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FOREWORD

Wesearch the concepts and methods) of the theory of deformable sotids from GALILEO

to LagranGe. Neither of them achieved much in our subject, but their works serve as

termini: With GALILEO’s Discorsi in 1638 our matter begins?) (for this is the history of

mathematical theory), while LagRANGE’s Méchanmique Analitique closed the mechanics of
 

1) There are three major historical works that bear on our subject. Thefirst is A history of the

theory of elasticity and of the strength of materials by I. TopHuNTER, “edited and completed” by

K. PEARSON, Vol. I, Cambridge, 1886. Unfortunately it is necessary to give warning that this book

fails to meet the standard set by the histories TODHUNTER lived to finish. Much of what TODHUNTER

left seems to be rather the rough notes for a book than the book itself; the parts due to PEARSON are

fortunately distinguished by square brackets. Researches prior to 1800 are disposed of in the first

chapter, 79 pages long and almost entirely the work of Pearson; as frontispiece to a work whose

title restricts it to theory he saw fit to supply a possibly original pen drawingentitled ‘““Rupture-Sur-

faces of Cast-Iron’’. While PEarson took pains to describe a long list of worthless papers, many of

them devoted to mere speculation or to experimentyielding no definite results, he omitted mentioning

a number of major works by the BERNoULLIS and EULER, and in general he seems to have been un-

willing to take the pains necessary to follow the more solid researches of the eighteenth century on

rational mechanics. While I have studied PEARSON’s chapter with care, in the end I have been able to

make no useofit.

The second is the magnificent report of H. BurKuarpt, “Hntwicklungen nach oscillirenden Func-

tionen und Integration der Differentialgleichungen der mathematischen Physik,”? Jahresber. deutsch.

Math.-Ver. 10,, 1800 pp. (1901—1908). Parts I, II, and IV concern vibrating bodies. It is difficult to
express sufficient admiration for this work, which I have used again and again. To justify my in-

cluding here a new history of the theory of vibrating bodies, presenting in some rare cases an inter-

pretation differing from BurkHaRpT’s, I must explain that his emphasis lies on analysis; mine, on

mechanics.

The third is TrmosHENKO’s History of strength of materials with a brief account of the history of

theory of elasticity and theory of structures, New York, Toronto, London, McGraw-Hill, 1953. Although

this work is drawn from a rather capricious selection of sources, it is drawn from them directly and

with understanding. In the few cases where TIMOSHENKO’s subject crosses mine, I acknowledge with

gratitude the assistance his book has provided. Additional material is given by C. A. BEPHIITEMH

Ouepxu no Hemopuu Cmpoumernout Mexanuxu, Moscow, 1957. These two books sketch also the history

of statical theories of arches and frameworks, which are mentioned in the present essay only in cases

where they influence or are influenced by theories of deformable media.

While E. Hoprn’s Geschichte der Physik, Braunschweig, Vieweg, 1926, is an unusualhistorical

work in that it concerns positive and specific achievements, evaluated by its author’s own examination

of the sources, unfortunately as far as concerns our subject Hoprr mentions but a small fraction of the

relevant material and often draws unwarranted or even false conclusions from it.

2) The only earlier mathematical theory is BEECKMAN’s,described in § 3; this brilliant work, while

not without influence, remained unpublished for two centuries.
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the Age of Reason with a formal treatise, since regarded universally, though most wrongly,

as the definitive repository of the best from all that went before. As will appear, the giants

of our subject are JAMES BERNOULLI and Ever. Here,for thefirst time, may be read the

story of what these men really did for the theories of flexible or elastic bodies. Modern

theories of materials are set chiefly upon the foundation laid down by Caucuy from 1822

to 1845. Thus our account serves as preface to his researches.

The prolix speculations on the causes of elasticity, deriving from classical antiquity

and developed in mechanistic terms by GALILEO, DEscaRrTES, HooKz, Newton, and many

other great philosophers and scientists before and after, often in accompaniment to the

mathematical or experimental researches described here, are excluded from this history

as being physical or philosophical rather than rational.

In an essay of this kind it is futile to attempt completeness, and hence I have not

given the elaborate citations found in modern historical monographs. The footnotes serve

rather to fill out the details and to illumine the strong personalities which must be recog-

nized if not understood in anyfull view of the growth of mathematics. A connected account

of the essentials may be gotten from the text alone.

To discuss the works in the order they appeared in print, when they were printed at

all, would lead to perplexities which disappear of themselves when wefollow the order of

discovery, as here we do. But we must not forget that in many cases the results were

knownto succeeding investigators only after delay or not atall.

For the most part, the researches are reported in quotations or paraphrases from the

originals. My own comments and interpretations I have tried to distinguish by square

brackets'). With regret, I have realized that to reproduce the original notations would

require an effort unlikely to be granted by the reader of a work of this kind. I am aware

that in reducing all formulae to a uniform modern notation I am in a measure misquoting

the sources and making everything seem too easy; now,once andforall, let the reader be

reminded that as a result it is far easier for him today to see to the heart of one of these old

researches than it was for those whofirst grappled with it and sought to do better.

 

1) E.g., in a passage paraphrasing an original, from the words “‘by [HooxKn’s] law” the reader

is to infer that the author, without citing anyone, used the law now associated with HooxKE’s name;

from the words “by the [Hooxs-] Lersniz law,” that the author in using that law attributed it to

LEIBNIZ.



PREFATORY NOTE
concerning the presumed technological origin

of the scienceof elasticity

In support ofthe currently received preconception that science arose from the needs oftechnology,

or upon the basis of experience gained from practical solution of technological problems, I have found

nothing as regardselasticity. Here, however, not being able to search for sources, perforce I have rested

content with secondary material. Even works on the history of engineering present accounts suggesting

more often the enthusiastic project of an early thinker than a contrivance actually built and used. In

the earlier volumes of a recent encyclopaedia‘) most references to elasticity and flexibility occur in

peripheral remarks?) on the scientific theories and planned experiments we shall closely analyze in the

following pages; far from answeringto a call from technology, theseresearches had to wait decades or

even centuries until engineers saw their relevance.

Of course, some elastic phenomena have long been known andutilized in daily life and technology,

although in earliest times, as even today, the rigid body and thefluid are the primary elements of most

mechanisms. As remarked by D. ForDE?®), the wooden bow, “‘specially interesting as the first method

of concentrating energy,” is late among primitive weapons, not being demonstrably in use before

30,000 A. C. The age of the compound bow,arising in “‘response to the shortness of pieces of elastic

material,” is not known; it is represented on the column of Trajan (c. 110 A. D.)4).

Woodensprings were used in other machines in the middle ages. H.g., VILLARD DE HONNECOURT

(c. 1250) illustrates a water-powered saw so arranged that a limb bent downwardin the driven stroke

springs back to effect the return motion).

Woodis a particularly unfortunate material on which to try to gain experience of elasticity. Use

of horn and sinew for bows and catapults indicates familiarity with some mote typical elastic materials

in antiquity. While bronze fibulae are of great age, other employment of the elasticity of metals is late.

According to A. P. UsHER®), “there is no evidence that springs of either bronze or steel came into

general use’’ in classical antiquity. He refers to the passage from Puixo of Byzantium that we shall

quote below, p. 17, as being “‘the first clear indication of the possible significance of the elasticity of

metals... Until this there is no record of the use of any form of metal spring except in [fibulae].

FELDHAUSgives no record of the use of leaf springs before the later sixteenth century, nor any record of

spiral springs in locks or other devices before the fifteenth century.’’ However, another authority’)

states that metal crossbows are mentioned about A. D. 1370. Development of the spring as a driving

mechanism for clocks, and solution of the practical problem of equalizing the force, took place in 1500—
 

1) A history of technology, ed. SINGER, HoLmMyarp, Hau, and Wixu1ams, Oxford, 5 Vols., 1954-—

1958.

2) H.g., A. P. UsuEr, “Machines and mechanism [1500-1750],”op. cit. ante 8, 324-346 (1957).

3) Pp. 161-163 of “Foraging, hunting, and fishing,” Op. cit. ante 1, 154-186 (1954).

4) In ch. 3 of op. cit. infra, p.16, Heron of Alexandria refers to the aadivrova, a catapult

having a doubly curved bow, as to a thoroughly familiar object.

5) Pp. 643-644 of B. Gruue, “Machines [to A.D. 1500],”’ op. cit. ante 2, 628-662 (1956).

6) P. 133 of A history of mechanical inventions, Revised ed., Harvard, 1954.

7) A. R. Hat, “Military technology,” op. cit. ante 2, 695-730 (1956); see p. 723.
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15501). The invention of the balance spring, claimed by HuyGEens, HAUTEFEUILLE, and HOoOKE, came

long after scientific studies of elasticity had begun.

Amongthe various artillery pieces of the later Greeks whichutilize the elasticity of some member,

at least two employ the effective torsional elasticity obtained by turning a rod fixed perpendicularly

within a tight bundle of cords or sinews. The idea which this device suggests, namely, that torsional

elasticity may be explained by the extensional elasticity of the longitudinal fibres, seems not to have

been taken up prior to EULER’s day (see below,p. 341).

That structural members break, and sometimes deform markedly before breaking, must be an

observation as old as the building of structures, but there is no evidence that builders’ rules of thumb

influenced the development of theories of materials, while application of even the crudest principles

of statics to the practice of construction had to wait until long after mathematical statics had become

an element of any solid scientific training.

While it would be unsafe to generalize, such information as I can find shows no groundfor in-

ferring any direct influence of technology upon the early theories of elastic and flexible bodies. Rather,

it seems that the early theorists pondered over the phenomena of experience, usually simple daily

experience apparent to anyone; thereafter came scientific experiment; and only muchlater, after the

end of the period studied in this essay, was there interplay between science and technology. Thus the

present history will not attempt to trace the technological side of the subject.

 

1) UsHER, op. cit., pp. 305-307.



PROLOGUE

1. Remarks of the ancients on vibration and elasticity. From before 1600 there is

hittle—at least, little available to the working scientist—that survives ofa concrete nature

in our subject. Nearly everything specific concerning elasticity and vibration arose in the

context of music. An accountof early acoustics is given by F. V. Hunt’).

Traditionally associated with the school of PyrHagoRasis the first law of the vibra-

ting string:

1

Ratio of lengths
 (1) Numerical ratio of pitches =

for a given string at constant tension. ‘““Numerical ratio of pitches” refers to the Pytha-

gorean association of numbers to intervals, recognized by hearing: for the “octave,” 2/1,

for the ‘‘fifth”’, 3/2,etc.

That sound is a vibratory motion of bodies is an idea of early origin; gradually, from

Greek times onward, it gained wider support, until by 1600 it was commonly accepted.

The very idea of vibration would seem to carry with it the isochronism of the motion of a

sounding body, but I have found no early explicit statement, although a connection

between musical pitch and frequency of vibration was suggested byAncHyTAS(c. 400 A.C.)?):

“Clearly swift motion produces a high-pitched sound, slow motion a low-pitched sound,”’

but the rest of the fragment indicates confusion of the acoustical effects of frequency and

amplitude. Perhaps Evcurp (c. 350 A. C.)8) is only repeating the views of the school of

ArcuyTas and Eupoxvs when he writes, ‘Some sounds are higher pitched, being com-

posed ofmore frequent and more numerous motions,” but his explanation ofwhynumerical

ratios are attached to soundsis far from clear. It is stated emphatically, repeatedly, and

very clearly by BorTuius*) (c. 480—524 A. D.), whose writing is considered to reflect much

older views, that sound is a vibratory motion and that pitch increases with frequency, but

he gives no definite relation. This idea was well known, though not generally accepted, in

classical antiquity and subsequently. There was a gradual tendency to regard the loudness
 

1) Origins in acoustics, forthcoming. I am indebted to Professor Hunt for some of the material in

this section.

2) Fragm. 1, ed. Diets, 8th ed. (1956), 1, 435, ll. 1-2. Quoted by M. R. Conen & I. E. DRAsBxEIN,

A source book in Greek science, New York, Toronto, and London, McGraw-Hill, 1948.

3) Introd. to Sectio Canonis, quoted by CoHEN & DRABKIN, op.cit.

4) De institutione musica I. 3, quoted by COHEN & DRABKIN,op.cit.
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of a sound as connected with the magnitude or violence of the displacement of the sounding

parts and thus to separate the effect of amplitude from that of frequency.

That the pitch of a string increases with its tension is immediate from experience and

could not fail to have been known to everyone?); likewise, that the thicker string has the

lower tone, other things being equal, must have been known to every lyre player; but

these simple remarks are not to be foundin the early literature. Indeed, the reader of the

fragmentary and inaccurate secondary accounts of Greek science surviving is led to con-

jecture that the pre-Socratic philosophers inferred somedefinite results which subsequent

philosophic schools failed to understand or at least to appreciate, as when the muddy

THEON OF SMYRNA (c. 125 A. D.)*) attributes to PyTHAGORASaninvestigation of the ratios

of pitches as dependent upon thelength, thickness, and tension of the sounding strings, as

well as a study of the sounds of disks and bowls. THEoN refers several times to deter-

mining consonances by weights, magnitudes, and motions, but unfortunately all that he

reports definitely is the [supposed] result that the pitches of two identical vessels partly

full of water are proportional to the empty spaces.

Sympathetic vibration, in which a body is set a-trembling when an appropriate tone

is sounded nearby, seems to have been well knownto the ancients’).

[That a machine uniformly scaled from a small model does not generally perform in

the same proportion must have been learned from many a sad experience of the builder.]

The earliest scaling laws I have found are in the works of the Greek mechanicians, PHmLoNn

ofByzantium and HrronofAlexandria.*) The Artillery®) ofPHILON gives manyrules, clearly

of empirical origin, for constructing catapults of the same type but sufficient to cast

missiles of various weights. Hzeron’s Ariillery*) states, “It is necessary to know that the

determination of the measurements has been gotten from experience itself. For the an-
 

1) Cf. Virruvius, De architectura 10.12.2. English transl. by M.H. Morean, Cambridge,

Harvard, 1926. Quoted also by Conen & DRABKIN,op. cit. Cf. also BoETurus,loc.cit.

2) 2. 12—13. Quoted by CoHEN & DRABKIN,op.cit.

3) Virruvivus, De architectura 5. 5, reports the practice of the Greek builders to set about their

theatres, so as to magnify the sound of the actors’ voices, large vessels tuned to appropriate pitches.

4) The dates of these authors remain uncertain: Puinon, A. C. 180 to A. D. 1; Huron, A. C. 250

to A. D. 75. Modern scholars incline toward the later dates. The matter is further complicated by

uncertainty that the same HERONis the author of both the Artillery and the Mechanics.

5) ‘“Puitons Belopowka (Viertes Buch der Mechanik),”’ Greek text and German translation ed.

H. Diets & E. Scuramo,Abh. k. Preuss. Akad. Wiss. 1918, No. 16, 68 pp. (1919). Chs. 3 and 16 seem

to imply knowledge that uniform proportion does not suffice. While Ch. 13 describes a method of

effecting uniform scaling, we need not infer any mechanical rule; PHiLon mayintend this passage

only as an aid to construction after the proportions have been determined.

6) “Herons Belopoiika (Schrift vom Geschiitzbau),’’ Greek text and German translation ed. H.

Diets & E. Scoramm, Abh. k. Preuss. Akad. Wiss. 1918, No. 2, 56 pp. See Chs. 31-33. Thereis a strong

likeness between Hrron’s Ch. 31 and PHiIton’s Ch.3.



THE ANCIENTS ON VIBRATION AND ELASTICITY 17
 

cients, paying attention only to the scheme and the construction, reached no great range

with their artillery, since they did not select harmonic proportions. But the moderns,

reducing some parts and enlarging others, made the above described machines consonant

and efficient.’? While HERonstates that “the rule and principle is the bowstring,”’ appar-

ently he refers only to its size, for he writes also, ‘Let the diameter of the machine[?.e.

the calibre of the piece] be AB, andlet it be required to build a like machine whichwill cast a

shot, e.g., triple that of the above-stated. Since the bowstring gives rise to the cast of the

stone, the machine to be built must have a bowstring three times as great .. .’” However,

Heron warns that not any diameter will do, and he gives andillustrates an explicit rule

for determining the sizes of the remaining members of the machine.[I am not fully able to

understand the rule; moreover, since it involves ‘harmonic proportion”, it is scarcely

likely to be “gotten from experience” as HERon claims. But what is most important is

that a definite scaling law for like performanceis given.|

The earliest known descriptions of elasticity, and in particular of the elasticity of

metals, are found in PHiton’s work. He advises that the bowcord be stretched so tight

‘that when the machineis drawn, the diameter is lessened by a third part.’’ He mentions

the fatigue of the cord as a result of use and advises against the commonpractice of trying

to regain the tension by twisting the cord until it is tight again. He recommends ‘“‘tight-

ening all the strings of the bowcord at once, in their natural straight position,” so as to

avoid weakening them by twisting. Heclaims the invention of bronze leaf springs and

describes their fabrication. His innovation appears to have aroused some doubts: “‘... many

persons .. . say that it is impossible that curved bands [2.e. springs] when straightened out

by the force of the bow will not remain straight thereafter but will instead regain their

original curvature. While indeed by its nature horn has this property, and some kinds of

woods (and bows are made of such), bronze on the contrary is hard andstiff in its nature,

as is iron, so that when bent . . . it cannot straighten itself out. Let these persons be forgiven

for holding such an opinion without trying the details. For the production of the afore-

mentioned bands is seen by the agency of the swords called Spanish or Celtic.’’ After

severe bending, they spring back straight, “having no thought of curvature. Also when

[the test] is done many times, they remain straight.” [That elasticity was unfamiliar, at

least as a subject of science,]is shown by the immediately following inquiry into its cause;

while it is attributed to a choice of especially pure metal, neither too hard nor too soft,

followed by gentle cold working, no special nameis given to it.*)

 

1) The word xarevtoveiy, ‘to be extraordinarily well behaved,”is translated by DIELS & ScHRAMM

as “elastisch sind”; 16 t7v evtoviay aotobv as “was ihnen Spannkraft gabe.” In Ch. 44 they translate

the old word veveadys, “sinewy’’, as “‘elastisch.”

Ch, 27

18

27

43—44

46

47
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In the course of a long, dull work on statics), HeRon interposes a list of physical

questions and answers, three of which concernelasticity and rupture. ‘““When [a bow] is

bent strongly, the bowstring with the arrow is more taut ...,’’ but HERON does not give

an elastic law. In explaining why a stick is more easily broken against the knee, he

suggests that each portion acts as a lever, but he seems to believe the effect arises only

because the knee is not quite in the middle, so that one hand “outweighs” the other.?)

‘““‘Why is a piece of wood as much weakerasit is longer, and why doesits bending increase

when it is set upright upon one of its ends?”? HERon explains, “‘the whole overbalances

the fastened part ... Hence the sameeffect takes place as in a short stock when some-

thing hung upon its ends bends it down. The increase of length of the stock corresponds

to the weight that draws the short stock down.”’ [This is thefirst reference to the buckling

of a heavy vertical column, and HERON gives part of a correct explanation.

2. Western researches before 1600. DuHEm’s great historical studies showed that the

apparent darkness of mediaeval physics is but darkness of our knowledgeof it. How great

a proportion of mediaeval work survives, and how muchofthat is now available, I do not

know. Theonly writing of value on deformable bodies that I have been able to see] is the

fourth book of JoRDAN DE Nrmorz’s Theory of Weight?) (13th Century), and remarkable it
is, Western in spirit, ambitious beyond anything in the Greek or Arab tradition‘). The
seventeen propositions on fluid flow, resistance, fracture, and elasticity are all original,

While the style is mathematical, it would be unfair to expect what Jorpan brings forward
as ‘‘proofs’’ to be more than plausible reasoning alleged in favor of assertions drawn from

experience and conjecture by a scientist well trained in the ancient mathematical statics.

Only two of the propositions concern our present subject.

In Prop. 12 we are told that the coherence of a beam hung up by its two ends may or
may not suffice to keep it from breaking in the middle. The beam, whether supported in

this way or at one end only,is to be regarded as a lever. Greater bending is produced by a
body striking the beam than by the same body resting upon it. [This is the earliest dis-
tinction between static and dynamic loading in respect to deformation.]
 

1) Mechanics II 34f—h, in Arabic, ed. with German translation by L. Nrx & W. Scuupr,

Leipzig, 1900.

2) Chs. 21 and 41 of Puiton,op. cit. ante, p. 16, likewise attempt to apply the law of the lever to
the action of the bow, but I cannot understand what is meant.

3) De ratione ponderis, first printed at Venice in 1565 from a manuscript belonging to TARTAGLIA.

Kd.andtransl. into English by E. A. Moopy, pp. 167—227 of The medieval science of weights, Madison,

1952.

4) An account of Arab views on acoustics is given by Hunt,op.cit., but the only thing concrete

I have found there beyond what is known from Greek sources is that Sarr AL-D1n (d. 1294) wrote, at

last, that the thinner string has a higherpitch.
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Prop. 13 reads, ‘“When the middle is held back, the ends are more easily curved.”’

The “‘body”’ is taken as a line fixed at its midpoint; the ends are supposed to receive an
ceéimpulse. “‘... since the ends yield more easily, while the other parts follow more easily

insofar as they lie closer to them,it turns out that the whole body is curved intoa circle.”’

[This is the earliest statement ofthe problem of the elastic curve or elastica. JORDANasserts,

in modern terms, that a band clamped at one end andstruck by a weight falling upon the

other assumes the form of a circular arc.

The reasoning is vague, qualitative, and insufficient if not erroneous, but the attempt

at a precise argument to prove a concrete result in a domain never previously entered is of

splendid daring. This work of the thirteenth century is better than many to be published

by learned academies in the seventeenth and even the early eighteenth.]

LEoNnARDO DA VINCI (1452—1519) seems to have beenthefirst to use a light rider to

make visible a very faint tremor, and specifically |

in the case of sympathetic vibration): “The blow *—yj=== re
given in the bell makes another, like bell answer .

and movea little, and the soundedstring of a lute

makes another,like string of like voice [#. e. pitch] wshe

in another lute answer and movea little, and this | Psta—4) if

you will perceive by placing a straw uponthestring

like to the one sounded.”

Moreover, from Lronarpo we have the  
earliest known project of tests of wires and beams r d

for their breaking strength”). In Figure 1, sand is ee

    

 

poured from the hopper into the basket until the |

wire breaks; thereafter, the sand is to be weighed®). \ y

‘Note how much weight broke the wire, and note US

in what part of itself the wire breaks, and do this gecece. soaswre, oncebe

trial several times so as to see if it always breaks in ,

the same place.”” LEoNARDO does not state that he Figure 1. Leonarpo pa Vincr’s projected

has ever performed this test, and he expects that tester for the breaking of wires
 

1) MS Inst. France A, f 22v. Cf. also Codice Atlantico, f 242 v. a): “‘...the campanile shakes at

the sound ofits bells.”

The reader must be warned that the various translations from LEoNaRDOo’s works are so inac-

curate as to be of scarcely any use in connection with science or engineering.

2) I have found helpful the account of W. B. Parsons in Ch. VI of his Engineers and Engineering

in the Renaissance, Baltimore, Williams & Wilkins, 1939, but I cannot participate in Parsons’ enthus-

iastic extrapolations beyond what Lronarpo wrote, nor do I consider his translations always just.

3) Codice Atlantico, f 82rb). This is a very clear page.
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the breaking strength will vary appreciably with the length of the wire'), [a common

error, Which MERSENNE and GALILEoare later to refute (below, pp. 31, 37)].

LEONARDO wrote what is almost a small treatise on the strength of pillars, beams,

cords, and arches?), remarkable in that it gives definite rules (right or wrong) rather than

mere qualities or tendencies. This treatise is perplexing, for while LEonarDo often speaks

of experiments, it is always in the future tense, and he gives no indication that he has ever

carried out any measurement. His rules, while showing that he was an acute observer of

experience, seem to arise from a kindof plausible rhetoric in a backgroundof deep attach-

ment to simple proportion’).

LEONARDO begins‘) with drawings of vertical pillars supporting a load.‘‘If you load

a pillar erected vertically in such a way that the center of the pillar is beneath the center

of the weight, it will compress rather than bend . . .”” [While the reason given is merely one

of symmetry, wefind here thefirst allusion since HERon’s day to a problem whose solution

is to be one of EvLER’s most brilliant successes.] Lnonarpo gives two rules®) for the

strength of pillars bearing a load P:

_ A = cross-sectional area,

(2) Pe vA and Pad, d = diameter,

l = length.

[These are not consistent with one another; in LEoNARDO’s crabbed writing there are few

definitions, and it is often not clear what is held constant. If we regard the secondrule as

a correction for the first when / = const. , then it may follow that Lronarpo’sfinalruleis

3
(3) Pa,

but this is far from certain. |]

LEONARDO considers other kinds of support and load (cf., e.g., Figure 2). For a

horizontal beam clamped into a wall at one end and loaded at the other, he seems to

claim the same law of strength*). He proposes the problem of determining the deflection
 

1) Cf. Inst. France MS A, f 49r, where LEoNaARDOostates that the strength of a cord is proportional

to its length.

2) Inst. France MS A, ff 45—55.

3) On f 45v he writes, “This is proved by reason and confirmed by experiment,” but the further

text supports only the former assertion, not the latter.

4) f 45v.

5) Inst. France M§ A,ff 46r, 47r. Parsons, who misquotes the second rule, states that thefirst is

Pa B/l, where B = breadth;this is a correct rule, but it is not borne out by LEONaRDO’s arguments or

numerical specimens. While LEoNarpo elsewhere shows his familiarity with the concept of static

moment, I fail to verify Parsons’ claim that it is applied here.

6) Inst. France MS A,f 49r.
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of a beam supported at both ends

and loaded by a weight at its

middle!). He discusses also

exerted by a heavy beam on two

supports placed variously

length?).

the forces

along its

LEONARDO is the first to con-

sider the form of the catenary curve,

the figure assumed by a

cord or fine chain hung

between two points) (Fi-

gure 3). “The lowest point

of the arch made by a

string which is longer

than the space between

the supports holding up

the ends at two different
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Figure 2. A project ofLEONARDO DA Vinctfor measuring the strength ofbeams

heights, will touch the earth nearer to the lower support than to the higher, and in the
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Figure 3.
LEONARDO’s
sketches for the
catenary

proportion that the height of the lesser

goes into the greater.” [That is, the lowest

point of the catenary is the point of inter-

section of straight lines dropped from the

supports so as to make equal angles with

the vertical. Except in the trivial case

when the supports are at equal heights,

LEONARDO’s assertion is false, but there

is a germ of truth in it.] In the second

drawing in Figure 3, LEoNaRDO concen-

trates all the weight of the string in the

middle [and thus introduces the first

discrete model for a continuous system]. For

this case, his assertion is true and determines the figure of equilibrium completely. In

another attempt*), he seems to regard the weight of the string as equilibrated by weights
 

1) Ibid. f 48r.
2) Codice Atlantico f 185 ra. This passage is fragmentary and vague.

3) MS Inst. France A, f 48r. Cf. also f 51v.

4) MS.Inst. France E f 60v. The text makes no reference to the weights, and the drawingis not
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hung over pulleys at the ends and infers that ‘A cord of whatever size or strength...

can never becomestraight if it has any weight in the middle of its length,” [anticipating

a famous proposition of GALILEO (below, p. 44)]. Moreover, Lronarpo’s drawing of the

catenary appears to be copied from fact.

The nature ofresonance wasfirst correctly explained by JEROME FRACASTORO?) in 1546.

“One unison promotes another, since when twostrings are equally taut, they are fitted to

make and receive like undulationsof the air. Those that are diversely taut are not in case

to be moved by the samecirculations, but one circulation hinders another. The beat of

the string, the motion, is composed of two motions, by one of which thestring is driven

forward, that is, toward the circulations of the air; by the other, backward, the string thus

restoring itself to its proper location. Therefore, if one moved string is to be moved by

another, in the second there must be such a proportion that the undulations and circu-

lations of the air which impel and make the forward motion do not hinder the backward

motion of the string. Such a proportion is had only by those strings that havea like tension.

On the contrary, strings of random tension do not set each other in motion, because when

the second motion happens, that is, the return of the string backward, the second string

hinders it, and they get in each other’s way. Whence there occurs no motion except the

first impulsion, whichis insensible. I myself have seen in a certain church where many wax

statues stood high up arounda chapel, at a certain tinkling only one ofthe statues moved...

The cause was nothingelse than the fact that only one was in unison.” Fracastoro then

draws an analogyto lifting a weight by rhythmic action. “The same thing happensalso to

those who beat bread, when two or three men alternately lift up and press down a long

heavy beam,for if indeed they do not act together, all lifting and then all pressing down,

but when onelifts another begins to press, the motion is hindered ... In strings, however,

it is not perceived because of the speed of the circulations.”

[Thus Fracasroro discerns the reciprocalor vibrating motion ofmusical strings and of

sound in air, observes that not only strings but also other bodies are “‘fitted’’ to take on

motion at a definite natural frequency, andasserts that sympathetic vibration occurs when

the source communicates a motion that reinforces the natural motion of the receiver.

The passage just quoted implies a knowledge of sound moreprecise than anything

preserved from classical antiquity. In particular, Fracastoroclearly takes it for granted

that sound is a vibratory motion of a definite frequency. His book, however, does not read

 

clear. LEONARDO’s masteryof statics is exaggerated by his enthusiasts. H.g., the rule stated in Codex

Forster II f 67v for finding the tensions in the two cords of the discrete modelis false if taken quanti-

tatively, as seems to be LEONARDO’s meaning, and equivocalif taken only qualitatively.

1) Ch.11 of De sympathia et anttpathia rerum liber unus..., Venice, 1546, [viii pp.] + 76

leaves -+ [vi pp.].
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like a work of an originator but seems rather to be a miscellaneous collection, though

thoughtfully presented. I am led to conjecture that future studies of mediaeval sources

will reveal a considerable knowledge of acoustics that had become common domain by the

sixteenth century.

This is borne out to some extent] by the work of JoHN Baptist BENEDETTI, On

musical intervals, published in 1585'). At the very end hewrites, ‘““Let a monochord be ima-

gined .. .; when it is divided into two equal parts by the bridge, each part will make the

same sound ..., because the one makes as manystrikings in the air as does the other, so

that the waves of air go out in the same way and agree equally, without any intersection

or breaking of each other.

“If the bridge divides the string in thirds, so that one part is twice as long as the

other ..., then the greater part... will sound an octave below, for the strikings of its

endswill bear such a proportion to each other that in every second striking of the lesser

string, the greater will strike and agree with the lesser at the same instant, since there is no

one ignorant that by so much the longer is a string, by so much the slower it moves.

Wherefore, since the longer is twice the shorter, and both are equally taut, in the same

time that that longer completes one interval of trembling, the shorter will complete two

intervals.’ After illustrating the idea by a fifth and by other musical intervals, BENEDETTI

concludes that ‘‘the numberof intervals [of trembling] of the lesser portion will stand in

the same ratio to the numberof intervals of the greater as does the length of the greater

to the length of the lesser...”

[Thus BENEDETTI regards the numberof “intervals of trembling”’, or, as we say now,

the frequency of the vibration, as a measure of pitch. To speak of such “‘intervals”’ as

associated with a sound presumes that

(4) Sonorous vibrations are tsochrone,

BENEDETTI goes further; since ‘‘no one is ignorant”’ that the speed of a string is in-

versely proportional to its length, other things being equal, it follows that

(5) Pythagorean ratio of pitches = ratio of frequencies.

These fundamental tenets of the theory of vibration are soon to be rediscovered by

BEECKMAN (1614—1615), MeRSENNE (1623), and GALILEO (by 1636).]

 

1) ‘De intervallis musicis,’” pp. 277—283 of Diversarum speculationum mathematicarum et

physicarum liber, Taurini, Haered. Nic. Bevilaquae, 1585; 2nd ed., date unknown; 3rd. ed., Venetiis,

Baretium, 1599. Reprint of “De intervallis musicis,” ed. J. Reiss, Z. Musikwissenschaft 7 (1924/5),

13—20.
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3. BEECKMANon the suspension bridge (1614—1615), on vibration (1614—1618), and
on elasticity (1620—1630). Srrvin+), in a work published in 1608, considered a weightless
string loaded at various points by an arbitrary numberof different weights, but he con-

tented himself with finding the tensions when the figure is given, and with testing the

result experimentally. In annotating this work of Strvin in 1634, ALBERT GIRARD?)
claimed that he had proved in 1617 that the continuous string hangs in a parabola. Mean-
while, however, the problem had been taken up by the gifted but overly modest Isaac
BEECKMAN (1588—1637)’), who considered it in notes dating from 1614—16154). In 1618
DESCARTES') writes that BEECKMAN “asked meif the rope acb hung up on pins a, 6 would
describe a part of a conic section. I have no time to look into this now.” BEEcKMAN,

however, in a note®) from this period or earlier, had set up the problem of the weightless
string loaded by equal weights which seem to be equally distant along the horizontal and

had given part of a geometrical proof that the points where the weights are attached lie on a
parabola. If this interpretation of his note is correct, BEECKMAN wasconsidering the prob-
lem of the suspension bridge and had conjectured, if not proved, its correct solution.
 

1) Coroll. 6, Part I (“Spartostaties’”), ‘‘“Byvough der Weeghconst,” part iv, 7 of Wisconstighe
Ghedachtenissen ..., Leyden, 1605—1608. Latin transl., Hypomnemata mathematica . . ., Lugduni Bata-
vorum, 1608. Dutch text and English translation of part iv, 7 = Princ. Works 1, 523—607.

2) “But one must know that Srevin... has seen that... loose or very extended strings are
parabolic lines (as I proved in about the year 1617), and this I will prove below, after the next corol-

lary ...’ There is no published writing of Stevi that substantiates this statement, and when GrraRD

later on the same page finishes with “‘the next corollary,”’ he adds only, “to discharge my promise,

since I do not have the time to copy out my whole proof, I will give it to the public on some other

occasion, by the help of God, whenscientific research is more profitable than at present.”’ See p. 508 of

Les Chuvres Mathématiques de Simon StTEvin, ... le tout reveu corrigé, et augmenté par ALBERT GIRARD,
Leyden, Bonaventure & Elsevier, 1634.

3) Journal tenu par Isaac BEECKMAN de 1604 & 1634, ed. C. DE WAARD, La Haye, Nijhoff, 4 vols.,

1939—1953.

The posthumous publication of a small part of this diary in 1644 does not indicate the extent of
BrEcKman’s influence. It was BEECKMAN whoin 1618 initiated the young Drscarrss into physics and

encouraged him to apply his talents to the sciences. Each told the other in 1618 that he had never

theretofore met anyone who “‘joins physics precisely with mathematics” (Journal, f 100v.). (This ambi-

tion notwithstanding, most of the contents of BEECKMAN’s Journal, including all the numerouspas-

sages concerning elasticity and resistance, are philosophico-physical and devoid of mathematical

reasoning.) DESCARTES surely saw BEECKMAN’s journal in 1618 and probably also in 1628. BEEcKMAN

met MERSENNE and GASSEND in 1629; in 1630 MERSENNE spent whole days studying BEECKMAN’s

notes, the contents of some of which he published. BEECKMAN corresponded both with DESCARTES and

with MERSENNE byletter.

4) Journal, f 20v.

5) Oeuvres 10, 219—228. This note wasfirst published in 1859.

6) Journal 1, Appendix 1. The drawings, unfortunately ill copied, suggest the influence of the

published work of Stevin. In 1613 Brrckman had had access to unpublished papersleft by Strvin.



BEECKMAN ON VIBRATION (1614—1630) 25
 

The fundamental acoustic principles (4) and (5), while implied by a passage published

three times in the sixteenth century, apparently were rediscovered independently') by

several savants of the next. [They must have seemed natural ideas to any inquiring

mind prepared to view the doctrines of the ancients in the light of the rising mechanism

of the baroque, and we should not be surprized if they were discovered or shared by others

besides those we name.] In 1618 DEscarrEs?) writes, ‘“BEECKMAN thinks that the strings

of a lute move faster in proportion to their pitch, so that the one higher by an octave gives

out two motions while the lower gives one; likewise, one higher by a fifth gives 14, ete.”

Every one of the many passages in BEECKMAN’s journal concerning vibration reflects the

basic principles (4) and (5), though he nowhere expresses himself so clearly as does Dus-

CARTES. In 1614—1615 he writes?) that ‘“‘a sound... is composed of as many sounds as

there are returns of strings to their place . . . I suppose the nature of the human voice, of

whistles, of the lute, and of any musical instrument to be the same as the nature of a

string, since experience confirms that all voices can be consonant with strings. Therefore

whatever weshall prove in this matter concerning strings, we postulate could be proved

also for the remaining kindsof voices.’’ He attempts to prove that the frequency ofhalf a

string subject to equal tension is twice as great. More generally,

  

(6) ve i vy = frequency,

h l l = length,

é i [for this is an immediate corollary of (1) and

I (5), or, conversely, if (1) is taken as a fact of

experience and if (6) may be proved from me-

bi chanical laws, then (5) follows.] Consider two

a qe. c fg > 4 strings ahb and clb pluckedinto similartrian-

Figure 4. gular forms as in Figure 4. Since the strings

DEECKMAN’S drawing to prove (6) (1614-1615) are of the same material and subject to the

same tension, the restoring force at h on ahb is the sameas that at J on clb and thus will

induce the same velocity in each string. When thestrings are released, the point h must

travel twice as far as the point J, but at the same velocity, and hence it will require

 

1) As is shown below, BEECKMaN explained his ideas freely toDEscartzEs, who apparently adopted

(4) and (5) at once but certainly deserves nocredit for them. While it is thus possible that DESCARTES

imparted (4) and (5) to MERSENNE,there is no positive evidence that DESCARTES and MERSENNE were

even acquainted before MERSENNE published these principles in 1623. The personal correspondence of

MERSENNE and BEECKMAN began in 1629. There seems to be no reason for doubting the independence of

GALILEO, who had cause to delay publication; his work is described in § 5 below.

2) Op. cit. ante, p. 24. This passage shows that (5) was not common knowledgein 1618.

3) Journal ff 23v—24r.
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twice as much timeto reach the straight form. A parallel argument applies to two strings

whose lengths are in any given ratio. [Upon reflection, we perceive that this reasoning is

sound in principle! It applies, strictly, only to the first instant, when a finite velocity or

impulse is produced at the corner; to apply it at later instants one must know something

about the motion. BEECKMAN does not say anything about this, but from other passages

one suspects that he considers the form to remain triangular, which is false. To determine

the motion of a string pluckedinitially into triangular form requires dynamical principles

not known in BEECKMAN’s day; it soon became and remained a major problem, until it

was solved finally by EvLeR 150 years later. BeEcKMaN’s achievement is great: By

furnishing the first mathematical proof of any acoustical proposition, he stands father to

the theory of vibration.]

In 1618!) BrECKMANgives a convincing physical argument in support of (4). “Since

the string comesto rest at last, we must believe that the space through which it moves at

the second stroke is shorter than that at the first stroke; and thus the spaces of the strokes

diminish. But, since to the ears all sounds seem the same up to the end, it is necessary

that all the strokes are always distant from one another by an equalinterval of time, and

therefore the following motions move more slowly ..., since the string crosses a little

space in the same time it formerly used to cross a greater one.’’ Then?) he compares the

vibration of a string to the motion of ‘‘chandeliers hung from a rope,”’ which he says is

isochrone in a vacuum. He seems to have done experiments on this, and hegives a sort

of theory.

After remarking that only properly tuned strings are resonant, and that a string may

set into resonance another tuned an octave higher?), BEECKMAN gives a correct physical
 

1) Journal f 102r. Cf. also ff 105r (1618), 367r (1630—1631), and the repetition of this argument

by MERSENNE, quoted below,p. 31.

2) Journal f 105v.

3) Journal f 54v (1616—1618).

Here we take note of some passages in Francis Bacon’s Sylva Sylvarum, or a Naturall Historie,

London, 1627, republished in the various collected editions of his works. § 279 describes as ‘‘a common

observation’ resonance of a string tunedto like pitch or an octave higher, madevisible by a superincum-

bent straw; BAcon uses words almost the same as LEonNaRDO’s (above, p. 19). He discusses the tones

of strings as follows: “So we see in strings: the more they are wound up andstrained, (and thereby

give a more quick start-back) the more treble is the sound; and the slacker they are, or less wound up,

the baser is the sound. And therefore a bigger string more strained, and a lesser string less strained,

may fall into the same tone” (§ 179). Bacon says that shortening a string raises its pitch, since it

causes the string ‘‘to give a quicker start’’ (§ 181). He proposes an experiment on the effect of tautness

by recording the pitches correspondingto 1, 2, 3, .. . turns of the peg, so as to discover “both the pro-

portion of the sound towards the dimension of the winding; and the proportion likewise of the sound

towards the string, as it is more or less strained.” Far from anticipating the work of MERSENNE,

Bacon seems to know less than the ancients regarding the tones of a monochord and a pipe. He
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explanation’): “If... the other string, howeverit is struck, always moves equally to the

first, and both end their motions at the same time (which is the nature of unison), this

happensif the air impinging upon the quiet string moves it, even invisibly. But when the

air strikes this string a second time ..., something is added to the [same] motion. Thus

again for the third and fourth time, and thus finally the motion becomesvisible.”’

Also?), ‘‘... when a bell is sounding, its... parts tremble so that the parts in the

midst of it push quickly inward and outward again and again .. . Today I saw an experi-

ment of this. There was a glass half full of water or wine and a wet finger pressing the

edge was drawn aroundit. While this happened, a sound was heard comingout of the glass,

and at the same time the water near the edge jumped and cast up little drops . . . The water

seemed to boil around the sides but to lie quiet in the middle, and the boiling was drawn

around, following the motion of the finger.’’ In 1618 BrEcKMAN writes?) that DescartTEs

showed him that the low strings of a lute can excite the higher ones, but not vice versa;

also, that a sounding string will excite another tuned up a fifth, but not one tuned a fourth

higher. BEECKMAN thengives his former explanation more clearly: While the second string

tuned an octave and a fifth higher makes three vibrations, thefirst string makes one, so

that the vibrations “agree alternately”’. In 1635 Mrrsrenne‘) published this passage

almost word for word, attributing its content to BEECKMAN.

In considering the bending of a beam, BEECKMANin 1620 recognizes that the parts on

the convex side are extended, while those on the concaveside are contracted, but he does

not attempt to formulate a theory').

In 1630 BEECKMAN®) informs MERSENNE that when a weight is attached to a string,

“the longer is the string, the more the weight descends .. .” That is,

(7) é= At 8 const. when FF = const.Ls
 

presents 189 ‘“‘experiments” or pronouncements on sound and music; while not the only early writer

who prefers projecting experiments to performing them, he showstalent for missing essentials while

reporting trivia, and his book exemplifies the vacancy of experiment and speculation undisciplined by

mathematics.

1) Journal f 67r (1616—1618).

2) Journal ff 86v—87r (1618).

3) Journal ff 100r—l0lv. Cf. also f 105r. On f 128r (1619) is an unsatisfactory discussion which

seems to indicate that BrEcKMAN may havethe idea that the same body mayresonate at different

frequencies.

4) Harmon. Libri 12 (cited below, p. 29), Lib. IV, Prop. 29. Cf. also Prop. 29.

5) Journal ff 137 bis v, 139 bis v.

6) Journal f 362r. DESCARTES writes to MERSENNE in January 1630 that a string stretched slowly

will break in the middle; quickly, at the ends. This seems to befirst recorded observation since HERON’s

day that the static and dynamic strengths of a body may differ.
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[Thus BEECKMAN perceives that it is strain ce, rather than merely elongation Al, that

measures the effect of a force in stretching a string of given material and cross-section.|

4, MERSENNE on vibration and rupture (1623-1636). In 1623 Mrrsenne, before he

met BEECKMANor saw his work, published?) (4), (5), and (6). Moreover, MERSENNE writes

that a bell can give out three tones at once: its proper sound, the octave, and the twelfth,

and possibly also two more. He thinks he distinguishes the same phenomenon in organ

pipes and other instruments.[That is, a vibrating body may emit several definite tones simul-

taneously?).| That different methods of blowing cause a pipe to emit a sequenceof different

tones had long been known from musical experience, and it seems that MrersENNE connects

these phenomena and proposes the problem of determining the sequence of overtones of a

vibrating body®), e. g., a string.

In 1625 Mersenne*) published rules of proportion equivalent to the law

TT T = tension or stretching weight,(8) yor|. ion r ng g

A = cross-sectional area or “‘thickness’’,

which he had inferred from experiment. [This beautiful discovery of MERnsENNE, gener-

alizing (6), may fairly be recognized as thefirst concrete result in the science of vibratory

motion.] The circumstances of finding it are not known).
 

1) Cols. 1559—1561 of Quaestiones celeberrimae in Genesim, Paris, 1623. I have never been able to

see this work;for the specific attribution, I am content to cite D—E WaAaARD, Note 1 on p. 161 of BrEcxr-

MAN’s Journal 3.

In an entry dated 12 August 1630 (Journal f 362r) BEECKMaAN writes that MERSENNE asked him

the reason why (6) holds, and BrEckMawn replied along the lines he had written in 1614—1616 (above,
pp. 25—26).

2) According to MATTHEW YOUNG,op.cit. infra. p. 294, there is a letter of 1618 from DESCARTES

to MERSENNE (cited by Youna as “‘Ep. P. 2 Ep. 106’’) referring to ‘‘the different tones which are pro-

duced at the same instant by the samestring,’ but no such letter is printed in Correspondence du

P. Marin MERSENNE, ed. DE WAARD, 1 (1617—1627), 1932; 2 (1628—1630), 1936; 3 (1631—1633),

1946; 4 (1634), 1955.

3) MERSENNEis a rather vague writer, and besides this it is necessary to infer the question from

the replies sent him by various correspondents from 1625 onward, since MERSENNE’s relevantletters

are lost. A feeble explanation is given by DrEscarTEs about 1626 (Corresp. de MERSENNE, No. 51):

** _.. all the higher soundsare present in the lowerones, just as the shortest strings are in the longest,”

eic., and ‘“‘soundis easier to divide in twoparts,”’ efc.

4) P. 616 of Vérité des Sciences, Paris, 1625. I have never been able to see this work; for the

specific attribution, I am content to cite DE WAARD, Note 2 on p. 98 of BEECKMAN’s Journal 3.

DESCARTES communicated (8) to BEECKMAN in 1628—1629 (Journal f 334r), at the same time

characteristically disposing of it as “no wonder ..., since a string twice as thick behaves in the same

way as two simple strings separately.”

5) In the twenty-five published letters to and from MERSENNEprior to 1625, (8) is not mentioned.

Evidently in answer to questions from MERSENNE,there are discussions of sympathetic vibration
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On 28 February 1629 MERSENNE proposes!) to BEECKMANthe problem of determining

the motion of a vibrating string; in particular, of calculating the ratio of successive ampli-

tudes. On 13 November and 18 December 1629 DEscarrzEswrites to MersENNE that the

amplitudes diminish in geometric progression. DESCARTES?) considers the restoring force to

be proportional to the deflection; hence ‘‘... the force which makes the string return is

greater in proportion as thestring is pulled away from its straight line, and, being unequal,

it makes the diminution of the returns likewise unequal, and that is the geometric pro-

gression.”’ [If the remarks of DEscaRTESare unsatisfactory, the reader should recall that an

adequate theory of the viscous and frictional dampingof a vibrating string remainsto this

day unknown’).]

In 1635 Mersenne published a great treatise on acoustics and music, his Books on

harmonic matters*). Book II gives a disordered list. of propositions on vibrating bodies;

[these show that MERSENNEis now somewhat beyondhis depth in attempting to generalize

from the definite results he had inferred from experiments on strings.] Prop. 1: The dif-

ference of sizes and shapes of bodies makes thedifference of their sounds. Prop. 2: By so

much the moister is a body, by so much loweris its sound. Prop. 3: By so much the harder

is a body, by so much thehigheris its sound. Prop. 4: The loudness andpitch of soundsare

not always as the weight of the sounding body. Prop. 5: The denseness and rareness of

bodies makedifferent sounds, but not proportionally. Prop. 6: As the length of one body

is to that of another body of like material, or as the volume to the volume, so is sound to

 

in the letters from CuauDE Brepeavof 30 January 1625 and from Jean CHarerier of 12 April 1625;

tho latter shows that sympathetic resonance of a string tuned an octave, a twelfth, etc., above the sound-

ing string was moreor less well known.

Later letters of MERSENNE contain hundredsof references to problems of vibration.

The book of R. Lenosir, Mersenne ou la naissance du mécanisme, Paris, 1943, furnishes little

or no information regarding MERSENNE’s work on acoustics and strength of materials.

1) Letter of Mersenne to ANDRE RIvET. BEECKMAN’s replies of March, June, and 1 October 1629
do not go beyond his old work on this problem (above, pp. 25—26).

2) DEscARTES also tells MERSENNE sarcastically that he had explained sympathetic vibrations

in a treatise he had left with BEECKMAN for eleven years (7. e., since 1618), ‘‘and if that time suffices

for copyingit, he has the right to attribute it to himself.’”’ Descartes had indeed written such a treatise

and left it with Brexcxman, but Brrckman had written his explanation (above, pp. 25—-26) in his

Journal long before the entry stating that DESCARTES wasin the course of writing the treatise (Journal

f 104v); DEscARTES’ explanation to MERSENNEis precisely the same as BEECKMAN’S.

3) Even for the motion of a pendulum in air the question of frictional dampingis oneof cele-

brated difficulty. The first quantitative treatment is to be given by Euumr, E569, “De motu pendulr

circa axem cylindricum, fulcro datae figurae incumbentem, mobilis, habita frictionis ratione. Dissertatio

altera,”’ Acta acad. sci. Petrop. 1780: II, 164—174 (1784); presentation date: 19 August 1776. In this

work EvLer finds that the amplitudes decrease in geometric progression.

4) Harmonicorum libri ..., Paris, Baudry, 1635, [xii] + 184 pp.
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sound. [As we shall see below, the former statement of this “broadest . . . of all proposi-

tions in music” is true, but the latter statement seems obviously to contradict it.]

Props. 7—13 and 18 state (8) and its various consequences at length. In commenting

on Props. 8 and 9, MERSENNEwrites that in order to increase by an octave the pitch of a

string stretched by a 1 lb. weight, we have to stretch it not by 4 lbs. but by 4% lbs.

[This may represent the correction arising from the slight stiffness of real strings.]

Props. 14—17 and 19 give evidence for (4) and are the source whence this basic

acoustical law was immediately diffused. ‘“‘... experiment always confirms that if two

strings of brass, hemp, or gut are stretched until they are in unison, they maketheir

returns in the same time, however their lengths and thicknesses may differ; whence it

follows that the ratio of the soundsis the sameas the ratio of the numberof returns.”’ For

the “numberof returns’? MERSENNEintroduces the term frequency. The pitch of an organ

pipe may be defined as the frequency of a consonantstring.

Prop. 21 seeks to establish “‘an exemplary and stable sound by which we may delimit

the other sounds” [v. e. a standard of frequency]. The figure Mersenne gives here and

at several later points in the book suggests he thinks the shape of an initially triangular

string remains triangular during the motion). Coroll. 1 to Prop. 26, which asserts (4),

states in effect that the frequency oflarge oscillations is about 3% less than that of small

oscillations, caeteris paribus. Prop. 29: “All the returns of a string are approximately

isochronous; that is, they occur in the same amount of time.”’ The explanation shows

that MERSENNEis thinking not so much of two different motions started with different

amplitudes but of the successive vibrations in the same motion as it is damped. Thus

Prop. 30 demands the time taken by the ‘‘whole motion’’. According to Prop. 32, repeated

experiments show that the ratio of successive amplitudes decreases, but MmRsENNE

[following DrscartTEs, cf. above, p. 29] considers that in a vacuum this ratio would be a

constant, which his experiments suggest should be 20/19. [All of MeRsENNzE’s statements

about strings are interwoven with remarks on the motion of a pendulum; like BEECKMAN

and GALILEO, he senses but cannot prove a connection.]

Warming to the subject of frequency, in Prop. 33 he writes, ‘‘Since this [concept of]

frequency is applicable not only to strings but also to other bodies giving out a sound, as

bells, organs, flutes, bands,efc., let us now discuss only sinews or strings, from which the

judgment of the rest may be gathered.”’ Prop. 37: ‘“To determine whether a sinew gives

out a lower tone at the end than at the beginning of its motion . . .” Experiment shows that

the amplitude decreases but the frequency remains the same; therefore the speed decreases.

 

1) DrEscarTEs objected not only to this but also to considering the motion as plane rather than

whirling. Cy. his letter to MERSENNE of 15 May 1634.
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If the pitch depended on the speed of the motion, it would thus decrease, but we hear no

such effect. MERSENNE regards this argument [due to BEEcKMAN, above, pp. 25—26] as

crucial in favor of (5). A still better one follows: The points nearer the fixed ends of the

string move at far lesser speed than those in the middle, yet the string gives out but one

note. Finally, Coroll. 7 to Prop. 36 asserts that frequency is as “‘the Lydian stone” for

everything concerning sound.

In Book III, Prop. 2 discusses the proportions to be assigned to the strings of an

instrument so that it will give out an equable tone. According to Prop. 3, a musical string

should be stretched to half the tension under which it breaks. Prop. 7 lists the results of

experiments on the breaking strength of strings but reaches no definite conclusion, while

Prop. 16 [contrary to the expectation of LEoNAaRDO DA VINCI, above, pp. 19—20] asserts

that experiments show the breaking strength of a long string to be the sameas that of a

short one, with some reservations.

A final attempt to determine the motion of a vibrating string, in Prop. 21, leads to

nothing.

In the next year appeared MERSENNE’s Universal harmony'), written in his own idiom

and for the most part a still more diffuse account of what was in his Latin treatise. Prop. 8

of Book IIT asserts that ‘‘... strings and all other kinds of bodies make three or four

different sounds at the same time, and these are harmonious.” [To explain the former

statement from mechanical principles while disproving the latter is to be DanrEL BER-

NOULLI’s great achievement a century later.]

At the end of Prop. 8 MERSENNE writes, ‘‘... it does not follow that other bodies

of cylindrical or other form obey the same law with respect to soundsas do strings, though

many have believed so hitherto...” Prop. 9, after remarking upon the difficulty of

experiments on cylinders and repeating that their various tones are harmonious, gives

experimental results which seem to imply that for similar prismatic bars having cross-

sections that are circles, squares, triangles, efc., we have

(9) va = ,  @= typical linear dimension.

H.g., to get a bar that sounds an octave higher than a given one, we are to cut down both

the length and the diameter by 4. [This law is correct”), though by the restriction to simul-
 

1 Harmonieuniverselle ..., Paris, Cramoisy, 1636. The date of the Privilége is 13 October 1629.

From MERSENNE’s letter of 20 March 1634 to PEmeEsc welearn that the book was complete then and

had cost ten years of work. I have never been able to consult the French and Latin treatises simultane-

ously; thus my citations do not imply that any particular statement in the oneis not also in the other.

2) By dimensional analysis, for a material having elastic modulus H, density @, and charac-

teristic linear dimension a, we have 1 2

yc — |/—,
at@
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taneous proportional changeof all linear dimensionsit falls short of later results. In Prop.

10 MERSENNE notes that a cylinderis not held tense by ‘‘a weight or any other foreign

force, but only by its own consistency.” Coroll. 1 discusses inconclusively the effects of

length, breadth, and depth on the vibrations of bars of tin or iron. Coroll. 2 proposes what

seems to be the general law » « 1/a*, [but this!) contradicts both (9) and the law that

follows from (8), viz, v x 1/a?].

Prop. 11 gives the results of experiments on bars of many materials. Since all woods

give out nearly the sametone, as do both hard steel and soft iron, MeRsEnNnEzdecides that

little can be determined about a material by the sounds it emits. Prop. 16 attemptsto cor-

relate the pitch with the material of the sounding body,but offers only vague speculation.

Prop. 15 discusses the breaking strengths of beams in four tests: extension, trans-

verse load in the middle, longitudinal thrust, and impact in the middle. We gather that

MERSENNE does not consider his experiments complete, for he is hesitant to draw any

conclusion. He thinks that for horizontal beams supported at both ends, the breaking force

is inversely as the length.

A sequel to the Universal Harmony, published along with it, is the Treatise on Instru-

ments. In Book IV, Prop. 11 asserts that ‘‘the string struck and sounded freely makes at

least five sounds at the same time, the first of which is the natural sound of the string and

serves as the foundation for the rest . . .”” All these sounds‘‘follow the ratio of the numbers

1, 2, 3, 4, 5, for one hears four sounds other than the natural one, the first of which is the

octave above, the second is the twelfth, the third is the fifteenth, and the fourth is the

major seventeenth.” Then thereis ‘‘a fifth one higher yet, that I hear particularly toward

the end of the natural sound, and at other timesa little after the beginning; it makes the

major twentieth with the natural sound.” Ofall these, “none is ever heard that is lower

than the natural sound of the string, for all are higher... They follow the same pro-

gression as the jumps of the trumpet.” [Thus MersEenne is the first to determine the

sequence of overtones of the vibrating string’).]

In BookVII, Props. 7 and 10 claim to correct the bad practice of the bell makers by a
 

The rule (8) is not included because, as MERSENNE in effect remarks, the transverse vibrations of a

i. , 4. 11/7
string are not elastic vibrations. From (8), or rather its generalization (10) below, follows vc a=

whenall linear dimensions of the string are scaled proportionally, and this gives y oc 1/a* in place of(9).

1) Cf. the second, false alternative in Prop. 6 of Book IT of the Latin treatise, above, pp. 29-30.

2) MerSENNE’s recognition of the pitches of these tones seems to date only from 1633, since in

that year he proposed to several correspondents the problem of explaining them. On 30 May 1633

BErECKMAN replied that the ‘‘globules of air” may be brokeninto 1, 2, 3, ... parts, efc. On 21 June 1633

BovutxrAup transmitted MERSENNE’s observation to GASSEND in a letter full of the new enthusiasm for

science: “I hope to be able to prove something physically and geometrically by a cylinder and a cone

inscribed init...’ Cf. also the replies of Descartss, 22 July 1633, and DE VILLIERS, September 1633.
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better rule relating the tone of a bell with its dimensions [but what the rule is, I cannot

determine.] In a later work!) MersEennzasserts that for ‘“‘bells, cylinders, and other bodies

of the sort used in harmony” we have »a«1IVW, where W is the weight. [This is but

another expression for (9).

There are few figures in the history of science so appealing as MrrsEenne.His workis

often belittled for its errors, its contradictions, and its disorder. However, his positive

achievements”), obtained not only before there was any theory but also long before

any reasonable standards had been set for experiments, are the greatest ever gotten from

purely experimental study of vibrations.] |

 

1) Prop. ITI of “Harmoniae liber primus,” Art. IT, in Cogitata physico-mathematica in quibus tam

naturae quam artis effectus admirandi certissiemis demonstrationibus explicantur, Paris, Antonius Bertier,

1644.

2) A discussion of MERSENNE’s work on acoustics, including some of the topics we have pre-

sented and also his discovery, description, and explanation of beats, is given on pp. 35-——58 of H. Lup-

wia’s Marin Mersenne und seine Musiklehre, Halle-Saale and Berlin, Buchhandlung des Waisen-

hauses, 1935.



141

142

34 EARLIEST SPECIAL PROBLEMS
 

Part I. The earliest special problems, 1638—1730

5. The vibrating string, the breaking of a beam,and the catenary in GALILEO’s Discorsi

(1638). Since they were read by everyone, GALILEO’s Discourses and mathematical demon-

strations regarding two new sciences concerning mechanics and local motions) must be given

greater notice here than their content or novelty would otherwise deserve’).

a. The vibrating string. At the end of the First Day, Salviati emphasizes that a pen-

dulum can oscillate only at one determined frequency and describes what would now be

called the phenomenonofresonance.[The example given is much the sameas that published

by Fracastoro almost a century earlier, but GALILEO’s writingis brilliant:] A single man

by pulling the rope successive times at proper intervals can sound a great bell whose

motion suffices to lift four or six men off the floor. This allows us to explain “‘the wonder-

ful problem of the string of a guitar or harpsichord which causes to move and resound

another, not only one in unison with it but also one at the octave or the fifth” [2. e. twelfth.

Here, too, GALILEO’s explanation is muchlike that of Fracastroro;] he mentions explicitly
 

1) Discorst e dimostraziont matematiche intorno a due nuove scienze attenenti alla mecanica ed 1%

movimenti locali, Leiden, Elsevier, 1638 = Opere (Ed. Nazionale) 8, 39318 (page references are to

this edition). In English, Dialogues concerning two new sciences, transl. H. CREW & A. DE SALVIO

(with use of technical terms sometimes suggesting GALILEO had had the benefit of a freshman course in

physics), New York, MacMillan, 1914, and later reprints, besides two earlier translations by others.

German transl., Unterredungen und mathematische Demonstrationen ..., Ostwalds Klassiker Nos. 11,

24, 25, Leipzig, 1890—1891.

2) There is much evidence that some of the contents of the Discorsi dates from 1602 or earlier,

but in GaLiro’s correspondence I have been able to find nothing whatever concerning the vibrating

string or the catenary prior to the bookitself, which was written, apparently, in 1630—-1635.

Not so with the material on beams, for on 11 February 1609 Gatinro writes to ANTONIO DE’

Menpicr as follows: “I have recently finished finding all the conclusions, with proofs, concerning the

strengths and resistance of beams of various lengths, sizes, and shapes, and by how much they are

weaker in the middle than at the ends, and how much more weight they will sustain if it is distributed

along the beam rather than in one place only, and what shape they should haveso as to be equally

sturdy all along; which science is very necessary in making machines andall kinds of buildings, but

there is no one whohastreated it.”

On 17 September 1633 NiccoLé ARRIGHETTI communicates to GaLrxo his views on the breaking

of a heavy horizontal bar supported at its middle. His words are interpretable in two ways, one of

which is consistent with the theory of heavy beams GALILEO publishedlater in the Discorst, 2. e., with

(14), which GALILEO states, moreorless, in his answer of 27 September 1633.

In March 1635 GaLiLEo writes to ANTONIO DE VILLE an emphatic refutation of the prejudice in

favor of scaling by simple proportion. Suppose a bridge can bear 1000 lbs. “It is desired to know ... if

another bridge, made of the same wood but with all its members increased fourfold . . . will be strong

enough to bear 4000 Ibs. There I say no; and I say no even thusfar, that it could happen that such

a bridge would not even be able to supportitself, but would collapse from its own weight,”efc. GALILEO

writes of the Second Dayasif it were then complete.

(The three letters just described werefirst published in 1718.)
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that ‘‘the string tuned to unison with the one touched is disposed to make its vibrations
2in the same time,” eic., [but he says nothing to explain the sympathetic vibration of a

string tuned to the octave or the twelfth+).] ‘““‘The undulation, spreading out through the

air, moves and causes to vibrate not only strings but also any other body disposed to

tremble and vibrate with the same [periodic] time as that of the trembling string, so

that if one fixes upon the case of the instrument little pieces of bristle or other flexible

material, when the harpsichord soundsit will be seen that now this, now that little body

trembles too, according as is touched that string of the harpsichord whose vibrations

occur in the same time: The others will not move at the sound ofthis string, nor will that

one tremble at the sound of another.” [Thus GALILEO perceives that a bristle has a

natural period, but he gives no attention to determining it.] The sounding of an appro-

priate tone on a musical string causes a glass nearby to emit the same tone, and if the

glass is partly full of water, this same act induces standing waves on the surface, “... and

sometimes it happens that the tone of the glass jumps up by an octave, and at the same

moment I have seen each of those waves split in two, which effect most clearly shows the

form of the octave to be the double?).”’

143

Into the mouth of Sagredo [and hence perhaps to be regarded as accepted science of 143

the day] GALILEO puts the statement that in order to make a string emit a tone higher

by an octaveit is sufficient (1) to shorten it by onehalf, (2) to quadruple the stretching

weight, (3) to diminish its greatness*) fourfold, other things being equal. [We are tempted

to conclude that MrKsENNE’s formula (8) was common knowledge. This is not so.] Sagredo

is not convinced when the authors ‘who have written learnedly on music... say that

the octave is contained in the double, ... the fifth in the three halves’ part.’’ From the

facts (1), (2), (3) one could just as well consider the octave as the quadruple [or as the inverse

quadruple]. But since to number the vibrations of an audible sound is ‘entirely impos-

sible,” we could never knowif ‘‘the string an octave higher really makes twice as many

vibrations in the same time,”’ were it not shown by the standing waves on the waterglass.

(Thus GALILEO regards (8), or at least the satisfactory establishment of it, as his own.]

Indeed, after recounting the celebrated observation that an iron file which emits a tone

when scraping brass leaves parallel and equidistant scratches, the closer together the higher

the sound, Salviati goes on to correct (8). The effect Sagredo refers to greatness “ought

more properly to be attributed to weight’’; Salviati then states clearly that
 

1) Thusit is unlikely that GALILEO was influenced by the more complete idea of resonance which

BErECKMANhad developed in 1618 and which MERSENNE had published in 1635.

2) This remark was to be appropriated by BLONDEL in 1681; see Hist. acad. sci. Paris 1666—1699,

1, 4to ed., Paris, 322 (1733).

3) I translate “‘grossezza”’ by ‘‘greatness’’; from the context it is plain that GALILEO here means

“cross-sectional area’, while in the Second Day he means “‘depth”’.

148—144
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(10) yo + /= , og = o0Ag = weight per unit length,

independently of the material. [This capital refinement of (8) GALILEO may have inferred

from experiment?).]

Salviati goes on to say that ‘“‘the nearest and immediate reason [or rule?] for the

forms of musical intervals is neither the lengths of the strings nor the tension northe bulk,

but rather the proportion of the numbers of the vibrations . . . Consonant and pleasantly

received will be those pairs of sounds that strike upon the tympanum ofthe ear with some

order?), which order requires first that the blows made within the same time be commen-

surable in number,so that the cartilege of the tympanum shall not have to be in a per-

petual torment, bending itself in two different ways so as to agree and obey the ever

discordant beating.”’ To this Simplicio, who has long beensilent, says ‘“‘I should like this

matter explained with greater clearness.”[The following explanation is most confusing]:

the amplitudeis at first taken proportional to the period, but it seems this is only a device

for visualizing the period as a line. Without actually stating an analogy between the vibrat-

ing string and a pendulum, GALILEO plays upon the effect of resonance noted above;

the ‘“‘order’’ of the commensurable vibrations seems to consist in the fact that the two

oscillating points if started at the same time will reach their maximum displacements

simultaneously after a stated number of periods.

[GaLILEO’s contribution to the science of vibration has been exaggerated. His
 

1) This is not proved by his explanation, which in addition to asserting a comparison between

the tones of harpsichords fitted with brass and gold strings, respectively, draws an analogy to the

different resistances attributable to the weight and the size of a body moving in a medium.

MERSENNE did not know the correct dependence of y on g at this time, as is shown byhis refer-

ences to “thickness and material’? in Prop. 18 and the discussion of the effect of qualities such as

hardness in Props. 41 and 42 of Book II of Harmonicorum libri (cited above, p. 29). In Prop. 4 of

Book III MERSENNE gives a table of measured frequencies of strings as a function of their weights

when 7’, A, and 1 are the same; while these measurements may be seen to verify (10), MERSENNE does

not perceive this proportion.
In Props. 17—18 of Book ITI of his French treatise (cited above, p. 31), Mmrsmnwnu in reporting

experiments on various kinds of vibrating bodies writes that it is very difficult to determine the effect

of the density, and his results seem to contradict any simple dependence uponit.

In his Cogitata (cited above, p. 33), published after the appearance of Ganitmo’s work, MERSENNE

states (10) in Prop. II of Art. II of Harmoniae liber primus.

MERSENNE expressed great admiration for GALILEO, who did not reciprocate. MERSENNE attempted

to correspond with GALILEo from about 1625 onward, but with little success. MeRSENNE took careful

account of everything GALILEO published and had knowledge of some of GALILEO’s unpublished work.

There is no indication that GALILEO took any notice of the work of MERSENNE.

2) This is not a new idea, being merely a mechanical paraphrase of the PYTHAGOREAN views,

which were held, in one form or another, also by many otherscientists, e. g., by BEECKMAN.
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adopting (5), which was not new, doubtless hastened its widespread acceptance. His

formula (10) is an important refinement of MreRSENNE’s formula (8), but he gives no

evidence ofknowing manyofthe experimental facts observed and published by MERSENNE.

For example, while he barely mentions harmonic resonance, he states nothing regarding

the overtones of a string. On the other hand, there is no hint of mathematical proof or

even theory. Like BEECKMAN, GALILEO sets the sonic motions side by side, as it were,

with the swinging of a pendulum, but he does not apply mechanical principles at all and

does not even state (4) explicitly, although it is presumed by(5). In regard to the vibrating

string, GALILEO is inferior to MERSENNE as an experimenter, inferior to BEECKMANas a

theorist, but superior to both in imagination and in persuasive writing. ]

b. The breaking of beams. The Discorsi open with Salviati’s statement that “the com- 50

mon opinion” that a machine proportionately larger is also proportionately strongeris

“absolutely wrong’. [In a word, GaLILzo will initiate us into the mysteries of scaling

laws.| He begins by considering the breaking of a column by pullingit, but he is diverted to 55

other subjects; when he returns, we find that he considers the breaking strength of a barin 156—157

tension to be independent of the length. He has told us that the coherence of some solids, 54—55

at least, is like that of a rope, in reference to which he gives the following argument.

Salviati says, “I fear, Simplicio. .., that... you are making the same mistake as many 161—162

others; that is, if you mean to say that a long rope... cannot hold up so great a weight

as a shorter length... of the same rope.” He attaches a weight C (Figure 5) just suf-

ficient to break the rope and asks Simplicio where the break will occur, and

Simplicio replies, ‘“‘Let us say at D..., because at this point the rope is

not strong enough to support, say, 100 Ibs.” Salviati then, fixing the rope

at F, just above D, and attaching the weight at #, points out that at D

the rope is still subject to the same pull, and thus the short segment FH

will break again at D, by Simplicio’s admission. [While this reduciio ad

absurdum is in itself unsound, it convinced manyreaders and has been repeat-

ed by many later authors. To complete the argument one has to assume

that the section of rope DB has no function but to transmit the force of

the weight, and this is tantamount to assuming the conclusion. The value

of this passage lies in its considering the whole effect at D of the rope and

weight DC to be a force in the direction DEB.In replacing the action of the

system below D on that above D by one force, it furnishes the first

primitive example of the stress principle of continuum mechanics?).]

Figure 5. Sketch for GALILEO’s argument to show that a long rope is as strong as a short one
(1638)

1) By later authors and historical writers GALILEO’s arguments on beams are sometimes pre-
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156—157 Shortly after the beginning of the Second Day, Gatimzo takes up the problem of a
prismatic beam built in at one end and loaded by a weight at the other (Figure 6). He
regards the beam as a compound lever with fulcrum at the underside B; the length BC
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Figure 6. GALiLEo’s figure for the breaking of a beam by terminalload (1638)

is oné arm, on which acts the weight H, and [half of] the greatness [7. e. depth] AB is

the other arm, “in which resides the resistance.”’ Thefirst proposition is, ‘“The moment of

the force at C to the momentof the resistance . . . has the same proportion as the length

CB to the half of BA, and therefore the absolute resistance to breaking ... is to the

resistance [in the present case] in the same proportion as the length BC to the half of

AB...’ The ‘absolute resistance”’ is “that which occurs when the beam is pulled straight

on, since then there is as much motion in the mover as that of the moved.” [This last
 

sented in terms of the concept of stress, but it is not to be found in GALILEO’s own words. Seeesp.

p- 159, where the temptation is great.



GALILEO ON THE BREAKING OF A BEAM (1638) 39
 

is difficult to understand; we infer that] GALILEO’s ‘‘absolute resistance’ is the weight

P, required to break the beam by direct pulling. Thus the proposition reads?)

P,, = “absolute resistance”’ or

breaking force in tension,

 (11) Ps l h P,, = breaking force in bending
at e 3

Pp 3D oe by terminalload,

L = length,

D = depth or thickness.

While GALILEO says this follows ‘‘from the things asserted”’, the preceding passage merely

describes the actions of levers and mentions the common experience that a long beam is

broken by a lesser weight transversely than directly. In order to take the weight of the

beam into account, add half of it to P,.

Whena beamis loadedfirst in the direction of its thickness D and then in the direction

of its breadth B, by (11) we see that the breaking strengths P,, in the two cases stand in

the ratio D/B, explaining why a rule supports a much greater weight when stood on edge

than whenlaid flat.

“There is no doubt” that the [absolute] resistances P, of two cylinders are to each

other as the base areas, “‘since by so much greater are the fibres, the filaments, or the

tenacious parts that hold together the parts of the solid.” [That is,

where A is the area of the cross-section and where K is a constant depending only on the

material, not on the shape.] From (11) follows

2

(13) Pra AO or Pix — , 

where the latter form is asserted for rectangular beams. An argument supporting the so

far unproved basic formula (11) is now supplied. The filaments are “scattered over the

whole surfaces’’ of the cross-sections, so they may be regarded ‘“‘as if all were reduced to

the centers.” [Thus we see that (11) results from the balance of moments about the lower

edge of the beam. The momentofthe load # is P,,1; this equals the momentofthe absolute

resistance P,, thought of as concentrated at the mid-point of the base; therefore

P,l = P,-4D.

Later writers will replace this crude approximation by an integral over the base (see below,
 

1) The lengths B and D are definedhere for consistent later use; they are not to be confused with

the points labelled B and D in Figure6.

157—158

158

160
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165

166—169
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173
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pp. 61—62, 102—104).] Taking Aa d?, where d is now the diameter or typical linear

dimension of the cross-section, since Da« d GALILEO obtains from (13) the rule (3), [known

at least in part to LEonaRDO Da VINCI].

To analyse the bending of a beam dueto its own weight, GALILEO considers the weight

W concentrated at some unspecified point, so that (3) applies. Since P,«d? by (12), it

follows from (13) with Wa P,, that

(14) Wix da (P,)2

a result which GALILEO interprets as asserting that the ratio of the bending moments

exerted by similar heavy beams is as the 3 power of their breaking strength in tension.

“Among heavy prisms and cylinders of similar figure, there is one and only one which

under the stress of its own weight lies just on the limit between breaking and not break-

ing...” There follows a [mysterious] passage in which GALILEotries to apply (14) so as to

determine thescaling rule for a beam to break under its own weight, or, more generally,

to determine the laws under which an arbitrary relation between bending moment and

resistance is preserved. [Much of his reasoning is correct, but his summary ofit is not?).

Writing M for the bending moment, replace (11) by M = «DP,, and for bending of a

heavy beam take M = BWI, where « and f are constants®); since W = pgAl, by (12)

follows Bogl?? = «KD, or

(15) Dal .]

Thus ‘“‘not only art, but also nature cannot make its machines grow to a vast immensity”

unless harder and harder materials are found, for to make a beam of greater length have a

proportionately greater strength requires a disproportionate thickening, as GALILEO

illustrates by a figure of a little bone and onethree times as long andsufficiently strong as

to ‘‘perform the same function’’. [GALILEO does not disclose what the function is, and he

carefully avoids saying what scaling law he uses. Measurement of his figure indicates

that he takes Da . Be this as it may,] GaLiLxo concludesthat ‘“‘if the size of a body is

diminished, the strength of that body is not diminished in the same proportion; indeed,

the smaller the body the greater its relative strength.’’ [This may be true, but it is a

flowing generalization of the very special results he has obtained.]

By an appeal to symmetry, GALILEoinfers that if a beam is just long enough to break
 

1) The error is not noted in any edition or translation I have seen. Both toward the end of

p. 167 and at the beginning of p.169 GaLILEo states that d?oc Py, contradicting his own result (14),,

which is stated in his Prop. VI. The passage is hard to understand becauseof shifty wording and may

be corrupt.

2) On pp. 157—158 GatitEo has said that 8 =4. The formula M =4ogAF*is the essential

content of his Prop.3.
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when built in at one end, a similar beam twice as long is just long enough to break when

simply supported at its middle or at its two ends. [This is the first occurrence of an

argument later to be used frequently in connection with elastic curves.]

Toward the end of the day GALILEO proposes the problem of the solid of equal resis-

tance. Such solid is so shaped that its absolute resistance at each cross-section is just

sufficient to balance a fixed load of a given type. From (13) we see that for a weightless

beam loaded by a weight at one end, the general equation of such a solid is

(16) AD/l = const.

GALILEO assumesthesolid to be a cylinder with horizontal generators normal to the plane

of bending; then A « D, and from (16) the generating curve is D?/] = const., a parabola.

[To the problem of calculating solids of equal resistance subject to various loads and geo-

metrical conditions a large subsequent literature was devoted *).]
 

1) GALILEo’s theory is applied to different shapes anddifferent loads by V. VrvranI, ‘‘T'rattato delle

reststenze,’’ completed by G. GRaNDI, Opere di Gatitzo 8, 193—305, Firenze, 1718 = Opere di GALILEO

3, 213—-307, Padova, 1744. A diffuse account and elaboration of GALILEO’s theory is given by FaBRI,

Lib. V of Tract. II of Physica, id est, scientia rerum corporearum... [1], Anisson, Lugduni, 1669.

According to MusscHENBROEK, FaAsRtis often in error.

Cf. Mersenne, Props. 18—19 of “Tractatus mechanicus theoricus et practicus,” included in his
Cogitata, cited above, p. 33.

Cf. also Riccr’s letter to TorrIcELxi of 18 July 1643.

GaLILE0’s results are attacked by BLONDEL in two discourses dated 1657 and 1661, being the

fourth part of “Resolution des quatre principaux problémes d@’architecture,’’ Paris, 1676 or 1677 = Mém.

acad. sci. depuis 1666 jusqu’é 1699, 5, 355—530 (1729). HuyGENs saw this work, and in his letter to

LopEwisK Huvaens of 10 August 1662 he expressed a low opinionofit: ‘‘ . . . at least for me, these are

very easy things.’”’ Huycens himself, in notes dating from 1671, Oeuvres complétes 19, 70—72,

considered a rectangular beam fixed obliquely into a wall, as had Fasri. A. MARCHETTI, De resistentia

solidorum, Vangelisti & Martini, Florence, 1669, [xii] + 127 pp., claims in his preface to disprove

GALILEO’s proposition that the prismatic solid of equal resistance is parabolic. According to MusscHEN-

BROEK, there are errors in MARCHETTI’s work.

Examination reveals that MARCHETTI adopts (13), spins out endless corollaries and generalizesit

to beams of various simple shapes, including non-prismatic ones, but I do not find in his text either

errors or the source of his criticism of GALILEO. His Props. LXXXII sqq. on parabolic beams seem to

agree with GALILEO’s theory.

G. Granpi’s Risposia apologetica . . ., Lucca, Pellegrino Frediani, 1712, [xvi] +- 288 pp., is a most

wordy answer to MarcuHettti. Pp. 45—47 give a chronology of the work of BLONDEL and MarcHETTI

from 1649 to 1673. Lib. II, Cap. VII, gives seven propositions which are claimed to correct those of

MARCHETTI on solids of equal resistance.

It is difficult to find sense or interest in this diffuse literature. It exemplifies the common

historical experience that once mechanical principles, right or wrong, sufficient to set definite and not

too difficult mathematical problems are proposed by a recognized authority, an abundant harvest of

taediosa follows.

Further bibliography is given by Pearson, § 5 of op. ctt. ante. p. 11.

178—181
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“But, in order to bring our daily conference to an end, I wish to discuss the strength

of hollow solids, which are employed in art, andstill oftener in nature, . . . so as greatly to

increase strength without adding to weight. Examples are seen in the bonesof birds and in

many kinds of reeds . . . For if a stem of straw which carries a head of wheat heavier than

the entire stalk were made up of the same amount of material in solid form it would offer

less resistance to bending and breaking.’’ Comparing a hollow cylindrical tube with a solid

one ofequal area and length, since by (12) P, is the same for each, we see by (11) that their

breaking strengths P, for bendingare in the ratio oftheir diameters. ‘“Thus the strength ofa

hollow tube exceeds that of a solid cylinder in the ratio of their diameters .. .1),”’ and the

more general proportion (13), applies for all cylinders of the same material.

[In summary, GALILEO takes account of the effect of a load on a beam only through

its moment. He recognizes that the resistance of the beam is due to the mutual action of

its fibres but is unable to formulate a mathematical theory in which these fibres occur.

He tacitly regards a solid body as rigid and undeformable prior to rupture. In accord with

this, he takes it as self-evident that the criterion for failure?) is the magnitude of the load.

While Ga.izzo provesthe various corollaries following from (11) with elaborate rigor,

for the basic law (11) itself he gives only some mysterious juggling®). It is sometimes said

that GALILEO regarded the stress in the beam as uniformly distributed over the cross-

section; while this false assumption suffices to derive (11), GALILEO himself uses no concept

of interior stress, and his regarding P, as acting at the midpoint of the base is no more than

a guess or a postulate. Since all his subsequent results are proportions such as (13), the
 

1) GauiiExo does not notice the paradoxical corollary that the strongest tube of given area is of

infinite radius and zero thickness.

2) Cf. also the discussion at the beginning of the First Day, esp. p. 55. The modern literature

often attributes to GALILEO the idea that a solid fails when a certain maximum stress is attained;

indeed, this is a natural modern inference from his expressed viewpoint, but of course nothing of a

local character occurs in his work.

3) The two weak points in GALILEO’s theory of strength, namely, (12) and the factor $ in (11);

were pointed out by Baxrani, who in his letter of 1 July 1639 to GaLinxo writes, “I wish you had

explained ever so little more,” etc. GALILEO’s answer of 1 August 1639 gives a vague allusion to the

symmetry of the cross-section and the law of the lever but does not face the issue.

In his celebrated critique of the Discorsi, sent to MERSENNE on 11 October 1638, DESCARTES

pounces upon (11): that “. ..the force... is like a lever with fulcrum at the middle of its thickness...

is not at all true, and he gives no proofofit.”’

As regards the catenary, ‘“His two meansof describing the parabola are merely mechanical, and

in good geometry they are false.”” (Doubtless DESCARTES knew of BEECKMAN’s partial proof that the

parabola corresponds to uniform load per unit horizontal length (above, § 3), whenceit is clear that the

catenary is not a parabola.)

Most of DEscartEs’ criticisms are ill taken, however, as when he denies the dependence on go

as given by (10), asserting instead that strings of different materials vibrate at different frequencies

in consequenceof the differences of hardness.
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error introduced bythe factor } is cancelled out, but the error resulting from neglect of the

bending of the beam is not. According to GALILEO’s theory, in effect, the dimensionless

scaling parameter is KAD/IP,,, where K is the mean stress for rupture in tension; according

to the BERNOULLI-EULER theory (below, § 60), the parameter is KAD?/[?P,, where

K is the stress required to produce a specified elastic strain of the fibres. By dimensional
A D: . K , ; :

analysis alone, the general parameteris >f (pe » a): wherefis a dimensionless func-
b

tion to be determined by some hypothesis of elasticity or rupture. In engineering practice

it is customary to take {(¢, 7) = 7*, where 1<a< 2; inasense,that is, to interpolate

between GaLiLxo’s theory and the BrRNovULLI-EvLER theory.

The central concept of modern theories of materials is the stress vector, introduced in

its final generality by Cavcuy in 1822. In this history we shall follow with especial care

and interest the preliminary concepts from which it grew. To this end, the properties

defining it must be distinguished:

i. Its dimensions are [force]/[area].

ii. In elasticity theory, there is a material constant of the same dimensions.

i. The constant mentioned in (ii) represents a specified stress required to produce a

specified elastic strain.

iv. The stress vector represents the action of interior parts of the body upon one another.

v. The stress vector may subtend an arbitrary angle with the (imagined) boundary

across which it acts.

All these properties are independent of each other and belong to varying levels of sophis-

tication in mechanics.

The equation (12), described in words by GALILEO,introduces properties (i) and (ii):

in this sense, we may say that GALILEO initiated the theory of stress. But in his work thereis

no trace of any of the further properties, except for the hint toward (iv) mentioned on

p- 37. In particular, while K in (12) is a material constant having the dimensions of

stress, it is not an elastic modulus, being rather the stress such that, if uniformly applied

over 2. cross-section, it will rupture a body heretofore rigid.|

c. The hanging cord. Among other means of describing a parabola, GALILEO mentions

the following. “Fix high up on a wall two nails equally distant from the horizontal . . . and

from them hanga little thin chain .. .; this little chain will bend itself into a parabolic

figure!).”’ [Thus GALILEO’s ideas are inferior to the unpublished work of BEEcKMAN on the
 

1) On pp. 369—370 of vol. 8 of the Ediz. Naz. is a fragment indicating that GaLILEO’s motive

for this supposition is an analogy with the motion of a projectile, which he knew to be parabolic: Just

as the parabola of a projected body is described by two motions, horizontal and perpendicular, so the

form of the little chain results from two forces: horizontal, from what pulls it at the end, andper-

186
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catenary!).] The Discorst close with GALILEO’s proof that any string, no matter how

tightly stretched, sags somewhat in the middle. To this end GALILEoconsiders the weight

of the string as concentrated at its center, [as had LEONARDO’).

d. GauttEo’s method. To the reader without preconceptions, GALILEO’s writings on our

subject bring a strange experience. A complete absence of mathematical proof at essen-

tial points?) is set against a background of an almost Platonic love of regular geometrical

figures and strict demonstration of trivial details, accompanied by a complete absence of

reference to specific experiment. Experiments, indeed, can scarcely have entered the pro-

cess, since most of the physical assertions GALILEO makes are not consonant with later

experiments. Rather,it is difficult to regard his work as more than a sequenceofingenious

conjectures, brilliantly described and eloquently pled.

In contrast to earlier writers, GALILEO here avoids seeking causes and neverattributes

anything to ‘‘tendencies’’. Not only are his words usually clear and concise, but also he is

the first to put forward any considerable body of definite, quantitative statements,

capable of subsequent proof or disproof by reason or experiment.

Forhis application ofstatical principles to the problem ofrupture of a beam he deserves

to be regarded as the founderofthe theory of strength of materials. His great achievement

here is refutation of the common idea (indeed, common even today) that all effects are

proportional to the sizes of the members, and his construction of a theory of scaling.

That his proportions are correct only subject to a hypothesis not generally verified in prac-

tice is less important than that he did obtain definite scaling laws, right or wrong. Herein

lie his enormousinsight and originality. ]

6. The unpublished work of HuyGEns on the suspension bridge (1646), the breaking

of a beam (1662), the vibrating string (1673), and the vibrating rod (1688).

a. The suspension bridge. On 28 October 1646 Huyaxrns‘), seventeen years old, writes

to MERSENNE,“In anotherletter I will send you the demonstration that a suspended chain
 

pendicularly downward, by its own weight. The same reason is advanced somewhatless clearly at the

end of the Fourth Day, pp. 309—310.

1) According to LErBNiz, Joachim JunaG “excluded the parabola by calculations begun and

experiments finished, but could not find the true line.’ I have never been able to see the book of

JunG, Geometria empirica, Rostock, 1627; later eds., Hamburg, 1630, 1642, 1649.

On 18 June 1645 Ricct writes to ToRRICELLI that a friend wished to measure depths bythefall

of a line hung from the two sides. Ricci suggests letting a weight run freely over the line; he can prove

that the two sides of the string will then be inclined equally to the horizontal. This is a rediscovery of

the result of LEONARDO DA VINCI (above, p. 21).

2) The proofs and drawings of GaurLEo and LEONARDOhere are similar.

3) Cf. footnote 3, p. 42.
4) All works of Huyasns are cited from his Giuvres complétes, where the letters and pre-
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or string is not at all parabolic, and what must be the pressure on a mathematical or

weightless string in order to hang so, of which I have found the demonstration not long

since.”? MERSENNEreplies on 16 November 1646, “...if you can adjoin also the way in

which to press it so as to make it hyperbolic or elliptic, you will surpass yourself.’ [The

importance placed on familiar curves seems frivolous today, but was scarcely avoidable

prior to the “calculation of curves’’, as the infinitesimal calculus was often called in its

early days?).]

In his analysis, not published during his lifetime, HuyeEns considers the weightless

string loaded by discrete weights, [as had BrEckman]. He sketches treatments starting

 

 
=
~

Figure 7. Huovyvoarns’ drawingfor
STEVIN’s theorem (1646)  

from two different statical principles. Thefirst

method?) is based on a theorem®) he attiibutes

to Srevin: When the weights G and H in

Figure 7 are equal, the vertical through the    midpoint of a segment meets the two adjacent &

segments produced. The second treatment‘) ©

rests on an extremal principle: ‘The center of Figure 8. Huyarns’ drawing for the problem
. . . of the suspension bridge (1646)

gravity descends as far as possible.” To dis-

prove GALILEO’s claim, HUYGENSpasses a parabola through three points and then showsit
 

viously unpublished fragments are printed in chronological order; thus detailed citation is usually

superfluous. Most of the correspondence between HuyGeEns and LErspniz was publishedalso in LErB-

wizens math. Schriften 2.

1) Cf. the comments HUYGENS was to apply manyyears later to JAMES BERNOULLI’s Solution of

the problem of the elastica, below p. 97, and also footnote 2, p. 68.

2) Pieces No. 20 and 21, which, despite being written in different languages, form a single work.

They date from November, 1646, as does No. 22; according to a note on p. 811 of Cuvres 10, by

15 June 1646 Drscarrss had seen and approved some form of HuyGEns’ work.

3) Proof of a generalization is given below,p. 67.

4) Piece No. 22. Throughout his life Huyaz=ns made much useof this principle.
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cannot pass throughtherest. Proposition 10 of thefirst treatment asserts that the figure of

a continuous chain does not differ appreciably from that of one composed of infinitely

many links. [Noreal limit process is involved.] Propositions 11 and 12 assert that if froma

weightless string equal weights are suspended at equal horizontal intervals, the points where they

are suspended will lie on a parabola’) (Figure 8). Hencethe limit form for the continuous cord

subject to uniform weight per unit horizontal length is also a parabola. HuyGENsasserts

also that if equal parallelogramsare placed uponthe string as shownin thefigure, the points

of application again lie upon a parabola;[this, as he himself was to note in 1668,is false?)].

For a more condensed presentation in final form, HuyceEns selected the approach based

on STEVIN’s theorem, but his little treatise was not published during his lifetime?).

HvuyGeEns’ arguments, resting heavily on special properties of conic sections, are hard to

follow. He gives no hint of how he

was led to suspect the particular kind
 

 of loading that would yield a para-

bolic figure‘).

b. The breaking of a beam. The

problem of fracture of a heavy rect-

   

 

Figure 9, angularbeam supportedat two points
Huycens’ drawing for the breaking of a supported beam (1662) (Figure 9) is considered by Huyarns

 

1) A proof is given below,p. 67.

2) Since the pressure of the parallelogram on a frictionless string is normal, the tension 7’ is

constant: thus, in the notation to be used below in connection with the catenary, we are to integrate

Tsin§@ = 7= = kw, where T is constant; the result is a circle.

3) “De catena pendente,”” CEuvres complétes 11, 37—-44. Our figures are reproduced from this

version,

4) Between 8 December 1646 and 3 January 1647 MERSENNE received some version of Huy-

GENS’ solution. On 24 January 1647 MersENNEwrites that he accepts the results but not all the proofs.

In particular, Huycens had established equilibrium by asserting that “there is no cause for them to

change their position;”” MrensEnne objects that “Just because you see no cause, it does not follow

that none exists, we do not see all at the first glance, and what does not appear to us at one time

often does appear at another, it is enough that we can doubt whether there be any cause.” Another

fragment by Huyaens, from 1647, treats the subject along the samelines. On 15 May 1648 MERSENNE

writes, “will you permit the printing of thelittle treatise... on the string or chain hung equally?

But it would be necessary to add the demonstration of what I wrote you aboutit.” On 12 July 1648

HvuycEnsreplies that he will finish the treatise within another week; he regards STEvIn’s proofof the

statical principle as insufficient, and he will include a newproofofit. This is the end of the correspond-

ence; MERSENNE died on 1st September 1648.

Presumably the version cited in the preceding footnote was that intended for publication. It is on

its margin that HuycEens noted in 1668 that the solution is incorrect for the loading by parallelo-

grams; see the note on pp. 43—44 of CEuvres 11. It seems that aside from this one remark in 1668,

HUYGENS gave no attention to the problem of the hanging cord in the years 1647—1689.
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in a note!) from the year 1662. He regards the beam as bent only at the point of fracture

A. His hypotheses seem to be: (a) Wherever the fracture occurs, the angle y between the

two parts of the beam is the same, and (b) rupture occursat the point such as to render the

“descent of gravity” a maximum.[The “descent of gravity”is the loss of potential energy

due to the descent of the centers of gravity of the two segments. We see here a first

glimmering of an energy criterion for failure, with elastic energy of course neglected. It

can be shown?) that this potential energy = Wy, where WT = the moment exerted by

the support and the weightof either segment, taken about the point where rupture occurs.

Thus HuyGeEns’proposal is equivalent to the more plausible idea that the beam breaks at

the point where the moment of the applied load is greatest. In all this, it seems mostarti-

ficial that the angle y should be assumed constant, but this angle disappears in the cal-

culation, yielding a unique point of rupture,] which HuyGeEnsobtains in a special case.

c. The vibrating string. Since his earliest youth, Huygens had been incited by MER-

SENNE to provide a theoryforthe vibrating string*). Ina work published in 1673, HuycEns‘)
 

1) Guvres complétes 16, 381—383. The same problem is treated in a fragment from 1688—1689,

(Euvres complétes 19, 74—75.

2) See the editors’ explanation, CEuvres complétes 16, 333—-336, which determines the point of

fracture in general according to HuycEns’ proposal. It results that the point of fracture is such as to

render the weight borne by each support equal to the weight of the portion of the beam resting uponit

after the break.

3) On 16 November 1646 MERSENNE proposes to HuyGens the problem of explaining the law

y oc VOI . “I foresee that your foundations of mechanics show that to make a motion twice as fast,

perhaps four times as much force is required .. .”’ Huyerns replies that he has thought about the

matter often, but the solution would be very difficult. On 8 January 1647 MERSENNE proposes the

problem anew,recalling that the successive amplitudes decrease in geometric progression (cf. above,

p- 39).

(In February of 1645 MERSENNE had proposed to ToRRICELLI the proof that »< VT is acon-

sequence of mechanical laws. ToRRICELLI’s reply, written in the same month, suggests that there may

be some analogy to his hydrodynamical theorem.) .

A letter of 12 January 1647 from MERsENNE to Constantin Huyaens,the father of Curistiaan,

says that the explanation of the simultaneous harmonic soundsis “‘the greatest difficulty I have en-

countered in music.”

A letter from MARIOTTE to HUYGENSon Ist February 1668 shows that no advance on the problem

of the vibrating string beyond GALILEO’s work was known to MARIOTTE at that time.

In a fragment written in 1675 (Cuvres 19, 366—367), HuyaeEns, after describing the sequence of

overtones of the string, writes ‘‘And it is probable that these [harmonic] tremblingsstill occur, though

feebly, when the whole string is soundedfreely, and since there are so many ways of making this 12th

[4. e. the second harmonic], that is the reason why onehearsit always along with the sound ofthe string

soundedfreely.”

4) Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geo-

metricae, Paris, 1673 = (with accompanying French translation) GEuvres complétes 18, 69—368. See

Pars Secunda, Prop. XXV.
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had shown that motion of a body sliding down a cycloid is isochronous. The proof does

not involve any calculation of forces; rather, Huya@ENs approximates the cycloid by

tangents, to which he applies GALILEO’s laws for motion on an inclined plane. In a fragment

written in the same year or the next1), he states and proves as a corollary of the above

that the ‘“‘gravity’’ [accelerating force] of a body resting on a cycloid is as the length of arc

from the bottom.[This apparently puts him in mind of proving the isochrony of other

types of motion by showing that the accelerating force is proportional to the displacement,

but this he left to his editors to say for him.] With this much in hand hestrove to render

definite [BEECKMAN, MERSENNE, and GALILEO’s] analogy between the vibrations of a

string and the oscillations of a pendulum. As a model for a vibrating string he considers

a weightless cord loaded by a single central weight, intendedto represent the massofthe string

é c 
Figure 11.

HUYGENS’ second
model for the

vibrating string
Figure 10. (1675-1676)

Huyesns’ first model for the vibrating string (1675-1676)

(Figure 10). First he considers a horizontal string in circular vibration,

which he finds to be isochronousif the radius is small enough. Then he

considers a vertical cord stretched by a weight (Figure 11); he neglects  the difference of tensions in the two parts of the string caused by the

weight in the middle. In effect, HUycEnsconstructs a cycloidal pendulum

such that the restoring force equals the resultant force of the tension

on G. Knowing the period of a cycloidal pendulum, HuyceEnsis then

able to write down the period of the system shown in Figure 11. His

result, [here expressed in modern notation, is the correct one,] viz

1 7 1 7 M = mass of G= ol,

(17) y= TM = aL — ; tL = length of string,

” ” ° T = tension exerted by K.

In the special case when Mg = 7', Huyaensfinds the frequencies

of circular and lateral oscillation to be the same?). [This is in fact true 
 

1) Cuvres complétes 18, 489—495.

2) HuyGENs says that the time of one complete vibration is twice as great in the circular case,

but this is only because asin all early work the “‘time”’ of a lateral oscillation is the half-period.

3) Forlet the resultant outward force from all statical causes (other weights, tensions, etc.) be F’;

the equation of transverse motion for the mass M is then fF ++ Fj = 0, where F; is the inertial force,
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periments should be tried rather with a horizontal string and gives directions on how the

experiment should be done ; while he does not report any measured values, he says that (17)

“agrees very well with experiments.”’

Finally HuyarEnsconsiders the weightless string loaded by many weights (Figure 12). 7

He sketches the first steps of such a treatment, in which not only does he assume that

“the curve SAQC is a parabola, from which it differs insensibly,”’

but also he assumes a distribution of velocities not possible unless

all masses are in simple harmonicoscillation at the sameperiod and

phase. The mechanical principle he applies is the conservation of

energy?).

d. The vibrating rod. In 1688—1689 Hvuya@ENns?) considers

vibrations of a bar resting upon two supports so placed as to  
breaking (above, pp. 46—47). He writes that a bar so supported

gives the clearest sound whenstruck and that, in effect, these points

of support remain at rest [t.e., they are nodes]. His theoretical

value for the fractional distance from the end to a support is

2(V2 —1)x + +; the chime makers, he says, use the value *

“which agrees well enough.’’ [This is an example of experiment

confirming a false theory. While the difference between 2 and 4, ++

might seem experimentally negligible, in fact for free vibrations

of a rod the theoretical value (from the theory of DantEL BERNOULLI 
. Bi 12.

and EuuEr, see below, pp. 198, 328) for the fractional distance to Huvensethird model
for the vibrating string

(1675—1676)the node is 0,224 ~ . Huygens’ theory, since it employs no

dynamical principle and is merely a conjecture based upon a

statical result itself precarious, is unsound, but it deserves notice for its recognition of the

nodes*) of a vibrating body and the first attempt to calculate anything concerning the

vibrations of a rod.
 

and where F is the same in both problems considered. Let y be the transverse displacement. For trans-

verse harmonic oscillations of circular frequency wp we have Fi = —My = Mwhy For circular

oscillations at angular velocity we., the centrifugal force is Fy = MOn Y Hence we = wh [1t. €.,

each transverse frequencyis also the frequency of a possible circular motion].

1) On pp. 494—495 of his CGEuvres 18, the editors carry through what they conjecture HuycEns’

vio 1 2
ba

ideas to have been. Their result is » = ‘st Vo> in the notation used in (17); this is close to the

correct value (75) for the continuousstring.

2) CGuvres completes 19, 74—75.

3) It is safe to presume that HuyaeEns had read WALLIS’ paper on the nodesof strings, published
in 1677 (see § 16 below).
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Noneof these brilliant studies of HuyaEns was published during his lifetime. Despite

some measure of communication through letters and conversation, they remained unknown

and do not seem to haveinfluenced later work.]

7. PARDIES’ essays on the catenary and on elastie beams (1673). In 1673 appeared the

first general treatise on theoretical mechanics, an incomplete posthumous work by a man

now forgotten even to historians of science, the Jesuit Ianacz-Gaston ParpiEs!), In the

preface Parpres says he wishes to make ‘“‘one body” of mechanics, and his description

organizes well all aspects of the subject then investigated, but unfortunately he did not

live to carry outall his promises*). While he appears to have performed many experiments,

he always attempts mathematical proof; [here he fails almost invariably, for he seems

insensible to the difference between proof and persuasion. The scorn bestowed upon his

work by his great contemporaries is easy to understand, since this is the sort of book

that, in a sense, ought never to have been written. With a show of the right facts and often

even the right principles, little is done cleanly, yet the virginity of the subject has been

defiled. As we shall see, while LErpniz and the BERNOULLIs scarcely take note of PARDIES

they had read his work and profited from it®).]

At the beginningofhis treatmentofflexible bodies, Parpius introduces the continuous

string and applies all arguments to it without the intermediary of a discrete model. Like

nearly all writers of the day, he uses infinitesimal constructions, [but he is a poor mathe-

matician, unable to do better then guess at the results of what we now call differentiation
 

1) “‘La statique ou les forces mouvantes,” Paris, 1673, being the sequel to an earlier treatise on

“local motion’’, mainly impact. I have seen this work only in the second edition, Paris, Mabre-Cramoisy,

1674, [xxiv] + 240 pp., in the third edition, zbid. 1688, [xxii] + 240 pp., and in Parprss’CEuvres,

Lyon, Bachelu, 1696, and second edition, 1709, where “La statique’’ occupies pp. 199-298, while its

preface occurs among the unnumberedpages at the beginning ofthe volume. Also in Latin, Opera, Jena,

1693-1694, where this treatise occurs on pp. 87-211. Thereis also a third edition of PARpIES’ CEuvres,

La Haye, 1710.

2) In particular, the fifth discourse, which was to concern vibration,is lacking. PaRDIES said he

could prove from properties of the pendulum that the vibrations of a string are isochronous and that

the frequency obeys the law vx YTA/l; this last is surely a misprint for (8), since PaRDIgs seemed

to be generally well informed. However, the erroneous statement is repeated on p. 6045 of the English

review quoted in the next footnote.

