” The solution g " N
is “‘geometrical, without help of a thread T p /
or chain, and without assuming any . ’
quadratures, by a kind of construction for . (2
transcendents, than which nothing more °
perfect nor more appropriate for analysis
exists, in my opinion.” WA W ° W) (%)

In Figure 21, ® N is horizontal. £ and Figure 21.
. e . e e ss Lr1sN1z’s published figure for the catenary (1690
(&) are points on the “logarithmic line”, 5P © y (1690)

In all three notes, LEIBNIZ reproaches HuyeeNs with having supposed ‘‘the quadrature of a certain
figure, in the third one going so far as to remark that the quadrature is ‘“very complicated, and the
author does not give its nature or reduction, and besides it is not consonant with the nature and
degree of the problem”; it is curious to contrast this with HuveENS’ criticism of JaAMES BERNOULLI’S
elastica (below, p. 97). In the second, LEiBN1z implies that he has found that a light chain really
assumes this form, while a string, being both extensible and somewhat stiff, does not. It is amusing to
read that such a chain may be used inversely, by aid of Lersniz’s solution, for calculating logarithms,
and “‘this may help, since on long trips one may lose his table of logarithms . . .”

JoEN BERNOULLI esteemed HUvGENS’ solution lightly, found LEIBN1z’s “very pretty’’, but was
unable to see cause for LEIBNI1Z’S boasting of its superiority over his own. (See JoHN BERNOULLI’S
letter of 29 September/9 October 1691 to JAMES BERNOULLI in 0p. cit. ante, p. 66, footnote 1.)

1) “De linea in quam flexile se pondere proprio curvat, ejusque usu insigni ad inveniendas quot-
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[which we should now write as % = b"*, where b is a dimensionless quantity and

a= ©A]. “Now taking ON and © (V) as equal, above N and (N) erect NC and
(V) (C), respectively, both equal to half the sum of N& and (N)(£); then C and (C) will
be points of the catenary line . . .’ [Thus LEIBNIZ’s solution is

(21) % = }c(e”® + e~%®) = ¢ cosh % ;

the mechanical problem requires in fact that ¢ = 1.]

LE1BNIz’s paper contains a good deal of explanatory material, especially concerning
logarithms, but he neither derives his solution (21) nor proves its validity. He states that
the triangles @ A R and CBT are similar. He states also that 4 R = the arc length from
4 to the point C(x, y). [That is,

dy s
(22) iz
LEe1Bn1z gives a construction for the center of gravity of any arc: ¢. .. the tangent CT

cuts at Z the horizontal line through A4; let the rectangle GAEP be completed...” [As we

shall see, this is the key to the solution.] He concludes, “Thus . . . will be had the greatest

possible descent of the center of the string or chain or any flexible and inextensible line,

hung up from its two ends ... and having a given length ...” [This is the extremal

principle first used by HUYGENS (above, p. 45); it is not justified by the foregoing

construction.]

Among other results is the series (appropriate to the case a = 1)
w=s—%83+f§sﬁ—%s’+ ces

(28) = Argsinh s .

““So as to avoid prolixity, I refrain from supplying the proofs, especially since to him
who understands the calculi of our new analysis explained in this journal they will come
of themselves.”

A letter of 26 October 1690 from LEIBN1zZ to V. BODENHAUSEN!?) reveals that LEIBNIZ
had “looked back at Father PARDIES’ treatise . . .; I find his assumptions correct, but well
known . . .” LEIBN1Z gives a just résumé of PARDIES’ work and remarks that the case of the
elastic cord furnishes “an entirely new and more complicated problem.” As explanation,

cunque medias proportionales et logarithmos,” Acta erud. June 1691, 277—281 = LEIBNIzens math.
Schriften 5, 243—247. LE1BNIZ’ letter of 24 July 1691 to HUYGENS gives a summary of the published
paper and a carefully drawn sketch.

1) LeisNi1zens math. Schriften 7, 356—357 = (in more accurate transcription) (Buvres complétes
de Huveens 10, 157—158, footnote 7.
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perhaps, of the cryptic nature of his publication, LEIBNIZ writes?), “Es ist aber guth, da
wann man etwas wiirklich exhibiret, man entweder keine demonstration gebe, oder eine
solche, dadurch sie uns nicht hinter die schliche kommen.”

In a fragment?) from this time LETBN1Z writes, “The fundamental assumption so as to
put the nature of the catenary curve into equations, as HuveeNns, Father PARDIES, and
others noted long ago, is the following property of the tangents,”” and he then states the
theorem of PARDIES (above, p. 51).

To learn Lersniz’s full course of thought, we turn to the magnificent letter3) of
14 September 1694 with which he finally answered a long sequence of requests, complaints,
and accusations from HuyeENs. We reproduce the passage intact, in the original nota-

tions?) :

““Mais pour vous donner un example d’un probleme Geo- 4 c
metrique, prenons celui de la Chainette : et je vous donneray A TB
en meme temps l’analyse dont je me suis servi autres fois Figure 22.

LEersniz’s figure for explaining
pour le resoudre, puisque vous avés temoigné de la desirer to Huverxs his solution of the
aussi. Soit AB, x; BC,y; AT, retranchée par la tangente, est catenary problom (1694)
la distance entre I'axe et le centre de gravité de 'arc AC. Or, Of ou AB est & T8,
comme dx & dy; donc Tf sera xzdy:dx, et AT sera y — z-dy:dxz. L’arc AC soit

appellé ¢ et par la nature du centre de gravité il est manifeste, qu’ AT sera

jﬁz:c(l) =y — zdy :dx ou bien [ydc(2)=cy — cady:dw;
et differentiando
yde(3) = cdy + yde — xdy : dedec — cdy — cxd, dy :dx .

Et rejettant ce que se détruit, il y aura dedy : da + ¢d,y : do(4) = 0. Supposons que
les y ou ﬁg croissent uniformement, ou que dy soit constante et ddy(5) = 0, nous aurons

d.dy:dx(6) = — dyddx :dzdz, et au lieu de 4il y aura dedz — cddz(7) = 0, c’est-a-
dire summando dx :¢(8) = dy : a (car cette equ. 8. estant differentiée rend ’equation 7)
ou bien adxz(9) = cdy et differentiando addxz(10) = dedy. Or generalement en toute
courbe decde(11l) = dydy + dxdx et differentiando deddc = dyddy + dxzddz, donc icy
(par 5) dcddc(12) = dxddx, et (par 10 et 12) addc(13) = dxdy et summando
adc(14) = xdy + bdy. Soit z + b(15) =2, fiet dz(16) =dz et adc=zdy, et

1) In his report to v. BODENHAUSEN on the catenary, LEIBN1Zens math. Schriften 7, 359—361.

2) LEiBN1zens math. Schriften 7, 372.

3) (Buvres complétes de HuvceNs 10, 679. Essentially the same material is contained in LEIB-
N1z’ letter to v. BODENHAUSEN of about 1691, printed in LEiBN1zens math. Schriften 7, 370—372.

4) LerBNiz’s z, y, ¢ are the variables y, =, s in the notation used elsewhere in this work.
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(par 11 et 16) dcdc = dzdz(17) 4+ dydy. Donc par 14, 15, 17, nous aurons
aadzdz + aadydy(18) = zzdydy, et enfinl) y(19) =aa [dz:V 2z —aa, c’est-a-dire il ne
faut que chercher la quadrature d’une figure, dont ’ordonnée est aa:Vzz — aa.”
LErrBNiz’s statical principle, a corollary of PARDIES’ theorem, is stated in the first line :
The distance AT 1is the y co-ordinate of the center of mass of the arc AC. Once this statical
principle is granted, we have the integro-differential equation (in our usual notation)

dx
dy ’

(24) ——jmds——x—y

which is the equation numbered (1) by LErBN1z. We multiply by s and then differentiate
with respect to s; the resulting differential equation is at once integrable to yield (22).
LE1BN1z’s analysis, which goes further and derives a quadrature from which (21) is imme-
diate, [seems brilliantly clear to a modern reader. The impression it made on HuyGENs,
to whom differential calculus was foreign, may be imagined.] Indeed, on 27 Decomber 1694
he called LEIBNIZ’s argument ‘‘a strange route.”

In the young JouN BErNouLLI’s Solution of the funicular problem?) we read, “It is
almost a year since in conversation with my enlightened brother we happened to speak of
the nature of the curve that is assumed by a string hung freely between two points. We
marvolled that a thing daily present to the eyes and hands of everyone should not as yet
have drawn the attention of anybody. The problem seemed extraordinary and useful, but
because of its apparent difficulty we preferred not to touch it ; we decided thus to propose

i it publicly to the learned, to see if anyone
would dare to try, for we did not know that it
had been discussed among the geometers since
the time of GALILEO . . . I have found moreover
that our funicular curve is not geometrical but

rather of the type called mechanical, since its

nature cannot be expressed by any determinate
algebraic equation ...” JoHN BERNOULLI states

Figure 23.
Jomy Bervourir's first  his results, without proofs, in the form of two
published construction .

c for the catenary (1690)  constructions.