3) It was favorably reviewed in Phil. trans. London 8, No. 94, 6042—6046 (1673). After remark-

ing that PaRpIES was ‘“‘cut off by an intimely Death; being regretted by those that knew his frankness

and strong inclmations to promote philosophic knowledge,’”’ the anonymous reviewer continues,

“Besides, the Author treats of Bodies suspended, fastned at one or both Ends; of the manner how they

are broken; of the figure they take in becoming curve; and particularly of the Cases, where Cords

extended will be Parabolical, Hyperbolical, Elliptical, or Circular. More-over, he examins the force of

Towers and Pyramids, and shews in what part they are weakest; he determins the figure they ought

to have to render them perfect and able every where to resist equally to the violence of Winds...”
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and integration.] PARDIES observes that

the form of the string remains unchanged

if we solidify any part, or, further, if we

replace the parts above two points A and

a, on each side, by sustable forces acting

along the tangents at A and a. [This we

recognize as the first occurrence of the

tension in a curvedflexible line ; PARDIES

does not calculate these forces, but in the

concept weseethefirst of the two devices

whereby JOHN BERNOULLI was to achieve

his solution of the catenary problem

(below, p. 74, especially Figure 25).] Par- 
DIES’ statical principle is [the continuousFigure 13. Parprss’ theorem (1673)

analogue of a generalization of the theo-

rem of STEVIN mentioned above, ] viz, the point of intersection of any two tangents lies on the

vertical through the center of gravity of the included portion of the cord (Figure 13), no matter

what the line weight may be. [Since some shadow of a correct proof is given"),] we may

justly call the result the theorem of Parpizs. As we shall see, it forms the basis of LEIB-

niz’s solution for the catenary?) (below, p. 71). This principle is particularly suited to

solving all problems concerned with flexible lines subject to vertical load only, since, as

was assumed tacitly by ParprEs and later writers, the fact that the supports can exert

any desired tension makesit sufficient as well as necessary for equilibrium.]

ParptiEs then asserts that the figure of the uniformly heavy cord is not a parabola.

“For one can imagine that the chain is now fixed at a and 6 (Figure 14) ; then this part aCb

would remain in the same location as it was when attached freely at the ends a and A.”

[This is the second of the two devices to be used by JoHN BERNOULLI (below, Figure 26).]

“Thus the center of gravity of the chain ab would be at C”’ [careless wording for ‘“‘on the

line DCE”’}. “But if the figure aC'b were parabolic, the line DCH would divide aF just

in half, but the part aC of the parabola would be greater than Cb, and it is very easy

to prove that the center of gravity of the parabola cannot be at C.”’ [To replace “‘it is
 

1) Granted ParprsEs’ preceding statement, the result is obvious, since the weight of the segment

is equipollent to a concentrated force acting at the center of gravity, and thelines of action of three

equilibrated forces must intersect. We must notlose sight of the times weare describing: In the discrete

case for two equal weights, HuyacEns had had trouble finding an adequate proof, and only years later

did he obtain the generalization to unequal weights.

2) Also of the first correct published proof of that solution, wiz, Prop. XVIII, Prob. XIII in the

book of TaytLor,op.cit. infra p. 86.
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very easy to prove,” we note that the re- !

quired property of the center of gravity is

420 = =fxds; equivalently, s« x, and this

 

characterizes the straight line.] Al + Wenverencereenaennchemed

“But if we conceive a thread without \

weight, on which rest an infinity of equally ,

heavy lines HC, ec, parallel and equally NC

distant from each other, then the thread A | s

aCbA will be perfectly parabolic.” For then \" Cc \J

the center of gravity of the load acting on b I7 SH

aCb lies on the line DCE bisecting aF, and D lo

“the geometers know’’ that the parabola is a

the only curve such that the tangents from A

and from 6 intersect at a point upon this

e

¢
$
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¢

;
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bisector.

[It is possible that Parpres had heard!)

of Hvyaens’ results on these problems, but

the line ofthoughtis distinct from HuyeEns’

and yields the simplest correct proofs ever B

obtained from that day to this.] Figure 14, Drawing for Parprus’ arguments regard-
ing the catenary and the suspension bridge (1673)
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If the string is elastic, says PaRpIEs, in

order to assume a parabolic form it must be loaded by uniform forces directed toward a

fixed center ; also, a taut elastic string always assumes an approximately parabolic form

in the small sagging due to its own weight. For such a string to be hyperbolic, it must

be drawn by uniform forces directed toward a center below it; elliptic, toward a center

above it. [For these results only the vaguest of reasons are given?).]

PARDIES then considers the problems of breaking strength proposed by GaLiLzo,

[but from a basically different standpoint. While GatiLEzo had considered the beam as

rigid prior to rupture,] Parpiss attributes everything to elasticity. Indeed, he goes so far as

to try to reduce all phenomena of bending and even of compression to extension. For

 

1) Hither through MersENnNzE or from HvuyceEnshimself while he was in Paris. At the end of the

treatise on statics, PARDIES gives a proof of the isochrony of motion on a cycloid, “‘so that after

Mr. HuyaGens has published his proof, I can see if I have been fortunate enough to compete with so

great a man.”’ PaRDIES’ ingenious proofis valid andis distinct from that published by HUYGENsin the

same year (above, pp. 47—48).

2) It is strange that the editors of Huygens’ CEuvres 18, p. 487, cite this dubious material but

give no hint of the solid ideas of Parpi&s on the immediately preceding pages.
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example, he claims that in compression of a beam the longitudinal fibres bulge outward and

try to extend the annularfibres ; from the resistance of these to extension arises the great

compressive strength of beams, which can be further increased very notably by iron rings?).

As for the form of a beam built at one end and loaded bya weight at the other, “it is easy

to prove’’ that it is a parabola. There follows a long list of specific rules regarding “‘the

effort a body makesto break itself by its own weight’’. Then inclined beamsare considered.

Finally there is a long study of solids of equal resistance.

[Thus to PARDIEs, and to him alone, belongs thecredit of first attempting to introduce

the elasticity of a beam into calculation of its resistance. His mathematical tools were far

from sufficient to carry out his ambitious program of deriving results on the basis of his

hypotheses. Thisis all the more evident in that he claimsto calculate definite numerical pro-

portions, yet he proposes no specific law connecting the extensions with the forces which

produce them.]

8. Hooxe’s law of spring (1675, 1678) and researches on the arch (1675), on ropes

(1669), and on sound (1675-1681). At the end of a work published in 1675 on another

subject®), after a ‘““Postscript”’ claiming priority for the “Spring to the Ballance of a

Watch, for the regulating the motion thereof,” against ‘some unhandsome proceedings”

on the continent, Hooke wrote:

“To fill the vacancy of the ensuing page, I have here added a decimate of the centesme

of the Inventions I intend to publish...

3. The true Theory of Elasticity or Springiness, and a particular Explication thereof

in several Subjects in which it is to be found: And the way of computing the velocity of Bodies

moved by them. ceirtinosssttiun...

“9. A new sort of Philosophical-Scales, of great use in Experimental Philosophy.

cdetinnoopsssttuu.”
 

1) The ingenious qualitative arguments I have not tried to follow. The problem had been men-

tioned by TORRICELLI in his letter of 2 January 1643 to Ricct. ToRRICELLI asserts that a ring suffi-

ciently strong to prevent bulging at the center of a column in compression may be determined by the

following rule, apparently empirical:
Tension inring = d@

Load on column —s.
 

TORRICELLI’s letter to Ricci of 20 January 1643 suggests some analogy to the spreading of a crack in

a wall.

2) R. Hooke, A description of helioscopes, and some other instruments, London, T. R. for John

Martyn, 1676; reprinted, pp. 119—152 of R. T. Guntur, Early science in Oxford 8 (1931). The date

1676 is an error; on 15 October 1675 OLDENBURG sent the printed work, including the “postscript’’,

to HUYGENS; OLDENBURQ’s review is printed in the Phil. trans. No. 118, 25 October 1675 = CEuvres

complétes de HuyGeEns 7, No. 2075.
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Three years later he published a treatise on elasticity +),

beginning : “The Theory of Springs, though attempted by

divers eminent Mathematiciansof this Age has hitherto not

been Published by any.It is now about eighteen years since

I first found it out, but designing to apply it to some parti-

cular use, I omitted the publishing thereof.’’ The anagram

in No. 3 deciphered reads: ‘‘ut tensio sic vis; That is, The

Power of any Spring is in the same proportion with the

Tension thereof... Now as the Theory is very short, so

the way of trying it is very easie.”” With admirable clarity

and directness, Hooke describes his experiments, whose

nature is madeclear by Figure 15. Necessary experimental

precautions and procedures are included.

“The same will be found,if trial be made, with a piece

of dry wood that will bend and return, if one end thereof

be fixt in a horizontal posture, and to the other end be

hanged weights to make it bend downwards.” [J. e., the

elasticity of bending is also linear.] Corresponding experi-

ments for the compression and rarefaction of air he

published fourteen years ago. [Thus Hooxkz’s statement is

(18) Fed F = applied force,

Al = elongation or change in length.]

“From all which it is very evident that the Rule or Law

of Nature in every springing bodyis, that the force or power

Fig
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Figure 15.

Hooks8’s experiments on
extension (1678)

 

1) R. Hooks, Lectures de potentia restitutiva, or of spring explaining the power of springing bodies,

London, John Martyn, 1678; reprinted, pp. 331—388 of R. T. GuntuHErR, Harly science in Oxford

8 (1931). Page references are to the reprint.

According to records of the Royal Society published by Guntusr, Early science in Oxford 6-7,

Oxford, 1930, on January 27, 1663/4 HooxE was ordered to perform experiments on springs in rarefied

or condensed air. On February 3 he reported that no alteration in the elasticity was discernible in

springs left in the open for some time. On December17, 1668, Hooxe was “‘desired to bring in what he

had considered of the cause of springiness.”’

The following entries in The diary of Ropert Hooke M.A., M.D., F. R.S. 1672-1680, ed.

H. W. Rosryson & W. Apams, London, Taylor & Francis, 1935, refer to elasticity:

September 2, 1675. ‘‘All springs at liberty bending equall spaces by equall increases of weight.”’

September 3, 1675. ‘“Perfected Philosophicall Scales to show to the King.”’

September 21, 1675. ‘“Dind with Sir Chr. WREN . .. Discoursd about Springs.”

October 3, 1675. “. . . adjusted Demonstration of the equality of the motion of Springs.”

October 6, 1675. ‘“Walkd into the Park with Sir Chr. Wren. The King calld me to him, bid me



HOOKE ON THE SPRING (1675—1678) 55
 

thereof to restore itself to its natural position is always proportionate to the Distance or

space it is removed therefrom, whether it be by rarefaction, or separation of its parts the

one from the other, or by a Condensation, or crowding of those parts nearer together. Nor

is it observable in these bodys only, but in all other springy bodies whatsoever, whether

Metal, Wood, Stones, baked Harths, Hair, Silk, Bones, Sinews, Glass, and the like.

Respect being had to the particular figures of the bodies bended, and the advantagious

or disadvantagious ways of bending them.” [While Hooxe does not say explicitly that

the moduli of extension and contraction are the same, this seems to be his opinion; in the

case of air, the only material for which he says he has measured condensation,thisis true.]

Conversely, the anagram in No. 9 is the law of the spring scale: “‘Ut pondussic

tensio,” affording an absolute rather than merely relative measure of the weights of

bodies. With its aid, HooKE has sought to measure the variation of the earth’s gravity

with altitude, but on church towers and in deep mines noeffect was discerned.

In terms of his views on the causes of elasticity, Hooks writes that “‘...it will be

very easie to explain the compound wayof springing, that is, by flexure, supposing only

two [elastic] lines joyned together as at GHIK (Figure

 

 

          

16), which being ... bended into the form LUNO, Cs spagsecrpususengy A

EM will be extended, and NO will be diminished in

proportion to the flexure, and consequently the same yf ™_— K

proportions and Rules for its endeavor or restoring it

self will hold.’”’ [Thus Hooxgeremarks, ashad Brrckman L,--SHERae

before him, that the outer fibres of a bent beam are ee_enbernateneetala,ty

N Oo

 

stretched and the inner ones compressed. This “com-

pound way of springing” is the main problem of figure 16. Hooxr’s drawing to show

elasticity for the century following, but Hooxs gives ‘"° oxtonsion abontbom(Lov8) the
no idea how to relate the curvature of one fibre to the

bending moment, not to mention the reaction of the two fibres on one another.]

“It now remains, that I shew ... the Vibrations of a Spring, or a Body moved by a
 

shew him experiment. Followd him through tennis court garden &c. into closet. Shewd him the Experi-

ment of Springs. He was very well pleasd. Desired a chair to weigh in.”’

According to records of the Royal Society published by GUNTHER,loc. cit. ante, at the meeting on

August 1, 1678, Hooxr showed his experiments on “a tubical spring of brass wire,and ...a spiral

spring of steel...,’’ and on August 22 he demonstrated the law (18) with “a spring of brass wire,

about thirty-six or thirty-seven feet long, extended by weights hung at the lower end thereof...”

Also, ‘‘about three years since his Majesty was pleased to see the experiment...’ The diary entries for

these dates confirm these facts. Also, on August 20, 1678, ‘““Met Sir Chr.WREN ..., discoursd about

equation of Springs, etc.,” and August 21, “To Sir Chr.WreEn ... Discoursd much about Demon-

stration of spring motion ...I told him my philosophicall spring scales . . .””

337—338
[5—6]

347 [15]

348 [16]



[17] 349

350—353
[18—21]
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Spring, equally and uniformly shall be of equal duration whether /\

they be greater or less.’”’ To this end, Hooke introduces “the °

aggregate of the powers of the spring”’ [z. e. the work done byit].

To prove the isochrony, Hooxs gives two distinct arguments,

[both fallacious!). The error is now difficult to understand, since

GALILEO had given the correct solution for the mathematically

analogous problem of small oscillation of a pendulum. It must  be remembered that problems of this kind werestill extremely
 

difficult ; such analogies were not obvious, because it was not

yet customary to think of motions as determined directly by

assioned forces. We may conjecture that Hooxes observed the

isochrony in his experiments and devised somesort of reasoning

to conform toit.   So far as I know,there is no other early treatment of simple

harmonic motion in an elastic context. We have mentioned

(above, pp. 47 —48) the roundabout argument ofHuYGENsto con-    clude the isochrony and calculate the period. To the modern reader

of NEwTon’s Principia (1687)?) it is abundantly clear that for Figure 17.
Hooxke’s incorrect results

NEwTON simple harmonic motion was a familiar andcompletely on the motion of a body
. oe . attached to a spring (1678

mastered. concept. To the original readers®) of his book, however, pring (178)

it must have appeared rather different.] The results are stated as follows‘) : ‘“Supposing
 

1) The dynamical principle Hooxe uses to find the speed v of a mass M starting from rest is

v < VW, which is correct since in fact

2 6 2W

v= Vfres = y2e.,
where W is the work done. However, HooKe’s first argumentis based on the formula s« VW, which is

correct only for motion starting at the equilibrium position ofthe spring, not from a point where v = 0.

Hookn’s second argument, based on the correct formula for the work done by spring when released

from rest at amplitude A, viz. W = 4K(2Us — s*), obtains the correct formula v? oc 2Us — s? for

the speed, shown by thecircle and theellipses in Figure 17. Both arguments assume ¢ = s/v rather

than the correct kinematical formula ¢ = f ds/v. It would seem that the resulting “‘S-like Line of

times” CIIIF in Hooxn’s figure would have aroused his physical intuition, since it has a point of in-

flection, implying that the velocity first increases and then decreases in each quarter period.

2) Philosophiae naturalis principia mathematica, London, 1687. There are many reprints and

translations. Our referencesare to thefirst edition, with variants in later editions noted in parentheses.

3) As is shown below, p. 61, LErBNiz failed to see in NEwron’s book anything concerning the

vibrations of springs. The very brief mention of sonorous vibrations of solid bodies in the Scholium

after Prop. L, Probl. XITI (in later eds., Probl. XII) of Lib. IT adds nothing.

4) Lib. I. Prop. XXXVIIT, Theor. XII, p. 121.
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that the centripetal force be proportional to the altitude or distance of the places from the

center, I say that the times of falling, the speeds, and the spaces traversed are as the arcs,

the versed sines, and the sines respectively.’’ For proof we are told only to use Proposition

X in the same way that Proposition XXXII was proved from Proposition XI. This means

that we are to pass to the limit in results already derived for motion on anellipse. [This

oblique and scarcely illuminating approach to a problem which now seems fundamental

reflects NEwron’s concentration on celestial mechanics.] In his proof of the isochrony of a

cycloidal pendulum andhis discussion of a simple pendulum’), NEWTONis content to show

that the restoring force is proportional to the arc ; everything then follows from the above.

[What a modern reader would consider a straightforward treatment of simple harmonic

motion, based on the differential equation Mz = — Kz, seemsfirst to have been given

many years later by JOHN BERNOULLI (see p. 134, below).]

Returning to the ‘‘decimate of the centesme’’ published in 1675, we read as No.2,

“The true Mathematical and Mechanichal form of all manner of Arches for Building, with

the true butment necessary to each of them. A problem which no Architectonick Writer hath

ever yet attempted, much less performed.’ The anagram, when deciphered?), reads

“Ut pendet continuum flexile, sic stabit contiguum rigidum inversum,”’ ¢. ¢€., as hangs the

flexible line, so but inverted will stand the rigid arch. [While none of the available papers

of Hooks reveals how he reached this conclusion, there is no reason to doubt that he had

sufficient mastery of statics to show that an arch of infinitely small stones in order to

exert purely tangential thrust should be formed like an inverted catenary subject to in-

verted loads. Thus the problems of the catenary and the arch are reduced to one, but

neither is solved.|

According to records of the Royal Society*), on July 8, 1669, “Mr, Hooxz proposed an

experiment about the strength of twisted cords, compared with untwisted ones, to be

tried at the next meeting... .”? On July 15 “Mr. Hooxe madean experiment of comparing

together the strength of twisted and untwisted silk, and it appeared by the severaltrials
 

1) Lib. I, Prop. LI, Theor. XVIII and Prop.LIT, Probl. XXXIV, pp. 151-153 (note the important

corollary added to Prop. LI in the 2nd.ed.).

2) The solution seems first to have been published by RicHarp WALLERin his introduction to the

Posthumous Works of Ropert Hooke, M. D.,S.R.S., 1705, included among other writings about HOOKE

printed by GUNTHER,op. cit. ante, p. 54, 5, 1—68; see p. XXI of the original or p. 51 of tho reprint.

In HooKke’s diary as published by GUNTHERin the same volume,the arch is mentionedin the entries for

December8 and 15, 1670, for January 12 and 19, 1670/1, and for December 14, 1671; Hooke demon-

strated something to the Society but disclosed the proof of it only to the president. In HoOKE’slater

diary, cited above, p. 54, the entry for June 5, 1675, mentions “my principle about arches’’, and on

September 26, “Riddle of arch, of pendet continuum flewile, sic stabit grund Rigidum.”’ Doubtless there

is an error of transcription.

3) GUNTHER, op. cit. ante, p. 54.
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made of it, that a certain number of threads untwisted proved stronger than so many

twisted. Whence Mr. Hooxs concluded, that cables made faggot-wise would be stronger

than when twisted.

“To this it was objected, that cables would not then be so manageable; and that

certainly people had not been wanting to make trials of this nature, but had doubtless

found, that, all things compared, the inconvenience would prove greater in the use of

untwisted than twisted threads.” [The “inconvenience” depends on the use. It is precisely

HooKke’s ‘‘cables made faggot-wise” that Patton had found superior in use on ballistae

many centuries before (above, p. 17).]

‘Mr. Hooke remarked uponthis, that the belief of the superior strength of twisted

threads to that of untwisted had doubtless proceeded from trials made upon flax, which

having but short pieces held not therefore so well untwisted as twisted.’’ [GALILEO had

explained the apparent strength ofropes) but had not stated any definite relation between

the total and partial strengths. Hooxkn’s result is to be rediscovered in 1711 by DE

REAUMUR?),|

HooKE was also a leading proponent of some of the now accepted ideas regarding

sound, [but he made no advance beyond BEECKMAN and MERSENNE]. He devised an ex-

periment for producing sound by toothed wheels, [but exactly what he did is hard to as-

certain®)].
 

1) Pp. 55—58 of op. cit. ante, p. 54.

2) “Haperiences pour connoistre si la force des cordes surpasse la somme des forces des fils qui com-

posent ces mesmes cordes,’’ Mém.acad. sci. Paris 1711, [2nd.] 4to ed., Paris, 6—16 (1730), De Rkaumur

reports a sequence of experiments ending with one on a silk cord composed of 832 fibres.

3) In Hooxr’s diary, cited above, p. 54, in the entry for January 15, 1675/6, we read, ‘*‘To Sir

Chr. Wrens, Dr. HoLpeErandI discoursd of musick, he read my notes and saw mydesigns, then he read

his which was more imperfect. I told him but sub sigillo my notion of sound, that it was nothing but

strokes within a Determinate degree of velocity. I told them how I would makeall tunes [2. e. tones]

by strokes of a hammer. Shewed them a knife, a camlet coat, a silk lining. Told them that there was no

vibration in a puls of sound, that twas a puls propagated forward, that the soundin all bodys was the

striking of the parts one against the other and not the vibration of the whole. Told them my experiment

of the vibrations of a magicall string without sound by symphony that touching of it which made the

internall parts vibrate—caused the sound, that the vibrations of a string were not Isocrone but that

the vibration of the particals was. Discoursd about the breaking of the air in pipes, of the musick of

scraping trenchers, how the bow makesthefidle string sound, how scraping of metall, the scraping the

teeth of a comb, the turning of a watch wheel &c., made sound.” Cf. also the entry for January 8.

The records of the Royal Society, as published by GUNTHER,op.cit. ante, inform us that on July

27, 1681, Hooxs “‘showed an experiment of making musical and other sounds by the help of teeth of

brass wheels; which teeth were made of equal bigness for musical sounds, but of unequal for vocal

sounds.” On p. xxiii of the original edition of WALLER’s life of Hooks, p. 57 of GUNTHER’s reprint,

it is stated that in July of 1681 Hooks “‘shew’d a way of making Musical and other Sounds, by the strik-

ing of the Teeth of several Brass Wheels, proportionally cut as to their numbers, and turned very fast
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9. MARIOTTE and LEIBNIz on elastic beams (1684). [Before taking up the more im-

portant work of Lersniz to which it apparently gave rise, we must mention the attempt of

ManriIoTTE, especially since he is one of those writers who, for some unaccountable reason,

has been read and cited often.] The second discourse of Part V of Mariorrs’s T'reatise on

the motion of water and other fluid bodies'), published two years after his death in 1684,

concerns “‘the force of pipes of conduct, and the thickness which they ought to have,

according to their matter, and the height of the reservatories.”’ [This seems to be the

first treatise on the experimental strength of materials ; it describes manyintelligent experi-

ments carried out with some care.] MARIoTTE says that his tests on wood and glass do not

conform to GALILEO’s proposition (11); instead of the factor 4, he finds a value between

4 and 3. He undertakes to derive a better result by starting from the assumption that the

“Fibres and Ramous Particles’ of a body “may be extended more or less by different

Weights : And, Lastly, That there is a Degree of Extension which they can’t bear without

breaking.”’ [Thus Mariorts, like Parprzs, considers the deformation of a beam prior to

rupture; his criterion for failure is the magnitude of the elongation.]

As a model, MAaRIoTrE proposesa rigid lever tied down by little strings which break

when they suffer a certain elongation (Figure 18). [His reasoning is incomprehensible;
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Figure 18. Manrtrorts’s figures supposedly representing the forces in a terminally loaded beam (1684)
 __

round, in which it was observable, that the equal or proportional stroaks of the Teeth, that is, 2 to 1,

4 to 3, &c, made the musical notes, but the unequal stroaks of the Teeth more answer’d the sound of

the Voice in speaking.”’

1) Traité du mouvement des eaux et des autres corps fluides, [xiv] + 408 + [xx] pp., Paris, Estienne

Michallet, 1686. The date of the permit is 4 July 1685. This posthumous workis edited by DE LA HIRE;

particularly the last parts were not in order. Our page referencesare to the first edition. There is a ‘“New

corrected edition,’ xii + 390 + xiv pp., Paris, Jean Jombert, 1700. A new edition, “‘corrected and

augmented by rules for fountains,’ same publisher, 1718, xii + 414 4 xili pp. is reset but seems to

carry no changesin the part described above; a reprint from the Paris memoirs of 1693 is added. In

the Cuvres of MaRiotr#, 2 vols. paginated as one, xii + 701 + xxxili pp., Leiden, Pierre Vander Aa,

1717, the Traité occupies pp. 321—476. Our quotations are taken from the English translation by

J.T. DESAGULIERS, The motion of water, and other fluids, being a treatise of hydrostaticks, London,

J. Senex, 1718, xxiv + 290 pp.

372—373
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apparently the fact that thelittle transverse strings are stretched in proportion to their dis-

tance from C in thefirst figure is intended to justify the assumption that] the [longitu-

dinal?] fibres “‘resist in Proportion to their Distance from the Point D”’ in the secondfigure.

By some mysterious juggling!) with a numerical progression appropriate to a special case,

Mariorte concludes that 4 should replace 3 in (11).

In a further discussion MaRiorrs says “you may conceive that from D to J, whichis

half the Thickness A.D, the Parts are pressed together by the Weight L; those that are

near D, more than those toward J ; and that they are extended from J to A, as has been

before explain’d ; and the same Reasoning about the little Cords may be applied to the

Part I A...and itis very probable that these Compressionsresist as much as the Exten-

sions... whence will follow the same thing as if all the Parts were extended ...”’ [It is

still not clear whether transverse or longitudinal fibres are intended. In the traditional

interpretation?) of Mariorrn’s work,it is the latter ; if so, then MArioTre implies but does

not state that there is an unextended or neutral fibre within the beam and infers that

assuming the central fibre to be the neutral one yields the sameresistance to bending as

whenthe lowest fibre is neutral. This is false. Nevertheless, MARtoTTE’s dubious or false

calculation may be considered as some advance beyond the clearer though unsupported

statement of Hooks (above, p. 55)].

MARIOTTE’s experiments show that in fact all materials, even glass, deform before

breaking ; moreover, a glass rod returnsto its original length when the stretching weight

is removed. Several of GALILEO’s assertions resting on the assumption that a given moment,

however applied, suffices to break a body, are verified by MARIoTTE’s experiments. ‘“These

Rules are of use for brittle solids, as dry Wood, Glass, Marble, Steel, etc. But for supple and

pliable Substances, that are broken by Traction alone; as Paper, Tin, Ropes, etc. other

Rules are necessary ...” EF. g. “‘lists [t. e. bands] of Paper, Tin, and such kinds of Bodies

break equally whether they be long or short.’’ An experiment with a spiral spring not

only verifies [HooKn’s law of] proportionality between elongation and stretching weight

but showsalso that this rule applies as well to a part of the spring as to the whole ofit.

For the rupture of vessels under water pressure, MARIoTTE asserts that the breaking

strength is proportional to the thickness of the walls.

[From the remarksin the paperto be discussed now,it is plain that Lerpniz knew of

Manriotte’s work before it was published.] Lzrsniz is the first to attain a mathematical

theory taking account of the elastic tension of the fibres of a beam. His New proofs con-

cerning the resistance of solids*) begins by considering a cubical beam, for which GALILEO’s
 

1) Parent, § 17 of op. cit. infra, footnote 1, p. 111, finds ‘‘an error of geometry”’ here.

2) Deriving from VARIGNON and BULFFINGER,op. cit. infra, pp. 102, 103.

3) ‘“Demonstrationes novae de resistentia solidorum,” Acta erudit. Leipzig, July 1684, 319—325 =
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formula (11) yields P, = 4P,. Lersniz interprets GaLILzo as supposing theresistance

[v. e. moment] of the fibres varies linearly with their height above the lower edge. Inte-

gration over a square base then indeed yields the factor 4. But, says LEIBNIZ, experiments

show that P, <4P,. GaLILEo’s reasoning is correct, but his hypothesis is false. ““The

cause of this can be nothing else than that he considered

the beam as perfectly rigid, so as to break off entirely in one

moment at the place where its resistance is exceeded, while Bb.

in fact all bodies ... give way considerably before they can

be ruptured.’ This was observed by Mariotrs, who by “an

ingenious calculation’? concluded that?) P,=}P,, “butas *#

soon thereafter as I found leisure to search the matter more 4

deeply and to subject it to the laws of the geometers, I found

the true proportions...”

To consider the elasticity of a beam, LEIBNIZ supposes  each fibre acts as a spring (Figure 19) connecting the beam E.

 to the wall. ‘From the hypothesis elsewhere substantiated,  that the extensions are proportional to the stretching forces?),”’
; - Figure 19. Lrrpniz’s figure for

he concludes that the resistances [moments] of the fibresare <7.)atingthebonding moment

as the squares of their distances from the lower edge, since (a) ¢ting on the cross-section ofa
. . . . terminally loaded beam (1684)

the weights required for stretching a given amount are pro-
 

LEIBNIzens math. Schriften 6, 106—112. The account of this work given by Pzarson,§ 11 of op.cit.,

p- 11, so little squares with the contents that I am tempted to conjecture he saw some other version
of it.

1) While MaRioTTE’s work is obscure, the result he seems to conclude by his theory, if such it

may be called, is Pp = 3 Pt. See above, p. 60. Since the publication of Mariorrn’s work is subse-

quent to LEIBNIz’s, LEIBNIz maybeciting an earlier version, or he may beciting from memory.Cf. the

criticism of BULFFINGER, § 11 of op. cit. infra, p. 103.

2) Since he cites no source for the linear elastic law, later Continental writers often named it

after him. It is plain, however, that Lurpniz considered the linear relation neither as his own nor as

important.

An attitude very different from that often attributed to LEIBNIz is revealed by his long corres-

pondence with HUYGENS concerning the experimental laws of elasticity. In October 1690 LEerBNiz

writes: “I am not yet entirely content with the elastic laws which are given out, since it seems that

experiment does not sufficiently agree with the rule that the extensions of strings (for example) are

as the stretching forces. For this reason I should like to know your opinion.” 2 March 1691: “Mr.

NeEwrTon hasnot discussed the laws of spring; it seems to me that I have heard you say formerly that

you had examined them and that you had proved the isochrony of the vibrations.”’ Also: “T prefer a

LEEUWENHOEK whotells me what he sees to a CartTESian who tells me what he thinks. But it is neces-

sary to join reasoning to observation.’’ HuyGEnNsreplied on 26 March 1691: “I have a proof of the

isochrony of the vibrations of a spring, supposing that it yields in proportion to the force that pressesit,

as experience shows constantly.”’ The preliminary note for this letter adds: ‘““HOOKE has discussed it
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portional to the distance from the fulcrum A , and (b) the extension varies as the force. [We

should now say that since the force varies as the extension, and the extension of the fibres

at a cross-section pivoted about the fulcrum varies linearly with the distance, the moments
1

about the fulcrum vary as the square of the distance.] Integration yields j y?dy = 4, so
0

(19) Py = $Py

(for a cube). [While LEIBNIz is somewhat hard to follow, we see he is not only thefirst to

apply Hooxkz’s law in a correct calculation of the equilibrium of moments but also thefirst

to obtain, in a special but typical case, the celebrated formula

I= Bending Moment,

I = Geometrical Moment of Inertia of the Cross-Section.
(20) Tal

This, indeed, is the product to be expected from thefirst application of calculus to the

theory of continuous bodies.

For understanding of later developments, we may describe LEIBNIZ’s procedure as

taking accountof the elastic tension ofthe fibres while neglecting the bending which accompanies

the tension!). GaLiLEo, it may be recalled, had neglected both the deformation and the

variation of tension to which it gives rise. Since very large forces produce very small

deflections in bodies used for structural ends, LEIBNIz’s approach is natural, though of

course later experience will reveal it to be insufficient.]

LErEenizfinds that according to his theory, as according to GALILEO’s, the cylindrical

solid of equal resistance to end load is parabolic ; to uniformly distributed load, linear. He

attacks the problem of a beam of arbitrary cross-section and gives geometrical construction

for its resistance. He asserts that the surface of revolution forminga solid of equal resistance

is a paraboloid. For most of these propositions he gives no proofs, but he observes “that
 

fallaciously.’? Lmrpniz on 20 April 1691: ‘In England they have published a little book on springs, I

believe by Mr. Hoox[z], but it seems to me I found something wrongin it. I beg you to tell me the

experiments you say you have made on this subject.” On 5 May 1691 Huyeernsreplied: ‘I have seen

earlier the treatise of HOOKE on the spring, and I noticed a paralogism in it, which I could find among

my papers.” No such paper has been found. HUYGENS agrees with Hooxe’s result, but only for slight

extension. ‘‘But in the spring of air the proportion is always perfect, for which there are experiments in

the books of Mr. BoYL&.’’ For HooKk#’serror, see above, p. 56. The nearest approach to a statement

and proof that has been found in HuyGens’ manuscripts is described above,p.61.

The foregoing exchange makesit plain that in 1691, after the dissemination of calculus and after

the publication of NEwron’s Principia, simple harmonic motion was not thoroughly understood even

by the foremost scientists.

I have been unable to find any early correct proof of isochrony referred to an elastic context.

Later views of LEIBNiz on elasticity are given below, pp. 96, 127—128.

1) That Lereniz fully understood what he was doing is shown by his letter quoted below,p. 64.
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by these few considerations all this matter may be reduced to pure geometry, which in

physics and mechanics is uniquely to be desired.”’

LEIBNIZ states also, [contrary to MERSENNE’s inference from his experiments,] that

the elastic and acoustic properties of bodies are connected. ‘‘And that there is nothing so

rigid but that it is bent a little by the lightest stroke follows from the nature of sound,

which is a certain trembling or reciprocal bending of the parts of the sounding body. The

more rigid and indiscernible is the restitution, the higher is the sound, since the tremulous

parts are the shorter and the tenser, and they constitute the harder body‘).”’

[This paper establishes LEIBNIz as the father of the mathematical theory ofelasticity.

It had also a second great function in our subject; not only did it excite JamEs

BERNOULLI to the study of elasticity but also it was the means that drew him into the

higher analysis.] His first letter?) to Lerpniz, dated 15 December 1687, relates that an

expert mechanic of Basel had consulted him regarding the construction of wagons; in

LEIBNIZ’s paper BERNOULLI had sought and found help. However, he decided to test by

experiment Lzrpniz’s hypothesis that the elongations are proportional to the stretching

weights. The results of BERNOULLI’s experiments on a gut string do not conform to this

hypothesis at all. But Lzrsniz has written that the experiments of others support the

linear law. What is the reason for the discrepancy? Was BERNOULLI insufficiently careful ?

Or are the fibres of which LEIBNIz considers hard bodies to be composed different from

such a string?

But there is another trouble. LEIBNIz’s assumptions imply that the beam is broken or

bent at the wall, while the said mechanic asserts that for iron bars the bending (which

seems to be nothing else than an incipient break) takes place mainly in the part one third

to one half the distance from the built-in end to the free end.

This letter Lurpniz, absent on a long journey, received only after a delay of three

years. On 24 September 1690 he replies, in effect, that the relation between extension and

stretching force should be determined by experiment; in particular, the table of values

BERNOULLI had sent to him seemstofit a hyperbolic curve. The ratio P,/P,, says LEIBNIZ,

will be altered if the assumed relation between force and extension is altered. But the

dependence of P;, and P, upon the dimensions of [similar] cross-sections, as he proceeds

to show by what would now be called a dimensional argument, is unaltered, and thus in

particular his results concerning the solid of equal resistance remain valid?®).
 

1) In symbols, » is an increasing function of H, where H is an elastic modulus. This statement of

LEIBNIZ foreshadows the correct and general law »v « VE.

2) All letters between LEIBNIz and the brothers JAMES and JOHN BERNOULLI are cited from

LEIBNIZens mathematische Schriften 8.

3) In an undated letter to v. BoDENHAUSEN, reprinted in LErBNizens math. Schriften 7, 356,

LEIBNIZ mentions having sent this proof to BERNOULLI. “I have also explained to him what thefigure
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Lxerpniz is indeed aware of the bending undergone by a beam prior to its failure.

‘“‘But in my reasoning I preferred not to consider the bending of the whole beam, or

rather I assumed a shapealready reduced, through the prior bending caused by the weight,

to the [straight] form we attributed to it ...” [In this latter explanation wefirst en-

counter a view that has recently proved most useful in problemsof finite deflection : The

forces are referred to the actual, deformed condition of the body.] ““However, consideration

of the bending would furnish a new and by no meansinelegant problem.”

[JAMES BERNOULLI was not quite ready for this not inelegant problem.] In the years

between query and answer, he had pondered and fathomed the Lzrsnizian calculus and

had proved his mastery by his own researches, published in the Acta EHruditorum, the

very journal to which Lzrsniz had consignedhis few enigmatic abstracts of the differential

algorithm. Indeed, BERNOULLI had gone further. Four months before receiving the long-

delayed letter to which the above is a reply, Lerpniz had read in the Acta a challenge

JAMES BERNOULLI directed to the learned world, but certainly by implication especially to

him : to find the catenary curve. LEIBNIz now answers, “‘... I think I can satisfy you regard-

ing the catenary curveas well.” In fact he had answered two monthsearlier, also before

receiving BERNOULLI’s letter—answered in print. We now step backward four monthsin

this history to follow from the start the discovery of the catenary.

10. The contest to find the catenary (1690). In the Acta EHruditorum for May 1690,

at the end of a paper on another subject!), JAMES BERNOULLI writes, ““And now let this

problem be proposed : 7’o find the curve assumed by a loose string hung freely from two fixed

points. I assume also that the string is a line whichis easily flexible in all its parts.” So

begins the great contest to find the catenary.

LEIBNIz is quick to reply). In the July issue, after restating the problem, he remarks :

“It is supposed also that the string remains of the samelength, like a chain, rather than

being stretched or contracted like a wire. This problem, proposed by GALILEO and famous

since his time, has not yet yielded to solution . .. Therefore I should rightly be excused

from the burden imposed, especially since I am much drawn into other matters. But the

humanity of that most enlightened man is such that I should not wish to fail of his first
 

of equal resistance must be when the beam is loaded not only by its own weight but also by a foreign

weight ..., which I omitted in my paper, and which he could scarcely find, since it involves the higher

analysis.”
1) “J. B. Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravt

percurrendae uniformiter, sic ut temvporibus aequalibus aequales altitudines emetiantur: et alterius cujus-

dam Problematis Propositio,’? Acta Erud. Leipzig, May 1690, 217—-219 = Opera omnia 1, 421—424.

2) “G. G4. L. ad ea, quae vir clarissimus J. B. in mense Majo nupero in his Actis publicavit, res-

ponsio,” Acta erud. Leipzig, July 1690, 358—360. Not reprinted in Lersnizens math. Schriften.
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summons. Therefore I have attacked [the problem], which I had hitherto not attempted,

and with my key[1. e. differential calculus] happily opened its secret approaches.

“However, this problem is a little more involved than my former one and displays

a certain singular use of our method; thus I have thought it worthwhile, before publishing

my solution, to give time also to others for exercising their skill. By this as by the Lydian

stone we shall know the best methods; which bears much on the improvementof thescience;

especially since here it is not a matter of elaborate calculation, but rather of artifice.:

First of all the most noble D. T. [Count T'scairnaAvsEN], who promises splendid things

of this kind,is to be asked whether he wishesto try the strength of his method here too’).

But if no one indicates before the end of the year that he has found solution, I will give

mine, God willing.”

On 9 October 1690 HuyeGens writes to Lerpniz, ‘““But to judge better of ... your

algorithm, I await with impatience . . . what you have found regardingtheline of the string

or hanging chain, which Mr. Brrnovutxi has proposed for you to find, for which I am

grateful to him, since this line includes singular and remarkable properties. I had con-

sidered it formerly, in my youth, when I wasbutfifteen [recte seventeen], and I had proved

to Father Mzrsenne that it is not a parabola, and had found what the pressure should

be in orderfor it to be a parabola. [See § 6, above.] This has caused me to be tempted now

to examine the problem, and hereis the cipher of what I have found. I have written it in

such a way that you can interpret it somewhat if you have made the samediscoveries, and

I think to give you more pleasure thus, than if I were to send you everything explained.

I beg you to send meyourcipherin return, and let us shorten between ourselves the term

of a year that you have allowed to the geometers . . .”” The cipher follows. On 13 October

LEIBNIZ replies,

the difference is one of sign, [and it is plain that Lrreniz has unravelled the cipher]. In

“| ,.I find some relation to my calculation, but also somedifference’”’;

his letter of 18 November, Huycens again requests Lerpniz’s cipher ; for the curve he

proposes the name catenary [already used by LEIBNIZ].

On 23 February 1691 Huygens again demands LEIBNIz’s cipher. On 2 March LEIBNIZ

replies that Mr. BeRNovLut also has found the solution. “TI think that knowledge of my

calculus helped him a little, for although this problem is not one of the most difficult, I

suspect it is not too easy to solve without something equivalent to that calculus. I have

not seen his solution, but I do not doubt he has succeeded. Mr. TSCHIRNHAUSEN has not

bitten...’ On 26 March and 21 April HuyaEens again demands LEIBNIz’s cipher and

BERNOULLI’s as well. Finally on 5 May Huygenssendshis solution, sealed, to LEIBNIZ,

to be transmitted to the Acta for publication. On 27 May LErpniz replies that he had sent

in HuyGEns’ solution and his own at the same time.
 

1) To this challenge TscHIRNHAUSEN did notreply.
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The Acta Eruditorum for June 1691 printed not only the solutions of LErpniz and

Hvuy@eEnsbut also one by a new protagonist from whom weare to hear much more, JAMES

BERNOULLI’s younger brother JOHN,then 24 years old!). As the editor explains in a notice

titled Solutions of the problem proposed by J. B.*), ‘“The benevolent reader will have no

trouble in remembering the problem proposed by the most enlightened Professor JAMES

B....of Basel ...The most celebrated G. G. L. promised to publish a solution obtained

by his method, if no one also had solved it by the end of the year... But in fact the

brother of the proposer, Mr. JoHN BERNOULLI, candidate in medicine and much versed

in these studies, solved it and sent us his solution last December ; and through his brother

he most kindly required us to add it to that of LEIBNIz,in its time. Thence it has happened

that we have urged the most celebrated man above-mentioned to publish his solution . . .

Also Lord Curist1aan Huygens has deigned... to ornament this our Journal with

his solution of the problem. Therefore we shall give you, benevolent reader, the two

solutions of these illustrious peers and that of BERNOULLI, but in the order in which they

reached our hands.”’

[For 1690, these three solutions, in the order received, exhibit the mathematics of the

future, the present, and the past ; therefore we discuss them herein reverse order.]

The note of HuyG@Ens?) gives ‘‘only the solutions . . . for special cases, in a desire to

avoid prolixity, and since I do not doubt that the learned will sufficiently exhibit

the general rules. And if anything further of ours is wished, I will freely send it.’

[Indeed, it is incomprehensible.] Only special points, often with numerical values, are

considered. Huy@Ens asserts that the catenary can be constructed by means of the

quadrature of either of a certain pair of quartics but does not explain further. The only
dx

statement of principle contained seems to be equivalent to - =f =) , where s is arc

length and x and y are rectangular co-ordinates, [but this is not correct]. A little later‘),

however, HUYGENS published something more specific : “it is easy to prove’ that the

slopes of the segments of a weightless chain with links of uniform length, uniformly

 

1) Thus our subject includes the problem by whose solution JOHN BERNOULLI established him-

self, overnight, as the peer of HuyGEnNs and LErsnzz. It was this solution, as Professor Spress remarks,

that served the young giant as a passport to enter the learned society of Paris in 1691. See p. 136 of

Der Briefwechsel von JOHANN BERNOULLI, Basel, 1955, where part of JOHN BERNOULLI’s autobio-

graphical letter to DE Monrmort of 21 May 1718 is quoted.

2) Acta erud. June 1691, p. 273.

3) ““CHRISTIANI HUGENI, dynastae in Ziilechem, solutio ejusdem problematis,” Acta erud. June

1691, 281—282 = (Euvres complétes 10, 95—-98 = LEIBNizens math. Schriften 5, 251—252.

4) Letter of February 1693 to BasNaGE DE BEAUVAL, Hist. des Ouvrages des Scavans, Number

for Dec. 1692 and Jan.—Feb. 1693, 244-257 = CEuvres complétes 10, No. 2793.
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weighted at the junctions, increase in arithmetic progression*). In the limit as the lengths of
, d : ,

the segments approach zero, this becomes SY x s, [which we recognize as the correct
daz
 

1) While not attempting to follow HuyGEns’ intricate argument, I append here a simple treat-

ment along the lines introduced a half century later by EULER in connection with problems of motion

(§ 30, below). With notations as in Figure 20, equilibrium of horizontal and vertical forces acting at the

point (%,, y,), where W,, is attached, yields

Teoa gin Ox44 — T', sin 0, = W,

Tesi cos Ox44 — T cos 6, =Q.

 

 

 

Hence

Wr -

1", cos 0, = tan 0441 — tan 0; ”

Figure 20. Sketch for modern proof of Huya@Ens’ theorem

that
Ro Wk+1 _ Wr

tan 0442 — tan 0441 tan 6441 — tan 6,

When Wii1= W, = W forall k, it follows that tan 0442 — 2 tan 0441 + tan@, = 0. This yields

Hvuvcens’ theorem:

whichis thus seen to follow from statics alone as a statement that the weights, however they be spaced,
are equal.

The geometrical constraints are

1
— “Lp, = 6, = A, ———-

rk , rk ke V1 + tan? 6,

tan 6,
= 2, -—5>—____—_ ..

k k V1 + tan? 6;

x

(C)
Y;,— Yk—1 = 5, tan 6

If b, = 6 for allk, then from (C),,, and (H) follows x, — wy-1 = 6, y, — yk—-1 = 0(AK+ B),

so that

Y, = b[ZA(K? + &) + Bk] + |;

therefore the points (%,, y,) lie upon a parabola. This is the solution of the suspension bridge problem.

If a, =a for all k, then from (C),.,, and (H) follows

 

 

1
YLy,——— Tp — a Oo

te EEN SOV (ABE BP
Ak+B

Yn — Yk-1
~ “"Wi+ (Ak + By

Huycens’ problem is equivalent to summing these difference equations explicitly, or at least to

showing that the limiting form of any curve through these points is the ordinary catenary.
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differential equation]. Huya@Ens’ extant notes!) enable us to reconstruct his solution. The

statical principle is the same theorem of STEVIN as was used in Huy@Ens’ earlier work

described in § 6. A part of the complexity of the analysis lies in HuyGEns’ insistence on

forst calculating the figure of the equilibrium of the weighted cord, then passing to the limit.

An equal part, however, lies in the geometrical method ; [nowadays we admire a person

who could think correctly in such an elaborate way?).
 

1) Appendix 1 to the letter of 9 October 1690 to LErBniz, GEuvres complétes 9, 500—501, explains

the cipher (conjectured date, September 1690); Appendix 2, of the same date, 502—510, explains the

solution, but even with the aid of the editors’ copious notes it remains extremely difficult to follow.

Another fragment of 1690, emphasizing the statement italicized in the text above, is given in Cluvres

complétes 19, 66—68. Another is the appendix to the letter of Lersniz of Oct.—Nov. 1690, GEuvres

complétes 9, 541—543; here the quartics are discussed. There is also a later explanation, written

presumably in 1691, CEuvres complétes 10, No. 2724, and perhapsa first draft for the publication

cited in footnote 4, p. 66.

2) It seems pointless to follow in detail the further discussion that fills much of Huyezns’

(Euvres completes 10, but we add a summary ofit. Lerpniz, convinced indeed correctly but as yet

without sufficient reason that BERNOULLI has used differential calculus, triumphs in the powerof his

“‘key’’. Also, his solution and BERNOULLI’s, unlike Huygens’, do not presuppose the quadrature of any

curve [except the hyperbola] (see especially his letter of 24 July 1691). Huycrnsatfirst expresses

great admiration for the work of LErpniz and BERNOULLI. In the notesfor his letter of 1 September

1691 he writes, “The additional properties you and Mr. BERNovuLLt have discovered I did not even

search for...since I thought them incomparably more difficult to find than in fact they are.” He

would like to follow their methods. He begins to think that after all the differential calculus may have

some advantages. In time, however, he grows suspicious that Lersniz had achieved the solution only

after getting a prior hint of BERNOULLI’s method—a suspicion that would bethe last to enter a modern

reader’s mind. HuyerEns begins to consider his own solution, using only “‘ordinary geometry’’, as the

best, but he continues to beg to see LErBniz’s and BERNOULLI’s methods. For LErpBniz’s final response,

see p. 71 below.

A great part of the discussion concerns special cases and reflects a passion for special properties

of special curves that the modern reader is unable to share. The mechanical principles on which the

three solutions rest are scarcely mentioned.

LEIBNIZ seized the opportunity to advertise his calculus by publishing in three countries his sum-

maries of the results and the methods the several authors had used to obtain them: ‘‘De solutionibus

problematis catenarii vel funicularis in actis Junit A. 1691, aliisque a Dn. J. B. propositis,” Acta erud.

Sept. 1691, 435—439; “De la chainette, ou solution dun probléme fameux proposé par Galilei, pour

servir dessai dune nouvelle analise des infinis, avec son usage pour les logarithmes, et une application a

Vavancement de la navigation,” Journal des Scavans 20 (1692), Amsterdam ed. 218—226 (1693);

“Solutio illustris problematis a Galilaeo primum propositi de figura chordae aut catenae e duobus

extremis pendentis, pro specimine novae analyseos circa infinitum,” Giornale de’ Letterati, Modena,

1692, 128—132; all three are reprinted in LEIBNIzens math. Schriften 5, 255—266.

In thefirst of these, LErBN1z says that HuyGENs’ methodrests on use of the radius of curvature,

but this must have been a conjecture, since LEtpniz had not seen HUyGEns’ proof or any real expla-

nation of it—in fact, in his correspondence with HuyGeEnshe showedno curiosity of his elderly friend’s

line of thought, which must surely be based on the “ordinary geometry”? LEIBNiz wished to supplant.

As we shall see below, the intrinsic equations were found later by James BERNOULLI but not published.
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It is curious that the catenary was both the first and the last problem Huye@sns

attacked ; but it is not without parallel that his departure from the world of mathematics

fell below the brilliance of his entry. This is less a measure of the man than of the meth-

od: While Huyeerns’ notes show that this problem strained his mathematical equip-

ment, which was limited to “ordinary geometry’’, to the utmost, we shall see now that for

the possessors of the new calculus the determination of the continuous catenary, while not

trivial, fell quickly before a determined attack. In fairness to HUYGENS we must admit that

he solved first, at least in principle, the

more difficult problem of determining the G, G_L.DeLinea Catenaria

 

 

 

 

 
 

 

 

  
        

form of the weighted string.]

In his paper, Lersniz!) writes that rasmuond smoLogarithms

James Brrwovtt had “publicly asked utayatepttWea’ ”
me to try whether our kind of calculus Roe ; eon,

could be applied to this kind of prob- L

lem... Having tried the matter for his Ge .l i

sake, not only did I have so great success ; ' y ©)

as to be thefirst ... to solve this illustrious " Bl L C

problem, but also I found that this line Re ' wad. ;
has extraordinary uses...’ The solution ; pg, S

is “geometrical, without help of a thread Ym gh— S/

or chain, and without assuming any ” Y .

quadratures, by a kind of construction for id 2 g

transcendents, than which nothing more °

perfect nor more appropriate for analysis

exists, In my opinion.” oN Nw @ 1M) (M)

In Figure 21, ON is horizontal. & and Figure 21.
: ee . . qe gs LEIBNIZ’s published figure for the catenary (1690

(£) are points on the “logarithmic line’, P eur y (1690)
 

In all three notes, LErsniz reproaches Huycrens with having supposed “the quadrature of a certain

figure’, in the third one going so far as to remark that the quadrature is “‘very complicated, and the

author does not give its nature or reduction, and besides it is not consonant with the nature and

degree of the problem”’; it is curious to contrast this with HUyGENs’criticism of JamEs BERNOULLI’s

elastica (below, p. 97). In the second, Lrrsniz implies that he has found that a light chain really

assumes this form, while a string, being both extensible and somewhatstiff, does not. It is amusing to

read that such a chain may be used inversely, by aid of LErBniz’s solution, for calculating logarithms,

and ‘‘this may help, since on long trips one maylose his table of logarithms...”

JOHN BERNOULLI esteemed HuyGeEns’ solution lightly, found LErBNiz’s ‘“‘very pretty’’, but was

unable to see cause for LErsNniz’s boasting of its superiority over his own. (See JOHN BERNOULLI’s

letter of 29 September/9 October 1691 to James BERNOULLI in op.cit. ante, p. 66, footnote 1.) |

1) ‘De linea in quam flexile se pondere proprio curvat, ejusque usu insigni ad inveniendas quot-
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[which we should now write as i = 5*/*, where 6 is a dimensionless quantity and

a= QA]. “Now taking ON and ©(J) as equal, above N and (N) erect NC and

(N)(C), respectively, both equal to half the sum of N& and (N)(&); then C and (C) will

be points of the catenary line ...’’ [Thus LEIBNIz’s solution is

(21) 4 = he(e/* + e*!*) — ecosh - ;

the mechanical problem requires in fact that c = 1.]

LEIBNIz’s paper contains a good deal of explanatory material, especially concerning

logarithms, but he neither derives his solution (21) nor proves its validity. He states that

the triangles ©.A & and CBTare similar. He states also that AR = the arc length from

A to the point C(z, y). [Thatis,

dy 8

(22) dz a?
LEIBNIZ gives a construction for the center of gravity of any arc: “‘... the tangent CZ’

cuts at EH the horizontal line through A; let the rectangle GAHP be completed...” [As we

shall see, this is the key to the solution.] He concludes, ‘‘Thus . . . will be had the greatest

possible descent of the center of the string or chain or any flexible and inextensible line,

hung up from its two ends... and having a given length ...” [This is the extremal

principle first used by HUYGENS (above, p. 45); it is not justified by the foregoing

construction.]

Amongotherresults is the series (appropriate to the case a = 1)

x= 8 — 58 +785 —P5s7 + wee
(23)

= Arg sinh s.

“So as to avoid prolixity, I refrain from supplying the proofs, especially since to him

who understands the calculi of our new analysis explained in this journal they will come

of themselves.’’

A letter of 26 October 1690 from LEIBNIz to v. BoDENHAUSEN!)reveals that LEIBNIZ

had “looked back at Father PaRpiss’ treatise . . .; I find his assumptions correct, but well

known...” LEIBNIZ gives a just résumé of Parprius’ work and remarks that the case of the

elastic cord furnishes “an entirely new and more complicated problem.” As explanation,
 

cunque medias proporiionales et logarithmos,’”’ Acta erud. June 1691, 277—-281 = LErBNizens math.

Schriften 5, 243—-247. Lersniz’ letter of 24 July 1691 to HUYGENSgives a summary of the published

paper and a carefully drawn sketch.

1) Lersnizens math. Schriften 7, 356—357 = (in more accurate transcription) CEuvres complétes

de Huygens 10, 157—158, footnote 7.
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perhaps, of the cryptic nature of his publication, LEIBNiz writes), “‘Es ist aber guth, daB

wann man etwas wiirklich exhibiret, man entweder keine demonstration gebe, oder eine

solche, dadurchsie uns nicht hinter die schliche kommen.”’

In a fragment?) from this time LzrBntz writes, ““The fundamental assumption so as to

put the nature of the catenary curve into equations, as Huy@rEns, Father ParpiEs, and

others noted long ago, is the following property of the tangents,”’ and he then states the

theorem of PARDIES (above, p. 51).

To learn Lxreniz’s full course of thought, we turn to the magnificent letter?) of

14 September 1694 with which hefinally answered a long sequenceofrequests, complaints,

and accusations from Huye@Ens. We reproduce the passage intact, in the original nota-

 

tions4): |

‘Mais pour vous donner un example d’un probleme Geo- WJ

metrique, prenons celui de la Chainette : et je vous donneray A Th

en meme temps l’analyse dont je me suis servi autres fois Figure 22.
LEIBNIz’s figure for explaining

pour le resoudre, puisque vous avés temoigné de la desirer to Huygenshis solution of the

aussi. Soit AB, «; BC,y; AT, retranchée par la tangente,est catenary problem (1694)

la distance entre l’axe et le centre de gravité de l’arc AC. Or, CB ou AB est a TS,

comme dx & dy; done Tf sera xdy:dz, et AT sera y—-2x-dy:dxz. L’are AC soit

appellé c et par la nature du centre de gravité il est manifeste, qu’AT sera

 

f yde: e(1) = y — ady:dzx ou bien fyde(2) = cy — cady: dz;

et differentiando

yde(3) = cdy + yde — xdy:dudc — cdy — cud, dy:dxz.

Et rejettant ce que se détruit, il y aura dedy: dx + cd,y:dxu(4) = 0. Supposons que

les y ou croissent uniformement, ou que dy soit constante et ddy(5) = 0, nous aurons
BC

Ap
d.dy:dx(6) = — dyddx:dxdz, et au lieu de 4ily aura deda — cddz(7) = 0, c’est-a-

dire summando dz: c(8) = dy:a (car cette equ. 8. estant differentiée rend l’equation 7)

ou bien adz(9) = cdy et differentiando addx(10) = dedy. Or generalement en toute

courbe dedc(11) = dydy + dxdx et differentiando dceddc = dyddy + dxddzx, done icy

(par 5) dcddc(12)=daxddz, et (par 10 et 12) addc(13)=dady et summando

adc(14) = xdy + bdy. Soit x+6(15)=—2, fiet dxu(16)=dz et adec=2zdy, et
 

1) In his report to v. BODENHAUSEN on the catenary, LErsnizens math. Schriften 7, 359—361.

2) LErpnizens math. Schriften 7, 372.

3) Cuvres complétes de HuyceEns 10, 679. Essentially the same material is contained in LEIB-

niz’ letter to v. BODENHAUSEN of about 1691, printed in Lersnizens math. Schriften 7, 370—372.

4) LErIBNIz’s z, y, c are the variables y, x, s in the notation used elsewhere in this work.
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(par 11 et 16) dcdce = dzdz(17)+dydy. Donc par 14, 15, 17, nous aurons

aadzdz + aadydy (18) = zzdydy, et enfin!) y(19) =aa{dz:Vzz—aa, c’est-a-dire il ne

faut que chercher la quadrature d’une figure, dont l’ordonnée est aa: V zz — aa.”

LEIBNIz’s statical principle, a corollary of Parprus’ theorem,is stated in thefirst line :

 

The distance AT is the y co-ordinate of the center of mass of the arc AC’. Once this statical

principle is granted, we have the integro-differential equation (in our usual notation)

1 § ax
(24) stat —-uG

which is the equation numbered (1) by Lursniz. We multiply by s and then differentiate

with respect to s; the resulting differential equation is at once integrable to yield (22).

LEIBNIz’s analysis, which goes further and derives a quadrature from which (21) is imme-

diate, [seems brilliantly clear to a modern reader. The impression it made on HuyYGEnNs,

to whom differential calculus was foreign, may be imagined.] Indeed, on 27 December 1694

he called LEIBNIz’s argument “‘a strange route.”’

In the young JOHN BERNOULLI’s Solution of the funicular problem?) we read, ‘‘It is

almost a year since in conversation with my enlightened brother we happened to speak of

the nature of the curve that is assumed by a string hung freely between two points. We

marvelled that a thing daily present to the eyes and hands of everyone should not as yet

have drawn the attention of anybody. The problem seemed extraordinary and useful, but

because of its apparentdifficulty we preferred not to touch it ; we decided thus to propose

it publicly to the learned, to see if anyone

would dare to try, for we did not know that it

had been discussed among the geometers since
 

the time of Gauinzo . . . I have found moreover

that our funicular curve is not geometrical but

 

rather of the type called mechanical, since its
 

nature cannot be expressed by any determinate

algebraic equation...’ JOHN BERNOULLI states
Figure 23.
Joun Bernovtu’s first his results, without proofs, in the form of two
published construction .

4¢ for the catenary (1690) constructions.

First construction (Figure 23). Let AH be

   
an equilateral hyperbola with center at C; [thus its equation is X? = y? + 2ay, where

A is the origin and a = AC.] Holding y fixed, let KF be so constructed that X ¥—a?,

where ¥=—= BK. Let x = AG, and construct zx so that

1) In this formula and the next, the first @ should be deleted.

2) “Solutio problematis funicularit,” Acta erud. June 1691, 274—276 = Opera omnia 1, 48—51 =

LE1rBNizens math. Schriften 5, 248—250.
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—ava= Area HABKF -
y

(29) ~ fzdy.
0

Then x, y is a point on the catenary. [Indeed,

we find that .

a* /
xSo; / /

Vy? +- 2ay ;/ ,

(26) y 4

2lowe , / 4
a Vy? + 2ay , -we

0 —

integration yields a7 cosha 1, differ- B

ing from (21) only in choice of origin.]

Second construction (Figure 24). Let BG

be an equilateral hyperbola ; [its equation is | Figure 24.
—_— J B ° dAX? = y?+ 2ay]. Let BH be a parabola whose D oublishedconatea5sSecon’

latus rectum is four times the latus rectum the catenary (1690)

of the hyperbola; [¢. e., #2 = 8ay]. Then if

we lay off GH = BH, the point £# lies on the catenary.[This last means

(27) X—x=fVi+ E%dy,
0

or y

(28) =VF Bay +[1+ Bay,
0whence (26), follows.]

JOHN BERNOULLI then lists thirteen properties of the catenary. The first of these,

referring to Figure 24, reads: “Let FD be a tangent; then AF: AD= BC: BF.”

[Analytically expressed, this is (22); as-we shall see, it gives the key to the solution.]

The thirteenth is an awkward expression for the variational principle!) asserted simul-

taneously by Lzrpniz (above, p. 70) and used earlier by Huygens(above,p. 45).

“My honorable brother has begun to extend this thought to strings of non-uniform

thickness, when the thickness stands in a relation to the length which is expressible by an

algebraic equation.” JAMES BERNOULLI hasnoted a special law for the density which leads

to a simple solution, and JOHN BERNOULLI has shown that this funicular is the evolute

of that for the case of uniform thickness. For experimental tests, ‘‘one should take a fine

chain rather than a string, which sometimes because of too muchlightness, sometimes too

much rigidity, we have found unsuitable.
 

1) In his commentin Lesson 37 of the work discussed just below, JoHN BERNOULLI adds, ‘‘This is

proved by the axiom that the center ofgravity descendsasfar as it can,” but this is a mere restatement.
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“For the rest, whoever wishes to perfect and extend this subject may investigate the

nature of the curve ...in the case whenthe string is a finite distance from the center of

the earth,or if also it is supposed extensible by its own weight or loaded in any otherway;

or, vice versa, how it should be loadedin order to assumethe form of a parabola, hyperbola,

circle, or any other given curve. The matter is altogether within reach.”

JOHN BERNOULLI’s concepts and methods are

given in his Mathematical lessons on the method of a

 

integrals and other subjects, written for the use of the

illustrious Marquis pr LvHopirart while the author was

at Paris in the years 1691 and 16921) ; while these were

not published until 1742, their content was certainly

widely diffused in the teaching, both direct and

indirect, of the great BERNOULLI who dominated the

productive mathematics of the first half of the eigh-

teenth century. In Lesson 37, On funicular or catenary

curves, the following principles are set down as self- eatingPoes theorem(1601-1602)

evident for any hanging curve.

(1) In Figure 25, the forces which must act at A and C in order to support the cord are

the same as those that must be applied along the tangents AD and CD in orderto support

at D a weight equal to the weight of the cord. [This is the

principle of Parpizs, above p. 51.]

(2) Applying No. 1 to portion of the cord between A and the

A

lowest point B yields the (horizontal) force at B (Figure 26).

(3) If the cord is hung from any intermediate point, such as F,

theremaining portion fC 4
ok ; C

E B retains its previous figure. F

Figure 26. (4) In the case men-
Joun Brernovutxi’s .

application of Parpies’ tioned in No.3, the forces
theorem (1691-1692) . . B

acting on each portionof
Figure 27.

the cord between F and C are the sameas before. In Joun BeRNovutt’sfigure for isolating a

particular, the force acting at Bis unaltered. portion of the catenary (1691-1692)

(5) Forces may be resolved according to the vectorial rule.

 

1) “‘Lectiones mathematicae de methodo integralium aliisque, conscriptae in usum il. Marchionis

HospPiratucum auctor Parisiis ageret annis 1691 et 1692,” Opera omnia 3, 385—558 (1742) [1743]. I cannot

forbear remarking that these lessons together with those on differential calculus, lost until 1922, form

the most beautiful treatise on calculus ever written. It is ironical that this masterly exposition by

one of the discoverers had to wait over 200 years for full publication.
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JOHN BERNOULLI’s elegant proof is easier to follow if we introduce the inclination

6 at an arbitrary point A (Figure 28) and the tension 7 acting at that point. Consider

the equilibrium of the portion of the cord between A and B. By No.3 we may

consider the cord suspended by the tension 7’ at A, and by No. 4 the tension at B is

independent of the choice of A; call this constant ka.

 

 

 

   

By No.2, the tension at A equilibrates the horizontal H g

force ka and the vertical force ks, where s is the NL - G

length of A B. By No.5, in order that these two forces A

be equilibrated by a tangential force at A we must have

hs = tan 0 = ay , which is (22). [Thus JoHn Bzr-
ka dx Cc

NOULLI’s statical principle is the equilebrowm of forces,

applied to a finite segment beginning at the lowest .

point. Indeed, balance of vertical and horizontal forces E B
yields Figure 28. JOHN BERNOULLI’sfigure for

explaining to L’Horrrat his solution of
(29) T sinO=ks, T cos 6 = ka, the catenary problem (1691-1692)

where T is the tension at A ; elimination of 7 yields (22); an alternative form of (29), is

ds

Manipulation of (22) easily yields (26),.

[Evidently Jonn Burnoutdid not find Lersniz’s form (21) of the solution!).]

11. JAMES BERNOULLI’s researches on the general theory offlexible lines (1691—1704),

and later work to 1717. There is no evidence that the deep and enigmatic JAMES BER-

NOULLI had a solution to the problem of the catenary in 16907). His next mention ofit

1) Lesson 37 purports to give LEIBN1z’s solution but of course does not reveal to us how LEIBNIZ

reasoned; rather, JOHN BERNOULLI merely verifies that (21) satisfies LEIBNIz’s differential equation (22).

2) In annotating the above cited paper as republished in James BERNOULLI’s Opera in 1744,

the editor, GABRIEL CRAMER, wrote “whether the method of our author was entirely dissimilar from

that of his brother, which I am going to explain, we dare not guess.”’ The method then presented is

indeed essentially that of JoHN BERNOULLI but applied in generality sufficient to obtain JAMES BER-

NOULLI’s later results (41).

JOHN BERNOULLI in later years asserted that his brother had been unable to solve the problem.

Hetells his recollection of the discovery in a letter to p—E Monrmort on 29 September 1718 (quoted in

part on pp. 97—98ofop.cit. ante, p. 66, footnote 1):

‘But it is time, Sir, that I draw you forth from your astonishment. I astonish you, you say,

by saying that my brother was unable to solve the problem of the catenary: Yes, I tell you again,

for it is an uncontestable truth, of which I will give you proofs which put an end to your astonish-

ment... You say that my brother proposed this problem; that is true, but does it follow that he had
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is in an addition to a paper) published in 1691. § 1 of the addition states the form of the
 

a solution of it then? Not at all. When he proposed this problem at my suggestion (for I wasthefirst to

think of it), neither the one nor the other of us was able to solve it; we despaired of it as insoluble,

until Mr. LerBniz gave notice to the public in the Leipzig journal of 1690, p. 360, that he had solved

the problem but did not publish his solution, so as to give time to other analysts, and it was this that

encouraged us, my brother and me, to apply ourselves afresh.

“The efforts of my brother were without success; for my part, I was more fortunate, for I found

the skill (I say it without boasting, why should I conceal the truth?) to solveit in full and to reduceit

to rectification of the parabola. It is true that it cost me study that robbed meofrest for an entire

night. It was muchfor those days and for the slight age and practice I then had, but the next morning,

filled with joy, Iran to my brother, who was still struggling miserably with this Gordian knot without

getting anywhere, always thinking like Gatitx£othat the catenary was a parabola. Stop! Stop! I say to

him,don’t torture yourselfany more to try to prove the identity of the catenary with the parabola,since

it is entirely false. The parabola indeed serves in the construction of the catenary, but the two curves

are so different that one is algebraic, the other is transcendental. I have unfolded the whole mystery.

Havingsaid that, I showed him mysolution and explained the method that had brought metoit.

“It pleased him atfirst, and he saw straightaway (although that was no longerdifficult after the

method was found) that this method was applicable to all kinds of catenaries of non-uniform thickness.

There is the reason for the words, ‘My honorable brother has begun to extend this thought’ete.

“But then you astonish me by concluding that my brother found a method of solving this prob-

lem . . . I ask you, do you really think, if my brother had solved the problem in question, he would

have been so obliging to me as not to appear among the solvers, just so as to cede me the glory of

appearing alone on the stage in the quality offirst solver, along with Messrs. Huyerns and Lrerpniz?
You knew the disposition of my brother. He would sooner have taken away from me, if he could have

done so honestly, the honor of being thefirst to solve it, rather than letting me take part by myself, let

alone ceding metheplace,if it had really been his.’> JoonN BERNOULLI goes on to explain the wording

used by Lersniz and the editor of the Leipzig Acta in respect to this question of priority, and to give

other evidence that the solution of the catenary was not due to JAMES BERNOULLI.

While claims of this sort by JonN BERNOULLI were formerly taken lightly by historians, most of

them have been substantiated in all essentials by concrete evidence. In the case of the catenary,

JOHN BERNOULLI's account is supported by such evidence as there is, not only that presented in the

text above but also by the “‘Remarques de Mr. Lerpniz sur Vart. V. des nouvelles de la république des

lettres du mois de février 1706,”’ Nouv. Rép. Lettres 1706 == Lerenizens Math. Schriften IT 1, 389—392.

LEIBNIZ writes, ““... Mr. [JAMES] BERNOULLI... asked me, at the suggestion of his brother, who was

already far advanced in these matters, to reflect whether by the same analysis one could not [find]...

the curve that a chain would form, supposing it to be perfectly flexible, [the curve] that Gatmzo had

thought to be a parabola, although they did not yet know he had worked on the problem.I reflected

about it, and I succeeded at once, but instead of publishing my solution, I encouraged Mr. BERNOULLI

to try to find it. Doubtless my success was the reason that the two brothers applied themselves vigor-

ously to this problem and that the younger... prevailed with entire success (eut l’avantage d’y

réussir entiérement). To get so far by the means I had up to then communicated required extraordinary

skill and some practice, which application and the desire for distinction gave them so as to make good

use of this new calculus.” It is unlikely that LzErpniz knew as much about the matter as did JOHN

BERNOULLI, but he was always just and equally desirousfor the success of each of the brothers.

1) “Specimen alterum calculi differentialis in dimetienda spirali logarithmica, loxodromius nau-

tarum, et areis triangulorum sphaericorum; una cum additamento quodam ad problema funicularium,
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catenary curve corresponding to certain particular non-uniform densities. § 2 considers

the case of an extensible cord of uniform thickness. ‘“‘I suppose, moreover, that the exten-

sions are proportional to the stretching forces, even though I doubt that that hypothesis

be sufficiently congruent to reason and experiment. Let us be allowed to retain it, however,

since we know nonetruer.’’ The result stated is

f bdy
Y=

V202 + 2by — 2a Va? + Bb? + Qby
  (31)  

where 6 ig an elastic constant. [When b = 0, (31) becomes indeterminate and does not

immediately reduce to (26),, and it is difficult to make anything out of this paper.]

For explanation, we turn again to JOHN BERNOULLI’s Lessons, which may be pre-

sumed to reflect JAMES BERNOULLI’s views on these topics). Lesson 38, On the curvature

of a string of non-uniform thickness, begins by observing that if the weight of the arc A B

is not ks but kp(s), then the same argument?) as for the uniform case leads to

(32) dy — P(s)

generalizing (22). [This is the continuous analogue of Huyerns’ theorem (above, p. 67).]

In the special cases treated by James BERNOULLI, the quadrature is relatively easy.

Lesson 39 first considers the case when the weight p is known as a function of x rather

than of s, Then (32) yields at once

(23) ay = fp(x)de ;

For example, if p = bx, we have y = 42 x, the ordinary parabola; [this is the solution

of the suspension bridge problem obtained long ago by BEEcKMAN, HuyaEns, and PaRDIES

(above, pp. 24, 45—46, 51—52)]. After working out two other special cases, JOHN BER-

NOULLI takes up the inverse problem: If y = y(x) is the given shapeof the funicular, then
 

alisque,”” Acta erud. June 1691, 282—290 = Opera omnia 1, 442—453. The addition occupies pp.

449-453 — LEIBNIzens math. Schriften 5, 252—254.

1) JAMES BERNOULLI, as we have seen, claims the results. JoHN BERNOULLI in his letter to DE

Monrmort, quoted above, pp. 75-76, when vehemently defending his sole priority over his brother

with respect to the ordinary catenary does not make any reference to these problems except to say

that they had become‘‘no longer difficult’.

2) Indeed, in the copy of JoHN BERNOULLI’s Opera in the Basel University Library, at Remark 13

in Lesson 37 a correction lettered in an old hand emends “‘the distances of those points’’ to read “the

distances of the centers of gravity of those points,”’ which is an awkward wayofstating (32),
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the density is p= aa . Let ¢ be the weight per unit horizontal length. Then

(34) p= Pg SY
da" dx? *

Therefore whenever the catenary is “‘geometrical’’ [7.¢., an algebraic curve], ¢ is also

geometrical. For example, if the catenary is the parabola, ya x?, then ¢ = const., so

that the horizontal load is uniform. [It now seems more natural to consider the line

weight og per unit length of cord, |

_ dp dp dx _ a d®y dy \2

(35) "9 “ds ~ de ds 4)[ae Te = afi + (se) [ea
V+ (%)

Lesson 40 considers the case when p = p(y).

Lesson 41, the most interesting after Lesson 37, is On the curvature of extensible strings.

JOHN BERNOULLI, as suggested by his brother Jamus, adopts “the axiom of LErsniz

 

[?. e. Hooxn’s law] that the extensions are proportional to the pulling forces?).’’ [The

analysis is difficult to follow?) but is important because the special devices used for the

inextensible catenary are not sufficient here ; BERNOULLI must face not only the compli-

cation introduced by theelasticity of the cord but also the fundamental statical problem.]

BERNOULLI again considers the equilibrium of the section of cord from the lowest

point B to A ; again the weight of the cord equilibrates the horizontal tension ka at B and

the tangential tension 7' at A. Let s denote arc length in the deformed cord [no longer

the sameas are length in the undeformed cord]. Let the elastic law be that a force 7’ pro-

 

duces a local extension = ° in the cord.Ifdx is the original length ofthe element ds at A,
ka

we have then ds = dau 1+ 2. - . The weight density — F, is related to that in the

undeformed cord, k, by —f,ds = kdx. Hence

 

(36) — F,=

a
| o

]
&

T

I+ oka

For statical principles, first we have (30) [which was implhed by BERNOULLI’s earlier
 

1) In addition, he supposes the cord to be incompressible and concludes that the areas S, s and

lengths L, 1 before and after deformation satisfy SZ = sl. These areas are infinitely small, and the

curve consideredis that ‘‘in the middle”’ of the cord. These assumptions, however, do not appear to be

used.

2) Somewhatclearer is CRAMER’s version, given as an annotation on p. 451 of JAMES BERNOULLI’s

Opera 1. Our presentation does not reproduce either source but rather attempts to bring out clearly

what JOHN BERNOULLI’s steps seem to imply. .
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analysis but apparently not noticed until now]. In addition, BERNOULLI infers from the

balance of forces the principle
d d

(37) qe (ba ge) =— Fy,

expressed partly in words. Combining (30), (36) and (37) yields

d dy 139) fo (od).1
ds dz b ds

toa
When 6 = 0, this reduces to (22); when b 40, it may be manipulated into the form of

JAMES BERNOULLI’s equation (31).

[More important than the clever solution of this problem that Lerpniz had regarded

as hopelessly difficult is the method. We now write the statical equations for a flexible

line as

£(P cos 6) =%(7) ——F,,
(39)

d , _ dy\ _
ag (Fin) =(24) = — Ff, $

where F’, and Ff’, are the components of applied force per unit length in the directions of

xz and y. In all problems considered so far, #', = 0, and integration of (39), yields (30).

The resulting expression for 7’, when put into (39), yields BERNOULLI’s result (37). Whatis

important is that BERNOULLI obtains (37) by the fully general statical argument which we

should now use to obtain (39),. That is, while he still expresses the equilibrium of hori-

zontal forces in an integrated form valid only in special cases, his result (37) for the vertical

forces is a condition of equilibrium in differential form. For thefirst time, the resultant force

acting on an infinitesimal element has been calculated, This is the first step in continuum

mechanics, and it is also the first advance toward the theory of stress since GALILEO’s

simple argument concerning the strength of a rope (above, p. 37) and ParDIES’ remarks

on the tension in a catenary (above, p. 51).

The result (37), as it stands,is of great value, for it is the general equation of equilibrium

for a flexible line subject to load parallel to a fixed direction. The difference between the mastery

of mechanical principles in 1690 and today is strikingly illustrated by the fact that the

modern student may read off, by inspection of (37), the equation of small transverse

oscillations of a taut string, for one has only to put ds » dz, T' = ka = const., and take

the transverse force F', as merely inertial, Ff, = — ooy , whencefollows ooy =Toy ;

but in fact a full fifty years of mechanics lay ahead before this equation was to appear in

the work of D’ALEMBERT and EULER.See §§ 33 —34, below.|

Returning to James BERNOULLI’s Addition (above, p. 76), in § 4 we find stated the
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problem of the velaria : To find the curve assumed by the base of a cylindrical sail. As for-

mulated by BERNOULLI, the velaria is the figure of a perfectly flexible cord loaded by a

uniform normal pressure ; this curve, [determined incorrectly by Huyarns, above, p. 46,]

JAMES BERNOULLI asserts to be a circular arc. After some controversy, it was decided the

proper loading is a uniform force per unit length parallel to a fixed direction ; in this case,

the curve was shown to be the ordinary catenary. About this time was proposed also the

problem of the lintearia, the form of a cylindrical cloth filled with water ; this was shown

to be an elastic curve of the type to be discussed in our § 12 below. These same problems

could be regarded in an alternative light. H. g., as had been known to Hooks (above,p.

57) and as was pointed out anew by GREGoRy!), the catenary turned upward gives the

solution for an arch sustaining its own weight through tangential compression alone, thus

needing no cement. While these problems called forth considerable ingenuity, mainly in

respect to differential manipulations, and occasioned the great quarrel between the brothers

BERNOULLI, nevertheless, so far as I can learn, they gaverise to no additional enlighten-

ment of mechanics, so they shall not be considered further here?).

Whether or not JAMES BERNOULLI had a method for deriving the catenary in 1690,

it is nearly certain®) that by June 1691 his slow but mighty intellect had found a second

approach, differing more from those used by LEIBNIz and JOHN BERNOULLIthan do those two

from one another. This approach rests on the concept of curvature (see below, pp. 90—91).

While he never published this method, we may follow someofhis ideas in his remarkable

notebook, Thoughts, notes, and remarks on theology and philosophy, condensed and collected

from the year 1677 onward by me J. B.*). No. CLXV, dating probably from 1691, concerns
 

1) Corollary 6 to Prop. 2 in op. cit. infra p. 85.

This was observed also by Parent in a work which appeared in 1700; see pp. 810—815 of vol. 2 of

his Hssais, cited on p. 110. The passage reprinted on pp. 494—499 ofvol. 2, if it actually appeared in 1700,

is the first correct derivation of the ordinary catenary to be published. The difficulties in connection

with PaRENT’s publications are mentioned in footnote 1, p. 109 below.

2) A definitive original treatment is given in Jonnw BERNovL's Integral Calculus (cited above,

p. 74), Lessons 4245, except that the identity of the lintearia with the elastica is not shown. Pub-

lished expositions of inferior quality are to be found in the books of HERMANN and TayLor,cited

below, p. 86.

3) In June 1691 he gave the solution for the elastica as an anagram (below, p. 88); on publishing

this solution in 1694 (below, p. 89), he says that it rests on the second of the ‘“‘two keys’’ to the

catenary, namely, the formula for the radius of curvature. In the work of JAMES BERNOULLI every

sentence rnust be weighed by the reader.

4) Meditationes, annotationes, animadversiones theologiae & philosophiae, a me J. B. concinnatae &

collectae ab anno 1677, Basel Univ. Library MS Ia 3. Asits title indicates, this is not a diary, and for

many matters where the interest would be greatest there is no entry at all. In particular, and consist -

ently with JonN BERNOULLI’s claims (above, pp. 75—76), there is nothing regarding the catenary

prior to 1691.
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the velaria. The load, which is normal, is resolved into rectangular components; the pro-

cess is lengthy and obscure, and it seems that the radius of curvature is brought in a

posteriori by looking at the equations derived. The statical principle seems to be the theo-

rem of PaRvIEs or something akin to it ; in any case, a finite arc rather than a differential

element is considered!). Muchlater?), probably in 1695, there is a thorough analysis of the

string subject to various concentrated loadings. What is new is the concept of tension)

(firmitas) of the string. By its aid, a straightforward balance of forces acting on the

weighted string leads to results generalizing StEvIn’s theorem (above, p. 45). When he

comes to the continuousstring’), however, JAMES BERNOULLI turns aside from this line

of thought and again considers a finite segment. He calculates the “line of mean direc-

tions’’ of the load,7. e., the line such that the resultant force may be regarded as directed

along it and concentrated at a point uponit. [In generalization of the theorem of Parp1ss,|

this line must pass through the point of intersection of the tangents from the ends of the

arc, and its direction follows by integrating the forces. [JAMES BERNOULLIis still close to

the methods successful in treating special cases.] These results are checked against the

catenary and the elastica, visualized as the lintearia.

In a note®) from 1697—1698 James BERNOULLI finally obtains the general equations

for a fleavble line. This is made possible by systematic use of the tension, which is now the

main tool in arguments applied either to a finite segment or to an infinitesimal element).

Let the small angle between the tangents at the two ends of an element be d@. Then the

tensions exert a resultant force normalto the element of amount T'd@, and this must balance

the normal load fds. Since dé/ds = 1/r, we have’)

(40) = = Ff’, = density of normalload.

(This result was discovered independently by SAUVEUR in 17038). -
 

1) No. CLXXXVITI demonstrates the identity of the velaria and the catenary: No. CLXXXIX,

of the lintearia and the elastica. The former of the sections numbered CCXXVIII concerns a

construction of the catenary which BERNOULLI himself noted to be false.

2) Nos. CCXITI—CCXXVII, addition to No. CCXXVIII.

3) Of course the tension was present implicitly in the earlier solutions. It is its explicit recognition
that is new and important.

4) No. COXXIX and the immediately following No. CCXXXI.

5) No. CCXLYV, printed in slightly expanded form as No. XI, pp. 1036—1048, of the ‘‘Varia

Posthuma,’’ Opera 2 (1744).

6) Here BERNOULLI refers back to No. CLXV (above, p. 80).

7) The argument is given in words in the middle of p. 1037 of the printed version; one must

supply an equality sign reading downwardto realize that “‘firmit. fili in B”’ is prz/a.

8) “Du frotement dune corde autour d’un cilindre immobile” (14 July 1703), Mém.acad. sci. Paris

1703, 204. 4t0 ed., Paris, 305—311 (1720). Prop. I states (40) only for the case of a rope lying on cir-

cular cylinder, but the reasoningis general.
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After a long detour concerning the meanline of the load, Jamzs BERNOULLI balances

the forces acting on a finite part of the string ; the argument,[in reality, the argument of

JOHN BERNOULLI put in more general form?),] yields?)

pf_ om, | Peds ,
41) ds 0

| pl _ _ fps
ds 0 4 °

where 7’, is the tension at the lowest point, s = 0. [These are integrated forms of (39).]

The intrinsic equation companion to (40) is

(42) < = — F, = tangential load per unit length.

This result, also in integrated form, BERNOULLI obtains by some rather mysterious mani-

pulations.
 

The result is rediscovered, at least in part, by JoHN BERNOULLI at the conclusion of his “‘Solution

du probléme... sur les tsoperimetres,’’ Mém. acad. sci. Paris 1706, [204] 4to ed., Paris, 235245

(1731) = 12m° ed., Amsterdam, 304—318 (1708) = Opera 1, 424—435.

It is again rediscovered by TAYLOR, Prop. XXI, Prob. XVI of op. cit. infra, p. 86 (see also his

proof of Lemma 9) and by HERMANN,§ 93 of op. cit. infra, p. 86.

Varranon attributes (40) to SauveuR and to Borgenu, De motu animalium 2, Lugduni Bata-

vorum, 1685; new ed., «bid., 1710. BorExui’s Prop. 56 reads, “If a rope wound around a globe and

[recte or] cylinder is pulled uniformly along its whole length, the power pulling the rope will be to the

resistance of the globe or cylinder as its radius to the circumference of the rope.” This result follows
° ® T e - °

from (40), since it asserts that oF. = =, where c = the circumference. However, despite its correct-
n

ness, even this corollary may not be attributed to BoRELLI without reservation, since he adduces a

fantastic argument about the velocities with which the parts of the cylinder or globe are contracted

as the rope is pulled tighter.

VARIGNON himself spins out numerous corollaries; see his “‘Pressions des cylindres et des cones

droite, des spheres et des spheroides quelconques, serrés dane des cordes roulées autour deux, et tirées par

des poids ou des puissances aussi quelconques,’’ Mém. acad. sci. Paris 1717, 4°, Paris, 195—210 (1719),

also Hist. 2b7d., 68—70.

1) Perhapsit is on this account that in obtaining the quotient of (41), by (41), by an argument of

this kind the editor of JAMES BERNOULLI’s works on pp. 424—426 attributes the proof to JoHN BER-

NOULLI, though nothing so general is to be found in the latter’s printed works. In Lesson 42 of op. cit.

ante, p. 74, there is a start, and in Lesson 44 there is a near miss in connection with thelintearia, but in

fact all of JOHN BERNOULLI’s work rests on special integrated forms possible because of the specially

simple loads considered.

2) In “Extrait d'une lettre de Monsieur Bernoutu de Bale [& Mr. Varignon], du 26. juin 1698.

Contenant Vexamen de la solution de ses problémes, inserée dans le Journal du 2. décembre, 1697,’ J. des

Scavans. 26 (1698), Paris ed. 355—360 = Amsterdam ed. 560—569 (1699) = JacoBI BERNOULLI

Opera 2, 829—839 = JOHANNIS BERNOULLI Opera 1, 222—229, James BERNOULLI in conjecturing

the nature of an unpublished proof by his brother writes out results equivalent to (41) for the case of

normal loading.
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A The next to last entry in James BzEr-

raw NOULLI’s Thoughts, notes, and remarks, “‘solved

5 December 1704,” is called Problem of the

curvature of an arch whose parts support each

       

  

tar+). This introduces a third method, which

‘
d

4

{
other by their own weight, without use of mor-

we present in much abbreviated form. The
eon’.

[infinitesimal] stone KL in Figure 29“. . . is

to be regarded as a wedge trying to force

itself into the triangle DQH. As it comes

fromKL into the position DE, thatis, while it

traverses the space KD, it pushes

back the force pressing along JL

aS by the distance KL — DE.”’ Then

" Sp the virtual work done by the nor-

mal force — F,, pointing inward
Figure 29. JamES BERNOULLI’s figure for calculating the form of .
the general catenary by use of the principle of virtual work (1704) equals that done against the com-

pression — 7’. That is,

(43) —F,-KD= —T-(KL — DE) .

From the geometry of the figure follows KL/(r + KD) = DE/r, so that

KD:(KL— DH) =r:ds .

Substituting this last into (43) yields (40). The argumentis given by BERNOULLI only sub-

ject to the special assumptions appropriate to the arch; the result is 1/r = ow. 8 (se) ;

which is integrated to obtain (22).

Jamss Brernovti here considers also a second hypothesis : Friction being assumed

sufficient to prevent the stone from slipping forward, it “tries to rotate’”’ about its lower

edge. While James BERNOULLI now obtains a differential equation like (22) but with a

factor 2 on the right-hand side, the “subtle paralogism”’ in his argumentis pointed out in

two annotations by his nephew Nicuotas I Brernovtxi?): With correct analysis, this

hypothesis leads to just the sameresult as the first. [Thus JAmMEs BERNOULLI introduces

yet a fourth method : the balance of moments on a differential element. While for this problem

 

1) No. CCLXXXV, published in slightly expanded form as No. XXIX, pp. 1119—1123, of

‘Varia Posthuma,’’ Opera 2 (1744).

2) The BERNOULLIs weshall encounterin this history, along with our principal associations with
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the outcomeis the same,it is possible that James BERNOULLI had theinsight to grasp the

independence of the balance of moments from the balance of forces in a continuous body.

Thus by 1698 JAMES BERNOULLI had wrung out the general equations of equilibrium

for a plane flexible line. To this end, he had to abandon the special devices used for the

ordinary catenary by his brilliant younger brother and by LxEIsBniz and to purify and

deepen the problem until it was reduced to its essential : The action of any part of the line

uponits neighbor is purely tangential.

By 1704, moreover, JAMES BERNOULLI had succeeded in grasping and using four

independent approaches:

1. Balance of forces resolved in two fixed orthogonal directions.

2. Balance of forces normal and tangential to the line.

3. Virtual work.

4, Balance of moments.

Even today, there are scarcely any more.

Elegant as were the quick solutions of LEIBNIz and JoHN BERNOULLI for the ordinary

catenary, these achievements of JamES BERNOULLI are of a different order of worth. Far

from being easy extensions of what had been done before, they required a kind of intense

fundamental thinking in rational mechanics that JAMES BERNOULLI alone,of all those we
 

them, are shown in the following table:

 

 

| |
JAMES JOHN

(general catenary (catenary (1690),
(1691—-1704), elastica vibration of loaded or

(1691—1694), elastic laws | weighted string

(1695—1705)) 1655—1705 Nicuotas I (1713, 1742)) 1667—1748

(Editor of Opera of
JAMES, 1744) 1687—-1759

 

Nicuotras II DANIEL Joun II

(correspondent of JAMES (frequencies and modes of vibrating (small oscillations,
Riccart) 1695—1726 systems (1733—1771), correspondence conical strings (1736))

with EvLER (1733—1763), elastic laws 1710—1790
(1738—1742), co-existence of small

oscillations (1753)) 1700—1782

 

Joun III James II

(intermediary between EULER and (vibrations of plates
DANIEL BERNOULLI (1763—1766), (1787)) 1759—1789
lawsof elasticity (1766—1768))

17441807
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have so far encountered, had the insight and the stamina to pursue. It is from JAMES

BERNOULLI’s ideas that the further development for this part of the theory of deformable

bodies grew.|]

While the foregoing account of the first researches on the catenary is complete, the

reader may note with some astonishment that nearly everything that concerns principle is

taken from sources that lay unpublished for fifty to one hundred and fifty years. Indeed, the

original papers consist in little else than “‘constructions’’, 7. e. the explanation of a desired

curve in terms of properties of possibly more familiar ones. [From the standpoint of me-

chanics, at least, the first researchers concealed everything they ought have published!)

and published only what they had better discarded. Nothing illumines more surely the

little band of proud, possessive, and mutually suspicious giants who reared the new cal-

culus than that they were content to withhold proofs indefinitely while continuing to

publish assertions, hints, and quarrels regarding ever broader new researches that even

with full explanations would have been understood by at most fifty men in all Europe.

Thus it was quite proper] for Davip GREGORY seven years after the great contest to

publish a paper?) whose expressed purpose was to supply proofs, using the method of

fluxions, for the propositions of HUYGENS, LEIBNIZ, and Joun Bernovutyii. However, as

JamES BERNOULLI) and LEIBNIz*) hastened to say with respectively characteristic gloom
 

1) In the case of JoHN BERNOULLI this was surely not from choice but from the terms of the

monopoly he had sold to L’Hérrrax, who from the material bought from BERNOULLI chose to publish

under his own nameonly the parts concerning differential calculus. See O. Spruss, pp. 185—153 and

especially p- 152 of op. cit. ante, p- 66, footnote 1.

2) “‘Catenaria,’’ Phil. trans. 19, No. 231, August 1697, 637—652 (1698) = Acta erud. July 1698,

305—321. English translation, Phil. trans. abridged 4, 184—196.

3) The seventh of the “Epimetra’’ at the end of Posttionum de seriebus infinitis ... pars quarta,

Basel, 1698 = Opera 2, 849-867, reads: ‘““DAVID GREGORY’s analysis of the catenary curve, recently

published in the Leipzig Acta for July, shows neatly how it is possible for us to be misled through an

inevident and false though plausible argument to a true conclusion.”’

4) See LEIBNIZ’ anonymously published “‘Animadversio ad Davipis Gregori schediasma de cate-

naria, quod habetur in Actis Eruditorum an. 1698,” Acta erud. Feb. 1699, 87-91 = LrrBnizens math.

Schriften 5, 336—-339. It is curious to see, in a reversal of the roles traditionally attributed, that while in

later parts of the paperthe calculus is moreorless rightly manipulated by NEwron’s follower, LEIBNIZ

has to correct him in the principles of statics. GREGoRY’s pitiful attempt to salvage his proofis in-

cluded in “‘Responsio ad animadversionem ad Davipis GREGoRII catenariam, Act. Hruditorum Lipsiae,

Mense Februari A. 1699,” Phil. trans. 21, No. 258, 419—426 (1699) = Acta erud. July 1700, 301—306.

English translation, in part, Phil. trans. abridged 4, 456—458.

As appears from other writings (e. g. LeIBNizens math. Schriften 5, 418), Lrrsniz unjustly

but understandably attributed the gross errors of GREGORY to the insufficiency of NEwton’s method of

fluxions. Indeed, after the long silence of the English regarding the great problems being solved on the

continent by LErBNiz’s method, nothing could have made a poorer appearance than this piece, where

the author shows himself unable even to prove correctly results long since obtained, mastered, and

improved by the users of the differential method. Whether or not anything on the catenary is to be
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and ebullience, his argument is wrong’) : The attempt to calculate the force acting on a

differential elementis a failure. [This is one more example to show that the local balance

of forces, which nowadays weareall taught to regard as the simplest approach to the

mechanics of continuous media,is in fact not an obvious concept.] Thefirst correct proofs

to be published, a full quarter century after the great contest, are those of HERMANN®) and

TAayYLor’), both of whom treated a wider class of problems. TayLor’s work, while not as

generalor asefficient as it might have been, and also not exempt from error, is pleasant to

 

found among Newron’s papers, I do not know, but no modern reader whohas followed in detail any

of the disguised fluxional proofs in the Princigia would doubt for a moment NEwton’s own power to

solve this problem, and quickly, by fluxions. It would be my conjecture, judging especially by his later

performance with the Brachistochrone, that Newton found the catenary too easy to distract him from

his other occupations. What is most abundantly proved byall this is that unlike Lereniz, Newron

had no BERNOULLIS.

1) Everything rests on Prop. 1, which derives (22) by meansof a fallacious balance of forces on an

infinitesimal element, cancelled by an incorrect expression for the tension. We may conjecture that

(a) for GREGORY as for anyone who knowscalculus, all that was needed was a differential equation;

(b) Grrcory searched the papers of 1690 for a differential equation, thus finding (22), which was

stated by Lerpniz and Bernovuixi but not emphasized by either; (c) GREGORY tried to apply the paral-

lelogram rule to yield (22), but he did not isolate the differential element correctly (failingin fact to see

thatit is the difference of tensions on the two ends that balances the gravity of the element), whereupon

he adjusted the tension so as to give the right answer.

2) Lib. I, Sect. I, Ch. IIT; Lib. IT, Ch. TV and Ch. XTIT; and also § V of the Appendix in Phoro-

nomia, sive de viribus et motibus corporum solidorum et fluidorum, Amsterdam, Rod. & Gerh. Wetstenios,

1716, [xx] + 401 + [ii] pp. The copy in the Basel University Library, the gift of the author, is eor-

rected by him. In § 462 Hermann says‘‘the solution, or more properly the analysis” of the velaria had

not been published up to that time.

It is possible that PARENT published a correct proof in 1700; see footnote 1, p. 80.

According to JoHN BerNnoutul, Hermann’s treatment of flexible curves is faulty. See “Solutio

problematis catenarw generaliter concepti, per methodum Hermannt ab errore repurgatam,” Opera 4,

234—241 (1742). Here Jonn Bernovnizi obtains the equations in polar co-ordinates. While HERMANN

may have made mistakes in his applications (which I have not tried to follow), I can find none in his

principles or main equations; the difficulty may lie in failure to realize that his polar co-ordinate

diagram must be drawn over again at each point. In § 93 he obtains the general intrinsic equations

(40) and (42) by James BERNOULLI’s second method (above, p. 81). The equation of normal forcesis

expressed in terms of the angle of contact, without mention of the radius of curvature, and this may

be a further difficulty.

In the EULER collection at Basel is a manuscript (MS III 29 [16c]) dating from some time after

1713 but before 1728, in which JoHN BERNOULLI constructs a catenary subject to the attraction of a

fixed center.

3) See Problems XIII—XVI, Props. 18—21 of Methodus incrementorum directa et iversa,

Innys, London, 1715 and 1717, [vi] + 118 pp. The work was complete in April 1713 (see Joun BER-

NOULLI'’s Opera 2, 474).
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read. HERMANN’S, though thick andugly’), has the virtue of JAMES BERNOULLI’s influence®),

as shown by the following definition’):

“The tension or compression (tenacitas vel firmitas) of a thread or body at anyof its

points or at an element of the curve is that force of the thread or body whichresists that

power or force growing from all the applied powers [z. e. loads] and tending by pulling

the thread in opposite directions to tear it apart. This tension exactly equals or is equipol-

lent to that tearing force resulting from all the powers applied to the body.” [Especially if

shortened by the omission of alternative words, this is a perfect definition of the general

line stress, to be introduced by Euuzr fifty years later (below, pp. 391—392). However,

HERMANN’S statement is not so general as it sounds, since he tacitly supposes the tension

to be tangent to the curve,as is appropriate to the perfectly flexible case only.

This late and merely derivative publication had its effect on the further development

of our subject. On the one hand, the historian, looking at (40), (41), and (42), both in

general and in special cases, and regarding their derivations, may say that the problem

of the catenary led almost immediately to sufficient principles and indeed to the general equa-

tions, both for fixed and for intrinsic co-ordinates, for a flexible line subject to any loading.

On the other hand, almost none of this material was generally available, and much ofit

had to be rediscovered, especially since TAYLOR’s book was incomplete and HERMANN’S

obscure.]

To finish with the early history of perfectly flexible cords we must note that in a short

time the variational principle known to all the first investigators (see above, pp. 45,

70, 73), that the center of gravity hangs as low as possible, was reduced to mathematics

and shown to yield the samesolution, viz (32), as obtained by direct methods. This was
 

1) Not to everyone,for upon receiving the manuscript on 17 September 1715, before the book was

published, Lersn1z wrote, “I could not restrain myself from rushing through your work with the

greatest enjoyment, as if it were a book of stories or romances.”

2) In his letter of 29 September 1718, cited above, p. 75, JoHN BERNOULLI writes that Hrr-

mann several times had free access to his teacher JAMES BERNOULLI’s posthumous papers and wasable

to make any use of them he pleased. By his own admission, however, JoHN BERNOULLI was not able to

witness any such use, and nothing specific should be concluded.

HERMANN’S correspondence with LEIBNIz certainly gives the impression that HERMANN evolved

his results on the catenary slowly and by himself, though they were of course based on the instruction

he had received from JaMES BERNOULLI. After passing remarks on 19 March 1707 and 1] January 1711,
finally on 27 October 1712 HERMANN writes with pride of having established ‘‘a most general proposi-

tion, of which the problemsof the catenary, velaria, etc., are but special cases.’’ Again on 22 December

1712, “...Ido not even require the tendencies or impulses, to which the points of curvesof this sort

are subject, to be only perpendicular to the curves or parallel to an axis, but oblique in any way...”

Had HERMANN obtained this material from JAMES BERNOULLI’s notes in 1705, he surely would

have had no cause to withhold it until 1712.

3) Phoronomia Lib.I, Sect. I, Ch. ITI,
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an achievement of JAMES BERNOULLI'). [We do not follow it here for two reasons. First,

its development is properly a part of the history of the calculus of variations, which has

been written by others?). Second, as in most cases of variational principles, it furnishes

only a detour for mechanics : By the time it was successfully used, the problem of the

flexible line had already been solved correctly by direct methods in cases when there is a

horizontal as well as a vertical load, and in these cases the variational principle does not

hold.]

12. JAMES BERNOULLI’sfirst researches on the elastica (1691—1694). In § 3 of Jamzs

BERNOULLI’s Addition®) appears an “equally outstanding problem’’, to which LErpniz

had drawn his attention in private letters (above, p. 64) : ‘‘the bendings or curvatures of

beams, drawn bows,or of springs of any kind, caused by their own weight or by an attached

B weight or by any other compressing forces...’ (Figure 30). ‘“But

this problem, whether because of the uncertainty of the hypothesis

¢ or the manifold variety of cases, seems to be more difficult than

[that of the hanging cord], although here it is not a question of

lengthy calculation but rather of industry [?]. I have opened the

A approach to this problem by the fortunate solution of the simplest
Figure 30. . ,

James BERNOULLI’s case (at least, under the aforementioned hypothesis on the elon-
drawing to announce the
problem of the elastica

(1691) will allow others time to try their analysis; I will suppress my

solution for the present, and I shall conceal it in an anagram, the key to which, along

gation). In imitation of that most excellent man [LErBNIz], I too

with the demonstration, I will communicate at the harvest festival.”’

[The problem oftheelastic band, or elastica, is indeed of a deeper difficulty than that of

the catenary*).] Not merely a few months but three full years JAMES BERNOUILI heldhis

 FT

1) Q.D.0.M. B.V. analysin magni problematis tsoperimetrici, in actis erud. Lips. mens. Mai.

1697. propositi, sub praesidio JacoBl BERNOULLI..., Basel (1701) = Acta erud. Leipzig, May 1701,

213—228 = Jacosi BERNOULLI Opera 2, 895—920 = JOHANNIS BERNOULLI Opera omnia 2, 219—234.

See Problema ITT. See also No. CCXXXIX of the Thoughts, notes, and remarks, cited above, p. 80.

2) R. WoopHOoUwSsE,A treatise on isoperimetrical problems and the calculus of variations, Cambridge,

1810. C. CanatHtopory,“Basel und der Beginn der Variationsrechnung,”’ Festschrift zum 60. Geburtstag

von Prof. Dr. ANDREAS SPEISER, Zurich, Fiissli 1945, pp. 1—18.

3) Cited above, p. 76. An annotated German translation of §3 by H. LINSENBARTHis given on

pp. 3—4 of Abhandlungen uber das Gleichgeuicht und die Schwingungen der ebenen elastischen Kurven,

Ostwalds Klassiker No. 175, Leipzig (1910).

4) In addition to LEIBNIz’s remarks we have HUYGENS’ comment in his letter to LEIBNIZ of

16 November 1691: “‘T cannot wait to see what Mr. BERNOULLI the elder will produce regarding the

curvature of the spring. I have not dared to hope that one would come out with anything clear or

elegant here, and therefore I have never tried.”
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secret while no one, not even his brilliant brother1), put forward a word on the mathe-

matical theory of elasticity?).

In 1694 JamES BERNOULLI published his solution, The curvature of an elastic band.

Its identity with the curvature of a cloth filled out by the weight of the included fluid. The radi

of osculating circles exhibited in the most simple terms ; along with certain new theorems thereto

pertaining, etc.*). “‘After a silence of three years I keep my word; but in such a way as

right richly to compensate for that delay, which else the reader might have borne with

annoyance,since I exhibit the curvature of springs not in one way only (as I had promised

in the beginning) but generally for any hypothesis on the elongations ; which, unlessI err,

I am thefirst to achieve, after the problem was attempted in vain by many.” After point-

ing out the erroneous opinion of GaLizE0‘), the “‘pure fallacies’ of PARDIES, and the

“plainly preposterous” argument of pt Lana®) on this subject, BERNOULLI continues.

“T said... that this problem is more difficult than the funicular one, and not without

reason, Not to mention other things, I remark that in investigation of the catenary there

are two keys, which lead to two different equations, one of which expresses the nature of

the curve through its relation to its co-ordinates, the other through a relation between the

thread and its evolvent, while for probing the nature of the elastic curve, only the latter

key opens the way. Thus,plainly,it is possible that a person might overcomethedifficulties
 

1) Joann BERNOULLI wrote to DE Montmort on 15 June 1719 that he had shown to L’H6Pprrau

in 1691—1692 ‘‘a very individual analysis of the elastic curve much different from my brother’s.”’

According to Srruss, p. 137 of op. cit. ante, p. 66, footnote 1, there exists a paper of this period which

served as the first draft for the note JOHN BERNOULLI published fifty years later: “Solutio problematis

curvaturae laminae elasticae a pondere appenso,’? Opera omnia 4, 242—243 (1742). The published note

interprets the [HooKxE-] Lersniz hypothesis as asserting that the normal relative displacement of

infinitely near particles is proportional to the moment of applied force. This is a mere ex post facto

affirmation of the law (46) in the linear case, leaving nothing to prove.

2) At the end of a paper printed in May 1692, JAMES BERNOULLI wrote, “‘very soon I will give

the curvature of a spring.”

3) “Curvatura laminae elasticae. Ejus identitas cum curvatura lintei a pondere inclust fluidt expansi.

Radi circulorum osculantium in terminis simplicissims exhibitr; una cum novis quibusdam theorematis

huc pertinentibus, etc.,’’ Acta erud. June 1694, 262—-276 = Opera 1, 576—600. Part of this work is

translated into German and supplied with helpful annotations by LINSENBARTH, pp. 5—17 of op.

cit. ante, p. 88, footnote 3.

4) BERNOULLI attributes to GALILEO the contention that the elastic curve is a parabola, but

nowhere in GALILEO’s works have I been able to find any mention of elastic curves. However,the para-

bolic form of a beam is included amongthe ‘“‘pure fallacies’ of ParprEs (above,p. 53).

5) The book of the Jesuit FRANCESCO DI LANA TERZI, Magistertum naturae et artis, Brixia, 1684—

1692, is long; a cursory search did not reveal either anything concerning elastic beamsor anythingatall

of a definite nature. According to MUSSCHENBROEK,DI Lana “took virtually everything from GALILEO

and Fabri, except for certain physical observations of little worth”; also, his experiments he ‘“‘ex-

tracted from his own head, performing noneat all” (pp. 427 and 506 ofop.cit. infra, p. 151).
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Figure 31. JAMES BERNOULLI’s first publication of the elastica (1694)

of the first problem, yet fail to emerge as victor of the second —a person, namely, who

lacked the second of the keys, which exhibits .. . in simplest and purely differential terms

the relation of the evolvent of radius of the osculating circle of the curve. This was already

known to us at the time we speculated upon the rope, and on his travels my brother com-

municated it soon after to some others [7.e., to 1’Héprtar, Varranon, etc.]. Meanwhile,

since the immense usefulness of this discovery in solving the velaria, the problem of the

curvature of springs we here consider, and other more recondite matters, makesitself

daily more and more manifest to me, the matter so stands that I cannot longer deny

to the public the golden theorem .. .”’

The ‘‘golden theorem”’ is the general formula for the radius of curvature of a curve’).
 

1) Tothis both HUYGENSandLEIBNIz reacted with some sarcasm,since both had been in possession

of the “golden theorem” for some time. HuycEns, for example, had published a statement and proof,

quite clear though synthetic, of a result equivalent to the formula in rectangular Cartesian co-ordi-

 

. ; 1 ad?
nates; see Pars Tertia, Prop. XI of op. cit. ante, p. 47. JAMES BERNOULLI obtains the forms >= ads

d* 1 dad ; ;
= — i and 7 =TaS according as 8 or # is the independent variable. In defense ofBERNOULLI’s

boasting, however, must be adduced the remarks ofHuy@ens and LErsniz cited above (pp. 64, 88); both,
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Forhis solution of the problem of the elastica, JAMES BERNOULLI gives a geometrical

construction described in terms of the elaborate figure above (Figure 31). There is no

proof, but the explanation tells us that the theory is applicable to “‘a rather long hoop, a

stay, a rod, a switch, or any weightless elastic band AQRSyVA, of uniform breadth and

thickness RS, AV,of length RQA, with one end at RSfixed vertically, and if at the other

end AV there acts a force, or if a weight Z is attached there, that is sufficient to curve the

band until its tangent at A, namely AB, is perpendicular to the direction of the weight

AZ, then the concave side of the band will take on the curvature RQA that we have

constructed. The convex side SyV is parallel to it...’ The “line of elongations’” AFC

is “‘any straight or curved line, whose abscissae A# represent the stretching forces, while

the ordinates HF give the elongations.” [That is, JamEs BERNOULLI introduces an arbi-

trary single-valued functional dependence of elongation upon stretching force). The little

springs drawn in the figure at 7'S and ts suggest that BERNOULLI, following LEIBNIZ,

regardsthe fibres of the beam as extensible, but, unlike Lrrpniz, he is taking account of the

bending which accompanies this extension.]

For explanation of BERNOULLI’s ideas we turn to a paper”) he published in the next
 

despite their knowledge of curvatures, considered the problem of the elastica impossibly difficult. As

Brnnovuix1 replied in §I of op. cit. infra, Note 2, “Indeed I knew that that most acute man had not

refrained from study of bending, as he himself once mentioned to me in private letters [above, p. 64],

and to it the notice of my solution published in June 1691 might have inclined him [%.e. again].

I saw indeed that not only was he himself the author of the principle used by me[%. e. the elastic law],

but also that my calculation built upon it (with the sole exception of the above mentioned theorem

[on the radius of curvature]) was so simple, so easy, as will appear from the analysis I subjoin pre-

sently, that I should have wronged him much,had I thought he had known the theorem but not gotten

the solution.”

JAMES BERNOULLI’s solution is indeed a masterpiece of higher order than anything published

concerning the catenary.

1) This has been remarked by Pearson, Appendix, Note A (1) of op. cit. ante, p. 11. With his

usual ability to miss the point of fundamental researchesin elasticity, PEARSON criticizes BERNOULLI

for not using ‘‘the curve obtained by measuring the strains produced in the same rod by a continuously

increasing stress.’’ In fact, like most modern investigators of finite deformation, BERNOULLI uses the

actual force an the deformed state.

2) “Haplicationes, annotationes et additiones ad ea, quae in actis sup. anni de curva elastica, 1s0-

chrona paracentrica, et velaria, hinc inde memorata, et partum controversa leguntur; ubi de linea mediarum

directtonum, alvisque novis,” Acta erud. Dec. 1695, 537—-553 = Opera 2, 639—663. See § I. The same

argument is given in somewhat clearer and more general form in a note by CRAMER on p. 581 of JAMES

BERNOULLI’s Opera.

In JAMES BERNOULLI’s Thoughts, notes and remarks (cited above, p. 80) is no explanation of how

he attained the basic idea of the elastica. No. CLXX, probably from late 1691 or early 1692, concerns

the quadrature of (49), which, he says, is the elastic curve, ‘“‘as I will show in due time.”’ Thus JAMES

BERNOULLI’s published claim of 1691 is substantiated. No. CLXXX containshis first attempt to cal-

culate the numerical bounds (52).
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year (we change notations to conform to Figure 31; BERNOULLI’s new figure is somewhat

clearer in that a differential element of the band at y, with a small spring there, is indicated).

‘¢ .. 1 consider a lever with fulcrum Q, in which the thickness Qy of the band forms the

shorter arm, the part of the curve AQ the longer. Since Qy and the attached weight Z

remain the same,it is clear that the force stretching the filament at y (or, what according

to the usual hypothesis amounts to the same thing, the elongation itself) is proportional

to the segment QP...” [That is, BERNOULLI regards the entire action of the part

QRSy on the part QyVA as equivalent to that of a single spring of tension Ff at y;]

therefore equilibrium of moments requires

(44) Fo=xZ ,

where c= yQ, the thickness, and x=QP. Since c and Z are constant, we have

Fa 2. Tf the elastic law relating elongation t to stretching force is t/b = {(’), where b

is the length A R ofthe whole band, we maythus write ¢/b = g(x), and this is BERNOULLI’s

“curve of elongations’’. “‘And since... the elongation [of the fibre at y] is reciprocally

proportional to Qn, which is plainly the radius of curvature, it follows that Qn... 1s

also reciprocally proportional to...a.” That is, (tds/b):c=ds:r, or

] t
(45) 7=F

[Thus BERNOULLI carefully separates the basic statical principle (45) from the par-

ticular clastic law ¢t/b = g(x). Since he replaces the action of all the fibres of a cross-

section by that of a single spring on the outer edge, and since (44) gives the moment exerted

by this spring about Q as xZ, we may write his combined result in the form

(46) — = f(W), GW = Bending Moment,

defining a general, non-linear theory of elastic bands. The form (46), however, is not that

in which BERNOULLI presents his result, nor was it at first so interpreted. BERNOULLI uses

the form (45), in which appears the extension t/b of the outermost fibre, not only indepen-

dent of the extensions of the otherfibres but in disregard of them. Contrary to the expec-

tation raised by the second spring in the figure, he does not integrate over the cross-

section of the band. Thus (45) expresses the curvature of the innermost filament in terms

of the extension of the outermost. Comparing BERNOULLI’s own form (45) with thealter-

native (46), we may say that he wrought better than he knew.For to introduce the radius

of curvature, he considered the extension of one particular fibre. This is sufficient to

derive (46), but not convincing. What is lacking is an integration over the cross-section,

such as that Lerpniz had effected in a context he interpreted either as neglecting the
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bending or as applying to a beam that assumes a straight form when loaded (above,

pp. 62, 64).

TODHUNTEB') hascriticized JAMES BERNOULLI for considering only the equilibrium of

moments while neglecting the equilibrium of forces. This criticism is just in one context,

ill taken in another. Indeed, the tragic flaw of BERNOULLI’s conception, the flaw which

will cause him time and again just barely to fail of establishing his theory properly and

fully, is his vacillation between the one-dimensional elastic curve and the three-dimen-

sional elastic beam. From the one-dimensional standpoint, a law such as (46) must be

postulated ; by the principle of moments, the form of the band is then determined ; by

EULER’s general equations (562), below, to consider the equilibrium of forces serves only

to determine the line stress, in which we have no great interest, and TODHUNTER’s cri-

ticism falls. From the three-dimensional standpoint, (46) is to be derived from the nature

of the forces acting within the beam, and in this context TODHUNTER’s criticism is perti-

nent. JAMES BERNOULLI, as we shall see, was never willing to face this second problem

squarely even though the special work of LErBniIz might have served as a hint. Uponthis

point will be focused later researches by PaRENT, EvLER, JoHN III BErRNovttii, and

CovLoms.]

JAMES BERNOULLI substitutes the general formula _ =

independent variable, into (45) and obtains

d?y
— Fras? 8 being the

dy S _ 2

since it is assumed that oy = 0 when x =s =O. Hence

Sda

(48) Y Vb2c2 — §2

From this formula, the geometrical constructionis easily derived [but is of no interest].

Returning to the paper of 1694, the unfortunate reader of which had to create for

himself all the essential principles we have just described, we find a number of remarks:

1. If the band is clamped at any point Q and the part RQ is cut away, the remaining

part AQ retains its figure.

2. If RQA is rotated about RZ and clamped at any point q, the same force Z causes

the resulting band to retain its figure.

3. If anysection AQ is rotated about the normal Q7, the resulting band, composed of

two congruent parts, is caused to retain its figure by equal and normal forces Z applied at

its ends, providedit is held at Q@. The sameholds for staves obtained by rotating the whole
 

1) § 24 of op.cat. ante, p. 11.
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curve AQor the curve as supplemented by Aq. “‘Thus one obtains three kindsof staves:

the diminished, the complete, and the extended . . . For the diminished stave, the tangents

at the ends intersect on the convexside, for the extended stave, on the concave side, while

for the complete stave, they are parallel.

‘4, This same curvature is proper to the staves from which barrels are made. Thence

it follows that no one has correctly measured the capacity of barrels, since these are usually

taken as ellipsoids of revolution ...

“5, If the direction of the weight ...is skew to the elastic band . . ., there results a

curve a little different from AQ, and this curve I can determine just as easily. But I do

not wish to dilate.

“6. The rectangle made by the radius of curvature Qn and the corresponding abscissa

EF equals the constant area A BC = AG?.” [This we recognize, in BERNOULLI’s typical

style hidden in the midst of ‘‘scholia and corollaries’, as a verbal statement of the basic

statical principle (45). It is stated again in a special case as the fourth remark following

(49).] Since (0) 0, we see that the curvatureis zero at the free end and greatest at the

clamped end, “‘at least in the case when the elongations increase with the stretching

forces...”

7. If we know the law of elongation and are to find the elastic curve, “in abstract

geometry this is nothing else than to determine the curve AQR from the given curve

AFC,” By (45), the inverse problem is trivial.

JAMES BERNOULLI gives some attention!) to the parabolic law?) t = ka™; then he

takes up the linear case, m = 1. [Though these laws as stated seem artificial, recall that

# ig proportional to the stretching force F, as shown above, and hence BERNOULLI is

in effect assuming that strain « (force)™.] Then (48) becomes

xu2da
—=—————~ ; c = const.
Vct — x!

(49) dy =

This quadrature may be achieved by a construction.

After futile attempts to express this curve in terms of exponential functions, “I have
 

1) While the modern reader will admire BERNOULLI’s careful separation of the particular elastic

model from the general principles of the problem, TODHUNTER(§ 24 of op. cit. ante, p. 11) typically

describes the investigation as ‘“‘more elaborate than necessary’? because BERNOULLI does not descend

at once to the linear case.

2) Historians of elasticity do not seem to have noticed that this is the first non-linear law of

elasticity to be proposedin print; cf. the suggestion of LEIBNIz, above, p. 63. The most extensive list

of special elastic laws is given by R. Meumxe,‘Zum Cresetz der elastischen Dehnungen,” Z. Math. Phys.

42, 327—-338 (1897). MzHmMKE mentions only three from our period: HooKn’s law (18), the parabolic

law above (which MEHMKE attributes to BUirrimcer,cf. below, p. 103), and an inexact form of

RICCATI'S law (81).
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heavy grounds to believe that the construction of our curve depends neither on the

quadrature nor on therectification of any conic section.’’ There follows a list of eighteen

properties of the curve, mainly geometric. No. 2 is that described in the anagram published

in 1691. No. 16 gives series for the displacement y(c) and the arc s(c) at the end, c being

the length: 1

y(c) ede 2  (2n —1)!!
¢ J vi-e ttenai 2%(4n + 3)n! ?

0
1

s(c) dé oc 6(2n — 1)!!
= ——— = 142
ice: r
0

 

 

(50)
  

Cc n=1 27 (4n + l)n!

(From his manuscriptnotes?) and from a later publication?) we know that JAMES BERNOULLI

had integrated term by term in the powerseries expansion of the integrands, obtaining

ue) 4 (2) 45 (2n — 1)!! (2),
  

  

Cc Cc nat 2°(4n + 3)n! \c

(51)
S(t) & 2 (2n —1)!! /w\ten

c).|.UOC«™SG +e 2%(4n + 1)n! (=)

From (50), Brrnovuryi has calculated the bounds

(52) 0,598 < ue) < 0,601, 1,308< 20) 1,316.

Remark No.18 states the identity of the lintearia with the [rectangular] elastica and

agoorte fivo propertics, of which the last is a variational principle : “... among all curves

of a given length drawn over the same straight line the elastic curve is the one®) such that

the center of gravity of the included area is the farthest distant from the line, just as the

catenary is the one such that the center of gravity of the curve is the farthest distant .. .

“It would remain now, under the common hypothesis regarding the elongations, to

investigate the kind of curves engendered whentheelastic band is bent by its own weight

in addition to the suspended weight; if it is bent simultaneously at each end; if its thick-

ness or breadth is not uniform or, for example,if it is of triangular shape or any other and
 

1) No. CLXXVof the Thoughts, notes, and remarks (cited above, p. 80), written late in 1691 or

early in 1692. The numerical bounds are obtained in No. CCXVII; the quadratures are studied in

No. CCV, the end of No. CCVII, and the second of the sections numbered CCXXVIII. Theelastica as a

variational problem is mentioned but not properly treated in No. CCXXXIX.

2) § LVI of Positionum de seriebus infinitis ... Pars quinta, Basel, 1704 = Opera 2, 955—975.

3) As BERNOULLI remarked later, he means hereto restrict attention to curves of a fixed length.

See p. 836 of the reprint in James BERNOULLI’s Opera, p. 227 in JOHN BERNOULLI’s, of op. cit. ante,

p- 82, footnote 2.
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if the bending force is applied first at the apex, then at the base. Also, what should be the

curvature of the band in order that from an attached load or from its own weight or from

both together it assume the form of a straight line (this would be useful in designing the

arms of balances and axles, where it is required that the centers of the motion and of the
suspended bodies be collinear). Also, what shape should be given to a band in order that
through bending it take on a given curvature, and a thousand other things of this kind.

Of all these curves I can exhibit the characteristic properties, and of some even the con-

structions ... but many things I have not yet assimilated, nor is it given to one person

to work at all things. Besides, something should beleft to the industry of our readers, for

whom thereis thus ample opportunity to complete our discovery.”’

[It is difficult to find words to describe the power and beauty of this paper. Among

other researches on materials published in the seventeenth century, only NewTon’s

essays on fluids might be compared to it. By this, JAMES BERNOULLI at once regained the

superiority he had temporarily lost when overtaken not only by Lerpniz and Huye@ens

but also by his quick and brilliant younger brother Jon in the matter of the catenary.

The form of the elastic band, the deepest and most difficult problem yet to be solved in

mechanics, is his alone.]

13. JAMES BERNOULLI’S attempts toward a theory of the neutral fibre (1695—1705).

LEIBNIZ, generous as usual, recognized at once what JAMES BERNOULLI had done; in

particular, he praised him for avoiding special hypotheses and considering a general law

of elongation!).

HUYGENS was not enthusiastic. In a letter to Lurpniz of 24 August 1694, part of

which, with its expression somewhat softened, was quickly published?), he wrote, ‘‘ I find

Mr. BERNOULLI's three years’ work quite considerable, provided that all he contendsis

true ; also he boasts much overit. As for the principle of the spring, I think he has usedit

well, and that it is true that the rays which measure the curvature are in the inverse ratio

of the forces that bend the spring, although, in my opinion, it is not only the exterior

surface that extends but also the interior one simultaneously shortens . . . If this principle

were not the unique and true one, but rather the line AFC were a curve depending on
 

1) See the second paragraph of LErBNiz’s “‘Constructio propria problematis de curva isochrona

paracentrica,’ Acta erud. August 1694, 364—375 = JacoBr BERNOULLI Opera 2, 627-637. In his

letter of 27 July 1694 to HuyeeEns, with which he inclosed BERNOULLI’s paper in print, LEIBNIZ

writes, ‘I think it is always true that the elongations are as the forces, but it is not always right to

take the elongations as the changes of length in the body, because they depend rather on the changes of

solid content ...,’’ but instead of pursuing this penetrating line of thought, which might have led to

a concept of local strain, he gives reasons for being personally unwilling to study elasticity any further.

2) “Hacerpta ex epistola C. H.Z.ad G.G. L.,”’ Acta erud. Sept. 1694, 339-341 (second pagina-

tion) = JACOBI BERNOULLI Opera 1, 637--638 = Ciuvres complétes de Huycens 10, No. 2874.
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infinitely many experiments, I should find all his research very vague andlittle worthy

of time spent. And even now all he has found seems of no use to me, but only such very

beautiful and subtle pastimes as one finds when one has nothing on which to employ

mathematics more fruitfully.

“It is a strange assumption to take the quadratures of every curve as given, andif

the construction of a problem ends with that (apart from the quadrature of the circle and

the hyperbola), I should think nothing accomplished, since even mechanically one does not

know how to carry anything out...

‘ Mr. BERNOULLI hasLae €

determined the curvature of the |!

arc A only in the case when the A

tangents at the ends H#, F are

parallel, which I consider joined €

by the string HF (Figure 32). It Figure 32.

would remain to give the form of Ht Bent formsof an elastica

the true arc B; again, of C, the eX suggested by Hoxanns (1694)

extremities of which point toward q

one another; of D, where they come together, and of G, where they pass beyond and

are held by a rod HJ.’’ He goes on to express his doubts of BERNOULLI’s results until

he sees the proofs’).

To these criticisms BrERNoULLI responded in his usual gloomy and massive style?).

“Since what I published in recent years . . . the illustrious geometers Mr. Huygens and

Mr, LEIBNIZ have deigned to subject to special examination, where some parts they have

approved, others, more hidden in statement, they have augmented by conjectures, while

here they have raised scruples and there they have expressed their open disagreement, I

have decided to add somelater thoughts to the former ones, and to explain with order and

candor the several matters as they appear to me, so as both to satisfy the wishes of those

most famous men and also to bring the purer sparks of truth from the hiddenrecesses of

nature more and more into the daylight ...

“That the radii of curvature are inversely as the stretching forces (more truly, as the

elongations), which both those very famous men consider me to have used as a beginning,

is learned from the equation first discovered [t. e. (45)] and is a conclusion rather than the

beginning, as I said distinctly amongthecorollaries, see Corollary 6 of the first construction

 

1) In his letter of 14 September 1694 to Huya@ens, andalso in an addition to the publication of

HuvuyYGENScited in the preceding footnote, LEIBNIz suggests that cases BCDG can be obtained by

extending the curve A or by taking only a partof it. This is false.

2) Op. cit. ante, p. 91, footnote 2.
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and the fourth Corollary of the third construction (above, p. 94). The principle I in fact

used assumes that any point on the concave surface of the spring may be regarded as the

fulcrum of a certain lever. This principle is the sameas that introduced by the most acute

LEIBNIz... (see p.61, above). Thus if Mr. Huyerns felt some doubts concerningit,

thinking that not only is the outer surface extended but also the inner contracted, he should

have madethis objection to Mr. Lzrsniz, not to me, who only adopted this ten years later

from the authorof the principle. But I admit that when I first thought about this matter

the same objection came to mind, since anything susceptible of extension should be sus-

ceptible also of compression.”

JAMES BERNOULLI proceeds to analyse the bending of a beam such that the upper

fibres are extended, the lower ones contracted. In his figure (Figure 33) we see that TSA,

=.

Rm, /

GO Figure 33.
rN, H JAMES BERNOULLI’s first

—~__] oa pf consideration of
B.- ' . the neutral fibre (1695)

 . Lg

wor ame to maces sacs teens cercece "]mereeePf
ca

oo”-
r*

a 
 

 

    iz ghey +

“the line of fulera’’, is the neutral fibre), while the curve BAC is the curve giving the

elongation BD as a function of the stretching force AD and the contraction EC as a func-

tion of the compressing force AZ. “‘... the part AC should have an asymptoteparallel to

the axis AE, since nothing can be compressed more thanits total length ; thus, plainly,

W

all sorts of parabolic or hyperbolic lines and the straight line itself are excluded.”
 

1) Historical writers always fix upon someoneelse to whom to attribute the concept of the neutral

fibre. Thisis its first explicit appearance. However,the existence of such a fibre is implied by thestate-

ment that the outer fibres are extended while the inner ones are contracted, which had been positively

asserted by BrEEcKMAN (1620), Hooker (1678) (above, pp. 27, 55), and Huyerns (1694) (above, p.

96), possibly also by Marrorre (1684) (above, p. 60), and is in any case sufficiently obvious, though

difficult (for that time) to use profitably in a mathematical theory.
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In this paper JAMES BERNOULLI gives only his conclusions, without analysis. He

assumes that half of the bending momentis used for extending the upperfibres, the other

half for compressing the lower ones?). ‘‘It can be established . . . that if the curve of exten-

sions A B and the curve of compressions are similar and like curves ..., as for example if

BAC were a straight line ..., the construction from here on will agree with that which

I published in June 1694, excepting only for the quantity of the applied weight, and that

the line of fulcra AS, which was there put on the concaveside of the spring, is now in the

very middle...”

[These conclusions are clear and entirely correct : (A) The lever arm of the applied

weight, at each cross-section of the beam,is its distance from the neutral line, and (B) If

the fibres respond symmetrically to push and pull, the neutral line is the central line. These

results are usually attributed to later authors, perhaps with somejustice, since BERNOULLI

has obtained them, as we shall see now, only in consequence of a wrong hypothesis,

namely, that the stretched and shortened fibres contribute equal shares to the bending
B moment.|

Figure 34, JamEes BERNOULLI’s
second consideration of the neutral To learn Jamis Brr-
fibre (1696, not previously published) NOULLI’s reasoning, we

turn to No. CCL of his

Thoughts, notes, and re-   

 

marks?) ; this note, writ-

ten after 1696 and hence

a little subsequently to the published paper, is

called Curvature of the elastic band when it is sup-

9 posed that not only 1s the outer surface extended but also the inner surface is contracted. Here BERNOULLI

A attempts to integrate over the fibres making up the

z band.

In Figure 34, “Let the band 7'SA be curved
 

1) This appears to be the only basis for the explanation supplied by Cramer on pp. 643——644 of

JAMES BERNOULLI’s Opera. In this note all the extended fibres are represented by one spring on the

convex side of the beam,all the contracted ones by another on the concaveside: ‘“‘“Many things induce

me to suspect that the analysis of the author was not very different from this. Nevertheless, I should

not like to assert it positively, lest I should seem to attribute to him a solution laboring under not one

defect only, such as is that substitution of the [outermost] fibre rV for all the extended ones and of

the [innermost] fibre qZ for all the compressed ones. When he noticed this, he undertook to consider

the problem again”[in the memoir analysed below, pp. 105—109]. In the surviving papers of JAMES

BERNOULLI the only indication that he used so crude a model is a sentence we quote below (p. 105)

from his paper of 1705.

2) Cited above, p. 80.
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by the weight ab attached at A, and thelittle convex part HV extended to F, while the

concave IX is contracted to G', so that VS_X acquires the location #SG, which produced

meetsHI [produced] at the center of curvature 1. The point to be found,or S, lies in the line

VSX , with the property that as muchforce [z.e. moment] is available for extending the part

of the band HS through AVSF as for compressing the other part through A SGX.” The

segment vq is the elongation of a typical fibre at the element ds; thus vy = ae , where

ais the thickness HJ, and where z is a certain function of the stretching force 0 given by

the upper curve: x =2(0). Setting f= VS, the thickness of the stretched part, we have

Sv=f= Jn , where p is the value of z at the convex side ; with q the counterpart for

ap _ aq
? G — —

Prd op +a
ted by the fibre vm about S is then 0£d§ = I Oxdx. Thus for the total moment 7,

exerted by the stretched fibres we have P

the concave side, we have VS =f = . The momentexer-

 

 

2 2
(53) Ms = EJ onda= 9)? fOxdx ,

(p +

and a similar result holds for the moment 7, of the compressed fibres. BERNOULLI’S

hypothesis, stated above, is WZ, = W,. Whatever the form of the curve of tensions, this

fixes the point S [which he is later to call the center of tension] where the neutral fibre

meets the cross-section ; in particular, in the case of an odd curveof tensions the point S

is the midpoint. To relate these results to the radius of curvature, BERNOULLI observes
2

that VF/VS = HV/SM; this gives SM =r = or 7
[To understandthis near miss and the complexity of the analysis, we remarkfirst that

BERNOULLI wishes to avoid any hypothesis regarding the tensions of the fibres. Every word

shows that he is thoroughly familiar with the linear case and its properties. Instead, how-

 

ever, of balancing the force, as is necessary (cf. the criticism of TODHUNTER, above, p. 93),

he proposes the special condition WZ, = WH,. On the one hand,there is nothing to recom-

mend his condition; on the other, no modern treatment attempts this degree of

generality. Far from being unaware of the problem of location of the neutral line, BER-

NOULLI attempts to solve it! (Recall that in modern theories of bending, such as Sr.

VENANT’s, the location of the neutralline is in effect assumed, not demonstrated.)

Disregarding the condition 77, = W,, let us retrace JAMES BERNOULLI’s argument.

If td& = f(e)dé is the stretching force on a typicalfibre of height dé in the cross-section,

« being the strain, from the above equations we infer the correct result

(54) Gt= § tkdé .

But this is not enough. What is missing is the geometrical relation « = €/r, by which
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the strain ¢« of a typical fibre, not merely that of a fibre on the surface, is related to r.

From (54) now follows

(55) TW = (=)dé = Kr°F (=) ,

where K is a modulus having the dimensionsof [Force]/[Length], and where F is a dimen-
3

sionless function which in the case of the linear elastic law reduces to a multiple of (F) ,

Thus JAMES BERNOULLI’s argument again leads to a general, non-linear theory of elastic

bands, for (55) is the inverse of (46). This time, however, his program is more ambitious;

an essential step is missing, and the result (55) may not be regardedas fully established by

him.

No other problem we shall discuss in this history is as difficult as this one, which

remains today unsolved), nor shall we encounter any other scientist who approachesit.

The results JAMES BERNOULLI obtained here, while incomplete and partly unjustified, may

serve as measures of the man.|

In the paper published in 1695 BrerNovuLuii remarks that as regards the forms of

elastic curves in Figure 32 HuyGeEns, [as sometimes happens with senior scientists, ] had

not read carefully the work he criticized. ‘““But since I see that those most acute men have

expressed so many conjectures on this subject, it will be worthwhile to treat the whole

matter openly.’’ From the very beginning (above, p. 94), BERNOULLI claimed to give only

a special case, and in his [third and] fifth scholia he mentioned expressly the other pos-

sibilities. Moreover, his general argumentis easily adjusted to cover these cases : We need

only supply in (47) the constant of integration there set equal to zero. [Thus follows

 

 

(S + C)dx56 dy =eo) 1 Vat — (8+
which BERNOULLI gives in the linear case, viz

(v2 + ab)dx
 (57) + dy = 
Vat — (x2 + ab)?

[On this differential equation are founded all later researches on the inextensible

elastica.] BERNOULLI notices anotherpossible form (Figure
 

 

4 F 35), for which the bending force is applied not directly

B to the band itself but at the ends of the rigid rods AF

C ig and COG; this loading is suggested in the interpretation

of the lintearia, where fluid fills not only the cloth A BC

Figure 35. but also the space between the rigid walls AF and CG.
JAMES BERNOULLI’s conception of a j ;

band bent by couples (1695) [This device allows the moment to be adjusted inde-
 

1) I. e., to determine the law of bending and to locate the neutral line when the fibres obey an

arbitrary stress-strain relation.
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pendently of the force; 7. e., it visualizes a couple in addition to the moment of a

force?).]

Ten years after the appearance of JAMES BERNOULLI’s second paper was published

a work by VARIGNON?), [where we find no new ideas but a somewhat fuller and clearer

mathematical treatment. VARIGNON follows JAMES BERNOULLI] in using at first an arbi-

trary law of the tension as a function of the distance from the lower side of the beam ;

[thus it is his merit to separate, explicitly and clearly, the purely statical problem from

the particular elastic hypothesis. The subject, however, is only GALILEO’s problem of rup-

ture (above, p. 38), not BERNOULLI’s problem of bending,] and all Varianon doesis to

carry out more explicitly the integration over the cross-section [which LEIBNIz executed

in a typical though not clearly explained special case (above, pp. 61—62). At that, the

analysis of VARIGNON is unnecessarily complicated ; the sameline of thought waslater put

 

1) Here we describe some subsidiary researches given at about this time in Jamms BERNOULLI’s

Thoughts, notes, and remarks (cited above, p. 80).

No. CXCVIII, ‘‘To find the shape of a stretched rectangular

cloth A D,’’ containstheearliest attack upon a two-dimensional elastic

problem. A fabric of threads (Figure 36) is pulled apart by therigid

rods APB and CD. The hypotheses are not clear. The equation is

“HI:LM — AN:KO, that is, the differentials are as the integrals.”

With AN5 as the y-axis, the reasoning seems to consist in observing

 

 

. . . d
that the y component of tension in the thread AZ is then 7= , and

this is equated to a force of extension of the cross threads of amount

Ky, of, more reasonably, K(a + y), whereais a constant. This gives C

 

d - - - 9 eek
pvK(2 + y). This noteis prior to James BERNOULLI’s develop-  ~ <D

ds Figure 36. JAMES BERNOULLI’s
ment of the general idea of tension; he seems to take 7 here asa sketch for a theory of an elasti¢
constant, which it cannot be. fabric or membrane (c. 1695)

No. CCLI and an entry added later to No. CCLXXII were printed in slightly expanded form as

No.IX, pp. 1030—1032, of James BERNOULLI’s Varia Posthuma, Opera 2 (1744). The question is,

‘‘whether a taut spring when the stretching force is released restores itself simultaneously to straight-

ness in all its parts, or whether in some parts more quickly, in others more slowly?”’ While NicHotas I

BERNOULLI, the editor, seems to follow the argument, I cannot. The beam is regarded as a set of parallel

and not coupled fibres, which are extended by different amounts; the stretching forces are arbitrary

functions ofthe elongations. BERNOULLI concludes that “the bow springs back more quicklyinthe parts

enjoying a greater curvature...”

No. CCLXXIII, Discovery of the center of tension, appears as Varia Posthuma No. XXVI, pp.

1105—-1108. Herethelineoffibres is attached to a rigid hinge. The center of tension is defined as above,

p- 100. The argument, connected with the foregoing,is obscure.

2) ‘Dela résistance des solides en général pour tout ce qu’on peut faire V@hypothéses touchantla force ou

la tenacité des fibres des corps & rompre,et en particulier pour les hypothéses de GALILEE et deM. Mariorre,”’

Mém.acad, sci. Paris 1702, 4t° ed., Paris, 66—94 (1704) = 2nd. 4to ed., Paris, 66—100 (1720).
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Figure 37, VaRIGNON’s analysis of the forces acting upon a cross-section of a loaded beam (1702)

more directly by Birrrncer!).] In Varienon’s figure (Figure 37) the typical fibre Hh

is extended, and it is assumed that at a certain load K = BG a unit fibre will break.

Integration yields GALILEO’s result (12) for the absolute resistance P,. To calculate P,,

which Varienonlater (§ XIII, 4°) calls the “relative resistance”, set HH = dx, HF =y, I—Iiv

DH = x, and let KH = F(x) be the tension in a unit fibre at the height x. Since the

1) “De solidorum resistentia specimen,” Comm.acad. sci. Petrop. 4 (1729), 164—181 (1735).

See § 13, where BULFFINGER criticizes the “‘detours’”’ of VaricgNon. BULFFINGER’s paper is a just,

scholarly, and critical exposition of the subject as it stood in 1729, with the unfortunate omission of

PaRENt’s best work. In the current Russian literature BULFFINGERis often cited as the author of the

powerlaw of elasticity that was in fact introduced by Lrersniz in a special case, by JAMES BERNOULLI

in general, and was used by VARIGNON.
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uppermost fibre x = D breaks when the tension is K, we have F(D) = K, as indicated

in the drawing. Balance of moments about the fulcrum AC yields

(58) Pil = Jf Fyxdx =f FadA ,

where | = DT, the length of the beam. These results constitute Vartanon’s ‘“‘Funda-

mental Rule’.

For GaLiLEo’s hypothesis of rigidity up to fracture, we have F = K, and (58)

becomes

(59) Pil = Kz,,

where x, is the distance of the center of gravity from the axis AC. Therefore

(60) 1» Ho

yielding GALILEO’s formula (11) in all cases when the base is symmetrical about the hori-

zontal line through the midpoint of DB, so that x) = 4D.

On the [Hooxse-] Mariotrse-Lersniz hypothesis we have F = Ka/D, and (58)

then yields Lerpniz’s formula (20) in the explicit and general form?)

(61) M=Pyl=FI.

For a rectangular cross-section this reduces to LErBniz’s result P,/P, = 4D/l.

[True, Vartenon tacitly supposes that the fibres on the concave side are unextended,

but this error does not invalidate the argument : placing the neutral fibre where we will,

we still derive (61), where J is taken with respect to the unstretchedfibre.

Following James BERNOULLI,] VARIGNONconsiders also the power law F = K(x/D)™.

Under this assumption, (58) becomes

(62) Pyl= KD-™ [amd ;

[as was to be remarked by Bturrinarr?), for a rectangular cross-section this yields

Pp 1 D
(88) Pome7
and thus by choice of m yields any numerical factor desired’).
 

1) VariGNon expresses this result in terms of the center of percussion.

2) § 14 of op. cit. ante p. 103.

3) BULFFINGER seems to be the first since LEIBNIz (above, p. 63) to have tried to compare a

non-linear elastic relation with experimental data. He says that m = 3 fits the experiments of Ma-

RiorrEe for wood; m = $4, for glass. The former value fits also James BERNOULLI’s experiments on
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Most of the rest of the paper consists in applications of the fundamental rule. In

particular, at least for rectangular cross-sections we have P,« AD/1l according to both

hypotheses, and hence the formsof solids of equal resistance will be the samefor both,[as

LxEIBniz had asserted. Indeed, we nowsee that this result follows by dimensional analysis,

so long as bending is neglected.]

Similar reasoning yields a rule for a beam broken byloads applied at both ends, and

similar corollaries follow.

[Thus VARIGNON succeeds only in putting into somewhat more explicit and general

form the ideas of LEIBNIz, applying statical principles correctly but neglecting the bending

of the beam.]

Like Huyaens before him, JAMES BERNOULLI leaves our scene in the grasp of the

same problem with which he entered it ; moreover, his last work concerns the topic which

first drew him into the higher analysis, namely, the strength of a beam. A few months

before his death he finished his last paper, True hypothesis on the resistance of solids, with

a proof of the curvature taken on by bodies acting as springs!). He writes that his own work

of 1695 is “‘rather imperfect, considering ... only the fibres on the exterior of the bent

surface, while in fact one must take accountofall the fibres going to make up its thickness...

‘“‘Lemma I. Fibres of the same material and the same greatness, or thickness, drawn

or pressed by the sameforce, stretch or shrink proportionally to their lengths.” [I.e¢., if 1

is the length and Al the elongation or changein length, we have

Al
(64) = ; = f (material, A, F),

A = cross-sectional area,

F = stretching weight.
 

gut strings. See §§ 17-20 of BULFFINGER’s paper. In §§ 25—33 he goes on to suggest (1) the laws of

compression and extension may be different, [as had been contended but later retracted by JAMES

BERNOULLI, see pp. 99, 106—107,] (2) the position of the neutral line should enter the theory as a

parameter, to be adjusted so as to fit measured values of Pp/P;, and (3) the resistance of the cross-

section should be measured by the momentof the stretched fibres about still a third point, neither

the bottom fibre nor the neutral one. Cf. the prior researches of Parznt, § 14, below.

1) ‘“‘Veritable hypothese de la resistance des solides, avec la démonstration de la courbure des corps qut

font ressort... Lettre du 12 mars 1705, Mém.acad.sci. Paris 1705, 4° ed., Paris, 176—186 (1706) =

gnd 4to ed., Paris, 176—-186 (1730) == 12™° ed., Amsterdam, 230—244 (1707) = Opera 2, 976—989.

No. CCLXXX of the Thoughts, notes, and remarks (cited above, p. 80) is a preliminary version; our

Figure 38 is taken from it.

No. CCLXXXII, which just precedes a piece dated ‘‘1 9ber 1704’’, applies the theory oftheelas-

tica to determine the form of a cam such a thread wound aroundit and attached to the end of a leaf

spring exerts a constant torque on the cam while unwinding. This piece appears as No. XXVIII,

pp- 1115—1118, of the Varia Posthuma. On p. 337 of his work on the spring (cited above, p.54),

Hooke hadwritten, ‘‘It will be easie to calculate the proportionate strength of the spring of a Watch,”

etc., but of course HooKE, who in any case was given to pronouncing as “easie”’ calculations quite

beyond his own powers, assumeda linear relation between force and deflection.

XITTI—XXIV

XXI

XXV—
XXXIV
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Thisis the first explicit appearance of the strain since BEECKMAN’s assertion (7), but JAMES

BERNOULLI, as we have seen, has used (64) implicitly and without commentin his earlier

proofs. The proposition (64), of course, is a postulate ; the alleged “‘proof’’, while circular,

is plausible, akin to that given by GALILEO and MariotrTsto showthat a long cord and short

one break under the sameload.]

“LemmaII. Fibres that are homogenousandofthe same length butof different great-

ness or thickness are stretched or shrunk equally by forces proportional to their greatness.”’

(I. e.,

(65) Al = j (material, l, =) ;

Thisis the first explicit appearance ofthe mean elastic stress F]A; cf. GALILEO’s formula (12)

for rupture. The “proof’’, again, but restates the lemma. Combining (65) and (64) yields

the assertion that for a given material

_M  _ iF.(66) e= f(r), where «=> t=7:

thus BERNOULLI is thefirst to introduce a stress-strain relation as distinct from a formula

such as Hooxknx’s for elongation Al as a function of applied force F. This, too, must not

be exaggerated, since still more than a century ahead lie the local concepts of stress

and strain used in modern theories of materials. BERNOULLI refers here only to simple

push or pull, and his explanations indicate also that he regards the phenomenon as

occurring homogeneously over the length and cross-section of the specimen. But Lemmas T

and II together assert that there is an elastic law, viz (66), which is common to all specimens

of a given material, be their lengths and areas what they may. It is the first time since

GALILEO’s formula for rupture that a material property appears in rational mechanics.

James BERNOULLI’s insistence upon full generality, however, prevents him from exploiting

(66) in the linear case, when it becomes + = He, the modern ‘“Hooxn’s law”’ relating

stress and strain, nor does he comment that it implies the existence, as for dimensional

reasons in fact it does, of a material constant H having the dimension of tr, 1. ¢., of stress.]

LemmaITI asserts in effect that if = =a , t.e.,if He ~v for small values

of « ; then =

(67) He<t.

The reasons given are (A) « = — 1, since it is absurd for a fibre to be compressed more

than its entire length"), (B) ‘It ought to be the samefor the extensions, since an extension
 

1) This plainly correct observation, which JAMES BERNOULLI had phrased in other terms in 1695

(above, p. 98), is called ‘‘rather an idle argument’? by Prarson, § 22 of op. cit. ante, p. 11; it is

approved by D’ALEMBERT (Encycl. 5 (1753), art. ““Elasticité’’). TODHUNTER (§ 20) describes LemmaITI

as “‘strictly true, but ...not of great practical importance for our subject...” In fact Lemma III

is not always true; cf. p. 115, below.
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is nothing else than a negative compression” [thus BERNOULLI has retreated from his

correct opinion of 1695 that compression and extension follow different proportions],

(C) the relation (67) is borne out by BERNOULLI’s experiments on the stretching of a gut

string a yard long [the same as he reported to LEIBNIz eighteen years earlier (above,p. 63).

The quantity # is what is now called the ‘“‘tangent modulus of elasticity” ; it does not

appear explicitly in BERNOULLI’s wording of Lemma IIT, which amounts to an assertion

that bodies which remain elastic respond morestiffly beyond the linear range.|

LemmaIV asserts, in effect, that the moment required to bend a beam a given amount

is independent of the position of the neutral axis. [This, as has been remarked many

times), is false, and the two proofs BERNOULLI presents are fallacious. ]

Problem I is GaLiLxo’s problem. Here BERNOULLI finds VaRienon’s formula (58),

except that he uses the extension rather than the altitude as independent variable. In

applying the result, however, he employs (67) to show that P, <4P,, as is confirmed by

MaRiIoTrE’s experiments. The simple proof rests on [VARIGNON’s] assumption that the
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Figure 38. James BERNOULLI’slast analysis of the elastica (1704)
 

1) H.g. on pp. 983—984 of JamMES BERNOULLI’s Opera 2 by Cramer, the editor, who says “‘it

would require a volume’”’ to treat the following two problems correctly.
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beam breaks in bending when the uppermostfibre suffers the stress just sufficient to break

that samefibre in simple pull.

Problem II gives James BERNOULLI’s final treatment of the bending of an elastic

beam (Figure 38).

[He is now somewhatfurther from the right approach than he wasin the unpublished

note explained above, pp.99—101.] Again he calculates the moments acting on the cross-

section, but then he invokes the [false] Lemma IV to relate the extension of the inner-

mostfibre to the contraction of the outermost, and these two are then expressed in terms

of the radius of curvature. The result is an equation of the form (56).

The papers published in JAMES BERNOULLI’s lifetime do not exhaust his basic con-

tribution to our subject. A note) from about 1694 is called, To find the curve which an

attached weight bends into a straight line ; that ts, to construct the curve a? == sR. Written

before his first paper on theelastica, it gives the foundation for his claim there that he

could exhibit the “‘characteristic properties”’ [¢. e. the differential equation, efc.] of ‘“what

shape should be given to a band in order that through bending it take on a given curva-

ture.” The text of the fragment concerns only the integration of the differential equation

stated in the title,

a

(68) f= — Pp?

and does not mention the elastic band; in publishing the work in 1744, Nicnouas I

BERNOULLI writes, “I have not found this identity established.”’ [Small wonder, since to

set up the differential equation for this problem two prerequisites unpublished in 1744

were required : (A) formulation of the tnverse problem in theories of finite deflection, and

(B) the theory of naturally curved bands. NicHoLAS I BERNOULLI was an able and well

informed mathematician, who annotated his uncle’s posthumous fragments with insight

and precision. Nothing could show more clearly Jamzs BERNOULLI’s gigantic dominance

of rational elasticity than this incomprehension, nearly forty years after his death, of

those parts of his principles he did not publish in detail. For the law of an elastica endowed

with natural curvature BR is

1 1
(69) TEX —— — se 5

in the inverse problem,r is given and # is unknown.If the elastica is to be straight when

loaded, we have 7 = 0, andthemoment 77= Wx=WNs, where x refers to the straight,

loaded form. Thus (68) follows. Not only does this show that JAMES BERNOULLI was in
 

1) No. CCXVIof Thoughts, notes, and remarks, cited above, p. 80, published in slightly expanded

form as No. XX, pp. 1084—1086, of the ‘Varia Posthuma,” Opera 2, 1084—1086.
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possession of (69) but also, as it were, from the very grave heclaims his own,for in the

same year as this fragment wasfinally published appeared also EULER’s treatise on elastic

curves, where (69) is asserted and (68) is derived (see below, pp. 214—215). Both publications

have escaped notice in most modern expositions of the theory of theelastica.]

JAMES BERNOULLI obtains a ‘“‘construction” for (68); [it is not enlightening, as it

does not reveal that the curveis a spiral, nor is this indicated byhis figure.

Wepause to salute the great man whohere leaves our history. In our epoch for study,

1638—1788, but one other, EULER, is to build himself a like monument in our subject.

JAMES BERNOULLI reached deepest of all the students of continuum mechanics of his

century. In the theory of perfectly flexible lines in the plane, he derived the general equa-

tions and thus, had his work been known, would have closed the subject. While in the

theory of elasticity he attacked but one problem,it is of the deepest conceptual difficulty

as well as central, indeed the elastic problem for a hundred years. Approximations were

abhorrent to him; resolutely he put his entire strength upon problems of finite deflection.

His solution (56) is correct; today it remains a landmark, the classical specimen for a

theory of large deformation. That, as we have seen, his treatment is bound closely to

earlier work of GALILEO and LErIBNiz, does not lessen its originality but rather fastens

its relevance. To the ironies and disappointments which filled Jamzs BERNOULLI’s life

must be added that while he originated or assembled all the apparatus sufficient to put

(56) on firm ground, he failed to do so, failed because his attempt was on too grand a

scale,]

14. PARENT’s researches on the neutral fibre (1704—1713). [The researches of

Parent are of greater value for the sciences of elasticity and strength of materials than

any others done in France in the 150 years between Mrrszennn’s day and CovuLoms’s.

Granted scarce notice in ParEnt’s lifetime, they were forgotten until TimosHEnKo read

and described some of them!). PaRENT was an unusual scientist in that he performed many

experiments yet was able to contribute to the theory as well.
 

1) § 11 of op. cit. ante, p. 11. Here I add a few supplementary remarks.

PaRrENT (1666—1716) is a scientist of wide attainments and considerable originality, deserving a

special historical study. The following remarks are drawn partly from FONTENELLE’s frank “loge”

in Hist. acad. sci. Paris 1716, 88—93 (1718), and partly from his own works. ParEntT seems to have

been the most active and creative person associated with the Paris Academyin the years 1699—1716.

“The great extent of his knowledge, joined to his natural impetuousness, led him often to contradict

upon all subjects, sometimes precipitately and with little tact.’ But a small fraction of the works he

presented to the Academy appear in its publications. His writing was obscure; this gave the academ-

icians the excuseofnot trying to understand him. That his papers were rejected, however, is morelikely

because he wasjustly critical not only of classic writers like DEscarTEs and HuyGeEnsbut of eminent

but now deservedly forgotten colleagues as well, and perhaps also because his own researchesare of a

quality superior to most others published by the Paris Academy at the time.
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At first Parrent’s researches followed closely the work of LEIBNIZ and VARIGNON.|

As early as 17041), he noted that [VaRIGNon’s] formula (59) implies [GALILEO’s] proportion

 

His papers in the volumes of the Academy are mostly short and uncontroversial summaries of

experimental data. Even the Histoire scarcely mentionshis activity after the favorable comments in

the volume of 1700 (mentioned below, p. 378), just after he was attached to the Academyand pre-

sumably before his personality became well known.Forhis deeper studies, he had to find anotherissue,

so he began in 1705 “‘a kind of journal, called Recherches de mathématique et physique, which appeared

anew, much enlarged, in 1713.” I have not seen a copy of thefirst edition; the second is Hssats et re-

cherches de mathematique et de physique, nouv. éd., Paris, Jean de Nully, 3 vols, [xlvi] + 472 + [84]

+ 156 + [viii] pp., [ii] + [781] pp., [viii] + 528 + [80] pp., 1713, miserably printed, confusingly

paginated, and full of misprints or errors of inadvertence; lists of corrigenda and revisions occur here

and there. In these articles PARENT published systematic and critical reviews of the works of others;

it was this practice, fraught with peril then as now, that had all but caused the Journal des S¢avans,

the first scientific periodical, to founder after its first year (1665). The preface to the Hssats is an

interesting document in the history of scientific independence.

The obituary tells us that PARENT wasleft in oblivion because of his known obscurity as a writer,

“the dislike he drew upon himself by his free criticism, the little order, or rather the disagreeable

order of the material, and the awkward form of the volumes .. .’’ Although he published prolifically, he

left many unpublished papers behind him;the obituary states that some of these are complete treatises

and names the executor of the estate.

Obscure writing and tactlessness contribute but do not suffice in explanation. PARENT was one

of the first writers to use the new mechanicsfor practical analysis of machines; see, e.g., his remarkable

paper, “Nouvelle statique ...,’’ Mém.acad.sci. Paris 1704, 4t° ed., Paris, 173—-197 (1705) == 224 4ted.,

Paris, 173—197 (1722), and others in his Hssais. Work of this very applied type, like EULER’s on

similar topies in the next half century, was not of interest to mathematicians or physicists and was

much too difficult to be understood by the engineers who could have used such results but in fact did

not begin to do so for about a century.
PARENTlived in retirement, devoted to science, truth, and piety. Though poor, he gave much

charity: thoughstraitlypressed for time,he gavefreely ofit to help others, particularly foreigners, because

he was proudof his country. He gavelessons to certain mathematicians, who straightaway drew con-

erete profit from his teachings; the secret of their names died with him.

He entered the Academyas a ‘‘Student”’ and remained in this rank until it was abolished in the

year of his death.

1) In publishing the result in a memoir dated 4 June 1707, PARENT writes that he had explained

it more fully in a memoir dated 2 April 1704, but I cannot find this earlier work. See § I of PARENT’s

‘Des résistances des potitres par rapport & leurs longueurs ou portées, et a leurs dumensionset situations,et

des pottres de plus grand résistance, indépendamment de tout systéme physique,’ Mém.acad.sci. Paris

1708, 40 ed., Paris, 17—31 (1709) = 204 4to ed., Paris, 17—-31 (1730); also Hist. <bed., 116—123.

A theory of arches is given in the paper, ‘Des charges qu’tl faut donner aux voiites, afin qu’elles

tendent a s’affermir le plus qu'il est possible,” Essais .. . 3, 152—175 (1713), dated 7 May 1704.

Theresistance of a truncated cone according to GALILEO’s theory is calculated in the paper, “‘“Du

point de rupture des arbres causés par V’effort du vent contre leurs feiiillages ; et de la figure qu'un corps turé

par un point doit avoir, pour résister le plus qwil est possible & étre ronvpu, Essais . . . 3, 220-—227 (1713),

dated 12 April 1704.
PARENT then gives experiments on breaking strength but reaches no definite conclusion: “Hx-
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(13) for beams of arbitrary but similar cross-section, where B and D are the typical dimen-

sions of the cross-section in the directions normal and parallel, respectively, to the plane

of bending. [Of course he supposestacitly that all fibres are subject to equal tension when

the beam breaks.] But at the same time he mentionsexplicitly the “‘center of compression’’

[JAMES BERNOULLI’s “center of tension’’, the point where the neutral fibre meets the

cross-section] and states, [as had JAMES BERNOULLI in 1695, see above, p. 98,] that the

moment of forces acting on the cross-section is to be taken with respect to this point.

After reproaching the wood merchants for disregarding the rule (13), he determines the

rectangular beam of greatest strength that can be cut from a cylindrical log of given area.

By (13), we are to maximize BD? when 5B* + D? = const., and hence D= V2B. To

achieve this proportion, the woodcutter has but to erect oppositely directed perpendiculars

upon the points trisecting the diameter; these perpendiculars cut the circumference at the

two remaining corners.

PAaRENT’s paper, Comparison of the resistances of solid cylinders and cylindrical seg-

ments with those of hollow ones having equal bases, in the system of Mr. Mariorrz'), [seems

to follow the concepts of Varienon closely?),] although Parmnr denies any connection.

To [While Lerpniz most plainly knew and VaRIagNoNn made

fo __ it entirely clear that the moment (61) depends upon the

/ f> cross-sectional shape,] ParEnt is the first to give exam-

{ / 7 ples. In effect, he calculates I for the annular segment

mi shown in Figure 39. The result, while elementary, is ela-

h borate. PARENT gives many special cases and compares

 | the strengths of such segments with those of solid or full
 

Figure 39. Cross-section for beams of equal area. The simplest case is the most in-
which Parent calculated the . . .

flexural stiffness (1713) teresting: For a full solid cylinder we have from (61)

 

periences pour connoitre la résistance des bows de chéne et de sapin,’’ Mém.acad.sci. Paris 1707, 4to ed.,

512—516 (1708) = 2nd 460 ed., 512—516 (1730).

Figures of equal resistance under very general circumstances are calculated in the paper, ‘‘Des

points de rupture des figures,” Mém.acad. sci. Paris 1710, 4t0 ed., 177—-194 (1712) = 2nd 4to ed.,

177—194 (1732); also Histoire 126—133.

1) ‘Comparaison des résistances des cylindres et segments pleins, avec celles des creux égaux en base,

dans le systéme de M. Mariorre,” Essais... 2, 567—-595. At about this time, the problem is attacked

also by Hermann, Prop. VIII of Lib. II of op. cit. ante, p. 86; HERMANN’s assertion that the “Yesis-

tances or firmnesses’”’ [7. e. breaking forces] of tubes are directly as the “‘tenacities’’ of the material,

the thickness, and the length does not seem to be justifiable on the basis of any reasonable assumptions

about the nature of the interior forces.

2) Parent, though a poorwriter, is somewhat more explicit; he says that he neglects bending as

being “‘almost imperceptible in experiments on hard bodies.”’

2—15

16



17—18

3—5, 7
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P,yl =a xKd*, where K is the breaking tension, i.e. the tension [per unit breadth]

in the topmost fibre. Division by (12) yields

Pp 5 d

79) PeT
While Mariorrr had compared his experimental data on circular cylinders with (19),

that formula is valid only for a rectangular cross-section, so it is no wonder hefailed to

find agreement; according to PARENT,(70) fits Martorrn’s measurements very well.

[Although on GALILEO’s hypothesis there is a simple universal formula to compare the

strength of a hollow tube with that of a solid rod, on Lrrpniz’s hypothesis there is not.]

PARENT gives a table of the values of P,/P,, and r/r, as functions of 7,/7,, where P,,, is

the strength of the circular rod of equal cross-sectional area, and ¢ is the radius of the

circular rod of equal strength).

Just before this table Parent puts somecriticisms of VARIGNON. Thefirst I do not

fully understand ; ParENT seems to say that a break in a loaded beam always starts on

the top side. In the second, he writes that “‘there is no body insusceptible of extension .. .

and compression . . . Therefore at the instant before the body breaks, its base [z. ¢. cross-

section] suffers dilatation above and at least a little compression below, although this

latter is of scant importance in practice . . . Thus there is a middle [part] where it suffers

nothingat all, and the axis of breakingis there. It is true that this axis descends during the

breaking until it reaches the edge of the base, whereit is located when the breakingis over.

But at the instant just before the breaking ofthefirst fibre, the axis is never at the surface.

But everything is governed by the breakingof thefirst fibre, since once it is broken, all the

others will give way withoutfail. Thus all problemsof the resistance of solid bodies broken

on fixed points [¢. e. supports] are reduced to finding the force necessary for breaking the

first fibre, with the axis being that which we have just determined.

[These ideas are not consistent with the calculations he has just made. They seem to

indicate that after having finished this memoir, he achieved a clearer view of the strength

of beams, as we see now.

The source of PARENT’s enlightenmentis indicated by] the title of his most important

paper : On the true mechanics of the relative resistances of solids, with reflections on the system

of Mr. Bernourzi of Bale”). Here he criticizes BERNOULLI’s Lemma IV and showsits
 

1) A later paper, which is apparently thefirst to recognize the factor J in (61) as being a moment

of inertia, concerns similar problems for a trapezoidal cross-section: ‘‘Sur les résistances des prismes

dont les bases sont des polygénes réguliers autour d’un axe, et que Von rompt sur des points fixes proches ou

éloignés, survant le premier systéme de M. MarioTre, Essais ... 38, 314—335 (1713).

2) “De la véritable méchanique des résistances relatives des solides, et réfléxions sur le systéme de

M. BERNOULLI de Béle,”’ Essais ... 8, 187—201 (1713). On the basis, apparently, of PARENT’s paper of
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” pA Figure 40. Parenvt’s figure representing
ie s the tension in a loaded beam (1713)

 

falsity by calculating the mo-

ment of tensions represented

by the line TCX, where MC

is the neutral fibre (Figure 40),

and comparingit with the mo-

ment of tensions represented

by the line 7B. Parent ad-

duces a somewhat involved

argument to show that “ZD

will indicate the pressure that

the fibres at J suffer perpen-

dicularly to AB, and at the

same timetheresistance these

fibres offer to being com-

pressed parallel to their lengths ; and LY, that which they suffer from top to bottom,

and at the same time that which they make in virtue of their tenacity against being

separated from each other parallel to DL.” [In this

isolated sentence is the first and only appearance of

interior shear stress prior to the work of CouLOMBat the

end of the century.] Moreover, “‘the resistance of the

fibres ofthe triangle BCX to being compressed along YI

is equal to that of the triangle ACT’ to being stretched

along DL, a property of which no one has yet said

anything.” [I. e., it is not enough to balance moments;

one must balance also the normal forces acting upon the

cross-section (cf. above, p. 93).] PARENT'S figure is mis-

leading in that TCX is a single line, while all his reason-

ing refers to allowing different moduli for compression

and extension (Figure 41). Hence he concludesthat ‘‘the

resistance at AT is to the resistance at BX ... recipro-

cally as their distances BC, AC from the fixed point

C..., which no one had noticed before.” [That is,

rT—Kt-—>
a

Te
De

| B

+k,»

Figure 41. Modern diagram to illus-
trate PARENT’s view of the tensions

acting on the cross-section of a
terminally loaded beam

  x

K,/K, = D,/D,, for this is a

statement that the areas, or resultant forces, of the two triangles ACT and BCX are

equal.

While PARENT has been anticipated in part by JAMES BERNOULLI’s paper of 1695
 

1708, BULFFINGER (§ 1 of op. cit. ante, p. 103) describes PARENT as “‘ a man whose reputation is far

below his desert’’ but does not mention having seen the more important paper described above.
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(to which he does not refer) and by BERNOULLI’s unpublished notes concerning a deeper

problem, Parent replaces BERNOULLI’s incorrect assumption WZ, = GW, by a correct

means of locating the neutral line, viz, the areas underthe curves of extension and compression

must be equal, as follows from the balance of normal forces. ]

PARENT then gives a simple argumentin favorof (67).

Also!) P,l = 4(K,Dj + K,D?) and P,=K,(D,+D,); hence

Po Dh.
+P, Lt ’

from MaRiIoTrE’s experiments it follows [according to this theory] that D,/D, = 9/2.

[Thus ParEnr proposes to infer the position of the neutral fibre by comparison of theoretical

formulae with the results of experiment, at least in part?).]

From all this Parent concludes that “‘the elastic curve remains to be found.” [This

is not quite just, since the curve is unaffected by these considerations, which concern only

(71)

its interpretation in terms of the cross-sections.

While the memoir just analysed is far from clear, we see that Parent was thefirst

to apply statical principles correctly and completely to the tensions of the fibres of a beam,

and that he recognized the existence of shearing stress. However,like all other writers so

far except James Brrnouttt, he neglected the bending of the beam.|

15. Researches on theoretical and experimental elasticity by James RiccarTi

(1720—1723) and others. In a letter*) of 29 June 1721 Jamzs Riccatr writes
 

1) These results are given wrongly in tho text but corrected in the unpaginated notes at the end

of the volume.

Z) Since later work on the neutral line prior to CoULOMB’s failed to reach PArEwt’s level, we

summarize it here.

BULrrinaer in $§ 22—365of op. cit. ante, p. 103, illustrates the effect of the law of tension on the

position of the neutral line, but his considerations fall short of PARENT’s rule of areas. BULFFINGER
proposes to locate the neutral line by comparing with experiment formulae derived from a general

[and hence not equilibrated] linear distribution of tension.

In § 29 6 of op. cit. ante, p. 11, Prarson describes a work of Jacopo BELGRADO, De corporibus

elasticis disquisitio physico-mathematica, Parma, 1748. PEarson’s claim that although “he gives a

geometrical method for determining points on the ... neutral line,’’ which he does not make the mistake

of placing on the surface of the beam, “‘there is little to be learnt”? from BErLGRADO’s work, arouses

my suspicion that this may be an important study, but I have been unable to locate a copy.

3) An extract is given in the letter of NicHotas II BerNovuLyi to GoipBac#, 16 July 1721,

included in the correspondence published by Fuss, op. cit. infra, p. 165. The matter is discussed further

in the letters of 30 July, 11 September, 15 September, 23 October, 6 December, and 2 January 1722.

GOLDBACH points out, in effect, that the increment of force is applied to the deformed, not theinitial

configuration; also, the laws of compression and extension may be different. He refers mainly to bend-

ing rather than to simple pull. These are true observations, but, as BERNOULLI remarks, they do not

seem connected with Riccari’s experiment.
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to Nicnotas II BERNOULLI in regard to JAMES BERNOULLI’s memoir of 1705,

particularly to the inequality (67). “I have repeated [JamEs BER-

  

NOULLI’s] experiment various times in strings of different material; F /

often I have found true what that famous author says, but often f

experiment showed me just the opposite... But when further

equal weights were added until the string broke, the extensions

which went on increasing up to a certain point then began to Al

decrease again in inverse order.”’ [This is the experimental discovery Figure 42.
Different types of yield

prior to rupture, as
. ted btwo types of behavior, as reported by RiccaTI, we represent Jaumeener ‘1721)

schematically in Figure 42.]

At about this time JamEs Riccati wrote the paper entitled True and appropriate

laws of elastic forces proved from the phenomena*). His basic idea, [proposed earlier by

that some materials stiffen, others soften prior to rupture’). The

LEIBNIZ, above, p. 63,] is that elastic properties of a body may be inferred from the

frequency of its vibration. Rejecting any kind of empirical law of force vs. elongation

as “unworthy of geometry’’, even if borne out by experiment’), RiccaTr attempts to

derive a theory of elasticity with no further basis than the laws of mechanics and

the known rules governing the [fundamental] frequencies emitted by vibrating

strings, Thus it would seem, as indeed the editor of Riccati’s works later asserted *),

that Riccoart presumed an analogy between the transverse and the longitudinal oscillation
 

1) It is typical of Pearson, § 30 of op. cit. ante, p. 11, that while he quotes at length what he

misinterprets as a general and unsupported proposal of an empirical philosophy of science by RiccatTi

(cf. footnote 3, below), he doos not mention this simple, definite, and illumimating experiment.

2) ‘‘Verae, et germanae virium elasticarum leges ex phaenomenis demonstratae,’? De Bonononiensi

sci. art. ist. acad. comm.[1], 523—544 (1748) = Opera 3, 289—257. An editorial note in the reprint

(1764) tells us that Riccatr began this work as far back as 1720, that an abstract of it was communi-

cated to NroHoLas II and Jonw I BERNOUIII in 1721, and that the finished manuscript was delivered

to the academy of Bologna before 12 October 1723. This note states also that the first volume of the

Bologna memoirs appeared in 1781, but I find no record of such a publication.

3) Here Prarson(op. cit. ante, p. 11, § 30) showshis usual ability to miss the point of theoretical

papers: He extols this essay because Riccatt lays down “the true theory of all physico-mathematical

investigations,’ namely, that things to be regarded as known must be sought “‘from natureitself, and

from experiments,” rather than from “‘the imagined hypotheses of the philosophers’ (p. 523). What

Riccar!is rejecting is the tendency of the physicist (‘‘philosopher’’) to conjecture or determine empiri-

cally what may be proved by mathematics (“‘geometry’’). RICCATI’s aim is the opposite of that PEARSON

attributes to him, and PEarson might better have taken this work, in fact a failure, as an example of

misguided theory, which it is.

4) This editor seems to have been the author’s son, JoRDAN RiccatI, since the long Note of the

editor, pp. 258—276,haslittle to do with the work ostensibly being annotated but rather presents what

seems to be a preliminary version of the paper on elasticity published by Jorpan Riccati in 1767

(see below, p. 384).
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of a string, [but in any case the reasoning is tenuous]. The result is a differential equation

[which is not dimensionally correct ; if corrected and integrated, it yields a relation

between stretching force F and length / of the form

LL [2—L|
ee

(72) F=F,e ' orpossibly Fye ° ,

 

whereJ’, is the force required to maintain the string at the length L.]

The paper ends with a statement that the “elasticities” [7. e. force constants] of

strings of given length obey the proportion

(73) K aor? ,

where y is the frequency ofoscillation. [If the oscillation is longitudinal, this result is cor-

rect, but for transverse oscillation it is false. What Riccatrt means and how he reasons

I cannot understand.] His application is to the vibrations of elastic spheres: citing experi-

ments of CarR#, he infers that K « or?v*; [while the result is correct, if K is an elastic

modulus, the reason is again obscure’),]

Writers of the eighteenth century occasionally refer to the work of ’s GRAVESANDE?);

examination of his chapter On the laws of elasticity reveals it to be the report of a massofill

conceived experiments garnished with bold assertions. He claims to establish the pro-

portionality of deflection to load and length, but his experiment, employing specially

designed and presumably precise apparatus, is imperfectly described and in any case
 

1) Riccatt wrote further papers on related subjects: “‘Della proporzione, che passa fra le affezioni

sensibili, e la forza degli obbietti esterni, da cui vengono prodotte,”’ Suppl. giorn. letterati d’Italia 1,

114141 (1722) — Opere 3, 287—297. This is perhaps the first attempt to apply mathematics to

physiology. RICCATI assumes that the human bodyis made upof “‘fibres”’ and that all sorts of stimuli

are analogous to forces deflecting these fibres. On this basis he discusses the sensations, the effects of

age, etc. While the paper is fantastically imaginative, it is a most courageous attempt, deserving notice

in the history of theoretical biology.

“Sopra alcune proprieta delle corde elastiche,’’ Opere 3, 276—284 (1764). This paper, which an

editorial note asserts to date from 1734, discusses rather inconclusively the vibratory motion of a

weight hung by a spring in which the law of restoring force is not specified.

“Confutazione dell’ipotesi, che due corpi dotati di egualt quantita dt moto urtando in due corde del

tutto eqgualt le ripieghino per egualt saette,’’ Opere 8, 284—287 (1764). Here Riccati studies the difficult

problem of determining the form, which he assumesto be triangular, that an elastic string will assume

when struck at its center by a ball.

After these three papers is a Note by the editor, pp. 299323, which seems to be a preliminary

version of the paper by JoRDAN Riccatt described below, pp. 280—281, 384—385.

2) Physices elementa mathematica, experimentis confirmata. Sive introductio ad philosophiam New-

tonianam, Lugduni Batavorum, Vander Aa, Vol. 1, [xxvi] + 345 + [iv] pp., 2nd ed., 1725. I have not

seen the first edition, dated 1720. Page references refer to the second edition, with numbers in paren-

theses being the references ’s GRAVESANDE himself gives to corresponding passagesin thefirst edition.

The counterpart of Ch. XXIX of the second edition was Ch. XXVI of the first.
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would prove nothing at all1). Saying that ‘an elastic band may be regarded asanagglom- 692—696

eration of strings,” so that results on strings may be applied to it, ’=s GRAVESANDE finds (282)

that “the bendings of the same band are proportional to the forces which bendit,” both

for a straight band loaded at one end and for a curved band pulled out straight?). He 697—698

gives also an imaginative description of the deformation of an elastic sphere dropped upon (299)

a rigid plane).
 

1) See §§ 673—680 (249—251). Since this experiment is sometimes cited by historians as a

decisive proof ofHOOKE’s law,I appendan analysis

of it. An elastic wire is passed over two wedges and ti
Lo

<held taut by a specified weight T; other weights Tr
0

are hung from its center, and the corresponding

deflections 6 are found to be proportional to those

weights. Since the forces exerted on the string by

the wedges are not known, the problem is inde-

 

Figure 43, Analysis of
terminate, "3s GRAVESANDE’s experiment (1720)

The most general possible system of forces

acting on onehalf of the stretched string is shown in our sketch (Figure 43), where 7’, is the unknown

horizontal force exerted by the wedge. For equilibrium, we must have

64P pap 8(E) Ip TA Ty s Vet °

Thus if 7 1s held constant, and if T, is constant or is much smaller than 7’, we must have 6a P,

ondependently of any elastic law. For this, no experiment is required.

We usually encounter another form of this problem, in which the end of the string 1s fixed.

Then we have no concern with J or T,, but, by Hooxn’s law, T’ = K V8 + 2—L, where L,

the initial length, may or may not equal /,. Then (£), gives

 

OL
Lite )wano(i—e+44e).

0Wl + &7B

Therefore 6 cx P holds for small deflections if and only if L #1. If D=1,, weget Px 6 instead.

This is a classic example to show that the response of a linearly elastic body mayfail, for kinematical

reasons, to be linear; it 1s to be derived by EULER and by DANTEL & JOHN ITI BERNOULLI (below,

pp. 585—386).

Thus °s Gnavusanpy missed his chance twice over: Had he set up the experiment properly, he

P= 2K(1

would havefailed to find the linear response he was lookingfor.

2) In § 701 he writes that results concerning the period of oscillation of a string or the shape of

the elastic curve require “‘use of the direct and inverse methods of fluxions and hence do not seem to

me to pertain to the elements of physics.’’ This is perhaps the earliest example of what has become an

honored tradition among writers on physical mechanics.

3) Here we mention some minor worksof this period.

Camus, “Du mouvement accéléré par des ressorts et des forces qui résident dans les corps en mouve-

ment,” Mém.acad. sci. Paris 1728, 159—196 (1730). This paper gives elaborate statements and proofs

of simple theorems on the motion of a body subject to the force of a not necessarily linear spring.

J. JURIN, “A letter... concerning the action of springs,’ Phil. trans. London 48 (1744/5), No. 472,

46—71 (1746); Phil. trans. abridged 9, 18—-20. This paper concerns the motion of a linear spring struck

by a body.
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16. Experiments on the nodes of vibrating bodies by NoBLE and Picor (1674), SAUVEUR

(1696—1701), DE LA Hire (1709), and Zennrini (1715—1716). In 1677 Waxxis wrote as

follows to the Editor of the Philosophical Transactions}). “Sir, I have thoughtfit to give

you notice of a discovery that hath been made here, (about three years since, or more) .. .

‘Tis this : whereas it hath been long since observed, that, if a Viol string, or Lute string,

be touched with the Bow or Hand, another string on the sameor another Instrument not

far from it, (if an Unison to it, or an Octave, or the like) will at the same time tremble of

its own accord. The cause of it, (having been formerly discussed by divers) I do not now

inquire into. But add this to the former Observation ; that, not the whole of that other

string doth thus tremble, but the several parts severally, according as they are Unisons to

the whole, or the parts of that string which is so struck. For instance, supposing AC to be

an upper octave to xy, and therefore an Unison to each half of it, stopped at p :

A C

Ov I y

B
Nowif, while ay is open, AC be struck ; the two halves of this other, that is, xf and By,

will both tremble ; but not the middle point at 8. Which will easily be observed,if a little

bit of paper be lightly wrapped about the string «ay, and removed successively from

 

 

one end ofthe string to the other.” Thelike holds for the points trisecting or quadrisecting

oy when 4 Cis tuned a twelfth or a double octave, respectively, above «y. “So if AG be

a Fifth to «7; and consequently each half of that stopped in D, an Unison to each third

 

o I 7]

1) “Dr. Waxcrs’s Letter to the Publisher concerning a new Musical Discovery; written from Oxford,

Maro £4, 2676, Phil. trano. London 18, No. 184, 889—-842 (1677) = Phil. trans. abridged 2, 380-382.

Almost twenty years later Watuis published this material in Latin in Ch. 107, “Haperiments on

musical strings,’ of De algebra tractatus, Opera 2, 1—482 (1693). The English edition of the Algebra

(1685) does not contain it. The Latin version, written with markedly British constructions, when put

back into English emerges as a superior literary performance; in respect to content, it is partly clearer

and partly less clear than the letter of 1677. The later version is very careful in respect to priorities.

Not only was harmonic resonance not claimed as new, but “TI recall that sixty years ago it was shown to

me, then a boy”’ (¢. ¢., at about the time of MERSENNE’s publication). In 1693 Watts writes that the

nodal phenomena were shown him by NARcissus MARSH in 1676 “‘as a new thing observed three years

before (for the first time, I think) by Wirt1am Nose ...and THomas Pigot...; whether by both

together or by one[first], I do not know.” It is not clear whether WALLIS is here correcting or for-

getting what he had written in 1677. In the Latin version WALLIS is also more careful in describing

the behavior of the paper rider: ‘Then in the middle it will remain unstruck, but elsewhereit will be

shaken off.’’
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part of this stopped in D; while that is struck, each part of this will tremble severally, but

not the points y, «; and while this is struck, each of that will tremble, but not the point D.

The like will hold in lesser concords ; but the less remarkably as the numberof divisions

increases.

“This wasfirst of all (that I know of) discovered by Mr. Writ1amM NoBte,a Master of

Arts of Merton-College ; and by him shewed to some of our Musicians about three years

since; and after him by Mr. THomas Picot, a Batchelour of Arts, and Fellow of Wadham-

College, who, giving notice of it to some others, found, that (unknown to him) the same

had been formerly taken notice of by Mr. NoBuz, and (upon notice from him) by others:

and it is now commonly known to our Musicianshere.”’

[Thus it was known to numerous Oxonians by 1677 that a string may assume a mode

of vibration with k —1 nodes dividing tt into k equal portions, and in such a mode the tone

emitted 1s the k** overtone!).] WALLIS notices also that a string if struck at any nodal point

“will give no clear sound at all; but very confused,” though ‘‘the less remarkable as the

numberof divisions increaseth. This and the former I judge to depend upon one and the

same cause ; viz the contemporary vibrations of the several Unison parts, which make the

one tremble at the motion of the other : But when struck at the respective points of divi-

sions, the sound is incongruous, by reason that the point is disturbed which should be at

rest.”

A Postscript adds, “A Lute-string or Viol-string will thus answer, not only to a con-

sonant string on the same or a neighboring Lute or Viol; but to a consonant Note in

Wind-Instruments : which was particularly tried on a Viol, answering to the consonant

Notes on a Chamber-Organ, very remarkably : But not so remarkably, to the Wirestrings

of an Harpsichord ... And we feel the Wainscot-seats, on which wesit or lean, to tremble

constantly at certain Notes on the Organ or other Wind-Instruments; as well as at the

same Notes on a Base-Viol. I have heard also (but cannot aver it) of a thin, fine Venice-

glass, cracked with the strong and lasting sound of a Trompet or Cornet (near it) sounding

an Unison or a Consonant note to that of the Tone or Ting of the Glass?).”’
 

1) In our terminology the fundamentalis called the first overtone, or, for a string, the first har-

monic.

2) This phenomenon seems to have caught the fancy of several writers of this period. The work

most often cited is MorHor’s Stentor valokiaorys sive de scypho vitreo per certum humanae vocis

sonum fracto... dissertatio, Kilonis, J. Reumann, 1672. I have seen this work only in the ‘‘Editio

altera priori longé auctior,’’ ibid., 1683. On pp. 16—17 MoruHorFwrites, ‘““When I was living at Amster-

dam, I grew to know JoDOEUS PLUMER,a famous bookseller of that place. He told me one day... of a

certain wine seller, NicHoLas PETTER ... who could break glass beakers with his own voice....I

did not leave off urging the bookseller to take me to that man. He did so. When it was requested that

the experiment be done in my presence, he brought out certain pot-bellied beakers with knobbyfeet,

the kind wecall ‘““Romans’’, but not exceeding a pint measure. I selected one... which seemed very
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In 1692 Francis RoBERTS?) correctly described the nodal forms of a vibrating string,

observed by meansof a paper rider, and drew a correct analogy between the trumpet and

the marine-trumpet, each having natural frequencies in the ratios 1, 2, 3, 4,...and thus

being incapable of other “‘musical” vibration. If the marine trumpet is stopped at any

point not making oneofthe two resulting portions of the string an aliquot part of the other,

“the vibrations of the parts will cross one another, and make a sound sutable to their mo-

tion, altogether confus’d.”’

[The existence and the positions of nodes and their relation to frequency, for a vibrat-

ing string, were thus well known in England by 1693, though apparently not yet clearly

understood on the Continent?). ]

 

Strong. hen he, after determining its sound, gave it to me to hold, and bringing up his mouth to the

middle part, he sang out a tone which seemed to me an octave above that of the glass. The glass at

once resounded almost to screaming, and my handfelt its trembling. When he took a long breath and

continued his voice without interruption, the glass broke with a crack so that an orbicular break went

crosswise through the belly of the glass and the knobsof the feet from the side opposite his mouth.”’

MorRHoFwrites that Barroalso described this experiment, but he himself tried it in vain. On

pp: 17—18 he writes, “I easily saw that the explanation ...lay in the equality of the sound;...if

changed by so much as a comma,or half a one, the effect would be destroyed. [The wine dealer] had

learned to control his voice by daily practice, so as never to fail. He had a son, too, who could replace

him and do it even more quickly, havinga highervoice.”’

On pp. 19—20 Morxuorwrites that he hadtold all this to BoyLE and OLDENBURGandto a meeting

of the Royal Society. “It was decided that the thing should be tried . . ., but, as I learned, it ended in

failure.’’ In the records of the Royal Society as published by GUNTHER, op.cit. anie, p. 54, we learn

that on November 17, 1670, Hooxe reported that he had tried the experiment “but had found no
other success, than that the glass had sounded upon the sound of a man’s voice.’” MorHor’strials

with musical instruments also led to failure.

The rest of Mornor’s notslight book is a compendium on sound, containing nothingoriginal but

nevertheless being of some interest as displaying the quantity of more or less correct but vague ideas

and scarcely correlated facts current just prior to the creation of the first mathematical theories.

The same may be said of the diffuse treatise of Fasri, Lib. II of Tract. ITI of Physica, id est, scientia

rerum corporearum 2, Anisson, Lugduni, 1670.

1) ‘A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects

of the same,” Phil. trans. London 17, No. 195, 559—563 (1692) = Phil. trans. abridged 3, 467—470.

2) In 1681 Mariorre had observed that different parts of the trumpet tremble when different

notes are blown, but he gave no evidence of having observed nodes; see Hist. acad. sci. Paris 1666—

1699, 1, 4° ed., Paris, 322 (1733).

An attempt to explain the action of the marine trumpet is given by DE LA Hire, “EHxplication des

différences des sons de la corde tendué sur la trompette marine’ (1692), Mém.acad. sci. Paris 1666—1699,

9, 500—529 (1730), see esp. p. 502. DE LA Hime is so vague a writer thatit is difficult to know what he

has seen and what he has not; he has someidea of the nodes. He claims to explain how a slight sound

can cause a louder one by resonance; I can make no sense of his explanation, but he adduces an in-

teresting experiment in which a faintly audible string is made to strike a consonant bell, which as a

result emits a much louder sound.
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In 1704 was published the celebrated paper by SAUVEUR,General system of the intervals

of sounds and its application to all musical systems and all musical instruments!), where in

the Preface the name acoustics is proposed for “‘a superior science of music ..., having

as its object sound in general, while music has as its object sound to the extent that it is

pleasant to hear.’”’ [While SauvEuR’s researches appear to be original, most of what he

reports may be found scattered here and there in the publications of MERSENNE (§ 4,

above) or in the notes of WALLIs and RoBERTs, just described. The importance of Sau-

VEUR’s paperis nevertheless great, for he wrote clearly and systematically, his short treatise

served as a definitive and organizing summary of what was known in 1700 concerning the

vibrations of strings, and he introduced much of the terminology gradually accepted in the

acoustical researches of the eighteenth century.]

SAUVEUR calls for ‘‘“a measure commontoall intervals of sounds, capable of measuring

the least perceptible differences between them, and such that one could select from them

those necessary for ordinary music ...’’ [With a thought appropriatefor his times, he thus

seeks to master a continuous range of frequencies, not merely the discrete scales used in

music.]

“TI was made to observe that especially at night one may hear from long strings not

only the principal sound but also other small sounds, a twelfth and a seventeenth above;

that trumpets havestill more such sounds, such that the numberofvibrationsis a multiple

of the numberfor the fundamental sounds ...I concluded that the string in addition to

the undulations it makes in its entire length so as to form the fundamental sound may

divide itself in two, in three, in four, etc. undulations which form the octave, the twelfth,

the fifteenth of this sound. I concluded hence the necessity for the nodes and loops of these

undulations ...’’ [The three terms we haveitalicized above are introducedin this passage.]

Most of the paper concerns construction of musical intervals by different systems, but

Section IX is entitled, On harmonic sounds. “I call a harmonic sound of a fundamental

sound that which makes several vibrations while the fundamental sound makes but one.

Thus a sound at the twelfth of the fundamental sound is harmonic, since it makes three

vibrations while the fundamental sound makes but one... Divide a monochord in equal

parts, say 5... Pluck this string as you please, it will give out the sound [ call the

fundamental of this string. Then at one of these divisions D, put a light obstacle C

(Figure 44), such as the tip of a feather if the string is a fine one, so that the motion of

this string is communicated to either side of the obstacle. It will then give out its fifth
 

1) “‘Systéme general des intervalles des sons, & son application & tous les systémes & G tous les ins-

trumens de musique,’’ Mém.acad.sci. Paris 1701, 4% ed., Paris, 297—-364 (1704) = 12™° ed., Amsterdam

390—482 (1707) = 204 ed. Paris, 4t0, 299366 (1719). See also Histoire, 1st Paris ed. pp. 123—139 =

2nd Paris ed., 121—137 and Histoire 1700, Paris, 4t0, 131—140 (1703) = 204 ed., 134—143 (1761).
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<< harmonic sound,that is, a 17, [SauvEUR’s imagi-
native explanation, however, is unrelated to any

mechanical or kinematical principle; while he usesA___¢ B
SS freely the word ‘“‘undulation’’, he seems to have

A c Rn 2 idea of wave propagation.] “I shall call the

>SV

Ss ~SCsopoints A, D, FE, F, G, B the nodes of these undu-
Figure 44, SauvEuUR’s observation lations, and the middles of these undulations will

of the nodes of a vibrating string (1701)

 

 

be called the loops of these undulations...

“One will be convinced of these undulations, 1°, by hearing ; for those who havea fine

ear will distinguish a harmonic sound proportional to the parts forming these undulations,

or indeed one may make sure by tuning a monochord in unison to this harmonic sound,

2°, by the eye; for if one divides the string in equal parts, e.g. in 5, and if one sets a movable

bridge C at D or £ andbits of black paper on the divisions FL, F', and bits of white paper on

the middles of these parts, upon striking the part AC one will see that the bits of white

paper, which are on the loops of the undulations, will jump, and the black ones on the

nodes will stay fast.’’ [Thus the technique of the paper rider, introduced by LEONARDO DA

Vinor and by Noss and Pieot,is refined.]

There follow some consequences.

I. The same harmonic results if any one of the nodesis fixed.

II. If, having formed the 5" harmonic, one places an obstacle on a node for the 3°4

harmonic, the 15" harmonic will result. [From SavvEuR’s reasoning it is easy to infer the

general rule: If we sound simultaneously the m"and n= harmonics, we discern the tone of

the p™ harmonic, where p = l.c.m. of m and n.]

III. There are other ways to produce a harmonic in a string: 1°, by touching it with

another string vibrating in unison with the desired harmonic; 2°, if a string is touched by

another, each will give out the harmonic that is the least common multiple of their

fundamentals.

IV. The higher harmonics are less sensible than the lower. [J. e., other things being

equal, the amplitudes of the harmonics decrease as the order increases.|

V. Bells and other resonant bodies have harmonics [recte, overtones which are not

harmonious ; see below, p. 124].

In the parallel account given earlier in the volume’), the term beats is used, but only

in connection with rare “encounters of vibrations” [such as are mentioned in GALILEO’s

explanation of harmony (p. 36 above) ; MERSENNE’s concept of beats was clearer (above

p. 33).

These phenomena remained long unnoticed by the geometers. As often happens in
 

1) P. 125.
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such matters, a practiser rather than a theorist was eager to employ them before they

were understood.] In his New system of theoretical music), the great composer RAMEAU

sets down as “‘facts of experience that serve as the principle for this system”’ the existence

of perceptible overtones, citing MERSENNE and SAUVEDR.Hesaysalso that overtones occur

in the sounds of cymbals and bells and in the lowest tones of a trumpet andofa bass voice.

The overtonesare heard slightly after the fundamental, and he advises us to imagine them

first as an aid to hearing them. While he says the phenomenonof overtones “‘will serve us

as a principle for establishing all our consequences,” [I am unable to find any logical con-

nection between it and the various assertions which follow]. However, as we shall see, the

geometers were soon to interpret RAMEAU as founding his entire system of harmony on

the idea that tones which can be emitted by the same vibrating body are harmonious’).

[In fact, this is true of the lower overtones of musical instruments, but for most other
 

1) Ch. 1 of Nouveau systéme de musique theorique, ot. Von découvre le principe de toutes les regles

necessaires @ la pratique, pour servir @introduction au Traité de Vharmonie, Paris, viii + 120 pp., 1726.

Though Rameav’s earlier Tratté de Vharmonie reduite & ses principes naturels, Paris, 1722, is usually

cited in this connection, I find in it no reference whatever to the “‘principle”’ stated above. Whether

from continuing mediaeval tradition, from concession to the ruling mechanistic views of the day, or

from honest self-delusion, RamEAU writes in the preface, ‘“‘Music is a science which should have secure
rules; these rules should be drawn from an evident principle, and this principle can scarcely be known

to us without the aid of mathematics. Thus I must admit that despite all the experience I could get

in music from practising it for so long a time, nevertheless it is only by the help of mathematics that

my ideas have grownclear .. .’’ Not only is the “mathematics”’ confined to observations on the nature
of subtraction, multiplication, and the arithmetic and geometric progressions, but there seem to be

few traces of logical reasoning of any kind. As far as I can ascertain, Rammav’s system in the Traité is

based upon an a priori preference for certain numerical ratios as against others, while in the Nouveau

Systéme he claims to have found a physical basis for that preference.

2) At the end of §IX of op. cit. infra, p. 242, DIDEROT in 1748 gives a very guarded statement of

RAMEAU’s principle: “‘. .. a sound neverstrikes our ears by itself; with it are heard other concomitant

sounds, which are called its harmonics. It is thence that Mr. Rameat started in his harmonic generation;

that is the experience which serves as basis for his admirable system of composition, which it may be

hoped someone will draw out from the obscurities surroundingit...”

Cf. also the remarks of Burney, A general history of music from the earliest ages to the present

period, 1 (1776), 224 ed. (1789) (see p. 164 of MERcmR’s ed. (1935)): ‘‘... the moderns have lately

discovered that nature, in every sounding body,has arranged and settled all these proportions in such

a manner, that a sound appears to be composed of the most perfect harmonies, as a single ray of light

is of the most beautiful colors; and when two concordant sounds are produced in just proportion,

nature gives a third, which is their true and fundamental base.”

But in Volume 4 (1789) (see p. 968 of MERcER’s ed.), BURNEY in describing RAMEAU’s system

does not say anything about the harmonyof all overtones. “‘After frequent perusals and consultations

of RAMEAU’s theoretical works, and a long acquaintance with the writings of his learned commentator

pD’ALEMBERT, and panegyrists, the Abbé Rouster, M. pE La Borne, &c. if anyone were to ask me

to point out what was the discovery or invention upon which his system was founded, I should findit a

difficult task.”



124 EARLIEST SPECIAL PROBLEMS
 

bodies it is false. Bodies apt for musical use are specially selected, rare in comparison to

other sorts, being in fact those whose audible overtones harmonize. As weshall see, EULER

and DANIEL BERNOULLI are to obtain many examples contradicting the harmony of over-

tones, and HELMHOLTz?!), writing 150 years later, after asserting that RAMEAU’s theory is

based on the “naturalness’”’ of chords,rejects it: “‘... if RamEav hadlistened to the effects

of striking rods, bells, and membranes, or blowing over hollow chambers, he might have

heard many a perfectly dissonant chord. And yet such chords cannot but be considered

equally natural.’ But this is unfair, for to determine the pitches of overtonesprecisely is

not so easy as mere “‘listening’’, and when RAMEAU wrote, almost the only scientific datum

then published was Mersrennne’s claim, apparently supported by Savvzuur, thatall over-

tones are harmonious (above, pp. 31, 122).]

RAMEAU’s later writings”) describe a greater variety of acoustical experience [but seem
 

1) In the “Retrospect”’ at the end of Part Il of Die Lehre von den Tonempfindungen, 5th ed.,

Braunschweig, 1896; translation by A. L. Exxiis from the fourth edition, On the sensations of tone as a

physiological basis for the theory of music, London, 274 ed., 1885.

2) RamMeAv is an obscure and graceless writer, whose disconnected wordy conglomerates of

details and opinions contrast strangely with the precision and elegance of his music. It is difficult to

ascertain what he really believes to be the acoustical facts.

In the preface to his Génération harmonique ou traité de musique théorique et pratique, Paris,
Prault, 1737, [xi] -+ 227 + [xvii] pp., Rameau speaks of “the sound born from the totality of the

sounding body, with which at the same time resoundits octave, fifth, and major third .. .”’ The work

opens with a series of propositions and experiments, most of which are taken, without mention of their

source, from MERSENNE and SAUVEUR, except for a fantastic theory of propagation of sound in air

(Prop. III) which Rameau acknowledges having adopted from Marran. Prop. V concerns the “‘commen-

surable particles’’ of a body; equally incomprehensible is Prop. VII; “The most commensurable sounds

are those which intercommunicate their vibrations the most easily and strongly; therefore, the effect of

the greatest common measure among sonorous bodies which intercommunicate their vibrations by the

intermediary of the air should prevail over that of any other aliquot part, since this greatest common

mecasuro is the most commensurable.”’

Experiment III mentions that the fifth and eighth harmonics may be audible, and even sometimes

the seventh. Rammav writes here that the same harmonics are audible in “‘every other sonorous body,

even in the voice.” To prove that no other overtones occur, try to imagine them first and then

produce them; “‘even so you will not perceive them.”

RAMEAU’S closest approach to a realistic appraisal of the sequence of overtones comes in Experi-

ment VI. ‘‘Hang up a tuning fork by aslender thread, each end ofwhich you apply to an [ear]. Strike 1t;

you will perceive at first only a confusion of sounds, which will prevent you from discerning any of

them; but, the highest ones gradually abating...,’’ you will hear only the fundamental, the twelfth,

and the seventeenth. Cf. also his remarks about ‘“‘insupportable cacophony”’ in Experiment IV andhis

reiteration on p. 28.

From this work it is not certain what RAMEAU means by “corps sonore’’; it is possible that the

only ‘‘bodies’’ ofinterest to him are those used for musical instruments. While not makinghis acoustical

beliefs correct, such a restriction would render them notobviously ridiculous for the year 1737. RAMEAU

has grudgingly admitted the existence of disharmonioushigher overtones, such as the seventh, even in
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to be a confused medley offact, error, and special pleading]. One ofhis remarks'), however,

[anticipates a suggestion to be made later by JorDAN Riccati (below, p. 280) and to be

developed by HELmuHottz:] ‘““What has been said of sonorous bodies should be applied

equally to the fibres which carpet the bottom of the ear; these fibres are so many sonorous

bodies, to which the air transmits its vibrations, and from which the perception of sounds

and harmonyis carried to the soul.”

In 1709 Carri had confirmed MERSENNE’s law (9) for vibrating rods, in the form

voc V8 where V is the volume”). The tonesofrods do not obey the law (10) appropriate to

 

musical instruments, but they do not fit in with his earlier numerical preferences, so he skirts about

them as lightly as possible, claiming that they are indiscernible in practice, unless perhaps in “caco-

phony”’.

It is a different matter with the official report of Marran, NICOLE, and D’ALEMBERT,acting as a

commission for the French academy: Hxtrait des registres de lVacadémie royale des sciences du 10 de-

cembre 1749, printed as pp. j7—alvij7 of RamEavu’s Démonstration du principe de Vharmonie servant

de base & tout Vart musical théorique & pratique ..., Paris, Durand & Pissot, 1750, xxiij + 112 +

xlvij pp. This report states that RamEav’s system is founded upon “the two following experiments:

“10 If a sonorous body is caused to sound ..., one hears in addition to the principal sound two

other sounds, very high, one of which is the twelfth above the principal sound, ... and the otheris the

major seventeenth .. .
“2° If one brings up to the body . . . four other bodies, the first of which is at the twelfth above,

the second at the major seventeenth above, the third at the twelfth below, the fourth at the major

seventeenth below; then in sounding the body ... one will see the first and second bodies tremble in

their entirety. As to the third and fourth, they will divide themselves by a kind of undulation, the one

into three, the other into five equal parts .. .”’

These experiments are attributed to MERSENNE and WALLIs. Thereport upholds RamEav’s views

without qualification and concludes that in consequence “harmony... has become a science more

geometrical ade

What may be passed off lightly as inaccurate wording andinsufficient knowledge of acoustical

facts in a musician writing in 1737, the reader of §§ 23—24, 27 and 29 of this history will agree to be

inexcusable in a mathematician or physicist writing in 1749. Rather, this report fits into what seems to

be a general policy of p’ALEMBERT, to the rather considerable extent that he controlled or influenced

organs for the popularisation of mathematical and physical science in his day, to keep from general

knowledge and appreciation the great acoustical discoveries of DANIEL BERNOULLI and Eunmr. See

below, p. 245, Note 3.

1) Prop. XII, Génération harmonique.

2) ‘De la proportion que doivent avoir les cylindres pour former par leurs sons les accords de la mu-

sique,”’ Mém.acad.sci. Paris 1709, 40 ed., Paris, 47-62 (1711) == [224] 4to ed., Paris, 47—62 (1733)=

12mo ed., Amsterdam, 57—76 (1711). See also the Histoire, 40 eds., Paris, 93—96 (1733) = 12™®° ed.,

117—121. Carré claims that the vibrations of rods are ‘“‘circular as well as longitudinal’’ and tries to

replace MERSENNE’s rule by one separating the effects of length and surface area (not cross-section).

He claims to prove that full geometrical similarity is necessary in order that the tones of two bars

harmonize. His theory is no more than guesswork; CHLADNI later pronounced CARRE’s experiments

‘“‘set up as incorrectly as they are described;”cf. p. 13 of op. cit. wnfra, p. 335.
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strings. In commenting upon his work, p— LA Hire?) states that when a wooden cylinder

is struck, “‘there are always toward its two ends two places where the soundis considerably

damped and virtually extinguished. It does not matter what are the dimensions of the

cylinder...’ [Thus, apparently, he had observed the two nodes occuring in the funda-

mental mode of free vibration of a rod with both ends free.] Someyears later p— La HiRE?)

reported some further experiments, [haphazardly conceived and vaguely described,] in

which the samerod gives out different sounds if struck in different ways. [J. e., by accident

he observed two or more different modes of elastic vibration of a bar.] He finds that when a

suspended rule is struck on the flat side, the tone is higher than when it is struck on the

edge, but “the place... where the sound was damped”’ is the same.[These are the first

vague hints that the nodal ratios are independent of the form of the cross-section, but the

frequency depends upon the depth and breadth in different ways.] Dz La Hire goesoff

into a physical theory of how sound is caused by air being forced out of the pores of an

elastic body.

In a letter?) of October 1715 to LEIBNIz, ZENDRINIcriticizes the work of CARRE:

“*,.. 1 have not been able to agree with his reasoning or experiments. ...I1 have tried...

striking several wooden cylinders and comparing their sounds with musical strings. It

turns out that by striking various points of a wooden cylinder I perceived in a certain and

determinate spot a higher tone than in the remaining.” While ZENDRINI speaksof ‘“‘a body

of any form”’, his figure and language describe a rod-like body of revolution, and he asserts

that there are two and only twocircles on which such a body maybestruck so as to give

out the higher tone. [Since ZENDRINI does not describe how the rod is supported,it is

difficult to know what modes he has observed ; the two circles suggest the fundamental

modeoffree-free vibration, but we are left wondering to what mode the previously observed

lower tone corresponds.| ““The striking excites waves in a solid body none the less than

wavos are goncorated in quiet water by the blow of a stone, but with this difference, that

in the fluid the waves cleave to the surface, while in solid bodies they penetrate the thick-

ness of the body and diffuse themselves as far as the opposite surface.” He then attempts

to explain the two different tones on the basis of reinforcement or interference of the waves

as they travel through the body and are reflected from its surface. His physical idea seems

to be that “mute spots’’, where the greatest interference of the waves takes place, are the

places where a rod should be struck in order to give out a higher tone. In order to get hold
 

1) Reported in Hist. acad. sci. Paris 1709, 4° ed,. Paris, 96—97 (1711) = [224] 4to ed., Paris,

96—97 (1733) = 12™° ed., Amsterdam, 121—122 (1711).

2) ““Haperiences sur le son” and ‘‘Continuation dexperiences sur le son,’ Mém.acad.sci. Paris

1716, Paris ed., 40, 262—-268 (1718) = 12m° ed., Amsterdam, 335—342 (1719).

3) The brief but important correspondence between LEIBNIZ and ZENDRINI is given in LEIB-

nizens Mathematische Schriften (I) 4, 227—251 (1859).
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on something one can compute, ZENDRINI brings in the cross-section of least resistance

according to VARIGNON’s formula rectilinear rays, the normals to the waves, if drawn

from this section to the end of the rod will intersect in a point where the waves interfere

with one another, rendering the cross-section ‘‘mute’’. In this wayhe finds the mute spots

for a circular cylinder to lie one quarter of the way down therod, “‘which answers perfectly

to experience.” [Cf. this value, 0,250, with Huygens’ value, 0,207 (above, p. 49); the

correct value for the fundamental modeof free-free transverse vibration according to the

BERNOULLI-EULER theory lies just midway between them.|

ZENDRINI indicates howto find the mute spots in a cone or an egg; for the latter, there

is only one plane of mute spots. ZENDRINI’s experiments have confirmedall cases he has

calculated. He conjectures that the bridge of a stringed instrumentis placed at a mute spot

and that drums also have such spots.