First construction (Figure 23). Let AH be

an equilateral hyperbola with center at C'; [thus its equation is X2 = y% 4 2ay, where
A is the origin and @ = AC.] Holding y fixed, let KF be so constructed that X ¥ = a2,
where £ = BK. Let # = A@, and construct x so that

1) In this formula and the next, the first @ should be deleted.
2) “Solutio problematis funicularii,” Acta erud. June 1691, 274—276 = Opera omnia 1, 48—51 =
LE1BN1Zens math. Schriften 5, 248-—250.
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— za = Area EABKF ia
Yy
(25) = [Xdy .
0
Then z, y is a point on the catenary. [Indeed,
we find that N
2 /
=% /
Vyi+2ay / /
(26) v 4 Ve
— i == f _i__ . ,-' //
a Vy* + 2ay . e
J Yy + 2ay , /‘ -
) ) . Yy x . e
integration yields v cosh—a— — 1, differ- B
ing from (21) only in choice of origin.]
Second construction (Figure 24). Let BG
be an equilateral hyperbola ; [its equation is ¢ Figuro 24.

2 — 42 J B i d
X2 = y2 4 2ay]. Let B H be a parabola whose N Pgmheﬁl‘;‘:ntg:lu s socond
latus rectum is four times the latus rectum the catenary (1690)
of the hyperbola ; [i.e., #2 = 8ay]. Then if

we lay off GE = BH, the point Z lies on the catenary. [This last means
27) X —z= Vit &y,
[}

or

Y
(28) —w— —Vy F Bay + |/1+27“dy,
0

whence (26), follows.]

JoHN BERNOULLI then lists thirteen properties of the catenary. The first of these,
referring to Figure 24, reads: “Let F.D be a tangent; then AF:AD = BC:BF.”
[Analytically expressed, this is (22); as~we shall see, it gives the key to the solution.]
The thirteenth is an awkward expression for the variational principle!) asserted simul-
taneously by LE1sniz (above, p. 70) and used earlier by HuyGENS (above, p. 45).

“My honorable brother has begun to extend this thought to strings of non-uniform
thickness, when the thickness stands in a relation to the length which is expressible by an
algebraic equation.” JAMES BERNOULLI has noted a special law for the density which leads
to a simple solution, and JoEN BERNOULLI has shown that this funicular is the evolute
of that for the case of uniform thickness. For experimental tests, “‘one should take a fine
chain rather than a string, which sometimes because of too much lightness, sometimes too
much rigidity, we have found unsuitable.

1) In his comment in Lesson 37 of the work discussed just below, JoaN BeErNouULLI adds, “This is
proved by the axiom that the center of gravity descends as far as it can,” but this is a mere restatement.
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“For the rest, whoever wishes to perfect and extend this subject may investigate the
nature of the curve...in the case when the string is a finite distance from the center of
the earth, or if also it is supposed extensible by its own weight or loaded in any other way ;
or, vice versa, how it should be loaded in order to assume the form of a parabola, hyperbola,
circle, or any other given curve. The matter is altogether within reach.”

JorN BERNOULLI’S concepts and methods are

a

given in his Mathematical lessons on the method of A
integrals and other subjects, written for the use of the
tllustrious Marquis pE L’ Horrrar while the author was

at Paris in the years 1691 and 1692') ; while these were

not published until 1742, their content was certainly
widely diffused in the teaching, both direct and
indirect, of the great BERNOULLI who dominated the
productive mathematics of the first half of the eigh-
teenth century. In Lesson 37, On funicular or catenary

curves, the following principles are set down as self- Fi%::iiéﬁi) ugf;g’ Ef;ﬂg;“ﬁ:fﬁ?f;gg"
evident for any hanging curve.

(1) In Figure 25, the forces which must act at 4 and C in order to support the cord are
the same as those that must be applied along the tangents 4 D and C D in order to support
at D a weight equal to the weight of the cord. [This is the
principle of ParDIES, above p. 51.]

(2) Applying No. 1 to portion of the cord between A and the
lowest point B yields the (horizontal) force at B (Figure 26).

(3) If the cord is hung from any intermediate point, such as F,

D

A

the remaining portion FC' 5

. . C
E retains its previous figure. F
Figure 26. (4) In the case men-
Jomy BerNourL's ] ,
application of Parpres’  tioned in No. 3, the forces
theorem (1691-1692) . . B
acting on each portion of
Figure 27.
the cord between F and C are the same as before. In JorN BERNomgzrﬁgure for isolating a

particular, the force acting at B is unaltered. portion of the catenary (1691-1692)

(5) Forces may be resolved according to the vectorial rule.

1) “Lectiones mathematicae de methodo integralium aliisque, conscriptae in usum ill. Marchionis
HosPITALII cum auctor Parisiis ageret annis 1691 et 1692, Opera omnia 8, 385—558 (1742) [1743]. I cannot
forbear remarking that these lessons together with those on differential calculus, lost until 1922, form
the most beautiful treatise on calculus ever written. It is ironical that this masterly exposition by
one of the discoverers had to wait over 200 years for full publication.
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JoHN BERNOULLI’s elegant proof is easier to follow if we introduce the inclination
6 at an arbitrary point 4 (Figure 28) and the tension 7' acting at that point. Consider
the equilibrium of the portion of the cord between 4 and B. By No.3 we may
consider the cord suspended by the tension 7' at 4, and by No. 4 the tension at B is
independent of the choice of A4 ; call this constant ka.

By No. 2, the tension at A4 equilibrates the horizontal H 2,
force ka and the vertical force ks, where s is the N\ = G
length of A B. By No. 5, in order that these two forces A
be equilibrated by a tangential force at 4 we must have
58 _ tan0 =% which is (22). [Thus Jorn Brg-
ka dzx C
NOULLI’s statical principle is the equiltbrium of forces,
applied to a finite segment beginning at the lowest ,\
point. Indeed, balance of vertical and horizontal forces E

i Fi 28. JonN BERNOULLI's figure f
yields cxolaining to & HOPTRAL his solation of
(29) Tsin@ = ks, T cos 0 = ka, the catenary problem (1691-1692)

where T is the tension at 4 ; elimination of 7' yields (22) ; an alternative form of (29), is

ds
(30) T =kag ]
Manipulation of (22) easily yields (26),.
[Evidently JorN BrmrNourrr did not find Lersniz’s form (21) of the solution?).]

11. James BErRNouLLI’s researches on the general theory of flexible lines (1691—1704),
and later work to 1717. There is no evidence that the deep and enigmatic JAMES BER-
NouLLI had a solution to the problem of the catenary in 16902). His next mention of it

1) Lesson 37 purports to give LEIBNIZ’s solution but of course does not reveal to us how LEreniz
reasoned; rather, JOHN BERNOULLI merely verifies that (21) satisfies LEIBN1z’s differential equation (22).

2) In annotating the above cited paper as republished in James BErNoULLI’s Opera in 1744,
the editor, GABRIEL CrRAMER, wrote ‘‘whether the method of our author was entirely dissimilar from
that of his brother, which I am going to explain, we dare not guess.” The method then presented is
indeed essentially that of JoEN BERNOULLI but applied in generality sufficient to obtain JaMEs BER-
NovuLLr’s later results (41).

JoHN BERNOULLI in later years asserted that his brother had been unable to solve the problem.
He tells his recollection of the discovery in a letter to pE MoNTMORT on 29 September 1718 (quoted in
part on pp. 97—98 of op. cit. ante, p. 66, footnote 1):

“But it is time, Sir, that I draw you forth from your astonishment. I astonish you, you say,
by saying that my brother was unable to solve the problem of the catenary: Yes, I tell you again,
for it is an uncontestable truth, of which I will give you proofs which put an end to your astonish-
ment . . . You say that my brother proposed this problem; that is true, but does it follow that he had
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is in an addition to a paper?) published in 1691. § 1 of the addition states the form of the

a solution of it then ? Not at all. When he proposed this problem at my suggestion (for I was the first to
think of it), neither the one nor the other of us was able to solve it; we despaired of it as insoluble,
until Mr. LEIBNIZ gave notice to the public in the Leipzig journal of 1690, p. 360, that he had solved
the problem but did not publish his solution, so as to give time to other analysts, and it was this that
encouraged us, my brother and me, to apply ourselves afresh.

“The efforts of my brother were without success; for my part, I was more fortunate, for I found
the skill (I say it without boasting, why should I conceal the truth?) to solve it in full and to reduce it
to rectification of the parabola. It is true that it cost me study that robbed me of rest for an entire
night. It was much for those days and for the slight age and practice I then had, but the next morning,
filled with joy, I ran to my brother, who was still struggling miserably with this Gordian knot without
getting anywhere, always thinking like GALILEO that the catenary was a parabola. Stop! Stop! I say to
him, don’t torture yourself any more to try to prove the identity of the catenary with the parabola, since
it is entirely false. The parabola indeed serves in the construction of the catenary, but the two curves
are so different that one is algebraic, the other is transcendental. I have unfolded the whole mystery.
Having said that, I showed him my solution and explained the method that had brought me to it.

“It pleased him at first, and he saw straightaway (although that was no longer difficult after the
method was found) that this method was applicable to all kinds of catenaries of non-uniform thickness.
There is the reason for the words, ‘My honorable brother has begun to extend this thought’ ete.

“But then you astonish me by concluding that my brother found a method of solving this prob-
lem . . . T ask you, do you really think, if my brother had solved the problem in question, he would
have beon so obliging to me as not to appear among the solvers, just so as to cede me the glory of
appearing alone on the stage in the quality of first solver, along with Messrs. Huvcens and LersNiz?
You knew the disposition of my brother. He would sooner have taken away from me, if he could have
done 80 honestly, the honor of being the first to solve it, rather than letting me take part by myself, let
alone ceding me the place, if it had really been his.”” Jorx BERNOULLI goes on to explain the wording
used by LE1sn1z and the editor of the Leipzig Acta in respect to this question of priority, and to give
other evidence that the solution of the catenary was not due to JAMES BERNOULLI.