LEIBNIz’s answer of 4 November 1715 contends that the analogy to waves on wateris

a poor one, since in water “‘the waves are only on the surface and arise from gravity, not

from elastic force, but I do not deny nevertheless that also this propagation maybecalled

by the name of waves. What you have observed about wooden cylinders might help, per-

haps, in explaining the structure of wood itself.’’ LEIBNIZ points out that other kinds of

vibration are possible. In a hollow cylindrical tube, for example, the motion resulting from

Figure 45. The experiment Lrersniz writes in 1715 that
he had proposed to MarrioTre (before 1684) to demon-
strate the propagation of transverse vibration around
the circumference of a circular ring

 

a, blow on oneside is transmitted, not across the cylinder, as ZENDRINI had assumed, but

around the surface. Vibrations of this kind ‘“‘were tried long ago by Mr. MARIotTtTE at my

suggestion. Hang up a horizontal circle AB (Figure 45) from a point C and then hang a

little ball from a point H# so that it touches the circle on the inside at f’; if, then, you

strike the circle with a stick on the outside at G, Just opposite to F, the little ball D will

come toward the striker, because the circle A B is transformed into an ellipsoid [t. e. an

ellipse-like curve] with the points F and G approaching one another.” [LEIBNIz’s experi-

ment of 1684 or earlier demonstrates the existence, for a curved rod, of transverse vibra-

tions in the plane of the rod.]

To this ZENDRINI replies on 5 January 1715/6 that he does not see that the results
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have anything to do with the structure of wood ; he has done the experiments also with

iron cylinders, with the same acoustical results, while the structures of wood and iron are

entirely different.

On 15 March 1716 LxErBniz writes to ZENDRINI, ‘‘T should like it if some outstanding

musician whois at the same time a remarkable mathematician would enter that ocean of

the subject of sound, scarcely navigated until now, first leaving the shore andlittle by

little coming out into the high seas, that is, beginning with rather simple experiments.

Thus I should hope that most things could be reduced to mathematical-mechanical argu-

ments ... Which sonorous properties are commonto bodies of iron, wood, earth (or baked

clay), so as not to depend upon the peculiar structure of the body ..., the difference be-

tween bodies continuous and those contiguous or glued together, as again between homo-

geneous and heterogeneous... the sound of a cavity is changed when liquid is poured in.

And liquids vary among themselves or if combined with solids ; water covered with water

sounds much clearer than when a hard body coversit.”’

[ZENDRINI, who experimented, was ready to base a theory on tenuous hypothecated

analogies between sound waves and other waves, while Lzrsniz, who did not experiment

himself, called for a preliminary experimental program so as to classify the kinds of pos-

sible vibration. LEIBNIZ seems, however, to have forgotten his earlier remark that the

elastic and acoustic properties of bodies mustbe related (above, p. 63).

This is the last we shall hear of Lerpniz. In the history of physics, he has been too

little valued. In our subject, despite the small proportion ofhis effort given to it, we have

seen that from 1684 to 1716, the year of his death, his influence was great, his knowledge

of particulars was extensive and accurate, and his insight was sound!). Each of his two

published notes, besides being a landmarkforall time, displays a perfect command of the

principles of mechanics as then they stood. Had LEIBN1z written no more, these ten pages

would have made him a famous mathematician forever. What is most remarkable is that

his private recommendations pertain to limited mechanical objectives as entering wedges

toward greater things, rather than vice versa, and call for an intelligent interrelation of

theory and experiment maintained, within the scope of this history, only by HuyGENs

and DANIEL BERNOULLI.

Wehaveseen that little or nothing was known by 1716 about vibrating bodies other

than strings ; moreover, the two most interesting studies, namely, the incorrect theories of

HvuyGens and ZENDRINI, were to remain unpublished until a century after the later
 

1) The experimenter MusscHENBROEK writes of Lrersniz, “... from what he confided to the

public light it may plainly be inferred that the most noble mathematician had examined not only those

things that he brought forth but also innumerable others which he kept back as being of lesser worth’’

(p. 427 of prim. op. cit. infra, p. 151).



TAYLOR ON THE VIBRATING STRING (1713) 129
 

triumph of the BERNOULLI-EULER theory. With the vibrations of a string, however, the

situation was different, for the main experimental phenomena were known. We now

follow two mathematical researches which could easily have explained them, had not

their authors, it seems, resolutely closed their eyes to the experiments in a unique con-

centration upon the fundamental mode.]

17. TAYLor’s analysis of the continuous vibrating string (1713). The calculation of

the [fundamental] period of a vibrating string was first achieved in a celebrated memoir

of Tarton, On the motion of a taut sinew1). Lemma 1 presents a geometrical argument

showing that for two similar curves y = of(z) and y= ff(x), the ultimate ratio of

the curvatures as «o—0 and $0 is «/8. Lemma 2 reads, “In any aspect of its

vibration, let the taut sinew between the points A and B take on the form of any curve

ApxB. Then I say that whatever be the increment of velo-

city of any point P, thatis, its acceleration arising from the JR

tension stretching the sinew,it will be as the curvature ofthe A. 5

sinew at that point”’ (Figure 46). The prooffollows. “Imagine 2

the sinew to consist of infinitely small rigid particles pP and yy aT

Figure 46,

theradius of curvature at P. It is intersected at ¢ by the ‘TyYuon’s figure for analysis of
the vibrating string (1713)

Px, etc.,and at the point P erect the perpendicular PR =

tangents pt and at, at s by the lines zs and ys parallel to

them, and at c by the chord pz. Then, by the principles of mechanics, the absolute force

by which the two particles pP and Pz are drawn toward £# will be to the tension ofthe wire

as st to pt, and the half of this force, which acts on the one particle »P, will be to the

tension of the sinew as ct to tp, that is (on account of the similar triangles cip, ipR) as tp

or Pp to Ri or to PR, Therefore, on account of the given force of tension, the absolute

accelerating force will be as Pp/PR. But the acceleration producedis in the ratio of the

abovlute force divided by the matter to be moved; and the matter to be moved is the

particle Pp. Therefore the acceleration is as 1/PR...” [Thus Taytor’s argument, if

somewhat obscurely”), calculates the resultant normal force acting on an infinitesimal element

of the string, obtaining

 

1) “De motu nervi tensi,”’ Phil. trans. London 28, No. 337 (1713), 26—32 (1714). I have not con-

sulted the translated and abridged ed., “‘Of the motion of a tense string,’ Phil. trans. abridged 6, 14—17.

An attempt to determinethe frequencyofa string from certain statical assumptions which are not

clear to me is made by SAUVEUR in his last paper, “Rapport des sons des cordes @instrumens de musique,

aux fléches des cordes; et nouvelle détermination des sons fixes,’’ Mém. acad. sci. Paris 1713, 46° ed., Paris,

324—350 (1716) = [224] 4to ed., Paris, 324—350 (1739). See esp. § 47.

2) Despite the introduction of the chord pz, the argument seemsto be correct.
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(74) cA, = —f,= = ; A,, = normalacceleration.

Indeed, the statical principle, at least to within a constant factor, is that expressed in

JAMES BERNOULLI’s unpublished formula (40). Not only does Tayxor obtain the result

independently, but also by applying to it the Newtonian principle on “the acceleration

produced’’, he adds something new: T'his is the first time the momentum principle is applied

to an element of a continuous body. From (74) the modern reader will conclude at once

that small motions are governed bythe partial differential equation

ay on BY
at Oa?”

While indeed small motions are TayLor’s objective, his result (74) is an equation valid

for finite motions of a perfectly flexible string, as indeed his figure suggests. Moreover, he

does not approximate (74) by the wave equation. Instead, after this brilliant beginning,

he wanders into a morass of special assumptions anderrors.]

His Problem 1 is “To determine the motion of a taut sinew.’’ The displacement from

the axis AB is assumed small, ‘“‘so that the increment of the tension from the increase of

length, as well as the obliquity of the radii of curvature, may safely be neglected.”’ Apply-

ing a plectrum at the midpoint, deform the string into a triangular form. Whenthe plec-

trum is removed, only the apex will move, by Lemma2. ‘“‘But then by the bending of the

sinew at points nearby ..., those points too will begin to move, and so on...” Each

point moves fastest when it first begins, more slowly thereafter, since the curvature

decreases. This occurs in such a way ‘‘that since the forces are properly tempered among

each other, all the motions conspire together so that all points simultaneously reach the

axis and recede from it, back and forth ad infinitum.

‘But for this to happen, the sinew should always take on the form of a curve such

that in any point the curvature is as the distance of that point from the axis.’”’ What

LAYLOR now attempts to prove is the converse, that if the curvature is as the distance,

then all points of the string reach the axis simultaneously ; [this is true, under the hypo-

theses made, but TayLor’s argumentis obscureif not faulty.] Asecond argument invokes

Lemma1 as well as Lemma 2. It then follows that the acceleration of each pointis asits

distance from the axis. By a known theorem, the vibrations are isochrone, and the motion

of an arbitrary point is that of a simple pendulum. [The argumentis now logically correct

but trivial, since to apply Lemma 1 to the motion of a string we must assume that

y = f(t)g(x), and most of what was to be proved follows a fortior:.] As a corollary,

r=—-a?/y, where a = const.

Problem is, ‘‘Given the length and weight of a sinew,along with the stretching weight,
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to find the time of one vibration.’’ TAYLOR’s result, in modern notation, is

1 \5
(75) y= OL oOo

[Thus, extending GAaLILEO’s proportion (10) and Huygens’ unpublished approximation

(17), he calculates from theory the fundamental frequency of the vibrating string.] The

argument is divided into two parts. The first sets up a precarious analogy between the

motion of the central point on the string and the motion of a pendulum whose lengthis

1 4/7

Bal |
The second part, “to find the line,” combines the general formula r= sy/zx [when

the amplitudeofvibration of the central particle, UW. The result is, in effect, »=

& = const.] with r = a?/y, yielding the differential equation a2x — syy. “Taking the

fluent’? [i. e. integrating] yields atx = isy* — 4s%?-+ sa?, where the constant of
integration is adjusted so that 2=s “at the midpoint’ [i.e., when y = Y]. Putting

s2— g2-1 y? and solving for x yields a quadrature; TAYLOR supposes that “Q and y
9? simplifying the quadrature to x = ayVw — y*. Hencevanish with respect to a,

- &
(76) y =U sin.

Putting y = UW corresponds to «= 41; hence a =I1/x. Putting this result into the

above derived expression for v yields (75).

[Possibly TayLor’s work wascriticized for the manifest contradiction between the

initially triangular form assumed in Problem 1 and the sinusoidal form (76) given as the

result. In the revised form presented in his book?), the indication of the finite velocity of

propagation of a disturbance has been removed. In its place is a passage concluding

‘Therefore, in whatever way the sinew is struck [initially], it very quickly takes on the

form of curve here described,” 2. €., one in which the curvature is proportional to the dis-

placement [and hence a sine curve. Thus began anerror that was to hang onfor half a cen-

tury. While indeed the effects of friction may be such as to cause the form of a vibrating

string to become more nearly sinusoidal as the motion subsides, nothing of the sort is

mentioned here.] TAYLOR’s argument is purely dynamical [and fallacious.

From this extraordinary performance we see that Tayior had within his hands the

correct dynamical principles and the partial differential equation we now regard as govern-

ing the whole problem, but he turned aside from them to the special and restricting hypo-

thesis that the curvature is as the displacement ; thus all that could emerge from his

analysis are the sinusoidal forms and the periods of the simple modes ; the fundamental
 

1) Pp. 88—93 of op. cit. ante, p. 86, Note 3. Here (74) is not stated so clearly as in the original

paper; e.g., only the word “accelerating force’”’, not the word “‘acceleration”’ is used. The calculation

of the frequency is slightly more direct.
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he did in fact obtain, though by a roundabout and scarcely convincing argument. At that,

however, he did not apply to his hypothesis even so simple an idea as that the acceleration

is 0?y/0t?. What is missing is the calculus of partial derivatives. Indeed, even to speak of

the acceleration of a particle on the string requires some concept of partial differentiation,

but in TayLor’s work wefind no sign that the partial derivative was included among the

entities he could manipulate even in the simplest contexts.

From this jumble of brilliance and error in principle, little but confusion could re-

sult’). |

18. JoHN BERNOULLI’S analysis of the loaded vibrating string (1727). Among the

Selected theorems to be proved as illustrations of the conservation of live forces and to be

confirmed by experiments*) which JOHN BERNOULLI communicated to his son DANIEL in

1727 are the following. Theorem IV asserts that Taytor’s formula (75) is correct ; [this

simple restatement implies that BERNOULLI saw the insufficiency of Tay1on’s deri-

vation.] Theorems V—VILI concern the weightless string loaded by n equally spaced and

equal masses M/n. [While this model had been used by HuyceEns (above, pp.45, 49),

his work remained unpublished, and his methods were inadequate; here we see thefirst

publication of a partially satisfactory theory for small vibration of a system of several

degrees of freedom.] Ifwe write »'™ for the [fundamental] frequency for n masses and y for

Tavror’s value (75) for the continuousstring, then, putting o = M/l, we may express

JOHN BERNOULLI’S results as follows :

 

 
 

(1) (2) _ (3)
weet v= .ve, y=— .2V6— 3¥2,
y 7 y 7 y 7

(4) — V5 (5) ooon we1 |)56 V8) ¥1 Veo —30¥8,
y 7 5+ V5 y 1

vy1 f420® — 126% + 168
yo oe 20°+a44+1 ,

where x is “the root’’ [or ‘“‘a root’’?] of 2° — 22 —-2%+1=0. “By the same method,

 

1) Immediately a solution was published by HERMANN, “De vibrationibus chordarum tensarum

disquisitio,”” Acta erud. August 1716, 370—377. HERMANN regards the motion asarising from thelinear

elasticity of the string. Somehow he concludes that the resultant transverse force for small displace-

ment y is Ty/l, where T is the tension in the undisturbed state. He then supposes the entire mass of

the string to move as a mass-point subject to this tension. This is not even a discrete model such as

that forming the beginning of HuyGEns’ treatment (Figure 11, p. 48) but merely juggling to get (75)

for an answer.

2) “Theorematia selecta, pro conservatione virium vivarum demonstranda et experimentis confir-

manda, excerpta ex eprstolis datis ad filtum DaniELEM, 11. Oct. & 20. Dec. (stil. nov.) 1727,’ Comm.

acad. Petrop. 2 (1727), 200-—-207 (1729) = Opera omnia 3, 124—190.
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which I have, I can go on to de- G H
. . . I

termine the numberof vibrations D=

for a string loaded by more Cc

weights, but I turn to other n x y Y—

23 .B

matters. A - 4 4 4

The proofs are given in a Figure 47 |
short paper dense with equations: JOHN BERNOULLI’s analysis “eyvibrations of a loaded string

Thoughts on vibrating strings,

loaded by little equidistant weights, where the number of vibrations... is sought from

the principleof live forces alone). JOHN BERNOULLI says that the vibrating string (Figure 47)

“must compose itself into such a shape thatall the little weights simultaneously reach the

line AB, whence it follows that the velocities of the several particles, as well as their

_— oa portional to the distances to be

t travelled Cc, Dd, Fe, etc.’’ To follow

BERNOULLI’s argument, consider the

accelerating forces, must be pro-

   
k'® particle at the center of Figure 48.

| vy The tension 7' is taken as constant,
+1 e e e

Ybel i and the accelerating force F', arising

|
!  | from the tension is assumed purely

l
 transversal [these assumptions are

le a Pie 4 P| justifiable only for small motion].
Figure 48. Variables used in Joun BERNOULLI’s analysis of

the vibrations of a loaded string

 

Then by equating the projections of

the forces on to the direction normal

to the left-hand segment we obtain I’, sin y, = 7'sing,. “Since the shape is almost a

straight line,” siny, 1, sing, * 2,4,/a. From the geometry of the figure, we have

exactly 244) = 2Yxn — Yria — Yrui- Hence

T T
(78) Fy w a rH = a (24% — Yura — Yrs) -

[Thus BERNOULLI calculates in full generality the restoring force on the k‘" particle,

subject only to the hypothesis of a nearly rectilinear form.] By hypothesis, F', « y,. Hence

(79) 2Y% — Yara — Yuu

Yr

1) ‘“‘“Meditationes de chordis vibrantibus, cum pondusculis aequali intervallo a se invicem dissitis,

ubi nimirum ex principio virtum vivarum quaeritur numerus vibrationum chordae pro una oscillatione

penduli datae longitudinis D,’? Comm.acad. Petrop. 3 (1728), 183—28 (1732) = Opera omnia 3,

198—210.

= const. 
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[We note how close BERNOULLI comesto establishing the equations of motion, yet he fails

to do so, being misled by TaytLor’s hypothesis.] For each of the cases n = 2, 3,..., 7,

BERNOULLI worksout a solution of (79). Each time his solution is such that all displace-

ments are of the same sign. H.g., for n = 2 he has y, = y,; for n= 3, hehas y, — y,

with y, adjusted accordingly, viz, y, = y, V2; and only for » =7 does he mention any

other solution, but then hesays, “‘it does not belong here.”” [With the whole set of principal

modes for the loaded string standing before him, he refuses to notice any but the funda-

mental. |

Next BrRNovLLI turns to calculation of the frequency. The tension is regarded as

caused by a weight hung over a pulley at A (Figure 49). The “descent of the weight’’ is

the distance it has to be lifted in order for the string to assume its present configuration;

for the case shown in Figure 47, thisis AYGHB— ACHIB, which Bernovuttifinds

tobe 2(2 —V2) W/a, where Y,is

 

$1. " ae 4L the displacement CF of the first

weight, #. By the principle of vis

viva, this must equal the kinetic

“ Cc z I 8 energy of the weights when they

@) cross the line AB. At this point

Figure 49 BERNOULLI recognizes the fact that
JOHN BERNOULLI’s use of the principle of live forces (1727)

the initial assumption £,« y, im-

plies simple harmonic motion. In particular, the velocity v, with which the particle

crosses the axis satisfies v, « ,. Thus, again for the case when n=3, wehave v,=V21,

and hence the total kinetic energy is 4M-v} + 4M-2v3 + 4M-v}. Therefore

(80) $Moi =2(2 V2) - TP = 8(2 V3) a.

Aince vy = ZW, substitution in (80) yields an expression for »‘) which is in fact (77)s.

The calculations grow more and more complicated, but BrERNovutui carries through the

same method as far as n = 6.

BERNOULLI then gives “‘solutions of the same problems from theprinciple of statics.”

Here everything rests on LemmaIV, whichcalculates the frequency of a motion x(t) of a

body of mass Jt subject to a force!) — Ku, viz, v=5 )= . As he saysin the scholion,

by this method we may treat a general number of weights, n. For by (78) follows

 

1) As far as I can learn, this passage contains the first treatment of simple harmonic motion by

straightforward integration of the differential equation. Cf. above, pp. 56—57.
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T T
By =~ (241 — Ya) = (2 — On)>»

where y, = «,y,. Thus, since M = -MW, in full generality we have

 y(n) ]

a — .(81) ~ Vain + IG a)
All that is needed now is the factor «,. This, for m = 1,2,...,'7, was determined earlier

[but plainly BERNOULLI is unable to determine it for general n; to find it is equivalent to

finding the solution of the difference equation (79) such that y, > 0 fork = 1, 2,...,. and

Yo = Yn41 = 0]. For example, for n = 7 we have a, = \2 + V2, hence

=— .2J1ue—V2+4 V2) .
 

(7)

(82) ~ 
v

Coming finally to the continuous string, BERNOULLI quickly calculates the restoring

force on an elementas being 7'= , where @ is the slope angle [this is essentially TayLoR’s

result (74), and in any case was familiar to BERNouLLI from the unpublished researches

on the catenary]. ‘““But it must be noted that the curve . . . is an elongated companion of

the trochoid”’ [?. e. sine curve]. On this assumption d@/ds is easily calculated, and the

period (75) follows at once by the second method used for the loaded string. BERNOULLI

gives also a proof based on conservation of live force ; for this, a more accurate calculation

of the curvature is necessary.

The paper ends with a proof that the shape of the string must be sinusoidal. Since the

; : . 1 d?
restoring force is proportional to the curvature, at any instant we have — © _* ; by

2

hypothesis, the restoring force is proportional to y. Hence at «xy, whencethe assertion

follows.
[The reader cannot fail to be disappointed. After the brilliant start expressed by (79),

Burnovtizihas shut his eyes to the real problem three times over. The calculations of the

fundamental frequencies are of course correct, and the general formula (81) is clever,

But there is no hint that other frequencies can occur and no indication that the frequency

satisfies a polynomial equation ofdegreen. Here we look for recognition of the problem of

proper frequencies, but we look in vain). Rather, following TayLor, BERNOULLIinsists

at every turn that the force must vary as the displacement. On the one hand, in demand-

ing that all particles cross the axis simultaneously, BERNOULLI seemsto realize that he

imposes a restriction. However, he fails to find the other modes sharing this property. His
 

1) The description of his paper given by BurxHarpt,§ 1 of op. cit. ante, p. 11, while techni-

eally not incorrect, gives a partly false impression by describing what the problem really is rather than

the problem as BERNOULLI himself handledit.
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treatment of the continuous string is shorter and clearer than TAYLor’s in that he uses

TAYLOR’s assumption Fay directly, without TaAyLor’s detours, but in principle both

are alike?),

19. Summary: EULER’s heritage. Our scene is ready for the man destined to take up

the theory of deformable bodies and by slow degrees exalt it, as he did most parts of

mathematics, to a perfection scarcely thought possible from the material as it first came

to his hands. This man is EvLER. Wecast the sum of his heritage in our subject.

The past ninety years had seen the field of elastic and flexible bodies opened by

drives uponfive largely isolated special problems. Should the reader contrast our following

survey of them with his own immediate impression from a sample of the old writings, he

will find little in common. Indeed, a statistical summary of the papers of the late seven-

teenth century wouldreflect little more than a massof ‘‘constructions’’ relating one curve

to another. This helps in understanding the researches in the following quarter century,

since for the students of that time it must have been even harder to extract the real

thoughts from the endless differentiations and integrations in which they were entwined.

PROBLEMS

I. Equiltbroum of flexible lines. The general differential equations, both in rectangular

co-ordinates (39) and intrinsic co-ordinates (40) (42), were derived correctly by JAMES

BERNOULLI and finally published by Hermann. For the most interesting special cases,

explicit solutions were found. In this sense, the problem was closed. However, real chains

or strings show some measure ofstiffness, and a theory taking account of it was lacking.

(See Problem V below.)

The basic concept for the theory of flexible curves was the tension, evolved from special

cases by JAMES BERNOULLI and published by HERMANN (above, pp. 81, 87).

II, Small vibrations of flexible or elastic bodies. TAYLOR’s formula (75) for the frequency

of the continuous vibrating string and Joun Brrnovtitt’s formulae (77) for the string

loaded by one to seven masses were definite achievements. For the loaded string, it was not

shown that JOHN BERNOULLI’s method, which seems to rest on guessing a part of the

solution of (79) and then calculating the rest by laborious elimination, really would go

through for an arbitrary number of weights. The work of both authors was misleading if

not erroneous from special assumptions which a modern reader sees at once confine the

results first to the simple modes and then to the fundamental. Neither author recognized

the true nature of the problem, either mechanical or mathematical. There is no hint of a
 

1) The earliest researches of EULER on vibrating systems, which began in connection with this

paper by his teacher, are described in footnote 1, pp. 142—149.
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spectrum of frequencies or, apart from the errors TayLor bequeathed to his successors

for half a century, of any other form of the string than that to which the exhibited fre-

quencies belong. Indeed, what are lacking are the equations of motion. These TAyLor, and

to some extent also JoHN BERNOULLI, had within their hands but cast aside.

Generalizations of the problem, as for example to a heavy chain hung from one end,

could be attacked by the same methods, with the same measure of success and failure to

be expected.

That elastic vibrations are of a different kind was recognized, but the only definite

result concerning them was MERSENNE’s empirical formula (9), apparently little known.

LEIBNIz’s suggestion that the elastic and acoustic properties of bodies are connected had

not been followed except in unsatisfactory work by Riccat1; it is soon to be made definite

by Evtzr. That the vibrations of a given body, whether elastic or flexible, may occur at

several different definite frequencies, to each of which corresponds a motion with a

definite number of nodes, should have been clear from the experiments organized by

SauvEuR, but the theorists took no heed of it, leaving the field clear for DANIEL

BERNOULLI.

III. Rupture. The problem of rupture, apparently, is ill adapted to mathematical

treatment and remains today unsolved. It gave rise to the LETBNIZ-VARIGNON formula (61)

for the bending moment acting upon a cross-section of a beam when the bendingitself is

neglected but the tension is assumed to vary linearly over the cross-section.

IV. Extension. Hooxn’s linear relation (18) was knowntoall the following students

of the subject but esteemed lightly. To the extent they consider deformation at all, the

early researches always concern finite deflection, for which indeed (18) is rarely appro-

priate, On the one hand, linearization as a device for cutting the problem down to the

size of the man was reserved for a later age to discover. On the other, the early geometers

failed to exploit the implications of a fact they all knew, namely, that large forces may

accompany scarcely perceptible changes of shape. JAMES BERNOULLI’s parabolic law,

elongation « (force), had been explored but not found appealing.

While James BERNOULLI had seen that force per unit area (stress, t) and change of

length per unit length (strain, ¢) are the proper variables for a theory of elasticity, nothing

had been done with these basic concepts. The last work of JAMES BERNOULLI implies the

existence of a material constant or modulus having the dimension ofstress and specifying

the degree of elasticity, but he did not introduce such a modulus explicitly because he

wished to avoid assuming any particular stress-strain relation. We shall encounter the

modulus of extension in EKULER’s first paper.

V. Bending. The principle expressed by JAMES BERNOULLI’s equation (56) or its

special case (57), defining the elastic curve, was a second major discovery. However, the
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theory was in a primitive state. First, BERNOULLI’s derivations of the basic formulae (45)

and (46), relating the bending momentto the curvature, were unsatisfactory. It remained

to integrate over the cross-section of a beam, in a word, to unite the LEIBNIz-VARIGNON

formula (61) with JAMES BERNOULLI’s formula (45). This will be EuLzr’sfirst achievement.

While BErRNouLLti had stated that the momentis to be taken, at each cross-section,

with respect to the point where it intersects the neutral fibre, his theory for calculating the

position of that fibre was faulty. A correct and essentially general application of statics to

the forces and momentsacting upon the cross-section had been given by Parent, but only

at the expense of neglecting the bending. That the neutral line is the central line if the

tensions vary linearly over the cross-section was known and stated by BrRNovuLur and

PaRENT. This aspect of the theory is to be disregarded by Eunir and nearly all other

savants in the eighteenth century.

Second, the true shape of the elastic curve was still a mystery. While a literature

grew up aroundit, this literature, in the style of the day, presented “constructions”

whereby the curve could be drawn in terms of other curves, but no one drew it. So simple

an idea as to perform the quadrature (57) numerically and compare the result with experi-

ment is not to be found, nor did anyone calculate the approximate shape for small deflec-

tions. The only concrete results were BERNOULLI’s series (51) and the bounds (52) for

the rectangular elastica. It is to be EULER’s achievement to determineall possible forms

of the initially straight band subject to terminal load, besides other elastic curves.

But this is not all. James BERNOULLI’sfirst paper on the elastic band (above, p. 89)

concludes with a list of further problems chosen with his usual insight and left to “the

industry of our readers’’. These problems remained untouched. Indeed, in this period only

one person, the great BERNOULLI himself, put in print anything at all concerning the funda-

mental theory of the elastica. The first among these problems was “to investigate the kind

of curves engendered when the elastic band is bent by its own weight in addition to the

suspended weight’’—in effect, to unify the theories of the catenary and of the elastica. How

to do this was far from clear, since the most general problem of the flexible line had found

its formulation in terms of the tension, while the law of the elastic band was a statement

concerning the bending moment. The matter lay quiet until 1724, when in the Acta Erudi-

torum appeared a note, The famous problem of the catenary proposed again to the geometers,

especially to those who are members of the royal societies of London and Paris). The rather

scornful anonymous proposer speaks of ‘‘a rope or little chain not infinitely but rather

moderately flexible—if you like, not imaginary but real,’’ such that the slope at the points
 

1) “Celebre catenariae problema geometris denuo propositum, ws praesertim qui ex Soc. Reg. sunt,

guae Parisiis florent & Londini; Paristis ad collectores actorum erud. transmissum,” Acta erud. August

1724, 366—367.
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of support may be prescribed, ‘‘as is seen to occur not by pure hypotheses but in fact...

It is easily shown that this case is possible, you cannot doubt it... Farewell. LBC.”

While this challenge seemed to pass unnoticed, and LBC, whoever he was, had to wait

several years for an answer, solution of this fundamental problem of principle will furnish

the subject of DANIEL BERNOULLI’s and EvLER’sfirst publications on our subject.

METHODS

T. Models. Three mathematical models for real cords, chains, wires, bands, planks, and

bars were proposed :

a. The continuous line was introduced by PARDIES and used in nearly all later re-

searches. This is not to be disguised by the loose language in which the arguments are

sometimes put, a8 when TAYLor speaks of the vibrating string consisting in ‘infinitely

small rigid particles’.

b. The line loaded by discrete masses or weights, thus far equidistant and of equal

magnitude, may be related to the continuous line by one of two passages to the limit :

1. In the equations of motion or equilibrium. For the simple catenary, this seems to

have been done by Huyaens(above, pp. 66 —68).

2. In the final answer. In the case of the suspension bridge, whereit is easy, this

was done in unpublished work of Brxckman and Huyeens(above, pp. 24, 45 —46). While

it was doubtless Joun BeRNovuLyi’s aim in connection with the vibrating string, his

solution for the discrete model is too fragmentary to be used (above, pp. 132—135).

These models, recognized as distinct?) by early writers, all will appear in researches of

the cightcenth century.

II. Theory and experiment. All the first researchers in our subject turned to experiment

for guidance, and most of them experimented themselves. However, they showedlittle

comprehension of what experiment can do and what it cannot. While theory made brilliant

progress in the seventeenth century, experiment remained crude, serving virtually as a

popular diversion, and it is almost surprising that certain definite results were discovered

experimentally?). On the one hand, preliminary analysis of the factors that govern an
 

1) However, this distinction may not always be apparent to a reader accustomed to modern

precision of statement. Cf. § 2 of BURKHARDT,op.cit. ante, p. 11. That in much of the early work the

limit passage is unrigorousor even incorrect is of course a different matter.

2) These were:

1. The MERSENNE-GALILEO laws (10) for vibrating strings

2. MERSENNE’s law (9) for vibrating rods

3. The existence and coexistence of definite overtones accompanied by nodes,at least for strings

4, HooK®’s law (18) for extension

Even here we should be cautious, for only in Nos. 3 and 4 do the original reports declare and reveal

the experimental nature of the discovery. That No. 2 was found out by experiment, the circumstances
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experiment, such as the dimensionless parameters relevant for its interpretation, was

lacking, and the need for reporting the specific data from a sequence of tests rather than

one or twoisolated cases was not felt. On the other, the geometers, sharply aware of the

uncertainty of their hypotheses, turned to some simple experimentfor direct confirmation

or denial of those hypotheses rather than waiting for a more troublesome check of detailed

predictions from resulting solutions. The case of HooxKn’slinear law of extensionis typical:

For any noticeable extension it does not hold for most materials, but the more subtle idea

that it could be tested indirectly for unmeasurably small extensions by checking JAMES

BERNOULLI’s derived formulae for large bending was never suggested. At the same time

the geometers, triumphing in the power of their new methods, hastened on to try new

problems. Thus remained frustrate the high hopes expressed by all the early theorists that

their results find important practical application. Thus began the chasm between elastic

theory and elastic experiment or engineering (if such it may then be called) that spread

ever wider for a hundred years and more andto this day is not closed. In the century that

follows we need not study the general course of experiment, for most of it was unrelated to

our subject ; as we shall see also, many splendid theoretical discoveries of EULER remained

long unheeded by the experimenters.

Til. The principles of mechanics. In static problems both the BERNOULLIs in time

came to isolate a differential element and balance the forces acting upon it. The deeper

work of Jamms BerRnovuLri was available, if in unpalatable form, in HERMANN’s book. In

dynamic problems it was a different matter, for in those days each savant treated motion

after his own fashion. A variety of mechanical principles, each correct in some range be-

twoon the very special, such as CaLrLz0o’s laws for an inclined plane, to the rather general,

such as the LEIBNIZ-BERNOULLI principle of live forces, was known, and recognition of

the central importance of the momentum principle was to come only at the hands of

EULER some fifty years later. Here the modern reader, accustomed to obtain equations of

motion by what is called ‘““Nkwton’s second law,’’ will expect the English to have the

advantage. But in our subject the English, aside from the unfortunate Gregory, kept

silent until TayLor’s work began to appear, and indeed TayLor’s formula (74) results from

the sole application of the momentum principle to a contunuous body so far ; however, TAYLOR

failed to write or use it as a differential equation. Thus,it seems,

a. None of the continental geometers used the momentum principle, at least in con-

nection with continuous bodies.

b. The English (aside from Nrewron himself, who kept aloof from our subject) lacked
 

lead us to presume. No.I, as we haveseen, is the cumulative result of experience, guesswork, plausible

reasoning, and experiment, definitively tested at last, though only in the more special form (8), by

MERSENNE.
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the mathematics sufficient to carry through an analysis based on the momentum

principle.

IV. Mathematics. The last observation is essential. For today it is instantly plain

that the language of our subject 1s partial differential equations. Now the English with their

fluxions and the Continental geometers with their differentials were, in principle, on a par

so long as problems involved but one independent variable. But no problem of the dyna-

mics of continua, apart from thoseartificially simplified by extra assumptions, is of this

kind. The idea of a partial derivative was indeed known, known in the same sense that the

ideas of a tangent and area of an arbitrary curve were known and used correctly long

prior to the differential and integral calculus. Lacking was a formal calculus of partial

derivatives, and for developing such a calculus the fluxional concepts, while indeed admis-

sible, were not conducive. What was needed was a man who could express and master the

Newronian view of mechanics in Leranizian partial differentials. This man was EULER.

As we shall see, with some deviations this program occupied muchofhis effort for much of

his life, and for the next twenty-five years our history records a part of his gradual pro-

gress toward achievingit.
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Part Il. The Beginnings of the General Theories, 1727—1748

20. EULER’s derivation of JAMES BERNOULLI’s law of bending from HooKe’s law

of extension; introduction of the modulus of extension (1727). At the time when JoHN

BERNOULLI was calculating the [fundamental] frequency of the loaded string (cf. § 17,

above), his student EULER was studying problemsofvibration underhis guidance. [It may

be comforting to learn that even EULER must have found these problems difficult when a

student, for his earliest attempts are faulty'). By 1726, however, he had a derivation?)of

TayLon’s formula (75), which he had confirmed by experiment’).
 

1) Through the kindness of Professor MixHatnov I have seen a copy of a note of 1725—1727 in

which EvLER reports a value of »{!) which is greater than the correct value in the ratio V14/\l (4. e.

2/Vn); on this note JoHN BERNOULLI wrote the correct value (77).

Further information may be obtained from the unpublished notebooks of EULER. These were

hastily catalogued by ENrEsrr6m, Jahresber. Deutsch. Math.-Ver. 22 (Erganzungsband), 191—205

(1910), who assigned to them the numbers (E) H1—H9.Slight inspection of these notebooks shows

that ENESTROM’s dates are not always correct; my conjectured dates are as follows:

EH1 1726—7 (completely from Basel)

EH2 1727

EH3 1736—1740

HH4 1740—1744

KH5 1745—1750

EH6 1760—1757

EH8 1759—1760

E H7 1760 or 1761—1763

EH9 Miscellaneous

These notebooks, despite their length of some 3000 pages, contain little that EuLEr did not ultimately

publish, usually in extended form, and the subjects of many of EULER’s printed works are not men-

tioned in them at all. It is rarely possible to use them to date discoveries; rather, the dates of entries in
them usually must be bounded by dates from letters or published papers.

1 conjecture that the pages of E H6, E H7, and E H8 are not now in their original order, though

most of the contents of E H8 was surely written before E H7. The material on pp. 72—75 of E H8

can be bracketed with certainty between HuLER’s letter to LAGRANGE of 23 October 1759 and the pre-

sentation date, 13 December 1759, of E 307. Also p. 84 and pp. 86—87 contain the first treatment of

material in E303 and E302, respectively, presented in Berlin on 25 September 1760 and 22 January

1761 andlisted on p. 184 of EK H7 as among the memoirs sent to Petersburg on 26 April 1762.

A partial description of the notebooks, with similar conjectured dates, is given by I’. H. Muxaii0B

 

«Sanucnoie knusxKu Jleonapda Dinepa e apxuce AH CCCP,» Ucrop.-mar. uccaeg. Brraycr 10, 67—94 (1957);

G. K. Mixuatnov, “On Deonaarp EHuter’s unpublished notes and manuscripts on mechanics,” Proc.

3rd. congr. theor. appl. mech. Bangalore, 19-24 (1957); IT. K. Maxafiqos & B. WU. CuuPHos, “Heorysaxo-

BaHHEIe MaTepwatbl JIEOHAPIA OMIEPA sp apxase Axagemun Hays CCCP,” Jeonapa Ditaep, cbopumK crareli B

uects 250—azetTus co qa poxxpenua, Mocxsa, Uszar. axan. Hayx CCCP, 1958, pp. 47—79. G. K. Mixnatov,

‘*Notizen dtiber die unverdffentlichten Manuskripte von LEONHARD EULER,’ Sammelband zu Ehren

des 250. Geburtstages Leonhard Eulers, Berlin, 1959, pp. 256—280.

On pp. 133—136 of EH1is a first attempt on the vibrating string, by an obscure methodleading to
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The purposeis to calculate the period A

of oscillation of an elastic ring and hence NN
to “lay the foundations for determining

the oscillations of bells and other bodies.”’

A circular ring is supposed to oscillate

slightly, assuming an oval form (Figure 42 2

50), [but in fact the following analysis is

local and hence not restricted to the case

of a circular ring]. ““The ring ..., like a

struck cord, will try to restore itself, and SS”

in such a way that every particle is drawn

toward its natural position by a force Figure 50,

proportional to its distance therefrom ... EunEr’s diagram for an oscillating ring (1727)

If a particle is that much farther from the (redrawn for publication in 1862)

circle, by that much more will it be drawn back to it.’’ [This last is a false start ; as we

 

 

 

 

 

shall see now, HKULER in fact applies Hooxn’s law correctly to A

the extension of the filaments.] mn EB -

On the left-hand side of Figure 51 we see the ring be- toa

fore it vibrates; the radius of curvature Ca is R, the

thickness da is c. On the right, the ring is in vibration,

and the element a6 of length ds is selected so as to be equal

to its counterpart on the left. The new radius of curvature

acis ”, and thus the increment He in length of the element t

AB is given by Figure 1. Diagram for EULER’s
first derivation of BERNOULLI’s

(83) dv Hem 7 oda —=(7— 5Jods rawforpabiodion i180)
‘|... Ll suppose the joined particles daeH and BbeZ# to beelastic filaments such that the

« A more they are stretched, the greater force they have for

E é r © contracting themselves. Therefore the angle Hee is full of

such elements transversely disposed; these try to join the

J nH sides He and ce, and from the force of these threads             

te
8

A
x

depends the cohesion of the parts of the matter of which

() the ring is made. Let this cohesion... be such that the

series of filaments F/G =} extended to FJ =g may

 
é

. 9 o,6
P

Figure 52. EULER’s first definition . . . » . ff.

of the modulus of extension sustain the weight p (Higure 52). [that is. ig is theov 9 dul 9 1727 . ; :

(redrawnfor publication ei 1862) force per unit length of cross-section and per unit length
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of extension, or what is now called ““Youne’s modulus”, which makes its first appearance

here1).] Call eM =a, Mm=ddz.Thelittle space MmnN will be full of filaments of length

dr. The force F, pulling Mn toward Nn is given by

P x
84 Fi == -dx-—dt.(84) fg c

“Therefore the weight to be applied at # and « so as to constrain the sides He and ee

with the same force’’ will be

85 ——_

Ff

= x?(85) F c f, ige x'dudt .

[Thus we see that EuLER is using “‘pondus’’, here translated “‘weight”’, to mean “‘force’’,

while he uses ‘‘vis’’, here translated ‘‘force’’, more generally to mean “‘effect’’. He has cal-

culated the force F to be applied at # in order to exert the same moment about e as does

F,, acting at x.] Integration form x = 0 to x= yields thetotal “weight” to be applied

at H:

Pec Pe [1 1ight = —~ = 2-—— -(—— = ds.(86) weight 3hg dt 4% fg (- Zz) ds

[This result we recognize as

I(97) HM = B(——), B=E,
r Ot

specialized to a rectangular cross-section when the neutralline is taken as the fibre on the

concave side, so that J = 4A D?, and # is ‘““Youna’s modulus”. Thus not only is the

Lerpyiz-Varnianon formula (61) successfully combined, at last, with JAMES BERNOULLI’s

formula (45), but also the formula (69) for initially curved rodsis included.]

 

1) In previous theories we have encountered constants or coefficients of two types:

A. In GauinEo’s theory, and in the work of Lersyiz, VARIGNON, and PARENT, there is a material

constant K which is interpreted as the rwpture stress; cf. (12). These theories in effect consider elastic

stress but neglect the elastic strain to which it givesrise.

B. In Hooxen’s theory, as refined by later authors, there is an elastic force defined as that force

which producesa specified strain in a given body.

What is new here is that EuLer’s P/(fg) is a material elastic constant, i. e., a mean stress (not a

force) which produces a specified elastic strain (not rupture).

The existence of such a material constant is clearly implied by the more general considerations of

JAMES BERNOULLI (above, p. 106), but it was not introduced explicitly by him.Its explicit appearance

in this work of EULERis easily explained: This is the first problem requiring such a modulus for a proper

solution.

For the later history of ‘“Youna’s modulus”’, see below, pp. 402—404.
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EULER now wishes to calculate the force accelerating a given element toward the

center of the circle. He regards this as the product of (86) by the difference of the lengths H «

at different times during the motion, calculated at the end of the major axis of the ellipse

into which the circle is deformed. He then assumes simple harmonic motion and by

elimination of the distance calculates the period. [The analysis is difficult to follow,] and

Evuer at first rejects the result. By rearrangement of constants he concludes that for a

ring of radius & and thickness D the frequencyis given by

D EH

(88) =so|
Heis dismayed at the conclusions that the period is independentof the altitude of the ring

and that the pitch growshigher the smaller is the radius &. [Doubtless these prevented him

from publishing the paper; however, the general nature of the relation (88) is correct,

although for an inextensible ring EvLER’s neglect of longitudinal motion is not justified

(cf. below, p. 320). ]

A marginal note asserts that in order for a bell as a whole to give out the same sound,

it is necessary that A?/D = const. [Thus Euzr at this early period thinks of a bell as

composed of a pile of circular rings vibrating independently. This incorrect idea he is to

exploit later (below, pp. 321).]

21. EULER’s unification of the catenary and the elastica (1728). We now find in

St. Petersburg the two savants who will dominate our subject, nay, monopolize it, for

twenty years and more: Dantet Brernovxiyi and Evuzr, one being the son and both

being the pupils of JOHN BERNOULLI, both junior members of the academy, where in

friendly competition they discuss and solve the same problems. DantEL BERNOULLI,

twenty-eight years old, is already a famous scientist, while EuLER at twenty-one has

published but three papers. In February 1728 each communicates a unified theory of

flexible or elastic lines ; their papers appear consecutively in the volume containing also

Joun BERNOULLI’s proofs on the vibrating string, described in § 18.

DANIEL BERNOULLI’S note is called Universal method for determining the curvature

of a thread stretched by powers following any law among themselves, along with a solution of

certain related new problems). Thefirst half of the paper concernsperfectly flexible lines

[and contains nothing new?)]. ‘“To find the curvature of an elastic band curved partly byits
 

1) ““Methodus universalis determinandae curvaturae filt a potentiis quamcunque legem inter se

observantibus extensi, una cum solutione problematum quorundam novorum eo pertinentium,’ Comm.

acad. sci. Petrop. 3 (1728), 62—69 (1732).

2) DANIEL BERNOULLI implies that up to this time only loading normalto the curve or parallel

to a fixed direction had been considered. That he was ignorant of his uncle’s unpublished workis to be
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own weight and partly by an attached weight,’’ DANIEL BERNOULLI assumes the band to be

“‘of the same structure throughout its length, although the problem does not become much

more difficult if it is of non-uniform structure.’ The weight of the band acts at its center
1 8 8

of gravity ; hence its moment about sis gos(x — x.) = gos (2 —~ f xds) =go{sdz.
& 0 0

The momentof the attached weight P is Px. The total momentis related to the curvature

by the formula

(89) TWN = 2 , B= “modulus of bending”or‘flexural rigidity’’.

[We have seen that an equivalent result was obtained by JAMES BERNOULLI, but, always

emphasizing the tension acting on the cross-section, he never stated the law of the elastica

in this way. The more general and more explicit result (87), derived in a major special

case by Ever, was unpublished. In DanrEL BERNOULLI’s paperis the first explicit

recognition of (89) as the basic law of the elastica, although to derive it he does no more

than restate it). Here also wefind thefirst explicit appearance of &@, which EULER is soon

to call ‘‘the absolute elasticity’’. Thus (89), or its generalization (87), may justly be called

the Bzryovuru-Hozer formula for the bending of a beam, it being understood that refer-

ence is made both to Jamus and to Danret BERNOULLI.] Hence

(90) gofsde + Pr =.
0 7

Next DanrtgEL BERNOULLI considers the problem from the Acta Eruditorum of 1724

(above, p.138), for which, he says, no solution has been published.We need only consider the
 

expected, since JAMES BERNOULLI’s papers were kept from JoHN BErRNovuLii and his circle; that

DANIEL BERNOULLI should not know the general solution in the book by his senior colleague, HER-

MANN (above, p. $6), 19 surprising, especially since Eur refers to it (below, p. 149).

It is typical of Danrer Burnovutti that he stays close to the simplest special cases by resolving

a general load into a normal component fF’, and another, F',, parallel to a fixed direction, thus losing

the advantages both of intrinsic and of fixed co-ordinates (§ 1). First he laboriously balances such

forces acting upon a chain of three links (§§ 2—3), then passes to the limit as the junctions approach

one another (§ 4). The result of all this we may derive at once from (40) and (42) if we observe that the
, ; ; d _

normal load is F,— Fy= , the tangential load is F,7 , and then eliminate 7.

DANIEL BERNOULLI’s examples include a generalized lintearia in which both the weight of the

fluid and the weight of the curve are considered (§§ 5—7); neglecting the latter leads to the ordinary

lintearia, ‘‘first studied by my uncle JAMES BERNOULLI”(§ 8); neglecting the former, to the ordinary

catenary, “first proposed to the geometers by my father’’ (§ 9).

1) Recall that for JAMES BERNOULLI it was not a postulate but rather a result he attempted to

derive. For DANIEL BERNOULLI, as with most principles he considered true, it seems to be self-evident

and scarcely worthy of comment.

12
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weight P as acting at an arbitrary angle to the band ; resolving the weight into two com-

ponents P,,, Pywe replace the term Px in(90) by — Pyx + Py If the density o is

non-uniform, o f sdx is to be replaced by j aX dx, where Z = f ods. The paper closes

with the remarkthat “our most enlightenedEULER solved this problem, proposed to him

by me, in such a way that it would not seem possible to add anything.”

EvLer’s Solution of the problem of finding the curve assumed by an arbitrarily elastic

band loaded by arbitrary forces at its several points!) begins

B right off with a “general problem2)” including all previously

studied cases of the equilibrium of a string or rod: To find

the differential equation of an arbitrarily elastic band fixed at

one end B and loaded by arbitrary C

c a forces along tts length and by an

P arbitrary force at its other end A

(Figure 53). The ‘“Hypothesis’’is:

F E “If two rods (Figure 54) aB, BC

 

 

D
Figure 53. joined at B by aspring are twisted Figure 54,

EULER’s diagram for the elastic . EvULER’s diagram for statement
band subject to arbitrary forces by the power AD into the con- of the Burnovttt hypothesis
 

1) E8, “Solutio problematis de invenienda curva quam format lamina utcunque elastica in singulis

punctis a potentiis quibuscunque sollicitata,’’ Comm. acad. sci. Petrop. 8 (1728), 70—84 (1732) = Opera

ornmnia II 10, 1—16. Presentation dates: February 1728, 22 December 1730.

Through the kindness of Professor Spress I have seen a copy of a manuscript by EULER which

seoms to be a preliminary version of E8 and must surely date from the period of his studies in Bagel.

This is Mscr. C2 of the Basel University Library, “De figuris quas corpora flexibilia debent induere a

potentvis quibuscunque sollicctata.”’ Two marginal notes by JoHN BERNOULLI describe his solution for

the catenary subject to forces directed toward a fixed center (above, p. 86). Marginal notes in another

hand point out errors, which EULER corrects in an appendix. (While the inscription on the envelope,

written by Jonn II] Bernovunri, states that these notes are by Danten BeRNnovuni, the circumstances

make this attribution unlikely.)

This paper, carried through with a kind of mathematics considerably more primitive than that in

1831, begins by considering various kinds of perfectly flexible lines. Its most interesting feature is the

faulty supposition that a plane curve whichis the figure of equilibrium subject to a certain plane load

will serve as generator of a surface of revolution forming the figure of equilibrium for analogous spatial

loading. H. g., the lintearial surface is a sphere. The error is pointed out in the marginal notes. An

attempt at a direct treatment of some spatial problemsis given in the appendix, to which there is no

counterpart in the printed paper E8.

Elastic problems begin only at Proposition 15, which is the “Hypothesis” put at the beginning of

E8. Here EULER treats only the case of terminal load and obtains only the rectangular elastica.

The unification that is the dominant feature of E8 is completely lacking in this early study.

2) On p. 15 EULER mentions the special case proposed in the Acta Eruditorum for 1724 (above,

p- 138), “the solution of which no one,so far as I know, has obtained up to now, except for the most

enlightened DanreEL BERNOULLI, who achieved the solution about the same timeas I did.”
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figuration A BC, so as to subtend an angle A BA, the moment of the power AD at B

will be jointly as the elastic force at B and the angle A Ba. This hypothesis is commonly

assumed ; probably its truth can be proved physically when the angle is very small.”’ In

what follows, EuLER interprets this hypothesis as implying (89). EuLER’s mechanical

principle, like BERNOULLI’s, is the equilibrium of moments about an arbitrary point on

the band ; thus the solution of the “general problem”’ [for a band that is either perfectly

flexible (@ = 0) or naturally straight] is

£ y B

—P,x+P,y —j Y¥di+fxdy= ——.,
0 0 r

(91) : :

Y={Ff,ds, X = {fds ,
0 0

the origin being taken at the end where the loads P,, P, are applied. For the coefficient

(5 KULER uses the notation Av, where A is a constant of proportionality and v is the

“elasticity”, not necessarily constant.

The perfectly flexible case is obtained by setting “= 0. By differentiating (91)

twice, Eunrer obtains a differential equation for the curvature ; later he obtains the same

 

result expressed in terms of normal and tangential loads?):

d(f,7) _
(92) 7s +F,=0.

As Evurr remarks, only Hermann had published anything so general (above, p. 86).

If FF. = 0. Evuer’s first form of (92) yields

dz \?
(93) rf’, (=) = const. ;

ada

as

For purely normal load, as in the cases of the velaria and the lintearia, (92) yields

when F, — const., the ordinary catenary results, and when I = const,, the parabola,

Fr = const, This exhausts the familiar types of flexible lines.

While Ever considers some other cases, he cannot effect the integrations. Some

space is given to differential manipulations showing that a given special case may be ob-

tained either from the rectangular Cartesian form or from the intrinsic form of the general

equation.

[Comparison of these simultaneous works of EuLER and DANIEL BERNOULLI reveals

a course typical of what will follow. DanrzL BERNOULLI suggests the problem and is

perhaps the first to solve it; his paper reproduces what were doubtless the labors of

discovery, groping from onespecial case to the next, and ends just before achieving the
 

1) To derive this directly, eliminate T from (40) and (42).

10

11
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goal. Just at the degree of generality where one must abandon the device of concen-

trating the distributed force at the center of gravity, DANIEL BERNOULLI abandons the

problem. EULER sweepsall this aside and in his finished paper starts at the point where

BERNOULLI left off. DANIEL BERNOULLI’s mathematics is at least as clumsy as that in the

old papers on calculus of forty years previous, and clumsier than his father’s at this same

date ; EULER’s is secure and fluent. DANIEL BERNOULLI puts in print the preliminary

trials which ought to have beenleft in the notebook; now,as for the rest ofhis life, he cannot

revise. Indeed, the revision and polishing that the savants of the previous century carried

to extremes is to be almost wholly abandoned in the prolific eighteenth century. In the

present case, however, EuLER presents a finished and elegant treatise!) ; not only does he

unify the doctrine of elastic or flexible bodies) to the extent it had been cultivated up to

that time, but also heis the first to publish an adequate exposition of the known special

cases®). In this, EuLER’s first published paper in our subject, shine forth the clarity, order,

and scope which beautify nearly all his writings. It is also typical of EULER’s work in me-

chanics, in contrast not only to DANIEL BERNOULLI’s but also to most of that we have

discussed up to now,that he does not buryor glide over the basic principles but brings out

(89) explicitly as a postulate.

On (91) EULER is to foundall his researches in this field for the next twenty years‘).

While at the time the choice of the equilibrium of moments rather than of the equilibrium

of forces must have seemed the only way to include problems of bending, we see now that

it was an unfortunate one, for this methodis little suited to further generalization. In

particular, a proper theory of motion of elastic bodies does not follow naturally from the

consideration of moments,]

22. MUSSCHENBROEK’S experimental discovery of the law of buckling in compression

(1729). The second quarter of the eighteenth century produced not only thefirst attempts

at a fairly general elastic theory but also the first systematic and successful program of

experiment on the strength of materials, which is reported in MusscHENBROEK’s Intro-
 

1) The second presentation date nearly three years after the first suggests that EULER may have

withdrawn. hisfirst attempt and replaced it by a maturer work.

2) At this time EULER uses “lamina’’, “filum’’, and “corpus” as virtually equivalent.

3) Cf. our remarks above on the treatments of TayLor, Hermann (pp. 86—87), and DANIEL

BERNOULLI (p. 147).

4) This paper completed the general theory of plane flexible lines, though publications concerning

them continued to appear for another century. Here we mention only the exposition in §§ 561—570,

889—890 of MacLAuRIN’s A Treatise of Fluxions, Edinburgh, Ruddimans, 1742; the elegant and concise

treatment of J.-B. Cuarraut, “Methodus generalis inveniend: catenarias,”’ Miscell. Berol. 7, 270—272

(1743); and the merely derivative work of KRarrt, “‘De curvis funicularus et catenariis, vel illas, quae cor-

poribus flexibilibus inducuntur, cum a potentits quibusvis solicitantur,” Novi comm.acad.sci. Petrop. 5

(1754/5), 145—168 (1760).
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duction to the coherence of solid bodies'), This work deserves the high esteem given to it by

the writers of the eighteenth century, whorefer to it as the standard collection of experi-

mental data. To MussCHENBROEK is due the invention of special testing machines?) per-

mitting systematic variations of experimental parameters in an easy succession of measure-

ments. Unfortunately, all his conclusive experiments refer only to breaking ; elastic defor-

mation is described, but no definite laws are found for it. MUSSCHENBROEKis a scholarly

reader of all earlier work, including mathematical theories he does not understandfully :

in contrast to his lucid descriptions of experiments, he makeshis treatise harder to read by

inserting stretches of tedious geometrical proofs in the style of GALILEO’s school’).

MusscHENBROEK begins by experiments on extension. He infers GALILEO’s formula

(12) by reasoning and thus considers it sufficient, in cases where weight is neglected, to

measure the rupture force P,. In a sequence of 47 experiments on variously shaped prisms

of various woods, he measures not only P, but also the elongation and the transverse con-

traction prior to rupture ; [unfortunately he does not infer any elastic law]. In each case

he describes and illustrates the surface of rupture. He notices that fracture sometimes

occurs gradually, as if one fibre after another were breaking. The occasional inconsistency

of the results he attributes to the irregularity of wood structure.

Coming to work with metal wires. he begins to doubt (12) and decides to test it by

 

1) “Introductio ad cohaerentiam corporum firmorum,” pp. 421—472 of Physicae experimentalis,

et geometricae, .. . dissertationes, Lugduni Batavorum, Luchtmans, 1729, [x] + 685 pp.

There is an earlier work, Hpitome elementorum physico-mathematicorum conscripla in usus aca-

demicos, Wugduni Batavorum, Lugtmans, 1726. This seems to be derivative, giving no experimental

rosuits of interact, but in §§ 380-395 are clear physical definitions of the terms “‘hard’’, “perfectly

hard” (i. ¢., rigid), “soft’’, “‘perfectly soft’, ‘flexible’, “‘elastic’’, and “‘perfectly elastic’.

There is also a later work which includes summaries of some parts of the great treatise we describe

above. This is Hlementa physica conscripta in usus academicos, Lugduni Batavorum, Luchtmans,

1734; sco $§ 396—400. In $§ 322—329 wefind the definitions mentioned above, and also the statement

that heating a body always rendersit less elastic. MUSSCHENBROEKwrites that experiments of BoYLE,

HAUKSBEE, DERHAM, and others show that a body has the sameelasticity in a vacuum as in openair.

2) Fortensile test of glass rods, Figs. 8 and 9 of Tab. XVII; for the tensile test of wooden beams,

Fig. 6 of Tab. XIX;for the tensile test of metal wires, Figs. 2, 3 of Tab. XX; for the bending test of

wooden beams supported or clamped at the ends and loaded in the middle, Fig. 36 of Tab. XXIII;

for the compression test of wooden struts, Fig. 16 of Tab. XXVIT; for a test of hardness, Fig. 3 of

Tab. XXVITI.
Earlier authors had performed much the same tests but with little or no precaution or plan.

E. g., on p. 480 MUSSCHENBROEK writes of MaRioTtTH’s tensile test, “In this method I noticed the in-

convenience that the feet of him who performs the experiment are always exposed to danger of injury

when the weightfalls.”

A special machine had been designed and built by ’s GRAVESANDEfor the faulty test mentioned in

footnote 1, p. 117.

3) Especially pp. 467—479, 552—610, 625—639.

pp. 466—474

481—494

494—506



506

525—534

030—0357

535

540—641

541—548,
610-625,
639—650
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experiment, although this ‘‘will seem superfluous to the geometers.”’ He prepares the wires

by drawing to a certain diameter, then softening them by heating. A series of 34 tests on

wires of copper, brass, gold, lead,tin, silver, or iron generally fails to yield P,/A = const.,

whether A is taken as the area of the wire before it is tested, after it is broken, or at the

surface of rupture. His results do not always agree with MERSENNE’s (above, p. 32).

That P, does not depend on the length of the specimen MusscHENBROEK regards as in-

controvertible, though he does not report experiments testing it.

“I observed in all these experiments that the wires... took on considerable heat

when they were elongated .. . and broken ; this heat arises from the rubbing of the parts

moved upon one another and strongly pressed while the metal is thinned...’ [Thus

MUSSCHENBROEEis the first?) to write that doing work upon a deformable body heatsit,

and he attributes this heating to internal friction.]

MUSSCHENBROEK attempts to infer from theory that the numerical factor in (11) may

have any value not exceeding 4, depending upon thelaw of tension ; thus the factor must be

determined by experiment. [While the former conclusion is true, MuSSCHENBROEK’Ss reason-

ing is faulty*).] Experiments on 50 circular or rectangular prisms of various woods yield

numerical factors between 1/2% and 1/18. ““These experiments bring out more clearly

into the daylight the fact that neither the rule of Gatmno, nor Marrortn’s, nor any other,

is universal .. .’’ MUSSCHENBROEKobservesalso that the numerical] factor is almost always

Jess for a circle than for a square [cf, the work of PARENT, above, pp. 111—112)].

MvusscHENBROEK makes some attempt to test JAMES BERNOULLI’s theoryofthe elastic

curve by experiment, but he finds that wooden beams continue to deform under load. “If it

is permissible to present so crude an observation ... Tsay... that there are as manydifferent

curves formed by attaching a weightas there are different woods that I have investigated.”

Also, the variety of woods obtainable from the same trunk make it uncertain whether the

strenoth determined by breaking one specimen was applicable in interpreting the defor-

mation of the next. [Strangely, however, instead of carrying out the measurement of

deflection for metal bars,] MusscHENBROEK complains that he cannot study the breaking

of metal bars in bending because theyare too flexible.

There follows a long series of tests of GALILEO’s proportion (13),, not only for beams

subject to terminal load but also for beams supported or clamped at both ends and loaded at

their middles. The lever arm of the weight at the instant of rupture is recorded, but the
 

1) Long before Rumrorp.

2) Pp. 532—-534. MusscHENBROEK here employs a linear law, varying only the slope and the

position of the neutral fibre. Perhaps he is trying to follow ParEent (above, p. 113), but he does not

seem to understand the problem, as he does not consider the contribution of the compressed parts at

all, nor does he apply PARENt’s condition that the area under the curve of tensions equal that under

the curve of pressures.
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vertical deflection of the beam is not. There are hundreds of measurements, terminating in

a systematic program on beamsof oak or pine 10” or11” broad, 10” to 15" deep in steps of

1”, 6’ to 40’ long in steps of 2’. In general, the agreementis not satisfactory; MusscHEN-

BROEK finds a dependence on depth as D+, where the exponent a is less than 2 and varies

from one wood to another. Only for glass is GALILEO’s proportion (13), verified. Mus-

SCHENBROEK finds that clamped beams are many times stronger than supported beams,

but he is unable to infer a specific law.

Theclimax of MusscHENBROEK’s workis the series ofexperiments numbered 222—248,

“the first in this doctrine of the firmness of compressed bodies,’ which are summarized in

the criterion for failure in compression stated in Proposition 119: ‘‘Parallelepipeds of the

same wood ..., compressed along their lengths, exert forces of resistance which vary in-

versely as the square of the length, directly as the thickness of the side that is not bent, and

directly as the square of the side that is bent.”’ J. e.,

DB

2°

[Thus the law of failure in compressionis entirely different from that for failure in tension.|

 (94) P,«

MvusscHENBROEER’s conceptual explanation regards the strut as compressed elastically,

though of course in ratio less than that of the compressing weight*), until the internal

pressures transmitted through the irregular, porous structure of the wood result in

bending ; when the compression is increased, the strut ‘‘breaks in the middle, where it is

bent the most,” and this latter assertion is verified in the experiments. [Thus MusscHEn-

HRONK is the first to distinguish buckling from breaking ; cf. the remarks of Heron and of

LEONARDO DA VINCI (above, pp. 18, 20). Furthermore, heis the first to discover by experi-

ment any non-trivial relation in the strength of materials”). It seems unlikely, however,

that the dependence on & and D given by(94) can be correct*) ; the striking dependence

on / is now classical.

To derive from theory a formula of this type will be a major achievement of EULER

in 1742 (below, p. 211)*).
 

1) The reason given is that of James BERNOULLI, above, p. 106.

2) GALILEO’s proportions seem to have been inferred from conjecture rather than experiment;

HooKE’s law is merely linear and followsas a first approximation from most theories. The proportion

(94) represents a different order of achievement.

3) If (94) is true, there is a material constant of the dimensions [force]/[length]. On the other

hand, if we assume the existence of an elastic modulus #, by dimensional analysis follows

EDSB ./D  B
Pe=at(z> 7)

EULER’s theory (below, p. 404) gives f = const. (provided @ = FI).
4) MUSSCHENBROEK’s treatise ends with a discussion of the bursting strength of pipes (pp.

654—662

652—659
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23. DANIEL BERNOULLI’S discovery of the simple modes and proper frequencies of

vibrating systems (1733), and related work of Euter. Before describing the beautiful
discoveries DANIEL BERNOULLI is soon to make concerning vibration, we mention some
earlier work of EvuiLER. The introductory material on acoustics given in his great essay

on music’) seems to derive in large part from his reading and from his researches in

Basel before 1727. EULERis the first author since MERSENNEto assert rules for furnishing

a collection of strings such as to give out equable sounds. First, the ratios = of all

strings should be the same. For a material of density 9 we have ogAl = W = weight of

the string = gol; henceif all strings are of the same material, we should adjust them so

that= has the same value. Since the loudness depends on the amplitude, and the amplitude

depends on the place and the amountthestring is struck initially, we should strike all

strings at the same place. Then the loudness will depend only on the amount of striking

force. The loudness of the sound transmitted in air depends upon the speed acquired by

the particles of the air, and this is to be estimated from the maximum speedofthestring,

in its turn proportional to VT/l [but this I do not follow,since for given amplitude the

maximum speedis proportional to » and hence tor / = ]. Combined with the above,this

yields © = COnst., or = const. That is, for equable sound we should have 4d «Jl and

Tol, By (10), the sounds will then be reciprocally proportional to the lengths. “This

rule will have great use in the construction of musical instruments.” [It is justly criticized

by DANIEL BERNOULLI?)|

 7

663—668) and an attempt to measure the hardness of wood by the amount of energy, supplied by
impacts of a ball of given mass and speed striking the handle of a chisel, necessary in order to eut

through a specimen of given size.

On pp. 508—524 he continues the experiments of pz Rracumur (above, p. 58) and shows that

twisting always notably weakens the total strength, but he cannot form a definite law. He finds to his

surprise that the thinnest animal fibres have the greatest breaking stress; e. g., the finest fibres of

cocoon silk are stronger than spider silk, which in turn is stronger than humanhair.

1) K 33, Zientamen novae theorie musicae ex certissimis harmoniae principiis dilucide expositae,

Petropoli, 1739 = Opera omnia ITI 1, 197—-427. The work was complete, or nearly so, in 1731.

The rules for equable sound are given on p. 158 of Notebook EH(cited above, p. 142), apparently

written before the letter of 1726 to DANIEL BERNOULLI which we have quoted above, p. 143. It appears

that EULER inferred these rules from experiment.

2) On 28 January 1741, just after he hadfirst seen the work, he wrote to EULER “TI have con-

jectured from some passages that you have not read MERSENNE ..., who has very curious experi-

ments... I have wonderedif for hearing it is not required that the tympanum be tuned to the sound

perceived, which office the muscles can do with extraordinary speed and from which many phenomena

may be deduced. On p. 10 it is said that the sound is most pleasant in strings as taut as possible. This

question MERSENNEtreats [cf. above, p. 31] and gives only half this degree of tension for the sweetest
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‘“‘We have said that the sound will be less pleasing if the string is not tense enough,

for then the travel in vibrating is too great and thence the air is moved rather as a wind

than induced to execute oscillations ... Also, as is known, the great vibrations are not

isochronous with the lesser, so that the sound at first is lower and does not remain the

same. Thenceit easily happens that the whole string does not produceits oscillationsall at

once, but one part reaches its maximum speedand its point of rest faster, another slower,

whence the sound is inequable and rough...”

For similar bells of like material, EULER repeats [MERSENNE’s] rule »« 1/ VW,

[equivalent to (9)].

For prismatic rods or bars, “the sounds seem to depend upon the length in this way,

that each fibre stretched along its length should be regarded as vibrating by itself.’’ Thus

yo 1/l?, [but how Evrer infers this law he does not disclose, nor does he makeclear

to which kinds of vibrations he regards it as applying+). No dependence on cross-sectional

area or form is mentioned.] ‘‘Finally, the frequencies of prisms of different material depend

not only on the specific gravity, but also he who would determine the sounds them-

selves from theory must know the rule of the cohesion and stretching of the matcrial.”’

EULER says that ‘‘both from theory and from experience” we know that a string can

vibrate in halves, thirds, fourths, etc., thus giving out its harmonics. [The experiments of

SAUVEUR were well known, but no theory of any kind for the overtones was in print when

this book was written. Perhaps Evusr refers to still unpublished work of DANIEL BER-

NOULLI, which we now describe.|

Before leaving Petersburg in 1733, Danrex BERNOULLI had communicated?) his

Theorems on the oscillations of bodies connected by a flexible thread and of a vertically sus-

pended chain®). The remarkable results in this paper establish him as the discoverer of the

simple modes and proper frequencies of an oscillating system. He has observed the “very
 

sound .. . From what he says it is clear that the greatest tension i8 the least pleasant, and I think too

that the sound will be not at all constant in strings as taut as possible, since the elongations are not

proportional to the stretching forces, while not far from rupture everything must be very irregular.

That the breaking forces are proportional to the thicknesses of the strings is not confirmed by experi-

ence ... Experience shows also that nearby a high sound is louder, while far away a low soundis

louder.”’
1) For longitudinal vibrations, such as the foregoing text suggests, it is false, the correct law

11/E ayo gs .
being »v TT \/= . To prove that for transverse elastic oscillations of a bar the correct scaling law

isy & =2 will be a great later achievement of EULER in several steps, beginning in 1735 (below,

p. 169). Both these laws are consistent with MERSENNE’s law (9).

2) This is confirmed by EuLER in § 3 of E49, cited below, p. 162.

3) ‘“Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae,”’

Comm.acad. sci. Petrop. 6 (1732—1733), 108—122 (1740).
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irregular’? motions of a hanging chain; [since establishing the equations of motion for

such a system seemed out of reach of methods then known,| he decides “‘to determine into

what curve the chain should be bent so that all its particles, be-

ginning to move at once, would simultaneously reach the vertical

passing through the point of suspension : for I understood that in

this way the oscillations would be equable and such as to have a

definite period of oscillation ... In the solution I have used new

principles, and besides that I wished to confirm the theorems with

experiments... We shall consider only very small isochronous

oscillations, but for the experiments it is allowable to use some-

what greater ones without noticeable error.”’

Theorems 1 and 2 concern the weightless cord loaded by two

equally spaced weights of equal mass and assert the existence of

two possible modes of vibration, shown in Figure 55, with amplitudes

and frequencies satisfying

Cr _ 1 \/2 —_——
(95) oH =itV2. y= 35 yeas,

where t= dC, the whole length. In the “collaborating”? mode,

corresponding to the uppersigns, the oscillations are but slightly

faster than for a simple pendulum ofthe samelength, while A

for the ‘‘contrary’’ mode they are very muchfaster. These

results are confirmed by experiments. Theorem 3 asserts

for two weights at distancs AH=al, HF fl,

«ot+f=1, and with masses yM and 6M, where *-
y+ d= 1. (95) is generalized by

OF _ ya—f) +6 + V4pryd + [a + Bly — OF
BH 2

 

  

2

  

  
Cb ---

(96) _
yoey4t V4Btyd + [ow + Bly — OP

27% I 2a By

Theorems 4 and 5 concern the case of three weights 5}

(Figure 56). Then if w= or , « may be taken as any

one of the three roots of

(97) 4u3 — 1247+ 374+ 8=0,

while DG = 3x47 — 24 — 2. The frequencies are then

_1 9 yaa=am(98) y=|/4 V3(5 2a) .

 

Bo.-

   ch l.
Figure 55.

DanreL BerrRnovutyi’s
drawing of the two
simple modes of vibra-
tion for a string loaded

by two weights

 
Figure 56,

Danie, BerRNovtwi’s drawing of the
three simple modesof vibration for
a string loaded by three weights
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The roots of (97) are calculated numerically. Theorems 6 and 7 generalize the results to 11,13

the case ofthree weights of unequal magnitude at unequal distances. Among the corollaries 12, 14

we note only the particularly elegant one that follows by taking CF = 0 in the second

mode, thus yielding [HuyGENs’ and] JoHN BERNOULLI’s result (77).

A There follows a ‘general scholion”: “I can give 15

similar equations for four, five, or as many bodies as

desired : Always the equation rises to as many dimen-

sions as there are bodies ... this law appears from the

method I have used.”’

Theorem 8 asserts that for a uniformly heavy 16

hanging cord of length J, in “uniform oscillations’’

(Figure 57) the displacement y at a distance x from the

bottom is given by the series we should now denote by

(99) y= US, (2 V2) ,

where 9{ = CF and where « is so chosen that

  
  

Bigure 87, / l
DANIEL BERNOULI's drawings of (100) J0 (2 =) =—0.

the first three simple modesof vibra-
tion for thea continuotis heavy cord

(This is the first appearance of “‘BrssxL functions’.] By 17

a method for solving transcendental equations DANIEL BERNOULLI gave in the preceding

volume he calculates that the [largest] value of « is given by

a 1(101) — = 0,691 = sas] .

According to Theorem 9, tho period is that of a simple pendulum of length ; 2. €., 18

1 1/9102 _/ Vo |
(102) "On Vx

Alternatively,

(103) « = the subtangent CP at the bottom,

as is immediate from the series for (99). Thus the chain oscillates more slowly than a 19

pendulum of the same length. An experiment performed on thread loaded by many 20

small equidistant leaden weights confirms (102) and (103).

Moreover, the equation (100) ‘‘has infinitely many real roots, and also the chain can 21

be bent in infinitely many ways so as to execute uniform vibrations ; the value of « takes

on smaller and smaller values until it virtually vanishes. In all cases the length of the
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isochronous pendulum is «, or the subtangent CP; thus the corresponding oscillations

are almost infinitely rapid.’’ The modes') may be distinguished by the numberofinter-

sections with the vertical [7. e., nodes]; in the first, there are none besides the point of

support. In the second, there is one, in the third, two, etc. For the second mode BERNOULLI

gives the following approximations:

1 CB CN MN 2

|: TO =OAT RE=
a(104) 7 = 0,13 |= 51

‘The ares cut off between two neighboring points of intersection will be greater, the higher

 

up the chain they are. However, in a chain of virtually infinite length the highest arc

will not differ sensibly from the figure of a taut musical string, since the weight of this

arc is as nothing in respect to the weight of the whole chain?). Nor would it be difficult to

derive from this theory a theory of musical strings agreeing with those given by TayLor

and by my father ... (above, §§ 9—10). Experiment shows that in musical strings there

are intersections [1. €., nodes] similar to those for vibrating chains .. .”’

[This passage makesit plain that DantEL BrRNovttthasin his handsa direct theory

of the simple modes and proper frequencies of the vibrating string, as yet given by no one,

but he has not worked out the details. Later he will have heavy grounds to regret that he

lot his ideas lie undeveloped.]

Theorem 10 concerns a heavy chain of length | suspended from a weightless cord of

length A. If 6 is the amplitude at the junction x =1, then?)

Jy (22
JV) . Jy (} +) —( ,

Theorem 11 gives an equation for the proper frequencies when a concentrated mass is

fixed at the point where the chain is joined to the cord‘).

(109) y= fp

 

1) While DANIEL BERNOULLI does not use this term here, he has used it above in connection with

discrete systems.

2) In the terms of Brsszt functions, the above passage asserts that the positive roots of J, (2 V2)

are infinite in number, that the interval between them increases, and that for large z we have

Jy (2 Vz) ey f(z) sin g(z), where f and g are virtually constant functions.

3) BeRNovuLui does not define A, but the above seems the obvious explanation; the series written

by BERNOULLI is that we denote by (105),, but linearized with respect to 4, though he does not say

that 4/1 is small, and in fact for his following example he takes 1 = 1. Hegives also a rational fraction

which hesaysis a first approximation to the largest value of « satisfying (105),, but there is no reason

why this problem of proper frequencies should differ from the preceding.

4) Iam unable to verify the result. In § IX of the paper cited below, p. 159, DANIEL BERNOULLI

says that the proof follows by adding a suitable constant in the previous result. That this is so appears

from (148).
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Theorem 12 concerns the chain of non-uniform thickness. The weight is now g 2' (x); 25

then the equations determining the shape and frequency are

_ dy _i V9

The case g + = 2x/l gives (99); the case g 2 = x?/l* gives the series we should now 26

write as*)

_ 2x\~-t Qx 2!) _aon y= 204) *,(2/2), a (2/2) =o.
[In differential form, (106) and its special case g X = x/I are

d dy dx d dy _

(108) wae (Zqe) +9ge =o wae(e gt) +y=0.]

The paper ends with a “general scholion’’ warning that the oscillations must be small 27

if this theory is to apply. This means, for example, that in the middle drawing of Figure 57

we must have FC<<CB. Finally, “if these pendulumsareset in rotary oscillation they

will take on the same formsas here determined, and they will complete their rotations in

double the time as if they oscillated in a single plane?).”

(The results in this remarkable paper show that Danret BERNOULLI has mastered the

phenomenonof simple modes and proper frequencies for vibrating systems of considerable

generality. He is the first to explain by theory of any kind the sequence of overtones a

single vibrating body may emit. He clearly and explicitly states that for the systems he

treats the k'® mode has k — 1 nodes. Fis reference to the vibrating string in § 21 suffices

indeed to explain the existence of its harmonic sounds.It is curious that he does not make

any use of SAUVEUR’s terms (above, p. 121). What is missing from DaniEL BERNOULLI’s

theory is all reference to the displacement as a function of time and any suggestion that the

simple modes, which he explicitly recognizes as special motions, may be superposed to form

more complicated ones.|

In the next volume appear DanrEL BERNOULLI’s Proofs of his theorems concerning

the oscillation of bodies connected by a flexible thread and of a vertically suspended chain?).,

These rest upon a new pronciple of mechanics, giving a methodfor calculating the accelera- I

1) From our description of this paper and of the work of EuLER to be described below, p. 164

et seqq., it is plain that the history of BEssrex functions given in Ch. I and other passages of WATSON’s

A treatise on the theory of Bessel functions, Cambridge, 1922, is not complete, especially as regards the

earliest researches.

2) This proposition, due in principle to HuyGEns, we have proved above, footnote 3, p. 48.

3) ““Demonstrationes theorematum suorum de oscillationibus corporum filo flexils connexorum et

catenae verticaliter suspensae,’” Comm.acad. Petrop. 7 (1734/1735), 162—173 (1740).
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tions from the accelerating forces in a constrained system. “Think that at a given instant

the several bodies of the system are freed from one another, and pay no attention to the

motion already acquired, since here we speak only of the acceleration or the elementary

change of motion. Thus when any body A x

changesits position, the system takes on

a configuration different from that it

would assume if not freed. Therefore

imagine some mechanical cause to restore

the system to its proper configuration,

o
l
w
r

and again I seek the change of position B&B

arising from this restitution in any body.

From both changes you will learn the

change of position in the system when

not freed, and thence you will obtain the

true acceleration or retardation of each  
body belonging to the system.” [This   obscure statement contains the famous

Principle D’ALEMBERT is to lay down,

in scarcely clearer form, as the general Figure 58,
law of mechanics in 1743. As we shall Diagram for Dante, Bernovtu’s analysis of the simple

modesof a string loaded by two weights

 
see in our analysis of p’ALEMBERT’S

work in § 26, the Principle itself is a general statement of an idea created by Jams

BERNOULLI for his solution of the problem of the center of oscillation in 1703.]

Whenwetry to follow the proof in the special case for two masses, we discover that

it rests upon the balance of forces. [Besides BERNOULL’s figure we put a drawing from

Which the argument seems clearer (Figure 58). In what follows, we replace BERNOULLI’S

infinitesimal distances by accelerations and omit his awkward geometrical calculations.]

(a) Suppose the lower link be freed ; then the tangential acceleration of m is g sin 0, ~ 6,
while M moves straight downward with acceleration g. (b) Now restore the lowerlink ;

then to make M moveon the tangent to the arc y, an acceleration along the link must be

supplied. To the lowest order in 6,, this acceleration is g, and hence the resulting accele-

ration is g0, along the tangent. But

. — 1/l+L aa wsing, wwTEy+e — yl =(¢4 4).

Hence

(109) accel. of M = (5 + a) g.
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(c) The acceleration g along the lower link imparts to m an accelerating force of magnitude

Mg and hencean accelerationnf along the link. Thus results an acceleration tangent to

the arc y, in the amount =gsinB & ~gF . Combined with the result (a), this yields

(110) accel. of m = (4it : 5)9 .

[Thus far, the analysis is general though clumsy from obscurity of principle along

with an unfortunate selection of variables. Now comes, as always in this early work,

TAYLOR’s assumption :] the accelerations are as the displacements. This yields

wy ®
(111) ta fn

mM ey Z |TRO E 2 + F)n+e

 

This is a quadratic equation for yn . Since 4, = (1 -+ 7) y, + x, two values for the“_ IIL
L  

tude ratio4,* result. From (110) we obtain the frequency » = 3V9 \2-4— —~-—a ,
Y1

These results prove Theorems 1, 2, and 3.

For three bodies, a similar argumentis applied: First the bottom mass may be freed, IV—V

then that next to the bottom.

Kor the general case, BERNOULLI has perceived a general rule, [apparently by in- VI

duction from the cases of six and seven weights]. Number the masses from the bottom, and

let 6, be the angle between the link connecting M, with M,,, and that just aboveit. Then

n

accel. force on M, x 2 6, ,
k=l

nh
(112) accel. force on UY, «2 0. —a 6, ,

k=2 2

accel, force on M, «2 6,— My Ms 0, ,

Assuming the accelerations are as the distances then yields as many linear equations as

there are unknowns [and thus an equation of degree n] satisfied by the proper frequencies.

From (112) we read off the result for the continuous case, since the angle of contact VII
2

is oy , where x is the distance measured from the bottom, Thatis,

atyie       (113) accel. force at x «ie

If this is set proportional to y, (108), results, whence follows Theorem 8. To calculate the
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period, all we need is the accelerating force at the bottom; this, by analogy to (112),,
g

 

, d’y — dy ,
is f Ja dz = — da leno’ This proves Theorem 9.

0

Whenthe density is not uniform, analogy to (112) yields

l
2 2

(114) accel. force at 7 x {2dx ssa ;

x dx

whence (108), follows.

[These two papers are as fine as any DANIEL BERNOULLI ever wrote, and they bring

a magnificent contribution to the theory of vibrations, one indeed scarcely equalled by any

other work.It is instructive to follow the difficult and clumsy steps by which BERNOULLI

demonstrated his results. In addition to being as great an expert on mechanics as any then

living, he was an especially thorough student and admirer of Nrwron’s Principia, Those

whoparrot the conventional view that NrewrTon’s principles suffice to solve all problems of

mechanics should read these papers, from whichit is most plain that if such be the case,

DANTEL BERNOULLI, at least, did not know it in 1733. In fact, the method of ‘““NEwTon’s

equations” is due to EvLER and will first appear in his work of 1744—1750 (see § 35,

below).] "

Euunn, indeed, is immediately able to obtain DANIEL BERNOULLI’s results moreele-

gantly, but his method is only slightly different. In his paper, On the oscillations of a

flexible thread loaded by arbitrarily many weights+), he writes, ‘‘Several years ago, when the

most enlightened [DANIEL] BERNOULLI wasresiding here, there was raised between us the

question of the curvature of a chain oscillating about onefixed end. But experience taught

us that those curves may be most irregular and various, whence we considered the prob-

lem not only most difficult but even exceeding human strength unless somerestriction

is imposcd. Therefore we turned our attention to infinitely small oscillations ..., not
seeking ... all [such] oscillations but only those in which the several parts of the chain

occupy a vertical line or natural state simultancously. We observed indeed that more often
the oscillating chain is never entirely displaced to one side only ..., but we foresaw that

the oscillations could be adjusted initially in such a way that the several parts would reach

the vertical simultaneously. From this we set up the following problem : To find the cur-

vature of a chain oscillating in such a way that its several parts reach the vertical simultaneously,

and to find the length of the simple pendulum that executes its oscillations in the same time.

“The chain .. . is to be regarded as a thread, perfectly flexible, devoid of gravity, and

loaded by infinitely manylittle weights. And the chain is wont to be regarded in this way
  

1) E49, “De oscillationibus fili flexths quoteunque pondusculis onusti,’’ Comm.acad. sci. Petrop.

8 (1736), 30—47 (1741) = Opera omnia IT 10, 35—49. Presentation date: 31 January 17365.
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when the shape of a chain hung up byits ends, or the catenary curve, is sought. There-

fore ... the thread is to be regarded . . . as loaded first by one weight, then by two, then

by three,..., whence ...the conclusion can be extended to the case of infinitely many

little weights . . . Before his departure the most enlightened BERNOULLI gavehis solutions

without proofs, and just now hehas sent us the proofs. Indeed, since at that time he, his

father, and I discussed these questions, I too obtained solutions agreeing excellently with

his, but since I see now that his method is quite different ..., I will explain mine here...”

Beginning with a simple pendulum, Eur observes that in any configuration

accelerating force _ displacement

weight ~~ Jength of pendulum
  

3(115)

and this is applied in all the cases which follow. In Figure 58, EuLER sets up a straightfor-

ward balanceof forces. The tangential force on M is M6,, that on mis m0, — MB. EULER

observes that for a simple oscillation the length J as calculated from (115) must have the

same value for each body in the system, viz

 

 

mi, — MB M6, l116

MA

TP —-_* .
(116) MY, My, L+«

Forming tan@, shows that 6, % Etx ds z 1. forming tan@, shows that

 

 

— 2 x L+L Tee ;6,a Tr Z- andhence f -p=7-4. +—. Substitution in (116) yields

the quadratic

(117) WX24X(1—-1’—-W—aw)—1=0,
where W = M/m, X = yo/y,, A= L/l. Therefore just two values of the ratio X are

possible. If the displacements conform initially to one of these values of X , they will con-

tinue to do so, the point P will therefore remain stationary, and L + « will be the length

of the equivalent simple pendulum. With X a root of (117), Z-+« may be calculated

from (116); in fact, D+ «= XD/(X —1).

KULER’s results on the weighted string are much the same as BERNOULLI’s but go

beyond them in that Evin obtains the explicit solution for the case of n equally spaced

and equal weights. His result, which we here express in the notation of ‘“LAGUERRE

polynomials’’, is*)
 

1) The introduction of these functions, too, is due to Danret BerRNovutui and Evier. Note

that comparison of EULER’s solution for the loaded string with DANIEL BERNOULLI’s for the continu-

ous string suggests at once the famous limit formula

Lim L, (z) = Jy(2Vz),
k->0o

along with a corresponding relation for the zeros.

7—14
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(118) Yu =UL,(2), b= 0, 1,0... m1,

where Y is the displacement of the lowest weight (k = 0), y, is the simultaneous dis-

placement of the k*" weight, a is the distance between weights, and the frequency is

given by vy = 32 ) 4 . [EULER gives this result very briefly; it is plain from his analysis

that the circular frequencies w of all the modes are determined from the roots of

a
(119) L,()=0, ot == |

For the continuous case, EvLER easily derives (108), and the results (99)—(102).

For (108), he obtains a general first integral. He notes that for «<0 the curve given by

(99) is not suitable because it becomesinfinite [2. e., it violates the hypothesis of small

displacement, no matter how small is 9]. The entire curve for x 20 is appropriate for

representing the semi-infinite continuous chain, [but the figure he gives is crude and does

not show the diminishing amplitude and nodal distance].

  

The remainderofthe papertreats the case when o = 2’ a x”. From (108), follows then

xe dy dy y |
(120) n+ 1 da? dxtw °?

and the first integral reduces to a Riccati equation. If n = — 34, we get the solution

| 22
(121) y = A cos —:

For general n, EuLnr derives the series solution of (120) we should now write in the nota-

tion of BESSsEL functions as

(122) p=g *LQVa), g=-"t*,
a

[this is the first appearance of “Bussxu functions” of arbitrary real index’). HunEr does

not discuss the mechanical interpretation but rather derives the integral form

1 5n—1 +]

fa — 8)= cosh (21 /*) dt
2n—1

(1 — 12) 2 dt
(123)  

w

O
e
m
,

[This is perhaps the earliest example of solution of a second-order differential equation by
Pn ithkh bedbliih hs

—_—

1) The result (121) 1s equivalent to

J_4(2) = (2)? cosz.
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a definite integral. The result itself, slightly transformed, is usually called “‘Potsson’s

integral representation’, viz

9 lo\n $n .

= rey i J cos (z sin ~) cos?" wdy. (124) J, (2)

The order of discovery in the foregoing works we cannot ascertain. Comparing them,

we find DANIEL BERNOULLI’s clearer in respect to the phenomena being explained, EULER’s

clearer in the analysis. Although EvLER mentions the sequence of proper frequencies and

modes"), he fails to give them the emphasis they deserve ; BERNOULLI sees that they are

representative of a phenomenon occurring in all vibrating systems. While EULER’s derivations

are clearer, BERNOULLI'’s contain deeper undeveloped possibilities. As far as principle is

concerned, both researches are incomplete, and to about the same extent : Both investi-

gators failed to establish the equations of motion and failed to connect the simple modes

with more general motions. The permanencehere, then, lies in the phenomenonrather than

the analysis used to derive it ; thus it is the achievement of DANIEL BERNOULLI, andit is

a very great one.|

24. DANIEL BERNOULLI’S and EULER’s first calculations of simple modes and proper

frequencies for the transverse vibrations of bars (1734—1785). [Just before the papers

described above were written, there began between the two authors the most interesting of

all correspondences *) concerning mechanics, for after leaving Russia DANIEL BERNOULLI
 

1) Contrary to the assertion of BURKHARDT,§ 3 of op. cit. ante, p. 11.

Z) Five sources for the correspondence of HuLEeR with Joun and Danie and Joun III Brr-

NOULLI have been available to me:

I. P.-H. Fuss, Correspondence mathématique et physique de quelques célébres géometres du XVIIIeme

sidclo 2, &t. Pédtersbourg. 1843.

II. G. Enestr6m. “Der Briefwechsel zwischen LeonHarp Hucer und Jouann I Bernovwt,”

Bibliotheca Math. (3) 4, 344388 (1903); 5, 248—291 (1904); 6, 16—87 (1905).

Ill. G. ENESTROM, “Der Briefwechsel zwischen DLeonHarp Hurer und DawnizeL BERNOULLI,”

Bibliotheca Math. (3) 7, 126—156 (1906—1907).

IV. In the BERNOULLI Archive at Basel are photostats of a numberof letters, some unpublished,

from all parties.

V. In the Bernovuxii Archive at Basel are transcripts of the passages omitted by Fuss (No.I).

For assistance in using Nos. IV and V I am deeply indebted to Professor Srrzss.

I have been informed that a great deal of relevant manuscript material is preserved in the

archives of the Academy of Sciences, Leningrad.

In seeing DANIEL BERNOULLI’s remarks only in translation, the reader loses the pleasure of savor-

ing the private dialect he employs. #.g. on 6 June 1729 he writes to EuLER, “‘P. 8. Weil ich aus dero

ersterem gesehen, daB Sie sonderlich rein totitsch zu schreiben sich beflissen, als zweifle ich nicht, ich

werde Dero ketische ohren sehr mit meinem undermengten frantzésichen & lateinischen wértern

verletzt haben, weswegen sehr umb verzeihung bitte. ade noch einmahl.”’
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exchanged problems and solutions with the friend he left behind. Apparently these letters

put in writing the kind of communication that passed orally between the two great geo-

meters when they were colleagues in Petersburg. While not going so far as to conceal

their methods from one another, they chose on the whole to disclose results and discuss

phenomena. Thus it often turned out that their ideas were different though the results

were more or less the same, and thus, at first, double publication resulted. While both

were annoyed by the delay, sometimes as much aseleven years, between the writing of a

paper and its appearancein the Petersburg Memoirs, in fact it ensured their monopoly of

the field of oscillating systems for a decade : No one learned even their results through

publication until they themselves were far ahead on more difficult problems. During this

period Evrzr continued also the correspondence he had begun with JoHN BERNOULLT,

his teacher and the father of Danreu. The two correspondencesinterlace to some extent,

especially since old JoHN BERNOULLI conceals much of his doings from his son, who some-

times writes to St. Petersburg to find out what his father and colleague in the University

of Basel is up to.

Nothing of interest?) concerning our subject appears] until 18 December 1734, when

DANIEL BERNOULLI says he has studied the small vibrations of a horizontal uniformly

elastic band with one endfixed in a wall, “but I am not very pleased with my solution.”

On 4 May 1735 BERNOULLI thanks EULER for having read to the Academy his paper,

described above, on the hanging chain. BERNOULLI now has shown,hesays, that the trans-

verse displacement y of an elastic band fixed at one end in a wall satisfies the differential

equation

4
(125) K*oy = Y;

whore £* is a constant. Has Huts thought about this subject? “But this matter is very

slippery, and [ should like to hear your opinion on it,”” BERNOULLI says the “logarithm”’
2

satiofics (126) as well as K? oy =y, “but no such [logarithm] is general enough for the

present business.”’
 

1) The correspondence begins tamely. From Paris on 22 September 1733 Danrer Brrnovrx

writes that he has determined the form of equal resistance for a horizontal beam loaded by gravity and

an attached weight. He promises to send a memoir on this subject to the Academy. On 18 February

1734 EULER replies that ‘“The ... problem concerning the form of beam . . . requires a theory of break-

ing such as that given by your honorable uncle, and as it seems to me hetreated this very problem”

[this last is a lapse of memory on EULER’s part]. ““However, the complete working out and application

is surely the most beautiful and the most difficult in this subject, and thus I await with pleasure the

dissertation your worship has promised on this subject.’ From EvULER’s letter of November 1734 and

BERNOULLI’s of 18 December 1734 we learn that a memoir of BERNOULLI’s, which might well be the

promised one concerning solids of equal resistance, was lost in the post.
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In his reply’), written before June, 1735, EULER says he has already derived (125)

and the more general equation

x at y
(126) me = jaxSyda + am f ady ,

 

valid for a heavy bar [and including (108), as the special case when K = 0].

EULER,too, is unable to integrate (125) except in series. [These are two great mathe-

maticians who have just shown themselves not fully familiar with the exponential func-

tion ; we must recall that this is 1735!] He applies the end conditions

(127) fydx = 0, fdxfydzx=0;

we should now write his series solution in the form

(128) y= at| (cos + coshz)- +(sine -- sinh=I ,

where 0 is determined by the condition y = 0 when x = 1, viz

1 nah
sin= -+- sin er

COs= + cosh=

 

[but not until four years later is KuLER to recognize his series as representing these

simple expressions]. ““By this method it would not be very difficult to solve the same

problem when the band is not taken as everywhere equally thick and equally elastic.”

Shortly thereafter Eunmr completed A new and easy method for the very small oscil-

lations of rigid or fleaible bodies®), presenting a new approach “‘of the greatest generality
 

1) Undated, unpublished, ineluded in Source IV cited on p. 165. In this letter Ever gives a

dovivation of the equation (108), for the heavy hanging cord; this derivation, using the method of E&

(above, p. 146) and henco different from that in E49 (dated 31 January 1735, cited above, p. 162),

is that published in E40 (dated 27 October 1735, cited in the next footnote). This new method, essen-

tially, rests upon a special case of what is now called “‘b’ALEMBERT’s principle’, but it is applied to the

balance of moments rather than of forces. Thus it is close to the ideas ofJAMES BERNOULLI’s great paper

of 1703.

In his answer, dated 4 June 1735, DanitnLt BERNOULLI writes “I have still other mechanical prin-

ciples beyond [that] of the change of the system from the force of gravity and its subsequent restitu-

tion, from which principles I have solved the problem of the vibrations of a flexible chain; thereafter,

[that] of the change of the system from continued motion and subsequentrestitution, which I have

not as yet published anything,efc.”’ This passage, again, suggests D’ALEMBERT’s principle.

2) E40, “De minimis oscillationibus corporum tam rigidorum quam flexibilium methodus nova et

facilis,” Comm.acad. sci. Petrop. 7 (1734/5), 99—122 (1740) = Opera omnia II 10, 17—-34. Pre-

sentation date: 27 October 1735.
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and so well founded in the principles of statics that by its aid not only did I solve with

remarkable ease questionsofthe oscillations of an elastic band and of a hanging cord, but

also I can very quickly set in order all things connected with oscillations.’’ EULER con-

siders only very small oscillations “because these, not only for a simple pendulum butalso

for any body, are isochronous ; only very rarely may larger oscillations be compared with

those of a pendulum.’ The new method consists in combining the ideas of EULER’s two

previous papers. First, by (115) the accelerating force is expressed in terms of the length «

of the isochronous pendulum. This is then put into the equation expressing balance of

moments ; for continuous lines, this is (91). [Thus, again the equations of motion are

avoided.] The first part works out the radius of gyration for a rigid body by this method.

Ever is able to show that his principle, if applied with sufficient caution and ingenuity,

yields all previously known results concerning the centers of oscillation of various bodies.

For an elastic band fixed at one end in a vertical wall and oscillating in a horizontal

plane, by (115) the accelerating force on the element dz is given by F,dx = OOF de,

where y is the displacement. Substitution in (91) yields

B d*y g & x

“=BGP(130) ; Tak wx fda J oyda

Differentiation yields (125), with

(131) Ki=~ ; f[equivalently, v =Sa\2 ,

The rudimentary state of the theory of differential equations is shown by EuULER’s

atatement concerning the simple equation (125) :] “But from this differential equation of

fourth order it is very difficult to derive anything toward understandingtheoscillation of

elastic bands.’’ [Without giving any reasons,|] EULER proposes for the free end, x = 0,

the conditions (127) along with y = &. [In what follows the conditions he actually uses

are

 ay dey

(08) y= Us Ge9 Gas = 83

the second and third follow from (130).| For the end at the wall, where « = / and y = 0,

he proposes dy/d« = 0, “as required by the nature of the spring, which cannot be bent

through a finite angle except by an infinite power.”’ EULERis still unable to integrate (125)

except in series ; in addition to (129), by applying the condition dy/d~a=0 at x=1

he obtains a result we should now write as

1 l
(133) b — cos — + cosh ——
 

— sin= + sinh=
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Between (129) and (133), 6 is to be eliminated; EvLER simply indicates the resulting 39

series of powers of (J /K)* which must vanish ; [in the notations used in (129) and (1383),

this equation is
l

(134) 1+ cos €écosh €= 0, c=I.

EvLer gives the approximate root
4_____

25

From (131) follows

_ ¢ \/ Bi Ff ae
(188) "= 9al Vo ~ Onl? oA ”
whence Ever concludes that ‘for various elastic bands of the same uniform thickness . . .

the periods will be directly as the squares of the lengths of the bands and inversely as the square

roots of the absolute elasticities.’ [Thus appears a proof of the law EuLER had asserted,

though without sufficient qualification, in his Music (above, p. 154), EULER fails to state

that there are infinitely many possible frequencies, although for the similar problem of the

heavy hanging cord he has mentioned this fact.] He suggests obtaining the ratios of 40

elasticities of two substances by comparing the periodsofoscillation of bands of the same

dimensions. [Thus at last we encounter an explicit case to substantiate LErBniz’s per-

ception that the elastic and acoustic properties of a body are connected (above, p. 63).

EULER’s proposal, while neglected in his own day, is widely applied in ours.]

Whenthe weight of the bandis taken into account, it being supposed that the band 41

points vertically downward when in equilibrium, we have F, = — og, and (91) now

yields (126), with K again given by (131).

Ever shows also that application of (91) and (115) to the vibrating string yields 42—43

(76) and (75), which “the most enlightened Tayior ... and JoHn BERNOULLI . . . obtained

from far different principles!).”” The paper concludes with a derivation of the equation 47

for transverse vibrations of a rod with both ends pinned. [Theresult, of course, should

again be (125), but EuLuR makesanerrorin sign.

Thus by a single methodall known oscillation problems were united, and new solutions

were obtained. To include in a common schemenotonly flexible and elastic oscillations but

also rigid ones, the method of moments was surely the only possibility. It is easy to see

today that this methodis ill adapted for further progress toward the general principles of

motion of continuous bodies and that EvLER’s early work, while elegant and efficient for

the immediate aim, is a false start.
 

1) The dynamical principles are indeed different, but all three authors are alike in assuming, in

one way or another, that the restoring force is as the displacement.
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In the foregoing exchangeof letters and subsequent paper by EvLER we have seen

the first example of what is now to be the typical phenomenon : BERNOULLI and EULER

discuss a problem, and each achieves a measure of success. Within a few months, EuLER has

worked his form of the solution into a clear, finished paper including a sequence of gener-

alizations'). DANIEL BERNOULLI publishes nothing but goes on to new problems, often

accompanied by experiments. One essential part of mathematical research hefails to

appreciate, namely, that a work is not finished until it is published. Ideas that seem clear

and final to the thinker often show on paper as but the beginning of the research. Years

later he will come to regret his indolence. He will see his ideas rediscovered or developed

not only by EULER but also by the inimical p’ALEMBERT and LAGRANGE, whereupon,in a

vain attempt to reestablish the brilliant work he had done in youngeryears,he will quickly

write it up and publish it, stubbornly refusing to see in the later researches of others any-

thing of value beyond his own old and now primitive ideas, ideas which if shaped and

presented when fresh would have earned him a greater name in the history of mechanics

 — — than in fact he has.]
15
  

D

25. Further researches on the elastica; EULER’s general solu-

tion for linear vibration problems (1735—1739). On 26 October

1735 DANIEL BERNOULLI writes to Futur, “Your remarks on the

vibrations of an elastic band agree with mine. The most important

thing to calculate is this (Figure 59): Given the length of the

elastic band BD or BE, given its weight [1. e. attached weight]

P, given the distance DH, which is the measureofits elasticity 2),

to find the absolute numberof vibrations in a given time.”

EULER considered this letter so important that he wrote a

summary of it, amplified by his own analysis solving the

problem?). [It seems strange that neither EvLER nor Dante.

 
 Figure 59 RERNOULLI mentions that this special case is included in JAMES
igure 59, .

DANIEL BERNOULLI's defi: BERNOULLI's formulation (above, p. 101). Instead,] EvuLEr sets
iti f tho stiff f .
anelasticband up the problem afresh and thus reaches (57) with -ab= —2
 

1) As DantrEt BERNOULLI wrote him on 4 June 1735, ‘“‘Be assured that I esteem your judgment

above all, especially since from what you say you also have applied yourself to mechanics at the same

time, and everything you understand you deepen at once.”’

2) In this sense EuLEeR interpreted BERNOULLI’s “‘cuius ope elasticitas habetur’’; another pos-

sible meaning is that from the displacement produced by a given weight the elasticity (2. e. elastic
modulus) may be calculated.

3) E830, “Recensio litterarum a Cl. D. Bernouczyio Basilea die 26. Oct. 1735 ad me datarum una

cum annotationibus mets,” Opera postuma 2, 125—128 = Opera omnia IT 11, 374—377. In the latter

publication part of Buniwovuu14’s letbor is adjomed.
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and a?=—2@%/P. [Just as had James BERNOULLI for the rectangular elastica

(above, p.95),] EuLER integrates (57) in series, obtaining thefirst terms of a powerseries

for the end displacement 6 = y(l) as a function of $/?P/°@. Approximate solution for

@ yields

 [3P PI 1

35OE 35 12

Combination with EuLEr’s formula (136), after readjustment of units, yields the solution

to the problem posed by Brrnouttt. [This is the earliest solution for small deflection of

an elastic beam.

Here we see DANIEL BERNOULLI, as usual, preferring to express all results directly in

terms of measurable quantities, while EULER prefers quantities leading to the maximum

formal conciseness :] EULER adds the remark, “In place of an experiment of this kind,it

seems apter to me to determine the value of the letter @ directly from the number of

oscillations, easily discerned by observation.” [The tradition of elasticity, both theoretical

and experimental, has followed EutEr. His absolute elasticity @ is now adopted uni-

versally as the measure of susceptibility of a beam to bending, though the concept is

usually refined by splitting Zinto a modulus of the material and a geometrical property of

the cross-section: (“= HI, as in (86).]