While claims of this sort by JoEy BERNOULLI were formerly taken lightly by historians, most of
them have been substantiated in all essentials by concrete evidence. In the case of the catenary,
JorN BERNOULLI’S account is supported by such evidence as there is, not only that presented in the
text above but also by the *“Remarques de Mr. LE1BNIZ sur Dart. V. des nouvelles de la république des
lettres du mots de février 1706, Nouv. Rép. Lettres 1706 == Lrrenizens Math. Schriften TT 1, 389—392.
LEIBNIZ writes, . .. Mr. [JAMES] BERNOULLI . . . asked me, at the suggestion of his brother, who was
already far advanced in these matters, to reflect whether by the same analysis one could not [find]. ..
the curve that a chain would form, supposing it to be perfectly flexible, [the curve] that GArLLEo had
thought to be a parabola, although they did not yet know he had worked on the problem. I reflected
about it, and I succeeded at once, but instead of publishing my solution, I encouraged Mr. BERNOULLI
to try to find it. Doubtless my success was the reason that the two brothers applied themselves vigor-
ously to this problem and that the younger ... prevailed with entire success (eut 'avantage d’y
réussir entiérement). To get so far by the means I had up to then communicated required extraordinary
skill and some practice, which application and the desire for distinction gave them so as to make good
use of this new calculus.” It is unlikely that LEIBN1zZ knew as much about the matter as did Jouw
BerNoULLI, but he was always just and equally desirous for the success of each of the brothers.

1) “Specimen alterum calculi differentialis in dimetienda spirali logarithmica, loxodromiis nau-
tarum, et areis triangulorum sphaericorum; una cum additamento quodam ad problema funicularium,
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catenary curve corresponding to certain particular non-uniform densities. § 2 considers
the case of an extensible cord of uniform thickness. ‘I suppose, moreover, that the exten-
sions are proportional to the stretching forces, even though I doubt that that hypothesis
be sufficiently congruent to reason and experiment. Let us be allowed to retain it, however,
since we know none truer.”’ The result stated is

bdy

(31) z =f
Va2 + 2by — 2a Va?® + b2 + 2by

where b is an elastic constant. [When b = 0, (31) becomes indeterminate and does not
immediately reduce to (26),, and it is difficult to make anything out of this paper.]

For explanation, we turn again to JOHN BERNOULLI’s Lessons, which may be pre-
sumed to reflect JAMES BERNOULLI’s views on these topicsl). Lesson 38, On the curvature
of a string of non-uniform thickness, begins by observing that if the weight of the arc 4 B
is not ks but kp(s), then the same argument?) as for the uniform case leads to

(32) dy _ p(s)

generalizing (22). [This is the continuous analogue of HuyeENs’ theorem (above, p. 67).]
In the special cases treated by James BERNoULLI, the quadrature is relatively easy.

Lesson 39 first considers the case when the weight p is known as a function of  rather
than of s. Then (32) yields at once

(33) ay = fp(x)dx .

For example, if p = bz, we have y = 1 TZ;— 22, the ordinary parabola; [this is the solution
of the suspension bridge problem obtained long ago by BEEcRMAN, HUYGENS, and PARDIES
(above, pp. 24, 45—46, 51—52)]. After working out two other special cases, JOHN BER-
NOULLI takes up the inverse problem : If y = y(x) is the given shape of the funicular, then

alitsque,” Acta erud. June 1691, 282—290 = Opera omnia 1, 442—453. The addition occupies pp.
449—453 = LEIBNIZens math. Schriften 5, 2562—254.

1) James BERNOULLI, as we have seen, claims the results. JoEN BERNoOULLI in his letter to DE
MonTMORT, quoted above, pp. 75—76, when vehemently defending his sole priority over his brother
with respect to the ordinary catenary does not make any reference to these problems except to say
that they had become ‘‘no longer difficult”.

2) Indeed, in the copy of JoEN BERNOULLI’S Opera in the Basel University Library, at Remark 13
in Lesson 37 a correction lettered in an old hand emends ‘‘the distances of those points’ to read ‘“‘the
distances of the centers of gravity of those points,” which is an awkward way of stating (32).
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the density is p = a,gg— . Let t be the weight per unit horizontal length. Then

(34) _d_ %y

=——=aq .
dax?

de

Therefore whenever the catenary is ‘“geometrical” [:. e., an algebraic curve], ¢ is also
geometrical. For example, if the catenary is the parabola, y o 22, then ¢ = const., so
that the horizontal load is uniform. [It now seems more natural to consider the line
weight og per unit length of cord, '

_dp dp dx a dy dy \?
(35) 09—“7;_7{575_]/@ da? ——a[H-(%)]x.]
dz

Lesson 40 considers the case when p = p(y).

Lesson 41, the most interesting after Lesson 37, is On the curvature of extensible strings.
JorNn BerNouLLl, as suggested by his brother Jamms, adopts ‘“‘the axiom of Lrreniz
[¢. e. HoORE’s law] that the extensions are proportional to the pulling forces!).” [The
analysis is difficult to follow?) but is important because the special devices used for the

inextensible catenary are not sufficient here ; BERNOULLI must face not only the compli-
cation introduced by the elasticity of the cord but also the fundamental statical problem.]

BerNoULLI again considers the equilibrium of the section of cord from the lowest
point B to 4 ; again the weight of the cord equilibrates the horizontal tension ka at B and
the tangential tension 7' at 4. Let s denote arc length in the deformed cord [no longer
the same as arc length in the undeformed cord]. Let the elastic law be that a force 7' pro-

duces a local extension %~ 7 in the cord. If do is the original length of the element dsat A ,

ka
we have then ds —=da |1+ %'—I:c% . The weight density — F, is related to that in the
undeformed cord, k, by — F,ds = kdx. Hence
k
(36) —F v = b T
1+ %

For statical principles, first we have (30) [which was implied by BERNOULLI’S earlier

1) In addition, he supposes the cord to be incompressible and concludes that the areas S, s and
lengths L, 1 before and after deformation satisfy SL = sl. These areas are infinitely small, and the
curve considered is that ‘““in the middle’ of the cord. These assumptions, however, do not appear to be
used.

2) Somewhat clearer is CRAMER’s version, given as an annotation on p. 451 of JAMES BERNOULLI’S
Opera 1. Our presentation does not reproduce either source but rather attempts to bring out clearly
what JOEN BERNOULLI'S steps seem to imply. '
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analysis but apparently not noticed until now]. In addition, BERNoULLI infers from the
balance of forces the principle

d dy\ _
(37) —‘E(ka%)———py,
expressed partly in words. Combining (30), (36) and (37) yields
d ( dy 1
(38) () —a -
ds \ dx b ds
I+ %

When b = 0, this reduces to (22) ; when b £ 0, it may be manipulated into the form of
James BERNOULLI’s equation (31).

[More important than the clever solution of this problem that LeiBNiz had regarded
as hopelessly difficult is the method. We now write the statical equations for a flexible

line as

d d dx
E(TCOEG)’—‘»"@(T‘w) = '—Fz ,

(39)

d o d dy \
TE(TSIne)—Td?(TTJ?)— —F,, s

where I, and F, are the components of applied force per unit length in the directions of
z and y. In all problems considered so far, ¥, = 0, and integration of (89), yields (30).
The resulting expression for 7', when put into (39),, yields BERNOULLI’s result (37). What is
important is that BERNOULLI obtains (37) by the fully general statical argument which we
should now use to obtain (89),. That is, while he still expresses the equilibrium of hori-
zontal forces in an integrated form valid only in special cases, his result (37) for the vertical
forces is a condition of equilibrium in differential form. For the first time, the resultant force
acting on an infinitesimal element has been calculated. This is the first step in continuum
mechanics, and it is also the first advance toward the theory of stress since GALILEO’s
simple argument concerning the strength of a rope (above, p. 37) and PArRDIES’ remarks
on the tengion in a catenary (above, p. 51).

The result (37), as it stands, is of great value, for it is the general equation of equilibrium
for a flexible line subject to load parallel to a fixed direction. The difference between the mastery
of mechanical principles in 1690 and today is strikingly illustrated by the fact that the
modern student may read off, by inspection of (37), the equation of small transverse
oscillations of a taut string, for one has only to put ds &~ dx, T = ka = const., and take

% 2% %
5 whence follows o-—3- 52 =T—= 52

but in fact a full fifty years of mechanics lay ahead before this equation was to appear in
the work of D’ALEMBERT and EULER. See §§ 33 —34, below.]
Returning to JaAmEs BERNOULLI’s Addition (above, p. 76), in § 4 we find stated the

the transverse force F, as merely inertial, F', = — o —=-
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problem of the velaria : To find the curve assumed by the base of a cylindrical sail. As for-
mulated by BERNOULLI, the velaria is the figure of a perfectly flexible cord loaded by a
uniform normal pressure ; this curve, [determined incorrectly by HuycENs, above, p. 46,]
JamEs BERNOULLI asserts to be a circular arc. After some controversy, it was decided the
proper loading is a uniform force per unit length parallel to a fixed direction ; in this case,
the curve was shown to be the ordinary catenary. About this time was proposed also the
problem of the lintearia, the form of a cylindrical cloth filled with water ; this was shown
to be an elastic curve of the type to be discussed in our § 12 below. These same problems
could be regarded in an alternative light. . g., as had been known to HookE (above, p.
57) and as was pointed out anew by GREGORY!), the catenary turned upward gives the
solution for an arch sustaining its own weight through tangential compression alone, thus
needing no cement. While these problems called forth considerable ingenuity, mainly in
respect to differential manipulations, and occasioned the great quarrel between the brothers
BerNoULLI, nevertheless, so far as I can learn, they gave rise to no additional enlighten-
ment of mechanics, so they shall not be considered further here?2).