DaniIEL BERNOULLI’s younger brother, Joun IT BERNOULLI, won the Paris prize of

1736 with his Physical and geometrical researches on the question : How does the propagation

of light take place)? Much of this work concerns mechanical vibration problems. There are

two kinds of equilibrium,illustrated by a body connected to two springs : In ‘‘forced equi-

librium ..., a body is held in equilibrium by two tense springs, which make equalefforts to

dilate themselves in opposite directions ...,” while in “idle equilibrium ... the body is

located botweon two loose or released springs, so that it remains in equilibrium,or rather at

rest, simply because it is pressed neither on the one side nor on the other. The “General

proposition” asserts that any bodyslightly displaced from a position of forced equilibrium

will execute a periodic and isochronous motion. JOHN II BERNOULLI’s graphical argument

shows that he considers only the case when both springs obey the same law, so that the

total force on the body is F = f(x) — f(— 2). In effect, he replaces F bythe first two

terms of its power series expansion, so that

(138) F = j(0) + wf! (0) +--+ — [f0) ~ af (0) +++,
= 2uf!(0) +
 

1) Recherches physiques et géometriques sur la question; Commentse fait la propagation de la lumere,

Piéce qui a remporté le prix de l’acad. . . ., Paris, 1736 = Recueil des piéces qui ont remporté les prix

de lacad....8 (1752). In the correspondence between JOHN I BERNOULLI and EULER, this work is

discussed in the letters of 2 April, 27 August, and 6 November 1737.

AXAAVIT

AXXVITI
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From the “known property” of forces proportional to the distance, the motion is iso-

chronous. “Hence ... the flutterings of an elastic body, when it is in a state of compres-

sion ..., are isochronous when the body has just been struck or violently disturbed . . . It

must be remarked that forced equilibrium is absolutely necessary in order that the flut-

terings, large or small, be isochronous.”’ The argument seemsto rest on assuming that the

total force is an even function of the displacement; in criticizing this passage, DANIEL

BERNOULLI soon thereafter+) asks, “‘is it not plain’”’ that the force is an odd function?

[In respect to the theoretical and experimental laws of elasticity, all this shows poorly in

contrast to the searchings of the previous generation, but Joun II BERNOULLI’s attemptis

apparently the earliest to describe the nature of small oscillations subject to a general

non-linear spring.|

Joun IIT BEerNnovutw’s treatment of small longitudinal oscillations?) follows closely

his father’s analysis of transverse oscillations, leading to (78). For a conical string, he asserts

[but does not demonstrate] the differential equation

 (139) C

While he is unable to integrate this, he says that ‘‘methods of approximation show very

certainly that conical strings ... vibrate more rapidly than those of uniform thickness,

other circumstances being equal.’’ [This is false, as will appear from later results of Eur

(below, p. 302).]

Three years later arose a new problem which would seem unconnected but in fact gave

rise to important researches in our subject. On 24 May 1738 DanreL BERNOULLI writes to

EULER that certain mechanical problems lead him to wish to find amongall isoperimetric

curves that for which [7"ds— minimum or maximum, wherer is the radius of curvature.

On 30 July KULER communicates his solution of this problem to JoHN BERNOULLI’). On
 

1) In § XXVIII of “Recherches mécaniques et astronomiques sur la question proposée par l’Aca-

démio Toyale dos Sciences pour année 1746, La meilleure maniére de trouver Theure en mer, par obser-

vation, soit dans le jour, soit dans les crepuscules, & sur-tout la nuit, quand on ne voit pas Phorison,”

Recueil des pieces qui ont remporté les prix... 6 (1752).

2) Cf. Part IE ofmy introduction to EULER’s Opera omnia IT 18. In § LVITI Joun II Bernovurzi

repeats the old assertion of TAyLor (above, p. 131) that a string deformedinto a triangle will assume

the form of a sine curve after a few vibrations.

3) The problem is mentioned also in JoHN BERNOULLI’s letter of 11 October 1738 to EULER,in

DanieL BERNOULLI’letter of 9 August to EuLER, and in EULER’s of 13 September to DANtEL BER-

NOULLI. The results are stated on pp. 358—359 of Notebook EH3 (cited above, p. 142). With his

customary dispatch, EULER prepared his results for publication in E99, “‘Solutio problematis cuiusdam

a celeb. DAN. BERNOULLIO propositi,”’ Comm.acad. sci. Petrop. 10 (1738), 164—180 (1747) = Opera

omnia I 25, 84—97; presentation date: 9 September 1738. This paper begins: “In the last letter that

the famous DanrzL BERNOULLI sent me from Basel, dated the 24%5 of May of this year,” etc. In § 10
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8 November DANIEL BERNOULLIwrites, ‘‘This problem of mineis very real, and I was led

to it by some phenomenaofnature, and it includes the most general equation of the elastica

when ds is regarded as constant. But if dé is taken as constant, then the elastica, as I can

show, is of such a nature that...

(140) [sae —= max. or min.
pide?

I will send my reflections on this subject another time, Thus I wonder why my father in

his inclosed letter!) says that which the proposer of the problem himself did not know, etc.”’

On 20 December 1738 EULER writes to JOHN BERNOULLI, “‘T have recently noticed a

singular property of the rectangular elastica,” viz (in the notation of (50)) ?)

1 1

d 2d

0

  

Cc V1 — ow!
0

‘‘which observation seems to me most noteworthy’’?). Three days later he writes to DANIEL

BERNOULLI, ‘“Meanwhile I am very curious to learn from your Worship what use this

problem may have in discovery of the elastic curves. For superficially I see well that these

curves have a maximum or minimum in the course of bending, of the kind the catenary

has, as the one whosecenter of gravity falls lowest amongall isoperimetric curves.

“What docs your Worship think of the property of the rectangular elastica I com-

municated to your father ...,’”’ viz (141). “I have come across this most obliquely and

against all expectation .. .’” KULER mentions that the result came up in the course ofhis

investigations on sequences, and he gives a long list of such multiplication formulae.

The nature of the minimum principle Dante, BERNOULLI explains on 7 March 1739.

“T have today a quantity of thoughts on elastic bands, ..., ec... . On the first occasion I

will show how these [variational] problems include the curvature of the elastica,’”’ For the
 

Evxier considers the special case when m = — 2 but without the isoperimetric restriction; the solu-

tion then leads to JAMES BERNOULLI’s quadrature (49), ““whence it is learned that the curve satis-

fying it is an elastica normal to the axis...”’.

1) In the correspondence we often see old JOHN BERNOULLI gloating over his son’s inferiority to

EvuLEr.

2) This ‘“‘new property of the elastica”’ is derived as a corollary of a more general result and illus-

trated by a diagram on p. 398 of Notebook EH3.

3) On 7 March 1739 JoHN BERNOULLI replies, characteristically, that he himself in earlier days

has shown that the sum of the two quadratures in (141) could be expressed in terms of the length of

an ellipse. With his usual frankness, EULER writes on 5 May 1739 that such properties as (141) ‘seem

to me more noteworthy in proportion to the indirectness of the route by which they are proved or

discovered.”’ JOHN BERNOULLI’s property, on the other hand, is one of those things that “‘comes of

itself as soon as one looksfor it.”’



174 BEGINNINGS OF GENERAL THEORIES
 

general equation for the uniform band, naturally straight andelastic, it is necessary that

(140) holds. “For I can show that any band forced into a state of given curvature must be
3

endowed with a potential live force equal to foie , and I think that an elastic band

which takes on ofitself a certain curvature will bend in such a way that the live force will

be a minimum,since otherwise the band would moveofitself. I plan to develop this idea

further in a paper ; but meanwhile I should like to know youropinion on this hypothesis.”

On 5 May Ever replies, “That the elastic curve must have a maximum or minimum pro-

perty I do not doubt at all... but what sort of expression should be a maximum was

obscure to meatfirst ; but now I see well that this must be the quantity of potential forces

which lie in the bendings : but how this quantity must be determined I am eagerto learn

from the piece which your Worship has promised!) . .”

On the same day EULER explains to JOHN BERNOULLI the method by which hedis-

covered (141) : multiplication of series [so as to obtain an infinite product,] followed by a

“special manner” of integrating *).

By the accidental observation that a watch when hung up sets itself in vibration

as a pendulum, Krarrr*) reopened the problem of forced oscillations. The subject

as it was conceived concerns only a single oscillator and thus does not properly

belong in this history. However, recalling the crudestate of the theory of a single free
 

1) Daniex Bennovttt is largely absorbed in his own problems and frankly gives up the attempt

to follow his friend’s diverse researches. Also he seems to forget rather quickly the contents of previous

letters. In this letter EULER finds it necessary to remind him that “on an occasion your Worship

provided” he long ago read a piece on the vibrations of elastic bands (doubtless E40, above, p. 167)

and had told Danrei Bernouty of the content.

2) This is the method by which Ever calculated y — . It is given in E122, ‘‘De productis ex
w=1

infinitis factoribus ortis,’’” Comm. acad. sci. Petrop. 11 (1739), 3—31 (1750) = Opera omnia I 14,

260—290. There (141) appears as a special case of & more general formula for the product of two quad-
ratures. A proof using gamma functions was given by TODHUNTER,§ 59 of op. cit. ante, p. 11.

DANIEL BERNOULLI took no note of EuLER’s relation (141) until 12 December 1742, when he

indicated it to be of little interest to him because obtainedas “‘a corollary and as if a postertorz,”’ and on

20 March 1745 only “‘Your last proof .. . is indeed easier than the first one.” These remarks are symp-

toms ofDanret BERNOULLI’s growingdislike for pure mathematics. While he had been a leading mathe-

matician in his youth, by the end of this history we shall find him a confirmed enemyofall that is not

‘useful’ and, as a corollary, left behind in the development of physical principles expressed by partial

differential equations.

On the other hand, with his usual feeling for important clues, EULER seems particularly proud of

(141); he communicates it to CLATRAUT in an undated letter of 1742—1743, and he comes back to it

again and again, until finally it reveals itself to him as only a special case of the addition theorem for

elliptic integrals he is to discover later (below, p. 357).

3) “De novo oscillationum genere,” Comm.acad.sci. Petrop. 10 (1738), 200—206 (1747). The

theory in this paper is confined to calculation of moments; no motions are determined.
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harmonicoscillator scarcely two decades previous’), we notice in passing the development

of this second necessary preliminary to a full theory of elastic vibrations. Since the time of

BEECKMAN and GALILEO (above, pp. 26—27, 34—35)*), the phenomenon of resonant

 

1) This is confirmed by EULER’s labored discussion of it in the first part (§§ 9—21) of the paper

we are just about to consider.

2) A related but more elaborate problem, which may be idealized as that of free oscillation of

two elastically coupled pendulumg,or as that of the motion of two pendulums attached to the arms of

a balance, or as that of oscillation of one pendulum driven by a harmonic generator acting at the end
of a spring, had been raised by HuyGeEns in the earliest days of his pendulum clocks. In a letter to

R. F. pe Stuse of 24 February 1665 he mentions “‘the remarkable sympathy of my clocks, just dis-

covered.” A part of his letter of 26 February 1665 to his father found its wayinto print: “Hatrait d’une

tctire de la Haye le 26. Fevrier 1665,” J. des Sgavans 1 (1665—1666), No. 11 (16 March 1665), Amster-

dam ed. 148—150 = Ciuvres 5, 244. Two clocks having pendulums of nearly equal length are found,

when hung up one or two feet apart, to come into perfect consonance within a half hour; if this con-

sonanceis forcibly broken, it reestablishes itself; while if the two clocks are separated by a distance of

fifteen feet, one gains 5 secs. per day upon the other. The agreement does not imply that the pendulums

swing parallel to one another; rather, they swing in opposite senses. HuyGEnNSattributes the pheno-

menon to “a kind of sympathy, ...an imperceptible agitation of the air, produced by the motion of

the pendulums.” However, when he placed a large baffle between the clocks, the effect was notat all

diminished.

(On 27 February 1665 Huvarns wrote to the same effect to Sir RoBERT Moray; according to

BIRCH, History of the Royal Soctety ... 2, 19 (1756), this letter was read to the Royal Society on 1 March

1664/5, whereupon the Society directed that experiments be instituted to seo if “this pretended sym:

pathy” were “‘magnetical” and also ‘“‘whether three or four watches do the same, that two do.” On

pp. 14—15 of Phil. Trans. 1. No. 1. 6 March 1664/5, is printed part of the letter but nothing concerning

sympathy. Huverns’ letter to Moray of 27 March 1665 shows that the publication in the Journal des

Scgavans was without his knowledge and contrary to his wish.)

In his letter of 6 March 1665 to Moray, Huygens describes experiments showing that ‘“‘the

sympathy ... does not come from the motion of the air but from the said small disturbance” imparted

by the mechanism to the case and can be nullified by sufficiently firm mounting. According to Bmcu,

ébid,, 21, thig letter wag read to the Royal Society on 8 March; the only recordéd responseis the utter-

ance of doubts that pendulum clocks are accurate. Pp. 162—163 of the Journal des Sgavans 1, No. 12,

23 March 1665,carry an elaborate retraction of Huyarns’ first conjecture.

On 5 October 1665 R. PaGeErin a letter to HuyGENs speaks of “the sympathetic or homotonic

oscillation of your clocks’’ as being “not unlike the harmonic motion of musical strings,”

On p. 509 of op.cit. ante, p. 126, DE LA Hire in 1692 recalls HUYGENS’ observations and attrib-

utes to him the explanation that the beam connecting the clocks‘fell into a motion midway between

the two, which it communicated back to the pendulums,”’ and DE LA HIRE adds a muddy experiment

of his own.

Just before KRAFFT’s observation, J. ELLIcOTT rediscovered HuycEns’ phenomenon. In his

paper, “‘An account of the influence which two pendulum clocks were observed to have on each other,”

Phil. Trans. London 41, No. 453 (1739), 126—128 (1742), Exxicorr finds a baffling variety of in-

fluences; é. g., one clock may stop dead. In his “Further observations and experiments concerning the two

clocks afore-mentioned,” ibid. 128—135, Etxicott has cometo realize that the vibration is communi-

cated to the cases and thence to the commonflooring, etc. This Fellow of the Royal Society seems to



22

27, 28

29—34

09

176 BEGINNINGS OF GENERAL THEORIES
 

oscillation hadbeenrecognized, but for the motion ofa naturally oscillatory system subjected

to a periodic force, no theory of any kind existed. EULER at once reduces the problem to

its essentials and in the paper, On a new kind of oscillations*), considers the sinusoidally

driven harmonic oscillator:

(142) Mix + Kx = Fsin agt

First he obtains the solution by quadratures. Then he remarks that in onespecial case this

solution must be replaced by another which shows that “after an infinite time these oscil-

lations grow out to infinity and run over an infinite space.’’ Somewhat taken aback, he

approaches the whole problem anew by integration in series and obtains the sameresults;

this time he introduces formally the dimensionless ratio of driving frequency w, to natural

frequency o = V K/M,

w
(143) r=— ;

whose significance he recognizes only at the very end. For » = 1 heverifies his earlier

solution. After further experimentation with special cases, he finally realizes that “‘among

all these cases the one when [n = 1] deserves the greatest notice ; in it, the space in which

each oscillation is contained increases continually and finally grows out to infinity. This

effect is all the more to be wondered at, since it occurs in this special case alone and arises

from finite forces. Therefore, if it can conveniently be reduced to practice, it seems to

allow the invention of perpetual motion,’’ One has only to apply to a cycloidal pendulum

an “automaton” having the same period and then to overcomeresistance and friction suf-

ficiently that the oscillations, though not increasing, at least perpetually conserve the same

amphtude.

KvuLeER is unable to classify the results for values of x other than 1 but infers that the

oscillations will be “the more irregular’’ the more theratio n “fails of commensutability.”’

[Lhus Evrxr obtainsthefirst theory ofresonance. The paperreadslike an excerpt from

a notebook. The brilliant discovery it contains might have been better understood had

EvtEr withheld the long calculations in favor of a clear explanation of the results. His

 

have some vague notions of the principles of mechanics, but he proceeds in the pragmatic way favored

in England at this time and hence finds nothing but a mass of bewildering details. His floundering

explanations show that he has no idea how one might study precisely, either by theory or by rationally

designed experiment, the simplest vibration problems.

1) F126, “De novo genere oscillationum,” Comm. acad. sci. Petrop. 11 (1739), 138—149 (1750) =

Opera omnia II 10, 78—97. Presentation date: 30 March 1739. In this work, as EULER wrote on 5 May

1739 to Jonn Bernovttt, he found “such various and wonderful motions as would surely fail to be

suspected until the calculation was completed.”
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‘recommendation for an “automaton’’ passed unnoticed by the ‘“‘practical’’ men of his

time but furnishes a key to the resonantcircuits of today.]

We have seen above that neither EuLER nor DANIEL BERNOULLI could integrate

except in series the simple differential equation (125) governing the form of a vibrating rod.

On 15 September 1739 EULER writes to JOHN BERNOULLI, “I have recently discovered an

extraordinary way of integrating differential equations of higher orderall at once, so that

right away a finite equation results.’’ [What EvLer has found is the method of obtaining

the general solution for a linear differential equation of n“" order with constant coefficients

by superposition of particular solutions of the form e?*.] Let the equation be

(144) x A,—% =0, A, = const.,

and let » stand for a real root or a pair of complex roots p = « +7of the polynomial

equation

(145) SA,pt=0.
k=0

Then the parts of the solution corresponding to p are, respectively,

(146) y= Cer, e@(C cos Pa + Dsin Ba),

[but HvuLER does not consider the case of repeated roots. While he does not mention any

general connection with vibration problems,| he uses (125) as the first example, obtaining?)

z z

ek Kk 1 a(147) y=CeX + De K + Esin— + F cos — ,

 

1) On 9 December 1739 Joun BERNOULLI reminds EULER that long ago he had introduced a

similar notation for tho oxponential function and that he had solved certain equations of this kind.
tyHe will not accept EcuLeR’s method when there are complex roots; forexample,for k* dxt +y=0, 

& will be “impossible or not real.’ On 19 January 1740 Huser replies, “I fell upon my solution unex-

pectedly, nor before that had I any suspicion that the solution of algebraic equations could be so useful

in this business.’? Whatis important is that EULER’s methodis general; he is not interested in solving

‘there one equation, there another,” but of course he easily writes down the general solution of JoHN

BERNOULLI’s example.In reply to a further objection regarding imaginaries from BERNOULLI on

16 April, EULER on 20 Junetries to pass off the whole matter by saying his method and BERNOULLI’s

are essentially the same. On 31 August BERNOULLI refuses to drop the subject: “I ask that you answer

categorically, as is right amongfriends,’’ whether the solution of the example is not wrong because the

roots of p* + k* = are “purely imaginary or impossible.’’ On 18 October EULER says “I do not

remember ever to have said that your method is not general enough..., but rather that it is incon-

venient becausgthe integral often involves imaginaries.’”’ As for EULER’s solution of the special case,

“I answer categorically ... that it is right,’’ and he goes on to explain the use of the formula 2 cos « =

etz/—1 +4. e—2V—1 for obtaiming such solutions and reconciling them with others. The matter is men-

tioned again in JoHN BERNOULLI’s letters of 18 February and 28 October 1741.
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Apparently EvLEr informed DANIEL BERNOULLI of some ofhis results on the forced

oscillator and on the solution of linear differential equations with constant coefficients.

The relevant letters are lost or at least not presently available ; Dante, BERNOULLI sent

EULER some comments) which from their style appear to have been written for publi-

cation. On forced oscillations BERNOULLI gives his own method of obtaining the solution

[but does not discuss the results or mention the phenomenon of resonance, though his

solution is obviously invalid when » = 1]. As for vibrating bands, he says that the solution

(147) in terms of circular and hyperbolic functions is due to EULER; [his qualification of

EULER’s method as “‘indirect”’ is just, since the “direct”? methods, 2. e. transformation and

successive integration, when applicable, imply a proof of completeness, while EuLER’s

method, since a uniqueness theorem had not been established, though indeed exhibiting

a solution with a sufficient number of constants, did not show that no other solutions

were possible]. After deriving a solution of d™s/du" = {"s, DANIEL BERNOULLI says

, , this equation is plainly the same as yours, which you wrote out for me, without cal-

culation or method. Although I had not thought about this problem before reading your

letter, I cannot now say that I should have achieved the details therefrom, nor do I ask

that you believe me. Meanwhile you will see from the following example [7. e., the general

case,] not the least vestige of which you supplied, that I am not straying from theright

path. Nor was brought to my attention anything of what you write you have communi-

cated to my father on this subject.’’ For the general differential equation with constant

coefficients, DANIEL BERNOULLI then obtains the general solution?), including the modifi-

cation for the case when there are repeated roots. |
[In evaluating older studies of vibration problems and also those that appeared in

the next few years we must constantly remember that this simple method ®) of solving the

typical differential equations of the subject, the method that is now second nature, was

not known.]

 

1) “Haucerpta ex littertis a DANIELE BERNOULLI ad LEonnARDUM Hvrer,” Comm.acad. sci.

Petrop. 13 (1741/1743), 1—16 (1751). In this undated paper DANIEL BERNOULLI says that he has not

yet communicated his work on vibrating bands to the academy, though he had by this time confirmed

his solutions by experiments. His two papers on this subject appear further on in the same volume and

are described. below.

2) Indeed EULER’s solution is obvious; when he communicates it to CLarRAUT on 31 October

1741, CuarRavT in his response of 4 January 1742 is easily able to provide a derivation. Often the

obviousis not noticed.

3) EULER’s finished exposition is given in E62, “‘De integratione aequationum differentialium altio-

rum graduum,” Misc. Berol. 7, 198—242 (1743) = Opera omnia I 22, 108—149. Presentation date:

6 September 1742.
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26. Thefirst differential equations of motion: JoHN BERNOULLI’s and D’ALEMBERT’S

treatments of the hanging cord (1742—1743). DanreL BERNOULLI’s viewson the subject of

small oscillations were meanwhile maturing. His Remarks on composite oscillations, especially

those that take place in bodies hung from a flexible thread) begin by distinguishing simple

from compound oscillations. For the former, all parts of the system have the sameperiod,

while for the latter, for example in the case of the bodies hung from a weightless cord, the

different parts have different [z. e. incommensurable] periods. But even for bodies whose

oscillations are compoundin general, it is possible to assign a constant proportion to the

displacements in such a way that a simple oscillation results. ““Moreover not only reason

but also very many experiments lead me to assert that composite oscillations always tend

more and more toward this state of uniformity and fall into it automatically, in some cases

more quickly and in others more slowly, in some indeed very quickly. Thus for example a

musical string cannot make unequal [7. e. non-periodic] vibrations unless it does so from

the start, such being the more non-regular the swifter they are, while the string once set

into vibration soon composesitself to the curvature necessary for isochronous motion.”’

The numberof possible modes equals the numberofbodies in the system ; each modeyields

an isochronous motion, but for each of these the frequencyis different. ‘“But the state of

uniformity to which theoscillations of the body are most prone is that in whichtheoscil-

lations are the slowest possible.”

[To understand this passage”), we must realize that BERNOULLI thinks that a general

 

1) “Commentationes de oscillationibus compositis praesertim iis quae fiunt in corporibus ex filo
flesh suspensis,”? Comm. acad. sei, Petrop, 12 (1740), 97—108 (1750). In his letter of 5 November 1740

to HULER, DANIEL BERNOULLI writes that this paper had been finished three monthsearlier.

2) In the previous year DANIEL BERNOULLI had expressed the sameideasless clearly. See § 14

of his “De motibus oscillatoriis corporum humido insidentium,”’ Comm. acad. Petrop. 11 (1789), 100—115

(1760), whory, afvor montioning that “uniform and equable motions can occur in infinitely many

ways,” he poss on to say that “unless, however, the several bodies are brought out from the vertical

line in the proper proportion, when they begin to move the oscillations will be irregular, inconstant,

disturbed, but nevertheless they tend more and moreto a state of uniformity. These remarks serve

also for understanding the trembling motion of sounding strings: For the sound of one and the same

string may be made up out of many tones.”

EULER expresses this same view in §§ 29—30 of E159, cited below, p. 181. “Since a [flexible]

body can movenot only about the fixed axis O, from which it hangs, but also about any junction,.. . it

can be disturbed from its state of equilibrium in innumerable ways; since all these... are equally

possible initially, the resulting oscillatory motions will be very diverse... But the greater peculli-

arity ...is that the several parts . . . do not simultaneously return to the position of equilibrium ... In

such motions, even though reciprocating, nevertheless the oscillations cannot be perceived distinctly,

and therefore it will not be possible to employ the previous method, which assumes the existence of an

isochronous simple pendulum. Nor indeed are the principles of mechanics yet sufficiently developed

as to allow us to reduce to calculation ...such irregular motions... But however much these oscil-
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motion of a string is not periodic. Moreover, he has not simply fallen into Taytor’s old

error (above, p. 131); whatever his “reason”’ may be,he says that experiment teaches him

that a vibrating system quickly settles into its fundamental mode. In modern terms,this

is an assertion that the higher modes are damped moreseverely than is the lowest mode.

This may be true. If so, it furnishes some physical justification for confining attention,

in a theory which neglects friction, to the fundamental modeorat least to the simple modes.

In regard to the principles of mechanics, however, it is a retreat.]

“Similarly, a taut musical string can produceits isochronous tremblings in many ways

and even according to theory infinitely many, though these are difficult to obtain, and

moreover in each modeit emits a higher or lower note. The first and most natural mode is

that whenthe string between oscillations producesa single arch ; then it makes the slowest

oscillations and gives out the deepest of all its possible tones, fundamental to all the rest,

The next mode demandsthat the string hetween two oscillations produces two arches on

the opposite sides, and then the oscillations are twice as fast, and now it gives out the octave

of the fundamental sound.’’ Higher modes are similarly described. [DANIEL BERNOULLI

does not present a calculation of these results from theory, but it is plain that he has per-

formed it (c/. above, p. 158). His earlier remarks (above, p. 158), combined with the

foregoing digression from the subject of the present paper, make the only published basis

for his later claim of priority for calculation of the higher modes of the vibrating string

(below, p. 255)+).]

DANIEL BERNOULLI here considers a heavy rigid rod of arbitrary line density sus-

pended by a weightless rod linked to an arbitrary junction upon it. In Figure 58 m is now

the point of junction, and the lower segment, which may extend above m, is the heavy rod.

[BERNOULLI’s analysis is now clear; instead of basing it on his own mechanical principle

of 1734 (above, p. 160),] he first balances horizontal forces acting on the rod and then

balances moments about m. [Thus the method is essentially that of EvLER’s paper E40

(above, p. 167).] The accelerating force, as usual, is taken as proportional to the displace-

ment. Thus regult two equations, from which the constant of proportionality may be elimi-

nated, yielding a single quadratic equation for the length « in Figure 58. Since the point P

remains fixed, the values of « yield the proper frequencies for the two modes. BERNOULLI

explains these modesclearly and explicitly, besides deriving the limit cases when 1/L= oo,

L/l= oo, or the point of suspension is the center of gravity of the rod.

 

lations are confused andirregular at first, experience shows that soon they subside into uniformity, so

that all parts reach the configuration of equilibrium simultaneously and the oscillations, provided they

be very small, may be compared with those of a simple pendulum.”

1) MacrauRIn, writing some two years later, seems to be unaware of the existence of the higher

modes; see § 929 of op. cit. ante, p. 150.
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It is easy to extend these results to the case when the suspended massis any rigid

body : All one hasto do is consider a rod of such a line weight that the center of gravity and

the center of oscillation coincide with those of the given body.

Before he had seen this paper, EuLER had already completed his own treatment of

this problem anda class of others of its kind. His paper On the oscillatory motion of flexible

bodiest) contains among other things a more straightforward analysis of the problem with

which DANIEL BERNOULLI’s paper ends. Taking moments about the junction, EvLER

equates the moment of the weight to the moment of the restoring forces, thought of as

acting at the center of inertia and calculated from (115). A second equation results from

the balance of moments about the point of suspension. Hencefollows a quadratic equation,

whose solution gives the two proper frequencies.

 

1) E159, “De motu oscillatorio corporum flexibilium,’? Comm.acad. Petrop. 18 (1741/8), 124—166

(1751) = Opera omnia II 10, 132—164. Presentation date: 20 August 1742. In § 6 EULER observes

that for a general restoring force f(#) we have f(#) = f(0) + #f(0) +---, and hence for small

oscillations about equilibrium (f(0) = 0) a linear law of force results. Cf. the partly erroneous treat-

ment of Joun II BERNOULLI, p. 171 above.

Some of the subjects of the two papers described in the text above are discussed in the corre-

spondence. On 12 April 1740 Eves writes ““The problem which your Worship proposes[in a lost letter]

regarding the oscillations of a body hung onringis included amongtheoscillations of a heavy rope of
non-uniform thickness, to the end of which a rigid body is attached, and thus it can be solved by the

same method.’’ On 30 April DANIEL BERNOULLI, perhaps without having received the foregoing, in-

quires ‘Have you also looked into the problem of the oscillations of a body hung on a flexible thread?

In which case I should like to know if your solution agrees with mine; I have recently . . . sent it to

you...Again there is a gap in the correspondence. On 15 September EuuEr writes, “Your Worship’s
problem ofthe oscillation of a body hungon a weightless thread I have not originally taken into account

with eufficient attention, but now the more I consider it the more important and useful I find it, since

without it I should never have been able to determine correctly the oscillations of a sphere hung on 4
thread...I had to think a long time before I could apply my general method to that kind of oscil-

latory motion . . .”” He goes on to explain the solution that we describe above from § 33 of his paper

E159, leading to the same result as DANIEL BERNOULLI’s. “Regarding these things please note that I

have just now for the first time put them on paper, from whichI see easily that I could have explained

them much more distinctly, systematically, and briefly, wherefore please pardon this disorderly

explanation.” On 5 November BERNOULLI states that EULER’s method and his own are virtually the

same. On 7 March 1742 BerNnovtui implies that HuLER has described a new work on theoscillations of

bodies suspendedby flexible threads. Presumably this is E159.

On pp. 121—123 of Notebook EH3 Ever writes an attempt, of course abortive, to treat the

forces acting on linked bodies directly, without use of the tension. The idea seemsto be that the actual

forces are the same as those that would be sufficient to produce an accelerated motion in which the

figure remains unchanged. This note, written probably in 1736—1738, helps us to perceive how great

is the advance presented in E159.

A first attempt at the first problem solved in E159 is given in pp. 46—49 of Notebook EH4.

Two methodsare used, the second being that given in the finished paper.

14
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To treat in the same way the oscillations of a heavy body suspended from a heavy

flexible cord, EULER takes moments both about the junction and about an arbitrary point

on the cord and cleverly derives the following equation for the form of the cord, gener-

alizing (108), :

(148) (W 4 5) 54 (41 L) =o

W being the weight of the suspended body. EULER gives the beginningofa series solution

for the case of uniform line weight and discusses some approximations.

The same method applies to the case of two arbitrary rigid bodies linked together.

There are two possible modes, in one of which the compound pendulum movesas a rigid

body. For three linked bodies, a cubic equation results. While EuLER sees that an equation

of degree n will result for the case of n links, the formal complications are too great, and

he abandons the problem here.

The papers we have described were not published until 1750 and 1751. Priority in

publication for the solution to the problem of a body swinging from a weightless rigid link

belongs to old JOHN BERNOULLI, who includedit in a miscellaneous collection of mechani-

eal problems!) he hastened into print?) in his collected works in 1743. [The methodis essen-

tially that used in the above works by his son and by Euusr. The solution is correct,] the

two modes are obtained, [but there is no discussion of the mechanical significance of the

results]. As for problems with a greater number of bodies, the same method will work,

but the details he leaves ‘“‘to those calculators who have plenty of time.”

By this time Dante, BERNOULLI'’s and EvuiEr’s analyses of the weighted hanging

cord, written nearly a decade ago (above, pp. 155 —164), were in print. It might seem super-

 

1) ‘‘De pendulo luxato, et de ejus reductione ad pendulym simplex isochronum,” Art, LVI of “Pre-

positiones varvae mechanico-dynamicae,” Opera omnia 4, 253-386 (dated 1742, published 1743).
2) On 20 October 1742 Danie, Bernovnii writes to Euumr, ‘The collected works of my father

are being printed, and I have just learned that he has inserted, without any mention of me, the dyna-

mical problems I first discovered and solved (such as ¢. g. the descent of a sphere on a movingtriangle,

the linked pendulum, the center of spontaneous rotation,eic.). . . If it seemed necessary that I keep off

the suspicion that I had plagiarized my father, I should have to justify myself. However,if your Wor-

ship thinks that my silence in the Academy at Petersburg would do no harm,it would not be distasteful

to me. Before this Mr. BULFFINGER reproached me that I had gotten all from my father and done

nothing by myself, but in fact I borrowed not a word from him.” On 12 December 1742: ““The problem

of the motion of linked pendulumsis so easy that neither the discovery nor the solution of it should

bring much fame.’’ On 4 September 1743, when he had finally seen his father’s works in print: “The

new mechanical problems are mostly mine, and my father saw my solutions before he solved the preh-
lems in his way...” It is of course entirely plain that priority of discovery for the problem of the

linked pendulum belongs to Danrey Buennovrai and Hunms independently.
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fluous for JOHN BERNOULLI to issue his own solution’), the more so since in his typical

style the old man does not mention that anyoneelse had ever

treated the problem. When we examine his paper, however,

just after the usual restriction to small isochrone vibrations

we read, “‘but first we shall consider the matter generally.”

In Figure 60 let UM, and M, be the masses at Z and K, 314

let HG=2,,MI=%,GL=s5,, MK ==s,. The condition

that the length LK equals the length lk is pl = ok = dz,

say. Then if 9, = 7 NEF and g,=/ o0oKk, we have

dx = ds, sin 9, = ds,sing,. The force of the weight M,g

Q
e

 along IL is Myg ity ; the opposing force arising from the

      ds,
tension 7’ in the link LK is T sing, = Ta Hence the

t 54
° ° dx, dix

M resultant accelerating force?) along lLis M,g—ds, —TTe
1

Figure 60. ‘Hence, therefore, by a dynamical principle’’?)
JOHN BERNOULLI’s notations
for analysis of the motion of a 1 dx ax dv

i ded i 149 —-| M,g+ — T——|=17,-4string loaded by two weights ( ) Ny, 19 d$1 T d=| Y d84 ’

where v, is the velocity of M,. Integration yields

GX — aS Tae = $0,
(150) _

JX +aS Pde = $03,

where the second equation follows in the same way.Solving for 7 yields

ad x,ds} — rds}

(151) Ds MM9Te dst + Meds!
 

316

Balance of normal forces acting on MM,yields

_ dx \*? _ dx, \*
(152) 7 0s 9, = 7 V1 — ($2) = ag 1 — (3) ;

Eliminating 7’ between this result and (151), we have

2,83 — x,ds} ds3 — dx}153 yefyo
(153) My M,dsj + M,ds3 ds; — dx? de

1) “De pendulis multifilibus,’’ Opera omnia 4, 313-331 (dated 1742, published 1743).

2) Perhaps by a slip, BERNOULLI writes “vis acceleratrix’? for what his formulae show to be

‘facceleratio”’.

3) “Ex Principio Dynamico’”’ may mean “‘by the principle of dynamics.”’
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320
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While the remaining analysis concerns small isochronous motions [and hence leads to

nothing beyond what EuLER and DaniEL BERNOULLI had done long ago,in the foregoing

wesee the first use of ‘“Newron’s second law’’ to obtain complete differential equations of

motion for a flexible body. Moreover, the equations are correct for finite motion, and this

is the first complete set of differential equations of motion for a deformable system. It is a great

advancein principle?).]

There follows a noteworthy attempt to treat Yx +1 M pay

systematically the small motion of a weightless

hanging cord loaded by n equidistant and equal

weights, but in the end only the case 2 = 3 is

worked out. This time JOHN BERNOULLI observes

that it is easier to get equations such as (150) Y;
 

directly from the principle of live forces rather

than from statics.

A second treatment rests on [Huyazrns’]

observation, said to follow “from the nature of

small oscillations’’, that the compound pendulum

assumes the same form in conical oscillation as in

lateral (cf, above, pp. 48 —49). A simple direct solu-

tion then results by considering the conical case and

balancing the centrifugal forces against the tensions.

JOHN BERNOULLI works out in detail only the case

   
Figure 61,

Sketch realizing JoHN BERNOULLz’s descrip-

we shall put his words into equations. Figure 61 tion of the equations for circular vibration
of a string loaded by n weights

n= 3, but he describes the general case, and here

shows the forces to which the k'" weight is subject.

F,, is the centrifugal force, 7, is the tension in the &™ link from the bottom. Then, with

the understanding that 7’, = 0, the balance of vertical and horizontal forces gives

F,= T,, sin Pr — Ty SIN Yy-4(154)
T', cos yp, = Myzg + 1,4 Cos p,y -

For a gyration of permanent form, the centrifugal forces #’, must satisfy

(155) fF, = MM.Y1,@", wm? = const.

Joun BERNOULLI describes the foregoing balance of forces clearly but writes down equa-
  

1) For the parallel but more far-roaching improvement JoHN BERNOULLI achieved in hydro-

dynamics just afterward, see my Introduction to L. EuLeRr Opera omnia IT 12, p. XXXVI.
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tions only for the case of small motions, so that cos y, ~ 1 and (154), yields

k
(156) T,=92NM,;

g=1

since sin gy, =San , where a, is the length of the k*" link, (154), becomes
k

— k—1 — _(157) M,, y,0? = M, Yr Yk4A + Eu,| Yet | Yo-1 Ye .

g Or q=1 aq he-1

JoHN BERNOULLI carries out essentially the above calculation but always in terms of

ratios, so that w? /g is eliminated all along. Thus there result » — 1 quadratic equations

for the unknowns y,. The length of the equivalent simple pendulum is then the distance 328

from the bottom weight to the point where the extension of the last link meets the vertical:

AY
Yr — Yo

[Thus in this second method appears every element but one necessary for an exact and

general treatment : To find the equations of motion, the centrifugal force F, should be

replaced by the inertial force with components — M,2,, — M,y,-]

To obtain the equation for the continuous heavy cord, JoHN BERNOULLI balances the 329

centrifugal force against the weight on a finite section of the chain and so derives (106),.

Finally, Jouw BrRnovuwi gives a third method, “the most natural of all’, This con- 330—331

Ko=

sists in calculating the accelerating forces as before but then equating them to a constant

factor times the displacement. The result is the same as (157) ; the difference is only that

here the lateral motions are treated directly.

[This is the last we shall hear of JoHN BERNOULLI, whodied six yearslater at the age

of eighty-one. The work just described, while in essence a revision’) is a remarkable

achievement. The first method obtains the differential equations of finite motion for the

compound pendulum,this being the earliest example of such equations for a non-rigid

system: the work goes as far as the energy integrals for finite motion; but the generaliza-

tion to m bodies is not really clear. The second and third methods, which are essentially

the sameas far as principle is concerned, introduce a fixed rectangular Cartesian co-ordinate

system for the first time in problems concerning systems of any generality”). While

they recall Joun BreRNnovriy’s treatment of the loaded vibrating string, that analysis,

like the later ones of DanteL BERNOULLI and EULER on the present problem, used

normal and tangential components and was not carried out sufficiently to obtain

the full set of equations except for small motion. Here the principles are expressed

 

1) Werecall that in younger days JOHN BERNOULLI was quick to issue elegant new proofs of

results discovered at length by his brother JAMES.

2) For the importance of this step, see the discussion of the principles of mechanicsin § 35.
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so generally as to yield at once the correct general equations for the accelerating forces in

the case of n bodies, but no differential equations are obtained since the special hypotheses

replacing the general reaction of inertia are introduced from the start. A nearer miss would

scarcely be possible. With some astonishment wesee also that the old man is moreskillful

in marshalling and directing the different forms of the principles of mechanics than is his

son or even EULER. On the other hand, he showslittle interest in the nature of the solution

and does not discuss the proper frequencies atall.

At the age of twenty-four, there enters our scene now a talented but sinister per-

sonality who is to make in six years') a sequence of brilliant discoveries but thereafter

will write endlessly in what seems today no more than a dogged attempt to confine the

capacities of mathematics and to belittle the solid work of others.] This is D’ALEMBERT.

The year before, he had communicated his famous Principle of dynamics to the French

Academy. In 1743 appeared his Treatise on Dynamics?), in which the principle is applied

to some problems not previously solved by other means. Thefirst of these is that of the

compound pendulum,or the cord loaded by discrete weights, [so that p’ALEMBERTshares

with Joun BrerNovuL.i the achievement of being the first to obtain differential equations of

motion for a constrained but non-rigid system].

The “General principle for finding the motion of several bodies which react upon

each other in any way”reads as follows?): “Let A, B, C, etc. be the bodies which con-

stitute the system; suppose that the motions a, b, c, &c. be impressed upon them, but

that they are forced because of their mutual reactions to change into the motions a, b,

c, &c.... Decompose each of the motions a, b, c, &c. impressed upon each body into two

others: a, a3 b, Bs 0, «3 &e., which are such that if only the motions a,b,c, &c. had

been impressed upon the bodies, they would have heen able to retain these motions without

interfering with one another; and if only the motions «, 8B, «x, &c. had been umpressed upon

them, the system would have remained at rest. It is clear that a, b, c will be the motions

which these bodies will take on in virtue of their reaction.”’

[Generations of readers have been baffled by this statement, but it can be deciphered.

D’ALEMBERTis a notorious schizograph: the elegant directness of his belles-lettres, often

seen also in the prefaces to his scientific works, never enlightens the thick penumbra of
 

1) After his essay on fluid motion, finished in 1749, D’ALEMBERT’S positive contributions to

mechanics cease, except for one or two interesting details here and there in the voluminous polemic

literature to which he devoted the rest of his scientific thought.

2) Dewité de Dynamique, dara toquol los tow de Véquilibre & du mouvement des corps sont réduttes

au plus petit nombre possible, & démontrées d’une maniére nouvelle, & ov l’on donne un principe général

pour trouver le mouvement de plusieurs corps gut agissent les uns sur les autres, d'une maniore qgueleonque,

Paris, David l’ainé, 1748. 2nd ed., 1758.
3) § 50 of op. cit. ante. In the second edition, the statement is entirely recast.
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his mathematical exposition. But the obscurity is not of style only: D’ALEMBERT’s lan-

guage, both in analysis and in natural philosophy, is extraordinarly loose for his day.

“Body” he uses as vaguely as had Newton; usually, but not always, it means the kind

of body now called a mass-point, which had been defined precisely by EULER in 1734}).

‘“Motion”’ he defines as velocity but mainly uses as differential increment of velocity; in

most cases, to follow his argument we need to translate “‘motion” as “acceleration.”

“Force” he wishes to banish from mechanics as a concept a priori; he regards it as a

phenomenon necessarily arising from change of motion experienced by mass,] and he

defines it as the ratio of acceleration to mass?). However®), ‘I must give warning that to

avoid circumlocutions, I have often made use of the obscure term force...;[%. e., he

admits the usefulness of force in heuristic arguments, and it seems that in connection

with the special problems solved for thefirst time in his book, he employsit freely, as we

shall see. With this much instruction in his language, we can state his principle in modern

terms4). For the acceleration a of any body of the system, we have

(157A) a -—a,+a,,

where a, is the assigned acceleration, such as the acceleration of gravity, and a, is

the acceleration arising from the mutual actions and constraints. D’ALEMBERT’s prin-

ciple asserts that the forces corresponding to the accelerations a, form a system in static

equilabrium, 1.€.,
(157 B) +Ma,=0, rx Ma,=0,

where the sums are taken over the bodies constituting the system. Equivalently,

(157C) 4M(a —a,)= 0,

(157 D) Sr xX M(a—a,)=0.

Be it expressly marked, however, that no general equations appear in the work of

D’ATEMRERT, and that the above correspond to what he does rather than to what he
 

1) § 98 of H16, Mochanica sive motus scientiacs analytice exposita 1, Petropoli, 1736 = Opera

Omnia IT 1: “These laws of motion... belong properly to infinitely small bodies, which may be

considered as points.”

2) § 19 of op. cit. ante, footnote 2, p. 186.

3) Ibed., preface, p. xxv.

4) A search of the literature has revealed but one author who states as ‘“D’ALEMBERT’s prin-

ciple” the principle D’ALEMBERT himself published: this author is G. Hamet, § 193 of Hlementare

Mechamk, Leipzig and Berlin, Teubner, 1912, and § 95 of Theoretische Mechanik, Berlin-Géttingen-

Heidelberg, Springer, 1949. A form more or less equivalent to the original one is stated by LEvI-

Crvita & AMALDI, q q 18-19 of Ch. V of Lezions dt Meccanica Razionale 2,, Bologna, 1926. A variantis

called ‘“‘the third form of p’ALEMBERT’s Principle” by BottTzmann, § 72 of Vorlesungen iiber die

Principe der Mechanik 1, Leipzig, Barth, 1897. All other works I have seen attach the name of D’ALEmM-

BERT to one or both of the two principles described below, footnote 1, p. 191.
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says. The modern reader, accustomed to Newtonian concepts and conversant with the

later formulations of the mechanics of systems, will interpret (157C) and (157D) as

statements that no total force or total torque 1s exerted by the constraints and mutual forces?).

This is far from D’ALEMBERT’s own approach, but it suffices to show that while the

principle is correct for most of the systemstreated in analytical dynamics,it is insufficient,

in general, to determine the motion of non-rigid systems without additional hypotheses

or specializing features. Since, however, interpretation of ‘“‘D’ALEMBERT’s Principle’ is

a notorious pitfall for historians*), I give mine only as conjectural. However obscure his

c Statements and procedures, one thing is certain: D’ALEMBERT obtained

new results of the greatest value.

The intricacy of his method®) is best seen] in the example that

makes it of interest here, that of the compound pendulum. “Let mu

be the arc traversed in thefirst instant by the body m, and M V [recte

Mv] the are described in the same time by the body . The body M

may be regarded as having simultaneously two motions, one of which,

MY, is equal and parallel to the motion mw of the body m, and the 
Figure 62. D’ALEMBERT’s method of deriving differential equations of motion for the
compound pendulum 
 

1) Note the result derived by D’ALEMBERT in § 64: “The state of motion or of rest of the center

of gravity of several bodies does not change at all by the mutual action of these bodies among them-

selves, provided that the system be entirely free; that is to say, that it not be subjected to motion

about any fixed point.” In § 63 he remarks that this generalizes a proposition of NEwron (see below,

p. 288, footnote 1). In § 66 he shows that under the action of arbitrary constant forces parallel to a

fixed direction, the center of mass will describe the same curve asit would if the bodies had no mutual

action. Thus p’ALEMBERT himself did not use his principle in so great a generality as in fact it enjoys.

2) Both in print and in conversation I have encountered many enthusiastic partisans of p’ALEM-

BERT, some of whom find themselves upset by my criticism of him. Not one, however, has named

correctly any specific discovery by D’ALEMBERT,let alone following the argument by which he arrived

at at. The two historians who studied some of his works in detail, TopHuwreR and BURKHARDT,

found much to blame there and did not point out most of the specific achievements I have remarked

and explained. His is one of those reputations, more numerous in our day thanin his, that seem to

need no fuel to keep on burning. So far as I know, the present essay and the Introductions to L.

Evert Opera Omnia, Vols. II 12 and 13, contain the only concrete study of D’ALEMBERT’s works

published in the last fifty years—the only attempt, that is, to give him thehistorical justice of fasten-

ing what he did rather than merely transmitting cozy generalities.

3) LAGRANGE,op.cit. infra, p. 190, remarked: “Thus in combining this principle with the ordi-

nary principles of the equilibrium of the lever, or of the composition of forces, the equations of each

problem may always be found by help of moreor less complicated constructions... but the difficulty

of determining the forces which must be destroyed, as well as the laws of equilibrium among these

forces, often renders the application clumsy and troublesome, and the solutions resulting from it are

almost always longer than had they been derived from principles less simple andless direct.”
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other, Vv, is a circular motion around the center m or w. First we shall decompose the

absolute effort of the weight of the body m along mQ into two others, one of which would

be capable of making the body m traverse the line mw in thefirst instant, and the other

is directed along the line mR, whose position is unknown.This last effort must be destroyed,

since, by hypothesis, the body m can move only along mw. Likewise, we shall decompose

the absolute effort of the weight of the body M along ML into two others, one of which

would cause the body M to traverse the line MV, and the other, MN, may be de-

composed again into two others, one of which would cause the body M to traverse the

line Vv, but the other would be entirely destroyed, or, what amounts to the same

thing, would be equilibrated by the effort along m&, which also must be annihilated.

But for that it is necessary, 1°, that the effort of the body M which must be destroyed

be directed along MP in thedirection of mM extended, and, 2°, this effort be to the

effort along mf as the infinitely small angle Sm... is to the angle MmS, since for

equilibrium it is necessary that the force resulting from the combination of these two

efforts be directed along mS...

“Let Cm=1, p the weight of the body m, P that of the body M, Um=L,

mK =x, MQ=y, ¢ the accelerating force along mu. Then, 1°, the force @ is to

the weight p as the angle RmQ is to the sine of the right angle Rmu; ... thus RmQ =

=< . 20, likewise the angle NMI =+ . Thus the angle PMN =4+ , and the

accelerating force along uv = P (4—% . But the effort of the body WM along MP,

which differs but infinitely little from its effort along ML and thus may be expressed

by M x P, must be to the effort of the body m along mR(m x p) as the angle RmS

or T? istotheangle MmS or +__* | Hence mp = mp? __M.Px (4-4),

 

Lf l Lb of

and consequently go = r~a(E—7) . and the effort along Vw will be

Py px ,M-Ply

Gott m\b TU
[Thus]... one has these two equations:

(157E)
mreeeg

[After following this derivation, we are in a position to evaluate the principle itself,

the originality of which has been the subject of controversy. D’ALEMBERT himself gave
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only references which seem designed to mislead!). LAGRANGE wrote a history of the

subject which gives the right references but confuses the issue by a vagueness?) which has

been transmitted faithfully or misinterpreted by later historians. In fact, what makes

D’ALEMBERT’s principle operative are two independent ideas: 1°, the product of the mass

by the acceleration of a body, if reversed in sign, may be regarded as a force on a par

with the applied forces; 2°, the forces exerted by the constraints need not be considered

except insofar as they restrict the actual accelerations. This is not his language, but it

explains his procedure. His emphasis is always put on the second. Both of these ideas,

in the context of the center of oscillation and expressed in a still different terminology,

derive from a great paper of JAMES BERNOULLI?) (1703). To solve the problem of the

center of oscillation, JamzEs BERNOULLI applied these ideas and the principle of equi-

librium of moments; D’ALEMBERT’s solution *) is, at bottom, identical. To solve the prob-

lem of the compound pendulum DanirL BERNOULLI (above, p. 160) applied these ideas
 

1) His references concern only the applications, not the principle itself. In § 75, in regard to the

center of oscillation, he gives an alternate form, in fact only trivially different from the former, but

D’ALEMBERT writes, ““The principle of this latter solution reduces to the same as that of Mr. [Jams]

BERNOULLI... It is in this latter way that I had first thought of solving this problem, and this is

also what Mr. Kuuer has done (in £40, above, p. 168)... But Mr. EvLER has not proved this

principle at all, which, presented in this way, in fact, perhaps is not so easy to prove. In addition, the

author has applied it in this same memoir to the solution of some problems concerning theoscillations

of flexible or inflexible bodies.’’ In the second edition, p’ALEMBERT characteristically altered this

passage to read: ‘Mr. EuLEr has not proved this principle at all, nor can it be proved, it seems to me,

except by means of ours. Moreover, the author applied this principle only to the solution of a small

number of problems..., and the solution he has given of one of these problems is incorrect. This

shows how much our principle is preferable for solving not only problems of this kind, but also all

the questions of dynamics.”

In § 100, in reference to the compound pendulum, and in §§ 105~—106 to the problem of the cord

carrying several weights, he mentions the results of Daninn BERNovuLtit and EULER (above, § 23)

but says nothing about their methods.

2) Lacranonr’s history is in the Seconde Partie, Sect. 1° of the Méchanigue Analitique, 1788.

The important sentence is: ‘“We have already remarked that the principle employed by James BER-

NOULLI in the study of the center of oscillation had the advantage of making this study depend upon

the conditions of equilibrium of the lever, but it was reserved to Mr. D’ALEMBERT to envisage this

principle in a general way and to giveit all the simplicity and fecundity of which it could be sus-

ceptible.” The unimportant references are to HULER’s paper #140, where JAMES BERNOULLI’sidea is

rather concealed than developed, and to HERMANN’s Phoronomia, where, as LAGRANGE remarked in

the second edition, nothing but a rearrangement of James BERNOULLI's solution is to be found. The

important omission is any mention of the work of DANIEL BERNOULLI.

3) ‘““Démonstration générale du centre de balancement ou d’oscillation, tirée de la nature du levier,”

letter of 13 March 1703, Mém.acad.sci. Paris, 1703, 4% ed., 78-84 (1705) = 12m° ed. (Amsterdam),

96-104 (1701) = Opera 2, 930—936. The importance of the method is emphasized in the Histoire for

the same year, where the explanations and comments are longer than the paperitself.

4) Traité de Dynamique, § 73.
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and the principle of equilibrium of forces; D’ALEMBERT’ssolution is, at bottom, identical

in the calculation of the resultant accelerating forces but goes beyond BERNOULLI’s in

that it does not adopt the specializing hypothesis of TayLor, instead proceding to the

general differential equations.

In summary, D’ALEMBERT’s principle contains no ideas not to be found in theearlier

work of JAMES and DAnizEL BERNOULLI; rather, its merit is the perception that those

ideas are general and may be used to obtain differential equations of motion for a large class

of dynamical systems.

Finally, as should be clear from the above presentation, D’ALEMBERT’s Own prin-

ciple is only tenuously connected with either of the statements traditionally called

“Dp”ALEMBERT’s Principle” in the literature of mechanics!).

After this long digression on p’ALEMBERT’s method,] we return to consideration of

his analysis of the weighted hanging cord. He remarks that DaNnrIzEL BERNOULLI’s results

 

1) These are:

A. Equations of motion follow by adding to the applied forces per unit mass ‘inertial forces”’

defined as the negatives of the accelerations of the bodies on which the applied forces act. This prin-

ciple does not eliminate the forces of constraint. Deriving, like p’ALEMBERT’s own principle, from the

great paper of Jamms Brrnovutti, it was put in general form by EULER (below, p. 253) and in his

later life became his favorite tool for deriving equations of motion. The confusion of this principle

with D’ALEMBERT’s own was already current in 1811, for in the second edition of the Mécanique

Analytique LAGRANGE added a paragraph, numbered § 11, after the passage quoted above, p. 188:

“If one wished to avoid the decompositions of motions which this principle demands, one would have

only to assert immediately equilibrium between the forces and the motions engendered, but taken in

the contrary directions. For, if one imagines that one impresses on each body, in the contrary sense,

the motion it has to take,it is clear that the system will be reduced to rest. Hence it will be necessary
that these motions destroy those which the bodies have received and which they would have followed

except for their mutual actions. Thus there must be quilibrium among all these motions, or among

the forces which can produce them. In truth, this manner of reducing the laws of dynamics to those

of statics is less direct than that which results from the principle of D’ALEMBERT, but it presents

more simplicity in applications. It goes back to that of HERMANN and EULER; the latter employed

it in the solution of many problems of mechanics, and in some treatises of mechanicsit is given the

name of ‘D’ALEMBERT’s Principle’.”’

B. The principle of virtual work, if the applied forces are supplemented by “‘inertial forces,”’

becomes the general law of dynamics. This principle, which has in common with D’ALEMBERT’S

own the elimination of forces of constraint, is due to LAGRANGE, Méchanique Analitique, Seconde

Partie, Seconde Section, § 7.

The term “inertial force’? was used by D’ALEMBERT only in its old meaning, equivalent to the

modern “inertia.” On pp. ix—x of the Traité de Dynamique he writes, “The force of inertia, that is,

the property that bodies have of persevering in their state of rest or motion, once established...”

In 1734, in § 74 of E15, cited above, p. 187, EULER had written, ““The force of inertia is that ability,

innate in all bodies, of remaining at rest or of continuing motion uniformly along a straight line,”

and in § 76 he had attributed the word to KEPLER, who defined it more broadly and more vaguely.
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(above, p. 156) follow from (157E) in the special case when the masses pass through the

vertical simultaneously. For the general case, he gives a ‘“‘construction” for the solution

of (157E) [but no interpretation of the results, which are not recognized as combinations

of trigonometric functions). Hence there is no question of his establishing the position

of DaNtEL BERNOULLI’s modes as the generators of all solutions by linear combination.

Indeed, p’ALEMBERT, like JoHN BERNOULLI, shows no interest whatever in the physical

aspects of the problem.] The same method yields differential equations for the small

motion of a cord loaded by any number of weights. D’ALEMBERT then claims to prove,

in effect, that there is always at least one real solution, [but the proofis elaborately false?)].

Finally, p-ALEMBERT takes up the case of ‘‘a curve loaded by infinitely small weights,

placed at infinitely short distances from each other.’’ Remarking that Danten BERNOULLI

has found the expression (113) for ‘‘the accelerating force of each little weight,” p’ALmm-

BERT perceives that when the curve is not such that all its points cross the vertical simul-

taneously, ‘‘it will change in its equation from one instant to the next, and the general

value of an ordinate y can be expressed only by a function of the arc s... and ofthe time

t... In general, then, let y = g(t, s)... Then

2 2Ty YY _ ) HY >»
(578) Was Oeds?
Some manipulations of this equation lead to no definite result.

(Here, read off easily by combining a proper dynamical principle with a previously

known statical theorem, we see a turning point in the whole history of mechanics: the

first general statement of the law of motion of a continuous medium, namely, the partial

differential equation for the heavy hanging cord.|

27. DANIEL BERNOULLI’s definitive work on the transverse vibrations of bars (1740—

1742). [We have geen that DANIEL BERNOULLI and EvuuEr, independently, had obtained

the differential equation (125) for the transverse oscillations of straight rods, and that

Even had solved this equation,first in series and later in the explicit form (147), and had

calculated the general formula (136) for the frequencies as well as the numerical value (135)

for the fundamental frequency when one endis clamped and the other end free.] By 1740,

the work of EuLER was in print, and in this year the subject of vibrations of elastic bands

again enters the correspondence between him and Dante, BERNOULLI. On 5 November
 

1) Some formal properties of the equations which the modern reader sees to be connected with

trigonometric functions are given in §§ 102-103.

2) In § 109 the general problem is reduced satisfactorily to showing that the equation for the

frequencies, ¢.¢. (119), has one real root. In § 107 p’ALEMBERT hasasserted that all its roots are real,

but his argument amounts to asserting that “il est visible’’.
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DANIEL BERNOULLI writes “I have also made experiments on the sounds of prismatic

chimes such as are generally used in small carillons, and I think I have achieved this theory

too.” On 28 January 1741, “It is extraordinary that elastic bands give out different tones

depending on how theyare supported ; that they have their nodes, upon which they must

be supported in order to emit a clear tone, etc. Otherwise, these tones are indeed as the in-

verse squares of the lengths in bandsof different length and similarly supported. But not

only the ratio of sounds but also the absolute sound may be derived for a band of given

length, weight, and elasticity...

“My thoughts on the shapes of elastic bands, which I wrote on paper only higgledy-

piggledy and long ago at that, I have not yet been able to set in order. Myfirst problem is

on this subject: for a naturally straight elastic band bent into a given curve, to find the

potential live force, or all the motion it can producein its restitution. Then comes the ques-

tion: to find the curve such that the elastic band when bent into it has the least potential

live force. If you care to makeanyreflections on this subject, please communicate to me

your opinion...”

Again on 20 December 1741 DANIEL BERNOULLI writes, “‘For some time I have

used most of my time in working out the various sounds and other properties of elastic

bands, which subject has given me the occasion of many beautiful, entirely new experi-

ments (which agree most perfectly with my theory), and this theory can be extended to

all sounding bodies, and especially to bells, as I conjecture. But only I haven’t yet had the

time to put any of my thoughts on paper.”’ On the 20 October 1742, “‘A few months ago

I sent an extensive and laborious piece [to Petersburg] on the soundsof free bands, where

I have explained and worked out many remarkable physical phenomena. But for this a

new physical theory was needed before I could apply mathematics.”’ This description fits

the second’) of the two pieces we now examine. At this same time, or shortly thereafter,

Evixr solved these same problems and several more. EULER’s work, which was published

sooner, will be described in § 29.

DANIEL BERNOULLI’S Physico-mathematical remarks on the vibrations and the sound of

elastic bands*) begin with some rather sour remarks to the effect that “‘some years ago”’

he solved the problem ‘‘with the greatest success that could be hoped and indicated a sum-
 

1) According to a letter from Krarrt to EULER on 12 January 1742, thefirst piece of BERNOULLI,

which could not be called ‘extensive and laborious’’, was received in Petersburg in September, 1741.

EULER had left by this time; thus he learned of DANIEL BERNOULLI’s work only through letters.

Krarrt remarks in detail on BERNOULLI’s repetition of material from EvuLER’s paper E40; “but I

must admit that I do not clearly grasp the principle that he [BERNOULLI] assumes, while the method

by which your Worship treats this problem I understand very well, up to the integration in series . . .”

2) “De vibrationibus et sono laminarum elasticarum commentationes physico-mathematicae,’ Comm.

acad. sci. Petrop. 13 (1741/1743), 105—120 (1751).
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mary of it in two words to the famous Mr. Evutier... Too great a generality of subject

(which manyso love) detracts not a little from the elegance of the argument, nor doesit

add any weight to the matter, but more often introduces I know not what ridiculous

element!).’’ A uniform band built in at one end andfree at the other is considered ; under

the usual hypothesis that the restoring force is as the displacement, a [rather awkwardly

calculated] balance of moments leads to (125). To calculate the period, BERNOULLI com-

pares a typical element with a pendulum subject to the samerestoring force ; this yields

(131),

For the integration, there are two methods : “‘‘one byseries, which I prefer for con-

venienceof calculation, the other purely geometrical, which consists in absolute integration.

This latter I should not have attempted at all had I not learned first from the most per-

spicacious Mr. EULER that he had it in his power.”’ The results, by both methods, are

equivalent to (128), (129), and (134), [with the explicit form not very conveniently re-

duced]. The value BERNOULLI obtains for the solution of (134) is € & Vi, in substantial

agreement with (135).

To relate the absolute elasticity to measured quantities, BERNOULLI solves the prob-

lem he had proposed to EULER on 26 October 1735 (above, p. 170). His method, [easier

and less rigorous than EULER’s,] is to linearize the differential equation of the elastica sub-

ject to terminal load P, obtaining

d*y _
(158) Fat = Px.

The solution is

P(159) y= Gh — 3a + $0),

where x is measured from the loaded end. Thus

P
—_ __ 173(160) 6 y(0) = 41 FH?

[a first approximation to EuLER’s solution (137). In (159) we recognize thefirst appearance

of what is now called the “‘engineering theory” of beams,7. e. the linearized theory of the

] P
elastica.] From (160) and (186) follows » = a7 3016 ° Experiments on “very long

rounded planks of uniform structure and thickness’’ confirm this result very well.

For taut strings, long before there was a theory giving the definite formula (75), the

proportion (10) was amply verified by experiment. For vibrating bands, no one has pub-
 

1) This remark can be directed at no one else than EULER;it is the first of a long sequence of

such comments that DANIEL BERNOULLI is to makeashefalls steadily behind in the general course of

researches on mechanics.
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lished a description of any kind1). BERNOULLI then describes his own experiments on 14—16

bands.

If we “look moreclosely’’ at (134), “‘we shall learn easily that infinitely many other 17

values for the quantity ¢ may be determined”’ so as to satisfy all the equations of the prob-

lem exactly. To calculate these roots by series is ‘‘a most tedious labor’’, but by noticing

that they rapidly increase in value we may put cosh € = co and so obtain from (134) the

simple equation?) cos ¢ = 0; hence, approximately, the roots C, are given by

 

 

  

i forr =]
(161) Ch my te

(2r—1)-4m forr = 2,3, 4,.--;

A

; the number of nodes is r—1. The 18

values (161) substituted into (136)

Be _ D give the frequencies for the various
he . ; ;

modes of isochronous vibration. The

shapes corresponding to the second
Figure 63. ; 1

¢c DantEL BERNOULLI’s sketches of the second and third modes are illustrated by
and third modes of transverse vibration of a rod carefully drawn figures (Figure 63).

> cClainmped at one end and freo at the other . .
Such modes occur also in the vibra-

tions of musical strings and hanging

5= _-f© chains, “‘as I have shown elsewhere
Dee

and as takes place almost every-
 

where.”’ [Asa matter of fact, though  | BERNOULLI certainly knows the

< modesfor the string, he has forgotten

to write anything about them beyond passing remarks (above, pp. 158, 180). Thus, thirty

years after the first mathematical analysis of the vibrating string, its proper frequencies

and simple modes, so easy to calculate exactly, remain unpublished, while great effort has

been put out to obtain approximate corresponding results for more complex vibrating

systems.

Though Bernovtri does not mention it here, the fact that, (161) being only approx-

imate, the ratios ¢2/¢{ and hence the ratios of frequencies y,/», as given by (136) are

irrational, has an immediate bearing on musical theory : The overtones of a sounding body

 

1) Amazing as it may seem, this was true. Such meager work, both theoretical and experimental,

as had been done before thefirst researches of DANIEL BERNOULLI and EULER in 1734 is described in

§§ 6 and 16 above.

2) This is the sense of BERNOULLI’s more awkward procedure.
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need not be harmonious. On the basis of (161) and similar results for other vibrating bodies,

this is to be remarked manytimesin later writings*), often specifically so as to controvert

the view attributed to RamzEau (above, p. 123).]

Shortly afterward DanizL BERNOULLI wrote the more thorough Mechanico-mathe-

matical treatise on the manifold sounds that elastic bands give out in various ways, illus-

I trated and confirmed by acoustic experiments”). “The physicist must first think out the

mechanical way in which the phenomenon... can occur, then from the most close con-

nection between geometry and mechanics deduce the numerical values of the several

effects and finally compare the calculated values with experimentally measured values.

If these are in agreement, there results the highest degree of certainty possible in physics,

and that not only in the effects confirmed by experiments but also in all other matters

that follow from the theory by mathematical reasoning, even if these often are of such

II a nature as not to admit experimental test.’’ I divide vibrations into two kinds, those slow

enough that their frequencies can be measured, and those so swift as to be distinguished

only by hearing the sounds they generate. The theory applies to both, but the experiments

here reported concern audible soundsonly.

 

III An elastic band can give out sounds of numerous kinds?). The “‘principal’’ ones are

foll , ye
as OWS Kind End conditions

I clamped-free

II free-free

IT clamped-clamped

IV pinned-pinned,

1) E.g.
a) DANIEL BERNOULLI (1753), the passage quoted on p. 256 below.

b) idem (1758), p. 159 of op. cit. infra, p. 262, with specific reference to Rameau: ‘... but the

harmony of these tones [of the string]...is only a sort of accident, since the tones of struck bars

are not only dissonant but even incommensurable. . .”

co) Buen (1759), Summarium and § 10 of E302, cited below, p. 330 (in reference to membranes and

bells).

d) «dem (1759), §§ 1—2 and §17 of E303, cited below, p. 320 (in reference to bells and circular

rods).

e) idem (1760), Summarium and §§ 1—2 of EK 287, cited below, p. 302 (in reference to non-uniform

strings).

f) DanreL BERNOULLI (1771), §11 op. cit. infra, p. 312 (in reference to two uniform strings joined

together).

2) “De sonis multifariis quos laminae elasticae diversimode edunt disquisitiones mechanico-geo-

metricae experimentis acusticis illustratae et confirmatae,’? Comm.acad. sci. Petrop. 18 (1741/1743),

167—196 (1751).
3) Here I translate “‘modus’”’as “‘kind’’, reserving “‘mode’’ for uses where it agrees with the modern

term. Later in this paper BERNOULLI uses “genus” in the sense he here uses “modus’’.
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‘“‘and then there are numerous mized kinds.’’ [BERNOULLI describes the aboveclassifi-

cation in terms of the experimental circumstances rather than the mathematical end con-

ditions. We have expressed it in the terms weshall use henceforth in this history rather

than in translation from the original. Indeed, we have to look further on in the paper to

see that (132),, are the end conditions applied for the second kind ; BERNOULLI evidently

growstired and never treats the third and fourth kinds at all. From this paper, largely

repetitious of earlier work, we describe only the parts where something new appears.]

Regarding the first kind, studied in detail in the previous paper, “I took a chiming

needle almost one line thick andfive inches long, firmly clamped in a wall ; then I observed

that if the whole needle is drawn aside from its natural position, a very blunt soundresults,

but if its free end is slightly pushed inward, there is generated a high sound at about the

fifth in the double octave of the first, as according to the theory. Moreover, both sounds

exist at once and are very distinctly perceived. I have said that often in this experiment

both sounds exist together and are perceived, nor is it any wonder, since neither oscil-

lation helps or hinders the other...” [The earlier statements that overtones are some-

times heard simultaneously with the fundamental, mentioned above (pp. 32, 121), refer to

experience alone. Here we have just read the first vague statement of the principle of

coexistence of small harmonic oscillations according to theory ; since the equations of motion

for vibrating systems are not yet known,an assertion of this kind must be set down as a

principle, not demonstrated as a theorem. In fact, BERNOULLI gives only the following intui-

tive reason.] ‘“‘Indeed, when the bandis curved by reason of one oscillation, it may always

be considered as straight in respect to another oscillation, since the oscillations are virtually

infinitely small. Therefore oscillations of any kind may occur, whether the bandbe destitute

of all other oscillation or executing others at
Cc

  

 

 

 

  

5 a D the same time. In free bands, whose oscillations

b “oO . oN we shall now examine, I have often perceived

b KC ai yet three or four sounds at the sametime.”’

BTSTe Ne For the second kind ofoscillations, where

both ends are free, it is plain that there are

a aT — modes in which the form is symmetrical about

57 IPE ehZz the midpoint, where, consequently, the slope

———~ d is zero, as is shown in thefirst three drawings

B jYe oHD in Figure 64. For these modes, either half of

the band may be regarded executing an
.Sef oscillation of the first kind. For these, then,

there are an even number of nodes, and all
Figure 64. DanreL BERNOULLI’s sketchesof the
first five modesof transverse vibration of a free rod the forms and sounds follow from the results
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obtained for the first kind. But also there are modes with an odd number of nodes, as

shown in the bottom two drawings in Figure 64.

For the theory of free-free oscillations, take the origin x = at the midpoint of the

band. The solutions are then of the type

A coshKt B cos = even modes

(162) y= ,
A sinh ~~tes sin odd modes

The corresponding equations for € = 1/K are then

tan $2 = tanh 2€,
tively.tan }¢ = — tanh }¢, respectively(1638)

When is large, (163) may be approximated by tan 4¢ = +1, and hencefor the even

modes ¢ » (4n — 1)-42, while for the odd modes ¢ ~ (4n — 8)-4”, where n= 1,

2, 3,...Only for the fundamental mode is this method inadequate ; here a special cal-

culation is needed. Thefinal results for the frequencies of free-free vibrations are

4.7213 forr = 1
(164) CG.

(27 + 1)-42 for r = 2, 3, 4,-

the number of nodes is 7 + 1.

There follows an approximate method for calculating the nodal distances, with a list

of numerical results for the cases shown in Figure 64 :

Mode Frequency Nodal ratios ‘

l 6,345 (1) 0,220

2 17,627 (2,78) 0,131, 0,500
3 34,545 (5,44) 0,093, 0,356

4 57,105 (9,00) 0,073, 0,277, 0,500
5 86,308 (11,36) 0,060, 0,226, 0,409  

The frequencies are given in multiples of the fundamental frequency of clamped-free vibra-

tion (cf. (135) and (161),) ; [in parentheses I have put the ratios of these same numbers to

the fundamental frequency in the present casc.] The nodal ratio is the fractional distance

from the node to the nearest end.

The paper concludes with experiments verifying the calculated nodal distances and

tones. [It is typical of researches for the next half century that after listing calculated

values to the presumed accuracy shown in the table (where in fact there are errors in the
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last place of most entries),] for his experiments BERNOULLI considersit sufficient to hold

the rod “‘with the tips of two fingers’’ and to check the frequency “‘by observing, as best I

was able, the consonant sound on myharpsichord.”’ [Here, as usual, DANIEL BERNOULLI’s

experiments are well conceived for demonstrating the phenomenon but carried out with

little regard for the accuracy of measurement.] In a letter to EULER of 12 December 1742

BERNOULLI writes that to make a bar emit a clear tone, he holds it at a calculated node,

while in the published paper he writes that he moves the support until the tone becomes

clear. [The former methodis the first example in our subject of the use of theory to facil-

itate experiment.|

28. EuLEn’s treatise on elastic curves (1743). I. Static deflection. The letter of 20 Oc-

tober 1742, in which BERNOULLI mentioned to EULER the piece we have just described,

concludesas follows: “‘I should like to know if your Worship could not solve the curvature

of the elastic band in the case that a band of given length be fixed at two points, and thus

that also its tangents at these points be given . . . This is the most general idea of theelas-

tica, but in this case I have as yet found no solution except by the isoperimetric method,

since I assume that the potential live force resident in an elastic band must be a minimum,

as I once informed your Worship [1. e., on 8 November 1738, see above, p. 174]. In this

way I get a differential equation of fourth order, which I have not been able to reduce suf-

ficiently to show that it is generally the usual equation of the elastica. Indeed I remember

that before this your Worship and I have both doubted whether the ordinary equation of

the elastica be general, with the argument that the circle is not included, although an

elastic band manifestly can be bent into a circular curvature... Apart from this I have

since noticed that the idea of my uncle Mr. JAMES BERNOULLI includesall elasticas .. .,”’

whereupon what we should now call an applied couple is visualized as a force applied to the

end of a rigid staff attached to the endofthe band(cf. above, pp. 101 —102 and Figure 35).

To obtain the circular form, BERNOULLI supposes the staff infinitely long. ““May your

Worship reflect a little whether one could not deduce the curvature . . . directly from the

principles of mechanics, without the intervention of the staff. In any case, for a naturally

straight elastic band I express the potential live force of the curved band byfas , taking
r

the element ds as constant ... Since no one has perfected the isoperimetric method as

much as you, you will easily solve this problem of rendering f& a minimum.” [Thus

DANIEL BERNOULLI has introduced, in a special case, the stored energy of an elastic body

and has proposedas the criterion of equilibrium that the stored energy is extremal relative

to compatible deformations.|

On 12 December 1742 BERNOULLI writes, “I am glad you are so pleased with my prin-
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ciple for finding the elastica by the isoperimetric method. Indeed, I have solved the

problem likewise but have not reduced the equation so far as to be able to see that it

agrees with the general equation of the elastica (which also I found) .. . But I repeat that

I assert neither to have proposed nor discovered anything worthyof attention, and if I had

found everything by myself, I would not even claim anything if someoneelse believed

on good faith he had found something before me?+).”’ The postscript to this letter suggests

a printer for EULER’s “‘Isoperimetric Treatise’, and on 23 April BERNOULLI proposes that

to this treatise be added the analysis of the elastica by the minimal principle. ‘TI see easily

that also the curvature of the chain and of the oscillating elastic band may be reduced to

this [2. e., to a variational principle], but I haven’t yet thought out the way. Most me-

chanical curves will also be so reducible.’’ EULER adopts the suggestion and within a few

months has completed a timeless masterpiece in our subject, for on 4 September 1743

BERNOULLI writes that he has received EuULER’s “isoperimetric additions’ and will for-

ward them at once to the printer.

The Addition on Elastic Curves *) is a work indeed published as an appendix to a book

on the calculus of variations, [but only tenuously connected to it, being in fact the first

treatise on any aspect of the mathematical theory of elasticity. The opening section, besides

explaining why variational principles were prized, is a magnificent declaration of thespirit

of many mechanical researches in the late baroque period’). ]

“All the greatest geometers have long since recognized that the method presented in

this book is not only of the greatest use in analysis itself but also that it helps much in the

solution of physical problems. For since the fabric of the universe is most perfect and the

work of a most wise Creator, nothing at all takes place in the universe in which somerule

of the maximum or minimum does not appear. Therefore there is no doubt whatever that
 

1) This whining tone in Danrer Brrnovutri’s letters steadily grows as his output declines,

EULER took pains to cite DANIEL BERNOULLI’s private letters repeatedly; DANIEL BERNOULLI rarely

cited even the published papers of HULER. DANTET BERNOULII’s claim, “My nature is certainly far

distant from all joalousy...° (9 February 1743), gives the opposite impression; indeed, he shows re-

peatedly, often by disclaimers that scarcely ring true, the same proprietary spirit as his father and

uncle, but unsupported by a like capacity for work.

2) “Additamentum I de curvis elasticis,’” Methodus inveniendi lineas curvas maximi minimive pro-

prietate gaudenies, Lausanne & Geneva, 1744 = Opera omnia I 24, 231—297. In the Opera omnia,

§§ 91—92 are erroneously numbered 90 and 91. A Germantranslation with helpful notes is given by

H. LINSENBARTH, Abhandlungen tiber das Gleichgewicht und die Schwingungen der ebenen elastischen

Kurven, Ostwaup’s Klassiker der exakten Wissenschaften No. 175, Leipzig, 1910. A numberof errors

were noted and corrected by LinsENBARTH but overlooked in the reprinting of the original in the

Opera omnia. An excellent English translation of EULER’s work and an imperfect translation of

LINSENBARTH’s notes, along with the correction of one more error, are given by W. A. OLrpraTHER,

C. A. Exxuis, & D. M. Brown, “LzonnArp HvULER’s elastic curves,’ Isis 20, 72—160 (1933).

3) Cf. EULER’s later statement in § 4 of E145, cited below, p. 217.
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all effects of the universe can be explained equally happily from final causes by the method

of maxima and minima and from the effective causes themselves. There are such fine

examples of this fact here and there that we scarcely need more to proveit ; rather, what

remainsis but to find in each type of scientific question the quantity taking on the maxi-

mum or minimum value, a matter which seems to belong rather to natural science (philo-

sophia) than to mathematics. Since then there are two ways of learning theeffects of

nature, the one through the effective causes, usually called the direct method, the other

through the final causes, the mathematician uses each with equal success.

“If the effective causes are too hidden, while the final causes escape usless easily, the

question is commonly solved by the indirect method ; on the contrary, the direct methodis

brought to bear whenever the effect may be determined from the effective causes. But

aboveall it is to be shown that each method lays open a road to the solution ; thence not

only does the one greatly strengthen the other, but also we take the highest pleasure in

their agreement. Thus the curvature of the rope or hanging chain has been discovered by

two methods, the one a priort from the loading due to gravity, the other by the method

of maxima and minima, since it was recognized that the rope must take on such a cur-

vature as to renderits center of gravity the lowest possible. Similarly the curvature of rays

through a transparent medium has been determined both a priori and from the principle

that they must reach a given point in the shortest time. Many other such examples have

been brought forward by the very famous BERNOULLIS and others...

‘“‘Nevertheless ... the maximum or minimumis often hard to recognize, even if the

solution has [already] been found a priori. Thus although the curved shape assumed by an

elastic band has long been known, nevertheless the investigation of that curve by the

method of maxima and minima,thatis, by the final causes, has as yet been achieved by no

one. Therefore, since the most famous and in this higher kind of natural science most per-

spicacious DANIEL BERNOULLI pointed out to me that the entire force stored in the curved

clastic band may be expressed by a certain formula, which he calls the potential force, and

that this expression must be a minimum in theelastic curve . . ., I cannotlet pass this most

desired opportunity of illustrating the usefulness of my method while also publishing this

remarkable property of the elastic curve discovered by the very famous BERNOULLI. For

this property involves second derivatives, so that the methods treated above for solving

isoperimetric problems do not suffice to develop it.”’

[This passage is perplexing. First, a variational principle for the elastica had been

asserted by JAMES BERNOULLI in his first paper (above, p. 95), is proved in Ch. I, § 76,

and is generalized in Ch. VI, § 24, of EuLER’s book; it is this principle that shows at once

the identity of the elastica and the lintearia. Moreover, in Ch. V, § 46, EuLER had shown

that the elastica is the curve of given length between two points such. that when revolved about
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the chord it generates the greatest volume. Thus two variational principles for the elastica

were known already and would seem to suffice for the general program laid down above.

Presumably EuLER laid greater importance on DANIEL BERNOULLI’s becauseofthe mechan-

ical significance of the stored energy, but this he nowhere says. Second, long before,

on 24 May 1738 DanteL BERNOULLI had proposed to EvLER the isoperimetric problem

j 7” ds = extreme and on 8 November 1738 he had mentioned thespecial case (140) in

reference to the elastica. Third, EuLER had solved the problem in the general and special

cases and had noticed that the solution of the latter leads to the rectangular elastica;

these results are given in the paper E99 (cited above, p. 172), awaiting publication when

he wrote the treatise in 1742—1743. In the treatise itself he does not mention that prob-

lem, and why BERNOULLI's repetition in 1742 should have excited EvuuEn’s interest is a

mystery'). Fourth, the formulae in the treatise are indeed insufficient to treat the prob-

lem, and EULER in effect writes out the solution without proof. Fifth, out of the 97 sec-

tions of the appendix only §§ 1—4 and §§ 41—43 concern the variational problem atall).

The remainder is an independent work on elastic bands, or, more properly, two works:

I. Determination of the finite static deflection of an elastic band under various loading

(§§ 5—40, 44—62.)

II. Determination of the proper frequencies and simple modes of variously supported

elastic bands in free infinitesimal vibration (§§ 63—97).

From Evuus’s notebooks we know that during the two years prior to DANIEL BERNOULLI’s

suggestion he had been working frequently on problems of these two kinds’). Apparently

 

1) However, the fact is uncontestable. On pp. 346—348 of Notebook EH4 weread, “‘The famous

DANIEL BERNOULLI communicated to me a new method for finding the elastic curve ...,” and then

follows tho analysis leading from (165) to (170).

Here I remark that Cararakopory’s ‘complete index’? of EULER’s variational problems (Opera

omnia I 24, LVI—LXXII) contains no reference whatever to the Addition on Elastic Curves nor to

the variational problem treated there. E99 is cited only under No. 26, which is not an isoperimetric

problem.

2) The problems of §§ 47—62 do not even fall within the scope of the variational principle.

3) The first relevant entries are on p. 481 of Notebook EH3 (1736—1740) and on pp. 52—64 of

EH4 (1740—1744), where we find (91) in a different notation, followed by developments leading to

(193). This material, which went into §§ 55—60 of the Addition,is closest to EULER’s earlier work and

furthest from the main contents of the treatise. Immediately following, on pp. 55—60 of Notebook

EH4, we find some of the material on initially curved bands and thefirst attempt at classification of

the bent forms of an initially straight band. Notebook EH4 contains manyentries which will be cited

below in connection with other passages of the treatise. As noted in footnote 1, the first entry referring

to DanreL BERNOULLI’s letter of 20 October 1742 occurs hundreds of pages later than the notes for

some parts of the Addition.
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he seized the opportunity afforded by the book to get into print) the great body of

beautiful and important results he had obtained.

The contents of the first part of the Addition are entirely new. In thefifty years since

the derivation of the differential equation of the elastica by JamMES BERNOULLI, scarcely

anything had been learned concerning the shapeofthe curve”). EULER now determines and

exhausts once andfor all the shapes that an initially straight elastica subject to terminal

load may assume, and also he solves most of the other elastic problems set by JamzEs

BERNOULLI.|
On the curvature of the uniform elastic band

According to DANIEL BERNOULLI, for an elastica naturally straight and of uniform

thickness, width, and elasticity, the problem to be solvedis

d length fixed,

(165) = = Minimum, endpoints fixed,

slopes at endpointsfixed;

it is plausible that this problem has a unique solution. Setting p =dy/dzx, q=dp/dz,
5

we have ds =daV1-+p? and ds/r? = Zdx with Z = q?/(1 + p?)?. EuiEr infers

from (165) the differential condition

aQ dP d P aZ __ eZ
dx® da | °deVing = 0, = 79’ = Gp’ (166)

where « is what has come to be called a ‘“Lagrangean multiplier’. One integration is imme-

diate; since Pdp = dZ —Qdq, anotheris easy, yielding

(167) oV1l+ pt+Bot+y=Z—Q¢,

where § and » are constants of integration. Substituting the explicit forms of Z and Q@ and

solving for ¢ yields after rearrangement of constants

 d(168) g= (1+ pyVoVT+p+ Bp ty =e,

whence follows also an expression for dy/dp as a function of p only. While neither of the

quadratures + = {dp/q or y = Jf pdp/q is elementary,thereis an intermediateintegral:

 

2VoV1 + p+ Bot+y
(T+ py

1) Cf. the complaints of Danret BERNOULLI, below, p. 254. At this time, papers contributed to

the Petersburg Memoirs were delayed as muchas eleven years.

2) The discussion of the quadratures by Maciaurin, §§ 569, 927—928 of op.cit. ante, p. 150,

adds nothing.

(169)  = pua—yy+oa.
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Rotation and translation of co-ordinates allows us to choose a system in which,in effect,

y=0 and 6=0. By solving the resulting equation for p and again choosing new co-

ordinates it follows that

  
(x + Bu + yx*)dx

“y= Vat — («+ Bu t+ yx?)
(170)

ds = arda
  
Vat — (a + Bu + yx)?

where the constants have been renamed. [This

result is equivalent to JAMES BERNOULLI’s for- B

mulation (57).]

The same is derivable directly ; according

to the conception of JAMES BERNOULLI [as

recently rephrased by DANIEL BERNOULLI]

(Figure 65), to the end A of the elastica is

attached a rigid staff AC of length c, at the end

of which acts the load CD of amount P. The

origin of co-ordinates is A, with AP=wz and

 

 

PM =y. In this notation, the mechanical hypo-

thesis [as follows from (91) adjusted to allow for Fi#ure 6. Eutur’s diagram forthe elasticasubject to terminal force and couple

a couple] reads *)

_ BB _ d?y (dx \%

Integration yields (170),, provided we put P = — 2 @y/a?. Ever uses the notation

Ek? for the bending modulus &, noticing that FL k?/a? is “equivalent to a pure force, and

this force is determined from theelasticity of the band.’’ [He appears to have forgotten

his unpublished result (86), equivalent to (190). ]

If we think of the part MB of the band as cut off and replaced by a rigid staff UN,

tangent to the curve at IM, while to the end A another staff AD is attached, tangent at A,

so that both staves extend to the perpendicular NCD to theoriginal staff AC, then forces

of equal magnitude P but oppositely directed at the ends N and D suffice to maintain the

curvature of the band AM. Alternatively, to dispense with the staff, we may decompose

the force P at D into components tangential and normalto the curve; the tangential com-

ponent we mayregard as acting at any point we please, such as A, while the normal com-

 

1) The analysis is given on p. 354 of Notebook EH4.
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ponent maybe replaced by a pair of oppositely directed normal forces and q acting at any

points we please, so long as the resultant force

6 and moment are the same. When these quan-

no tities are introduced into (170),, we easily show

( that whenthe load consists in “‘equal but oppos-

d itely directed forces’’ [7. e. a couple of moment

c 7 hq], the equation becomes integrable, and the

resulting form of the curveis a circle) of radius

ge @/(hq). Indeed, this follows by inspection of

| Pp _£E (171).
P oN The nine types of elastic curve

This classification exhausts the curves re-

0 presentable by the elliptic integrals following

by quadrature of (170),; the analysis is carried

out by determination of the critical points and

 

   

  
 N

M

of the behavior of the curve nearby, almost

1-8 solely on the basis of the formula (170), for the

slope and al C i
rigure 00, Co-ordinates used in EULER’s treat- P d almost ompletely without numerical
ment of the elastica, showing an elastic curve of or algebraic calculation®). A change of co-

the second class

 
ordinates reduces (170) to the form

dy _ (a2 — c2 +4 22) ds a*

da /(c# — 28) (208 — 8 + at) * dw W/(e® — 28) (2a® — c+ 4)
 
 

  (172)

where theorigin is now at A (Figure 66), the y axis 4DB points positively downward in

the direction of the force P = 2°8/a*, and the x axis is APE. Thesine of the slope angle

at A is 1 —c?/a?. [If « is the angle MAD between the direction of the load and the

tangent at the end A, then the result just stated by Euter may be written in the form

C . 21/B.
(173) © = V2sin to =— | “p sin 40.

The quadratures of (172) may be expressed by elliptic functions, but we follow the simple

and direct analysis of EULER.|

If a =oo, the bending force vanishes, and the curveis a straight line; this is the

first kind of elastic curve. Moregenerally,ifa? decreases, so does the slope of the curveat A,
 

1) Given on p. 354 of Notebook EH4.

2) On pp. 55—60 of Notebook EH4 two forms are found; the full classification is given on pp.

366—370.

13

14

15

16

17
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19-20
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to be expected since the force increases. If a? = c?, the curve is tangent to the axis;

if a?<c?, the slope is opposite to that shown in thefigure ; if a@? = $c?, the tangent is

vertical ; while if a? < 4c?, the curve does not exist at A. The curve is an odd function

of x. Its maximum excursion is givenby x= +c, since the tangents there are vertical and

since for greater values of | 2] the slope is imaginary. This gives the form ofthe stretches Ac

and AC’. To continue the curve past C’,, transform to new co-ordinates with C as a new

origin. Since a parabolic form results, the part CNB is congruent to the part CMA, and

thus knowledge of the part AMC determines the entire curve. [While the inference is not

strict, the result is true. This is the first observation of the periodicity of the elliptic func-

tions.]

The radius of curvature!) at x is 4a?/x2. Thus at the point A it is infinite, while at C,

the point of maximum excursion,it is greatest.

The ordinate y and the length s may be determined from the quadratures

2 92 2(174) =[SSS22)dx o= arzdx

2a?— 22 2V2a2—2?

where 2 = Vc? — 2?. For the point of maximum excursion, =c, EULER evaluates

 

these quadratures in series of powers of c?/a?:

Jo 2c ant 1 2n — 1)!!! P/o\*

eeOU=aya '—2aap emi |e) | :
(In later developments these formulae, which give relations for the quarter periods ofall

inflectional formsofthe elastica, are of major importance. The meanings ofthe symbols are

indicated for future reference in Figure 67, which is sketched for the case when 0 < « < 3a,

but the series (175) are convergent in the full range 0 <« <a, and for negative as well as

positive 6. In view of (173), the series (175) may be written in the forms

r=

B 2 on+t1lf(2n—V)!!-P.. ,,
ULaEDE(2n)!!ata

 

(175)
 

(176)
 

EvLER asserts [but does not prove] that when c and b are given, a may be calculated

from (175),; hence AC is determined by (175),. Conversely, from the given length AC

and from a, which is determined by the bending force, we may obtain c and 6 by (175).

 

1) This is casy to verify directly; Evnmr had already remarked it in Ch. 5, § 46 of the treatise.
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To the first class of curves, which includes the straight line corresponding to c=0, 25

should be assigned also the curves for which c/a is small. Since x? cannot exceed c?, x? is

also to be neglected in comparison with a?, and (172), reduces to

dy a
dx V2(c® — a)

yV2a.

 (177)

the solution of which is

(178) “2 —=csin

a

V2
curvature of the band is a finite quantity,”

 Since f= AC xe AD= ‘32, “‘the force required to produce this infinitely small

B
fe °

That is, if the ends A and B are tied together by a thread A B, then this thread is pulled

(179) P= 4a?

7

 

 

   
     

r

CL 7 a

\ M
b P |

c¢ MN A P E
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D o c

RK
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N

y

Figure 67. Quantities associated with the
quarter period of an inflectional elastica Figure 68, Elastic curve of the fourth class

by the force $2?@/f?.” [Thefirst class thus consists in the forms for which the deflection

is infinitely small ; the form is as in Figure 66, with the curve being a sine curveof small

amplitude.]

The second class is given by 0<c<a. The angle « is then less than a right angle, 26

and the form of the curveis as in Figure 66. Also f > xa/ (2V2) , and

(180) P> iF , for P>P., where Pp = 12 ,
f p?



27

28—29
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This result, which will later appear to be of major importance,is barely noticed by EULER;

it is an immediate consequence of (176), and thusis valid for all inflectional elasticas.|

In the third class, defined by @ = c, or « = 42, the load is normal to the curve,

yielding the rectangularelastica. “‘Although neither 6 nor f can be determined exactly as

a function of a, I have shown elsewhere that a remarkable relation holds between these

quantities”, wz (141). Eutzr then calculates the numerical value f/a—=1,311006 [but

makes a slip?) in calculating b/a;

the just value is b/a = 0,59896.

These results, as corrected, im- [

prove JAMES BERNOULLI’s bounds P

. xX
We now consider the case

when c> 4a, or «>42; equiva-
lently, the angle PAM is positive. Figure 69. Elastic curve of the fifth class

The fourth class is then defined by the

condition b> 0; the fifth, by D=0.

Thus these twoclasses yield curves such

as are shown in Figures 68 and 69, aa

respectively, EULER remarks that in the

fourth class “the humps m and R.., D

B

 

may not only touch one another but

even may intersect...’ The limiting N

angle PAM, achievedin thefifth class, . P

is found by putting b = 0 in (175) and A P

solving numerically; the result is \

o£c?/a? = 0,825934, corresponding to

& = 130° 41’. ° 7
The sixth class is defined by the an

inequality 0,825934 < $c?/a*<1. This

gives a curve such as is shown in

Figure 70; the angle « is now greater b
than 130° 41’ but less than 180°. Figure 70. Elastic curve of the sixth class

The seventh class is the limit case when c? = 2a?, so that formally a slope of 180°

at the origin results. However, from (172) we now obtain

  
 

  
 

1) His result, uncorrected in the Opera omnia,is 0,834612. The correction is due to LINSENBARTH,

op. cit. ante, p. 200.
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dy a* —

(8) dx tV2a? — x?
 

whenceit is easy to see that the curve does not pass throughtheorigin, the y axis being in

fact an asymptote. Since theseries (175), now diverges

to co, in order that the length f be finite we must have

a=-c=0, again yielding a straight form, but subject

to infinite force. However, if the length } is infinite,

we may integrate (181) and obtain M

(182) y= Vc? — x? — te log ot Ver2 . D |.
oNQ

To calculate the location of the double point O, we

set y—0O. A clever numerical calculation yields

a/c = 0,288 4191 and for the angle QOM the value

56° 28’, showing that the angle at the double point is

greater than for the fifth class. The angle at the double

point in the sixth class lies between the values found A

for thefifth and seventh Figure 71.
Elastic curve of the seventh class

 
 

 

 
classes (Figure 71).

 

rt Finally, to treat the eighth class, when c? > 2a®, 32

a “> 7 c  Euusr sets c? = 2a? -+ g? in (172) and obtains

2 Jet —_ lyen (183) dy aw 9c# 3g
 

da ¥(e — 28) (a — x)
The entire curve now lies between the lines x =c and

%=g, which are tangent to it (Figure 72). Since (183)
 remains unaltered when ¢ and g are permuted, it makes

no difference whether g*<c® or g*>c*. There are no

points of inflection. The angles at the double points are

greater than in the previous case.

There remains the case g=c, defining the ninth 33

class. On the basis of the construction for the eighth class,
 

the curve would vanish. If we regard ¢ and g as both

infinite, this does not follow. We may put g = c — 2h, x=-c—h-+t and let c approach oo; thus follows from
; d

Figure 72. (183) the equation oy. Therefore the curvegur
Elastic curve of the eighth class dt Vie—?
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of the ninth class is a circle. [The limit process is unnecessary and misleading : In (171),

replace P(c-+ 2x) by L+ Pz, allowing for a couple L independent of the force P ; in

the case when P = 0, (171) is a differential equation for circles. Cf. what EULER put

into § 13.]

“After the enumeration of these curves, in each case it is easy to specify the class to

which the resulting curve belongs. Let the elastic band be built into a wall at G (Figure 73),

and let a weight P hang at the end A, so that the band takes on the form GA . Construct

the tangent A7’, and the discrimination is possible by means of the angle 7'AP [1. e. the

angle «] alone. If this angle is acute, the curve belongs to the secondclass; if it is a mght

angle, to the third, that of the rectangular elastica. If the angle is obtuse but less than

130° 41’, the curve belongs to the fourth class, and to the fifth if the angle 7’'AP equals

130° 41’. For a greater angle the curve belongs to the sixth

 
 

class. It belongs to the seventh if that angle equals two T

right angles, which cannot occur in reality. This class, along

with the last two, cannot be produced by applying a weight

directly to the band.” a

To visualize the last classes, look again at Figure 65, A

where the weight P acts at the end of a rigid staff of length

AC =h, and choose the origin at C rather than at A. An

appropriate change of variable in (172) enables us to con-

clude that ©P

184) pp 20M Fondnverinationofthetypeot
P elastic curve from the applied

load

where m is the sine of the angle MAP. ‘““Therefore the curve belongs to the second kind

if...P<—2m&/h. Thusif the angle PAM is not negative, the force P must be nega-

tive. and the staff must be drawn upward at C’. The curve belongs to the third class if

P= —2m&/h*. Thefourth class results if 28@>2mB+ P/h>O0, where B=

0,651 868. If P = 2(8 — m) &@/h*, the curve belongs to thefifth class. If

2(1 —m) B<P/h®<2(p —m) B@,

the curve is of the sixth class. The seventh class results if P/h? = 2(1 — m)&, and the

eighth if P/h? > 2(1 — m)&@. If the angle PAY is a right angle, then 1— m= 0, and
39

the curve belongs to the eighth class. Finally, the ninth class results if h = 0o---
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On the strength of columns

‘‘What was noticed above concerning the first class can serve to

determine the strength of columns. Let A B (Figure 74) be a vertical

column standing on the base A, andlet it bear the weight P. Let the

column be so arranged that it cannot slip. If the weight P is not too

3. great, then the most to be feared is a bending of the column.In this

case the column may be regarded as endowed with elasticity. Let the

absolute elasticity of the column be &%, its height be 2/=—-1=— AB.

In § 25 we have seen that the force needed to bend the column ever
— = —, wee ot

so little is ——— =
Figure 74. EuLer’s 4f2 [?

first diagram for the ported satisfies
buckling problem

  
 

 

&. Therefore, unless the weight P to be sup-

(185) P>m2 [=P],

there is no fear of bending. If, on the other hand, P is greater, the column cannot resist

bending, If the elasticity and thickness of the column remain constant, then the load P

that it may bear without danger varies inversely as the square of the height. A column

twice as high will thus be able to bear but the fourth part of the weight. This can be put

to use especially for wooden columns, since they are subject to bending.”

[EvLER appears to have realized in retrospect the importance of what he had found in

§¢ 26—26, This is the first appearance of the celebrated “EKuLmr buckling formula” or

‘“Euzar critical load”’, which will form the subject of several further researches in the eigh-

teenth century before being forgotten during most ofits “‘practical’’ successor1). In view of

inaccurate statements by historians and unnecessary approximate theories given by later

theorists down into the present century, we must pause long enough to fix precisely what

Ever has proved. First, he has obtained (180) for all inflectional elasticas ; the proof is

rigorous, following at once from the exact formula (176), and not resting in any way upon

the linearized theory leading to (177) and (178). Second, since f is the length of the quarter

period, the result (180) is valid for all types of buckling of a straight band by compressive

terminal load. Third, EuvER in taking | = 2f has stated clearly that the corollary (185)is

appropriate to the case when both ends are pinned, not clamped or free; his figure might

mislead one into thinking the upper end is free. Fourth, KuLER has determined exactly

all the bent forms possible, and it is easy to write his results in terms of the ratio P/P,,

since by (180) we have @ = 4f?P,/x?, so that by (173) follows sin $a = FF= ,
c

 

1) H.g., PEARSON in § 102 ofop.cit. ante, p. 11, refers to (185) as “this curious result’’.

37
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and hence (176), may be put into the form!)

86 Ve+Perley
Reversion of this series determines c/f when P/P, is given. Many approximate formulae

purporting to yield such a result have been published in later times?). Still another alter-

 

native form of EULER’s series (175), is immediate from (176), and the definition of P,, viz

Po 3 |(2n—1)ilP. ,
VF =14 2 (So| sin 2 da,

k=1

 

(187) 9
e 1

7 K (sin 5 0) 3

where K (k) is the completeelliptic integral of the first kind. It is essentially on the basis of

(187), that KuLER gives his final description of thefirst six classes in § 34. EULER’sclassi-

fication by meansof the values of « may be converted at once, by theaid of his series (187)

and by use of numerical values given by him, into a classification in terms of P/P,:

 

 

 

        

I I III IV Vv VI

x 0 0—90° 90° 90°—130° 41’ 130°41’ 130° 41/—180°

> <1 11,403 1,403 1,403—2,022 2,022 2,02200
Cc
 

Given P/P,, we may determine sin 4a by inversion of (187); then

o/f =—sin da||,

and b/f follows at once from (176),. For completeness, we append a modern figure®) of the

 

1) This was observed by IE. JI. Huko.an, «O pabomax Dunepa no meopuu npodorexoz0 us2uda,» Yreunle

Sauncim Jlesuurpagckoro Yunr. 1939, No. 44, pp. 5—19, see §§ 4—5.

2) Some of these are criticized by v. Miszs, “Ausbiegung eines auf Knicken beanspruchten

Stabes,”” Z. angew. Math. Mech. 4, 435—436 (1924). If we truncate EULER’s series (186) after the first

term, we obtain at once

P
—_—_-— 1

c? ~ 64 Pe _ 32 P 1)

f? 7? P 78 Pe ,

Pe

the result with which v. Mises emerges.

3) For precise drawings of numerous elastic curves and photographs of experiments in which

they are realized, see the classic prize essay of M. Born, Untersuchungen tiber die Stabilitat der elasti-

schen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, Gottingen, 1906.
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quarter periods and table of values for nine particular elastic curves from classes IT, IV,

 

 

 

             

and VI.