Whether or not JAMES BERNOULLI had a method for deriving the catenary in 1690,
it is nearly certain?®) that by June 1691 his slow but mighty intellect had found a second
approach. differing more from those used by Lersniz and Jorx BERNouLLI than do those two
from one another. This approach rests on the concept of curvature (see below, pp. 90—91).
While he never published this method, we may follow some of his ideas in his remarkable
notebook, Thoughts, notes, and remarks on theology and philosophy, condensed and collected
from the year 1677 onward by me J. B.%). No. CLXV, dating probably from 1691, concerns

1) Corollary 6 to Prop. 2 in op. cit. infra p. 85.

This was observed also by PARENT in a work which appeared in 1700; see pp. 810—815 of vol. 2 of
his Hssais, cited on p. 110. The passage reprinted on pp. 494—499 of vol. 2, if it actually appeared in 1700,
is the first correct derivation of the ordinary catenary to be published. The difficulties in connection
with PARENT’s publications are mentioned in footnote 1, p. 109 below.

2) A definitive original treatment is given in JouN BERNoULLI’s Integral Calculus (cited above,
p- 74), Lessons 42—45, except that the identity of the lintearia with the elastica is not shown. Pub-
lished expositions of inferior quality are to be found in the books of HERMANN and TAYLOR, cited
below, p. 86.

3) In June 1691 he gave the solution for the elastica as an anagram (below, p. 88); on publishing
this solution in 1694 (below, p. 89), he says that it rests on the second of the “two keys” to the
catenary, namely, the formula for the radius of curvature. In the work of JaAMES BERNOULLI every
sentence must be weighed by the reader.

4) Meditationes, annotationes, animadversiones theologiae & philosophiae, a me J. B. concinnatae &
collectae ab anno 1677, Basel Univ. Library MS Ia 3. As its title indicates, this is not a diary, and for
many matters where the interest would be greatest there is no entry at all. In particular, and consist-
ently with JoEN BERNOULLI’S claims (above, pp. 76—76), there is nothing regarding the catenary
prior to 1691.
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the velaria. The load, which is normal, is resolved into rectangular components ; the pro-
cess is lengthy and obscure, and it seems that the radius of curvature is brought in a
posteriort by looking at the equations derived. The statical principle seems to be the theo-
rem of PARDIES or something akin to it ; in any case, a finite arc rather than a differential
element is considered!). Much later?), probably in 1695, there is a thorough analysis of the
string subject to various concentrated loadings. What is new is the concept of tension3)
(firmitas) of the string. By its aid, a straightforward balance of forces acting on the
weighted string leads to results generalizing STEVIN’s theorem (above, p. 45). When he
comes to the continuous string?), however, JAMES BERNOULLI turns aside from this line
of thought and again considers a finite segment. He calculates the “line of mean direc-
tions” of the load, ¢. e., the line such that the resultant force may be regarded as directed
along it and concentrated at a point upon it. [In generalization of the theorem of Parpigs,]
this line must pass through the point of intersection of the tangents from the ends of the
arc, and its direction follows by integrating the forces. [JAMES BERNOULLI is still close to
the methods successful in treating special cases.] These results are checked against the
catenary and the elastica, visualized as the lintearia.

In a note®) from 1697—1698 James BERNoULLI finally obtains the general equations
for a flexible line. This is made possible by systematic use of the tension, which is now the
main tool in arguments applied either to a finite segment or to an infinitesimal element?®).
Let the small angle between the tangents at the two ends of an element be df. Then the
tensions exert a resultant force normal to the element of amount 7'df, and this must balance
the normal load F,ds. Since dfl/ds = 1/r, we have?)

(40) -% = F, = density of normal load.

(This result was discovered independently by SAUVEUR in 17038). .

1) No. CLXXXVII demonstrates the identity of the velaria and the catenary; No. CLXXXIX,
of the lintearia and the elastica. The former of the sections numbered CCXXVIII concerns a
construction of the catenary which BERNOULLI himself noted to be false.

2) Nos. CCXIIT—CCXXVII, addition to No. CCXXVIII.

3) Of course the tension was present implicitly in the earlier solutions. It is its explicit recognition
that is new and important.

4) No. CCXXIX and the immediately following No. CCXXXT.

5) No. CCXLYV, printed in slightly expanded form as No. XI, pp. 1036—1048, of the ‘‘Varia
Posthuma,” Opera 2 (1744).

6) Here BErNoULLI refers back to No. CLXYV (above, p. 80).

7) The argument is given in words in the middle of p. 1037 of the printed version; one must
supply an equality sign reading downward to realize that ‘‘firmit. fili in B” is prz/a.

8) “Du frotement d’une corde autour d’un cilindre immobile’ (14 July 1703), Mém. acad. seci. Paris
1708, 2nd. 4t0 ed., Paris, 305—311 (1720). Prop. I states (40) only for the case of a rope lying on a ecir-
cular cylinder, but the reasoning is general.
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After a long detour concerning the mean line of the load, JAMEs BERNoULLI balances
the forces acting on a finite part of the string ; the argument, [in reality, the argument of
JonN BERNOULLI put in more general form?),] yields?)

79 _p (s,
ds )
(1) oy e
T%= —‘arods >

where T, is the tension at the lowest point, s = 0. [These are integrated forms of (39).]
The intrinsic equation companion to (40) is

(42) %f_ = — F, = tangential load per unit length.

This result, also in integrated form, BERNOULLI obtains by some rather mysterious mani-
pulations.

The result is rediscovered, at least in part, by JorN BERNOULLI at the conclusion of his “Solution
du probléme . .. sur les isoperimetres,”” Mém. acad. sci. Paris 1706, [2nd.] 4to ed., Paris, 235—245
(1731) = 12m0 ed., Amsterdam, 304—318 (1708) = Opera 1, 424—435.

It is again rediscovered by TAYLOR, Prop. XXI, Prob. XVI of op. cit. infra, p. 86 (see also his
proof of Lemma 9) and by HERMANN, § 93 of op. cit. infra, p. 86.

Vanrawoxn attributes (40) to Sauveur and to BoreLLi, De motu animalium 2, Lugduni Bata-
vorum, 1685; new ed., ibid., 1710. BoreLLr’s Prop. 56 reads, “If a rope wound around a globe and
[recte or] cylinder is pulled uniformly along its whole length, the power pulling the rope will be to the
resistance of the globe or cylinder as its radius to the circumference of the rope.” This result follows
from (40), since it asserts that % = -:—, where ¢ = the circumference. However, despite its correct-
nessy even this corollary may not be attributed to BorELLI without reservation, since he adduces a
fantastic argument about the velocities with which the parts of the cylinder or globe are contracted
as the rope is pulled tighter.

VARIGNON himself spins out numerous corollaries; see his ‘“‘Pressions des cylindres et des cones
droits, des spheres et des spheroides guelcongues, serrée dane des cordes roulées autour d’euz, ot tirées par
des poids ou des puissances aussi quelconques,” Mém. acad. sci. Paris 1717, 4to, Paris, 195—210 (1719),
also Hiet, ¢bid., 68—70.

1) Perhaps it is on this account that in obtaining the quotient of (41), by (41), by an argument of
this kind the editor of JAMES BERNOULLI’'S works on pp. 424—426 attributes the proof to JorN BER-
NOULLI, though nothing so general is to be found in the latter’s printed works. In Lesson 42 of op. cit.
ante, p. 74, there is a start, and in Lesson 44 there is a near miss in connection with the lintearia, but in
fact all of JoEN BERNOULLI'S work rests on special integrated forms possible because of the specially
simple loads considered.

2) In “Extrait d’'une lettre de Monsieur BERNOULLI de Béle [6 Mr. VArignon], du 26. juin 1698.
Contenant U'examen de la solution de ses problémes, inserée dans le Journal du 2. décembre, 1697, J. des
Scavans. 26 (1698), Paris ed. 355—360 = Amsterdam ed. 560—569 (1699) = JAcOBI BERNOULLI
Opera 2, 829—839 = JomANNIS BErRNOULLI Opera 1, 222—229, JamEs BERNOULLI in conjecturing
the nature of an unpublished proof by his brother writes out results equivalent to (41) for the case of
normal loading.
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//{f The next to last entry in JAMES BER-
' NoULLI’s Thoughts, notes, and remarks, ‘‘solved

4 3 /,’l : ‘W H . 5 December 1704,” is called Problem of the
: z' J { . : curvature of an arch whose parts support each
sy } other by their own weight, without use of mor-
: : tart). This introduces a third method, which

we present in much abbreviated form. The
[infinitesimal] stone K L in Figure 29 *“ . . .is
to be regarded as a wedge trying to force
itself into the triangle DQE. As it comes
from K L into the position DE, that is, while it
traverses the space K D, it pushes

back the force pressing along I'L

>- by the distance K L — DE.” Then
) ;2 the wvirtual work done by the nor-
"~ mal force — F, pointing inward

Figure 29, JamEs BErNouULLI’s figure for calculating the form of .
the general catenary by use of the principle of virtual work (1704) equals that done against the com-

pression — 7'. That is,
(43) —F,-KD= —T-(KL — DE) .
From the geometry of the figure follows KL/(r + KD) = DE|r, so that
KD:(KL — DE)=r:ds .