Oo 20° 40° 60° 80° 100° 120° 140° 160° 176°

P/P,| 1,015 1,063 1,152 1,293 1,518 1,884 2.541] 4,029] 9,116

b/f 0,970 0,881 0,741 0,560 0,349 0,123 —0,107 —0,340 —0,577

c/f 0,220 0,422 0,593 0,719 0,792 0,803 0,750 0,625 0,421

& = 20° e e e e

0 All the results just summarized are either given explicitly

60° by EULER or are immediate corollaries of the formulae and

numerical values he did obtain. That many of these results

e are often attributed to later authors may be dueto the fact

100° that EULER’s work became more generally known through

later publications in which he gave more verbal description

120° but less mathematical detail. In particular, the later litera-

ture, including EULER’s own subsequent papers, unfortunately

140° emphasizes the misleading connection between buckling and

the proper numbers of the linearized theory, insufficient to

100" predict the magnitude of the bending. In the process of
discovery presented here, the linearized theory in § 25 is but

a = 176° - ons ‘ . . .
gure 76. a brief interjection in the rigorous development.

It is strange that EvLER did not remark that the depend-

ence on length predicted by his formula (185) is that given

Modern drawing of the quarter

periods of inflectional elasticas

by MusscHENBROEK’s experimental law (94).]

Determination of the absolute elasticity by experiment

Approaching the same problem as that treated at the end of E880 (above, p. 170),

EULER by approximate integration now obtains in place of (137) the formula!)

3P 0

a=(1-45).

38—39

(188)

where g = ~(I) is the length of the projection of the deformed band onto a line perpen-

dicular to the direction of the load force and to the wall into which one end of the band

is built.
 

1) As observed by LINSENBARTH, note 29 of op.cit. ante, p. 200, several formulaehere, including

that for the shape of the curve, are not right.
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“The absolute elasticity @ dependsfirst upon the nature of the material from which

the band is made. Second, it depends on the breadth of the band,so that, if all other things

are kept constant, @ should be proportional to the breadth. Third, the thickness of the

band playsa great part in the determination of the value of [@, which seems to be propor-

tional to the square of the thickness . . . Therefore experiments . . . can compare and deter-

mine the elasticities of all materials.” [Thus EULER somewhat guardedly asserts that?)

(189) B=GD*B ,

where G@ is a material constant having the dimensions [Force]/[Length]. This is incon-

sistent with his own unpublished theoretical result (86) ; however, a factor D*B had been

appearing in formulae for the strength of beams from GALILEO’s time onward, and, in par-

ticular, putting (189) into (185) yields a result compatible with the formula (94) that

MusscHENBROEKhadinferred from his experiments on the collapse of columns. Of course

(189) is wrong and (86) is right, at least for materials that fail in consequence ofelastic

bending. Fortunately EULER does not use (189), so his subsequent results are not affected

by it, though later authors are often to point to it as one of his errors.]

On the curvature of a band whichis not uniformly elastic

If we allow the absolute elasticity2 to be a function of arc length, then the isoperi-

metric principle

(190) f Bes _ Vinimum,

 

r

generalizing (165), yields the samedifferential equation as does the direct method based

upon the hypothesis (171). The absolute elasticity may then be measured directly from the

curvature by means of (171). As a specimen, the equations for a band of triangular plan

and uniform thickness are set up and manipulated somewhat?),

On the curvature of clastic bodies that in their natural state are not straight

For a band whichis initially curved with radius of curvature #, the hypothesis (171)

is to be replaced by (69)3). When the bandisinitially a circle of radius a, we thus have

(190A) Ple+2)=G (= _ =)
r a
 

1) Although ‘‘crassities” sometimes means “‘cross-sectional area’’, here it certainly means ‘“‘depth”’

or ‘‘thickness’’, while “‘latitudo’”’ means “‘breadth’’. These interpretations are made certain by EULER’s

usage in § 45, where he considers a beam of uniform thickness but triangular plan.

2) Even here the erroneous formula (189) does not affect the results, since D = const., and only B

varies along the length of the band.

3) This result is given in EULER’sfirst notes toward the present work, Notebook EH4,pp. 55—60,

where are given also the integrals (192) and a description of the spiral curve they represent.
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in place of (171) ; equivalently

@B ZB
(191) P(o+B+a)=2,

a so that the same bent forms are possible for a cir-

cular band as for a straight one, providing that in

the circular case we visualize the force P acting at a

distance c + °2/(aP) rather than c. When c = oo,

A the circular band can be bent straight. For a band 50

M B of any form, if coo the moment of the load is

constant, and from (69) we see that the bent form may

be calculated by quadratures.

© We may also determine the form amB that a 51—54

Z band should have in order that a terminal load P
Figure 76. EuLEr’s figure for determinin . .
theform of an clastic band that shall be acting normally to its tangent at the wall @ shall

straightoned by an assigned load deform it into the straight line AMB (Figure 76).

Putting AM = am =s, from (69) we obtain [JAMES BERNOULLI’s result] (68) ; the integral

is given by
Ss?2

(192) x = fds sin—— , Yy = fds cos 2a?
2a?

 

with a? = £4/P. The curve is thus a spiral closing down to a particular point as s—oo,

but this point ‘seems very difficult to find.’’ EULER is unable to effect these quadratures;

the power series expansion are of no use for large values of s, and anotherseries he obtains

for s =oco is of no help. [Many years later') he is to show that for sco we have

t=y=taVa.]

On the curvature of an elastic band subject

to arbitrary forces acting at its several points

The direct method leads to (91). The result (92) is generalized by 55—58, 59

1 ad {1 ar

derived by manipulation of (91). From these formulae, all known results on perfectly 60

flexible strings follow easily by setting @ = 0.
 

1) §§ 125—135 (§§ 2—12 of the reprint) in E675, “De valoribus integralium a termino variabilis

x=0 usque ad x = CO extensorum,” Inst. calc. integral. 4, 3837—345 (1794) = Opera omnia I 19,

217-227. Presentation date: 30 April 1781.
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On the curvature caused in an elastic band by its own weight

If the total weight of a uniform horizontal bandof length 1 is W, the vertical load per

unit length is W/l; differentiation of the appropriate special case of (91) yields

dr Ws

and with {ds/r =u this becomes

Loe du,
(195) Woda?” °s4:

but no further reduction is possible. If, however, we consider the form of a band loaded by

the pressure n [per unit breadth] of a fluid at rest, from (91) we obtain

B(196) FZ = Py(o+ 2) — Pry = 3n(a* +);

by a change of co-ordinates this becomes

(197) BH y=AtS.

In one case the integration is elementary.

[In all this, there is scarcely a line which does not shed a strange brilliance. It is

the first treatise on finite elastic deflections, and the most extraordinarily successful

ever, being the realization of JAMES BERNOULLI’s program (above, pp. 95—96), proposed a

half century earlier and still untouched.

What EULER gives us first is a golden analysis of the forms an elastic band may

assume. It is a treatise on the nature of certain elliptic integrals in which scarcely any

integrals are evaluated. After the declaration of faith in § 1, the style is unusually austere,

as if in an effort toward conciseness. With astonishing ease, a few simple inequalities suf-

fice to derive everything directly from the differential equation. The conclusions are always

right and in most cases are really proved ; here and there is an unobtrusive numerical cal-

culation, and these would bestill less noticeable had Evuzr checked his love of long deci-

mals.

Immediately after the summarizing criteria of §§ 34—36, by which the appropriate

one of the nine types of elastic curve is determined from the angle between the applied

force and the tangent to the band at its end, EULER reminds usagain of the first kind of

curve and readsoff, as a climax, the great buckling formula.

A major addition to elastic concepts comes in §§ 47—48 with the proposal that the

difference of curvatures is to be the measure of strain in an initially curved band. While this
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was known to JAMES BERNOULLI and had been derived by EuLER himself in E831, here we

encounter its first publication.

§ 51 contains a jewel rarely noticed by later writers : EuLER’s development of the

inverse problem suggested by JAMES BERNOULLI. Forthe elastica, the inverse problem turns

out to be mathematically easier than the direct one.]

In EULER’s notebooksis stated an important problem on the elastic band which was not

included in the treatise+) : For an elastica of given form AMB, to find the force and moment

that has to be applied at M if the part AW is cut away and the part MB is to retain its

form. The solution, obtained by a complicated calculation, [is not important; in the prob-

lem we recognize a further major step toward the concept of internal stress, since here, for

the first time, it is said explicitly that the resultant force exerted by one part of an elastic

band upon its neighbor is generally not tangential. Thus we havetheearliest occurrence of

the concept of shearing force. This idea will be exploited many years later in one of EULER’s

finest contributions to our subject (§ 58).

EKvuLEr’s inability to formulate in variational terms all the problems treated in the

Addition becomes understandable when we remember that neither he nor Dantex BrErR-

nounhad found the “potential live force” of an elastica except a posteriori; it was not

yet known how to define the work done by a couple?).] EULER finally attained clarity

in the course of his studies of the principle of least action. In his Researches on the maxima

and minima which occur in the actions of forces*) he faces the difficulty inherent in varia-

 

1) Pp. 355—356 of Notebook EH4, shortly before the classification of elastic curves.

2) From his letter of 4 September 1748 we learn also that Dante BERNOULLI did not have time to

read the Addition before sending it to the printer. He suggests the principle (190) for the non-uniform

elastica. Also ‘““Bands not naturally straight require indeed another calculation, but no other method,

If, however, the bandis curved also by its own weight, then it is difficult to determine the maximum

or minimum that pleases nature. I conjecture that here we have to seek a maximum maximorum,if a

twofold consideration comesin.”’ For anaturally straight band loaded by its own weight, he asks ifamong

allisoperimetric curves with the same valueof { ds/r?, the desired form results when the centerofgravity

is lowest. ‘“We have both determined this curve directly; the question is, would the same curveresult

from this principle? ... but I am not convinced of this principle ...’’ On 25 December 1743 Bzr-

NOULLI says he is pleased that EULER is investigating the principle proposed. “I doubt if it can be

shown a priori that the elastica must generate the greatest solid. I regard this as a property yielded

by the calculation, one that nobody would have been able to predict from new principles...”

On 10 December 1745 EvLER writes to MAUPERTUIS to the effect that (165) “flows very naturally

from your principle,” 7. e. the principle of rest. The first results of this kind appear on p. 265 of

notebook EHS. On 8 May, 9 May, 4 June, 8 June, and 14 June 1748 EULER writes to MAUPERTUIS

concerning the above-described variational principle for elastic and flexible lines. H.g., on 8 June,

‘Above all I was transported with joy when I saw that the action of elasticity, which up to now was

an insoluble knot for me, follows perfectly the same laws as the action of ordinary forces...”

3) E145, “Recherches sur les plus grands et plus petits qui se trouvent dans les actions des forces,”
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tional principles: Equations of equilibrium obtained by direct methods require speci-

fication of forces only in the actual configuration assumed, but in a variational treatment

we have to specify the ‘“‘action”’ in all possible configurations. Thus many different ex-

tremal principles can lead to the same result. EULER verifies that six different definitions

of ‘‘action’”’ lead to appropriate special cases of (91). Let X (xz) and Y(y) be forces in

the x and y directions, given as functions of x and of y, respectively, and let V,(v,)

be a force directed toward a fixed center P, and given as a function of the distance v,

from it; let o(s) be the line density; then all of EunzR’s cases are subsumed under the

single formula

(197A) Jods [{xae + J Ydy +4 V,dvu, + zs) = extreme.
=1

The previously known variational principles for the catenary and theelastica are included.

[What is really new is the factor 4, which EvLsrtries to explain :]

“Thence it seems that the quantity of action of the elasticity is determined in a

manner altogether different from that which serves for the true applied forces, since

there is no likeness between the formulae

B
j Vdv and Opt .

Nevertheless the coefficient 4 makes me conjecture that the quantity S could have

originated from an integral formula such as

2-40)
a formula which begins to look very like {Vdv.” Evir then proceeds to develop the

“analogy”? between the two terms, finding that “‘the differential of the quantity =,

taken negatively, represents the path which the force of elasticity causes the element

Mm. to traverse...’’ From analysis of the infinitesimal motion arising from a moment

he concludes that if WZ is any ‘force of elasticity’ [¢. e., any moment], not necessarily

@ir, then its “quantity of action” is fds {Wd, where x is the curvature. “Hence

it is plain that this rule is precisely the same as that we have found for... other forces...

Thus the rule which Mr. p— MavurErtuis has given... is much more general than one

would think, since it holds not. only for all kinds of forces directed toward fixed centers

but also for elastic forces, and there is no doubt that it is still more general.”’

[In the static case, MAUPERTUIS’ principle is no more than the principle of minimum
 

Mém. acad. sci. Berlin [4] (1748), 149—188 (1748) = Opera omnia II 5, 1—37. Presentation date:

19 December 1748.
—
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potential energy, nowadays called ‘“‘DrRIcHLET’s principle” but deriving, in special cases,

from classical antiquity. In fact, what EuLER has done hereis to calculate the work done

by a couple, antedating by forty years the work of LaGRanGsE on this problem (below,

pp. 409—410).]

29. EULER’S treatise on elastic curves (1743). I. Vibrations. [While Dante. Bzr-

NOULLI was carrying out the researches on the vibrations of bars we have described in

§ 27, KULER was working on the same problems,andhe put his results into the second half

of the Addition. All evidence indicates that the work of DANIEL BERNOULLI and EULER on

elastic bands was independent ; that BERNOULLI’s was done somewhatearlier ; that while

BERNOULLI’s wascloser to experimental phenomena, EULER’s was clearer, more accurate,

and far more thorough’),

At § 63 begins a second treatise, [hardly related to the foregoing and evolved at a

lesser tension]. The subject is the small vibration of an initially straight elastic band. In

principle, there is no advance beyond the papers and letters described above?) except in

numerical calculation of proper frequencies. EULER treats in detail the four kindsofoscil-

lation mentioned by DANIEL BERNOULLI (above, p. 196): I (§§ 69—79), IT (§§ 80—90),

 

1) EULER was in Berlin, BERNOULLI was in Basel. Although EULER was acting as virtual editor

of the Petersburg Memoirs, ordinarily he first saw the contents in proof; BERNOULLI’s papers des-

eribed in § 27 appeared in print only in 1751. Cf. p. 166, above, and also footnote 4, p. 254, below.

In a letter of 19 June 1742 to CLarRautT, EULER explains the problem of the vibrating band and

states that Donwovuuxi and ho had long ago derived (125), which he has now integrated; he gives the

root € = 1.875104 and the solution (147) with numerical values for the coefficients, adding “‘T do not

know if Mr. BERNOULLI has pushedhis researchesthis far...’ Unfortunately, in the correspondence be-

tween BERNOULLI and EULER from this period EULER’s side does not surviveor at least is not presently

available. From BERNOULLI’s letters of 12 December 1742 and 9 February 1743 we learn that EULER

had written some of his calculated values to BERNOULLI, who replies that his own methods for cal-

culating proper frequencies do not yield the accuracy EvLzER claims: ‘“‘Please indicate your method to

mé in @ few words.”

The results communicated to CLAIRAUT, and also the explicit frequency equation (134), are given

on pp. 280—281 of Notebook EH4. Thusfar all of EULER’s results seem to be confined to the clamped-

free modes. In the letter of 9 February 1743 BERNOULLI describes to EULER someof the results in his

second memoir, which concerns mainly the free-free modes. These first appear on pp. 351—354 of

Notebook EH4, where the treatment is rather awkward because the displacement of an endis left

in all the formulae. The fundamental frequencyis calculated to many figures andtheresults are com-

pared, in the style of BERNOULLI, with those for clamped-free modes. The nodes of the fundamental

modeoffree-free vibration are calculated on pp. 384—385.

2) In the following account we do not describe material included also in DANIEL BERNOULLI’s

papers summarized above,almost certainly written earlier (cf. the foregoing footnote). These papers,

however, did not appear until much later, and priority in publication belongs to EULER.
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ITT (§§ 9497), IV (§§ 91—93). The conditions defining a pinned +) end, [mentioned vaguely

by DanreL BERNOULLI,] here are stated explicitly :

_ ay _(198) y=0, de 0 

82 For modes of the second kind, EULER includes both cases of (163) in the single equation

(199) cosh f€cos€—1=0,

95,92 which follows also for the third kind, while for the fourth kind

(200) snf€=0.

KULER proves that for each kind the equation of proper frequencies has an infinite number

of roots, and thus an infinite number of distinct modes of isochronous vibration are pos-

sible. The modes are distinguished by the number of points, other than ends, where the

curve crosses the axis ; each such point remains permanently on the axis and thusis a node.

76, 86,90 In all cases the frequencies are given by (136) ; thus the law of proportion stated after (136)

is extended to all four kinds of vibrations. “If two bands differ only in their lengths,.. .

that twice as long will emit a tone lower by two octaves. However, a stretched string emits

a tone only one octave lower. This shows clearly that the tones of elastic bands follow a

thoroughly different law than do the tones of a stretched string.” [Thus mathematical form

is given to the long recognized difference between the responses of bodies grown elastic

through tension and those naturally elastic ; cf. the remarks of MERSENNE,above, p. 31.]

70 EULER gives a great deal of attention to caleulating the proper frequencies. For

example, he replaces (134) by

 
—l+snég(201) e cos F

72 Putting €=—(2r+1)-4in—om yields eS =tanig or cot3q for all non-negative

integers r. Setting 4m = 42 — 46 shows that the equations so obtained are pairwise

identical. Hence follows the definitive system

(202) C, = (2r + 1)-$2 + (— 1)= log cot Ze .

Each memberis easily seen to be satisfied by one and only one acute angle y,, and as r

73—74, increases, these roots approach.0. Numerical calculation for r= 0 and r= 1, followed
78-—T79
 

1) EvuLER’s word is “fixus’’; DANIEL BERNOULLI had said “‘extremitates .. . innituntur saltem.”

The term “simply supported” is often used nowadays. What we translate as ‘‘clamped’’ EULERcalls

‘in muro firmiter infixus’’; DANIEL BERNOULLI, “infixus’’.
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by a rough estimate for greater values of 7, yields the following sequence for clamped-

free vibrations:
| 1,8751040818, r=1,

46940910795, r=2,

5 1
~) 2 t——sz_ > r= 8,(203) C, L+ de?

_7@

in — Qe a, r=4,

| (2r — 1)+30 , r2so, 
[improving (161)].

For modes of the second and third kinds, the counterpart of (202) is ¢ = 0 for

r=0 and

(204) oy = (27 — 1)-$a+ (— 1)'— = log cotd4y, r21,

Hence Ever finds that ¢, = 4,7300350232, but for the remaining values of C, he gives

only (164)..

For modes of the fourth kind, by (200) we have

(205) C,= 1H.

In discussing the free-free modes EULER notices that if r= 1 the moments acting

on the band do not addto zero ; he then [fallaciously] assumes the sameis true for all odd

values of x, which he therefore excludes. In his letter of 4 September 1743 DANIEL BER-

NOULLI expresses amazement at this passage: “These motions actually occur, and I

have calculated various of their properties and even set up many beautiful experiments,

agreeing beautifully with the theory, on the position of the nodes andthe pitchofthe tones.”’

He then gives EuLER someof the results from his paper awaiting publication, to which he

suggests Kuur refer. ‘I hesitate whether I ought not strike out the few words you say on

this subject!).”’ The error here results in KULER’s later denying a strict correspondence be-

tween the second and third kinds of vibration. Shortly afterward EULER published a note

of rectification ®).

HULER also determinesin all cases the ratios of the constants 4, B,C, D to the ampli-

tude M2, both algebraically and numerically. For-the first kind of vibration he obtains
 

1) These remarks are repeated in BERNOULLI’sletters of 25 December 1743 and 4 February 1744.

The piece from April or May 1744 printed by Fuss, p. 553 of op. cit. ante, p. 165, indicates that EULER

by that time had seen the force of DANIEL BERNOULLI’s objections, which are mentioned again in the

letter of 29 August 1744.

2) E84, Animadversio ad libri praecendentis paragraphum 83 et sequentes de curvis elasticis, Nova

acta erud. 1746, 92—-95 = Opera omnia I 25, 81—83.

80—82

85, 90

92—93

83

96

75



88

89

90

92

97
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A tan 4 B 1

(208) MW 21+ tang) ’ YW «21+ tansy) ’

CC —1+ tani D_  l1+tanjy _,

YW 21 + tank) ’ YW *1+tanig) 7°

For the second kind,
cosh cos —

(207) = =—_4-+—*.,
cosh>= COS Se

where z is the co-ordinate from the midpoint. Putting y = 0 yields an equation for the

nodes; in the lowest mode (r = 2), the root is = 0,551685, corresponding to a nodal
z

al
ratio of 0,22416. “Therefore this vibratory motion, which would be difficult to produce by

a direct shock, can easily be effected. If the bandis fastened at [the nodes], so determined,

it will continue to vibrate as if it were entircly free.” A similar effect follows for the higher

modes if the band is fastened at only two of its nodes. In the fourth kind we obtain

y = U sin+ ; only for this case are the nodes equally spaced along the band.

The treatise closes by repeating the recommendation from E40 and E830 (above,

pp. 169, 171) that the absolute elasticity be measured by comparing the frequencyofoscil-

lation with the known frequency of a consonant string.

[In the foregoing description we have omitted EULER’s interpretations of the cal-

culated frequencies as musical intervals, since by this date such interpretations had become

straightforward.|

$0. HULEN’s equationsof finite motion for linked systems and for the continuousstring

(1744). [In the preceding sections we have learned that for vibrating rods and chains, though,

curiously enough, not for strings except in verbal comments, the simple modes and proper

frequencies were gradually reduced to calculation. While we now see at once how primitive

were these theories, obtained without use of the equations of motion but only through a

special device to eliminate the reaction of inertia, and thus offering no possible connection

between the several modes, the successful calculations of results conforming with experi-

ment might well have left little cause for dissatisfaction to the savants of the day.] Not

so with Ever: Far from content, he saw exactly what was lacking. In 1744 he wrote?),
 

1) Introd. to E165, “De motu corporum flexibilium,’’ Comm.acad. sci. Petrop. 14 (1744/1746),

182—196 (1751) = Opera omnia I 10, 165—176. Presentation date: 9 January 1744. This paper,

obtaining the equations of motion for two linked bodies on a smooth table, seems to be a preliminary for

E174. On 12 December 1742 DANIEL BERNOULLI writes to EULER, “The subject of linked rods may

indeed becomeofgreat importance in your hands; since I did not perfect this matter but rested content

with the first idea, I did not do much with it...’ Cf. also DANIEL BERNOULLI’sletter of 13 June 1744.

Similar problems, though not including models for flexible bodies, were solved by Cuarravt,
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‘ ‘,,.. even the first principles from which the motion of flexible bodies is to be determined

remain unknown. Although indeed the most celebrated DantzL BERNOULLI and I have

happily explained the oscillatory motion of such bodies, nevertheless, since we considered

only very small oscillations, we were able to do so without using . . . the true principles...,

since the principles of statics were sufficient.”’

To find the true principles, EULER turns again to discrete models : the weighted string

and the chain with flexible joints, for which he now succeedsin establishing the general and

exact equations of motion wn the plane.

His paper, On the motion of flexible bodies), [is twice formidable: First, lack of

indicial notation results in an opaque mass of equations, and second, from lack of a clear

mechanical objective EuLER loads the development with trials of special cases offering no

ereat interest. However, while less than a year before) EULER hadstill approached this

class of problems through the balance of angular momentum and other special devices,

here for the first time] the balance of linear momentum in a fixed rectangular co-ordinate

system, [v. e. “Newton’s equations’’,] 1s taken as the basic mechanical principle, and all

results are derived by integration of this system. [In other words, this paper introduces the

now usual approach to problemsof this kind. It is likely that EULER took his inspiration

here (as in his hydrodynamical theory*)) from Joun BrRnovtii’s work, just published,

concerning special cases*). ‘The contributions of JouN BrRNnovxur to mechanics, while

few in number, are of great worth.]
 

“Sur quelques principes qui donnent la solution d’un grand nombre de problémes de dynamique,’’ Mém.

acad. sci. Paris 1742, 4to ed., Paris, 1—52 (1745), beginning, ‘“‘Nearly all the problems I solve in this

momo wero proposed to mo by the learned Messrs. BERNOULLI and HuLER.” The only problem really

close to the present subject is that of finding equations of motion for two linked bodies on a smooth

table (§ XXXTIT). CLATRAUT’s workis perhaps the first in which the principle of apparent forces in a

rotating co-ordinate system is stated (§ I). As this fact suggests, he does not use rectangular Cartesian

co-ordinates or succeed in finding equations of motion for bodies of many degrees of freedom.

On pp. 848—351 of Notebook EH4 is Eunmr’sfirst attempt to treat the general motion of linked

bodies. There he calculates the accelerating forces and torques but does not obtain differential equations

of motion. Cf. the earlier attempt in EH3, described above, p. 181. On pp. 451—453 of EH4, EuLex

finally achieves the differential equations for three linked rods. On p. 454 follows an abortive attempt

“to determine the motion of a uniform flexible thread cast arbitrarily upon a horizontal table.’ Soon

thereafter, in passages to be cited below, are most of the results published in E174.

1) E174, “De motu corporum flexibtlium,”’ Opuscula [varet argumentr] 3, 88—165 (1751) = Opera

omnia IT 10, 177—-232. Presentation date: 5 November 1744.

2) In E165, cited above, p. 222.

3) See pp. XXXII—XXXIITI, XLI of my Introduction to L. EuLER1 Opera omnia IT 12.

4) Werecall the following earlier attempts:

a. TaYLor in 1713 obtained the correct formula (74), one ofthe two equations governingfinite motion

of a continuous string, but did not write it or use it as a differential equation. The co-ordinates

implied are intrinsic.
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M k +1 In § 26 of EvLEr’s

paper we reach Problem

4: To find the equations

of motion of n + 1 mass-

points connected by rigid

 

|

| massless links and lying in

| a horizontal plane. [This

| is the general problem

| usually called that of the

7 loaded string.] In the
previous sections EHuLER

    
Figure 77, Variables used by Evter in obtaining the general equations has derived the equations

of motion for a loaded string for n=1 and n= 2.

Wepresent his general result, expressing his variables in simpler notation (Figure 77) ;

cf. Figure 61 for similarities and differences. The rectangular Cartesian co-ordinates of the

k* mass M, are x,, y,, the length of the &"" link is a,, and its inclination from theline

x, = const. is y,. Then we have the following equations of constraint:

(208) Ly — Ln = A, SIN Dy, Yu — Yui = 4,008 9,, K= 1, 2,..., 0”.

The equations of motion are

M,%, = Ty418 Oey — 1, 81D ,,
(209) k=0,1,..., 7

MY = T4414 COS Yy41 — T';, COS Vy,

where 7’, is the tension in the k* link and 7, = T7',,, = 0. [Cf. the earlier special cash

(78) and the partly more and partly less general (154).] Summing (209), and (209), on

yields
 

b. For small motion of a weighted string, at least for a number of weights up to 6, JoaN BERNOULLI

in 1727 had obtained the correct equations for the velocities according to the principle of live

forces, but he did not write or use the result as a differential equation. The co-ordinates are

rectangular Cartesian.

e. For the string loaded by two weights JoHN BERNOULLI in 1742—1743 had obtained the correct

differential equations of finite motion but had used them only through the energy integrals

(150). The co-ordinates are intrinsic.

d. For the small motion of a string loaded by n equal and equally spaced weights, JouN BERNOULLI

in 1742—1743 had described a process which leads to the correct and general differential equa-

tions provided one realizes that the centripetal acceleration y, wm? in (157) should be replaced by

the acceleration ¥,. The co-ordinates are rectangular Cartesian.

e. In 1748 p’ALEMBERT, using special resolutions of accelerations, had obtained the differential

equations of small motion for the weighted string and for the uniformly heavy cord.
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(210) =M,, = 0, EM. = 0;
k=0

thus [the integrals of linear momentum] are

(211) At+a=2M,2,, Bit+b=2 My,y,,
k=0 k=0

expressing the unaccelerated motion of the center of mass. By combining (209) and (208),

EULER derives also [the equation of energy] in the form

(212) 2Mileets + Ynx) =O.

While in the previous special cases he has used this equation to effect the solution, he does

not apply it to the general case.

Rather, he uses (210) and (208) to express the co-ordinates in terms of the angles.

First, we have by (208) the geometrical identity

EMat, -=M, fx, + Sa, sin y,] ,
k= k=0 r=1

(213) = MN,+ La,sinp,2My ;
r=1

= BN + y (MN, ~~ M1)a, sin P; »

r=]

qd

where It, = 2 M,. Putting g=n and writing Pt — Mt, for the entire mass, by (211)
. m=0

we obtain
n

(214) Atta=M-2, + © (M — M,_1)a, sin —, .
t=1

This equation expresses x, in terms of the angles y, ; similar results hold for z,, y,; thus,

in general, it is enough to know the angles », as functions of time.

To obtain differential equations for the angles,first eliminate the tensions from (209) ,

q

sin a Me
(215) Fen —__ |g =0,1,..., 2-1.

COS Pg41 = M.Y,

r=0

Substituting for the sums their values as given by (213) and then replacing x, by its value

as calculated from (214), we obtain?)

 

. Me Y 7332 a Tr)“ 2 r216) sin au _ (MM — Ma)z 1a ¢~ sin GP, + M,a:fe M,)a SS7 sin Y

we Pet — Me)zMy14,-Fz 608 GY, + Me E (M — M,)a,4 cos @,
=gt+1

 

1) This result, as well as some special cases, occurs on pp. 454—457 of Notebook EH4.



226 BEGINNINGS OF GENERAL THEORIES
 

This system of n differential equations for the m angles g, EULER regards as the definitive

statement of the problem, [but he is unable to draw any conclusions from it].

Problem 5, in § 32, demands the corresponding equations for a continuous string by

passage to the limit as the numberof particles becomes infinite and the distance between

them becomes zero. [To understand the difficulty of this problem] we must notice that

EULER is studying finite motion, not infinitesimal vibration, [and that he apparently does

not wish to make any hypothesis regarding the tension in the string.] Thus he chooses to

pass to the limit not in (209) but in the various consequences from which the tensions 7’,

have been eliminated. Let s be arc length in a string of total length LD, let X'(s) be the mass

from 0 to s, let » be the complement of the slope angle, so that dz =dssin gq,

dy =dscosq. A passage to the limit*) is then effected for a number of the results from

Problem 4. [This is, moreover, the first example of a genuine and complete limit process of

the type b1 described in § 19, apart from Huyeerns’ treatment of the catenary.] From

(215) thus follows?)

 

aa 8
. OF j xd

(217) woes = _ Zs
Oe f yds

The kinematical formula (213) yields

& 8 8

f wd = 2(%) + Jdssin gy) —fXdssing ,

(218) ° o °
= La,+ fd2Xjdssing .

0 0

Accordingly, if we set
8 g

U=L44,+fdLfdssing ,
(219) °°

V=2Ly+ Jd&Jsdscosg ,
0 0

from (217) follows
eu

sing — or”
(220) cospRP:

ot?
 

 

1) The formulae for p and zx on p. 205 of the reprint in the Opera omnia are not correctly copied

from p. 201; from the right-handsides should be subtracted

asin 2+ bsinyn+csing-+-:--
and

acos 2 + bcos 7 + ccosp +--+. ,

respectively.

Z) Part of the results here are given on p. 461 of Notebook EH4.
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Directly from (219) we have

eu ds eV ds
(221) a2 = Ge Se?» o32 ~ qr C8 ? .

Hence the system composed of (220) and (221) may bereplaced by

aU aU
Oe OS? a2U \2 dV \? ds \?

m er —cer > (Gsx) + asx) =(ae)
oe? 02?

Whena solution U, V of this system is known, the angle y may be calculated from (220)

or (221).
Beyondcertain reductions in special cases, KULER is unable to draw other conclusions

from (222) except that rigid motion is one possibility. [It is astonishing that at this time,

when the partial differential equation for small motion of a string, while seemingly in the

grasp of anyone, was not yet written down, EULER succeeds here in deriving a complete

partial differential system governing arbitrary finite motion. It is clear also that after this

splendid piece of virtuosity EuLER has no idea what the equation (222) signifies or what

might be done with it.] His only commentis, ‘Therefore the solution of this mechanical

problem is reduced to an analytic problem; this must be agreed.” [To find out what

EULER really has accomplished, we write (219) in the form

 

  

   

 

(223) U=jferd2+ U,(t), V=fyd2+ Vole) .
0 0

Thus (220) is equivalent to

Ox [rm 2 ey ey [a0 8 92
(224) Slo + fhe|- ae [r+fe| .

Setting s — 0 shows that

» OX ayn OY _ Ox oy
(225) Vos <0 Vos. <0 —= Ty (t) Os” 7-9 OS <0 9

say. Thus we may write (224) in the form

Ox oy 8 zy _ oy Ox 2 ox __ Ox Oy

(226) =|re ote ab? iz|= ds 7 as wot on |=" aS as?

say. Differentiation with respect to s yields

dy a oy x 20 Ox

(227) | ost =5(0 ZH) oR=%(73)
while (222), takes the form

(228) () + (3) =1l,



228 BEGINNINGS OF GENERAL THEORIES
 

This vs the correct system governing finite plane motion for a string with linedensity o = dd/ds.

(It is to be derived, in precisely this form, by EuLER in about 1750; see below, p. 254.)

From (228) and (226) we obtain the following expression for the tension 7 :

 

  

 

 

_ Ox Ox $ 0*x oy oy § oy

(229) r= =| Fs lean dOaz|+ [7,3 wot OP az | 3

For small motion we have x xs and oy. << 1, so that (229) yields T = 7), and thus

(227). is satisfied, while (227), reduces to the now familiar but then unknown equation

Oty —,, ~O*y

oO Oa?

That EvLER failed to see this connection shows the lack of sufficient general principles of

mechanics at this date. EuLER did not yet know what was wanted as the mathematical

statement of the mechanical configuration of a continuous body. While indeed theoriginal

statements (208) and (209) express the most concise and general mechanical principles for

the discrete case, the brilliant analysis of the continuousstring seems to arise from formal

insight alone.]

The paper concludes with

Problem 7 in § 48: To find the

equations of motion of n+ 1 joint-

ed rigid bodies wm a horizontal

plane), The problem generalizes

the preceding in that the s** link

of the chain is now a rigid body of

 

mass M, and moment of inertia
 z M,k* shout its center of mass,

located at the point z,, y,, distant Figure 78. Variables used by Ever in obtaining the general
. equations of motion for a chain withrigid links

by the amounts |, from one junc- .

tion and r, from the other (Figure 78). With », the complement of the slope angle of

the s*" link, the equations of constraint are

(230) Ge— Ce, =7,9N Pp, +1,sn P., ,

Ys — Yor = 13 COS P, + Loa COS Ms4 -

Forces X, and Y,, acting in the x and y directions, are supposed given at each junction,

with X, = Y,5 = X, = Y, = 0. The balance of linear momentum is then expressed by

(231) Mit,=X,— Ya, My,=Y,—Y,4;

 

1) The analysis is given on pp. 459—460 of Notebook EH4. On pp. 480—-483 are the details of

integration for the case of three bodies.
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of angular momentum by

(232) M,k®?o, = X,r,cosy, —Y,r,sing, + X,4l, cosy, — Y,,l,sing, .

After writing down these equations, EULER derives the integrals of linear momentum and

energy. Apart from some fully worked out special cases, [he draws no conclusion from this

system, nor does he attempt a passage to the limit to obtain equations for the continuous

band.

From this paper comes our knowledge of how to set up the equations of motion of a

linked system in what today seems the most straightforward way. This is thefirst instance

in which the principles of both linear and angular momentum are set down as the sole and

basic and independentprinciples of mechanics. Moreover, the allowance for arbitrary forces

at the junctions reflects EuLuR’s growing realization that shear forces act upon elastic bands;

this idea will mature many years later (below, § 57).

The amazing derivation of the partial differential system governing finite motion,

obtained by a limit process from the discrete case, was put in too obscure and complex a

form to be understood, and when EvLzErR came back to the subject thirty years later (pp.

291—292 below), he had apparently forgotten this early analysis!).]

31. EULER’S general solution for longitudinal vibration of the loaded elastic cord (1748).

[With the experience of the preceding paper behind him, Evnsr is now able to derive the

equations of motion for all sorts of linked systems.] In his paper, On the propagation of

pulses through an elastic medium?), he sets up as a model for explaining the transmission

of a sound in air a set of equal masses M connected by like springs. EULER’s verbal con-
 

 

1) Here we notice a work that belongs to the period 1743—1744 but is isolated in content,

HuLER’s Neue Grundsdize der Artillerie ... (E77), Berlin, 1745 = Opera omnia II 14, 1—409. EuLEr’s

third remark on the ninth law in Chapter I concerns the strength of cannons. After mentioning the

need for a factor of safety, since the theory assumes the material uniformly strong, while in casting

there are always imperfections, EULER attempts a local theory of the equilibrium of a hollow cylinder,

He isolates a sector of finite angle 2g and balances the forces acting upon it, supposing the inside

subject to uniform pressure m, while the action of the remainder of the cylinder upon the sectoris

assumed to be & pure tension of amount n. Balancing these forces correctly yields ma = nb, whereais

the inner radius and6 is the thickness. Astonishingly enough, however, EULER fails to integrate to get

the resultant force of the pressure, and also he supposesit sufficient that the resultant force of the ring

tension exceed that of the pressure. More important than these errors is that from this example we see

clearly that EULER, while he had begun to see the needfor resultant shear stress (above, p. 217), was

unable to treat a problem in which interior shear stress is of major importance.

This work may berelated to what seems to be an erroneoustheory of the arch on pp. 488—489 of

Notebook EH4. There Eutrr seems to take account only of the normal componentof load; he may be

attempting to find that form of arch in which the tension is constant.

2) E136, “De propagatione pulsuum per medium elasticum,” Novi comm.acad. sci. Petrop. 1

(1747/8), 67—105 (1750) = Opera omnia IT 10, 98—131. Presentation date: 2 September 1748.

Summ,, 58
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clusions are somewhat negative : Since “the motion of two or more particles is no longer

oscillatory, but by so much the moredifferent from it, the greater the numberof particles,

[the author] says that sound maynotat all be understood as propagated throughtheair as

some able men would have it, when they assert that when a string or other sounding instru-

ment is set in motion there are in the air particles of this sort which take on an oscillatory

motion and excite the organ of hearing.” [The analysis does not justify such sweeping con-

clusions, although of course it shows that the resulting motion is not a simple oscillation.]
initial length

stretched length ’ [but this rather

extraordinary law introduces no error since only small displacements are considered]. He

EULER takestheelastic force as proportional to the ratio 

begins by solving the problem for the case of two masses (Figure 79). [We do not reproduce

the details of these examples, since below wegive
 

[. A 2 |
P ad wt

| 2 -Euuur’s treatment of the general case ; however,
Figure 79, ® e e .

Evzmr’s treatmentof longitudinaloscillation we remind the reader that this is the first time

of an elastic cord carrying two masses that the general. motion of an oscillating system is

obtained, 1. e., for the first time we see a theory sufficient to allow more than one simple

mode to be excited at once. This justifies the detail in which EvLER treats these simple

cases.] First he considers only one mass to be displaced initially, both masses being

released with zero velocity. The two bodies then begin to move toward each other. As

a measure of the time for a pulse to travel from one to the other, EULERfirst calculates

the time when the second body acquires its maximum speed away from thefirst. He finds

that both initial velocities are of the order of t. [Apparently disturbed by this fact,] he con-

cludes only that the possible types of motion are very different and goes on to a second

approach, in which he replaces the condition of no initial displacement for the second par-

ticle by that of no force,7. e., no acceleration. The initial velocity of the second body is then

of the order /, while that of the first remains of the order ¢. This case EVLEr considers a

better model for the propagation of a pulse. He finds that when ¢ =TV /= , K

being the force constant of the springs, the first particle acquires its maximum speed; at

time 2t, the secondparticle attains its greatest speed. Therefore the time ¢ is that required

for the pulse to travel from the first to the second body. If the spacing of the particles at

rest is a, then the velocity of propagation is

a 1+ V3 =
(233) v=7 >="37 yw

This result EULER compares with measured values of the speed of sound in air, using, as

usual, the idea that the “elasticity” is the weight of a columnofair’).

1) See p. XXXV of my introduction to L. Euter1 Opera omnia IT 18, giving the history of the

thoories of the speed of sound in air.
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EULER notes that it is possible to start the motion so thatit is “regular ..., like that of 21

an oscillating pendulum”’; [7. e., by specially selected initial conditions, either of the two

simple modes may be excited separately.]

A similar treatment of the case of three bodies leads to a less satisfactory result, and 22—29

EULER abandonstheidea of calculating the speed in this way. However, from the results 30

for one, two, and three bodies he is led to conjecture that the proper frequencies for a

system of bodies are obtained by multiplying = V K/M by

   4X 2-40 3°57 n-47
234 ’ tlt x29 89 °( ) cos coe coe I CoB TT

To treat the general case, EULER introduces the indicial notation?) x, at, 2, alt, ..., 31-33

a)... 24-2), 2-1) for the displacement which we here write as x,. The whole length

of the line is (x + l)a, and xz) =72z,,, =0. The general equations [converted to general

units] are

(235) Max, = K (yy. — 24, + %44), B= 1,2,..., 0.

[While EvuLER does not mention it, by comparing (235) with JoHN BERNOULLI’s well

known result (78) any reader could see at a glance that the present problem is mathemati-

cally analogous to that of transverse oscillation of a taut loaded string. To read off results

for the latter, replace K by T'/a.]

Assume a solution 34

(236) 2, =U, 0082 ||pe, MN, =U. =0.

Then 35

(937) — 40,9? = U4, — 2U, + Una .

so that

(238) Wea = 2(1 — 2p) WU, — Ua -

As suggested by the conjecture in § 30, put 36

(239) p=sin®, sothat 1— 2p?=cos2®@.

Then (238) becomes

(240) Wau= 2cos2O0U, —U,4 .
 

EULER’s argument is obscure, but the idea seems to be as follows. The length of the colum is a;

let its area be S. Then Ka = pS, where p is the air pressure, and hence K/M = pS/(Ma) =

p/ (Fa : at) = p/(ga*). Hence (233) yields

»tY¥3 1/2=i a

This is less than NEwTon’s value, in the ratio (1 + V3)/n.

1) Recall that our uses of indicial notations previously (and also subsequently, for the most part)

in this history are our own abbreviations for the lengthy notations of the original sources.
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Now put WW, = Wsin 2; then from (240) follows

(241) AW, = Wsin 2k®@.

Putting k =n-+ yields

(242) 0=%4,—=Usin(2n+ 2), or (Qn4+2)GO=—rn.

1
By substitution of this last result in (239) we obtain » = sin —+~—r confirming the con-

L 7

n+ 1”
jecture (234). Thus there are “‘as many values for p...as there are bodies..., ’’ [and in

our notation we write EULER’s result in the form

l > _ redn
(243) ve) = — WearTHe

extending JOHN BERNOULLI’s results (77) +*)].

Substitution into (236) yields the general solution corresponding to zero initial ve-

locities:

 

  

K ee
244 — —_

ft

gin 2 |(244) Ly, =ZU,sinware08 (2 [ppt sin2

EULER wishes to evaluate the constants Uf, when 2, = — X while all other x, vanish

at ¢=— 0, After trial of the cases n = 1, 2, 3, 4, 5, 6, he conjectures that

xX . rN
YAS5 —
(745) Mtr ntlntl

That this is so follows from the identity

a hz rhx4 e se * _ 1 <

(246) ceaa Mad (n+ 1)6,, rn,

which EULER conjectures and goes some way toward proving. Putting (245) into (244)

yields

n+1 «rk _ ¢ YI 2|/* re 4m
(247) aa dl balsin ————n+1* ay 008(2 yf sns ).

1) For comparison, we may express (243) in the context of transverse oscillations of a taut loaded

string (cf. the remark following (235)). The total mass being nM and the total length being (n + 1)a

the meanline density is o = nM/[a(n + 1)], and with» given by (75) we may put (243) into the form

 

 

  

 

Mr= —“Vain++ 1)sin ren
v n+l °

From this result it isimmediate that forany fixed r we have

y(n
—>r

as n->oo. I.e., the rth proper frequency of the loaded string approachesthe 7+! proper frequency of
tho continuous string. These inferances wore not drawn by Evtun until later (seo below, p. 272),
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But this is only an auxiliary. “To obtain a case more appropriate to the propagation

of pulses, we suppose that initially every body is at rest and the accelerating forces on all
rein

n+l

as those satisfied by YU, in the previous case. This gives for the accelerating force on the r™

particle an expression proportional to the right-handside of (247). Therefore the velocity

the same equations except thefirst are zero.’ From (244) followfor — 4= YW, sin?

of the last particle is a maximum when

  

  

mn. 7 . rn / Ki. reg \.
(248) 0 —2sin n + rl sin n+l Cos (2 a sin n 1 I ;

equivalently,

__ — 1\ ain2 rn 1 1:20(249) 0 =+ 1)" sin 7 aL] 08S }2a(n + 1)sin a r| ’

where « = / as4 . Let h be the length of a column whose weight equals the elastic

force of the fluid [note that fA need not be the barometric height]. Then with g = the

gravitational acceleration, we have a / + =Vqgh, so

ity = SEVe2SLlyg(250) velocity = ; =—Va~> gh.

If # = the barometric height, then this formula gives speeds greater than NEwton’s

in the ratio 1/fo.

Everything depends on finding « by solving (249), but this EvLzx is unable to do. To

fit experimental data, we should get « = 0,85. For n — 2 and 3 the values are « = 0,55

and 0,76, and these “seem to converge rapidly enough” toward the desired result. [In fact,

the limit value of « must surely be 1.] In anycase, the speed is proportional to Vh. “But h

is the length of the column of the same fluid whose weight equals the elastic force of the

Aid. Thence. if the elastic force is denoted by # and the density by D, the weight of the

column will be as # /D. Therefore in various clastic fluids the speeds at which pulses are

propagated will be... as VE/D.”

[As a contribution to the theory of sound, this paper, brilliant as it is, is a failure.

What it attains is the ewact and general solution of a problem of small oscillation of arbi-

trarily many masses. The concise and elegant procedurefor solution, including the explicit

formula (243) for the proper frequencies, could not be improved today. While the conclusion

in the last section follows from much more general dimensional considerations, it is the

merit of this paper to have derived, for the first time, a formula of the type (250) with «

given as a root of an explicitly known equation.

But more than this, it is the approach to the mechanical problem that initiates the

modern period in the study of vibrations. Little as it would nowadays be expected, this

45

46

47

48—55

56
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paper of 1748, fifty years after NEwrTon’s Principia, is the first to solve a problem of the

vibration of coupled masses by superposition of sumple modes. For this is precisely what

EULER does, without comment, by trying the solution (236). A fortiori, (244) is the first

example of a general solution of a problem of n bodies. Moreover, since this paperis thefirst

to treat an oscillation problem on the basis of the general equations of motion,it is also the

first to show that the sumple modes are special solutions corresponding to specially selected

initial conditions. The theory of small oscillations still has far to go, however. To complete

the analysis of the present mechanical problem the constants Y, in (244) should be deter-

mined so that the displacement 2, takes on an arbitrarily assigned value X, at t= 0.

This Ever achieves in the special case when only X, is different from zero; though he

might easily do so by superposition of n solutions of this kind, he does not approach the

more general problem, since he wishes to use only initial conditions he thinks appropriate

for representing a sound pulse.]

32. Summary to 1748. With some astonishment, we see that from 1691 to 1748 the

entire mathematical science of vibration, deformation, and elasticity has been dominated

if not monopolized by the geometers of Basel). In particular, the last two decades have

seen EULER, DANIEL BERNOULLI, and old JoHN BERNOULLI swiftly create several mathe-

matical theories yielding definite and correct if somewhat isolated explanations of some

classes of phenomena having scarcely estimable bearing toward all later work on vibrations

and elasticity. In summarizing these brilliant researches, we pass over results that remained

unpublished until after 1751 and thusfailed to influence the immediately following studies.

I, Static deflection.

1, EULER unified all existing theories by meansof the general equation (91), express-

ing the balance of moments acting upon any deformable line obeying the BERNOULLI-

Ever law (89), or. by an immediate generalization, the form (69) appropriate to initially

curved elastic bands. Publication : 1732

2, DANIEL BERNOULLI conjectured and EULERverified the principle (140) defining the

equilibrium of an elastic band in termsof its stored energy. Publication (by EULER): 1744

3. By a rigorous analysis of the quadratures (172), Hunter determined, classified, and

sketched all the possible forms an initially straight elastica may assume when subject to

terminal force and couple. Publication : 1744

4, As a corollary of the above, EuLErR obtained the celebrated buckling formula

(180). While in this early work he applied (180) only so as to obtain the special case (185)

appropriate when both ends of the column are pinned, the result (180) determinesall cases
 

1) Indeed, by others there are but four works of any importance in the whole period of more

than fifty years: those of Vartenon (1704), Parenm (1713), Tavror (1713), and p’ALtemMbBERT (1749).
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of buckling in compression (as we shall see below). Moreover,it is a rigorous theorem, not

resting in any way on the linearized theory EvuLErR sketched in a few lines of the text.

EULER’s work, as stated in No. 3, fully determines the bent form subject to any load exceed-

ing the critical load. Publication : 1744

ITI. Vibration.

5. Danizt BurNovuiti showed that vibrating systems of many degrees of freedom can

oscillate with many different simple harmonic motions at definitely calculable proper fre-

quencies. The different modes of a given system have definite and different numbers of

nodes, increasing with the corresponding proper frequency. His direct method, resting at

bottom upon the assumption that the accelerations are as the displacements, he applied

first to the weighted hanging cord and to the uniformly heavy hanging cord. He indi-

cated that in the former case there are as many modesas there are weights; in the latter,

infinitely many. DANIEL BERNOULLI gave some rough calculations of frequencies and nodal

distances, using ““BESSEL functions’ for the continuous cord. HuLER, using “LAGUERRE

polynomials”, gave the explicit solution for the cord loaded by an arbitrary number of

equal and equidistant weights. Publication : 1740, 1741

6. DANIEL BERNOULLI and EULER independently obtained the differential equation

(125) for the simple modes of transverse vibration of bars, as well as the end conditions

(132) appropriate to a free end. HuuEn obtained the general equation (136) for the fre-

quencies and the root (135) yielding the fundamental frequency for the clamped-free modes.

Publication (by EvLER only) : 1740

7, Eunter obtained the general solution (146) for linear differential equations with

constant coefficients, opening the way to manageable solution of many vibration prob-

lems. In particular, EULER gave a full analysis of the equation (142) for a harmonically

driven oscillator, discovering and emphasizing the resonant case. Publication: 1743, 1750

8. Dante BrRNovit calculated approximately the full set of proper frequencies

(161) and (164) for clamped-free and free-free transverse vibrations of a rod. He remarked

upon four of the six possible classes of simple modes and gave special attention to the

free-free class, for which he determined the nodal distances of the first five modes. EULER

derived the equations of proper frequencies for all four of BERNOULLI’s classes andcal-

culated the solutions ofall, but he emphasized mainly the clamped-free modes. He recom-

mended that the flexural rigidity of bars be determined from their measured frequencies.

Publication : 1744 (KULER), 1751 (BERNOULLI)

9, DANIEL BERNOULLI stated that the simple modes of a vibrating system may be

excited simultaneously. Since he was not in possession of equations of motion, proof of this

principle was out of the question. Publication : 1751
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III. Equations of motion.

10. While all work on the motions of complex systems up to 1742 rested on direct and

essentially static methods applicable only to small harmonicoscillations, in a paper written

by that year JOHN BERNOULLI took a great step toward the equations of motion by being

the first to refer all particles to a single rectangular Cartesian co-ordinate system. His

equations (154) for the hanging weighted cord comeclose to being equations of motion,

although he employs them only when the reaction of inertia is centrifugal force. He ob-

tained the differential equations of finite motion for the case when n = 2. Simultane-

ously, D’ALEMBERT obtained the differential equations of small motion when n = 2 and

n = 3 by a method which applies for all values of m. He derived also the partial differ-

ential equation of small motion of a continuous heavy cord. Publication: 1743

11. Shortly thereafter, EULER obtained the general equations of finite motion (209)for

the loaded string, as well as the system (231) (232) for finite motion of a set of bars linked

together by hinges where assigned forces act. Publication : 1751

12. By a brilliant passage to the limit, EuLER obtained thepartial differential system

(222) for finite motion of the continuous string. The form of these equations was such as to

render them virtually impossible to use, and EvLERfailed to derive from them the equation

for small motions, or in fact to see any use for them. Publication : 1751

13. Kurmr obtained the differential equations (235) for longitudinal vibrations of an

elastic cord loaded by an arbitrary number of masses. In this, the earliest successful anal-

ysis of any problem of n bodies, EULER derived the explicit formulae (243) and (244) for

the proper frequencies and for the general solution, Yor this problem, the general motion

is thus proved to be resoluble into composite simple harmonic modes, These modes are

seen to represent motions corresponding to specially selected initial conditions. For the

eaca when only the end mass is displaced initially, KuLuR obtained the explicit solution

(246) by a method foreshadowing the explicit solution of the general initial-value problem.

All Evunn’s results here are immediately interpretable in the context of transverse vibra-

tions of a taut loaded string. EULER, however, intent upon special configurations he consid-

ered appropriate to a modelfor the transmission ofsoundin air, did not explain very clearly

the significance of this great memoir for the whole science of vibration. Publication : 1750

After this, the remainder of our history must comein part as an anti-climax. Never

again in our period for study are we to encounter such a flood of wonderful results, so

high a proportion of achievement in every work published. Yet a major want in the whole

science, even as viewed from an intelligent eye of 1750, remained : For continuouslines, no

manageable differential equations of motion were known. The third part of our history

opens with the discovery of such an equation, that for the vibrating string, and describes

controvery to whichits solution straightaway gaverise.



SMALL VIBRATIONS OF A STRING D’ALEMBERT’S FIRST MEMOIR (1746) 937
 

Part III. The Controversy over Small Plane Vibrations of a String of Uniform Thickness,

1746—1788

33. D’ALEMBERT’s first memoir (1746): the partial differential equation and its

solution by an “equation’’. [After the brilliant mechanical researches just described, we

must now descend to the celebrated and deplorable quarrel which watered the effort of the

principal savants at the middle of the century. What follows confirms the principle that

ever the greatest quantity of paper is smeared over with the dullest matter. As a corollary,

it 1s to this part alone of our subject that histories of mathematics or physics give any

considerable attention. In the case of the vibrating string, the lanearity of the problem made

it possible to drag in analytical questions but little connected with mechanics. In all the

papers we summarize in this introduction, the ratio of content to length, of concrete results

to words, is here the least. While I am tempted to leave out the whole matter, the dilet-

tante essays of the last century have spread such misconception that it is best to go over

the old ground once more,if only to illustrate that second principle that in the history of

science nothing is less welcome and less read than an accountof the facts.

Only the prolix sequel is dull : The beginning is as brilliant a research as any in our

subject:] By the end of 1746 p’ALEMBERT had completed!) his Researches on the curve

formed by a stretched string set into vibration”).

“T propose to show in this memoir that there are infinitely many curves other than

the companion of the elongated cycloid i curve| which satisfy the problem in question.”’

Among the stated hypothesesis # = 7’ ->* cited from Tayton’s book. [Indeed this fol-
Sa2

lows at once from TAavLor’s formula (74), when the slope is small; a hypothesis stronger

than this latter was stated by T'ay1Lor but not used in this way ; by D’ALEMBERTit is used

but not stated. While most of what D’ALEMBERT now proceeds to say seems superfluous’),

we remark for later reference his assertion that] “it 1s certain that the ordinate y can be

vaprocsed only as a function of the time and of the corresponding abscissa or arc....”” The

 

1) This is shown by his letters to Ever on 6 January 1747 and 17 June 1748.

2) ‘Recherches sur la courbe que forme une corde tendue mise en vibration,” Hist. acad. sci. Berlin

[3] (1747), 214—219 (1749); the second part, with sections numbered consecutively, is “Suite des

recherches sur la courbe que forme une corde tendue, mise en vibration,” ibid. 220—249.

3) While in general in this history we overlook matters of notation, the reader should remember

that here and for some years to come partial derivatives are expressed in terms of differential forms

involving various letters. Thus p’ALEMBERT consumes a page in setting y = O0(¢,s), dy = pdt + qds,

dp = adt + ds, dq = vdt-+ Bds, where the coefficient » is the same in each “by the theory of

Mr. EULER” i. €.; oy = ae , in establishing that B = oy , andin identifying « with the accel-

eration. As usual in the works of D’ALEMBERT, misprints abound. Errata are given in the Histoire [6]

(1750), 414—415 (1752).

II
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acceleration is 0?y/dé?. “It is plain by Lemma XI, Section I, Book I of [Newron’s] Prin-

copra that

1 dy dy

(251) ce at?) we?’
c2 2ne

[Thus, after so many near misses, the wave equation finally appears. True, all D>’ALEMBERT

has doneis to put into the old formula (74) of TayLor proper approximations for A, and 7,

but indisputably he is the first to do so1). It is also noteworthy that in so reviving a

forgotten aspect of the otherwise well known paper of TayLor, D’ALEMBERT joins EULER?)

in being the first to set down the momentum principle as sufficient to derive all the differential

equations governing a system of many degrees of freedom®).

 

 

 
 

By change of units, (251) may be written as

ay oy252 —(282) a? Os
Since in general

oy, Y\ ye Oy ay
(268) a(3p nt) = ert HeaUA)LG
if (252) holds we have

oy oy [day ay

(294) d (4 = +) = (5 + a) (at ds),
“whence it follows

5 Oy Oy . Oty Oy . .
1°, That aye + a5y is a function ¢-+ 8s, and that Fe Ae at is a function to

i — 6,

2°, That, consequently, we have...

0 0
(265) S=otta+At—9, =—s—4e—0..
 

1) Not only were EvtEr’s correct general equations (222) for finite motion of a string still un-

published, but also Evie himself failed to use them or ever to refer to them again.
2) Werefer to the then not yet published papers E174 and E136 described in §§ 29—30, the

former of which uses the principle of moment of momentum as well.

3) As is shown by his own reference to NEWTON, D’ALEMBERT does not use his own statement of

‘>’ALEMBERT’s principle’’, much less either of the methods referred to in the subsequent literature

by that name. Note that essentially this same NEwToNian approach, though less openly, had been

used by D’ALEMBERT to derive the partial differential equation of the heavy cord (above, p. 192).

ToDHUNTER, § 63 of op. cit. ante, p. 11, is most misleading when he writes that a certain work is

“somewhat obscure for the science of dynamics had not yet been placed on the firm foundation

of p’ALEMBERT’s Principle,” since so far as I know not onesingle partial differential equation of the

dynamics of continua was first obtained or subsequently any better established by use of that prin.

ciple as enunciated by D’ALEMBERT. The description of D’ALEMBERT’s derivation by BURKHARDT,

§ 4 of op. cit. ante p. 11, is false.
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therefore ...y = I(F dt + jas) , or

(256) y=P+s) 4+T¢—s),

where Y(t +s) and I’ (t — s) express functionsstill unknown.” [Equivalently

(257) y=Q@(ct+xr+V(ct—2x),

and this notation we use henceforth.]

“But it is easy to see that this equation includes an infinity of curves. To show this, VIII

consider here only a special case, namely, y = 0 when ¢ = 0; thatis, let us suppose the

string, when it starts into vibration, is stretched out in a straight line.”” Then

(258) Y(— xz) = — D(x) .

Since at the end point « = 0 we have y = 0 for allt, it follows that

(259) Y(u) = — O(u) .

Thus (258) and the condition that y = 0 also at the end point x =1 become

(260) O(u) = O(— u), Gut) = d(u—]1).

e X To find a ‘“‘quantity” satisfying (260) [¢. e. an even IX

function of period 21], p’ALEmBERT employs Figure 80,

| where QR = and the part 7K is “equal and like” the

7 GQ ev ee part OT. “But the geometers know that such a curve
Figure 80.

D’ALEMBERT’s solution of the Can always be engendered by another curve,” and D’ALEM-
wave equation (1746)

RAIDS

BERT goes on to give a construction of a generalized cycloid.

Any such function provides a solution for the vibrating string. x

“Tt 1s easy to see” that the velocity v is given by XI

_ Y ) )(261) 0 1=SF = c@' (ct + x) —c@' (ct — a).

Hence theinitial velocity is

(262) V=c@'(xz) —c®'(— xz) [= 2cG'(x)].

By (260),, @ is even; therefore ®’ is odd ; from (262), “‘the expression for the initial velo-

city ... must be such that when reduced to a series it includes only odd powers of 2.

Otherwise .. . the problem would be impossible, that is, one could not assign a function . .

such as to represent in general the value of the ordinate of the curve for any abscissa x and

any time ¢.”
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The rambling and disjointed second part of the memoir interweaves positive results

and negative restrictions, which we here separate. To apply (257) to the general problem

where

(263) y(z,0)= Y(x), v(x, 0) = V(a),

the end condition y(0,¢) = 0 yields (259) as before. Hence

y = O(ct + x) — Dict — x),

V =c[®' (x) — 6 (— 2),
=J Vde = O(2) + 6(— 2),

(264)

‘“‘and thus the problem is impossible unless Y (x) and V(x) are odd functions of x, that is,

functions where only odd powers of x enter...’ From oe follows

(265) D(x) =a Vea)de+4YV(x), O(—2)===—f V(«)dx —4Y(z).

The end condition y(l,t) = 0 yields (260),, or

(266) © (u + 21) = Gu) .

TAYLOR (§ 16, above) considered only sinusoidal solutions. When Y = 0, by a long

ealoulation D’ALEMBERT obtains @ (x) = W cos =- , and he says a similar result holds when

V = 0. In these two cases, y = f(%) g(t), and D’ALEMBERT asserts that they are the only

such cases. For then y(z, t,)/y(a, t.) = f(t, t); “by the ordinary method” one then

finds that {(%) = sin Mx, [but while indeed the most general solution of this kind is

y = Usin (Max + N)sin (Mct+ P), D’ALEMBERT’s remarks do not constitute a proof].

As for Taytor’s assertion that a non-sinusoidal vibration settles into sinusoidal form,

p’ALEMBERT [rightly] says that Tayior’s argumentis faulty.

The curve z= D(u) D’ALEMBERT calls the “generating curve’.

solution of the problem of the vibrating string is reduced to two things : 1°, to determine

the generating curve in the most general way, 2°, to find the curve from the values of

Y and V.” No. 2 is solved by (265). ‘““But one must take heed that Y and V may not be

given at will, since they must satisfy certain other conditions, as has been seen above in

this memoir.” D’ALEMBERT gives a long list of these other conditions, [which arise from

‘...the general

his tacit assumption that the entire generating curveis given by an “‘equation’’.] It suffices

here to Mention one such condition : ®’(0) = 0 oroo. Now in the case Y = 0, we have

scen that ’ is odd ; thus [on the assumption that ®’ is continuous at 0] follows ©'(0) = 0.
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If V = 0, then Taytor’s solution © = UW sin. is one D-ALEMBERT considers admis-
i

sible, and for this solution ©'(0) 4 0 orco; thus the second part of D’ALEMBERT’s asser-

tion, as is not infrequent in his work, is simply an error even if one accepts his point of

view. But the essential is that D’ALEMBERTrestricts the initial shape and initial velocity of

the string to curves whose “equations” are odd functions of period 21 :] “One will notice at

once that since Y and are oddfunctions, the curves whose ordinates are proportional to

Y and V must be such that when continued on each side of the origin they have two

indefinite and like equal parts, one above and one below the axis.”

True, the ordinary meansof setting a string into vibration is to give it a triangular or

polygonal form. To apply our general solution to this case is impossible because of the con-

ditions mentioned. ‘‘Therefore there is nothing else to do than to seek the motion of the

string in regarding it as composed of a great numberof points, joined together by inex-

tensible threads.” D’ALEMBERT sets up two equations [corresponding to the linearized

case of EULER’s not yet published system (209), viz, EULER’s not yet published] system

(235), and says they are easy to solve. If the end 2 = is free, we do not have (266),

and hence the solution may be “‘geometric’’.

A little later!) p’ALEMBRERT replaced the ‘‘very indirect method” of § XXII by setting

@ (ct -+ w) — DB (ct — wv) — f(é)g(x) and then by differentiation obtaining
1 N

epGn’
since the first two members “must be not only equal but even identical, that is to say,

they must be equal to the same quantity, independently of any equation between ¢ and x.”

Therefore

(268) y = f(g (a) = (Met!4 + ge-V4) (agerl4 + ge2lA) ,
whence by applying the end conditions it follows that g(x) = ksin Na, f(t) = Resin Net

or Bcosnct. [As usual, D’ALEMBERT’s result is not quite complete, and his analysis is

awkward and not quite satisfactory ; nevertheless the principle is correct, and this passage

contains the first solution of a partial differential equation by separation of variables.]

D’ALEMBERT then-explains more clearly the restrictions he considers appropriate to

his solution (257). In respect to the process by which he hassatisfied (266) [2. e., to his con-

struction of periodic functions], he writes, “But, lest some readers mistake the meaning

of my words, I believe I must give warning here that in order to obtain this generating

curve it is not enough to transport the initial curve successively above and below the

axis...’ In addition, Y must be an odd function of period 21, “‘which cannot happen

(267) Say,

 

1) “Addition au mémoire sur la courbe que forme une corde tendué, mise en vibration,” Hist. acad.

sci. Berlin [6] (1750), 355—360 (1752).

AXXIV

XLII

XLIV
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unless the curve is mechanical+) and such as I have described in my memoir. In all other

cases the problem cannot besolved, at least by my method, and I do not know but that it

will surpass the forces of known analysis. In fact, . . . one could not express y analytically in

any way more general than supposing it a function of ¢ and s. But subject to this assump-

tion one obtains the solution of the problem only for cases where the different shapes of

the vibrating string may be included in one and the same equation. In all other cases it

seems to me impossible to give y a general form?).”’
 

1) This sentence does not convey the meaning which I think D’ALEMBERT intends, namely,

‘““which cannot happen, aside perhaps from mechanical [%. e. non-analytic] curves, unless the curve is
such as I have described in my memoir.”

2) Not from any original contribution they contain but rather from their historical interest in

reflecting the views of a highly educated and intelligent layman of the Age of Reason, I append here

a comment on the publications of DipERoT concerning our subject. These appear in his Mémoires

sur différens sujets de mathématiques, Paris, Durand & Pissot, 1748, vj + [6] + 243 pp. The dedica-

tion to Madame DE P[REMONTVAL] claims that the work “‘treats subjects which are familiar to you,

and does so in a manner not altogether foreign to you.’ Contrary to the implications bandied in the

usual histories of mathematics, DripERor shows himself to be not only well acquainted with much

of the advanced scientific knowledge of his day, including details of Nrwron’s Principia, of the

Universal Harmony of MERSENNE, and various works of EULER, but also to be adept at differential

and integral calculus in the style of JoHN BERNOULLI and L’Hérrtau. While DipERoT’s works reveal

a competent mathematician, they are deficient in physical grasp. Among writers of the period DipERotT

is axceptionally scrupulous in acknowledging his sources and exceptionally gentle when he discovers

what he considers to be an error.

The first paper. “‘Principes généraux @’Acoustique,”” pp. 1—120, contains a critique of the work

of Tavron. As shown by his romark on p. 21, Drpprot has seen pD’ALEMBERT’s “general solution”,

thon awaiting the press, but he shows no evidence of having understood it. Apparently he tries

to find what is wrong with the method of TayLor, but heis really unable to do so. His Proposition IT,

“to describe the musical curve of Taynor,”’ sets up the problem in JOHN BERNOULLI’s style but, as

in all previous publications, the possibility of the higher modes as solutions of the ordinary differential

equation is overlooked. On p. 35 Drprror writes, “Tt is a matter of experience that a string struck

by 2 bow aasumos quickly onough a chape such that all its points arrive at the same time at the line

of rest.” but his immediately following discussion seems to reflect little comprehension of the higher

modes, On p. 88 ho writes, “Although the formulae of Mr. Taytor do not at first seem applicable to

all cases, but only to those when the vibrating string assumes a particular shape, nevertheless they

are good in all cases when the points of the string reach the line of rest at the same time... thus,

whether the string assume the form given by TAyLor or whether it assume someother, the time of

its vibration will always bo the same, and consequently it will cause the same sound to be heard.

We rest content with stating these propositions, the rigorous proof of which is difficult and would

carry us too far...’ DIDEROT’s apparatus gives no evidence of principles on which to base such a

proof. In § X, the contents of which Diprnot acknowledges to be duc almost entirely to Fonrrmnnuun,

he describes the ‘‘bizarre phenomenon” observed by SauvEuR and WaLuis but makes no attempt

to connect it with the theory. The reader of this work of DipzRor will understand better the signal
originality of DANIEL BERNOULLI’s early researches.

In § VII DIDEROT criticizes EULER’s rules for equable sounds (above, p. 164). In § VILL he claims
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[Thus D’ALEMBERT contends that his “general solution” (257) is valid if and only if

® and ¥ are given by “equations” that are odd and periodic ofperiod 21. His first purpose,

apparently, is only to exhibit infinitely many non-sinusoidal solutions; in his later writing

he is to show interest only in finding cases when the problem is “‘impossible’’.

In writings of the eighteenth century, the term ‘‘continuous function”’ is often a vague

equivalent for what is now called “analytic function’. It would not be just to regard this

equivalence as precise, since many writers considered ‘continuous’ those functions given

by “equations’’, and occasionally, as will shortly be seen, there occur “equations” such
5

as y= sin*z, representing a function not analytic at «= 0 but nevertheless fairly

smooth there. A “discontinuous function’’ or “mechanical function”’ is what is now called

a “piecewise smooth function’’, possibly non-analytic!). In p’ALEMBERT’s work, every

“function” is given by an “equation’’. While the operations to be allowed in forming an

“equation’’ were not precisely delimited, it was generally accepted that two such expres-

sions agreeing when the variables lie in a certain interval will have to agree outside it as

well), This explains p’ALEMBERT’s “impossible” cases. For V(x) and Y (x) are given,

indeed, only in the interval 0S %S1, whence by (265),, follows the “generating curve”’

 

by some vague generalities about strings to infer MERSENNR’s law (9) for bells and EuL=R’s law for

rods (above, p. 155).
Dipaneoz’s “Laamen dun principe de Mécanique sur la tension des cordes,’” pp. 163—168, illus-

trates tho fact that the stress principle is by no means obvious. “But here is a question which has

heretofore much troubled the students of mechanics.It is asked if a string A B fixed at B and stretched

by any power A is stretched in the same way as it would be if in place of the fixed point B a force

equal and opposite to the power A were to be supplied. Several authors have written on this question,

first proposed by Borex.’ While DIDEROT confuses the matter by introducing the elasticity of the

wire, his argument, like GALILEO’s (above, p. 37), consists merely in reaffirmation. It is interesting,

however, that DriprRot then proposes to test the matter by experiment, using the pitch of the string

as a measure of its tension. He writes of the experiment as if he had nevercarried it out.

1) Of. § 6 of Dunsmanesy op. cit. ante, p. 11; A, Sperm, “Uber die diokontinuirlichen Kurven,”

Hormnr Opera omnia I 96, XXTI_XXIV (1952); Part II L of my Introduction to L. Euteri Opera

ormmnia IIT 18; and also below, p. 247.

2) It would not be just to suppose that only rigorous proofs were lacking in order to makethis

conclusion true. Such would be the case, indeed, if ‘function’? always meant ‘analytic function”’.

In fact, however, ‘equations’ more general than those defining analytic functions occur in D’ALEM-

BERT’s examples below, and no amount of historical generosity can render his remarks or those of

LAGRANGE correct in principle. In the very paper we are discussing, D’ALEMBERT begins by giving a

cycloid as a possible generating curve, though it is not an analytic curve and does not satisfy all the

conditions he himself imposes later on in the same paper. EULER’s viewson this subject are less extrav-

agantly stated and thus more difficult to demonstrate false, yet I think it would be an exaggeration

to infer that EULER’s concept of the nature of “‘continuous’’ functions was clear. Rather, this is a

domain of mathematics where precise definitions are of the essence, and the needfor precise definitions

was not felt in the eighteenth century.
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z=@(u) for —IlSusl. By (266), the generating curve is then determined for all

values of wu. But if z= ®(u) is to be an “‘equation’’, this last step is superfluous, for

z= @(u) is then by its “nature” (z. e., in the analytic case, by analytic continuation)

already determined outside the interval —?<usl. For the problem to be soluble,

these two continuations must agree+). If z = ®(u) is to be an “equation’’, (264),,, show that

Y (x) and V(x) must be “functions”; that is, unless the initial shape andinitial velocity

are given by “functions”, the problem is “impossible’’.

To clarify D’ALEMBERT’s viewpoint it thus remains only to explain why he requires

z= D(u) to be an “equation’’. He himself, while never giving any reason, showsby his

obstinate repetitions from now on until the end of his life that he regards it as entirely

obvious that “‘mechanical]’’ functions are to be exiled from mathematics?), or at least from

mathematical physics. This is a consequence of LEIBNIz’s law of continuity as it was widely

interpreted in the eighteenth century*) : Only ‘‘continuous” functions occur in the solu-

tion of physical problems. While nowadays this seems a merely arbitrary prejudice‘), we

must bear in mind that the majority of the geometers and more particularly the physi-

eists of the day shared it. #.g., Jounw BERNOULLI and D’ALEMBERT invoked LEIBNiz’s law

in order to justify the application of the laws of physics to infinitesimal elements. Less

obvious, perhaps, is the advantage of the resultant uniqueness theorem, indeed not proved

but nevertheless correctly believed at the time, by which each soluble physical problem has

but a single solution, determinate in principle up to a singularity resulting from its very

nature, and indeed such a metaphysics would furnish a basis for regarding differential

equations as a correct meansof formulating natural laws.|

34. EULER’s first memoir (1748): the solution by arbitrary functions. [That any me-

chanical problem was inherently “impossible’’ EULER could not for a moment accept.]
 

1) #.g., when V=0, suppose the initial shape is the parabolic arc Y = ax (l—»2),

0=a2Z=l. Therefore D(u) = fau(i—u) for 0-Sul. The analytic continuation is

@(u) = fteull—u) for —w<u<+oo.

This continuation is non-periodic and thus does not satisfy the conditions of the mechanical problem.

On the other hand, the continuation (266) required by the mechanical problem is not given by the

same “equation’’. Thus, according to D’ALEMBERT’s view,the problem is insoluble for this initial figure.

2) D’ALEMBERT’s later writings indicate that he considered illegitimate the application of dif-

ferential and integral calculus to “‘discontinuous” functions.

3) My attempts to trace this law in LEIBNIz’s own writings have found only partial success.

4) On the other hand, those who have tried to teach the mass student will doubtless have en-

countered his deep-seated reluctance to stray far from polynomial apron strings, and I once had the

misfortune to have to endure the harangues of a senior colleague, a famous aerodynamicist, who from

a mystic attachment to the symbols he happened to knowresolutely refused to allow meaning to any
others.
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Within a few months of seeing p’ALEMBERT’s paper, EULER had written his own essay,

On the vibration of strings!), [which seems at first reading to be largely a repetition of

p’ALEMBERT’s2), but from EULER’s publishing it twice and with all possible speed we see

how important he regarded its contents. Clearly he wishes to distinguish and perpetuate

the true while omitting the false with which it was interwoven in p’ALEMBERT’s work.]

D’ALEMBERThasgiven ‘‘a very beautiful solution”, but, believing he has added important

observations, EULER will give his own, though ‘‘not very different’’*). EuLER’s memoir,

while evidently written in haste and not achieving his usual clarity*), calls for the general
 

1) E119, “De vibratione chordarum exercitatio,’” Nova acta erud. 1749, 512—-527 = Opera omnia

II 10, 50—62. Presentation date: 16 May 1748. French translation, E140, “‘Sur la vibration des cordes,”

Hist. acad. sci. Berlin [4] (1748), 69—85 (1750) = Opera omnia II 10, 63—77.

2) EULER follows D’ALEMBERT in formulating the problem as a statement that two differential

forms be exact (§ 14) and in obtaining a solution by rather obscure manipulation of these forms

(§§ 15—17). EuLer uses the methodof his paper E8 (above, pp. 148—149) to calculate the restoring

force, but otherwise his derivation (§§ 5—13) of (251) is the same as D’ALEMBERT’s. Forgetting that four

years earlier he had derived the system (222) governing finite motion, or perhaps distrusting the result,

EULER writes here that finite motion is beyond the present reach of mechanics and analysis (§ 2).

3) This is EULER’s ordinary graciousness; in principle, his solution is different. To D’ALEMBERT,

EvLER’s solution is “entirely similar to mine... but only, it seems to me, a little longer’’ (§ II of

Op. Ot, artic, p. 241),

Here we take notice of the articles p’ALEMBERT began to publish in the French Encyclopaedia,
of which he was the editor and principal author for mathematics. The first volumecarries as frontis-

piece a magnificent engraving of D’ALEMBERT, who, under the guise of authoritative reviews,filled

its pages with shoddy hashes of antiquated science served up with a sauce of his own prejudices, adver-

tisements for his researches, and attacks on his opponents.

In the article “Cordes, Vibrations des” (4 (1754)), as the laws of vibrating strings he gives only

GALILEO’s proportion (10), citing TAyLor and JoHN BERNOULLI. After criticizing TAYLoR’s attempt to

prove that all points of the string cross the equilibrium configuration at once, he cites his own work,

and adds, “I believe I am thefirst to have solved the problem . . . in a general way; Mr. EULER solved
it after me, in using almost exactly the same method, with this difference only, that his method seéms

a little longer.” No dofinite description of vibratory motion is given. D’ALEmpmnr docs not even men-

tion the frequencies of the overtones and the nodesofthe vibrations that produce them; these appear in
later and supplementary articles provided by Roussnav, “Sons harmoniques” in 16 (1765) and “‘Cordes

Sonores” in Suppl. 2 (1776), where the experiments ofWaits and SaAuvEuR are summarized. D’ALEM-

BERT’s own polemic supplement will be quoted below, p. 262.
A specimen of p’ALEMBERT’s knowledge or ethics is furnished by his wordy article, ‘‘Chainette”’

(Enc. 3 (1753)). Vague and incomplete, it does not even cite a place where a reliable proof of (21) may

be found, let alone mention those whofirst solved the problem.

4) As stated in § 4, EuLER’s problem is to determine the motion corresponding to arbitrary

initial displacement Y (x) when the initial velocity V(x) = 0. The condition V = 0 is never applied

explicitly, however; through § 21 the analysis is valid for arbitrary V, but in § 22 we suddenlyfind that

@® — — W, as indeedis the case if and only if V = 0. Also, EuuEr fails to remark that D’ALEMBERT

has given the formalsolution (264),, (265) for the general case, when neither V nor Y vanishes identi-

cally.
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solution of the mechanical problem: ‘‘In order that the initial shape of the string may be

adjusted arbitrarily, the solution mustbeas inclusive as possible. [From this paper onward,

EULER 1s never content with less than the most general solution of each partial differential

equation occurring. In cases where hecan find only special solutions, henceforth he always

stresses that this is so only from ‘“‘want of analysis” and urges all geometers to join in

seeking the general solutions. For D’ALEMBERT, driven by a mysterious desire to confine

rather than expand the frontiers of mathematics, this problem is of no interest.] EULER

regards (266) as in itself sufficient to achieve the continuation of ®(u) outside the range

—lsSusl, and norestrictions are to be imposed on theinitial shape : ““When such an

eel-shaped curve (Figure 81), be it at

regular and contained in a certain % m lf

equation or be it irregular or mechani- pIPg

cal, has been described thus, its gen-

  

oo Figure 81. Evzr’s solution of the wave equation (1748)
eral ordinate will furnish the functions

needed . . .” In a later paper!) EULER explains this viewpoint still more clearly : First,

with “absolutely arbitrary” © and YW, (257) furnishes a solution of (251); this follows

by substitution and is independentofall the derivations given. ‘But, and this is the main

thing, these two curves generated in the way shown are equally satisfactory, whether they

are expressed by some equation or whether they are traced in any fashion, in such a way

as not to be subject to any equation...

“This construction always holds, whatever the nature of the initial form proposed for

the curve, and only the part AMB [giving the shape in the interval 0 <a <1] is

relevant here; even when this part has other continuations... in virtue of its nature,

they are not to be taken into consideration... The different like parts of this curve are

thus not joined to each other through any law of continuity, and it is only by the descrip-

tion that they are joined together. For this reason it is impossible that all this curve

should be comprised in any equation, unless perchance the figure AMBP be such that

its natural continuation entails all these repeated parts; and this is the case when the

figure AMB is Tayion’s sine curve or a mixture of such curves according to Mr. Brr-

NOULLI*). This is also, according to all appearances, the reason that Messrs. BERNOULLI

and p’ALEMBERT have believed the problem soluble in these cases only. But the manner

in which I have just carried out the solution shows that it is not necessary for the directing

curve to be expressed by any equation, and the shapeof the curveis itself enough to let us

 

1) §§ 29—30 and §§ 36—37 of E213, cited below, p. 259. Cf. also §§ 4—5 of E305, summarized

on pp. XLI—XLVof my introduction to L. EuLERI Opera omnia IT 18.

2) Evuumr is here referring to the work of BERNOULLI described in § 36, below.
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infer the motion of the string, without subjecting it to calculation. I will makeit plain also

that the motion is not the less regular [z. e. periodic] than if the initial shape were a sine

curve, and thus the regularity of the motion cannot be alleged in favor of the sine curves

to the exclusion of all others, as Mr. BERNOULLI seemsto claim.”’

[Thus Ever uses “equation”? as does D’ALEMBERT, but while “function” means

‘continuous function” for D’ALEMBERT, for EuLER “function” signifies a possibly “‘dis-

continuous” function. In the applications to the vibrating string, it is clear from every one

of the many examples and discussions given by EULER that for him a “function” is what

we now call a continuous function with piecewise continuous slope and curvature’). When

p’ALEMBERT writes y — /(z), he thinks always of an analytical expression, while EULER

by y=f(x) means a curve given graphically.] As EULER was to emphasize in his later

publications, his construction of the entire solution from the given initial shape and velo-

city, being purely geometrical, requires no calculation whatever. Given the initia] shape for

O0<2x<l, “one repeats it in the reversed situation on each side. .., and one conceives

the continual repetition of this curve in each direction to infinity according to this same

law (Figure 81). Then, if this curve is used to represent the functions found, after the

time ¢ has passed the ordinate that will answer to the abscissa x in the string in vibration

will be

(268A) y = 4f(x + ct) + df(e — et) .”
 

1) H.g., reading § 5 and § 6 of E317 (cited below, p. 282) shows that EuLER regards an “abso-

lutely arbitrary function” and “any curve..., irregular or traced at will” as meaning the same. See

also E322, “De usu functtonum discontinuarum in analyst,” Novi comm.acad. sci. Petrop. 11 (1765),

67-102 (1767) = Opera omnia I 28, 74—-91 (Presentation dates: 9 December 1762, 23 May 1763);

in § 3, Evrmr tells what he means by “discontinuous functions’: ‘“... their several parts do not

belong to one another, but rathor ava detormined by no certain equation . . . Also to be included are the

lines commonly called ‘inixed', whore parts cut off from various curved lines are joined together, or

parts of the sameline are united in a different way,” e.g. as in a polygonalline. “And thus even if

each part is contained in 4 certain equation, there is not a single equation for the whole extent...”

In § 6 of E339 (cited below, p. 283), HULER’s defense of “infinitely small errors” obviously presupposes

piecewise smooth functions. Indeed, precise definitions were lacking. That today mathematicians easily

see the need for precise definitions (though in the natural sciences, such as physics, this need is felt

scarcely if at all), does not relieve the historian of the obligation to infer the sense from the use, just as

much for one term as for another.

Here the usual acuteness of BURKHARDT lapses: While correctly inferring the meaning of “‘con-

tinuous’’, he fails to do so for “function” and instead joins thehistorical tradition in selecting EULER

as the scapegoat of the century, to be reproached for applying the calculus to “arbitrary” functions

(§ 6 of op cit., p. 11). It is to be remarked that, in contrast to D’ALEMBERT’s confusion, no error

results from HULER’s failure to supply precise definitions. (Cf. also my Introduction to L. EuLER1 Opera

omnia II 18, LXI—LXII.)

23—25



248 SMALL VIBRATIONS OF A STRING
 

EULER is to explain this construction again and again in succeeding papers, [but never-

theless the acoustical literature attributes it to THomas Youne}?).

While the difference between EULER’s view and D’ALEMBERT’s might seem a matter

of pure mathematics, in fact it is the very opposite. Todayit is plain that the phenomenon

of wave motion contradicts Lereniz’s law. This was surely not obvious to Newtondespite his

enormous physical insight, nor to any other early physicist ; rather, it is a discovery of

EULER, by purely mathematical means. The differential equation (251) certainly has solu-

tions that are not analytic; p’ALEMBERT’s formula (257), as EULER interprets it, gives

them at will. If (251) is the entire statement of the physical principle governing the motion

of the vibrating string, then it follows that non-analytic functions occur in the solutions

of physical problems.Since to this everyone today agrees without question, it is now hard

to understand that EvLir’s refutation of LerBniz’s law wasthe greatest advance in scientific

methodology”) in the entire century. Both EvuLER and p’ALEMBERT realized immediately

what was at issue in the otherwise rather tedious problem of the vibrating string. This is

the only scientific reason for the sharpness of the controversy that EULER and D’ALEMBERT

were to carry on until their deaths at the end of the century.

EULER’s first memoir contains other results of value.] First, EvLER disposes of the

old error®) of Tayxor, recently criticized by p’ALEMBERT [but perhapsstill shared by
 

1) £. 9g. RaYLEIGH, who gives an obscure explanation in §§ 145—147 of The theory of sound, 1877.

In § 396 of his Lectures (cited below, p. 403), Youna presents EULER’s methodin his own typical lan-

guage: ‘When a uniform and perfectly flexible chord, extended by a given weight, is inflected into any

form, differing little from a straight line, and then suffered to vibrate, it returns to its primitive state

in the time which would be occupied by a heavy body falling through a height whichis to the length of

thé chord as twice the weight of the chord to the tension; and the intermediate positions of each point

may be found by delineating theinitial figure, and repeating it in an inverted position below the absciss,

then taking, in the absciss, each way, a distance proportionate to the time, and the half sum of the

corresponding ordinates will indicate the place of the point at the expiration of that time.” In Youna’s

proof, which is incredibly elaborate, ‘it may easily be conceived” that a sum of sines may ‘“‘approxi-

Inate infinitely near to any given figure.”

2) It was unanimously opposed in 1750. By 1810 it was unanimously accepted. See below, p, 295.

It is easior to understand the initial opposition to “‘discontinuous’’ functions when werecall that the

solutions of ordinary linear differential systems with analytic coefficients are analytic functions. No

boundary condition can introduce singularities. Thus all the functions arising in the older type of

mechanical problem, governed by ordinary differential equations, are indeed ‘‘continuous’’, so that it

was most natural, in 1750, to expect that the occurrence of singularities was determined by thediffer-

ential equation itself. But in so simple a differential equation as uz = 0, an equation with constant

coefficients, the general solution is u = F(y), where £ is an absolutely arbitrary function, about which

the differential equation gives no information whatever, while boundary conditions may introduce any

sort of singularity. Amongall savants of the eighteenth century, only EULER grasped this fundamental

truth and understood some aspects of its meaning for physical problems.

3) That EvLEr had shared this error on 17 March 1747 is shown byhis letter to Cramer of that
date.
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DANIEL BERNOULLI], that an initially complex vibration will settle with time into a sinus-

oidal one. Indeed, ‘“...if one single vibration conforms to this rule, so must all the

following ..., and vice versa, by the state of the following ones one may concludethedis-

position of those that preceded. Therefore, if the following vibrations are regular,it cannot

be that the preceding ones haveviolated this rule ; whenceit is plain that if the first vibra-

tion wereirregular, the following ones could never reach a perfect regularity. But thefirst

vibration depends upon our choice, since before letting go of the string we maygiveit any

shape we choose.” This is borne out by the explicit solution.

From (264), and (266) Ever observes that all possible motions of the string are

periodic in tame) : “*. . . whatever be the shape of the vibrating string, the vibrations will

not fail to be rather regular, for when we put ct = 21, the string returnstoits first con-

dition...’ Thus an all cases the period is given by Taytor’s formula (73), ‘just as if it

executed its vibrations according to the law of Taytor.”’ Moreover, if the initial shape is

symmetrical about its middle and if V = 0, then the string occupies the straight line

y = 0 in the middle of each vibration ; thus sinusoidal forms are not the only ones having

this property [assumed as the basis of the older investigations of oscillating systems, cf.

§§ 13—14 above].

Even though the period in general does not depend on theinitial shape, “nevertheless

there are singular cases in which the timeof vibration can be reduced to thehalf, the third,

the fourth, or even to any aliquot part of the [fundamental period].” If the string “‘is

curvedinitially in such a way as to consist in two parts . . . perfectly like and equal to one

another, it will then execute its vibrations as if it were only half as long, and consequently

the vibrations will then be twice as rapid. In the same way, if the initial shape has three

like and equalparts . . ., the string will then vibrate as if its length were onethird as great,
 

1) In § XX of his original paper, D’ALEMBERT had comeveryclose to this result, asking “‘If one

wishes to know when will be the times when thestring is rectilinear ...,’’ and concluding that ‘“‘the
string will assume a rectilinear form after each time ¢ that contains a certain numberof times exactly

the time 1Va/T.”’ While the general proof of the periodicity and calculation of the period thuslies

within his hands, D’ALEMBERT goes no further and seems not to see the meaning or importance of the

question until after EULER’s paper had appeared. In § III of his paper of 1750, cited above, p. 241,

D’ALEMBERT, after calling attention to the passage we have just quoted, writes, “this equation will

hold, at any rate, if the shape of the string is included in the general equation I determined in my

memoir. It is even probable that, more generally, whatever shape the string takes on, the time of one

vibration will always be the same; this is what experience seems to show; but it would be difficult,

perhaps impossible, to proveit rigorously from theory.” Since the inferenceis so straightforward from

the equations, D’ALEMBERT’s doubt must be interpreted as relative to its generality (“rigor’’), since this

may be no greater than the generality of the solution, which D’ALEMBERT always contests.

However, DIDEROT wrote in 1748 (p. 21 of op. cit. ante, p. 242), “From a memoir which Mr.

Dp’ALEMBERT has sent to the Academy of Berlin, one infers’’ that the time of a vibration is always

the same, ‘“‘whatever shape be assumed bythestring.”

27
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and each vibration will be three times shorter; .. . eéc... .” [Thus EuLER provestheexist-

ence of speczal solutions having frequencies », given by

(269) v, = ky, k = 2, 3,...,

and these solutions he characterizes correctly. While DANIEL BERNOULLI and EULER had

long known the simple modesfor the vibrating string, and BERNOULLI had described them

in words (above, pp. 158, 180), by a curious oversight no mathematical analysis had yet

been published. Thus EvLsris not only the first to obtain the proper frequencies on the basis

of the equations of motion, but also heis the first to publish any mathematical theory of the

overtonesof a string. Moreover, the present argument, unlike that based on considering one

simple mode at a time, shows rigorously that the frequency is kv, if and only i} there are

k —1 nodes. It is this, neither more nor less, that was shown by the experiments of

SAUVEUR (above, § 15), which are thus fully explained by Eutir’s theory?).]

Pursuing this idea, EULER takes up “‘some special cases when the curve... is con-

tinuous, with its parts connected by the law of continuity, so that its nature can be ex-

pressed by an equation.”’ Such a solution is

NIX cos nrmct

l J?

where EULER does not specify whether the sum befinite or infinite. Theinitial shape is then

  

(270) y = SU, sin

NIX

L

If there occurs only the term multiplied by W,, or by Y,, etc., the frequency is », 3, etc.

These are special cases of the motions having the frequencies », described above. [Thus

EULERis first to publish the formulae for the simple modes of a string and to observe that

these may be combined simultaneously with arbitrary amplitudes. While a few years

(271) Y = SY, sin

 

before he had obtained the general solution of a problem offinitely many degrees offreedom

by the similar formula (244), here he regards the solution (270) as only a special one.]

35. EULER’s “first principles of mechanics’? (1750). [Before facing the tempest

about to break, we must notice a research that will change the whole face of mechanics.

We have seen how the motion of flexible or elastic lines was studied on the basis of

special hypotheses, without the general equations of motion. Thus while the simple modes

and proper frequencies of small transverse vibration for an elastic rod, for example, had

been discovered and calculated correctly, the partial differential equation governing the

general vibration of a rod remained unknown, so that it was impossible to begin mathe-
 

1) There is nothing in any experimental result prior to 1800 that indicated specifically a simple

harmonic motion. Expressed in terms of harmonic analysis, the old experiments give no information

regarding the presence or absence of the higher overtones corresponding to the frequencies rkv, when

the observed frequency is k7,.
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matical treatment of the initial-value problem. Even for discrete constrained systems of

two or more degrees of freedom the problem of setting up the equations wasa difficult one,

to which muchliterature was devoted, and thefirst realization that ““NEwTon’s equations”

in rectangular Cartesian co-ordinate suffice to obtain the equations of motion appears in

EULER’s papers of 1744—1748 (above, §§ 30—31). EULER himself had obtained a partial

differential system for the continuous string only by a limit process from the discrete case,

and only in certain corollaries rather than in the basic equations (above, pp. 226—228).

In the mechanics of fluids it was just the same!). Thus when pD’ALEMBERT derived the

partial differential equation (251) for the string by simple application of TayLor’s long

known formula for the restoring force to NEwron’s second law, it must have had a sen-

sational effect 7).

Wemayjustly wonderthat it took more than sixty years for so simple an extension of

NerwTon’s ideas, but the literature of mechanics does not permit us to doubt that it did.

As often happensin the history of science, the simple ideas are the hardest to achieve;

simplicity does not come of itself but must be created. EULER’s researches had moved

Slowly closer to the general principle of linear momentum, and D’ALEMBERT’s work on the

string, following upon JoHN BERNOULLI’s formulation of hydraulics*), must have madeit

finally obvious to him.] EULER’s Discovery of a new principle of mechanics) sets down as

the axiom which “includes all the laws of mechanics” the momentum principle in the now

familiar form

da d?y d?z

 

1) Cf. pp. XLII—XLIII of my Introduction to L. EvutEer1 Opera omnia IT 12.

2) His earlier derivation of (157F), however, appears to have escaped notice prior to the present

study.

3) P. XXXVIof op. cit. in footnote 1. EuLer’s own first uses of the momentum principle to
derive differential equations of motion all yield only ordinary differential equations:

1, Linked systems of n degrees of freedom, from 1744 (cf. §§ 30—81, above).

2. Hydraulics, from 1749 (cf. pp. XLIV—XLV of the work cited in footnote 1).

4) E177, “Découverte @un nouveau principe de mécanique,” Hist. acad. sci. Berlin [6] (1750),

185-—217 (1752) = Opera omnia II 5, Presentation date: 3 September 1750.

The importanceof this paperis reflected in the English extract, 177A, “‘Of the general and funda-

mental principles of all mechanics, wherein all other principles relative to the motion of solids or fluids

should be established, by M. Huumr, extracted from the last Berlin Memoirs,” Gentleman’s Mag. 24,

6—7 (1754). In this miscellaneous magazine, the contents of which range from heraldry to midwifery,

the reviewer translates EULER’s work into the notation of fluxions and explains the units used. We are

surprised to find understanding unmixed with the sarcasm usually directed toward Continental efforts

by English writers of the period: ‘‘Consequently the principle here laid down comprisesin itself all the

principles which can contribute td the knowledge of the motion of all bodies, of what nature soever

they be.”
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where F is the total static force acting upon the body of mass M, and whereit is stated

explicitly that in a continuous body M and are to be replaced by differential elements

dM and dF.

[The expression of the laws of motion in rectangular Cartesian co-ordinates is also of

the greatest importance. Today this possibility is so obvious that many scientists seem

to believe that Newton himself used Cartesian co-ordinates, but of course this is not so,]

and LAGRANGE,in 1788 still fairly close to the discovery, after describing the intrinsic

resolution always used by Newton wrote!) ‘‘Nevertheless, it is much simpler to refer

the motion of the body to directions fixed in space.” After stating (272) in words, he

added, “‘this manner of determining the motion of a body impelled by arbitrary acceler-

ating forces is by virtue of its simplicity preferable to all others. It seems that MAcLAURIN

was thefirst to employ it, in his Treatise of Fluxions, printed in 1742; now it is universally

adopted.” [The attribution to MAacLAuRINis false, however?); the method wasfirst used

by JoHN BERNOULLI (above, pp. 184—185) and was developed in EULER’s paperson special

systems having many degrees of freedom (above, §§ 30—-31). The importance of the use

of Cartesian co-ordinates lies deeper than in mere simplicity; in these co-ordinates the

addition of vectors located at different points is so natural as to become customary at

 

As we have seen, EULER’s first use of (272) for mass-points was in 1744, somewhat foreshadowed

by JoHN BERNOULLI’s work of 1742. So far as I know, the earliest statement of (272) as a general

principle for mass-points is given in §18 of E112, “Recherches sur le mouvement des corps célestes

en général,”” Mém. acad. sci. Berlin [3] (1747), 93—-143 (1749) = Opera omnia II 25, 1—44. The

date of this work is 8 June 1747. In § 22 EuLEr explains that the novelty 1s not the principle itself but

the fact that it is general: ““The foundation of this lemmais nothing else than the known principle of

mechanics, du = pdt, where p is the accelerating power and ~w is the velocity... But somereflexion

is necessary before one can see that this principle holds equally for each partial motion into which

the true motion is thought of as reduced. Moreover, this lemma includes all the principles ordinarily

weed in the deturmination of curvilincar motions.”

Bvuunn’s statement is misleading in its modesty. All of Newron’s brilliant work on the prob-
lem of three bodies was done by the aid of inequalities, groping approximations, and physical insight

alone, without the equations of motion. To get results by such meansrequired the genius of a NEWTON.

His disciples, who might reasonably have been expected to build upon his foundation, did not raise

the structure an inch higher. Real further progress came only after the equations of motion had

been discovered.

1) Méchanique Analitique, Seconde Partie, Section Premiére.

2) In the book of MACLAURIN,cited above, p. 150, is neither any general statement of the laws

of mechanics nor any example formulated in Cartesian co-ordinates. The whole bookis a defense of

NEWwrToNn’s views; thusit is not surprizing that in order to find the center of oscillation, which NEWTON

never treated, MACLAURIN does not use any of the ideas of the Basel school or of D’ALEMBERT but,

in effect, reverts to the special considerations of HUYGENS.
The reference is one of the rare cases in which LAGRANGE’s reluctance to cite EULER carried him

to a flat mis-statemont; it has beon repeated again and again in literature on the history of mechanics.
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once, and the possibility of performing this addition lies at the heart of classical the

conception of space-time?).]

Since the statical forces were already calculated for a variety of mechanical systems,

the momentum principle (272) made it possible for EULER to write down the corresponding

partial differential equations at once. From this point on*) EULER discardsall the special

mechanical axioms used in his earlier works, the reader of which has grown accustomed to

expecting at the head of each a regretful admission that “the principles of mechanics’”’

or the “‘principles of mechanics and the science of analysis’’ are not sufficient to determine

the motion in general ; from now on it is to be only “‘want of analysis’ that holds up the

complete solution. Solely*) by “adroit” application of the momentum principle (272),

which he calls “the first principles of mechanics,’’ from now on EULER is to obtain the

general equations governing each mechanical system he treats. [EZuLER’s methodis the one

used oftenest today. One interpretation of (272) is usually called ‘‘p’ALEMBERT’s prin-

ciple” :] If a body of mass M may be in equilibrium under the system of forces F, then to

obtain tts equations of motion it suffices to replace F by F— MA, where Ais the acceleration

of the material point on which F acts*). This form is often used by EuLEr.
 

1) Consider, for example, the steps in reaching a general view of the motion of the center of

mass of a system.

In Corollary IIII to the Laws of Motion in op.cit. ante, p. 56, NEwron wrote in 1687, “‘The

common center of gravity does not alter its state of motion or rest by the actions of the bodies among

themselves; and therefore the common center of gravity of all bodies acting upon each other (ex-

eluding external actions and impediments) is either at rest or moves uniformly in a right line.’ The

long and involved proof, not mentioning constraints, demonstrates much less than is asserted.

MACLAURIN in § 511 of op. cit. ante, p. 150, also gives no real proof at all (1742), but his wording

is of interest: ‘‘If there was any action without an equal and contrary reaction, the state of the system

would be affected by it. And the equality of these being constantly confirmed by experience,it is

not without ground that it is held to be a general law...”

The restricted nature of p’ALEMBERT’s statements (1743) has been noted above in footnote I,

p- 188. Hais just, however, and so is LaGranGkE(loc.cit., p. 252), in claiming that he has proved more

than Newron did.
Once the laws of mechanics are stated in the form (272), however, discovery of the properties

of the total momentum, moment of momentum, and kinetic energy for any system of mass-points

becomestrivial, as any beginner knows. We have remarked in §§ 30—31 upon the easy occurrence

of the corresponding integrals in EULER’s papers of 1744—1748.

2) On this basis, EULER’s papers and even short notes on problems of motion can always be dated

at a glance as before or after 1750.

3) Supplemented as needful by the principle of moment of momentum,already used in EULER’s

work on linked bars (§ 30, above) and later to be given a general form by him. Cf. C. TRUESDELL,

“Neuere Anschauungen tiber die Geschichte der aligemeinen Mechanik,” Z. angew. Math. Mech. 38,

148—157 (1958).

4) As is evident from the existence of frictional forces, this principle is false in general, though

sufficient for “‘perfect”’ materials.
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While most of EULER’s immediate effort is directed toward rigid bodies and perfect

fluids, from his notebooks we know that by use of (39) he at once obtained the equations

(227) (228) of finite motion for a flexible string+) ; by use of old results giving the restoring

forces (above, pp. 160—168), the differential equations for a hanging cord loaded by twoor

three weights?); by use of (130), the partial differential equation for small transverse

oscillations of an elastic rod§):

1 dy dty
(273) aTGat 9

These results he did not publish until many yearslater.

36. DANIEL BERNOULLI’s memoirs on the composition of simple modes (1753).

[Infuriated by the papers of pD’ALEMBERT and EULER on the vibrating string, DANIEL

BERNOULLI hastened to describe and publish the ideas he had had for many years‘).]

His Reflections and enlightenments on the new vibrations of strings presented in the memoirs of
 

1) P. 320 of EH 5. Here EuLER attempts to derive a differential equation for the slope. As we

have shown, EULER’s published system (222) is equivalent.

2) Pp. 174 and 176—178 of EH6.

3) P. 175 of EH6; also p. 80 of EH8.

4) DANIEL BERNOULLI’s first reaction to D’ALEMBERT’s pieceis given in his letter of 26 January

1750 to Euuer: “I cannot grasp what Mr. p’ALEMBERT intends to say... with his infinitely many

isochronous vibrations and curvatures... He always stays in the abstract and nevergives a specific

example. I should like to know how he can produce from a string whose fundamental soundis 1 any

other sound than 1, namely 2, 3, 4 etc. He has tried to ape you; but in his production onesees his taste

andlittle reality.”’ (For substantiation of BERNOULLI’s specific criticism, note what we havesaid, above,

p. 245, in regard to D’ALEMBERT’s article in the Encyclopaedia.)

By the time EULER’s paper appeared, there had been a break between him and BERNOULLI. Ina

letter of 7 October 1753, probably addressed to JouHN III BERNOULLI and intended for EULER, DANIEL

BERNOULLI writes “I assure Professor EULER of my respects and my perfect esteem. After having

read all that he and Mr. p’ALEMBERT have written in the Memoirs of Berlin concerning the new vibra-

tions of strings, I have prepared ...a memoir which, in my opinion, can explain everything difficult

or in any way mysteriousin this subject, makingit in fact very simple. If Mr. EuLER has not lost his

taste for these researches, I can have my memoir copied and sent to him...I should like to know

also what has been printed up to now in the Petersburg memoirs. I have twelve volumesof the old and

one of the new. I am surprised notyet to find therein mypieces on the vibrations and soundsof springy

bands, while those who have treated this subject after me have published their memoirs long ago. I beg

that Mr. EULER inform meifmy two treatises, which cost me such thought and trouble, will be printed

in the Petersburg memoirs or not. In the latter case I will send them to Paris or to Berlin.”

The pieces of his own to which Brrnovtti refers are those printed in vol. 13, whose title page

bears the date 1751. The reflection on EULER can refer only to the Additamentwm, published in 1744;

as we haveseen above, p. 200, it was at BERNOULLI’s suggestion that EULER added this material to the

Methodus Inveniendi. EULER’s first treatment, E40, had indeed appeared in 1740, but it had been

received in 1735, while DaNniEL BERNOULLI’s papers were not sent in until 1742. For details see § 23

above.
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the academy for 1747 and 17481) begin by recalling that Taytor “proved”’ the form of a

string to be a sine curve; “also, in my opinion,it is only in this form that the vibrations

may becomeregular, simple, and isochrone . .. With this idea, which I have always had,

I could only be surprised to see in the memoirs for 1747 and 1748 an infinity of other cur-

vatures [given] as endowed with the same property ; nothing less than the great names of

Messrs. D’ALEMBERT and EULER, whom I could not suspect of any inadvertence, forced me

to investigate whether there could not be some equivocation in the addition of all these

curves to that of Mr. TaAyLor, and in what sense they could be admitted. I saw at once

that one could admit this multitude of curves only in a sense altogether improper. I do not

the less admire the calculations of Messrs. D-ALEMBERT and EULER, which certainly in-

clude what is most profound and most advanced in all of analysis, but which show at the

same time that an abstract analysis, if heeded without any synthetic examination of the

question proposed, is more likely to surprise than enlighten. It seems to me that giving

attention to the nature of the vibrations of strings suffices to foresee without any calcu-

lation all that these great geometers have found by the most difficult and abstract calcula-

tions that the analytic mind has yet conceived.” [It is in this wordy sarcasm that the whole

memoir is presented.|

Brnnovu1 attributes to TayLor the whole sequence of simple modes and proper

frequencies for a string. [While TayLor might have derived these, in fact he did not say a

word about them ; that DANIEL BERNOULLI himself has had these results for a long timeis

shown by the passages quoted above, pp. 158, 180.] These modes, illustrated by figures,

are “not only an abstract truth” but also can be produced experimentally. “This infinite

multiplicity of vibrations manifests itself in all sounding bodies, whatever their nature.”’

The different [harmonic] sounds of horns, trumpets, and traverse flutes follow this same

progression I, 2, 5, ¢,..., but the progression is different for other bodies ; for a closed pipe

the progression is 1, 8, 5, 7, .... It is also possible that the sounds have “such a proportion

as cannot be expressed by any formula in finite quantities,” as is the case for ‘“‘the sounds,

which I calculated formerly *), that can be produced in a steel rod struck by light blows .. .

“My conclusion is that every sonorous body contains potentially an infinity of sounds

and an infinity of corresponding ways of making its regular vibrations; finally, that in each

different kind of vibration the bendings of the parts of the sonorous body occur differ-
 

1) “Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémotres

de l’académie de 1747 & 1748,” Hist. acad. Berlin [9] (1753), 147—172 (1755). This paper andits sequel

were received in Berlin before 25 April 1754, the date of EULER’s written comments cited below,p. 259.

2) “That was a new problem, which required much circumspection; after having solved it, I

proposed it to Mr. EULER, who gavea solution agreeing perfectly with mine, thoughat first incomplete

in that he hadleft out half of the possible sounds; I told him about this, and he has corrected it in the

Leipzig Proceedings.”’ Such is the level to which DanrEL BERNOULLI has fallen.

II
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ently ...” The string is not restricted to some one simple mode, “but also it can make a

mixture of all these vibrations with all possible combinations ; and moreoverall these new

curves and new kinds of vibration given by Messrs. D’ALEMBERT and EULER are absolutely

nothing else than a mixture of several kinds of TayLor’s vibrations. If that is true, I

could not approve the conglomeration of all these new curves, since then... the string

would not emit one and only one tone, but several at once.” Such a vibration one could not

call isochrone. The existence of harmonic sounds heard simultaneously with the fundamen-

tal is a proof of the existence of these compound vibrations. “Tf one holds a steel rod in the

middle and strikes it, one hears at the same time a confused mixture of several sounds, .. .

extremely dissonant, . . . a contest of vibrations that never stop or begin at the same time

except through a great chance. Thus . . . the harmonyof sounds heard simultaneously in a

sounding bodyis not essential to the matter and should not serve as a principle for musical

systems ... What proves best that the various undulations of the air do not interfere with

one anotheris that at a concert one hearsall the parts distinctly .. .”

BERNOULLIillustrates the type of forms that result by superposition of two simple

modes. [There are also repetitions of earlier work!) and quibbles over the usage of “‘iso-

chrone’’. |

BERNOULLI then attempts a general proof of the principle of superposition of iso-

chronousoscillations. 1°, for a motion on a line to be isochronous, the force must be pro-

portional to the distance from a fixed point. 2°, two such forces superposed produce two

such motions along different lines. [There is a germ of truth in the idea, but the concept of

the problem is far from sufficient. There follow pages of calculation leading to nothing.]

RERNOULLI considersall the results of D’ALEMBERT and EULER explained by his method;

if their method ‘‘is much more difficult than mine, I admire but the more the superiority

of their genius. As for the question whether the new vibrations are really . . . simple and

isochrone..., or rather are a mixture of several different coexistant vibrations...,

I have spoken of this only so as better to explain the nature of these vibrations, being far

removedfromraising an issue with such great men concerning the meaningofcertain terms.”

Immediately following is his second memoir, On the mixture of several kinds of simple

isochronous vibrations which can coexist in the same system of bodies®). The beginning cal-

culates the simple modesof the weighted string by the old static method [due essentially to

 

1) In § VII Bernovtzxtstill “proves” the principle of superposition by saying that since the am-

plitude of one modeis assumed small, the string is virtually straight, and thus another mode may occur

as a vibration about equilibrium. In § XV he again expresses the opinion that the higher modes are

more rapidly damped.

2) “Sur le mélange de plusieurs especes de vibrations simples isochrones, qui peuvent coexister dans

un méme systéme de corps,” Hist. acad. sci. Borlin [8] (1753), 173—196 (1755).
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JOHN BERNOULLI!)]. These modesare then combinedsoas to fit arbitrary initial displace-

ments with zero initial velocities. BERNOULLI considers these results as showing that the

compoundoscillations are not “regular”. While BERNOULLI asserts that “...had any

attention been paid to our method, it would have been seen that our theory applies to any

numberof bodies,’ he here considers only the cases of two and three masses.

‘What I have just said on the nature of the vibrations of bodies attached to a stretched

string I do not hesitate to extend to all small reciprocal motions that can occur in nature,

providing these ... are set up by a permanent cause. For every body that is somewhat

displaced from its point of rest will tend toward that point with a force proportional to the

small distance from the point of rest.’’ The numberof kinds of “simple and regular vibra-

tions’ equals the number of bodies in the system. “All these simple and special vibrations

do not hinder one another at all, and they will subsist as long as the primitive and per-

manent cause of these vibrations persists . . .”’ This is “‘a new truth of mechanical physics.”’

The paper closes by using the simple modes determined long agoso as to calculate the

motion of a hanging cord loaded by two weights and released from an arbitrary displaced

configuration. The general motion is of course not periodic.

BERNOULLI’s views are expressed somewhat moreclearly in a letter”). Referring to the

trigonometrical series (271), he writes, “But cannot one say that this equation includes all

possible curves? By means of the arbitrary constants ...can we not pass the curve

through as many assigned points as we like? Has an equation of this sort less extent than

the indefinite equation y = «x + fa? + yx> + etc.? On this basis have you not proved

your beautiful theorem that every curve has the property in question? [What theorem?]

Thus to solve your problom : Given any initial shape, to find the following motion, I say

that we must determine the quantities Y,, so as to render our indefinite equation the same

as the given curve, and one will have simultaneously the special isochrone vibrations of
 

1) Daninn Berwovrtt is barely correct in saying in § If “I do not remember having seen the solu.

tion of this problem, but if any one has given it, I beheve that his solution will have consisted only in an

analytic expression, very far from letting us know the true nature of these motions; I believe even less

that anyone has ever solved this problem when there are arbitrarily many bodies spaced at arbitrary

distances... .’”’ DANIEL BERNOULLI generalizes JOHN BERNOULLI’s equation (79) to the case of unequal

weights and unequal spacing, and for the cases of two and three weights he determinesall modes. As

for the ‘‘analytic expression’’, EULER’s general differential equations (209) were in print, as were his

general solutions for the mathematically analogous problem of longitudinalelastic vibration of 1, 2, 3,

and 4 not necessarily equal masses, given in §§ 3—29 of E136, summarized above in § 31 and in print

when BERNOULLI wrote.

2) Undated, published by Fuss, op.cit. ante, p. 165, 2, pp. 653—655, probably addressed to

JOHN III BERNOULLI and intended for Eutsr. Fuss places this letter between 1754 and 1766; it seems

to have been written after the two papers had been received in Berlin and before DANIEL BERNOULLI

had seen EULER’s comments printed in 1755; thus it dates from 1754—1755.

XIII, XVIII

XIV—XVII
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which the desired motion is composed. If, by my method, I have been able to. . deter-

mine the motion of a stretched thread loaded at arbitrary points by any numberof weights

having arbitrary masses, it seems to me that this problem has greater extent than yours.

“But it is not in this kind of abstract question that I consider the usefulness of my new

theory to lie. I admire more the physical treasure which was hidden, that natural motions

which seem subject to no law may be reduced to the simple isochrone motions which it

seems to me nature uses in most of its operations. [ am convinced even that the inequa-

lities in the motions of the heavenly bodies consist only in two, three, or more simple

reciprocal motions of different duration and excursion, by which the bodies seem to be

alternatively accelerated or retarded and which can coexist in one and the same body

while it moves subject to KEPLER’s laws; for small forces which are sometimespositive and

sometimes negative can hardly produce anything but reciprocal and isochronous motions.

Finally I remark in respect to the shape of a stretched string, at least when it is given [as]

a curve immediately included [in (271)], that each element of the curve has to make an in-

finity ofinfinitely small vibrations,all different among themselves, during a total vibration.”’

[Had BEeRNOULLI’s two papers been published when their contents were conceived,

v.¢. in 17384—1789, they would have earned a great place in the history of mathematics,

especially had they been expressed in the brief style of BERNOULLI’sfirst note on the hang-

ing chain. His boasts of what he can do without calculation are in some measure just but

would be more convincing if he had refrained from adding pages of calculation to no real

end. Brrnovutt has learned nothing in the past decade. That by superposing simple modes

ha ean hack his way to a solution of the initial value problem for systems of two or three

degrees of freedom 1s by now scarcely illuminating. To justify his viewpoint, what is

needed is explicit, formal solutions to the initial value problem for the general weighted

string and for the continuous string by superposition of harmonic oscillations, along with

some measure of analytical rigor, and from both these endshe is hopelessly distant.

The “abstract” mathematics about which BERNOULLI is so sarcastic consists in (1)

the concept of partial derivative, (2) the concept of real function of a real variable. These

he now and henceforth refuses to recognize. Hence all problems of continuum mechanics

based on the governing partial differential equations are forever closed to him. It follows

a fortior: that proof of his ‘‘new truth of mechanical physics’is out of the question. Beyond

the heuristic but not compelling observation that for small displacements from equilibrium

the restoring forces are linear), the ‘“‘new truth” will have to remain for BERNOULLI an in-
 

1) Anything so general as the consequence that the governing partial differential equations are

of the form d2y
ae = linear expression in space derivatives

10 impossible within BERNOULLI’S mathematical limitations.
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dependentprinciple of physics rather than a demonstrated consequenceof the general laws

of mechanics.

The principle of superposition of small harmonic oscillations, indeed of great usefulness

in mechanics, is here stated in general for the first time. Granted that to BERNOULLI it

appears a physical rather than mathematical truth, we should expect some good examples

calculated approximately; e.g., an approximate determination of the amplitudes of the

first few harmonicsof string whoseinitial form is triangular. Of such an examplethereis no

hint ; rather, BreRNWouLLi’s laborious exact treatment of systems of two and three degrees

of freedom shows that his mathematical thinking did not tend toward practical examples.

With a clear and sound grasp of the experimental phenomena,he nevertheless failed to

bend even his own simple theoretical concepts toward experimentally realizable cases other

than those restricted to simple modesor to very simple systems.

Tt is no wonder that these papers, failing on the one hand to meet the mathematical

standards of 1750 and on the other hand to produce any new results that could be com-

pared with important experiments, found little response other than criticism.]

37. EULER’s second memoir (1754): the central importance of the partial differential

equation. Immediatcly following the two papers of BERNOULLI appear EULER’s Remarks

on the preceding memoirs*). [Although most of this somewhat testy reply to the criticisms

of p’ALEMBERT and BERNOULLI is but a reaffirmation, in clearer terms and with better

explanation, of HULER’s earlier stand, even in this there is value.] While in his first memoir

EULER had followed D’ALEMBERTin regarding the partial differential equation (251) as an

intermediate step, now, after the ‘first principles of mechanics?)”’ (above, § 35), he realizes

that in the partial differential equation lies the whole theory of the vibrating string. ‘See then

to what the problem of the motion of the string has been reduced.’’ We have only to find a

oulutiun y(w,¢) of (261) cubjoot ty appropriate boundary and initial conditions. Let us first

seek “all possible functions*)’’ satisfying (251). The special character of the solutions ob-
 

1) £213, “Remarques sur les mémoires précédens de M. BERNOULLI,” Hist. acad. sci. Berlin [9]

(1753), 196—222 (1755) = Opera omnia II 10, 232—254. Presentation date: 25 April 1754.

2) The derivation (§§ 17—18) of (251) is still incomplete, since EULER follows D’ALEMBERT in

assuming rather than proving that 7’ = const. In contrast to his earlier work (cf. § 20 above), EULER

now asserts (§§ 13—14) that the assumptions of small motion and perfect flexibility “‘are made only

for ease of calculation; for it is indeed possible to take into account the stiffness of the string and its

stretching during the motion, and to allow a finite magnitude to the vibrations; but one would arrive

at formulae so complicated as to allow no satisfactory conclusion to be drawn. It is not the principles

of mechanics that abandon us..., but rather analysis...”

In §§ 25—27 EULER gives a new methodof deriving (257); as D’ALEMBERT was to remark (below,

p. 274), it is faulty.

3) “This is the problem for which Mr. D’ALEMBERT wasthefirst to obtain the general solution;

22
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tained by earlier authors resulted from their having added unnecessary and restrictive

hypotheses, such as that the curvature shall be proportional to the displacement or that

the solution be “continuous’’.

Second, in this paper the equation (251) for the vibrating string first appears in the

notation of partial derivatives. [Generally in this history I pass over differences of notation,

preferring to use modern symbols so as to show most immediately the ideas of the creators.

Here, however, we must remarkthe difference between a notation that merely accumulates

different letters for the various quantities occurring, such as that employed not only by

Dp’ALEMBERT and others but also by EULER in all his previous treatments, and a notation

emphasizing the operations that are performed.] EULER realizes “the great utility in numer-

ous mechanical and hydrodynamic problems”afforded by the notation of partial differen-

tiation, and he gives an explanation of it, emphasizing the convenience resulting from

the commutability of partial derivatives.

‘There is no doubt that Mr. BERNOULLI has developed the part of physics concerning

the formation of sound infinitely better than had any other before him. Previous work. . .

stopped short at the mechanical determination of the motion ..., without looking suffi-

ciently into the nature of the sounds that can be produced from it. Despite the infinite

number of ways... found possible for a string to be set into vibration, it was not seen how

the samestring could emit at one time several different sounds; and it is to Mr. BERNOULLI

that we owe this happy explanation ...It is also plain that this beautiful idea is valid

also for all sorts of sounding bodies, and that a given body may emit simultaneously all the

different sounds which it can emit separately ...’’ BERNOULLI has shown all this on the

sole basis of TayLor’s researches. “He claims, disagreeing with Mr. D’ALEMBERT and me,

that the solution of Tay1or suffices to explain all motions that a string may take on. Thus

the curves a string assumes during its motion are always either simple sine curves or a

mixture of two or more such curves . . .’”’ If all forms of the string were expressed by (271),

the opinion of BERNOULLI would be correct. ‘“But, when the numberof terms. . . becomes

infinite, it then seems doubtful ... that one may say that the curve is composed of an

infinity of sine curves : The infinite number seems to destroy the nature of the composi-

 

tion... When the infinite equation is reducible to a finite one..., the equation itself

furnishes an idea and a construction much more simple...” #.g.,

-— &

(274) y= see IOI< I,
1 — « cos——

l

 

andit would be desirable to discover a method properfor solving othersimilar formulae. Such a method

would serve to solve a quantity of problems which one has been obliged to abandon up to now.”
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for which an infinite trigonometrical series is known. “‘This string indeed should emit simul-

taneously an infinity of sounds, the highest of which will become more and more faint, but

the equation offers us a much simpler idea of this curve than if we were to say that it is

composed of an infinity of TAYLOR’s sine curves.”

There follows a discussion of the generality of the functions represented by trigono-

metric series. EULER sees that BERNOULLI’s solution would be justified af every function

could be represented by an infinite trigonometric series. This EULER regards as untrue ; [then

comes indeed a great rarity in EULER’s papers, namely, a wholly fallacious argument.]

In an attempt to show that (271) is not sufficiently general, EULER [falls into D-ALEMBERT’s

error of] treating as relevant the nature of the function that (271) may or may not repre-

sent outside the range (0, J). [His remarks makeit clear that he has no idea that what we

now call a non-analytic function may be represented in a finite range by a trigonometric

series.

Returning to safer ground,] EULER says that his own solution “is not limited in any

respect!) ...I do not expect that Mr. D’ALEMBERT will say that... the motion... does

not follow any law ; it will then be determinable by its nature”), and if my solutionis false,

no one will be more capable of supplanting it then Mr. p’ALEMBERThimself.”’

If P.Q. R are solutions of (251), so also is «oP + BQ + yh, where o«, f, y are arbi-

trary constants. “...and this same composition holds also in all sorts of vibrations, pro-

vided they are infinitely small, since the equation that expresses the motion has only the

dimension onein all its terms. Thusit is here that we must look for the true foundation of

Mr. BeRNovLui’s solution.” [To Brernovuiut, the principle of superposition is a law of

physics, formulated from experience ; to EULER,it is theorem, easily proved in all cases when

the governing differential equation is linear®).]

Ever shows that all effects predicted by BERNOULLI, such as the combination of

tones, follow equally well from (257). BERNOULLI claimed that for isochronous vibration

it is necessary that the restoring force be proportional to the displacement. This yields one

of Tay1or’s sine curves. If two are present, the force is no longer proportional to the dis-

placement. In any case, this is an arbitrary hypothesis, and other forces might be possible.

D’ALEMBERT hastened to attack BERNOULLI with a [vague and wordy] article in

 

1) ‘*... at least, I cannot find any fault in it, and no one has yet shown it to be insufficient. It is

indeed true that Mr. D’ALEMBERT, after having reproached mefor giving a solution not different from

his own, has asserted, but without supplying the least proof, that my solution does not extend toall

possible forms that the string may be given initially...”

2) Cf. also §§ 4—5 of E322, cited above, p. 247.

3) It is difficult to explain why EULER in his letter of 20 May 1760 to LAMBERT choosesto attri-

bute this result to LAGRANGE in the context of aerial propagation.
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the Encyclopaedia'). “In a string which performs its vibrations freely, we observe no other

nodes, or points absolutely at rest, except the ends.”’ J. e., he thinks that the small observed

motion of the nodes destroys the validity of BERNOULLI’s [and also EuLER’s]explanation

of the overtones. [This is to be refuted many years later by the experiments of M. Youne

(below, p. 294.]

DANIEL BERNOULLI published a reply in 17587). [Justly] he points to the generality of

his method [in principle]: “...my method may be used to determine the vibrations and

reciprocal motionsin all systems of bodies for which one can determine the simple vibra-

tions ; 7. e€., those such that all parts execute perfectly synchronous vibrations, each by

itself and according to the law of the simple pendulum.” Heasserts that by superposing

sine curves “one may cause thefinal curve to pass through as many given points as one

wishes and thus identify this curve with the one proposed, to any desired degree of pre-

cision,’’ [but he gives no idea how to adjust the coefficients, even approximately, nor does

he give any example. Instead,] he retreats to the finite) : “My method . .. is general and
 

1) Art. ‘“Fondamental’, vol. 7 (1757). For earlier Encyclopaedia articles of p’ALEMBERT, see

above, p. 245, footnote 3.

Having omitted all mention of overtones in his article on strings, he now states that a “body”

gives out not only its fundamental but also ‘“‘other sounds, which are, 1°, the octave above ...; 2°, the

twelfth and major seventeenth...’ He mentions no other overtones, nor is it clear whether he is

referring only to strings or also to other bodies. D’ALEMBERTgives no theory of overtones, but in addi-

tion to attacking BERNOULLI’s theory he uses much space explaining the view, held by most physicists

of the day, that the air is composedoflittle bodies having many degrees of spring.

2) ‘Lettre de Monsieur Daniew BeRnouutu, de lVAcadémie royale des sciences, @ M. CLAIRAUT

de la méme Académie, aw sujet des nouvelles découvertes faites sur les vibrations des cordes tendues,”

Journal des Scavans. March 1758, 157—166. In this rather nasty letter directed mainly against Huser,

BERNOULLI claims that to understandall, one need but study his two memoirs: “I say study, since the

gubject is too new and too ticklish to be grasped by a simple reading. I myself, having no love for

abstract and ticklish truths, which I see clearly are useless for knowing better the phenomena and

laws of nature, ...” efc. (p. 157). He makes a point of his priority for the hanging cord loaded by two

weights and for the transverse vibrations of a rod (pp. 157—158). He explains that “‘for a long time” he

shared the opinion of “‘the geometers’’ relative to “the bounds of human capacity’’: Motions other than

the simple modes were ‘‘entirely irregular and indeterminable...I perceived the terrible complexity

of such reciprocal motions, and I did not yet suspect that nature acts by laws so simple as those I have

subsequently observed, thus producing effects so complicated in appearance.’’ However, he goes on to

say that the coexistence of several modes in a vibrating rod, which he had observed sixteen to eighteen

years before, ‘“‘makes the foundation” of his two last papers (pp. 158—159). The letter closes with

sarcastically worded criticisms of EULER’s treatment, but these arise from BERNOULLI’s misunder-

standings.

3) Even in his treatment of the finite case he retreats, for instead of using the differential equa-

tions of motion he employs, doubtless deliberately, special principles appropriate to linearized motion,

which he speaks of as ‘‘a problem presenting itself so naturally that all the geometers must have thought

of it, yet no one hadsolved it” (pp. 160—161). In any case, BERNOULLI merely talks about the problem

Of the loaded string without really solving it (pp. 161—162). When it comesto fitting the initial con-
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exact, so long as only finite quantities are involved.’’ As he was to say later), “physical

beings cannot be composed of absolutely vanishing parts.”’ [While this statement, which

may be true, is encountered in physical circles even today, there is of course no reason to

consider a modelconsisting in equal and equally spaced punctual masses joined byrigid

massless links as nearer to physical matter than is a continuous string. Moreover,asis

nowadays obvious, use of discrete rather than continuous models usually complicates

rather than simplifies the mathematical problems.]

$8. LAGRANGE’S first memoir (1759): the explicit solution for the loaded string, and

a faulty passage to the limit. [By his entry into the controversy then occupying the prin-

cipal geometers of the age, a previously unknown young man, JosEPH-LovIs DE LA GRANGE

of Turin, acquired at once a fame which haslasted until today.] EULER’s solution in “‘abso-

lutely arbitrary’ functions LAGRANGE claims to establish without using differential or

integral calculus, simply by passing to the limit in the solution for the loadedstring. [Today

it is obvious such a passage to the limit, if correct, is valid only subject to hypotheses

essentially the same as those necessary to justify the direct use of appropriate differentia-

tions and integrations ; thus LAGRANGE’s claim cannot be valid. Nevertheless, a major part

of LAGRANGE’s reputation in mechanics rests upon this paper, cited in every biography or

description of his career*). This reputation is due partly to the brilliance of his algebraic
 

ditions, while he says he found “‘no difficulty”’ in making a trigonometric polynomialof degree 2, 3,..., 7
pass through I, 2,..., 6 equally spaced points, so that ‘“‘one sees clearly how this division could be

continued as far as desired’”’ (p. 165), he gives no example and noindication that he could really solve

the problem offinite interpolation.

1) Footnote to § 15 of “Recherches physiques, mécaniques et analytiques, sur le son et sur les tons

des tuyaux @orgues différement construits,’ Mém. acad. sci. Paris 1762, 431—-485 (1764). Here he speaks

also of his theorem on the coexistence of small oscillations, “by which I unravelled and explained

several... very paradoxical theorems, to which Messrs. D’ALEMBERT and EULER had been conducted

by a very clever and lofty theory, but at the same time too abstract or metaphysical for one to know

ita sorrect application and truco moaning.”

9) Virtually all of these derive from DrnamBReE’s ‘Notice sur la vie et les ouvrages de M. le Comte

J.-L. LAgnANGD,” Guvres de Lacranas 1, [IX—LI. This obituary falls distinctly into two parts. The

first deals with works DELAMBRE shows no evidence of knowing at first hand. This part is absolutely

without definite content; while it mentions particular studies, it does so in such general terms as to

yield only a sauce of mellifluous eulogy. EULER’s overgenerous letters of praise to LAGRANGE, men-

tioned on pp. XXXVII—XLI of my Introduction to volumeIT 138,are cited as if they were impartial

evaluations by a third party and are made the basis of DELAMBRE’s rhetorical elaboration. Referring

to LAGRANGE’s first memoir, DELAMBRE writes “‘... he establishes more solidly the theory of the mix-

ture of simple and regular vibrations of D. BERNOULLI; he showsthe limits within which this theory is

exact, and beyond which it becomes faulty; then he comes to the construction given by EULER, a

construction which is true, although its author arrived at it only by calculations not at all rigorous;

he answers the objections raised by D’ALEMBERT; he shows that whatever form is given to the string,

the duration of the vibrations will always be the same, a truth of experience which pD’ALEMBERT had
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manipulations, partly to the political circumstances that caused both D’ALEMBERT and

EULER to court his favor and to give to his work an immediate publicity which otherwise

it would scarcely have met. These personal factors, as well as the parts of the paper dealing

with the propagation of sound, I have assessed elsewhere?).]

In the introduction to his Researches on the nature and the propagation of sound?),

LAGRANGEclaims to treat the subject ‘‘as entirely new, without borrowing anything from

any who may havestudiedit previously.” In regard to the loaded string, “I then undertake

to solve this problem, where the analysis seems new in itself and interesting, since an in-

finite number of equations must be solved at once . . . I first consider . . . the case when the

number of bodies . . .is finite, and there I easily derive the whole theory of the mixture

of simple and regular vibrations, which Mr. DanrzL BERNOULLI found only by special and

indirect means. I then pass to the case of an infinite numberof bodies .. ., and after prov-

ing the insufficiency of the preceding theory for this case, I derive from my formulae the

same construction of the problem of the vibrating string that Mr. EULER hasgiven and

that has been so strongly contested by Mr. p’ALEMBERT. But more, I give this construc-

tion all the generality of which it is susceptible, and by the application I makeofit to musi-

cal strings I obtain a general and rigorous proof of that important truth of experience, that

whatever be the initial shape of the string, the duration of its oscillations is always the

Same®)....

“On this oeeasion I develop the theory of harmonic sounds resulting from one given

 

considered it very difficult or even impossible to prove...’ DELAMBRE goes on to describe how by

“thie amalyoio of the most transcondent kind” Lacrancr “appears at one blow... the equal of

NEWTON, TAYLOR, BERNOULLI, D’ALEMBERT, and EULER, as an arbiter who, to put an endto a difficult

struggle, shows each in what measure he is right and where wrong, judges them, reformulates [their

work], and gives to them the true solutions they have sought but failed to reach.’’ These smacks of

truth floating upon outright falsehood are repeated in one form or another in the histories of mathe-

matics. The detailed and impartial analysis of LAGRANGE’s paper given by BurKHaRpT, §§ 10—12 of

op. et, ante, p. 11, seems not to have been noticed by the historians.

The second part of DELAMBRE’Ss obituary, especially pp. XXVII—XXX, concerns LAGRANGE’s

work on celestial mechanics, which DELAMBRE seems to have studied at first hand. Here DELAMBRE

finds little to praise and muchto criticize in what he considers an excess of long formal calculation to

reach awkward results of doubtful accuracy.

1) Introduction to vol. II 12, p. CXIX; Introduction to vol. IT 18, pp. XXXV—XXXIX.

2) “Recherches sur la nature, et la propagation du son,” Misc. Taurin. 1,, I—X, 1—112 (1759) =

(Euvres 1, 39—148.

3) A footnote here cites the remark of D’ALEMBERT given in our footnote 1, p. 249 above;

LAGRANGE then adds, “I recount here these words of so great a geometer only to give an idea of the

difficulty of the problem I have solved.” In view of what is said in footnote 1, p. 249 above, and since

LaGranae has just claimed to establish EvLer’s form of the solution, from this boast we may con-

clude only that Lagnanes had not read Evupr’s memoir with care.
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string, and the samealso for wind instruments. Although these two theories have been put

forward already, the one by Mr. Sauveur and the other by Mr. EvuLzER, nevertheless I

believe [am thefirst who has derived themimmediatelyfrom analysis. [AgainLAGRANGE has

not read EULER’s papercarefully ; as we have seen above, pp. 249-250, EuLER’s theory of

overtones follows immediately and rigorously from the general solution. While LAGRANGE’s

demand for “‘immediate’”’ derivation strictly excludes DANIEL BERNOULLI’s work, heis

rudely unjust in overlooking the debt to DANIEL BERNOULLI’s manycalculations of simple

modes and proper frequencies for various mechanical systems, not only the two which he

studies but more particularly those considered in the pioneer researches of 1733—1742,

a decade including Lagranen’s date of birth.]

Despite these claims of originality, the formal developments begin with a derivation

of (235) for longitudinal motion of a loaded elastic string ; [LAGRANGE does not mention

any prior work on this problem, although EULER’s paper deriving (235) and solvingit for

the case of zero initial velocities was then nine years in print1).] There follows a derivation

of the same system for small transverse motion of a taut loaded string,[¢. e., the linearized

case Of EULER’s system (209), then eight years in print].

In a critique of the previous work on the solution of the continuous string?) LAGRANGE

writes, ‘‘No one could doubt that in algebraic functionsall their different values are joined

together by the law of continuity ; thus it seems indubitable that conclusions drawn from

the rules of differential and integral calculus are always illegitimate ... when this law is

not assumed. Thus it follows that since Mr. EvLER’s construction is derived directly from

integration of the given differential equation, by its very nature this construction is appli-

cable only to continuous curves...’ [On no very definite grounds,] LAGRANGE convinces

himself that the only way to establish a solution for the continuousstring is to pass to the

limit in the solution for the loaded string?).
 

1) In his letter of July 1754 [?] to Euner ((Euvres de LacranceE 14, 185—138), Lacranee claims

to know “almostall’ of EULER’s work published by the academies of Petersburg and Berlin, whenceit

ig natural to suppose he was at least aware of the existence of E136, published in 1750 in the Peters-

burg memoirs. Tho usual notices on the history of mechanics attribute the entire theory of the loaded

string to Lagrandz, while in fact his contribution is but the last step in a development starting with

work of Huyerns.

2) H.g., in § 14, “*...since Mr. D’ALEMBERT has not brought forward any special reason to sub-

stantiate his objection, neither has Mr. Huumr, whence it follows that the question remainsstill un-

decided.”’

3) The idea of such a passage to the limit, as we have seen, is due to HUYGENS (above, p. 49)

and had been touched with varying degrees of success by JOHN BERNOULLI and EULER. Recently

D’ALEMPERT had revived it, attributing it to himself. In § TIT of op. cit. ante, p. 241, he writes, “*...if

one is to determine the vibrations of the string by the method I explained at the end of my memoir,

§ XLIV [i.e. by considering the loaded string], it does not suffice to consider the string loaded by

11—18, 15

15, 18
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[Throughout this paper, the logic is tenuous, but LAGRANGE’s idea seems to be that

while EULER’s derivation is restricted to “continuous” functions because it employs differ-

ential and integral calculus, nevertheless EULER’s resulf may possess unrestricted validity

as a limit formula from the discrete case.]

LAGRANGE writes (235) in the form?)

Yn k=1.2... 

(275)

 

ap Ysa — 2Yn + Yea)

|

Yo =Yn=9-

His method rests on determining constant multipliers ,, N,, and R such that the identity

& (M,,dv, + N;,dy;,)

(276) k=1

==Nee: + COM(Yess — 2Y 5, + Yx-1)] dt

reduces to the form

(277) dz= Rzdt, sothat z2=2RKe™.

Therefore

(278) EM,=N,, RN, = C7(Mi, — 2M, + M,_,) -

Elimination of NV, yields

(279) Mya (Ge t+ 2) Me + Maa = 0.

Therefore

(280) M,= Aa®* + Bb* ,

where a and 6 are the roots of

(281) wt —(Zta)e+1 =o,

Thus
R

(282) ab=1, a+b=— +2.

Withoutloss of generality we may imposethe conditions M, = M,,,=90, M,=1. Then

ak _.. Bk grt __ prt.b

 

twoor three weights, but it is necessary to take a rather considerable number; otherwise there would be

groundsto fear the problem was not solved exactly enough.”

1) In following the details in this elaborate and obscure paper I acknowledge a great debt to

Bungxuanvt, § 10 of op. ov. ante, p. 11.
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The conditions (283), and (282) determine R?/C?. Indeed, there are n pairs of values a,, b, 20—21

satisfying (282), and (283),, viz a, = e7™/@+)) b — etzl@+) >» 1, 2,...,, and

hence M, = M,, where

   

 

i krn _; krx . era

(284) Uy =-— —
4 — 4% e Tit

 

To satisfy (282), we must have R= R,, where e'7/@+) 4 e-trz/™+) _ 241 R202;

hence

 

        

(285) R= 4210 sin 727 |
n+l

Thus x sets of multipliers are uniquely determined, so that (277), holds in the form 22

(286) 2 =E(Myd + BoMifs) = 2B,Ke™,
where 2R,K, is an arbitraryconstant. Set

(287) Z, =IMet ;

By (275), we may put (286) into the form.

(288) or perrt ;

hence

(289) Z, = K,e®rt + LeaPrt |

where L, is a further constant of integration. From (285) it follows that

 . - Per
sin (2Césin i}
 

1
_ in?Z, = P, cos (20% sini)+0.

(290) mrt
P, = Z,(0), Q, = Z,(0) .

 

The problem is now to calculate y, from (287), where Z, is given by (290). LAGRANGE 23

sets

(291) Ss, = Z, sin — — 54x5in ———— 

where we have used (287) and (289). This relation Lagranes then inverts by a long and 24—27

ingenious calculation’), [which there is no point in following. The problem is simply and

directly approached by the method already used by EULERin a special case (above, p. 232)]
 

1) It is described by BURKHARDT, § 10 of op. cit. ante, p. 11.
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and soon to be generalized by LAGRANGE(below, p. 278). We have only to replace EULER’s

formula (246) by the more general identity *)

 

 

nm . pra . krn
292 s&s sin
(292) npasd

For from (291) and (292) we obtain

= £(n + 1) 05% .

kro pre . kra _ ,
ned =24 sin——_as mei (n+ ly, ,

where s, is to be expressed in terms of P, and Q, by meansof (291), and (290),. By (290),5,

(287), and (284) we have

 (293) Zs,sin-

 

   

n 1 n .P, = &,(0) = ¥ MyY¥,=—,,~ 2 Y,sin,
q=1 sm 7 q=1

(294) , 1 . gra
Q,= Z;(0) = 2 M,,V,= — 2 Va sin 7 ,

q=1 sm Ty q=

where Y, and )V, are the given initial values Y, = y,(0), V, = v,(0). From (293) and

(294) follows LaGRANGE’s explicit solution of the initial-value problem for the loaded string:

2 " . krao @ . qrn
—-__"__. Jy a

Te nm+1 antl oantl
  

 

 

 

 

  

 

 

(295) |
rein sin (20¢ sin 27 |

| ¥. cos (2cesin = )+0, i ,
md 20 sin 2”

n+1

Equivalently,

Yn —_ o Prk 9

. . redse ‘
sin 2Cisin —*—-] -

(290) Yr, = sin4, COs (20¢sin 2sin 47) + B, ( ai) ;
wf i 20 sin —2*

n+l

2 gra _ 2 n sin gr7

A, = wey&Yasin n+l’ r= TH Zo ndl
LacRANGE then examines the particular solutions y, = 9,,, [t. e. the simple modes].

In order that ,, = 0, we must satisfy one of the two conditions

sin (2c¢ sin faekrx

n+l
 =O.

 

(297) sin

 

—() A 204 sin 222 +B=0Q or A,cos sin — Tq r

 

ae
2C sin5

 

1) This is easily proved directly; also, it follows by induction from (246) and from the similar

n kn rkn
formulaxtaad cos[= 0,r>0.
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Thefirst of these yields r= p(n + 1)/k, p= 0,1,2,3,... Study ofthecases r = 1,2,3

leads LAGRANGE to conclude that “‘the polygons have exactly r loops” ; [this is true, but

the examples he adducesare confined to the case when each node coincides with a mass.]

From (297), follows [EULER’s] formula (243) for the frequency of the r*" mode[of course

)= = C in the present notation]. These results give a purely analytic justification for

DANIEL BERNOULLI’s theory, as far as the loaded string is concerned. However, the vibra-

tions become “simple and regular” only if but a single modeis excited, and LaGRANGE

determines the corresponding initial conditions. ‘“This problem has already been solved by

some geometers in the case of a certain numberof bodies, but the route they have followed

has always led them to as many equationsas there are bodies ..., and the roots of these

they have had to seek in each particular case. I do not think anyone has given a general

formula such as we have just found.”

[This claim is technically true as far as DANIEL BERNOULLI’s prior work is concerned,

but in effect it grossly underestimates!) the value of the earlier solutions for discrete sys-

tems in showing whatis to be expected. In regard to EuLER’sresults, at first sight it seems

to be only a falsehood, since HuLER had published long before the general solution (244),

However, there are two differences between LacRancr’s analysis and KvULER’s. First,

KULER was content to infer completeness by counting the constants of integration ; since

a uniqueness theorem wasnot yet available, this argument was inadequate, but LAGRANGE’s

much more involved manipulations carry with them a proof that the solution is indeed

general, Second, and more important, LAGRANGE determinesthe constants of integration expli-

citly in terms of the initial velocities and displacements, while EvLER’s search for a model for

a sound pulse had led him to consider only special initial conditions. A by-product of

LAGRANGH’s analysis, not noticed even by himself until later, is the proof that a trigono-

metric polynomial of n terms may be made to pass through n arbitrary points. This result would

go far to support DANTED, BERNOULTI’s claim for the accuracy of his method (above, p. 256),

but LAGRANGE, as we shall see now, is to misinterpret his own formulae as proving the

opposite.|

There follows LAGRANGE’s celebrated passage to the limit in an attempt to derive

from (295) the solution (257) for the continuous string. First, in the oscillating functions
rein r-d7

m+1 a+1’
1) Earlier, in a footnote referring to JoHN II BERNOULLI’s attempt to prove that small vibrations

are always “‘simple and regular’ because the restoring force is approximately linear (above, p. 171),

LAGRANGEsays that if more than one bodyis present “‘it is easy to understand”’ that ‘‘the motions...

are no longer restricted to simply isochronism,’’ and in support he cites only D’ALEMBERT’s work of

1750 on the loaded string (above, p. 241). It is difficult to see here anything more than quibbling over

terms, combined with deliberate oversight of DANIEL BERNOULLI’s long prior work.
 

[but not in the amplitude functions] LAGRANGE replaces sin no matter
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how largeisr. If M is the total mass of the system, M/n is the mass of each particle, and

hence C? = Sn (n-+ 1), where 1=(n-+ 1)a, the total length. Setting c? = 7'/c,
 

 

  

  

Ml
_ Co °1/ n c __ eo
cea we thus have mri. mri ~ Tt’ Set y(t) =y (a, t), n+1 = @,

ad = X,, a=dX,. Then (295) becomes

22 . rua 2. raX, erst l . orm
(298) y(x, ft) =72sin&sin i aX, . ke cos — + ae V,sin i ;

where n has been replaced by co. LAGRANGE regards 2...dX, as an integral, replaces
q=1 co

Y,and V, by Y(X) and V(X), then interchanges this integral with 2’, obtaining +)
r=1

 

   

l o

y = f¥(xpaxd sin ras sin 7 ggg 120t
0 r=1(299)

2 1 el. raX . rau . ract
+eJV(Max&— sin 7 sin —— sin —

[As has been remarked by BurKHaRrpt and others, this precipitous interchange not only

introduces divergent series in a problem where they need not occur but also prevents

Lacranes from concluding what is now called ‘““Fourrer’s theorem”.] There follow long

and arduous transformations*) of these [divergent] series, involving such [dubious] steps

as regarding m(x +1) as an integer if m =—oo. The result is EULER’s solution (257), in-

cluding the continuation. “‘There, then, is the theory of this great geometer [EULER] put

beyondall doubt and established upon direct and clear principles which rest in no way on

the law of continuity which Mr. p’ALEMBERT requires; there, moreover, is how it can happen

that the same formula that has served to support and prove the theory of Mr. Bur-

NOULLI on the mixture of isochronous vibrations when the number of bodiesis . . . finite

shows us its insufficiency ... when the number of these bodies becomesinfinite. In fact,

the change that this formula undergoes in passing from one case to the other is such that

the simple motions which made up the absolute motions of the whole system destroy each

other for the most part, and those which remain are so disfigured and altered as to become

absolutely unrecognizable. It is truly annoying that so ingenious a theory . . . is shown false

in the principal case, to which all the small reciprocal motions occurring in nature may be

related.” [For this astonishing and false conclusion no further reason is given?).]

Since LAGRANGE has not used the formal rules of differential calculus, he considers

that the initial values Y and V need be subject to no law of “continuity’’. [In this, of
 

1) The formula as printed by LAGRANGE has dx for dX; we follow BURKHARDT’s restoration of

what LAGRANGE must have meant, and also we correct a slip of BURKHARDT.

2) They are described by BURKHARDT.

3) In his letter of 4 August 1758 to EuuEeR (CBuvres de Laarance 14, 157—159), Lacraner

writes that in passage from the finite to the infinite “the whole Burnovuuutan theory collapses.”



LAGRANGE’S FIRST MEMOIR (1759) 271
 

course, he has deceived himself. The several dubious limit processes he has carried out could

be justified, if at all, only by imposing appropriate restrictions on Y and V. Despite its

failure, the attempt to carry through the limit from the discrete solution to the continuous

one is a remarkable achievement.

The remaining work on the vibrating string in this paper is borrowed without acknowl-

edgment from others, mainly from EvLER.] An interesting detail is the description of the

results of SAUVEUR (above, p. 122), hitherto not mentioned in any theoretical paper.

(Indeed, it is curious that LAGRANGE’s memoir, although weak in physical principle and

unconvincing in drawing a connection between mathematics and experience, should be the

first theoretical study to employ the terms used in experimental acoustics ; the preceding

researches by DANIEL BERNOULLI and EULER, while giving correct theories for important

acoustical phenomena, eschewed as if by intention the vocabulary of the subject.] La-

GRANGE, [like MerRsENNE,] explains beats in terms of reinforcement and cancellation of

vibrations; also heis the first to attempt a theoretical explanation of TARTINI’s combina-

tion tones.

Meanwhile, EvLER had undertaken to reconsider the problem of the loaded string, but

his paper, Onthe vibratory motion of a flexible thread loaded by any numberof little bodies),

[achieves little]. HULER’S purpose in treating “this problem, now solved by others,”’ is to

justify his “discontinuous” solution by passage to the limit from the solution for the

weighted string, [but this he fails entirely to do, and it is difficult to understand why he

published the last part]. Eur remarks that in the discrete case ‘‘the sounds are very

irrational and therefore highly dissonant with one another.”
 

1) E286, “De motu vibratorio fila flexilis corpusculis quotcunque onusti,’> Novi comm.acad.sci.

Petrop. 9 (1762/3), 215—244 (1764) = Opera omnia II 10, 264—-292. Presentation dates: 15 November

1759 and 1 December 1760. As shown byhis letters of 2 and 23 October 1759 to LAGRANGE, between

those dates HuLER saw LacRranGez’s paper on the loaded string. While Lacraner borrowed heavily

and without acknowledgment from EULER, now we see HULER refusing to profit in the least from

LagranceE’s work but nevertheless publishing later an inferior analysis of his own. There are two pos-

Sible explanations.

1. In letters of 27 July 1762 and 21 September 1762 to GERHARD FRIEDRICH MULLER, EULER

writes that there are great gaps in the proof sheets of his pieces in vol. 8 of the Novi Commentarii,

and he proposes that one be carried over to vol. 9. This might explain the unsatisfactory state of

the end of £286. EULER’s correspondence with MULLER has been published in “Die Berliner und die

Petersburger Akademie der Wissenschaften im Briefwechsel LeonnaArD Euter’s,’ Teill, ed. A. P.

JUSKEVIG & E. WINTER, Berlin, 1959.

2. Preliminaries for E286 are to be found on p. 172 of Notebook EH6 (1750—1757) and p. 71

of Notebook EH 8 (1759—1760); the latter passage concerns the limit process. Thus EULER may well

have had most of the analysis complete before seeing LaGRANGH’s paper, upon the arrival of which hoe

may have decided to publish what he had without considering the matter further, as is suggested by

the phrase quoted above from the Summarium.

40—51
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The differential equations, [which generalize (235) and may be obtained by lineariz-

ation from (209)], are

(300) Myjjp = 7|——Hea) | k=1,2,...,n,
Ansa ay

with Yo = Yni1 = 9. The method and the ideas are those used in E136, the only dif-

ference being that the possibly unequal spacing and unequal masses introduce complica-

tions.

KULER works out the details for the case when n= 1. The lowest frequencyis

obtained by putting the weight in the middle. For n = 2, the roots are proved real. The

string can never occupy the line y = 0 unless the frequencies are commensurable. Initial

conditions for such a “regular”? motion are determined. When the weights are equally

spaced, the frequency equation is solved explicitly for n = 3and n = 4. The form of the

frequency equation is then conjectured for general n. Put

 (301) 2= w/T, P= Ma(> +7).
k1 Oy

where w is the circular frequency. Then if n = 2, the equationis

[M, M,az}* [M, M,ag}*

(Py —2)(Py—2) (Py — Z) (Py — Z)
4 [M, M, M, M,azaz} 4 [M, M, M, M;agaz} a

(P, — 2) (P, — 2) (Ps — 2) (Pa — 2) (P, — 2) (Ps —2) (Py —z)(Ps—2) * -

When the masses and spacings are equal, the results reduce to (248).

KULER’s attempt at passing to the limit of the continuousstring[is entirely faulty),

except that he infers a result which LaGRancEe might have derived but did not?)], viz,

  (302) O=1—

 

as n —- co we have

(ny. 7 t=
(303) " “OR — ye

For a string loaded by n equally spaced and equal masses, if the length and total mass are held
 

1) EULER replaces sin wat by wat in all its occurrences, and he neglects to consider the

dependenceof the coefficients upon theinitial displacements. Theresult is

eo . e T

= b —_——_—__ eVig bm 7 COS € /i nt)

It is extraordinary that (1) EuLER let stand the ridiculous conclusion y, = ky, which follows at once,

(2) KvuLErR failed to observe that the result, if correct, would support DANIEL BERNOULLI’s viewpoint

rather than his own, and (3) EULER failed to profit from LAGRANGE’s determination of the coefficients

as functions of the initial conditions, although his own earlier work in E136 had obtained a major

special case.
2) Recall that LagRaNnGE was intent on his illusion that a harmonic decomposition is not gener-

ally valid.
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fixed as 2 -> co, the proper frequencies approach the Tayitor-Bernovutu values for the con-

tinuous string. [As remarked in the footnote on p. 232, this follows at once from EULER’s old

result (243), interpreted in the present context.]

39. Miscellaneous polemics (1760—1767). [All through the eighteenth century the

controversy over the vibrating string continued ; D’ALEMBERT, BERNOULLI, and EULER

each held fast to his original view with little if any modification, while LAGRANGE, ever

maintaining a particular opposition to BERNOULLI, drifted slowly toward the opinions of

p’ALEMBERT. Nothing decisive in regard to the controversy was added by any of these

savants ; by the various others who ventured into the field, nothing of any importance

whatever. The only gain was EviEr’s clear and compelling explanation of the progression

and reflection of waves, as we shall learn in § 40 from his own words. For completeness,

wefirst summarize the intervening tedious polemic.]

LAGRANGE quickly issued an enormous second memoir, New researches on the nature

and the propagation of sound1). After acknowledging letters from DANIEL BERNOULLI and

p’ALEMBERTcriticizing his passage to the limit of the continuousstring, he gives a new

method?) for solving the wave equation (251), I remark only a discussion of certain for

mulae that arise naturally by trying (236) as a solution for (235), [as EuLER had done long

before. T do not see how LacRAnaz#arrives at these equations, nor do I perceive any definite

conclusion resulting from his pages of manipulation.] At the end, however, we read that

“this method seems to demonstrate the beautiful proposition of Mr. DANIEL BERNOULLI’’

on the decomposition of small vibrating motions into harmonic oscillations, ‘‘whether the

number of bodies . . . be finite or infinite.” [That, on equally tenuous grounds, he now

reverses the conclusion drawn in his first memoir, LAGRANGE does notfind it necessary to

remark.|

D’ALEMBERT expressed his violent resentment of HuLER’s work, as we read in EULER’s

letter of February 1757 tO MAUPERTUIS®) : “Mr. D'ALEMBERT causes us much annoyance

with his disputes, after Mr. Fonmny sent him my answerto his memoir. He points out that

he is more than ever convincedof his opinion ; that he will show also that heis right in his

old disputes with Mr. BERNOULLI on hydrodynamics ; though everyone ought to agree that

experiments have decided for Mr. Brrnovuiu. If Mr. p’ALEMBERT had the candor of
 

1) ‘‘Nouvelles recherches sur la nature et la propagation du son,” Misc. Taur. 2, (1760/1761),

11—172 (1762) = CEuvres 1, 151—316.

2) Since this method contributes nothing toward understanding the mechanical problem, I do

not present it here. It is described by BuRKHaARDT, § 11 of op.cit. ante, p. 11.

Much ofthe remainderofthis paper by LAGRANGEis summarized in my introductions to L. EULERI

Opera omnia IT 12, p. CXXII, and II 18, Part II P. Some other parts are described below.

3) To the same effect, in yet more outspoken terms, EULER wrote to LAGRANGE on 2 October

1759, referring especially to D’ALEMBERT’s renown amongthe “‘semi-learned’’.

60—64
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Mr. CLAtRAvT, he would not hesitate to retreat. But if as things stand the Academy wished

to lend its memoirs to his views, the Mathematical Class would be filled for some years

only with disputes on vibrating strings leading to absolutely nothing, and therefore in the

last assembly ...it was found good to suppress the memoir of Mr. p’ALEMBERT onthis

subject. He demandedalso that I put in new confessions of a numberof things I had robbed

from him. But my patience is at an end, and I have let it be known to him that I will do

nothing, that he may himself publish his claims wherever he will, and I will do nothing to

prevent it. He will have enoughto fill up the article on Claims in the Encyclopaedia').”’

On 3 September 1757 : “Mr. p’ALEMBERTis not bothering me any more, and I have taken

the firm resolution not to cross swords with him again, no matter what he publishes against

me.”

[When D’ALEMBERT had embroiled himself with nearly all other geometers at home

and abroad, so that he could use no ordinary avenue of publication for his quarrelsomeif

not abusive writings,] he began to issue his Opuscules, [collections of papers havinglittle

or no solid content, not of a quality or style fit for a learned journal, but nevertheless

sufficient, with the renown of D’ALEMBERT’s name among the “‘semi-learned’’, to be sold

successfully by a commercial publisher.] The first paper is called Researches on the vibra-
dy — a*y

Ox2 a
, a8 EULER had claimed’), p’ALEMBERTenters a lengthy plea

 tions of sounding strings*). After objecting [with justice] that c?

ey ty
dx sat

that the curvature must be continuous, even at the end points. [D’ALEMBERT’s writing and

calculations are obscure,] but it seems that among his objections is the fact that (251)

cannot be satisfied unless 0°y /dz* exists, [a matter disregarded by EULER]. At the end

does not neces-

sarily imply +c

points, since o*y/di = 0, the curvature must be zero. The “true metaphysical reason”’

for the requirement of continuous curvature is that the accelerating force is not defined at

points “where the radius of curvature has two values.” In such cases “the motion of the

string cannot be submitted to any calculation, nor represented by any construction...”

[For a discussiorr6f the falsity of this claim, see below, pp. 285—286.] In reply to EULER’S

challenge that corresponding to an arbitrary initial shape there must be some motion, D’ALEM-

BERT says “...the problem cannot be solved ; it will surpass the force of known ana-

lysis.”? As for explanation of why the sound emitted is always more orless the same, no

matter how the string is struck, “...I am persuaded that this question is not at all

proper for analysis, which has doneall that could be expected of it : It is up to physics to

take care of the rest.”” D’ALEmMBERT then challenges EvLER to treat the case when the
 

1) Cf. above, footnote 3, p. 245.

2) Recherches sur les vibrations des cordes sonores,’’ Opusc. Math. 1, 1—73 (1761).

3) In § 17 of E119, cited above, p. 245.
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initial shapeis a triangle. That he considers this case impossible does not prevent him from

reproaching DaNIEL BERNOULLI with being unable to solve it, since a trigonometrical

series “obviously belongs to a curve whose curvature is continuous .. .” [Thus he himself

commits the error of which he had just accused BERNOULLI in connection with the simple

modes, viz, “drawing conclusions from the finite to the infinite too lightly').”’

Finally p’ALEMBERT scrutinizes LaGRANGE’s work on the weighted string. In addition

to other, less sound, criticisms, D-ALEMBERT here detects the errors that in fact invalidate

LAGRANGE’s passage to the limit (above, pp. 269—270).

LAGRANGE was quick to publish an ineffectual reply”). He admits that it is unjust to

set sinoa FYi when p is large, but by calculating and solving the asymptotic form of

the equation for R he obtains the same results without using this incorrect step. [On the

other points, however, LAGRANGE’s answersconsist in reaffirmations or evasions?).]

About this time D’ALEMBERT visited Potsdam, where, in the midst of intrigues, he

lived as the intimate of FREDERICK IT and the de facto director of the Berlin academy. On

20 and 29 July 1763 p’ALEMBERT wrote to EULER, disposing of his work on strings with

Olympian disdain. [These and other letters of this period from D’ALEMBERTreveal him as

a schemingpolitician, while EuLER remained steadfast in defence of what he considered to

be the truth‘), regardless of the personal disaster resulting from any opposition to D’ALEM-
 

1) Calling attention to his earlier remarks on the loadedstring (above, p. 241), D-ALEMBERT claims

to give a solution better than BERNOULLI’s for the case of two weights (§ XXVIT). He objects to BER-

NOULLI’s theory of the multiplicity of harmonic sounds because in the case of a discrete system the

proper frequencies generally do not harmonize with one another. He doubts the physical correctness of
BRRNOULLI’s theory, partly on the basis of different and awkward definitions of his own, which he

blames others for not using, of such quantities as the period of a vibration (§ XXVIII),

2) “Addition & la premiére partie des recherches sur la nature et la propagation du son, imprimées

dans le volume précédent,” Misc. Taur. 2, (1760/1761), 323—336 (1762) = CBuvres 1, 319—332.

3) In some cases there are outright errors, as when (§ III) Lacranaez says in effect thatoy

exists and gives the accelerating force even if the curvature is discontinuous. In other cases we find a

deplorable kind of logic, as when LaGranGE observes (§ IT) that his solution and D’ALEMBERT’S agree

when the initial shape is such that the latter is valid, whence, “‘since his objections do not prevent my

solution from being exact whenthat figure satisfies certain conditions, they do not any the morepre-

vent it from being exact in general’’; in other words, LAGRANGE fails to recognize the possibility that

falsehood —> truth. Such feeble reasoning is not to be found in the works of the mathematicians of the

older generation.
4) EULER was aware of what was happening. On 7 June 1763 he wrote to GERHARD FRIEDRICH

Mixier, ‘That Mr. p’ALEMBERT has refused a highly considerable and profitable position in Russia I

should think to ascribe not to philosophy but rather to fear that in the end the matter would turn out

badly, since despite his unbearable haughtiness he waseasily able to understand that he was notatall

suited to that position. In any case, to use Mr. BERNOULLI’s expression, his philosophy consists in an

impertinent sufficiency, so that he tries to defend all his mistakes in the most shameless way, which

but too often hoists him with his own petard, so that these many years from vexation he will have

XXIV

Suppl.
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BERT.] Later D’ALEMBERT published+) an extract from a letter of 26 July 1763, in which

EvLER defends polygonal initial figures but remarks that not only the displacement but

also the slope of any admissible initial shape must be infinitely small. In a letter*) of

20 December 1763 to D’ALEMBERT, EULER explains this idea more fully: “‘...I find in

fact some absolutely necessary limitations without which my solution cannot hold.”’

These are, 1° that the length of the deformed curve differs only infinitely little from that of

the original straight form, and 2° that the motion be purely transversal. “To satisfy these

two conditionsit is not sufficient that all the ordinates be . . . infinitely small, but beyond

that the tangents ... must have infinitely small slopes.’”’ EULER goes on to say that any

curve y = f(x) with no vertical tangents will be a possible initial figure, since then for

sufficiently small « the figure y = «f(x) has ordinates and slope as small as desired. He

explains his solution again and adds that he agrees with D’ALEMBERT’s old objections but

regards them as applying only to certain cases ‘‘which must be excluded before the solution

can be applied. Besides, it seems to me that considering such functions as are subject to no

law of continuity opens to us a wholly new range of analysis...”

While Daninu BERNOULLI was unable to advance the theory at this time, he devised

a beautiful experiment to demonstrate harmonic resonance’), ‘‘Stretch horizontally a long

string, say of 24 feet, by such a weight . . . that one natural vibration lasts, say, 1/4 second.

Near one end of the string place a toothed wheel in a vertical plane, perpendicularly against

the string, so as to rattle it in such a way that when the wheel turns, each tooth gives

the string a light blow andslips by. If the wheel is turned uniformly, and .. . if the passage

from one tooth to the next lasts exactly 1/2 second, 1 second, 8/2 seconds,or 2 seconds, the

vibrations of tho string will becomeregular and will be well maintained; but without this
 

nothing to do with mathematics. In his hydrodynamics he most cavalierly contradicted most of the

theorems of Mr. BERNOULLI, despite their being confirmed by abundant experience, for his own

theorems contradict experience, and he was not able to overcome his haughtiness to the extent of

rocogming his patent errors.
‘‘With those who understand these matters, his quarrelings with the thorough Mr. CLarmaAuUT can

reflect nothing but the greatest shame upon him. Only here [in Prussia] is he called a creative intellect,

a man who encompasses all; but from the same reason there is no doubt that he will not come here

either... But after the most urgent persistence he has decided to undertake a journey to Potsdam .. .

so as to decide the entire fate of our academy .. .”

Judging by a letter from SEGNER to EULER of 19 March [1763], EULER had written him to the

same effect.

1) In Opuscules math. 4, 162 (1768), included in E365, EULERI Opera omnia IT 11, 1—2.

2) The unpublished letter in the Gotha University Library bears no date, but its contents cor-

respond to the paraphrase given as of 20 December 1763 by D’ALEMBERT, Opuscules math. 4, 146 (1768)

and included in E365, EuLERI Opera omnia IT 11, 1—2. Part of the contentsis given also in a letter of

24 May 1764 from EvtEr to Joun III BERNOULLI; the original is in the Basel University Library.

3) § 16 of op. cit. ante, p. 263. Cf. the experiments of HooKE, mentioned above,p.58.
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harmony between the natural vibration of the string and the repetition of the blow of the

tooth, the string will not form regular vibrations.

“Accelerate the motion of the wheel ; the string will then have irregular motionsin all

its parts. But when one has succeeded in making the passage from one tooth to another

last just 1/4 second, the string will immediately divide in two, forming a nodein the middle

of two loops ; the node will be sensibly at rest, and the vibration of each half will last only

1/8 second. Accelerating the wheel again, when onesucceeds in makingit give just 6 blows

of the teeth in one second, then the string will divide into three equal parts... [eéc.].

All these phenomena can be seen by the eye but will make no effect on the organ of hear-

ing...” Still greater speeds of rotation of the wheel produce audible sounds, but only at

discrete frequencies. BERNOULLI conjectures that the grains of rosin on the bow of a

violin excite the string much as do the teeth of the wheel!).

 

1) The vibrating string is mentioned in the following unpublished letters between DANIEL

BERNOULLI, JoHN IIT Bernovutiu, and EvLer:

7 December 1763 (D to JIII).

Undated reply to the above (JIII to D): EULER is at work on the general solution of the initial

value problem and has just written to D’ALEMBERT about it (7. e., in the letter of 20 December 1763,
quoted above, p. 276). Eutzr “claims that by your theory you will not be able to solve this problem,

or at least the difficulty would approach impossibility because it would be necessary to continue to in-

finity this sequence of sines.”’

Undated, 1764 (D to JIT): “I do not think... that the string can ever make and continue

vibrations in the form of intersecting straight lines .. . I admit not like the terms being introduced

in consequence of the new theorem of Mr. D’ALEMBERT, namely, the éxpression of the numberofvibra-

tions in a given time without distinguishing the circumstances. If I set a uniform string into a vibration

of third order, without any mixture with any other kind of vibrations,it is certain that the string will

then make three times as many vibrations as it would in making purely the vibrations of first order;

the ear will hear only the twelfth ... This beimg so, I do not understand in what sense one can say

that the number of vibrations is always the same and consequently oné hears only the samé tones.”’

2¢ May 1764 (6 to JIT): Hunn has always regarded Bnrnovrt4’s “idea of composing the motion

of strings from simple and regular oscillations as the happiest discovery for illuminating this spiny

matter; and if it is a question of determining all possible motions that the string may undergo,there is

no doubt that this method furnishes all the enlightenment that one could wish. But it is also permis-

sible to look at the subject from another point of view .. .’’ EULER then sets the initial value problem.

“From this point of view, we do not directly require the oscillatory motion of the string, or the sound

it gives out, but we must determine the shape that the string has at each instant.

“I do not wish to deny absolutely that the equation composed of an infinity of sines includes the

solution of this question, since it contains arbitrary constants which it would be possible to determinein

such a way that in putting the time = 0, [this form] would produce exactly the curve impressed upon

the string at the beginning. But your uncle will not disagree that this operation would be infinitely

troublesome and even impossible to execute, because of the infinity of coefficients one would have to

determine.’’ EULER thinks most commendable a method‘enabling us to dispense with the said boring

operation of looking for the values of this infinity of coefficients...”
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In the course of a miscellany!) LAGRANGE returns to the problem of the vibrating

string. He decides to settle the controversy by solving the functional equations (260);

that is, to find the most general odd periodic equation of period 21. To this end, he applies

a formal series solution derived earlier for a more general problem. Theresult is a trigono-

metric series! [LAGRANGE’s terms are so vague that I cannot be certain what problem it is

he thinks he has solved. Since he speaks explicitly of p’ALEMBERT’s solution, rather than

his own or EvuLER’s, and of the “equation’’, it seems that if his formalism were correct it

would establish DANIEL BERNOULLI’s solution as equivalent to D’ALEMBERT’S”).] This is

borne out by his concluding that ‘“‘the equation of the initial shape of the string, when it

has one,”is of the form derived. At this time LAGRANGE seemsto believe that (270), being

an “‘equation’’, is not the general solution of the problem of the vibrating string, and thus

he pays no further attention to the result he has just concluded.

Again considering the loaded string, LacrancE now solves (235) by superposition of

harmonic solutions (236), [just as EULER had done, many years before, even to using the

device (239)]. New, however, is a rearrangement of the explicit solution (295) in the case

when V, = 0. While Lacranes claims to put the y,(¢) into a form expressed in terms of
m+tct and m+t+1l+ct

n n
[the result is in fact false*), since the functions vary with t]. There follows a sketch of a

two functions m(¢) and »(Z) evaluatedat the arguments 3

 

On 25 July 1765 Dawier BERNOULLI in a letter to Joun III BERNOULLI writes “It seems to me

more and more that my method is general, though only potentially, for I agree that the determination

of my coefficients would most often be beyond analysis or rather, beyondits reach.”

1) “Solution de différens problémes du calcul intégral,’ Misc. Taur. 3, (1762/1765), 179—380

(1766) — Chuvres I, 471668.

2) A modern reader might be misled into believing this an attempt at proving “FOURIER’s

theorem’’, since LAGRANGE uses a general “function” @, but, as explained in the text above, only

“equations” are considered. See also LAGRANGE’s letter to D’ALEMBERT of 26 January 1765, The cor-

respondence between p’Atpmpunr and LacrancEfills Vol. 13 of the CEuvresof the latter (1882).

Tt is curious that LAGRANGE’Ss formalresult is included as a special case in a remarkable analysis

published by EULER 4 decade éarlior. In § 55 of E189, “De serrerum determinatione seu nova methodus

twrverionds tormenves gonorates serterum, Novi comm. acad. sci. Petrop. 3, (1750/1), 36—85 (1753) =

Opcora omnia I 14, 463—515, EULER had given formal transformations indicating that the general

solution of the equation f(x) = f(#—1)+ X(z#) is

f(x) = fx(aae 4+- 2 E (cos ane fX(8) cos 2nzédé + sin anne fX(E) sin 2nz éd&) .
n=1

EuLEr’s work presumes, among other things, that f is infinitely many timesdifferentiable; thus, like

LAGRANGE’S analysis described above, it is not directly relevant to the controversy over the vibrating

string.

3) LacRanceE defines p and y as finite trigonometric sums in terms of certain coefficients P,

and Q,; the formulae he gives to define P, and Q, show that these depend not only on the initial data

Yy but also on ct. The formal rearrangementis correct, but the result is not of the functional form that

LAaacranas claims it to be andis in fact valueless.
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limit process to the continuous case, based upon this form of the finite solution. This time

LAGRANGE’S assertion is more cautious ; he is content to state that with these formulae one

can pass a polygon through as many points on the given figure as desired. In the limit there

emerges a trigonometrical series for the initial shape. ‘It is certain that if the generating

curveis to be geometrically [1. e. precisely] the same astheinitial curve,”’ this latter must be

representable by a trigonometric series. ‘“Whatever is the initial curve,” one can always

pass a trigonometric series through infinitely many points which are infinitely near to this

curve. [The meaning of this statement is not clear ; what LAGRANGE’s earlier work shows

is that a trigonometric polynomial of n terms can be made to pass through any n points

with equally spaced abscissae.]

In the long correspondence between D’ALEMBERT and LAGRANGE, the problem of the

vibrating string is mentioned again and again. By degrees!), LAGRANGE is won over to

Dp’ALEMBERT’s viewpoint. On 13 November 1764 LaGRANnGEwrites, “I am not a little pleased

to have come nearer to you on this point,” but he still considers his construction valid

even when the initial shape cannot be expressed by an “equation’’. D’ALEMBERT is trium-

phant, replying on 12 January 1765 that if the initial curve is “‘traced at will, how can we

be sure that d”y/dx”" has no jump at any soint ?”-(5"ALanamnn is now claiming that in

order to be admitted as a solution, a function must have continuous derivatives of all

orders.) He asserts that for all its derivatives to be continuous, a function must have a

power series expansion. [The correspondence leaves a poor impression of LAGRANGE’S

capacities. He seemsto rely on algebraic formalism alone and to be unable or unwilling to

face the real issues, either in analysis or mechanics.] LAGRANGE’s capitulation is formalized

by his publishing in his journal in Turin the Hatract from various letters of Mr. p’ALEMBERT

to Mr. pe tA Grange*), written expressly for publication by D’ALEMBERT, who claimed

thereby “‘to have the occasion of rendering you, without any flattery, the justice which you

deserve’),’’ and where in addition to some of D’ALEMBERT’s formal flattery we read ‘*)

“T am delighted that at last we are almost entirely in agreement...’ D’ALEMBERT now

considers y = «(sin 2x)*!* to be a possible initial shape, provided p> q, “so that dy is
 

1) Letters of 27 September 1759 (D), 27 November 1761 (D), 1 June 1762 (L), 15 November

1762 (D), 30 May 1764 (L), 1 September 1764 (L), 16 October 1764 (D), 13 November 1764 (L),

12 January 1765 (D), 26 January 1765 (L), 2 March 1765 (D), 20 March 1765 (L).

2) “Hatrait de différentes lettres de M. D-ALEMBERT @ M. DE LA GRANGE écrites pendant les années

1764 & 1765,” Misc. Taurin. 3, (1762/1765), 381—396 (1766). See § V.

3) Letter of 2 March 1765. D’ALEMBERT sent the piece to LAGRANGE on 28 December 1765.

4) In his letter of 16 March 1764 to Ever, p’ALEMBERT exults that LAGRANGE “seems very

disturbed”’ by his objections and now does not believe the solution holds for polygonalinitial figures.

“He begins to doubt also...in the case when the curvature has jumps...,” etc. There is also an

incomprehensible letter from D’ALEMBERT to EULER on 25 June 1764, where D’ALEMBERT seems to

extend his objections also to the loaded string.
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nowhere co, which is contrary to the hypothesis on which the solution rests. I know that in

these curves there are some of the d"y/dz” that are infinite, but this does not invalidate

the solution ...; it is enough that d"y/dx” makes no jump, that is, does not pass brusquely

from the finite to the infinite .. . or from onefinite value to another. .”’ [It would be too

much to expect precise analytic definitions from any geometer at this time, but this

example shows that D’ALEMBERT’s intuitive misconceptions are extensive :] He has just

claimed categorically that all solutions must have power-series expansions, [while

(sin 2x)*/¢ does not have such an expansion unless p/g = a non-negative integer,] and

that (sin 22)?!" does not have a trigonometrical series expansion, [which is false. More-

over, D’ALEMBERT’s claim that all derivatives must be continuous or infinite is a mere pro-

nouncement, for which he never advances any substantial reason.]

It was at this time that p’ALEMBERT was prevailing upon FREDERICKII to replace

Ever by Lacranas in the Berlin Academy.

The dense calculations in Jorpan Riccart’s paper, On the vibrations of sounding

strings), are of no value for theory ?), but inserted among them are two interesting con-

jectures on the mechanism of hearing. First, the labyrinth of the ear contains a long audi-

tory nerve, which may be represented as a semi-infinite string and hence susceptible of

vibration at any frequency. It resonates in unison with the sound received. Alternatively,

“one would suspect that the auditory nerve is composedofa bundle of nerves which by the

smallest degrees pass from the lowest tone to the highest, and the one of these that cor-

responds to unison with the sounding bodyis set a trembling.” This second idea, [par-

tially anticipated by Ramuav (above, p. 126) and partially anticipating Hetmnourz’s

theory of the car,] Riccati gives some reason for rejecting in favor of thefirst.

Riccatt follows this by a study*) of the dimensions to be given to strings so as to

make equable sounds. He says that the ratio 7'/A [t. ¢., the stress] should be constant and
 

1) Sched. TV, ‘Delle vibrazioni delle corde sonore,” pp. 65—104 of Delle corde ovvero fibre elastiche
schedtasnt fisico-matematict, Bologna, Stamparia [Sajn Tommaso d’Aquino, 1767.

2) In disregatd of the general theory, Riccatt follows Taytor, except that he considersall the

simple modes. In § X he repeats TAyvior’s claim that a string initially given a triangular figure will

quickly assume sinusoidal shape; he adduces some incomprehensible arguments, starting from the

hypothesis that the string gives out ‘‘only one sound”. § XXV gives an explanation of TARTINI’s

combination tones; in §§ XXVIII—XXXII is a critique of HeRMANN’s attempt (above p. 132).

In § XLVI Riocati after mentioning the recent work ofD’ALEMBERT, HULER, and LAGRANGE puts him-

self on the side of BERNOULLI; his attempt to justify this stand merely reveals his own failure to grasp

the general principles of mechanics. In the “Appendice alle schediasma IV,” pp. 221—246, ho draws

some figures representing motions compounded of two simple modes (§§ I—VI); then follow pages of

calculation supposedly pertaining to combination tones.

3) Sched. VI,‘Delle misure, che debbono assegnarsi alle corde d’uno stromento, ed alle canne d’organo,

acotocché rendano suont del pari forti, 6 aggradevoli,” pp. 122—146 of op. cit. ante, footnote I.
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very near the breaking strength of the string, [as had EuLEr, above, p. 155]. Independently

of this assumption, he takes the kinetic energy of vibration as the measure of loudness;

[while his statements are obscure,] he seems to make some attempt to calculate the maxi-

mum kinetic energy of the fundamental mode, [and the sameresults would follow from use

of the mean kinetic energy in a period. With o = 0A, either of these energies is a numeri-

cal multiple of c?9AQ?/l, where YW is the amplitude.] With two strings for which 7'/A

and o have the same values, so also does c? = 7'/(gA), and hence for equal kinetic energy

we must have

l

this is Riccatt’s result. He considers it evident that Y& and A for a string of higher pitch

should not exceed their counterparts for one of lower pitch. The two extremes are given by

A = const. and J = const., vz

(305) WaVi and Axl,

the latter being EvLER’s criterion (above, p. 154).

In instruments such as harpsichords, whereeachstring is to give out but one tone, we

have full freedom of choice between these extremes, and in practice a mean is used. For the

violin, since more than onetone is to be produced from the samestring, we have A = const.,

and only (305), is applicable. To consider the different strings, assume that the bow has the

same action on each and that both 7'/A and ¢ are the samefor each. Then the condition of

equal kinetic energy yields

(306) / oo =

Since the frequency ratio of successive strings of a violin is 3: 2, according to (306) the

higher strings should weigh 2/3 as much as the lower. By weighing the three gut strings of a

violin, Riccatr obtains the ratios 6: 10: 15, which he considers adequate confirmation of

his theory *).

40. Eurer’s researches on the propagation and reflection of waves (1764—1765).

A new idea appears in EULER’s letter of 24 May 1764 to Joun III BERNOULLI, intendedfor

DaniIEL BERNOULLI. EULER doubts whethera series of sines suffices to represent a function
céwhich is zero over part of its interval of definition ; “... at least, it seems permissible to

doubt whether this would be possible. . .,”” and he gives his own method for solving the

problem whentheinitial shape is of this kind, corresponding to a string disturbedinitially

along only a part of its length. In his reply of 7 May 1765, DANIEL BERNOULLI doubts
 

1) The paper ends with a theory of the harpsichord; it is based in part on Riccatt’s own stress-

strain law and the resulting formula for the force required to deflect a string into triangular form (below,

pp. 384—385), but I do not follow the details. As mentioned above, p. 116, a preliminary version of

these papers was published in 1764.

VI, XIV

ITI—IX

XA—XI

AI

XTII

XV—XVI
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EULER’s solution because, when the disturbance reaches the middle, what reason is there

for it to go in one direction rather than the other*) ?

EvuLer begins his Clarification on the motion of vibrating strings?) with the first pub-

lished clear statement of the assumptions made implicitly by all who havetried to deter-

mine the motion of vibrating strings; these are the assumptions stated in his letter to

D’ALEMBERT of 20 December 1763 (above, p. 276). Admitting [BERNOULLI’s contention]

that the infinitely many constants in a trigonometrical series can be adjusted so that the

curves representing the initial shape and initial velocity pass through infinitely many

points, nonetheless he regards such a solution as “‘only very particular’, for the same

reason that power series, while also capable of being fitted to infinitely many points,

cannot represent all possible “‘discontinuous’’, [z. e. non-analytic] curves. Then he puts the

challenge he had already written to DanruL BERNOULLI: Supposea string of length J be

disturbedinitially along only a part of its length, 0< «<b, say; then to get a solution in

trigonometrical series we should have to determine the constants so that the series for

Y (x) and V(x) reduce to zero for «> 6, “which is manifestly impossible.”

EULER now regards the arbitrary functions in the solution of a partial differential

equation as analogues of the arbitrary constants in the solution of an ordinary differential

equation. Thus to verify the generality of a solution, it seems to him sufficient to count

the numberof arbitrary functions. However, he adds a proof of necessity: Since theinitial

shape and velocity may be prescribed arbitrarily, the general solution must contain two

arbitrary functions?),

From the initial conditions (263) alone, independently of the end conditions, follows

1 1
(807) B(x) = $¥ (x) + gf V(w)de, YW(—2) = $Y(x) — 5—JV(ade.
Thus @(x) and ¥(— x) are determined at once over any interval in which Y(x%) and V(x)

arty known.
 

1) Dante Bunnouniadds in his characteristic way, “I am innerly persuaded that my prin-

viplo ... includes ovorything real on this subject...”

In this letter, and also in § 2 of op. cit. infra, p. 307, he says he cannot convince himself that the

initial shapeis ‘“‘entirely arbitrary”: Not only the slope but also the ratio of length to radius of cur-

vature should be infinitely small. As DANTET, BERNOULLI remarkedin a letter of 25 July 1765,this con-

dition excludes polygonal figures.

2) E317, “Eclaircissemens sur le mouvement des cordes vibrantes,”’ Misc. Taurin. 3, (1762/1765),

1—26 (1766) = Opera omnia II 10, 377—896. Presentation date: 16 February 1765.

3) This Euuer remarksalso in his letter to Lampert of 4 December 1762. The same letter

contains a prophetic romarls: “If you wish to probe these now mysterios, you will casily reduce your

researches on heat to similar equations among three or more variables, especially after having seen

how I have reduced all of hydrodynamics to similar very simple formulac.”’ The correspondence

between Evin and Lamsrnt has been published by K. Borr, “Honens und Jonann HEINRICH

Lamounrs Briefwechsel,’ Abh. Preuss. Akad. Wiss. 1924, No. 2, 45pp.
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Figure 82. EvutLeEr’s solution for the propagation of a pulse (1765)

The paper ends with what Ever expects to be the death blow to the

theories of pD’ALEMBERT and BERNOULLI. “In the string AB (Figure 82), let

only the part AD be disturbed initially, so as to give it the form AnD,and let

it be quickly released .. .”’ The curve for f(x), according to EULER’s construction

(above, p. 246), “is composed of the curve AnD and the straight line DB, the

) continuation of which will form beyond A the curve Ad, and in each direction

from A’ the curves A’ D’ and A’d’, equal to AnD, and so on. This case is notS
P
>
.

properly one of a vibratory motion, but we ask rather how this initial agitation

Tr is successively spread out along all the string ... Consider a point X ..., which

will remain at rest until the time D , and then it will begin to be agitated during 

pr the time 2AD , after which it will again be at rest until the time ¢ multiplied by c

reaches the curve d’ A’ D’, and so on; so that each part of the string will be put
>. as

alternately into movement and rest. From the start, we shall see the agitation

dAnD move as far as B, whence it will return to A, and so on, making each

D transit in the same time as the string completes one oscillation. Now I shall easily

be granted that this motion could in no way be represented by curvesof sines.”’3
Z
A

o
F

S
/
S
=

[While Evier’s last sentence is not correct, the example he has just given
shows how his old solution predicts the propagation of a disturbance at speed c and

its reflection from the two ends. However, EULER seemsto forget the factor 4 in

(268 A), and his description of the phenomenais not yet clear.]

EULER’s next paper, On the motion of a string disturbed initially only along

part of vts length*), works out systematically the important idea just stated. /
i reflection of a pulse, in reversed form, from the end of the string. This is most easily

seen from his ownfigures. Figure 83 shows the string of length A B given the initial shape

AMCand works out the construction of the odd periodic function used to determineits

motion. The successive figures show the form of the string at the times AD/c, 2AD/c,...

 

mM

b oc ad Ax[TS . B »y Sf
a + * Se"

Figure 83. EULER’s solution for the propagation of a pulse (1765)

 

1) E339, “Sur le mouvement d’une corde qui au commencement n’a été ébranlée que dans une partie,”

Hist. acad. Berlin [21] (1765), 307—334 (1767) = Opera omnia IT 10, 426—450. Presentation date:

18 July 1765.

47
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Directly and easily from the solution (268A), EuLEr explains the phenomenon of 20—22
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and finally at time AB/c

(Figure 84). [Unfortunately

the drawings are not care-

fully scaled. Also, the “time

AD” is special in that its

multiples are the only times

whenthe pulse does not have

a tail.] Even more striking

is the case of a disturbance

CMDinitially in the middle

of the string AB; it splits

into two halves, travelling

to the right and theleft at

the speed c, until each is

 

 

 

 

 

a Bo apres le tems AD |

D ,

A—2C — eo le tems 3 AD

A CUE i sletemstAD:2 AC

A — I_X_op apres letems AB

NV

Figure 84. EuiEr’s sketches of successive forms of a string disturbed
initially at one end (1765)

reflected back from the ends in reversed form (Figure 85).

[Thus Ever achieves a correct theory of progressive waves. In the context of aerial

vibration, he gives just at this time a clearer explanation in terms of pulses of zero width,

or the method of images?).]

In regard to trigonometric series, EULER begins by asserting that the method of

$$

AEF

B
4. S x

aeC o oD

apres le tems CO: 4 AB

 

 

 

 

 

A on 0 i B ayes le tems AO: 7A

A=, S<——>B apreslerems CD- 4 AB

A Cf 9D B cole. tems AD=*AB

E © ogo D F letems & A Boumn'sck tches of, J - £AB ULER’s sketches 0
A VO Bi OPS 6 successive forms of a string

disturbed initially in the
middle (1765)

A CcoF Bo apres letemo- AB

 

1) Cf. pp. LXI—LXII my Introduction to L. Euterr Opera omnia II 18.
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BERNOULLI is not general enough to include the case when the initial disturbance is zero

along a part of the length of the string ; later, however, he admits the possibility that a

trigonometric series might be found so as to represent a function whose valueis zero for a

finite interval, but “the most clever calculator would never come to the end of it.’’ Still
€¢later he weakensa little: “...it will be doubtless very difficult, if not to say even im-

possible, to determinethe coefficients.’’ Then he objects that such a case cannot be regarded

as a Superposition of several simple and regular oscillations, since each particle remains at

rest a finite length of time. [In all this EunER is wrong, but the burden of proof lay on

BERNOULLI to show that such motions could be decribed by his method, and even todayit

seems implausible until proved.] Indeed, DANIEL BERNOULLI did not see how propagating

waves could be explained within the theory based on (251)!).

To D’ALEMBERT’s objection to cases where there are elements at which the differential

equation is not satisfied, [e. g., when there is a corner,] EULER replies?) that “such an error

committed in one or several elements is always infinitely small and will not disturb the

total result of the calculation. . . . The same annoyance occurs in virtually all applications

of the integral calculus,’’ where the error made in approximating the area of a curve by

that of a trapezoid is not infinitely small at points where the curve crosses the axis, except

when the tangent at such a point happensto coincide with the axis. ‘‘...I do not deny

that in applying the calculus to such a case, one commits someerror, but I claim that the

totality of this error becomes infinitely small and entirely zero.”

EvLER proceeds to consider an illuminating example in which the initialfigure has a

node onethird of the way along its length, but the loops are not sinusoidal. He then finds

that “the motion of each element... is irregular and altogether different from that of a

pendulum...’ The period is that for the third harmonic, but the motionis not simply har-

monic, The elements dividing the string into thirds “seem to complete three vibrations”

during one fundamental period ; the midpoint changes sides every half period. ““I‘hus the

string as a whole emits a certain principal sound ; some of its elements seem to emit a tone

one octave higher, others a tone higher by a fifth, while others produce the sameprincipal

sound. Nevertheless it is necessary toremark that in this case the octave .. . is veryimpure,

since the .. . times during which the points [which emit it] remain successively above and

below the axis are very unequal...” [This is EuLER’s nearest approach to what we should

call the determination of the relative amplitudes of the harmonics.|

 

1) On 25 July 1765 he wrote to Joun IIT BERNOULLI in this context, “I think that in addition to

the motion of the parts of the string perpendicular to the axis it is necessary to assume also an in-

finitely smaller reciprocal motion in the direction of the axis, and aboveall that the nodes are not at

first perfectly at rest and that this rest happens only in formed and permanent sounds.”

2) This he wrote also to LAGRANGE on 16 February 1765.

10

11—12
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At the end, EULER adds a “rigorous proof” of his solution!). Here he suggests that a

polygonal initial form may be justified by deforming the angles slightly so as to form a

smooth curve. [This suggestion found no favorin the eighteenth century. Indeed, it does

not suffice, but it has since become a favorite tool of physicists, and many a modern text-

book derives a jump condition by passing to the limit in appropriately selected continuous

solutions.

In EvLER’s attempts to justify admission of initial figures with corners, we observe

the first glimmerings of two ideas since become commonplace:

1. For a fruitful definition of “solution” of a partial differential equation in a region,

it is too much to demand that the equation be satisfied on the boundary.

2. A function which is the limit of solutions should also be regarded as a solution,

It is EvLErR’s merit to have sensed these ideas, but it would be too much to say that

he formulated them. Considerations of uniqueness, necessary if the usefulness of these ideas

is to be apparent, were totally lacking.]

Al. Miscellaneous polemics to 1788. D’ALEMBERT, meanwhile, was preparing his

New reflections on the vibrations of sounding strings*), [an accumulation of misunderstand-

ings and of unsubstantiated and often erroneous assertions] written ostensibly in reply to

LAGRANGEH’S reply to D’ALEMBERT’s first objections®). [As is usual with p’ALEMRERT’s

polemics, he is so eager to pick flaws that he scans every word and jumps at every minu-

tium, burying his just objections to Lagranen’s limit process among errors or misunder-

standings of his own.] Z. g., there is a long passage questioning the validity of the series.
on Qn+1

sina = L (— 17." _____; “.. is it really exact and applicable in all cases?”, since

it is “very divergent in a great numberofits first terms if 2 is very large...’ Quickly,

however, he turns to repeating his old attacks on EULER’s solution.

As to Dante Brernovtw’s preference for finite models, “there may be a great dif-

ference between the vibrations of a continuous curve, considered as composed of an in-~

finity of weights, and the vibrations of the same curve considered as loaded by a very great
 

1) Like his earlier papers, it deals only with the case when V = 0; for this and other internal

reagone I judge it to be the “new proof, embellished with complete rigor’ which EULER wrotein reply to

p’ALEMBERT’s first attack; cf. the letter of EuLER to LAGRANGE, 2 October 1759, and my Introduction

to Ettert Opera Omnia IT 18, p. XXXVITT.

2) “Nouvelles reflexions sur les vibrations des cordes sonores,’ Opusc. math, 4, 128—155 (1768).

In thefirst supplement immediately following, D’ALEMBERT says this paper was written in 1762, but in

it he cites a letter dated 26 July 1763.

3) “Not to prolong this controversy with a savant for whom I am filled with the greatest esteem,

and who, moreover, seems to be now almost entirely come over to my opinion, but because it seems to

me that [my answer] will cast some enlightenment upon this spiny and delicate discussion, which may

be useful on other occasions.”
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but finite number of weights joined bylittle lines.’ [The reason for this statement seems to

be that in general the proper frequencies are incommensurable in the finite case but com-

mensurable in the continuous limit. When it seemedto his advantage, D’ALEMBERTrefused

to consider an arbitrarily accurate approximation as a valid answer for a physical pro-

blem.|

The following First supplement!) begins with a sarcastic personal attack on DANIEL

BERNOULLI. Most of the rest again repeats D’ALEMBERT’s old objections against EvuLER’s

solution. Now, however, D’ALEMBERT has definitely decided that the initial shape

y = «(sin x)", being given by an “‘equation’’, is an admissible solution, and since in this

case d?y/dx*? = co at x = 0, heasserts that “for the validity of the solution, it is enough

that dy/d = 0 when «=0...; itis not at all necessary that 0°y/0i? — 0 [at the end

points], and this does not follow from dy/dt = 0...’ Hence the curvature maybeinfinite

at the end points ; [p’ALEMBERT seemsto realize that this contradicts his earlier violent

contention that the curvature must be zero there,] so he decides that 02y/dxz? = oo is per-

mitted only when ¢ = 0, not at any other time.

The Second supplement”), among repetitions of his old claims, takes up LAGRANGE’s

last conclusion, vz, that if the solutionis given by an “‘equation’’, it must be representable

as a trigonometric series (above, p. 278). D’ALEMBERT asserts that every trigonometric

series can be rearranged as a powerseries ; hence LAGRANGE’s conclusion implies that every

solution [since D’ALEMRERT refuses to admit any not given by “‘equations’’] is repre-

sentable by a powerseries. This, however, D’ALEMRERT considers too restrictive, since he

now sees that such functions as (sin x)*/* do not have powerseries expansions.

Finally p’Auumprnr insists that d°y/dx* = d°y/ot® cannot hold unless

Oty/Oa” = Ay/dt2dx-2, [Much as we try to render justice to D’ALEMBERT for his some-

times well taken criticisms, when we run upon nonsense ofthis kindit is difficult to read

further.]

The Third supplement) attempts to turn aside EULER’s question of what the motion of
  

1) “Premier supplément au mémotre précédent,’’ Opusc. math. 4, 156—179 (1768). See also the

personal remarks on p. x of the Avertissement to the volume. D’ALEMBERT wrote to LAGRANGE on

29 April 1768, ‘“There I handle DANIEL BERNOULLI rather roughly ...’’ Indeed, in § 2 he refers to

“a famous geometer, who is neither Mr. pE LA GRANGE nor Mr. EULER”, etc. In reference to DANIEL

Bunnovuuui’s [indeed misty] treatment of the divergent series that often arise at the endpoints in a

solution by trigonometrical series, D-ALEMBERT writes “it is not a matter ofconjecturing, but ofproving,

and it would be dangerous (though,truly, this misfortuneis little to be feared) if such a strange kind of

proof were to be introduced in geometry. The only surprising thing is that such reasoning should be

employed as proof by a famous mathematician...” (§ 4). (D’ALEMBERT’s own workis full of con-

jectures, mostly false.)

2) “Second supplément au mémoire précédent,” Opusc. math. 4, 180—199 (1768).

3) ‘“Trowiéme supplément au mémorre précédent,’’ Opusc. math. 4, 200—224 (1768).

1—12
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a string from an arbitrary initial state really is. DDALEMBERT states that ‘even the oppo-

nents of our opinion” agree that polygonal initial shapes, which are ‘‘the most ordinary,

and perhaps the only ones that have ever existed for vibrating strings,”

[For EvLER’s treatmentofthis case, see below, pp. 289 —290.] Experience cannot be adduced

in support of EULER’s solution, because the theory neglects friction, and ‘‘what solid argu-

ment can be drawn from an agreement with experience which is not universal in all

respects?” [This is a sample of D’ALEMBERT’s famous insistence upon the experimental

basis of physical science: Atheory not representing every detail of a physical situation is not

fit to be compared to experiment at all!] D’ALEMBERT then goes off into approximate

solution of equations representing a vibrating string subject to variouslaws of resistance.

are excluded.

[No definite conclusion results from his pages of formulae.]

Most of these matters are repeated in the Extract from different letters of Mr. p’AtEm-

Bert to Mr. pz 1a Granee'), written expressly for publication as a sort of advertisement for

the paper just described. Here D’ALEMBERT agrees with DaniznL BERNOULLI thatfor finite

systems, the most general motion may be obtained by superposition of appropriate simple

modes, but he denies that “‘these multiple vibrations can be regarded as really existing”’

and that the theory applies in general to a vibrating string loaded with infinitely many

masses. Pages of calculation supposedly show that ‘‘the claimed Taytorian multiple

vibrations exist only in dea and have no morereality than they would in string at rest...”

A trigonometrical series cannot represent all motions. 1°, at points where the initial figure

has corners, “dy has two values’, which is manifestly impossible for a trigonometric

series ; [thus p’ALEMRERT reproaches DANIEL BERNOULLI with not being able to solve

cases which he himself elsewhere categorically asserts to be insoluble]. 2°, y = «(sin xx)**

gives a solution for which d?y/dz?=co at x=0, but anyseries of sines gives d*y/da? = 0.

EvuEr’s proposal to approximate figures with corners by smooth ones D’ALEMBERT

rejects flatly as unworthy of geometry *).

After ho had received this work of D’ALEMBERT, LAGRANGE wrote on 15 July 1769,
 

1) *‘Hatract de differentes lettres de Mr. D_ALEMBERT @ Mr. DE LA GRANGE,” Hist. acad. sci.

Berlin [19] (1763), 235—255 (1770). This work, dated 11 June 1769, was sent to LAGRANGE with

p’ALEMPERT’s letter of 16 June 1769.

2) D’AtEMBERT’s provocation had finally led Evuter to print a sarcastic remark in § 13 ofE339,

described above, pp. 283—285): “I have every ground to hope that Mr. BERNOULLI will recognize the

truth [of my solution], especially when he sees the beautiful agreement with experience; but Mr.

p’ALEMBERT doubtless will say that he will refute my solution in some future publication, and for the
proocnt he will rest contont with notifying the public.” To this D’ALEMBERT réphés with outraged

dignity. ‘(Now I come to the memoir of Mr. EULER... I pass over in silence the pleasantry which he

¢rien ¢9 put upon mo on p. 212, since the essential is not to trifle here. You, Sir, who have sometimes

rightly opposed me, and without pleasantry, you thought at first as does Mr. KuLER, but you have

since abandonedthat opinion so far that it seems to me you now reduce the solution to too few shapes.”’
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‘I admire the constancy with which you are capable of pursuing the same object for so

long as time ; for my part, unfortunately, if I have to work over the same subjectI finally

get so violent a revulsion toward it as to make me virtually incapable of coming back

to it, and that is exactly what has happened to mein respect to the vibrating string. Thatis

the reason I have always neglected to answer Mr. Dante BERNOULLI, though I could doit

to advantage.’ [Indeed, LacrancE has retreated from everything he once claimed to

have proved regarding the vibrating string and has allowed himself to become a merefoil

in the polemics of D’ALEMBERT. He is to publish no further researches on the subject.]

EULER’s Further disquisition on vibrating strings!) containslittle else than a restate-

mentof his position of twenty years before. In an attempt to justify the use of shapes with

 

 

 

corners, he chooses a function with a cusp and verifies that

UN ; at the cusp (251) is satisfied because each side becomes in-

A D C FE  B finite. [In itself, this is a weak evasion, but it enables us to

ot grasp one of KULER’s ideas: if f(z) = g(x) for x<a and

A bd c FE B for x >a, but f and/or g is undefined for x =a, we may

C consider f(a) = g(a); %.e., in modern terms, «=a is a

MmPoetos removable singularity. However, this does not help to de-

a “ limit the class of discontinuities consistent with the principles

- : of mechanics. It was objected, doubtless by physicists, that inA Woe Boma 7 yP'y
fact if a string were bent into a sharp corner, the corner would

 

AT EB be smoothed out in the succeeding motion, but according to

A” EULER’s solutions the corner remains; to this his answer

 

€ is [entirely just]: Physical strings are never entirely devoid of 26
Figure 86. Eurmr’s sketches for . ; . .

the propagation of a triangular stiffness, while the theory considers only a perfectly flexible

“isturbance (1772) line. Theinitial form shown in Figure86is a striking example

 

  

- of the use of ‘“‘discontinuous” functions, and EULER’s ex-

elef haustive discussion of the propagation and reflection of the

Lf. |g “\ pulse showshis full understanding of the laws of wave pro-

a67, een’s diagram ro pagation”).
determining the motion of a In reply to p’ALEMBERT’s challenge (above, p. 288),

inne OO ntDee Ever discusses an initially triangular form (Figure 87) on
 

1) E439, “De chordis vibrantibus disquisitio ulterior,” Novi comm. acad. sci. Petrop. 17 (1772),

381—409 (1773) = Opera omnia II 11, 62—80. Presentation date: 24 August 1772.
9) IT find no evidence supporting the assertion of HOPPE, p. 133 of op. cit. ante, p. 11, that

EULER’s treatment of reflection here is erroneous. Perhaps Hoprr was misled by EULER’s Figures 12

and 14, which are correct for the instants to which they refer but are not typical, and by the fact that

EvLeER does not mention or show the typical trapezoidal form at instants intermédiate between those

illustrated in his Figures 12—15.

26—32
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the basis of mechanical principles alone. ‘Since at the initial instant all elements of

the string were at rest and since, as is plain, the tensions in the string are everywhere

equal and opposite, so that the several points on the two sides AD and BD are

not subject to any force, it is evident that in the first instant all these points take

on no motion ...; only the topmost element at the apex D is subject to oblique

tensions along the directions DA and DB; thence will arise a force acting along the

direction DC, so that the point D will begin to move back in the direction DC, while

all the remaining points... will remain at rest. As soon, however, as this point D begins

to move and in the first instant, so to speak, reaches G, now the points # and F are

induced to take on motion because the tensions about these points are no longer in

equilibrium, while the rest of the points from # to A and from F to B continue to remain

at rest. Moreover, the points in the little space HGF’, being no longer subjected to force,

will hasten toward the axis AB with the motion already acquired. Thus after a certain

little time the shape taken on by the stying is AefB, and so on in this way until it reaches

the natural state A B, whence it spreads out in the same wayto the opposite side.”

(Thus, at last, BEECKMAN’s argument is completed, and the problem with which

MERSENNE, Taytor,and others had struggled in vain is solved once andforall (cf. above,

pp. 25, 30, 48, 130, 241, 275). But more than this, EuxEr has at last begun to see how the

matter of corners is to be handled : Throwingaside the differential equation, he has appealed

directly to the laws of mechanics. The modern student sees that the laws of mechanics

are untegral equations, which imply not only the differential equations of motion but also

the conditions of compatibility which must be satisfied at corners or other discontinuities.

In this paper of EuLer occurs the first dim hint of the correct approach, which was not

to be taken up again until CHRISTOFFEL, a full century later, made it the basis of the

general theory of singular surfaces in mathematical physics’). ]

 

1) In 1677 CHRISTOFFEL wrote that he had been using the method for some years in his lectures,

but he did not publish his explanation. See the introduction to his paper, “Untersuchungen tiber die

mit dem Fortbestehen linearer partieller Differentialgleichungen vertraglichen Unstetigkeiten,’’ Annali di

Mat. pura ed applic. (II) 8, 81—112 (1877) = Werke 2, 5180. The whole passage is worth noting:

“A very immediate example for this theory occurs in the theory of the taut string. The formulae

following from the assumption that the string has everywhere continuous curvature are applied

unhesitatingly to the case when there are corners...; if any reason at all is admitted, it is found in

the properties of FourRIER series. But this question has nothing at all to do with FouRIERseries,

since it depends rather upon two new conditions, a mechanical one for the shock that is experienced

by an element of the string which is traversed by a corner, and a phoronomic one, which restricts

the discontinuities occurring at a shock in such a way that they do not destroy the connectedness of
tho string. By the aid of these conditions it is possible to prove, as it has been my eustom to do in my

lectures for some years past, that indeed the presence of corners has no influence on the end formulae
for tranayerss motion, but this conclusion rasta, not upon the properties of FouRIER series, hut upon
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EvuLerR’s Determination of all motions that may be taken on by a taut and uniformly

thick string) is a short exposition, the object of which seems to be to put into one simple

account, free of arguments and proofs, ‘“‘the very easy constructions, without any cal-

culation ... by which the form of the string at any time may be drawn...”

After a long silence DANIEL BERNOULLI issued his More general physico-mechanical

paper on the principle of the coexistence of simple undisturbed vibrations in a composite

system*). While he writes, “I do not hesitate . . . to place this principle among the most use-

ful principles of physical mechanics’’, [the paper consists in repetitions of old claims and

arguments]. After reminding us that his method is good for systemsoffinitely many bodies,

no matter how numerous, he claims something regarding the limit to the continuousstring,

[but what he meansis not clear]. He concludes that “if you suspect any restriction in my

solution ..., it consists necessarily in failure to take enough simple vibrations...,”

[but he gives no idea how one would go about determining the proper amplitudes for these

vibrations. | a

Here we insert a description of a paper not pertaining to the controversy but in sub-

ject nearer to it than to any other part of our history.] This is EULER’s Consideration of a

very special motion possible for a perfectly flexible thread*), which contains the only attempt

made in our entire period of study to determine cases of finite motion of a string. The

want of a theory of finite motion of flexible and elastic threads arises not from any failure of

mechanical principles but solely from imperfection of analysis. The equations, set up by

the balance of momentsas in other work of EULER from this period *), are

 

the fact that the above-mentioned singularities are such as to be compatible with the permanence

of the linear partial differential equation, so often treated since EULER’s time.”

For the details of CHRISTOFFEL’s justification of EuLER’s solution, see Ch. IX, $1, q 6 of Pa.

FRANK & K.V. MISES, Die Differential- und Integraigieichungen der Mechanik und Physik 2,

Braunachwoip, Viewop, 1935.

Note that CHRISTOFFEL’s objection to justifications based on the theory of FouRIER series

applies equally to the methods of some modern pure mathematicians who rely on the completeness

of certain function spaces,etc.