Substituting this last into (43) yields (40). The argument is given by BERNOULLI only sub-

ject to the special assumptions appropriate to the arch ; the result is 1/r = % / 8 (%)2 ,
which is integrated to obtain (22).

James BerxourL here considers also a second hypothesis : Friction being assumed
sufficient to prevent the stone from slipping forward, it ‘“‘tries to rotate’” about its lower
edge. While JAMES BERNOULLI now obtains a differential equation like (22) but with a
factor 2 on the right-hand side, the “subtle paralogism’ in his argument is pointed out in
two annotations by his nephew NicHoLAs I BerNourri?): With correct analysis, this
hypothesis leads to just the same result as the first. [Thus JAMES BERNOULLI introduces
yet a fourth method : the balance of moments on a differential element. While for this problem

1) No. CCLXXXYV, published in slightly expanded form as No. XXIX, pp. 1119—1123, of
“Varia Posthuma,” Opera 2 (1744).
2) The BErNOULLIS we shall encounter in this history, along with our principal associations with
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the outcome is the same, it is possible that JamEs BERNOULLI had the insight to grasp the
independence of the balance of moments from the balance of forces in a continuous body.

Thus by 1698 JamEs BERNoULLI had wrung out the general equations of equilibrium
for a plane flexible line. To this end, he had to abandon the special devices used for the
ordinary catenary by his brilliant younger brother and by LEiBNiz and to purify and
deepen the problem until it was reduced to its essential : The action of any part of the line
upon its neighbor is purely tangential.

By 1704, moreover, JAMEs BERNOULLI had succeeded in grasping and using four
tndependent approaches :

1. Balance of forces resolved in two fixed orthogonal directions.
2. Balance of forces normal and tangential to the line.

3. Virtual work.

4. Balance of moments.

Even today, there are scarcely any more.

Elegant as were the quick solutions of LEieN1z and JorN BERNoULLI for the ordinary
catenary, these achievements of JAMEs BERNoULLI are of a different order of worth. Far
from being easy extensions of what had been done before, they required a kind of intense
fundamental thinking in rational mechanics that JAMES BERNOULLI alone, of all those we

them, are shown in the following table:

[ |
JaMES JorN
(general catenary (catenary (1690),
(1691—1704), elastica - vibration of loaded or
(1691—1694), elastic laws l weighted string
(1695—1705)) 1655—1705 Niczoras I (1713, 1742)) 1667—1748

(Editor of Opera of
JAMES, 1744) 1687—1759

Nicueoras II DaNiEL Jonn II
(correspondent of JamEs (frequencies and modes of vibrating (small oscillations,
Riccari) 1695—1726 systems (1733—1771), correspondence conical strings (1736))
with EULER (1733—1763), elastic laws 1710—1790

(1738—1742), co-existence of small
oscillations (1753)) 1700—1782

Jorn III James I1
(intermediary between EULER and (vibrations of plates
DawnierL BeErNouLni (1763—1766), (1787)) 1759—1789

laws of elasticity (1766—1768))
1744—1807
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have so far encountered, had the insight and the stamina to pursue. It is from JamEs
BeRNOULLI’s ideas that the further development for this part of the theory of deformable
bodies grew.]

While the foregoing account of the first researches on the catenary is complete, the
reader may note with some astonishment that nearly everything that concerns principle is
taken from sources that lay unpublished for fifty to one hundred and fifty years. Indeed, the
original papers consist in little else than ‘“‘constructions”, 1. e. the explanation of a desired
curve in terms of properties of possibly more familiar ones. [From the standpoint of me-
chanics, at least, the first researchers concealed everything they ought have published?)
and published only what they had better discarded. Nothing illumines more surely the
little band of proud, possessive, and mutually suspicious giants who reared the new cal-
culus than that they were content to withhold proofs indefinitely while continuing to
publish assertions, hints, and quarrels regarding ever broader new researches that even
with full explanations would have been understood by at most fifty men in all Europe.
Thus it was quite proper] for DaviD GREGORY seven years after the great contest to
publish a paper?) whose expressed purpose was to supply proofs, using the method of
fluxions, for the propositions of HuygEeNS, LEIBNIZ, and Jou~ Berxvourrr. However, as
James BErNourrd) and LErBNIz4) hastened to say with respectively characteristic gloom

1) In the case of JOEN BERNOULLI this was surely not from choice but from the terms of the
monopoly he had sold to L’H6PITAL, Who from the material bought from BERNOULLI chose to publish
under his own name only the parts concerning differential calculus. See O. Seimss, pp. 135—153 and
especially p. 1562 of op. cit. ante, p. 66, footnote 1.

2) “Catenaria,” Phil. trans. 19, No. 231, August 1697, 637—652 (1698) — Acta erud. July 1698,
305—321. English translation, Phil. trans. abridged 4, 184—196.

3) The seventh of the ‘“Epimetra” at the end of Positionum de seriebus infinitis . . . pars quarta,
Basel, 1698 = Opera 2, 849—867, reads: “‘DAVID GREGORY’s analysis of the catenary curve, recently
published in the Leipzig Acta for July, shows neatly how it is possible for us to be misled through an
inevident and false though plausible argument to a true conclusion.”

4) See LErsNiz’ anonymously published ‘‘Animadversio ad Davipis GREGORII schediasma de cate-
naria, quod habetur in Actis Eruditorum an. 1698, Acta erud. Feb. 1699, 87—91 — LEIBNIzens math.
Schriften 5, 336—339. It is curious to see, in a reversal of the roles traditionally attributed, that while in
later parts of the paper the calculus is more or less rightly manipulated by NEwToN’s follower, LEIBNIZ
has to correct him in the principles of statics. GREGORY’s pitiful attempt to salvage his proof is in-
cluded in “Responsio ad animadversionem ad Daviprs GREGORII catenariam, Act. Eruditorum Lipsiae,
Mense Februarit A. 1699,” Phil. trans. 21, No. 258, 419—426 (1699) = Acta erud. July 1700, 301—306.
English translation, in part, Phil. trans. abridged 4, 456—458.

As appears from other writings (e. g. LEIBNIZens math. Schriften 5, 418), LEIBNIZ unjustly
but understandably attributed the gross errors of GREGORY to the insufficiency of NEWTON’s method of
fluxions. Indeed, after the long silence of the English regarding the great problems being solved on the
continent by LEIBNIZ’s method, nothing could have made a poorer appearance than this piece, where
the author shows himself unable even to prove correctly results long since obtained, mastered, and
improved by the users of the differential method. Whether or not anything on the catenary is to be
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and ebullience, his argument is wrong?) : The attempt to calculate the force acting on a
differential element is a failure. [This is one more example to show that the local balance
of forces, which nowadays we are all taught to regard as the simplest approach to the
mechanics of continuous media, is in fact not an obvious concept.] The first correct proofs
to be published, a full quarter century after the great contest, are those of HERMANN?) and
TAYLOR?), both of whom treated a wider class of problems. TAYLOR’s work, while not as
general or as efficient as it might have been, and also not exempt from error, is pleasant to

found among NEwTON’s papers, I do not know, but no modern reader who has followed in detail any
of the disguised fluxional proofs in the Principia would doubt for a moment NEwWTON’s own power to
solve this problem, and quickly, by fluxions. It would be my conjecture, judging especially by his later
performance with the Brachistochrone, that NEwToN found the catenary too easy to distract him from
his other occupations. What is most abundantly proved by all this is that unlike Lersniz, Newron
had no BERNOULLIS.

1) Everything rests on Prop. 1, which derives (22) by means of a fallacious balance of forces on an
infinitesimal element, cancelled by an incorrect expression for the tension. We may conjecture that
(a) for GREGORY as for anyone who knows calculus, all that was needed was a differential equation;
(b) GrEGORY searched the papers of 1690 for a differential equation, thus finding (22), which wag
stated by LersNiz and BERNOULLI but not emphasized by either; (c) GREGORY tried to apply the paral-
lelogram rule to yield (22), but he did not isolate the differential element correctly (failing in fact to see
that it is the difference of tensions on the two ends that balances the gravity of the element), whereupon
he adjusted the tension so as to give the right answer.

2) Lib. L, Sect. I, Ch. IIT; Lib. IT, Ch. IV and Ch. XIII; and also § V of the Appendix in Phoro-
nomia, sive de viribus et motibus corporum solidorum et fluidorum, Amsterdam, Rod. & Gerh. Wetstenios,
1716, [xx] + 401 - [ii] pp. The copy in the Basel University Library, the gift of the author, is cor-
rected by him. In § 462 HERMANN says ‘‘the solution, or more properly the analysis” of the velaria had
not been published up to that time.

It is possible that PARENT published a correct proof in 1700; see footnote 1, p. 80.

According to Jorn BeErNouLLl, HERMANN’s treatment of flexible curves is faulty. See ‘‘Solutio
problematis catenarii generaliter concepti, per methodum Hermanni ab errore repurgatam,” Opera 4,
234241 (1742). Here Jomy BErNoULLI obtains the equations in polar co-ordinates. While HERMANN
may have made mistakes in his applications (which I have not tried to follow), I can find none in his
principles or main equations; the difficulty may lie in failure to realize that his polar co-ordinate
diagram must be drawn over again at each point. In § 93 he obtains the general intrinsic equations
(40) and (42) by JamEs BerNOULLI’S second method (above, p. 81). The equation of normal forces is
expressed in terms of the angle of contact, without mention of the radius of curvature, and this may
be a further difficulty.

In the EULER collection at Basel is a manuscript (MS III 29 [16c]) dating from some time after
1713 but before 1728, in which JorN BERNOULLI constructs a catenary subject to the attraction of a
fixed center.

3) See Problems XIII—XVI, Props. 18—21 of Methodus incrementorum directa et inversa,
Innys, London, 1715 and 1717, [vi] + 118 pp. The work was complete in April 1713 (see JoHN BER-
NovuLLI's Opera 2, 474).
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read. HERMANN’s, though thick and ugly?), has the virtue of JAMESs BERNOULLI’s influence?),
as shown by the following definition3) :

“The tension or compression (tenacitas vel firmitas) of a thread or body at any of its
points or at an element of the curve is that force of the thread or body which resists that
power or force growing from all the applied powers [¢. e. loads] and tending by pulling
the thread in opposite directions to tear it apart. This tension exactly equals or is equipol-
lent to that tearing force resulting from all the powers applied to the body.” [Especially if
shortened by the omission of alternative words, this is a perfect definition of the general
line stress, to be introduced by EuLEr fifty years later (below, pp. 391—392). However,
HERMANN’S statement is not so general as it sounds, since he tacitly supposes the tension
to be tangent to the curve, as is appropriate to the perfectly flexible case only.

This late and merely derivative publication had its effect on the further development
of our subject. On the one hand, the historian, looking at (40), (41), and (42), both in
general and in special cases, and regarding their derivations, may say that the problem
of the catenary led almost immediately to sufficient principles and indeed to the general equa-
tions, both for fized and for intrinsic co-ordinates, for a flexible line subject to any loading.
On the other hand, almost none of this material was generally available, and much of it
had to be rediscovered, especially since TAYLOR’s book was incomplete and HERMANN’s
obscure. ]

To finish with the early history of perfectly flexible cords we must note that in a short
time the variational principle known to all the first investigators (see above, pp. 45,
70, 73), that the center of gravity hangs as low as possible, was reduced to mathematics
and shown to yield the same solution, viz (32), as obtained by direct methods. This was

1) Not to everyone, for upon receiving the manuscript on 17 September 1715, before the book was
published, LEIBN1Z wrote, ‘I could not restrain myself from rushing through your work with the
greatest enjoyment, as if it were a book of stories or romances.”

2) In his letter of 29 September 1718, cited above, p. 75, JoEN BERNOULLI writes that HER-
MANN govoral times had free access to his teacher JamMus BERNOULLL's posthumous papers and was able
to make any use of them he pleased. By his own admission, however, JoEN BERNOULLI was not able to
witness any such use, and nothing specific should be concluded.

HERMANN’S correspondence with LEIBNIZ certainly gives the impression that HERMANN evolved
his results on the catenary slowly and by himself, though they were of course based on the instruction
he had received from Jamrs BERNOULLI. After passing remarks on 19 March 1707 and 11 January 1711,
finally on 27 October 1712 HERMANN writes with pride of having established ‘‘a most general proposi-
tion, of which the problems of the catenary, velaria, etc., are but special cases.”” Again on 22 December
1712, “ ... I do not even require the tendencies or impulses, to which the points of curves of this sort
are subject, to be only perpendicular to the curves or parallel to an axis, but oblique in any way ...”

Had HERMANN obtained this material from JamMes BERNOULLI’s notes in 1705, he surely would
have had no cause to withhold it until 1712.

3) Phoronomia Lib. I, Sect. I, Ch. III,
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an achievement of JAMEs BERNoULLIY). [We do not follow it here for two reasons. First,
its development is properly a part of the history of the calculus of variations, which has
been written by others?). Second, as in most cases of variational principles, it furnishes
only a detour for mechanics : By the time it was successfully used, the problem of the
flexible line had already been solved correctly by direct methods in cases when there is a
horizontal as well as a vertical load, and in these cases the variational principle does not
hold.]

12. JamEs BERNOULLL’s first researches on the elastica (1691—1694). In § 3 of JAMES
BerNouLLI’s Addition®) appears an ‘“‘equally outstanding problem”, to which LEIBNIZ
had drawn his attention in private letters (above, p. 64) : ‘‘the bendings or curvatures of
beams, drawn bows, or of springs of any kind, caused by their own weight or by an attached

B weight or by any other compressing forces . ..” (Figure 30). “But

this problem, whether because of the uncertainty of the hypothesis

¢ or the manifold variety of cases, seems to be more difficult than

[that of the hanging cord], although here it is not a question of

lengthy calculation but rather of industry [?]. I have opened the

A approach to this problem by the fortunate solution of the simplest

Figure 30. . .
JaMES %U;RNOULH’S case (at least, under the aforementioned hypothesis on the elon-

drawing to announce the
problem of the elastica

(1691) will allow others time to try their analysis; I will suppress my
solution for the present, and I shall conceal it in an anagram, the key to which, along

gation). In imitation of that most excellent man [Lursniz], I too

with the demonstration, I will communicate at the harvest festival.”
[The problem of the elastic band, or elastica, is indeed of a deeper difficulty than that of
the catenary?).] Not merely a few months but three full years JAMES BERNOULLI held his

1) Q. D. 0. M. B. V. analysin magni problematis isoperimetrici, in actis erud. Lips. mens. Mai.
1697. propositi, sub praesidio JACOBI BERNOULLI ..., Basel (1701) = Acta erud. Leipzig, May 1701,
213—228 = Jacosi BErRNouLLI Opera 2, 895—920 = JorANNIS BERNOULLI Opera omnia 2, 219—234.
See Problema III. See also No. CCXXXIX of the Thoughts, notes, and remarks, cited above, p. 80.

2) R. WoODHOUSE, A treatise on isoperimetrical problems and the calculus of variations, Cambridge,
1810. C.CarATHEODORY, ¢ Basel und der Beginn der Variationsrechnung,’’ Festschrift zum 60. Geburtstag
von Prof. Dr. ANDREAS SPEISER, Ziirich, Fussli 1945, pp. 1—18.

3) Cited above, p. 76. An annotated German translation of § 3 by H. LINSENBARTH is given on
Pp. 3—4 of Abhandlungen uber das Gleichgewicht und die Schwingungen der ebenen elastischen Kurven,
Ostwalds Klassiker No. 175, Leipzig (1910).

4) In addition to LE1BNI1Zz’s remarks we have HUYGENS’ comment in his letter to LEIBNIZ of
16 November 1691: “I cannot wait to see what Mr. BERNoULLI the elder will produce regarding the
curvature of the spring. I have not dared to hope that one would come out with anything clear or
elegant here, and therefore I have nover tried.”
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secret while no one, not even his brilliant brother?), put forward a word on the mathe-
matical theory of elasticity?).

In 1694 James BERNOULLI published his solution, The curvature of an elastic band.
Its identity with the curvature of a cloth filled out by the weight of the included fluid. The radii
of osculating circles exhibited in the most simple terms ; along with certain new theorems thereto
pertaining, etc.®). “After a silence of three years I keep my word ; but in such a way as
right richly to compensate for that delay, which else the reader might have borne with
annoyance, since I exhibit the curvature of springs not in one way only (as I had promised
in the beginning) but generally for any hypothesis on the elongations ; which, unless I err,
I am the first to achieve, after the problem was attempted in vain by many.” After point-
ing out the erroneous opinion of GALILEO?), the ‘“‘pure fallacies”” of PARDIES, and the
“plainly preposterous” argument of prT LaNAS®) on this subject, BERNOULLI continues.
“T said . . . that this problem is more difficult than the funicular one, and not without
reason. Not to mention other things, T remark that in investigation of the catenary there
are two keys, which lead to two different equations, one of which expresses the nature of
the curve through its relation to its co-ordinates, the other through a relation between the
thread and its evolvent, while for probing the nature of the elastic curve, only the latter
key opens the way. Thus, plainly, it is possible that a person might overcome the difficulties

1) JorN BErRNOULLI wrote to DE MoNTMORT on 15 June 1719 that he had shown to L’HSPITAL
in 1691—1692 ‘“‘a very individual analysis of the elastic curve much different from my brother’s.”
According to Sprmss, p. 137 of op. eit. ante, p. 66, footnote 1, there exists a paper of this period which
served as the first draft for the note JoEN BERNOULLI published fifty years later: “‘Solutio problematis
curvaturae laminae elasticae a pondere appenso,” Opera omnia 4, 242—243 (1742). The published note
interprets the [HookE-] LEIBN1z hypothesis as asserting that the normal relative displacement of
infinitely near particles is proportional to the moment of applied force. This is a mere ex post facto
affirmation of the law (46) in the linear case, leaving nothing to prove.

2) At the end of a paper printed in May 1692, JaMEs BERNOULLI wrote, ‘“‘very soon I will give
the curvature of a spring.”

3) “Curvatura laminae elasticae. Hjus identitas cum curvatura lintei a pondere inclusi fluidi expansi.
Radii circulorum osculantium in terminis simplicissimis exhibiti; una cum novis quibusdam theorematis
huc pertinentibus, etc.,” Acta erud. June 1694, 262—276 = Opera 1, 576—600. Part of this work is
translated into German and supplied with helpful annotations by LINSENBARTH, pp. 5—17 of op.
cit. ante, p. 88, footnote 3.

4) BErNoULLI attributes to GALILEO the contention that the elastic curve is a parabola, but
nowhere in GALILEO’s works have I been able to find any mention of elastic curves. However, the para-
bolic form of a beam is included among the “‘pure fallacies’ of PARDIES (above, p. 53).

5) The book of the Jesuit FRANCESCO D1 LANA TERzI, Magisterium naturae et artis, Brixia, 1684—
1692, is long; a cursory search did not reveal either anything concerning elastic beams or anything at all
of a definite nature. According to MUSSCHENBROEK, DI LANA “took virtually everything from GALILEO
and FaBrI, except for certain physical observations of little worth”; also, his experiments he “ex-
tracted from his own head, performing none at all” (pp. 427 and 506 of op. cit. infra, p. 151).
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Figure 31. JAMES BERNOULLI’S first publication of the elastica (1694)

of the first problem, yet fail to emerge as victor of the second —a person, namely, who
lacked the second of the keys, which exhibits . . . in simplest and purely differential terms
the relation of the evolvent of radius of the osculating circle of the curve. This was already
known to us at the time we speculated upon the rope, and on his travels my brother com-
municated it soon after to some others [i.e., to T”HéPITAL, VARIGNON, efc.]. Meanwhile,
since the immense usefulness of this discovery in solving the velaria, the problem of the
curvature of springs we here consider, and other more recondite matters, makes itself
daily more and more manifest to me, the matter so stands that I cannot longer deny
to the public the golden theorem . ..”

The “golden theorem” is the general formula for the radius of curvature of a curve?).

1) To this both HUY¢ENS and LEIBNIZ reacted with some sarcasm, since both had been in possession
of the “‘golden theorem’ for some time. HuYGENS, for example, had published a statement and proof,
quite clear though synthetie, of a result equivalent to the formula in rectangular Cartesian co-ordi-

d?
nates; see Pars Tertia, Prop. XTI of op. cit. ante, p. 47. JAMES BERNOULLI obtains the forms 5= dy_:s
dz 1 dzd 3 - . .
= dxfi/s and 7= xl :y according as s or 2 is the independent variable. In defense of BERNOULLI’S

boasting, however, must be adduced the remarks of HuveeNs and LEIBNIZ cited above (pp. 64, 88); both,
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For his solution of the problem of the elastica, JAMES BERNOULLI gives a geometrical
construction described in terms of the elaborate figure above (Figure 31). There is no
proof, but the explanation tells us that the theory is applicable to ‘‘a rather long hoop, a
stay, a rod, a switch, or any weightless elastic band 4Q RSyV A, of uniform breadth and
thickness RS, AV, of length RQ A, with one end at RS fixed vertically, and if at the other
end AV there acts a force, or if a weight Z is attached there, that is sufficient to curve the
band until its tangent at 4, namely 4 B, is perpendicular to the direction of the weight
AZ, then the concave side of the band will take on the curvature RQA that we have
constructed. The convex side SyV is parallel to it . ..” The “line of elongations” 4 FC
is “any straight or curved line, whose abscissae 4 E represent the stretching forces, while
the ordinates E F give the elongations.” [That is, JAMEs BERNOULLI introduces an arbi-
trary single-valued functional dependence of elongation upon stretching force'). The little
springs drawn in the figure at 7'S and ¢s suggest that BErNoULLI, following LEIBNIZ,
regards the fibres of the beam as extensible, but, unlike LEIBN1z, he is taking account of the
bending which accompanies this extension.]

For explanation of BERNOULLI’s ideas we turn to a paper?) he published in the next

despite their knowledge of curvatures, considered the problem of the elastica impossibly difficult. As
Bunwourur replied in § I of op. cit. infra, Note 2, “Indeed I knew that that most acute man had not
refrained from study of bending, as he himself once mentioned to me in private letters [above, p. 64],
and to it the notice of my solution published in June 1691 might have inclined him [4.e. again].
I saw indeed that not only was he himself the author of the principle used by me [%. e. the elastic law],
but aleo that my caleulation built upon it (with the sole exception of the above mentioned theorem
[on the radius of curvature]) was so simple, so easy, as will appear from the analysis I subjoin pre-
sently, that I should have wronged him much, had I thought he had known the theorem but not gotten
the solution.”

James BERNOULLI’s solution is indeed a masterpiece of higher order than anything published
concerning the catenary.

1) This has been remarked by PEARsoN, Appendix, Note A (1) of op. cit. ante, p. 11. With his
usual ability to miss the point of fundamental researches in elasticity, PEARSON criticizes BERNOULLI
for not using “the curvoe obtained by measuring the strains produced in the same rod by a continuously
increasing stress.” In fact, like most modern investigators of finite deformation, BERNOULLI uses the
actual force in the deformed state.

2) “EHxplicationes, annotationes et additiones ad ea, quae in actis sup. anni de curva elastica, 1s0-
chrona paracentrica, et velaria, hinc inde memorata, et partim controversa leguntur,; ubi de linea mediarum
directionum, alitsque novis,” Acta erud. Dec. 1695, 537—553 = Opera 2, 639—663. See § I. The same
argument is given in somewhat clearer and more general form in a note by CRAMER on p. 581 of JAMES
BerNouLLI’s Opera.

In JamEs BERNOULLY'S Thoughts, notes and remarks (cited above, p. 80) is no explanation of how
he attained the basic idea of the elastica. No. CLXX, probably from late 1691 or early 1692, concerns
the quadrature of (49), which, he says, is the elastic curve, ‘“‘as I will show in due time.” Thus JAMES
BerNovULLI’S published claim of 1691 is substantiated. No. CLXXX contains his first attempt to cal-
culate the numerical bounds (52).
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year (we change notations to conform to Figure 31; BERNOULLI’s new figure is somewhat
clearer in that a differential element of the band at y, with a small spring there, is indicated).
. .I consider a lever with fulcrum @, in which the thickness @y of the band forms the
shorter arm, the part of the curve 4@ the longer. Since Qy and the attached weight Z
remain the same, it is clear that the force stretching the filament at y (or, what according
to the usual hypothesis amounts to the same thing, the elongation itself) is proportional
to the segment QP ...” [That is, BERNOULLI regards the entire action of the part
@RSy on the part QyV A as equivalent to that of a single spring of tension F at y;]
therefore equilibrium of moments requires

(44) Fe=2z7,

where ¢ = yQ, the thickness, and 2 = QP. Since ¢ and Z are constant, we have
F o 2. If the elastic law relating elongation ¢ to stretching force is ¢/b = f(F'), where b
is the length A R of the whole band, we may thus write ¢/b = g (), and this is BERNOULLI’S
“curve of elongations”. ““And since . . . the elongation [of the fibre at y] is reciprocally
proportional to @n, which is plainly the radius of curvature, it follows that Q= ... is
also reciprocally proportional to...x.” That is, (¢ds/b):c =ds:r, or

1 t
4 — e
(45) r be °

[Thus BErNovuLLI carefully separates the basic statical principle (45) from the par-
ticular elastic law ¢/b = g(w). Since he replaces the action of all the fibres of a ecross-
section by that of a single spring on the outer edge, and since (44) gives the moment exerted
by this spring about @ as xZ, we may write his combined result in the form

(46) —71'— = f(9), G = Bending Moment,

defining a general, non-linear theory of elastic bands. The form (46), however, is not that
in which BERNOULLI presents his result, nor was it at first so interpreted. BERNOULLI uses
the form (45), in which appears the extension /b of the outermost fibre, not only indepen-
dent of the extensions of the other fibres but in disregard of them. Contrary to the expec-
tation raised by the second spring in the figure, he does not integrate over the cross-
section of the band. Thus (45) expresses the curvature of the innermost filament in terms
of the extension of the outermost. Comparing BERNOULLI’s own form (45) with the alter-
native (46), we may say that he wrought better than he knew. For to introduce the radius
of curvature, he considered the extension of one particular fibre. This is sufficient to
derive (46), but not convincing. What is lacking is an integration over the cross-section,
such as that Lursniz had effected in a context he interpreted either as neglecting the
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bending or as applying to a beam that assumes a straight form when loaded (above,
Pp. 62, 64).

ToDHUNTER!) has criticized JAmMES BERNoULLI for considering only the equilibrium of
moments while neglecting the equilibrium of forces. This criticism is just in one context,
ill taken in another. Indeed, the tragic flaw of BERNOULLI’s conception, the flaw which
will cause him time and again just barely to fail of establishing his theory properly and
fully, is his vacillation between the one-dimensional elastic curve and the three-dimen-
sional elastic beam. From the one-dimensional standpoint, a law such as (46) must be
postulated ; by the principle of moments, the form of the band is then determined ; by
EuLER’s general equations (562), below, to consider the equilibrium of forces serves only
to determine the line stress, in which we have no great interest, and TODHUNTER’S cri-
ticism falls. From the three-dimensional standpoint, (46) is to be derived from the nature
of the forces acting within the beam, and in this context TODHUNTER’s criticism is perti-
nent. JAMES BERNOULLI, as we shall see, was never willing to face this second problem
squarely even though the special work of LEIBNIZ might have served as a hint. Upon this
point will be focused later researches by PareNT, EULER, JorN ITI BErNOULLI, and
Couroms.]

2

JAMES BERNOULLI substitutes the general formula % = - -Zl%%s_ , & being the
independent variable, into (45) and obtains

dy N _z
(47) — = S=[upd,
since it is assumed that Z_:Z =0 when @ =s=0. Hence
Sdx

(48) W= Ve

From this formula, the geometrical construction is easily derived [but is of no interest].

Returning to the paper of 1694, the unfortunate reader of which had to create for
himself all the essential principles we have just described, we find a number of remarks :

1. If the band is clamped at any point @ and the part RQ is cut away, the remaining
part 4@ retains its figure.

2. If RQA is rotated about RZ and clamped at any point ¢, the same force Z causes
the resulting band to retain its figure.

3. If any section 4@ is rotated about the normal @n, the resulting band, composed of
two congruent parts, is caused to retain its figure by equal and normal forces Z applied at
its ends, provided it is held at @ . The same holds for staves obtained by rotating the whole

1) § 24 of op. cit. ante, p. 11.
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curve AQ R or the curve as supplemented by Rq. ‘““Thus one obtains three kinds of staves :
the diminished, the complete, and the extended . . . For the diminished stave, the tangents
at the ends intersect on the convex side, for the extended stave, on the concave side, while
for the complete stave, they are parallel.

‘4. This same curvature is proper to the staves from which barrels are made. Thence
it follows that no one has correctly measured the capacity of barrels, since these are usually
taken as ellipsoids of revolution . . .

5. If the direction of the weight . . . is skew to the elastic band . . ., there results a
curve a little different from 4@ R, and this curve I can determine just as easily. But I do
not wish to dilate.

“6. The rectangle made by the radius of curvature @» and the corresponding abscissa
E F equals the constant area 4 BC = AG2.” [This we recognize, in BERNOULLI’s typical
style hidden in the midst of ““scholia and corollaries’, as a verbal statement of the basic
statical principle (45). It is stated again in a special case as the fourth remark following
(49).] Since ¢(0) — 0, we see that the curvature is zero at the free end and greatest at the
clamped end, “at least in the case when the elongations increase with the stretching
forces . ..”

7. If we know the law of elongation and are to find the elastic curve, “in abstract
geometry this is nothing else than to determine the curve AQR from the given curve
AF Q. By (45), the inverse problem is trivial.

JAMES BERNOULLI gives some attention?!) to the parabolic law2) ¢ = ka™; then he
takes up the linear case, m = 1. [Though these laws as stated seem artificial, recall that
2 ig proportional to the stretching force F, as shown above, and hence BERNOULLI is
in effect assuming that strain o (force)™.] Then (48) becomes

z?dx

49 dy = —— N ¢ = const.
(49) V= Va—a

This quadrature may be achieved by a construction.
After futile attempts to express this curve in terms of exponential functions, “I have

1) While the modern reader will admire BERNOULLI’s careful separation of the particular elastic
model from the general principles of the problem, TODHUNTER (§ 24 of op. cit. ante, p. 11) typically
describes the investigation as ‘“‘more elaborate than necessary’ because BERNOULLI does not descend
at once to the linear case.

2) Historians of elasticity do not seem to have noticed that this is the first non-linear law of
elasticity to be proposed in print; cf. the suggestion of LEiBN1z, above, p. 63. The most extensive list
of special elastic laws is given by R. MEHMKE, “‘Zum Gesetz der elastischen Dehnungen,” Z. Math. Phys.
42, 327—338 (1897). MEEMKE mentions only three from our period: Hooke’s law (18), the parabolic
law above (which MEHMKE attributes to BULFFINGER, cf. below, p. 103), and an inexact form of
RiIccATI’s law (81).
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heavy grounds to believe that the construction of our curve depends neither on the
quadrature nor on the rectification of any conic section.” There follows a list of eighteen
properties of the curve, mainly geometric. No. 2 is that described in the anagram published
in 1691. No. 16 gives series for the displacement y(¢) and the arc s(c) at the end, ¢ being
the length : 1
y(c) E2dE ®  (2n—1)!!

c Vi—& St 2 @ F ol

0
1
s(c)= d¢ _ ®  (2n—1)!!
¢ fvr:?« 1+2
0

(50)

w1 27(4n + )n!

(From his manuscript notes?) and from a later publication ?) we know that JAMES BERNOULLI
had integrated term by term in the power series expansion of the integrands, obtaining

_y_(_a:_)_z%(ﬁ)"’_*_i.° 2n — 1! (1’_)4”‘*3,

c c n=1 2%(4n 4+ 3)n! \ ¢
(51)
s(¢) _ 2 (2n—D!l [g)\teh
c ¢ +,.z='1 2 (4n + L)n! (c) '

From (50), BErnoULLI has caleulated the bounds
(52) 0,598 < i‘(}ﬂ < 0,601, 1,308 < -s-(cfl <1,316.

Remark No. 18 states the identity of the lintearia with the [rectangular] elastica and
aoourto five propertics, of which the last is a variational principle : ““ . . . among all curves
of a given length drawn over the same straight line the elastic curve is the one3) such that
the center of gravity of the included area is the farthest distant from the line, just as the
catenary is the one such that the center of gravity of the curve is the farthest distant . . .

“It would remain now, under the common hypothesis regarding the elongations, to
investigate the kind of curves engendered when the elastic band is bent by its own weight
in addition to the suspended weight ; if it is bent simultaneously at each end ; if its thick-
ness or breadth is not uniform or, for example, if it is of triangular shape or any other and

1) No. CLXXYV of the Thoughts, notes, and remarks (cited above, p. 80), written late in 1691 or
early in 1692. The numerical bounds are obtained in No. CCXVII; the quadratures are studied in
No. CCV, the end of No. CCVII, and the second of the sections numbered CCXXVIII. The elastica as a
variational problem is mentioned but not properly treated in No. CCXXXIX.

2) § LVI of Positionum de seriebus infinitis . . . Pars quinta, Basel, 1704 = Opera 2, 955—975.

3) As BErNoULLI remarked later, he means here to restrict attention to curves of a fixed length.
See p. 836 of the reprint in JaMES BERNOULLI’S Opera, p. 227 in JoEN BERNOULLI’S, of op. cit. ante,
p. 82, footnote 2.
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if the bending force is applied first at the apex, then at the base. Also, what should be the
curvature of the band in order that from an attached load or from its own weight or from
both together it assume the form of a straight line (this would be useful in designing the
arms of balances and axles, where it is required that the centers of the motion and of the
suspended bodies be collinear). Also, what shape should be given to a band in order that
through bending it take on a given curvature, and a thousand other things of this kind.
Of all these curves I can exhibit the characteristic properties, and of some even the con-
structions . . . but many things I have not yet assimilated, nor is it given to one person
to work at all things. Besides, something should be left to the industry of our readers, for
whom there is thus ample opportunity to complete our discovery.”

[It is difficult to find words to describe the power and beauty of this paper. Among
other researches on materials published in the seventeenth century, only NewTtox’s
essays on fluids might be compared to it. By this, JAMES BERNOULLI at once regained the
superiority he had temporarily lost when overtaken not only by Lrieniz and Huveexns
but also by his quick and brilliant younger brother JoHN in the matter of the catenary.
The form of the elastic band, the deepest and most difficult problem yet to be solved in
mechanics, is his alone.]

13. JAMES BERNOULLI’S attempts toward a theory of the neutral fibre (1695—1705).
Lr1BN1z, generous as usual, recognized at once what JAMES BERNoULLI had done; in
particular, he praised him for avoiding special hypotheses and considering a general law
of elongationl).

Huveens wag not enthusiastic. In a letter to LurBN1z of 24 August 1694, part of
which, with its expression somewhat softened, was quickly published?), he wrote, * I find
Mr. BERNOULLI’s three years’ work quite considerable, provided that all he contends is
true ; also he hoasts much over it. As for the principle of the spring, T think he has used it
well, and that it is true that the rays which measure the curvature are in the inverse ratio
of the forces that bend the spring, although, in my opinion, it is not only the exterior
surface that extends but also the interior one simultaneously shortens . . . If this principle
were not the unique and true one, but rather the line A FC were a curve depending on

1) See the second paragraph of LEiBNiz’s ‘“‘Constructio propria problematis de curva isochrona
paracentrica,” Acta erud. August 1694, 364—375 = JacoBr BErNouULLI Opera 2, 627—637. In his
letter of 27 July 1694 to HuyeENS, with which he inclosed BERNOULLI’S paper in print, LEIBNIZ
writes, “I think it is always true that the elongations are as the forces, but it is not always right to
take the elongations as the changes of length in the body, because they depend rather on the changes of
solid content . . .,”” but instead of pursuing this penetrating line of thought, which might have led to
a concept of local strain, he gives reasons for being personally unwilling to study elasticity any further.

2) “Excerpta ex epistola C. H. Z. ad G. G. L.,” Acta erud. Sept. 1694, 339—341 (second pagina-
tion) = JAacosl BERNoULLI Opera 1, 637-—638 = (Euvres complétes de HuveENs 10, No. 2874.
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infinitely many experiments, I should find all his research very vague and little worthy
of time spent. And even now all he has found seems of no use to me, but only such very
beautiful and subtle pastimes as one finds when one has nothing on which to employ
mathematics more fruitfully.

“It is a strange assumption to take the quadratures of every curve as given, and if
the construction of a problem ends with that (apart from the quadrature of the circle and
the hyperbola), I should think nothing accomplished, since even mechanically one does not
know how to carry anything out . . .

“... Mr. BErNOULLI has

€
determined the curvature of the
arc A only in the case when the A
tangents at the ends &, F are
parallel, which I consider joined ¥

by the string EF (Figure 32). It Figure 32.
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