1) E535, “Determinatio omnium motuum quos chorda tensa et uniformiter crassa recipere potest,”

Acta acad.sci. Petrop. 1779: II, 116—-125 (1783) = Opera omnia IT 11, 269—279. Presentation date:

17 October 1774.

2) “Commentatio physico-mechanica generalior principit de coexistentia vibrationum simplicium

haud perturbatarum systemate composito,” Novicomm. acad. Petrop. 19 (1774), 2839—259 (1775).

3) E618, ‘“‘Consideratio motus plane singularis qui in filo perfecte flexili locum habere potest,”

Nova acta acad. sci. Petrop. 2 (1784), 103—-120 (1788) = Opera omnia IT 11, 355372. Presentation

date: 5 June 1775.

4) H.g.in E481, described below, § 58.

4,11
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oy (0Se Fa) ds = on (o5e F,) ds|= oe 2,

 

as at? ~ as at? €s 0s

_ Ox 07x oy o*y Ox \? dy \?

pa[los — F,) ds + 3H (o5eat — F,) ds, (ey + (fy =2.

“T do not hesitate to publish here my vain attempts, since perhaps they may furnish

(308)

others occasion to undertake this work with happier event.” There follows a transformation

of (308) into the form (222), [which EULER apparently forgets he had derived directly in his

first attempt, thirty years earlier, to obtain the equations of finite motion].~~

Not having been able to draw any fruit from this direct attack, “I have decided to

treat this subject in inverse order ; that is, I shall regard the shape of the thread as given at

all times and I shall seek the forces F, and F’, requisite to cause such a motion .. .”” EULER

then considers the case when thestring is a circle of radius r with the end s = 0 a fixed

point:

. 8 8
(309) z—=rsin—, y=1(1— cos =) ,

where r = r(t). EULER supposes 7(0) = oo, so that the form is a straight line at ¢ = 0.

He wishes to impose also the condition 0x/dt = dy/at = 0 when s — 0, but in view of

the double limit involved is able to assert no precise condition on r. A long calculation

leads to the following expressions for the tangential and normal components of the force

required to effect the motion:

 

_ 8 . § Of v 8
Hy, =F, cos + #, sin — = ~~ + oF sin =].

(310)
s . 8s ” 8 7'232

F, = Fy00s* — F,sm = —2 4 |r cos — — 1 + 7d?

whore J'(e, ¢) is the tension. The paper concludes with explicit determination of two of the

throes quantities F,, #,, and Z' when one is assumed to vanish, EULER remarks on the mul-

tiplicity of forces under which the same assumed motion (309) may take place. He con-

siders these results extraordinary because the only ones ever obtained concerning finite

motion of a string subject to distributed load.

LAPLACE’S Memoir on sequences!) proposes to resolve the whole problem of the vibrat-

ing string by replacing the differential equation (251) by a finite difference equation:

(311) Ys, 24+. 2Y cy + Ya, ay—-1 — Ya+i, ay 2Yn, @y + Ye-la,?
 

1) “Adémotre sur tos suttos,” Mém. acad. sci. Paris 1779, 207-309 (1782) = CKuvres 10, 1—89.

Seo § XXII, This passage is taken over almost verbatim into § 19 of Book I of Théorie analytigue des

probabitités, 3rd. éd., Paris (1820) = CEuvres 7.
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where 2, is proportional to ¢. Such difference equations LapLace has solved in an earlier

part of the memoir. He concludes that “this analysis of the vibrating string establishes . .

in an incontestable way the possibility of admitting discontinuous functions in this prob-

lem... Since nothing is neglected in the theory of finite difference equations, it is plain

that the arbitrary functions in their integrals are not subject to any law of continuity and

that the construction of these equations by the means of polygonsholdsirrespective of the

nature of these polygons. When one then passes from thefinite to the infinitely smal,

these polygons changeinto certain curves which, consequently, can be discontinuous...”

[Nothing is proved.First, to replace the acceleration by a finite second difference brings us

further away, not nearer to the principles of mechanics. Second, that arbitrary polygonal

figures are possible for the discrete case is obvious and had never been questioned by anyone.

Third, that such polygonal figures may approach in the limit functions which are “dis-

continuous” is also obvious and does not prove that those functions satisfy the conditions

of the continuous problem.] Lapiacs retreats at once with the remark that in order to

satisfy a partial differential equation of order 7, a function must have continuous deriva-

tives of orders 1, 2,...,n — 1. “This condition is necessary in order that the proposed

differential equation can hold ..’’ [While LarLacE does not state his opinion clearly, the

context makesit plain that he insists that the partial differential equation of the n"order

be satisfied everywhere ; therefore the n™ derivatives must exist, but they need not be con-

tinuous, Consequently the derivatives of lower order are continuous in each variable

separatoly.] Thus LArnacs concludes that polygonal initial figures for the string cannot be

admitted “geometrically”, although “physically ...one sees a priori” that the motion

differs very little from that of a string with these corners rounded off [as EULER had

asserted long before].

D’ALEMBERT,still alive, objected. In his reply!), dated 10 March 1782, LAPLACH’s

attempt to answer p’ALEMBERT’s favorite question regarding the accelerating force at a

point where ¢@y /dz? is discontinuous [shows that LAPLACEis as far as anyone else from a

grasp of the mechanical problem]. In his view, d°y/dz? must exist at all pots. However,

his geometric definition of o*y/dx? is equivalent not to as (34) but to

lim —Y(@ + #8) — 2y (@, t) + y(« — h, t)
h>0 h

This limit may exist at z =a and maydiffer from the two limiting values?) of dy/dz? as

1) Guvres de Larnace 14, 351—354 (1912).

2) It would be prolepsis to expect any mathematician of the eighteenth century to take account

of the possibility that there be a differentiable function such that Lim f(x) = Lim f(x) # f(a).
t>a—O0t>a+0

Indeed,if the limiting values of /(x) as x>ax+0 are finite, the foregoing inequality must bere-

placed by equality.
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ary

Ox? ©
While LarPLace makesit plain that he considers his solution to supersede at a blow all the

 z—->a-+0. According to LAPLACcE,the accelerating force per unit lengthis always 7

results of all prior authors, [he fails to notice that for a polygonal figure, which he had

agreed must be excluded “geometrically”, the above limit exists and is infinite! This is

precisely what the mechanical problem demands. Indeed, the old argument JAMES BER-

NOULLI used to derive (40) shows that the resultant normal force I’, of the tension on the

element ds is given to the first order in ds by Td@ = F',,ds, where dé is the angle of con-

tact. For a polygonal figure with small dé this formula holds exactly as a finite difference

expression in ds, with F,, being the force along the bisector of the angle between the seg-

ments, but d0-> 0 as ds—>0; hence F,,-0o. This in no way precludes application of

the principles of mechanics, with which EULER’s solution for polygonal initial shapes is in

perfect accord.|

The first voice from theisles since TAyLOR’s analysis of the vibrating string in 1713 is

raised by Marruew Youne, whose book, An enquiry into the principal phaenomena of

sounds and musical strings), appeared in 1784. Its purpose seems to be to present in non-

mathematical language someof the principal results and to show that the view of DANIEL

BERNOULLI suffices to account for all the observed phenomena. YOuNG’s only originality

lies in his experiments. For example, he is able to distinguish the constituent harmonic

motions visually by noting that the corresponding speeds of propagation of disturbances

are different : “When I pulled [a string] by a point near either of the extremities ..., I

observed two forms of chord, one vibrating very rapidly, while, at the same time, the other

appeared to roll slowly backwards and forwards, and to cross the former . . . Sometimes,

by striking the chord at random, I have seen three or four of these apparent chordscross-

ing each other with various velocities .. .”’

Youd takes pains to controvert experimentally all of D’ALEMBERT’s objections that

refer to the physical sido of the question. #. g., in reference to D’ALEMBER?’s claim that the

small observed motion at the theoretical nodes contradicts BERNOULLI’s theory (above,

p. 262), Youna, taking a string held taut by a weight and screwing on a heavy plate part

way along, finds that both the plate and the weight move somewhat whenthestring is

struck at a point between them, but the string of given length and tension emits the same

note, ‘‘whether both extremities were fastened, or permitted to vibrate freely.”

While it is BrRNOULLI’s theory to which his experiments refer directly, M. Youne

 

2) (vi) + 203 pp., London, G. Robinson, 1784, Except for the works of HOOBE and the short

notes by WALLIS and Roverts, this seems to be the only work in English pertaining to any part of

our subject.
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develops the properties of vibratory motion of strings by what amounts to EULER’s method,

without equations [or reference to EULER?)].

LAGRANGE’s “‘violent revulsion” toward the problem seems to have continued until

1788, since in his Méchanique Analitique he does not treat it?).

42. Summary of the theory of the vibrating string to 1788. Despite the great atten-

tion given by historians and dilettantes to this controversy, it has been little understood.

From the foregoing extracts I draw up a summary.

1. While Tavtor in 1713 gaveall the analysis a modern student needs to derive the

partial differential equation (251), neither he nor any of his contemporaries understood the

mechanical problem. Taytor was the first to calculate the fundamental frequency (75)

correctly from dynamical principles. He failed to observe the possibility of any kind of

motion other than the fundamental mode.

2. In 1727 Joun BERNOULLI proposed the model of the massless string loaded by n
 

1) Cf. the similar borrowing by T. Youne as described above, p. 248. That M. Youne knew

HULER’S papers at first hand is shown by his remarks and references in §§ 44—45.

2) In an offhand way he mentions the loaded taut string in q 34 of Seconde Partie, Sect. V,

§ IIL; the continuousstring, in g 42.

When the second edition appeared in 1811, all the original parties to the dispute except La-

GRANGE himself were dead, and he as dean of the French geometers could write anything he pleased
without fear of being questioned. He added a new section on vibrating systems. In the “Aver-

tissement”’ he says this new section “‘ends with the theory of the vibrating string, first achieved by me
and published in Volume 1 of the Turin Memoirs, whichis presented here in a simpler way, exempt from

the objections... made by D’ALEMBERTin the first volume of his Opuscules.”’ In 4433—38 of Sect. VI

of Part II we find essentially LAGRANGE’s second treatment (above, pp. 278—279) of the loaded taut

string, now based on his general theory of small oscillations and generalized to three-dimensional small

displacoment. § 4 44—565 contain the limit process just as in Lagrangu’sfirst attempt (above, pp. 269—

270), now supported by such phrases as “‘it follows from the known theory of these series.”” Referring to

the work ofDannyDinnovunu, Lagnanen writesin q 47 that in order to explain harmonic sounds on the

baoio of a trigonometric series solution, we should have to suppose thefirst coefficients “much greater

than all the rest taken together...’ and that “the coefficients ...form extremely convergent series.

But, from the manner in which these coefficients depend upon the initial values ..., one sees that this

supposition is inadmissible ifwe regard the initial state as arbitrary; one sees even that in most cases the

coefficients form divergent series, but this does not prevent the string from making isochronousvibra-

tions...’ LAGRANGEstill claims that in the limit to the continuousstring “‘the series which could give

these different sounds disappears,” but then he goes on to explain how the initial shape could be

regarded as being the sum of appropriate curves with 1, 2, 3,...like branches, but “such a com-

position being only hypothetical, its consequences... would be altogether precarious” (459). In

¢4 61—62 LAGRANGE in summarizing the controversy between EULER and bD’ALEMBERT reverts

entirely to the view expressed in his own first paper, namely, that his limit process justifies EULER’s

solution. But he adds that ‘‘the principle of the discontinuity of the functions is now generally received

for the integrals of all differential equations ...,” citing in support the geometrical researches of

Monge.
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equally spaced and equal discrete masses, calculated the restoring force (78), derived the

equation of the proper frequencies for » = 1, 2,...,6, but gave the solution only for the

fundamental frequency in each case!). He seemed not to realize the existence of other pos-

sible frequencies.

3. From 1733 onward DANIEL BERNOULLI studied the simple modes of many dyna-

mical systemsof finitely or infinitely many degrees of freedom. He calculated the proper

frequencies and shapes of the simple modes correctly, and indeed he wasthefirst to grasp

the totality of simple harmonic motions of which such systemsare susceptible. By 1739,if

not earlier, he had been led by these special cases to infer the general principle of the co-

existence of small harmonic oscillations as sufficient to yield the most general motion of

any vibrating system, but he prepared this material for publication only in 1753, in par-

ticular reference to the vibrating string. DanreL BERNOULLI regarded his principle as an

a priori law of physics ratherthan a demonstrated theorem of rational mechanics.

4. 'To D’ALEMBERT belongs certain priority for deriving the wave equation (251) by

1746 and for obtaining its formal solution (257). These results once derived, however,

D’ALEMBERT strove with might and main to prevent their application except subject to

limitations which now, at least, seem merely arbitrary. Though some of p’ALEMBERT’s

criticisms of the work of others were sound, most were merely destructive in the context of

the times, devoid of insight into the mechanical principles or analytical concepts whereby

the pitfalls may be bridged or outflanked, and had his objections been heeded, they would

have but let the progress of mechanics,

5. In this connection EvuLer approached the concept of function of a real variable.

Whilc he failed to justify in all respects his derivation of (257) with © and ¥ interpreted as

arbitrary piecewise smooth functions, this failure resulted partly from his obstinate in-

sistence that solutions with corners are admissible. While this is true*), concepts of analysis

more general than those received in the eighteenth century are needed to substantiate it.

Had Kure been content to compromise by admitting only solutions having continuous

curvature’), all solid ground would have fallen from p’ALEMBERT’s objections. The end

points are a moredifficult matter. It is now plain, but plain only from accumulated mathe-

matical experience, that it is too much to demand that the solution of a physical problem

satisfy the governing differential equations at boundary points. EULER did not state this
 

1) This work is not anticipated by the inconclusive notes ofHuyGENs on the same problem.

2) The justification by CHRISTOFFEL, and EULER’s hint toward it, are mentioned above, p. 290.

3) Ever finally found two simple transformations by which he proved absolutely rigorously

that (257) is the general solution of (251) as far as solutions of class C? are concerned. Thefirst is given in

his letter to LAGRANGE of 9 November 1762 and in §§ 4—10 of E319, “‘Recherches sur Vintégration de

Péquation (se) = aa (4+2 (=) +=2,” Mise. Taurin. 3, (1762/1765), 60—91 (1766) = Opera 
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clearly, and had he doneso, no one would have been convinced. Determination of the singu-

larities admissible in solutions of partial differential equations, especially hyperbolic ones,

lay long in the future. Rather, it is EULER’s signal merit to have been led by a most

secure intuition to results which the subsequent course of mathematics and rational

mechanics has justified in all detail, though he himself lacked the experience and the

apparatus to present an adequate argument for them. In every paper, and indeed in every

personal letter touching the subject, EULER emphasized that the introduction of “‘discon-

tinuous” functions and partial differential equations opened ‘‘a wholly new part of ana-

lysis.”’ While EULER devoted many papers to \these subjects, his prophetic remark found

little response from other mathematicians until after his death +).

6. In EULER’s treatment, as he stated emphatically again and again, the question of

expansion of functions in trigonometrical series does not arise; of course, this purely ana-

lytical question is irrelevant to the mechanical problem*). It is abundantly clear, however,

that no one in the eighteenth century understood EvunEr’s elegant use of the func-

tional equations to solve the entire problem of the vibrating string, though in every paper

he explained his method afresh. (It is the method nowadays often attributed in the special

case of initial rest to T. Young.)

7. Everything concerning the uniform string that BERNOULLI or anyoneelse in the

eighteenth century was able to derive from the theory of simple harmonic modes, EULER

derived correctly and often in greater generality by the solution in arbitrary functions.

8. As was seen at once, in order to justify BERNOULLI’s viewpoint mathematically

it was necessary to prove that any function f(x) defined in the interval 0 < x SJ and suf-

ficiently smooth to be an admissible initial shape for the string may be expanded in an

infinite trigonometrical series. This and other mechanical problemsgaverise to a long series

 

omnia T 23. 42—73. Both are presented in §§ 296—300 of Institutionum calculi integralis 8, Petrop.

(1770) = Opera omnia 1 18; v. §§ 333, 343, 353—356.

1) The development ofthe concept of function and integral of a partial differential equation began

with the work of ARBoGaAsST in 1791, soon thereafter to be taken up by the great French mathematicians

of the early nineteenth century. See § 13, § 38, et passum in BURKHARDT,op.cit. ante, p. 11.

Even after the mathematical researches on the propagation of waves had madethe identification

of function with algebraic expression obviously useless, it lingered on. Cf. the remark of Sroxzs,

“On a difficulty in the theory of sound,” Phil. Mag 33, 349—356 (1848) = (abridged) Papers 2, 51—55:

“By the term continuous function, I here understand a function whose value does not alter per saltum,

and not (as the term is sometimes used) a function which preserves the same algebraical expression.

Indeed, it seems to me to be of the utmost importance, in considering the application of partial dif-

ferential equations to physical, and even to geometrical problems, to contemplate functions apart

from all idea of algebraical expression.”’

2) Cf. the remark of CHRISTOFFEL, above, p. 290.
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of researches in pure mathematics!). These investigations brought nothing to the under-

standing of the motion of the vibrating string ; rather, they diverted the disputants from

the mechanical problem.

9. To justify BERNOULLI’s viewpoint physically requires at least some good numerical

examples. Neither BERNOULLI nor any oneelse in the eighteenth century ever attempted to

fit a trigonometrical series to a numerical case and to comparethe resulting approximate

solution with experimental data. In particular, BERNOULLI never gave any solution cor-

responding to the propagation of a pulse and never explainedsatisfactorily?) the pheno-

menon of reflection from the ends, while KULER’s theory handled these matters easily.

BERNOULLI rather sensed than exhibited the strength of his method.

10. The modern reader sees two advantages in BERNOULLI’s method:

a) The relative amplitudes of the harmonics may be calculated. Thus, for example,

the predominant tone of a composite sound may be determined.

b) For many Pra differential equations where a solution in arbitrary functionsis

not known, Brernwovunii’s method leads to a solution in termsof a series of proper functions.

 

1) The history of these developments has been written with finality by BurKHaARDT, §§ 14—18
of op. eit. ante, p. 11, yet it must be admitted that BuRKHARDT’s presentation is influenced by a pre-

Judice, quaint to the modern reader, in favor of convergence at the expense of all other processes for

summation of series.

Most perplexing is that alongside the violent polemics over the vibrating string there was a

steady development of the theory of interpolation by trigonometric polynomials and series. What can

only be described as a very near miss had been obtained by EULER in 1729 and published by him in

1766. Duuun’s result, which is formaiiy identical with the “FOURIER oxpansion” of an arbitrary

periodic function, including determination of the coefficients by integrals, is printed in footnote 2,

p. 278, above. In 1747 EutEr obtained results which can now be recognized as interpolatory formulae,

to arbitrarily high ordar, for the coefficients in the trigonometrical series for a cortain function arising

in thé theory of celestial perturbations. D’ALEMBERT, treating the same problem in 1754, by use of

a recursion formula obtained the expressions for the first two coefficients by integrals. In a brilliant

astronomical work of 1757, Cuamnaur set up the problem of determining the coefficients in a cosine

series for an arbitrary function and solved it, explicitly and generally, by interpolation. Passage to

the limit of small intervals yields the integral expression for the coefficients, All this work was in print

by 1759, the year of LAGRANGE’s memoir deriving (299), from which, granted his presumptions, he could

have inferred that any function has a trigonometrical expansion and could have read off the formulae for

the coefficients, but he did not do so. Moreover, many special trigonometric series had been determined

explicitly by various authors. More revealing investigations camelater, after the heat of the contro-

versy was past. BERNOULLI himself in a work published in 1773 first noticed that in special cases the

sum of a trigonometrical series may be given by different algebraic expressions in different intervals.

Even later came thefirst determination of the coefficients by use of the orthogonality of the trigono-

metric functions. This wasfirst achieved by EULER in a work written in 1777 but not published until

1793.

2) I. ¢., from the trigonometrical solutions, not merely from physical intuition.
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Neither of these advantages was stated or illustrated by BERNOULLI. Vague hints of

the former may be found in the work of EvuLER?); as we shall see below (pp. 311—212),

a step toward the latter was made by D’ALEMBERT; but both were reserved for the next

century to exploit.

11. EvLER understood BERNOULLI’s views and respected them as important for

physics. Indeed, as shown by examples in Part II and Part IV of this history, for more

complex systems EULER calculated simple modes and proper frequencies with great skull

and accuracy, and to him are due mostresults of this class obtained before 1800. However,

he took an inexplicable dislike of trigonometric series. Toward the end of his life he came

grudgingly to the admission that they might be generally valid?), but though he had in his

own handsall the formal apparatus*) needed to exploit BERNOULLI’s viewpoint, he never

attempted to do so. .

12. For the loaded string, norm obtained the proper frequencies and the general

solution 4) in 1748. In 1759 LaGRanaeE obtained the explicit solution of the general initial

value problem. His subsequent passage to the limit of the continuous string was gained

only by non-trivial fallacies, and his later worked served but to obfuscate the subject by a

cloud of calculation as he retreated from his original position. In particular, his reiterated

claim to have proved Dante BERNOULLI’s method wholly false for the continuousstring

rests only on his own misunderstandings.

13. While the other disputants contented themselves with defending their views by

 

1) H.g. § 4 of E213 (cited above, p. 259): “an infinity of sounds, the highest of which will become

more and morefaint.”? Also § 30 of E339, quoted above, p. 285.

2) In tho introduction to E 567, cited below, p. 315, EuLER wrote, ‘Rather often I have warned

that in questions of this kind the perfect solution should be distinguished from general solutions,

which contain in themselves all possible solutions. Since they consist in an infinite number of terms,

thoy cannot at all be adjusted to those cases when theinitial shape of the string is prescribed, unless

indeed one were to determine infinitely many constants, which would surpassall the strength of ana-

lysis. For the perfect solution ...is required a finite formula, the application of which to arbitrary

initial states can actually be carried out. For strings uniformly thick the most celebrated La GRANGE

and I long ago presented such a solution . . ., by means of which the motion of the string corresponding

to an arbitrary initial state is very easily determined, which for other solutions, even if they includeall

possible motions, is not at all the case. As an example of this sort I proposed long ago the string dis-

turbedinitially along only a part of its length, and this case no one so far has been able to handle by

means of those formulae of sines progressing to infinity.” EULER repeats this view in § 14 of E576,

cited below, p. 317.

D’ALEMBERT and LAGRANGE persisted in categorical denial that trigonometrical series could

represent ‘“‘discontinuous”’ functions.

3) Cf. footnote 1, p. 298.

4) In the context of longitudinal motion; cf. especially footnote 1, p. 232 above.
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repeating them, EuLER to the end ofhis life continued to work, solving new and illuminating

cases no one else could approach and proving thefruitfulness of his ideas by extending

them to further problems. EuLER’s papers on the vibrating string, often repetitious and

falling short of the level of his other works on mechanics, sometimes display a prejudice

close to an idée fixe ; nevertheless each of them, with the exception of the last one, offers

something really new. Polemics aside, there is in them a positive spirit which continues to

expand the bounds of mechanics and to accumulate clear and definite results.



THE NON-UNIFORM VIBRATING STRING 301
 

Part TY. Researches subsequent to

EvULER’s “First principles of mechanies’’, 1752—1788

IVA. The non-uniform vibrating string

43. The earliest researches on non-uniform strings: Simple modes for special cases,

and EULER’s general inverse method (1752—1765). Dynamical principles sufficient to

yield (251) as the differential equation governing small motion ofa string of uniform den-

sity o show at once that for small motion of a string of density o(x) we obtain the same

equation?), with c? = T'/o(x). In 1753 Dante, BERNOULLI suggested that since, [as he

conjectured,] the proper frequencies of the non-uniform string may be incommensurable,

the methods of D’ALEMBERT and EULERare inapplicable?). EuLER replied ?) at once that

not incommensurability but want of analysis impedes further progress : All that is needed

is the general solution of (251) with c? being an assigned function of x. BERNOULLI, however,

unconvinced,five years later boasted that his method aloneis applicable‘).

Late in 1759 Ever proposed to LagrancE the similar problem of determining the

small longitudinal motion of air in a wedge; this quickly led both these geometers to con-

sider a class of solutions*) of the type

(219) y = EM, (x) [BH (x + et) + BH(@ — ef)] ,
where the superscript (&) denotes the &*" derivative, and where the sum maybefinite or

infinite ; when the sum is finite, such solutions exist only for certain density functions or

certain cross-sectional areas, respectively. LAGRANGE wrote to EULER on 1 March 1760 that

he had found solutions of this kind for a class of equations including (251) when c? « «-”,

, 2 ; tee
but that such solutions are “exact” only when + —7Z — 1 is a positive integer ; by

‘‘exact’’ he appears to mean that the series (312) is then finite. An assertion of this kind, in
 

1) Evian observes this on p. 179 of Notebook EH 6, just following his use of his ‘“‘first principles

of méchanicd”’ to détetminhd tha aquations of motion of several other continuous systems (above,

p. 264). The date of this passage seems to be about 1752.

2) § XXII of op. cit. ante, p. 255.

3) § 45 of E213, cited above, p. 259.

4) On p. 166 of op. cit. ante, p. 262, he writes, “‘What could reveal still more the superiority, the

excellence, and the generality ofmy principles is that they have led me so far as to determinethe vibra-

tions, the absolute motion, the properties of the tones, efc., for taut strings that are not uniformly

heavy. Mr. EULER has recognized [this subject] to be beyond the sphere of activity of his method.

I am very sure, knowing the merit of this illustrious geometer, that he will be able to supply this

defect as soon as he learns the thing is possible. In this case, I should be very curious to learn of his

results, and I am sure that he would then retract his prejudice against the generality of my method.”

5) This development, as far as aerial vibrations are concerned, is traced on pp. XL—XLI,

XLVII—L, LXV—LXVII of my Introduction to L. EULERI Opera omnia IT 18.
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the form that n =tT where yw is an integer, LAGRANGE soon published!), based on

transformation of the partial differential equation into that for aerial vibrations. LAGRANGE

concludes that unless » = 0, “the vibrations will never be isochrone.” [This is doubly

false : The simple modes, for any vibrating system, are alwaysisochrone, and furthermore

there is a certain class of functions c?, soon to be exhibited by Euusr, for which all mo-

tions are isochrone.] At about this time D’ALEMBERT published?) a few special formal solu-

tions, from which no definite conclusions are drawn.

Thefirst substantial results are obtained in EULER’s paper, On the vibratory motion of

non-uniformly thick strings*). Since (251) is linear even when c? = o(x)/7', we may

extend also to strings of variable thickness “that splendid physico-musical theorem, put

forward by the very famous BERNOULLI, that those sounds which a string may emit

separately it may also emit simultaneously.”

Putting y = v®(u), where v and w are functions of both a and ¢, Euur calculates

conditions necessary and sufficient that (251) be satisfied identically in ®, ®’, and ©’.

One of these yields w= t + fa » but EvLERis not able to solve the remaining equations

except in a special case which leads to the line density

Oo(313) ¢=+4)

and the corresponding general solution

(214) y—(14 2) p ( fat) e(rao a) .
1+ z I+ —

where ¢, = V7'/o,. To this solution, EULER’s methods for the uniform string, included

as tho case when « — oo, are casily oxtended. In particular, the frequencies of periodic

 

oscillations of a string of length J are given by

Ie L\y/T

The ratio of succeeding tones is thus the sameasfor a string of uniform thickness, but the

fundamental frequency is no longer inversely proportional to the length. [Though EuLER

shows in detail how to calculate the motion in the case when the initial velocity is zero,
 

1) § 33 of op. cut. ante, p. 273.

2) § TIT of op, ett. ante, p. 274. |

0) Dzo7, ‘De moow vibravorjo cordarum tnacquatiter crassarum,'* Novi comm. acad. sci. Petrop. 9

(1762/1763), 246—304 (1764) = Opera omnia IT 10, 293—343. Presentation dates: 21 February and

1 December 1760.
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he does not mention what is now called dispersion. He does not see how to calculate the

speed of propagation of a disturbance down thestring.] EULER suggests that (313) may be

the only density for which the ratio of frequencies are 1, 2, 3, . . . He has studied other laws

for o, but the results are complicated and seem to be useless.

(DanIEL BERNOULLI, meanwhile, had calculated some simple modes for a class of

densities included in (313)+).)

Regarding it particularly illuminating to consider a case when o(2) itself is discon-

tinuous, KULER finds the motion of a string composed of two uniform portions joined

together. The solution for the case of zero initial velocity is

(316) y = D (x + mt) + O(a — mt) for theleft half,

p(x + nt) +o(x—nt) for the right half,

where x is measured positively from the left end for the left half, from the right end for

the right half. The condition that the ends z= 0 be fixed shows that ® and » are both
 

1) He considered the case when « = J. In an unpublished letter of 7 December 1763 to Joun III

BERNOULLI he gives the corresponding special case of (315) in the form

_ A/T _F
"*— ot 6 MII

where M 1s the mass of the string. He gives also the following ratios of the distances of nodes from the

denser end to the whole length:

Mode Nodal ratios

1

3
1 3

3 3’ 10
“Tt is thus very remarkable that the times for the vibrations of each order are always multiple sounds

of the times of fundamental vibration . .. as in strings that are uniformly thick. Thus one can apply

to this string, too, the theorem of Mr. p’AtemerrT. But calculation has shown me that almost all

other strings fail to have this property. Since I respect very much the lights and the color [candor ?] of

Mr, Evuzr, he would give me much pleasure were he so kind as to try his method on strings of non-

uniform thickness.”

A fragment of EULER’s reply, late in December, to Joun JI Bernovuuiis preserved in the

Gotha University Library. It summarizes the contents of the first half of E 287, which had been com-

plete for at least three years.

An undatedletter of 1764 from DANIEL BERNOULLI to JoHN III Bernovurzi states that “... the

strings with thickness proportional to (« + x)-* are not the only ones, as Mr. EuLEr believes, that

can produce regular vibrations. I can give infinitely many more. I have examined also what happens

when the string is composed of two parts, each one uniformly thick, but of thickness unequal to one

another’s.”’

Letters of DANIEL BERNOULLI to CLarRavT of 27 December 1763 and 15 January 1764 show only

that the former was studying non-uniform strings and that the latter was not au courant in the contro-

versy over the uniform string.

37
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odd. At the junction, the two displacements are equal and the two parts have a common

tangent ; hence

B(a + mt) + Gla — mt) = y(b + nt) + y(b — nt) ,
(317)

D'(a + mt) + O(a — mt) = — g'(b + nt) — o'(b — nt) .

Since these conditions are to hold for all £, we may integrate the latter and obtain

   

 

(318) n®@(a + mt) — nG(a — mt) = — mo(b+ nt) + mo(b — nb) .

Hence 2m n— mM
D(a + mt) = man (db — nt) —7Pa — mi),

(919) 2n m—n
o(6 + nt) = men D(a — mt) + man p(b — nt) .

Theinitial shape of the curve is defined by (x) for OS x<a and by (x) for O< e<b,

and we have seen that @ and are odd. This information put into (319) suffices to deter-

mine ® and 9 forall values of 2, whence the general motion follows immediately by (316).

From this solution EvLE=R shows that the two parts do not generally reach their

maximum displacement simultaneously, “‘and thus there can be no question of the vibra-

tions made in a given time, or of the sound that a string of this kind emits. We get a

regular and isochronous motion not only in the case of uniform thickness, 1 =m, but

also when a/b = m/n; equivalently, when the masses are inversely as the lengths. In

this case the fundamental frequency is

1 |) 7 1 22
(920) "4a VM,tO,

a

where M, and M,are the masses of the two parts. This is one half of the fundamental fre-

quency of a string of length a and density M,/a, stretched by the same weight. EULER

gives also an interpretation equivalent to this: Set M=—=M,4+WM,, U,— 6M,

M,=yM, with f+y—=1. Then the mass P which a uniform string must have in

order to emit the fundamental frequency (320) when stretched by the same force T' is

P= 4Pyl.

Ever then considers, in the case when m/n — }, the illuminating example occa-

sioned by an initial shape which is an equilateral triangle. By using (319), he constructs the

curves representing ® and g, shown as the upper and lower polygons in Figure 88. The

initial position of the midpoint junction, in both curves, is D, and the two ends are A and

B. Kuwunr does not sketch any of the successive shapes ofthe string which follow from these

curves, but he calculates and illustrates the position of the midpoint at twelve equidistant

times. “Hence it appears that the vibrations occur alternately slower and swifter, nor do

they yield any law...”
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Figure 88, EvnEr’s construction for the motion of a compoundstring plucked into triangular form (1760)

[Since Ever himself in later years is to forget if not to repudiate this remarkable

analysis, we explain precisely what he has done. The primes on the left-hand side of

(317), denote left derivatives; those on the right, right derivatives. Thus the integration

leading from (317), to (318) was not justified except at points where @ and are differen-

tiable. Since the initial shape is triangular, EULER’s assumed condition (317),, expressing

the continuity of the slope at the junction, cannot hold in the initial instant. But EULER

uses the integrated form (318). This condition, which suffices to yield a unique solution, has

been adjusted so as to be satisfied trivially at ¢=0 and thus permits an arbitrary initial

discontinuity. Conversely, it implies (317), at places and times such that ® and 9 are

differentiable, but this latter requirement is difficult to interpret mechanically since it

refers to the constructed functions © and rather than to the displacement y itself. The

use of (318) even when (317), does not hold furnishes the first example of a generalized

solution of a boundary value problem. It is exemplary of EULER’s customary approach to

problems of divergence or irregularity) and is entirely legitimate.]

Lo see if “‘regular’’ vibrations exist, EULER tries for a special solution

a sin— & cos wt for OS aa,

(320) y=

6 sin— x COS wt for OX ad.

The end conditions are satisfied. The condition (317), is now equivalent to

C — CC.
wa ’ B ~  , ob?

n m

 (321) ox

 

1) Cf. p. XLIII of my Introduction to L, EutEr1 Opera omnia IT 138.

58—60
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the condition (317),, to
wa wb

322 tan —— tan—=0.(322) m tan — +n tan mn 0

The infinitely many roots correspond to infinitely many isochronous vibrations at fre-

quencies asserted to be incommensurable!). When n/m = 3, the proper frequencies are

given by

(323) hop: — = ka + Arctan V2, k = 1,2,3,...

Nodes are possible. In the second mode,there is one nodein theleft-hand section, none in

the right. In the third mode, there are two on the left and one on theright,etc.

Eur derives the equation for the proper frequencies in a case when m/nis irrational,

namely n = mV2, and calculates the lowest frequency numerically.

Returning to the general equation (251), EuLmr seeks all shapes for which isochronous

vibrations are possible?), For such a vibration we must have

 
z

(324) ry = —w*y, w= const.;

hence for the case of zero initial velocity y = p(x) cos wt. Therefore from (251) follows

(8265) cp’ +op=0.

Putting p — ¢/1%, we get
2

(326) ¢g+¢+—=0.

Hunan i unable to solve this equation in general, but he notes that when ¢ = (« + Bx) at

it becomes a RIccaTI equation. Since c? > 0, known solutions are imaginary for the cases

appropriate here. Put =a -+ Ba and C=w/f; then the real solution given without

derivation”) by Lunn is
rf 1 we ak 1 oo 2k—1

(327) p= BE*r [sin (TOS+0)2 (— WPAgt+ cos(rC§ #460) 2(—1)¥Aayé7],
=0 kt
 

1) Experiments on the overtonesofa string ofthis type were to be published in 1784 by M. Youna,

§§ 67—70 of op. cit. ante, p. 294.

2) Someofthis material appears on pp. 179—182 ofNotebook EH 6, written c. 1752, immediately

after the first appearance of (251) for the non-uniform string; thus, naturally enough, EvLER first

attempted to find simple modes. That he held this material ten years unpublished doubtless reflects

his opinion, many times expressed, that this approach is insufficient.

3) These solutions are not included in EvULER’s papers on the RIccaTI equation, viz §§ 68—88

of E 269, ‘De integratione aequationum differentialium,” Novi comm.acad. sci. Petrop. 8 (1760/1761),

3—63 (1763) = Opera omnia I 22, 334—394 and E284, “De resolutione aequationis dy + ayydx =

bamdz,’’ Novi. comm. acad. sci. Petrop. 9 (1762/1763), 154—169 (1764) = Opera omnia I 22,

403—420.
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where B and @ are the arbitrary constants and where

(r2 — 1) (r? — 9)... (r? — [2k — 1}*)

k1(8Cr)*
 (328)  A,=1,A,= for k<1.

1

[When ¢ = (a + Bau)’, (325) is easily transformed into BESSEL’s equation of order jr
—

in the argument —r VCé+. Thus Evizr’s result (327) is equivalent to the general

formal asymptotic solution of BESSEL’s equation for large argument*).] The series ter-

minates when r is an odd integer. EULER writes out the entire solution for several such

cases,

BERNOULLI’s Memoir on the vibration of strings on non-uniform thickness”) concerns

the isochroneoscillations y = p(x) cos wt, leading to (325). BERNOULLI tries a solution 3,4—5

of the type x
; d&

329 = Wq(x) sinfoPwe) BeOS FagOP
For this formula to furnish a solution it is necessary that

i" " 2

(330) _P1._®
p ag gq oF

Therefore, for a given frequency w, any function g yields a density o = 7'/c?. The end 6

condition y¥(0,¢) = 0 is satisfied ; to satisfy also y(l,¢t) = 90, we have

l
1 dé

331 — —=r, r= 1,2,3,...,
ae) aJ [lsh

which determines a. Thus (329) becomes

 

1) Watson, § 7.1 ofop.cit. ante, p. 159, attributes the formal asymptotic series for Jy to Poisson

(1823) and those for J, and Y, to much later authors; in § 4.13 WATSON mentions the two papers of

EvuLuEN cited in the preceding footnote, but he fails to notice the more general results obtained here,

2) “Mémoire sur les vibrations des cordes @une épaisseur inégale,’? Hist. acad. sci. Berlin [21]

(1765), 281—-306 (1767). A footnote informs us that this paper was completed at the beginning of

1765, before BERNOULLI had seen EULER’s papers E286 and E287 (described above, p. 271—273,

302—-307) or LAGRANGE’s second memoir, cited above, p. 273.

Indeed, on 22 December 1764 in a letter to JOHN III BERNOULLI, DANIEL BERNOULLI proposes to

EULER the problem of determining the frequencies of a string having the line density (335), and on

7 May 1765 he writes that the memoir has already been sent to Berlin. “In my memoir I have not been

able to dispense with some passagesthat are a little personal, but I should not wish nevertheless that

there were the least word that could displease this great man [EULER]. Therefore, my dear Nephew,

T ask you beforeall else to communicate it to Mr. EULER and to ask him to read it and even to examine

it...I value his rectitude as much as I hate the low ways of Mr. D’ALEMBERT, whom, becauseof his

rare merit and his tastless demerit, I should like to call an ox half man and a man half oz.”’
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a —
x dé

wer
(332) p = U,q(x) sin a =

n

[a(%)]?
0  

The numberof nodes is r — 1. For given r, by (330) the product w*o(x) is determined by

2 2 22 "
(333) Oooe 7° qd

c2 T gg
(aio[a(é)]}* jo

Thus for a given ¢ and r we get for some string a mode with r — 1 nodes, but in general

  

we do not get all the modes of any onestring in this way.

If we take q(x) as a linear function, we may satisfy (333) by (313), and (315) follows.

In this special case, we obtaininfinitely many modes for one and the samestring. [This

part of Brrnovri’s paper contains counterparts, obtained by his methods, of results

already published by EvLEeR!).] Superposition of these modes yields the general solution

for these strings, writes BERNOULLI, because this has already been proved for the subcase

of the uniform string. [The double falsity of this inference is obvious.] There follows a

detailed study of the forms of the modes.

From (333) Brrnovrxt sees that in order for his method to yield an infinite sequence

of modes for the samestring it is sufficient that q’/q = K/q*. The density of the string

and the frequency of the r** mode are then given by

m 22
(334) o=—, o? =— —_* _-_kK

q Oo dé

. (¢(€)1?

1) Upon learning of DANIEL BERNOULLI’s work (cf. the foregoing footnote), on 6 July 1765

vans wiitoo to Jounw IIT Buonnovuuw, ‘In begging you to assure your uncle of my very humble re-

spocts, I have the honorto tell you that the memoir you read to us last Thursday is very excellent in

all respects, and although I too have treated strings of non-uniform thickness [in £287, above, pp-

302—307], L must agree that your uncle has noticed some interesting cases that escaped me. Never-

theless, I cannot yet persuade myself that the method itself suffices to solve the problem... of deter-

mining the motion of a string when rts mitial shape ts given.”

On 25 July.1765 DANIEL BERNOULLI writes to JoHN TEI Brrnoutzi that he has not received

gratie amy of the Petoroburg Memoirs sinco Yolumo6, therefore he has not seen EULER'S paper! ‘I was

in fact astonished that a subject of this kind could have escaped the piercing eyes of the greatest

geometer of our century.’’ etc.etc.

In Juné 1766 Danror BurxyouLyi again writes to Jonn IIT Beawourrs that bis own work on the

non-uniform string goes beyond that of EULER and LAGRANGE.
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Such a function is g = V1 + 2/b?. Then

Oo

(1+)
and the corresponding amplitudes and frequencies are given by

(335) C=

 

Are tan=

Y,= A, 1 + Sin rsa ry 3

Arc tan—
b

mv T
(336) 0==/—,

b Arc tan —-

o,=Vr—gtw,, where gx = Arc tan - ,r=—1,2,3,...

The general solution, obtained by superposition of these modes, is not periodic in general.

The paper ends with special cases and much discussion regarding “regular’’ vibrations. 22—23

[‘“Regular”’ vibrations are often mentioned but never clearly defined in the literature of

the period : since this concept has not proved useful, there is no point in our following the

polemics concerning it.]

While Lacrance had treated the non-uniform string only by transformation to the

equation of aerial vibrations, so that (312) becomes applicable, EULER soon replaced it by

another form suited for direct solution:

(337) y= z [Ci(x) f(f wde + t) + D,(x)g™(fwd — t)] .
k=0

In his Researches on the motion of strings of unequal thickness1), EULER asserts that he has

found all functions c(x) such that (337) furnishes a solution of (251) with suitably chosen

functions C,, D,, w and for some constant NV, identically in f, f’,...,9,9',.... While

he presents only the cases N = 0, 1, 2, his method is general, and we organize it in general

terms”). As he observes, it suffices to consider the case when D, = 0, since the D, are

determined by the same rule as the C,. Substitution of (337) into (251) and equating the

coefficients of f'*) yields the following recursive system :

Nv , , 1
(338) ree t 2Cn41W + OeyWw + (w' — a] C,=0,

 

1) E318, “‘Recherches sur le mouvement des cordes inégalement grosses,’ Misc. Taurin. 3 (1762/1765),

25—59 (1766) = Opera omnia ITI 10, 397—425. Presentation date: 16 February 1765.

2) As did EULER himself in § 12 of £442, described below, pp. 314—315.
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where C, =0 if k< 0 orif k>WN. Putting k = WN yields w* = 1/c?. Therefore (338)

becomes
2\7

(339) C,C;a=-(2|
Cc

Thus we have the alternative forms

canffl
(340) Ch §O,Chide = yh,

0

cy
C,=- Velas Ve Chyida + yx] ,

where y, is a constant of integration. Putting & = N in (340), yields

(341) Cy = ye .

Substitution of this result into (340), then determines C’, in terms of c and of N arbitrary

constants. However, from (338) follows Cj = 0; hence

(342) Co=ar+ Bp,

where « and # are arbitrary constants. Comparing these two expressions for C, thenyields,

for each fixed N, a condition on c as necessary and sufficient for there to be a solution of the

type (337) with Cy = 0.

fi.g., for N=0 comparison of (341) with (342) yields a result equivalent to

o = (aa + #)*; hence (313) holds, defining the class of strings Euter had studied previ-

ously (above, pp. 302—303). For N = 1, we have from (340),

O% hd
Yo —— + J CyCy de ,

9

(343) -40,0! — § OOda,

_(orto (xa + B)C’ — «@,,

by (842). Putting OC, = y, Vc= (naz + P)z yields

dix dz

(wa + Bp) yy —-2 |

(344)

This is EULER’s result, showing that thereis a five-parameter family of functions c = c(z),

determined by quadrature from (844) and the condition o = aa + f)*z*/yy, such that

(337) with N — 1 is a solution of (251).
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For N = 2, Ever considers only special cases in which various of the functions are

proportional to a power of x.

[Thus by 1765 EvLzerR and Danie. BERNOULLI had contrived inverse methods whereby

solutions for a great variety of density functions could be obtained. That neither of these

methods has found its way into the literature on vibration can indicate only a lack of

modern interest in the mechanical problem’).|

44. Polemics, errors, and further special cases (1770—1788). In a work?) published

in 1770 and already discussed in connection with the uniform string, p’ALEMBERT, after

accusing BERNOULLI of obtaining only special solutions by his method of simple modes,

brazenly proceeds to use that method himself, [but he makes a valuable addition]. In

(326) set uw == —q, so that p’/p= —u and

(245) dat
du ou

If we are to have p(0)=0, then u(0) = —oo [fin the case p’(0)>0; the case

p'(0)<90 can be handled similarly]. Assume that c? > a , where C? is a constant. Define

X by the conditions

dX l34.6 oA oo) —
( ) du w2O2 + y? ? X ( oo) 0,

then ae <gx Hence
du du

1 U
(347) u(u)s X (u) = — T@Are cot— °

Thus as u goes from —oo to +00, «#(u) goes from 0 to a certain number A satisfying
 

1) Apart from presenting the SturM-LIovuviILLez theory, RAYLEIGH in treating the string of non-

uniform density gives only crude approximations and some brief remarks on the case of constant but

disvontinuous ¢ and the case ao & a7? (a special case of (335)). Cf. §§ 91, 140, 142, 142a, b of The

Theory of Sound, 2nd ed., Cambridge, 1894.

2) Cited above, p. 274.

Earlier p’ALEMBERT had attacked EvunEr’s work on the subject. In the article “Cordes Vi-

brantes,’” Tincy. Suppl. 2 (1776), after citing ‘‘our researches and those of Messrs. pk LA GRANGE,

Kurrr, and Davin (sic) BERNovuLtr’, he writes, ‘‘A clever geometer having consulted me regarding...

the vibrations of a string of non-uniform thickness, the fallacy of his solution seems to me sufficiently

subtle that I should show whereit lies.” The “‘fallacy”’ is EuLER’s [correct] condition that the slope be

continuous at a junction. D’ALEMBERT, even in this article for the commonreader,supplies his usual

thicket of calculations. He claims also that if EuLER’s ideas were correct, we should have

y= p(t + fds/c) + B (¢—Jf ds/c)
for all functional forms of c(x), but of course this is explicitly contradicted by EuLER’s analysis in

E318 (described above, pp. 309—311).

Vill

IX—X
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7
aC

rises again to -+-co at x= A. Since pe

As . Hence fudz falls from the value -++co at x= toa certain finite value and

—Sudt rises from the value 0 at x = 0

to a certain maximum and falls again to 0 at x = A. D’ALEMBERT concludes that ‘‘one

may choose w in such a way that this vanishing occurs at any prescribed point on the

x-axis,’ [but this he does not prove. The foregoing analysis we recognize as the beginning

of the Srurm-Liovvizze theory of proper functions for strings of arbitrary uniformly bounded

density ; D-ALEMBERT has gone some way toward proving the existence of the fundamental

mode,| but he makes no use ofthese results, [which indeed rest upon BERNOULLI’s approach

rather than his own].

In a work published in 1764 EuLer had solved in general the problem of the string

composed of two different uniform parts joined together and had obtained the properfre-

quencies and simple modes(above, pp. 303306). In a paper appearing in 1772, On the vibra-

tion of strings composed of two parts of differing length and thickness*), DANIEL BERNOULLI

2 finally calculates somesolutions by his method. This is the first work in which BERNOULLI

3 uses SAUVEUR’s acoustical terminology, “fundamental’’ and “harmonics”. For a simple

13

22

mode proportional to sin= 4, the length of the subtangent at ris y/y’ = —tan< a.

At a junction, the displacement and slope are continuous ; equivalently, the displacement

and subtangent continuous. If one part of the string is massless, it will remain a straight

line of length, say, a and this will be the length of the subtangent at the junction, x = l,

with the part of line density o = 7'/c?. Hence

(348) a= —<—tan™ ,
w c

where the minus sign is appropriate because x is here measured from the fixed end. When

both parts of the string have mass, BERNOULLI’s formula for the subtangent enables him

to write down [EULER’s] equation (322) for the proper frequencies. [BERNOULLI ignores

EULER’s work on the same problem.] The rest of the paper consists in numerical deter-

mination of proper frequencies satisfying (348) and (322) in special cases and in discussion

of the wave forms. At the end BERNOULLI proposes the problem of the continuous string

loaded by a single mass ; he remarks that the slope is not continuous at the point where the

mass is attached.

EULER’s paper, Remarks on Brrnovutu’s solution for the motion of a string composed of

two parts of differing thickness), begins by objecting to BERNOULLI’s condition that the
 

1) “De vibratione chordarum, ex duabus partibus, tam longitudine quam crassitie, ab invicem diversis,

compositarum,” Novi. comm.acad. sci. Petrop. 16 (1771), 257—280 (1772).

2) £440, “Animadversiones in solutionen Bernoullianum de motu chordarum ex duabus partibus

diversae crassitiet compositarum,” Novi. comm.acad. sci. Petrop. 17 (1772), 410—421 (1772) = Opera

omnia IT 11, 81—97, Presentation date: 2 July 1772.
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two parts have the sameslope at the junction. [Evidently Eur has forgotten that he

himself proposed and used this condition in the general form (317), and also in the specific

form (322) obtained by BERNOULLI ;] also EULER says in the opening paragraph that

BERNOULLI’s solution “disagrees very markedly from that I gave some time ago for the

same problem,”’ [but in fact their solutions for the simple modes and proper frequencies

are exactly the same! To explain this inconsistency on EULER’s part, we mustrecall that

he has insisted that for the uniform string corners may occur ; thus, to demand a continuous

slope for a discontinuous string would be a retreat : His earlier solution is in fact correct,

corners and all, but we may sympathize with his current doubts, since a firm stand was

scarcely possible without a better grasp of the concept of integral than anyone could have

had in the eighteenth century. It seems impossible, however, to reconcile EKULER’s state-

ments here with the truth. He suspects that a further mechanical condition is required]

and proposesfirst that the acceleration be continuous, but this condition cannot besatis-

fied unless the two parts have the same density. Next he proposes, without giving areason, 7

that the phase of the two oscillations be the same ; continuity of the displacement then

implies that the amplitudes are equal. In this case, he says, BERNOULLI’s results coincide

with his own.

KuuEr repeats his old analysis in a different notation and concludes that the period of 18

a string compoundedoftwoparts of lengths a, b and wave speeds c = «, Bis

(349) =—+—,

[but this is false1)].

In the paper, On the mbratory motion of strings composed of any number of parts having

different thicknesses”), EULER applies the same method to a string composed of three sec-
 

1) EULER asserts that the solution is

x x
p(t + =)—(=) : 0 <= we <a ’

4 a ae’ a x” \t+ 24+ 2)—y(:—-2—4)\ 0 <a <p,( + ao B y o B! = = 6

where «=a and 2’ = 0 is the point of junction, but this solution is not general, since pm, y in

the second line should bo replaced by different functions ®, ¥%. The end conditions and the condition

of continuity of displacement at the junction yield

ron o(te Beg) elSperone
but without some further condition (such as continuity of the slope), the problem remains indeter-

minate, and the motion is not generally periodic.

2) £441, “De motu vibratorio chordarum ex partibus quotcunque diversae crassitiet compositarum,”

Novi comm.acad. sci. Petrop. 17 (1772), 422—431 (1773) = Opera omnia ITI 11, 90—97. Presentation

date: 24 August 1772.
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tions having different thicknesses.[Theresult, like that in the preceding papers, is faulty5;

it shows only that solutions continuous at the junctions and having period aa -- 20 |26
B Y

exist. Such solutions generally fail to have continuousslope at the junctions.| By passing

to the limit as the number of segments becomes infinite, EULER derives a formula for the

frequency of a string of arbitrarily variable thickness:

(350) y =—*_ ;

[of course this result, also, is false.

These last are EULER’s two weakest papers in the mechanics of continua.]

EULER’s paper, On the vibratory motion of strings of arbitrarily variable thickness?),

attempts to provide a direct proof of (350). After a fruitless attempt at a solution in

infinite series, EULER returns to the inverse method based on (337). He derives afresh

the solutions corresponding to (313) and verifies that »,, as given by (315), is in accord

with (350). More generally, he sets up the formal series (337) with N =co, w= l/c

and C, = D,. [He does not justify setting C, = D,, whichis in fact a sufficient condition

that the initial velocity be zero,] but he organizes the method, [much as we have presented

it above, pp. 309—310]. However, he asserts that there is no loss in generality in taking the

two constants of integration in (340), in such a way that C,(0) = C,(l) for k 21, [but

in fact this yields only a special case. For such a solution,] the end conditions reduce to

d
(351) (f dé a(/ dE 7

Nbatt lam =?

Hence / and g are periodic of period 2 a5 , andthis establishes (350).
c(é)

[The failings of this analysis are obvious. However, a positive result emerges : For

any string, there are special solutions having the frequency (350). From BERNOULLI’s

theory of harmonic oscillations it is clear that the general motion of a string of varying

thickness is not periodic. EULER now apparently fails to grasp this fact*), although he

himself had asserted it unequivocally and proved it in an earlier work (above, p. 304).
 

1) £442, “De motu vibratorio chordarum crassitie utcunque variabili praeditarum,” Novi comm.

acad. sci. Petrop. 17 (1772), 432—448 (1773) = Opera omnia II 11, 98—111. Presentation date:

24 August 1772.

2) There can be no question of EULER’s meaning, as he says his ‘Problema generalissimum”

(§ 15) ‘includes the most general motion ofall strings.”’
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This contradiction remains one of the mysteries of the problem of the vibrating string,

which seduced all its attackers into a most deplorable prostitution of reason to special

pleading for results conjectured from flimsy beliefs.]

Two years later EULER reconsidered the matter, especially in respect to the results in

DANIEL BERNOULLI’s paper!) of 1767. EuLER begins his Enlightenment on the motion of

strings of non-uniform thickness®) with the words, “‘When ...the extraordinary paper of

the mostillustrious DANIEL BERNOULLI .. . on the motion of strings of non-uniform thick-

ness was read to me recently, I was wonderfully pleased by the general formula which he

gave for the variable thickness of the string in order that a regular motion according to the

sine of some angle be possible. Therefore at once there came into my mind the question

whether for these cases the motion may be defined in general and the perfect solution

obtained.” First EULER derives (333) afresh*). If there are to be infinitely many possible

modes corresponding to a single function q, then w must be made to depend upon r in such

a way as to satisfy (333) for all r. [EULER doesnot treat the general problem clearly from

this point on, though later he asserts its solution correctly. We are to determineall func-

tions g such that for some function w = w(r) we may render = (k*702 — qq") independ-

ent of r. Hence qg®q” = const. Hence]
 

(352) q=VAwt+ Quaty,

where A, w, vy = const. “In all other cases... the thickness... will be dependent upon

the number 7, so that the law of the thickness will continually change for the several

simple sounds.” [Thus Ever delimits the cases to which BERNOULLI’s method‘) could be

applied.] For other laws of thickness than that resulting from (352), there is indeed one

simple mode, but this methodfails to reveal anything regarding the other possible motions.

For q as given by (352), we find that

 
(553) c= =— AB(Aw® + 20+ +), wrp= BV2a? — A2(u? — Av),

where § = const. The ratio of frequenciesis irrational in general. However,in order that

the ratio of frequencies be 1, 2, 3, 4,..., it is necessary and sufficient that pv? = dy»,

whencefollows a result equivalent to (313).
 

1) Cited above, p. 307.

2) E567, “Dilucidationes de motu chordarum inaequaliter crassarum,” Acta acad. sci. Petrop.

1780: II, 99—132 (1784) = Opera omnia II 11, 280—306. Presentation date: 1 December 1774.

§§ 6—13 and 19—89 consist in examples and repetitions of EULER’s earlier results.

3) This is not so repetitious as might appear, since EuLER begins from the partial differential

equation, while BERNOULLI had used the old, directly postulated, theory of simple modes.

4) I. é., BERNOULLI’s attempt to find modesthat are of the type (329).

7—15

17
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The unsatisfactory state of the theory of the non-uniform string is summarized in a

paper published in 1775 by BERNOULLI, where,referring first to the uniform string, he
¢

writes?), . I did not wish to further the controversy as to where lay the heart of the

riddle, but I preferred to take refuge in the arguments called ad hominem. Therefore,

[in 1753] I proposed the problem of the vibrations of a non-uniformly thick string . . . so as

to see which of our methods would find the morefertile field, but in fact, each using his

own method, we came up against the same barriers, except that my method, synthetic

rather than purely analytical, yielded some very special corollaries that escaped the

methods considered most fertile by the others.”

[Indeed, as BERNOULLI observed, the problem of the non-uniform string revealed the

impotenceof all methods proposed in the eighteenth century. EULER’sinsistence on using

the general solution in arbitrary functions, which had brought him complete though un-

acknowledged success with the uniform string, for the non-uniform string left him power-

less except in special cases. BERNOULLI had some glimmeringofthe generality of his method

of proper functions.] In 1775 he wrote to N. Fuss that his method “‘can be applied to any

finite number of bodies, even when in the system there is no... period. ..’’ [His retreat

to the finite, combined with his baseless insistence on sinusoidal modes, cost him all but

the simplest fruits of his theory, which he lacked the analytical and mechanical concepts

to substantiate even on heuristic grounds. It is most strange that the non-sinusoidal modes

he himself had long ago discovered for other systems such as rods and heavyropes did not

suggest the nature of the right answer to him. Only p’ALEMBERT made any step toward

the general theory of proper functions, but, since they did not fall in with his preconceived

ideas, he abandoned the analysis.]

IVB. Plane vibrations of a heavy cord hung from one end

45. Plane vibrations of a heavy cord hung from one end. The partial differential

equation (157 F) for small transverse oscillation of a heavy continuousvertical cord, some-

times called a hanging chain, for the case of uniform density had been published in 1743

by D’ALEMBERT; for arbitrary line density o, it appears in a work of LAGRANGE of 17622):

o*y

Ox? ©

1 dy oy

(354) 7 oF ~ Oe  

tt fea
+f oda:

Beyond stating the analogy to the problem of the vibrating string and of the oscillations

of air in a tube in the special case when o « a”, LAGRANGE does not develop any conse-
 

1) § 1 of op.cit. ante, p. 291.

2) § 34 of op. cit. ante p. 273. For the case o = const. it is obtained on p. 81 of EULER’s notebook

EH 8, written in 1759—1760; EULER uses the method of moments, taking into account the moment of

the inertial force.
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quences of importance. He remarks on terminating series of the type (312) and proposes

the condition 0?y/dx? = 0 at the free end.

[We have remarked upon EULER’s program of reconsidering all the mechanical pro-

blemstreated prior to his “‘first principles of mechanics” (above, pp. 253 —254).] In 1774 he

turned his attention to our present problem in the paper, On the very small oscillations of a

freely suspended rope), [in which the modern, systematic theory first appears]. First

there is a derivation of (354) from the balance of forces acting on an element of the cord?)

in the case when o = const.:
0 oy _ ay

(359) 3a (x3=o

For want of the general solution, EULERis driven to apply DANIEL BERNOULLI’s method of

simple modes. The equation to be satisfied is (108), with « = g/w*; [BERNOULLI’s old

results (99) and (100),] viewed from the present standpoint, yield the solution

(386) y = EUS (2 wo, V2} sin (opt + C,), Jo(2 o,4) = 0,

But the equation (108), for the proper functionsis of second order, so the simple modes

must contain a second arbitrary constant in addition to Y,.'To determine the second solu-

tion, HULER has recourse to [BERNOULLI’s old] theorem on the subtangent at the free end

(above, p. 158); thence follows*) —”oton The general solution of g(xy’)'’ = — w*y is

(357) 7 (wu) lD+0[=a|

 

1) E576, “De osciliationibus minimis funis libere suspensi,” Acta acad. sci. Petrop. 1781: I,

157—177 (1784) — Opera omnia IT 11, 307—323. Presentation date: 31 October 1774.

2) EULER’s mastery of the method of balancing the momentum of a continuous line dates from

1750. The idea of the derivation he gives here is more easily grasped if we first replace (227) and (39)

by the more general equations

0 Ox 02x 0 oy o2y

Oe (75.)=—Fitoge 3s (Tae) =—Fy + ome

For the present problem, assume 2 & s, F, = —og, F, = 0. Thefirst of the above equations yields

I =gfodx +, where T, = 0 when the end of the cord is not weighted. The second equation
0

then becomes

which is equivalent to (354).
3) This is not very convincing. It is better to put y « cos wt in (354); putting « = 0 then yields

2

the desired result, with the proviso that o(0)--0 and au ,0 = co

4—5
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where x(u) = J,(2 Vu) and u = w?2x/g. From the series expansion for J, it appears

that (357) does not satisfy the end condition, which assumes the form 2(0) = — z'(0),

unless C = 0.

The problem is now to solve (100), [and to this end EvLzErRintroduces a new method in

the theory of transcendental equations]. Setting » = 2Vu, he considers the identity

(358) Jo(n) =E (— IPT =IT— ayn),
_— . 1

so that the roots, in increasing order, are ~ then hesets
@

(359) A, = E (x)?
q=1

and by equating coefficients of like powers of 7 in (358) calculates

1 1 1] 19 473

(380) , p= gs As=a Ae ag’ “4 ig0’ 4s 4320 °

Since af < A,, we have

1 1
(361) Ny =—> (A,)%.

Oy

Taking q=6 yields n, < 1,445785, and extrapolating by the rapidly decreasing dif-

ferences suggests

(362) My = 1,445795 .
Since

(363) OyAg — Ags = (04 — mg) af + (04 — og) of +--+ ,

and since «, >«,, we have «,4, — Aji, >0, or

 
A

(364 m<—+.
* Aust

Taking gq = 5 yields

(365) nN, < 1,446089 .

Substitution of (362) into (359) enables one to calculate the sums 2' («,)”, and to these
q=1

the same process is applied to calculate «,. The convergence is much worse ; EULER con-

cludes with some hesitation that?*)

(366) Nn, = 71,6658, m5 = 18,63 .
 

1) More accurate values are n, = 1,4457965, n,. = 7,6178156, nz = 18,7217517. Cy. the

approximations (101) and (104), obtained by DanieL BERNOULLI.
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EULER’s paper, On the disturbing effect of their own weight on the motion of strings),

begins by considering the differential equation for small transverse oscillation of a taut

heavy horizontal cord:

(367) 1 ty 9 Oy
ce at2 Oa?

 

[When c = const.], the general solution for the string with fixed ends « = 0 and x=]

is easily shown to be

(368) y= — 290%—)) + O(ct + x) + Vict — 2).
c

Thus the results are the same as for the weightless string, except that the oscillation takes
. eq: 4gu(x — l)

place about the [parabolic] figure of equilibrium y = —a

Whenthestring is vertical, (355) is to be replaced by?)

ay 2 T)\ ayaw BoBle+2)
(cf. (148)). Taking x + a in place of x as an independentvariable reduces (369) to (355),

but now, putting w=marl: + =); we require solutions y(w) vanishing at wu = w=

oe ==£(1 420
7 g o”g

IVa)); the second solution is required as well. [Abandoning (357),] EULER follows

a suggestion he had made in his Integral Calculus*) : He puts y = p+ qlogu and finds

that in order for the coefficient of log u to vanish, g must be a solution of the original

equation, so that we may take g = J, (2V'u). The coefficients in the power series for p

are then determined uniquely to within two arbitrary constants ; the solution which EuLer

gives in series form we should now write as

            =). Thus in the simple modes we can no longer take

(370) y = AJ, (2Vu) + BY,(2Vu) .

To satisfy the end conditions we must therefore determine the arbitrary constants A

and # in such a way that

AJ, (2Vu,) + BY4(2Vu) —
O71
(871) Ady(2V.u) + BY,(2Vu,) =
 

1) E577, “De perturbatione motus chordarum ab earum pondere oriunda,”’ Acta acad. sci. Petrop.

1781: I, 178—190 (1784) = Opera omnia IT 11, 324—334. Presentation date: '7 November 1774.

2) See the derivation in footnote 2, p. 317.

3) E366, Institutiones calcult integralis 2, Petropoli, 1769 = Opera omnia I 12, 1—413. In
§ 977 the above solution had been obtained somewhatless explicitly.
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EULER says weare to solve the first of these for A, substitute into the second, then divide

out by B. I. e., he describes the characteristic equation

(372) J (S) Yo(CL) — Jo(Cl) ¥o(2) = 0 ,

where (= 2 7 ) =o and C=1+ oo an arbitrary constant not less than 1. Hesays
0

there is no doubt that there are an infinite numberof real frequencies w satisfying this

equation, [but he makes no attempt to calculate them.

Thus the theory of the hanging heavy cord, which at the beginning of the century

had led to the first ideas of proper frequencies and simple modes, and which in 1743 had

led to the first partial differential equation of mathematical physics, by the end of the

century had brought no furtherlight to the principles and methodsofmechanics. Rather,it

performed the minor but not uninteresting service of bringing into existence ““BESSEL func-

tions” of all orders, of both kinds, and of real or imaginary argument, and of revealing

some of their properties?). |

IVC. Plane vibrations of straight or curved rods

46. EULER’s faulty theories of the vibrations of curved rods (1760, 1774). EuLER’s Es-

say on the sound of bells*) is essentially a revision of his earliest work on the subject, E831

(above, § 20). To consider small flexural vibrations of a circular ring, EULER takes x as

arc-length along the middle line and assumesthat there is a small displacement y along the

radius, [and no other. For an inextensible ring, we know now that this is not possible, since

there must be a tangential displacement w such that

Ow
(373) az—=-—y

i—I10

Ox

KWULER neglects this displacement w when he calculates the reaction of inertia and the

change of curvature.] Thus he obtains the partial differential equation

1 ay 1 ay
8f2 Oe vea? ax® v Fateaaut8 ?

(374)

 

1) Since Watson does not mention a number of the major papers on mechanical subjects where

‘‘BESSEL functions’”’ are first introduced and studied, his history (op. cit. ante, p. 159) fails to give a just

idea of how much of the early theory of these functions is due to EULER.

2) E303, “Tentamen de sono campanarum,” Novi comm.acad. sci. Petrop. 10 (1764), 261—281

(1766) = Opera omnia II 10, 360—376. Presentation dates: 25 September 1760, 17 May 1762. Most

of the results we describe here are given on p. 84 of Notebook EH 8. On p. 184 of Notebook EH7 it is

stated that this paper and E302 were sent to the Petersburg Academy on 26B April 1762. V. below,
footnote 3, p. d21.
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where f? = H/o, [instead of the correct equation, which is of sixth order). The paperis

nevertheless an extraordinary performance, both for its otherwise correct argument in

deriving (374) and] for its determination of the simple modesfor the complete ring by the

condition that they shall be periodic of period 2a in x. The proper frequencies given by

KULER are
fe

(375) "7-31 Oa” r2— 1, r= 2,3,4,...

[and of course are not correct]; he shows that [under his assumptions] there are 27 nodes

in the r — 1" mode.

In applying these results to bells EULER is not able to go beyond the remarks in E831.

He suggests that the rings should be regarded as cut out by sections normalto the bell

rather than normalto the axis, but the samepartial differential equation results. He doubts

whether this theory is sound, “‘since the trembling may be regarded as obeying a verydif-

ferent rule from that we have supposed here. Whatis needed is a method for determining

the trembling motion of a body of arbitrary form. The methodsused sofar are restricted to

certain kinds of bodies, such as strings or very thin sheets, and therefore it would not be

right to attribute to the results in this memoir a greater validity than belongs to the hypo-

thesis expressly set down.”

A second,anddifferent, theory of the vibrations of curved rodsis proposed in a paper 2)

published by EvLER in 1782. There he asserts that all results derived for straight rods

remain valid for curved rodsif x is interpreted as arc-length and y as the normal displace-

ment. [That this contradicts his own earlier contention that (374) rather than (273)

governs the transverse oscillation of a circular rod*) matters less than that it is in principle

 

1) C}., e.g., § 293 of A. E. H. Lov, A treatise on the mathematical theory of elasticity, 4th ed.,
Cambridge, 1927.

In §§ 290 and 294 of op. cit. ante, p. 11, TODHUNTER writes that Soparm GrrMalrn in hercele-

brated prize essay published in 1821 asserted that there was an errorin sign in EULER’s equation (374),

but ToDHUNTERfinds that the difference arises from one of Mlle GERMAIN’s numerousslips in calcu-

lation. Judging by ToDHUNTER’s far from gallant account of the lady’s researches on vibrations of

elastic rings, her work if corrected in detail would coincide almost completely with EuLER’s.

2) §§ 52—55 of E526, completed by 1774, cited below, p. 326.

§§ XXIV—XXV of LamBeErt’s paper of 1777, cited below on p. 325, contain inconclusive remarks

about the vibrations of elastic rings, bells, and tubes.

3) That EvLER was aware of this contradiction is shown by the paperof his student M. GoLovin,

“Applicatio tentaminis de sono campanarum auctore L. HULERO novor. commentor. tomo X inserti ad

sonos scyphorum vitreorum, qui sub nomine instruments harmonict sunt cogniti,’” Acta acad. sci. Petrop.
1 0? .

1781,, 176—184 (1784). In § 3 GoLovIn claims that the term Gi a0 in (374) arises from “elementary

forces’’, which he is supposing absent. What this meansis not clear. GoLovrin then derives afresh the

[false] results in §§ 53—55 of E526 and applies them to explain the sounds of the glass harmonica.

11—17
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false : The initial curvature of a rod cannot be disregarded in calculating its vibratory

motion. Perhaps EULER was misled by the one-dimensional theory of flow of a fluid in a

tube, where the curvature of the directrix has no effect+).] For example, for a rod in the

form ofa circle or any other closed curve, the solution must be periodic, and this leads at

once to the same sequence of soundsas for a rod pinned at both ends,7. e., overtones in the

ratios 4, 9, 16,..., “which quickly becometoo high to be heard, so that besides the funda-

mental only the double octave will be perceived, by which a most pleasing harmonywill be

experienced. Therefore such elastic rings . . . enjoy this remarkable property of giving out

much purer sounds, and it seems the same should occur also for whole discs and bell-

shaped bowls, the sounds of which are considered to affect the hearing with an extraordi-

nary sweetness.” [While this is false in detail, it is true in principle, since an argument of

this kind, when applied to the correct governing partial differential equation, serves to

exclude for the full circle many of the modes possible for a circular segment.]

In a paper called Thoughts on the formula by which is expressed the motion of elastic

bands curved into circular rings*), A. J. LEXELL attempts to establish the equations of

motion for a rod by specializing and approximating EULER’s general exact equations (572),

to be discussed below. For a straight rod LEXELL’s equation has the coefficient 3 instead of 4

5 for the non-linear term in (575). For a circular rod, LEXELL obtains an equation having

9—10

o7y

a dx?

result, rather than EULER’s, is correct. Also, LEXELL explains that terms of this kind arise

in place of the second term in (374), and he gives argumentsto indicate that his

as the result of the tension in the rod and cannot in general be neglected, despite EULER’s

claim to the contrary. There follows a derivation of a corresponding equation for a rod

having the form of an arbitrary plane curve. [These results, like EULER’s, are wrong from

failure to realize that for a rod which is not straight it is necessary to impose the condition

of inextensibility or some definite elastic law of extension. However, they have a certain

importance in that while based on equally plausible reasoning, they differ from EULER’s

results and thus indicate need for a more systematic linearization of the equations of

finite motion. A correct theory of the vibrations of circular rods was not to be obtained

until nearly a century after the end of our period of study.]

47. EULER’s definitive work on the six kinds of transverse vibrations of straight rods

(1772—1774), and its experimental verification by JoRDAN RiccaTI (1782) and by CHLADNI

(1787). In § XLVI of his first paper on the vibrating string, D’ALEMBERT had written

 

1) Cf. Introduction to L. EuLER1 Opera omnia IT 138, p. XVI.

2) ‘‘Meditationes de formula qua motu laminarum elasticarum in annulos circulares incurvatarum

exprimitur,’ Acta acad. sci. Petrop 1781,, 185—218 (1784).
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that “if... the string makes longitudinal vibrations,’ the same partial differential

equation holds, viz (251), but he had not stated what c is or what elastic hypothesis he

used. [The subsequent history of this interpretation of (251) belongs to the theory of

aerial propagation of sound#).] In § XLVII, p’ALEMBERT had shown himself familiar with

(125), not raising any objection against it. However, in a work of 17617), he claims that

the equation governing the vibrations of a spring should be

oy OY
(376) at Oat

 

He remarks that Danita, BERNOULLI had derived (125), citing a publication?) of 1751; he

criticizes BERNOULLI’s assumptions ; and he leaves the reader with the implication that

BERNOULLI is wrong. [BERNOULLI’s result (125) is correct and D’ALEMBERT’s proposal

(376) is false‘).

This paragraph leaves the reader with a low estimate of D’ALEMBERT’s grasp of

mechanical principles.]

In 1771 appeared DANIEL BERNOULLI’s Physico-mechanical investigation of the mixed

motion caused by striking an elastic band*). In attempting to solve the difficult problem

stated in the title, BERNOULLIhas to take refuge in approximation of the form of the vibrat-

ing rod by a parabola.

EULER’s paper On the vibratory motion of elastic bands, where are developed several new

kinds of vibration not hitherto considered *), begins by applying the balance of moments in 1—9
2

the form (91) to the case when the only force actingis the inertial force Fy = — ryoC e

ot
Hence for small motions (91) becomes

 

z

(377) —fefeoYat?
Ory

du = Baa:

 

1) Part II of Introduction to L. EULERI Opera omnia II 18.

2) § IV of op. cw. ante, p. 274.

3) The result, as we have seen, was obtained by BERNOULLI in 1734 and was published by EULER

in 1735. D’ALEMBERT wasnot given to just citation except for deceased authors.

4) That (376) is not a misprint for the equation of longitudinal vibration is shown by D’ALEM-

BERT’s proceding to solve it by complex functions, known to him from his hydrodynamical researches,

5) “Haamen physico-mechanicum de motu mixto qui laminis elasticis a percussione simul imprt-

mitur,’? Novi comm. acad. sci, Petrop. 15 (1770), 361—380 (1771).

6) E443, “De motu vibratorio laminarum elasticarum ubi plures novae vibrationum species hactenus

non pertractatae evolvuntur,” Novi. comm.acad. sci. Petrop.17 (1772), 449—487 (1773) = Opera

omnia ITI 11, 112—141. Presentation date: 21 September 1772.

Between 1743 and 1772 EULER seems to have given but slight attention to the subject. On p. 80

of Notebook EH 8 (1759—1760), immediately after deriving (273), EULER obtains a few special solu-

tions, and on p. 83 he reviews the analysis of free-free modes.
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[This will be recognized as the extension of (130) to general motion, yielding as corollaries

not only the differential equation (273), with ct= @/o, a result EvLER had hadin his

notebooks for twenty years, but also the end conditions (132) for a free end. Thus EuLER

has synthesized his old treatment in E 40 with his general principles of mechanics. Here also

is the first occurrence of a partial integro-differential equation as a statement of a physical

problem.]

EULER writes, “I am driven to say that so far I have in no way beenable to find the

complete integral” of (273), which should contain four arbitrary functions ; while he gives

such a solution in series form

0 Pn) t a \an (27) (¥ a \4ant+1

y=2-0atle) aneate]
Rl(2n) (t) ( oy \an+2 lan) (t) a \ant+3

he considers it of no use. He decides to give a “‘clearer and more definite” explanation of

(378)

the properties of the special solution

Vox Vox Vow Voos    + Bsin +Cec +De “c(379) y = COs ot(4 cos — c

(cf. (147)). Most of the remainder of the paper presents in the way now grown customary

the material derived more crudely in the second part of E65 (above, pp. 219—222).

To the four kinds of vibration considered there, EuLER adds!)

The end «= 0 is The end «2 =] is

Case V (§§ 24—25) free pinned

Case VI (§ 277) pinned clamped,

exhausting all combinations of the end conditions considered. The corresponding frequency

equations are

Case V: tané=tanhé

Case VI: the same.

He now handles the solution of all the frequency equations (134), (199), and (380) with

masterful ease, giving exact transformations, bounds, and the following numerical values?):

1) Case I is treated in §§ 13—-22; Case IT is EULER’s Problem 1; Case ITI, Problem 3; Case IV,

Problem 5; Case V, Problem 2; Case VI, Problem 4.

2) EvuuEr explains his numerical procedure as yielding §2,in, 2, ...for the higher modes of

clamped-free vibration; in the reprint on p. 123 of the Opera omnia II 11,, Professor Trost hasre-

placed EULER’s values by correct decimals for the above multiples of 42. However, the numerical

values printed by EuLER must derive from some more accurate but undescribed numerical procedure,

since (except for the last figure, where the final 1 should be 7), they are closer to the correct solutions

of the transcendental frequency equation. Cf. the more accurate results of LAMBERT and RIccatTI,

(380)

 

_ given on pp. 326 and 328.
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Value of ¢
 

Free-Free Pinned-Free Pinned-
Mode Clamped-Free

Clamped-Clamped Pinned-Clamped Pinned
 

1 1,87514 4,73007 3,92660 X

9 4,69408 2— 0,01765 7,06858 Qn

5 7,85473 to + 0,01765 10,21017 3x

4 10,99553 2— 0,01765 13,35176 Ast

5 14,1971] “3% + 0,01765 on Bn       
Tio conclude the paper (Problem 6), EvnEr considers a band pinned at an interior

point C andfree at each end. The slope at C is continuous, and thusthe frequency of each

side must be the same, though the amplitudes maybe different. EuLER demandsalso that

the curvature be continuous at C’. There thus result eight homogeneous equations for the

cight amplitudes. EvLER seems unable to derive the general form of the characteristic

equation. Restricting attention to the case when C is the midpoint, he shows that there are

then two sequences of proper frequencies, one of whichis given by the result of Case I, the

other by the result of Case V. That is, he shows that a band pinned at its midpoint has the

same proper frequencies as would either half, either pinned or clamped at C and vibrating

independently of the other.

[In respect to mechanics, this paper’s main interest lies in its calculation of the force

and moment exerted by the band on the support.] Considering only Case I, from (377) we

have at once

(381) FV = ae
Ox?

From the solution (379), with the constants A, B, C, D evaluated in terms of the root ¢

corresponding to the mode being considered, EULER obtains

  
2

uy-aly
el Ox? cml  

 F(l) = Ds COS ( oe t) sin ¢ sink C,

(582) o2 rags
Mil) = @ Fa 008 ae ) (sin £ cosh ¢ — cos ¢ sinh ¢).

[In fact the right-hand sides should be multiplied by a length A specifying the amplitude

of vibration ; EULER has set A = 1.] The force and moment which the wall exerts upon

the band are the negatives of these.

LAMBERT’s posthumous paper, On the sound of elastic bodies+), [is scarcely more than

1) “Sur le son des corps élastiques’”” (January 1777), Acta Helv. 9 = Nova acta Helv.1, 42—75

(1787).
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XXXVIII an exposition) of some parts EULER’s work of 1742.] He obtains the following numerical

values of the frequency parameter ¢ for the clamped-free modes?):

Mode Value
 

1,8751048
4,69409108

7,854.7575
10,99554073
14,13716839

17,27875952
20,42035225
2356194490
26,70353755 o

m
n
i

a
o

a
o
—

W
w
N
Y

XLVI LAMBERT describes a curious experiment for confirming these values).

KuLer’s Investigation of the trembling of elastic bands and rods‘) begins,“Although this

subject was treated at length some timeago both bythe mostillustrious DANIEL BERNOULLI

and by me, nevertheless since at that time neither were the principles by which such

motions are to be determinedsufficiently refined, nor was that part of analysis concerning

functions of two variables sufficiently explored, it does not seem amissif I now investigate
this same subject moreclosely.”’

[This paper is EULER’s definitive treatise on the small vibrations of what he now calls

a rod.] While the exposition is more certain and the results are more complete, the contents

8 are almost entirely a repetition of E443. The basic principle is the integro-differential

equation (377), generalized to allow for a tension 7’ and a normal force F applied at the

  

end «= 0:
z x o*y _ aty

(383) | Ty + Fu + fdafdx-o a2 —GQ@ aa

4 Hence
 

1) Cf. Lampert’s explanation in § XLIII. The simple theory given by LamBerrt in §§ X—XXIII

I do not understandatall, but he begins over again at § XXXT.

2) The six-place table for the first six modes given by RayLEicH in § 174 of his Theory of Sound

agrees with LAMBERT’s, as does the briefer table given by R. E. D. Bisnor & D. C. Jonnson, “‘Vibra-

tion Analysis Tables,’’ Cambridge, 1956.

3) This experiment involves holding a vice in ones teeth so as to sense a sound whichis not audible.

LAMBERT goes on to project an instrument based on this idea and called ‘‘Musique solitaire’ (§ L)

whereby a person may enjoy music through his teeth without awakeningsleepers.

4) E526, “Investigatio motuum quibus laminae et virgae elasticae contremiscunt,’’ Acta acad.sci.

Petrop. 1779: I, 103-161 (1782) = Opera omnia II 11, 223—268. Presentation date: 28 November

1774.
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x 2 3

_pY _ ps fideo24 = — GQ oy
Ox é ot? ox?(384) ee,

aa2 9 OR ax'

(cf. (573).). EULER remarks uponthe effect ofcompression or extension but does not attempt

to include them in the theory ; he remarksalso that (384) includes both the perfectly flexible

case, =O, leading to (251), and that of the ‘‘proper sound of an elastic rod”, 7 = 0,

leading to (278), while in general there is ‘‘a case mixed from both’, but he considers only

the purely flexural vibrations. [In fact (383) wants a term — L to allow for a couple.]

Putting x = 0 in (383) and (384), then yields

(385) E — @ 2 ay
023 z—0

  
Ox?

 

and F=@
2=0

 

At a pinned end we have the conditions [L = 0, and hence] vy = 0, which EULER

thus derives from his [incomplete] equation (383) ; at a free end, the additional condition

F =0; at a clamped end, the kinematical condition dy/dx = 0; the definition of

pinned and clamped ends is completed by the kinematical condition y = 0. Most of the

rest of the paper consists in a systematic exploration of the simple modessatisfying the

six sets of end conditions previously considered!) in E443. The terms “fundamental

sound” and “node”? EULER now uses for the first time. He gives less attention to the

values of the frequencies but draws a few figures from calculated points. While he mentions

the nodes, he does not determine their locations accurately.

KULER studies again the simple modes of a rod pinned at one point L as well as at

both ends. This time, with a better choice of notations and a more systematic elimination,

he derives the characteristic equation

(386) 0 = 2 — Bers — (eS — eb») (eM — e*8)a HE

for the dimensionless frequency ¢, where / is the proportional distance from one end to L.

The case A = 4 is then treated in detail, with results amplifying those in E443.

 

 

1) The following table defines and interconverts the numbers assigned to the types by EULER in

his three treatments:
 

 

 

type E65 443 E 526

free-free IT 1 I

free-pinned — 2 (V) IT

free-clamped I (0) ITI

pinned-pinned IIT 3 IV
pinned-clamped — 4 (VI) V

clamped-clamped IV 5 VI     

41

48
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Published in the same year was JoRDAN Riccatt’s long treatise, On the sounding

vibrations of cylinders1), which takes EULER’s work of forty years before as its starting

point?). [The general theory does not advance beyond the work of DANIEL BERNOULLI and

EULER ;] the body of the paper presentsin all numerical detail the calculation of the proper

frequencies and nodal distances for the first six free-free modes. [While EvuEr in his later

papers E 443 and E526 had considered rough approximationssufficient, RiccaTt, following

the spirit of E65,] takes “lengthy pains’ to get very accurate values for the roots ¢ of

(199) and for the nodal distances z/41, where z is measured from the center to the node®):

 

 

Mode C 2/41

I 4,7300408 0,5516864

II 7,8532046 0,7357831, 0
Il 10,9956079 0,2831042, 0,8111144

IV 14,1371655 0,4425042, 0,8530974, 0
V 17,2787596 0,1817456, 0,5438638, 0,8798045

VI 20,4203522 0,3076335, 0,6140386, 0,8982961, 0    
 

[While DanIzL BERNOULLI had madea sufficient number of rough experiments to

convince himself that the forms and frequencies of some of the modes of a rod are in fact

as theory predicts,] Riccatt is thefirst to undertake a systematic and precise experimental

program designed to check the predictions of theory. For brass and steel rods for which

the fundamentalis inaudible but the next five modes are not, hefinds very good agreement

with the above calculated values.

Recalling his father’s suggestion that the elastic properties of a material be determined

from the soundsit emits (above, p. 115), [as indeed had been suggested earlier by LEIBNIZ

and repeatedly thereafter by EULER in this very context,] Ricoati from the experimental
 

1) ‘Delle vibraziont sonore det cilindri,’’ Mem. mat.fis. soc. Italiana 1, 444—525 (1782).

I have not been able to see the work of Linpe@uist, ‘De inflexionibus laminarum elasticarum,”’

Aboae, 1777.

2) Evidently Riccatt had not seen any of EULER’s later work on this subject. Z.g.,in §§ XI and

XXVII he corrects the error that EULER had himself corrected in E84 (above, p. 221); in §§ III—IV

he seems to be unaware of EULER’s determination of [7 in E303 (below, p. 388); and he does not

refer to E443 (above, pp. 323—-325), where there is a treatment of the major problem discussed here.

3) These values agree closely with such as are cited from later authors or derived by RAYLEIGH in

§§ 174 and 178 of his Theory of Sound, Cambridge, 1877. The only difference not in the last figure

occurs for the smaller nodal distance for the third mode, for which RAYLEIGH gives 0,288394. The

table given by BisHop & JOHNSON,op. cit. ante, p. 326, is not sufficient to determine nodal distances

with this accuracy.
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results concludes that 4)

(387) Estee

brass

fe 2,06.

[The values for these alloys as manufactured todayyield ratios from 2,13 to 2,22.]

Using his criterion of equal kinetic energy (above, pp. 280—281), RiccatTtinfers that

equable tone from an instrument whose sources of sound are cylinders of like material

can be producedif
_2 2

5(388) dav *,lay ™,

and he gives a table constructed from these formulae over a range of two octaves. [I do not

follow his dimensional argument, nor can I justify the results on other grounds.]

A fuller program of experiment was published in 1787 by CHiLapni?). Although he

considers the BERNOULLI-EULER theory of straight prismatic rods so perfect as to leave

nothing further to be learned’), CHtapni takes the pains to verify by experiment the

tonal sequences and nodal patterns ofthe first few modesfor all six kinds ofend conditions*).

With minor reservations, he confirms the prediction of the theory in precise detail.

For the vibrations of circular rods it is a different matter®). Of EULER’s two theories

(above, § 46), which predicted frequencies in the ratios (r+ 1)+ and v4, respec-

tively, CHLADNI writes that while the displacement was assumed tolie in the planeof the

ring, “experience teaches that the parts of an elastic ring that is not too thick are morein-

clined to vibrate up and down rather than in and out” and that in both cases the sequence

of tones is entirely different from EKvuLunr’s predictions. CHLADNI’s experiments show that

the k*" mode has 2k + 2 nodes and that the progression of frequencies is (2k + 1)?.

[Subsequent work has not borne out the latter result.] The dependence of frequency on

length and thickness he finds to be the sameasfor straight rods.

CHLADNIstates finally*) that if a long, thin string is stroked with a violin bow at a
 

1) We do not remark upon Riccari’s use of “Youne’s modulus’’, since it had been defined

and explained earlier by Euumn (see § 60, below).

2) Entdeckungen tiber die Theorie des Klanges, Leipzig, Weidmanns Erben und Reich, 1787.

3) Op. et., p. 1. He regards the theoryas initiated by DANIEL BERNOULLI andperfected by EULER.

The work of C. B. Funr, “Versuch tiber die Lehre vom Schall und Ton,” Leipziger Magazin zur

Naturkunde, Mathematik, und Okonomie 1781, 88—96, 210—227, 463—471,is merely descriptive and

contains nothing of value.

Most of the theoretical and experimental studies by other minor writers whom CHLADNI criticizes

harshly I have been unable to see.

4) CHLADNI employs the theoretical values given by EvLEr in his last paper on the subject

(E526, above, p. 326) and by Riccat1 (above, p. 328). CHLADNI’s experimental results are described in

op. cit., pp. 2—15, and in §§ 79—87 of Die Akustik, Leipzig, Breitkopf und Hartel, 1802.

5) Entdeckungen, pp. 16—17. Akustik, § 100.

6) Enideckungen, p. 76.

XXXIV—
XXV
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very acute angle, there may be produced a sequence of tones in the ratios 1, 2,3, 4, ... but

three to five octaves higher than the usual tones of transverse oscillation. ‘All these tones

sound rather unpleasant ...They have no definite relation to the tones obtainable by

rectangular strokes, in that the tension of the string has verylittle influence, so that when

the usual tones are raised an octave by increasing the tension, these newly observed tones

are increased by scarcely a semitone.’ These tones CHLADNI later recognizes as arising

from longitudinal elastic oscillation’).

[That such tones are much higher than those of transverse vibration is immediate

from the fact that c? = HA/o for the former, c? = 7'/o for the latter : In order for the

speeds of propagation, and hence the frequencies of a wave of a fixed wave-length, to be

equal for the two kindsof oscillation, we should have to have 7’ = HA, the tension theo-

retically sufficient to double the length of the string ?).

With the perspective of more than a century, we easily account for the complete

success of the theory for small vibrations of straight rods and complete failure for curved

rods. Not only dynamical principles but also, for the simple modes, even mathematical

analysis was sufficient, but lacking was an adequate description of the strain of a rod,

a necessary preliminary to a correct theory.]

IVD. Vibrations of membranes and plates

48. EULER’s theory of the vibrating membrane (1759). EvuLER’s paper of 1759, On

the vibration of drums*), gives the first successful attempt to describe the deformation of a

body of more than one dimension. The summaryof this paper and of EULER’s paper E303

on rings and bells (above, pp. 320 —322) tells us, “Here are undertaken two investigations

pertaining to acoustics, so difficult that he who has succeeded in some measure in reducing

those sounds to calculation must be regarded as extraordinarily superior‘). It is now

abundantly clear what difficulties were involved in the question of vibratory motion of

strings until a virtually new part of integral calculus was undertaken.Since in questions . .

regarding the sound or vibration of drums and bells... the disturbance of an entire sur-

face or even of a body is investigated, it is easily seen that much deeper mysteries of cal-
 

1) Akustik, §§ 60—62.

2) C}. § 151 of RAYLEIGH’s Theory of Sound.

3) E302, ‘De motu vibratorio tympanorum,” Novi comm.acad.sci. Petrop. 10 (1764), 243—-260

(1766) = Opera omnia II 10, 344—359. Presentation dates: 22 January 1761, 17 May 1762. In his

letter of 1 January 1760 to LAGRANGE, EULER tells of just having read this paper and E303 to the

Academyof Berlin. Cf. footnote 2, p. 320, above. Most of the contents are summarized on pp. 86—87

of Notebook EH 8, probably written in 1759.

4) Even Danret BERNOULLI agreedto this, for in § 6 of op. cit. ante, p. 291, he speaks of ‘“bells or

drums, ... which only the incomparable EULER has dared to treat.”
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culation are needed here. What mustfirst be doneis properly to reduce these motions . . . to

calculation, which cannot be achieved without certain hypotheses regarding the structure

of these bodies.”’ The author establishes “rules” [7. e. partial differential equations] for the

small motion of drumsandbells ; for the former, these are of second order, for the latter, of

fourth order. Since they are too difficult to yield to a general solution such as that for

strings, the author investigates only regular vibrations corresponding to a certain sound.

Heobserves that just as is the case for strings, a bell or drum that can emit several single

sounds can also emit these same sounds simultaneously. However, for a bell or drum the

various possible sounds are most disharmonious.

It is appropriate to regard a stretched cloth or membrane as composed of threads

along its length and breadth, as is really the case for a cloth, while in a membrane the

numberof threadsis to be regarded as infinite. Supposing the net of threads to be rectan-

gular, let the interval between them be 6 and let the two sets of threads be subject to

tensions 7’, 6 and 7',6, respectively. An element displaced to a height z(x, y) at the point

x,y is thus pressed downward by twoforces, as follows:

From the thread parallel to the x-axis,

by a force = — Td z(u,y) — 2(z + 6,y) —2z(% — 6, y)
 

(389) 30, 6
= T,0?—>

Ox"

From the thread parallel to the y-axis,

(390) by a force = T', 6? ae

a

By the “principles of mechanics”, the sum of these forces equals + 6? cea where 7 is the

surface density of the membrane. Thus weobtain the partial differential equation

072 072 Oz
201 —- =
(391) ” OF Paaaax + Ty ayeay

[It is plain that HKULER expects the reader to have read the material on finite differences in

his Differential Calculus*).] Henceforth we consider only the case when the two tensions are

equal, 7’, — 7, = 7, say, and we put c? = 7'/t, so that (391) becomes

1 a 022 022

 

(392) ce Of da? ay? *

Wetry a solution z = vsin (wt + QM) and find that

wv 07 07

 

1) Ch. I of Part I of E212, Institutiones calculi differentialis cum etvus usu in analyst finitorum ac

doctrina servum, Petrop. 1755 = Opera omnia I 10.
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Since this equation has sinusoidal solutions, there are solutions of (392) having the form

(394) z= Asin(wt + A) sin (ie + 8) sin (ae + ¢| ,

where

05 otye
A simple vibration of the type

(396) z= Asin wt gin F® gin YY

correspondsto vanishing initial velocity ; the boundaries of a rectangular drum 0 < 2 Sa,

0Sysb6 remain fixed if 6 = 2ma, y = 2nza, where m and n are integers. From (395)

: follows

13—15

16

m* n?
(397) y= Cele + Re?

for a square membrane, the ratios of these frequencies are in generalirrational and most

inharmonious. [The correct necessary and sufficient condition is B =mz, y=nnz,

so that

m2 n*(398) y= 3c a

EULER’s slip has caused him to miss the fundamental. One would expect that he would

have noticed that his formula (397) does not reduce to TayLor’s formula (73) for the vibrat-

ing string when n= 0 and m= 14.]

To consider a circular drum, EULER transforms (393) to polar co-ordinates r, 9,

obtaining
1 dz 0*z 1 az 1 dz

(399) 2tTotte

“Moreover, the way in which we have reached this equation constitutes a certain new kind

ofalgorithm, whichseemsworthyofall attention.”[The “newalgorithm”is only straightfor-

ward calculation of 0%z/dx? and dz/dy? in termsof the polar co-ordinates x = cos 9,

y =rsing. The modern reader must realize that this is the first occurence of a simul-

taneous change of both independentvariables in a partial differential equation+). The long

calculation of partial derivatives, still known to few savants and often used awkwardly if

not erroneously, must have seemed a brilliant and abstruse display.]

There are solutions

(400) z= u(r) sin (wt + A) sin (Bo + B)
 

1) Ever himself had carried out this transformation a little earlier for the case when the solution

depends upon r only; cf. pp. XLVI—XLVII of the Introduction to L. EutEr1 Opera omnia IT 18.
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provided

(401) wp ow + (SFuno
r c2 i

[This is the first appearance of “BESSEL’s equation”in its now usual standard form.] The

substitution u— 78s yields
] 2

(402) i" p APF4Oe.
Cc?

Buusn then calculates the power series solution we now write as

(403) u=ZJp (2 4 .

In order for the edge r = @ to remain fixed, we must have

w

which EULER asserts to have infinitely many roots w, so that infinitely many simple sounds

result. Since z must be periodic of period 2z in qg, it follows that 6 = an integer. EuLER 17

expresses little hope of being able to calculate the “‘infinity of infinities” of frequencies

given by the roots w of (404) for B = 0,1, 2,....

To find a second solution of (402), put s = psinwr/c + qcosar/c. The resulting 18

solution is

(405) p= = (Asin2 + cos2") P+(Wsin — 4 cos 2"),
r

= CRsin (9@—y+ «),

where P and Q are power series containing only even and odd powers, respectively of

wr/e. KULER says that increasing » by must have the sameeffect as replacing r by — r.

Thus only even powers may occur on the right in (405); hence A = 0, and wefall back

upon (403). [EULER'S reasoning is not correct ; neither is his series solution (405), since it

imputes to BESSEL’s equation two independentsolutions regular at r = 0.]

Finally, there are solutions of (392) of the form 22
2

(406) 2= Bax + py t+ yt), at + prt,

and any number of these may be superposed.

[From this paper, which in some waysis the supreme achievementof the eighteenth

century in the theory of deformable solids*), the reader brings away a certain disappoint-
 

1) BERNOULLI and LAGRANGE published not a word on this problem, and D’ALEMBERThadbetter

not have published thelittle he did: ‘“Bands and elastic plates can be considered as a heap or bundle

of elastic strings ... When theplate is bent, someofits fibres elongate, and the different points of the

same plate are differently elongated.” (Encycl. 5 (1755), art. “Elasticité’’).

The only other author in the century who ventured to attack it was Jorpawn Riccati, a not in-
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ment. After the brilliant derivation of the governing partial differential equation and the

calculation of the normal modes, both for rectangular and for circular membranes, we might

reasonably expect some discussion of the forms of the nodal lines, the relation of these to

the proper frequencies, and the possible effects of superposing several modes—in a word,

the mechanical implications of the results—but of these there is no trace. To thesefailings,

along with the difficulty of producing a truly free vibration in a uniformly stretched mem-

brane, must be laid the want of experimental confirmation of EULER’s theory for nearly a

century. Even CHLApDNI, who madenoserious attempt to perform experiments on a mem-

brane, dismissed EULER’s theory as ‘‘scarcely in entire accord with nature and not at all

analogous to what is observed in the vibration of other surfaces!).”’ EULER’s theoryis en-

tirely correct but not developed?). Had Ever put into study of this theory, pro-

posed in the middle of his scientific life, a portion of the energy he wasted on details con-

cerning the vibrating string, the course of the doctrine of vibrations might have been dif-

 

considerable scientist but one who stood helpless before a partial differential equation (cf., e. g., footnote

1 on p. LXXI of my Introduction to L. EuLER1 Opera omnia II 18). His paper on this subject is

‘*Dissertazione frisico-matematica delle vibraztoni del tamburo,”’ Saggi sci. lett. accad. Padova 1, 419—446

(1786). Perhaps influenced by D’ALEMBERT’s blind guidance, Riccat1 regards a circular drumhead as a

sheet of radial strings, taking the density of each such string proportional to r in order that the density

of the membrane be uniform. Riccati’s not very perspicuous derivation (§ V) leads to the correct

equation for the simple modesof such a string, wz

dz

dr®

but this is not the correct equation for the symmetrical modes ofa uniformly dense circular membrane,

which, as follows at once from EULER’s equation (399), must satisfy

a? ld
~+—Zaz.

dr? r ar

Thus all of Riccattr’s conclusions regarding the proper frequencies, efc., are wrong.

To the historian it is enlightening that not only does RiccaTi in 1786 pay no heed to EULER’s

paper E302, published twenty years before, but also after citing EULER’s paper E318, also published in

1766, on strings of non-uniform thickness, and after acknowledging his great debt to this paper, Ric-

CATI approaches even the vibrating string in the old clumsy way used by Danret BERNOULLI and

EULERin their earliest researches, a half century earlier! The explanation, of course, is that RiccatTi

cannot understand or use the principle of momentum when it is expressed as a partial differential

 ore,

 

equation. Disregarding EuLER’s formulation of the general problem of the vibrating string, Riccat1

refers to EULER’s paper only in connection with its “construction” of certain ordinary differential

equations.

1) §§ 683—64 of op.crt. ante, footnote 4, p. 329.

2) In the acoustical literature the theory of the vibrating membrane is usually attributed to

Poisson, qq 59—64 of ‘““Mémoire sur Véquilibre et le mouvement des corps élastiques,’’ Mém.acad.sci.

(2) 8, 357—570 (1829). Potsson, apparently unaware of EULER’s work, obtains the correct formula

(398) instead of (397) and makes a start toward determiningthe nodallines of rectangular andcircular

membranes but in fact advanceslittle beyond EULER.
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ferent, since in fact a membrane possesses modes similar to some of those observed by

CHLADNI in vibrating plates, to be described presently.]

49. CHLADNI’S experiments on the vibrations of free plates (1787). [After the passage

of a quarter century in which nothing was learned regarding two-dimensional elastic

systems, a new period in the history of elasticity and acoustics begins in 1787] with

CHLADNI’s Discoveries on the theory of sound'), [the first purely experimental work to be

founded on an understanding of the principles of mechanics and existing theory, and also

the first work on elastic vibrations in almost a century to discover by experiment results

not previously predicted by theory. While DANIEL BERNOULLI’s experiments,as he himself

many times emphasized, were conceived and executed so as to confirm the predictionsof his

theories, ] CHLADNI deliberately selects a domain for which no theory exists : ‘The elastic

vibrations of strings and [straight] rods . . . are so accurately and cleverly calculated as to

leave very little new to be said regarding them; on the other hand, the true nature of the

sound of bodies for which elastic curvatures of whole surfaces . .. come into consideration

simultaneously is still shrouded in the deepest darkness, since neither calculations agreeing

with experience norcorrect observations about it are available.’ Sand scattered upon a hori-

zontal plate takes on its motion, so that the parts which remain at rest are easily seen. The

motion is excited by stroking the edge with a violin bow. Some kinds of vibration are

easy to produce, other, quite difficult ; ‘‘...in continued experimenting onefinally gets

what is wanted, and often a sound difficult to obtain appears unexpectedly when oneis

looking for another.” There are certain nodal lines where there is no motion, andit is best to

support the plate at the intersection of two suchlines ; such support renders the tone purer.

On the opposite sides of a nodal line the motion occurs in opposite senses. When two nodal

lines cross, points located in the opposite angles are in motion in the samesense.

The experiments on rectangular strips of glass or metal refer to the end conditions

free-free, fixed-free, and fixed-fixed, the sides in all cases being left free. However,the variety

of possible motions is so great that CHLADNI merely gives notice of their existence along

with a description of a few of the simplest.

Most of the work concerns the vibrations of circular plates, which he considers pre-

ferable to bells both for facility of experiment and control and because they give out a

greater variety of sounds. The edge of the plate is free of support, but the vibrations are

excited by stroking it. In the lowest observed mode, which CHALDNIcalls the fundamental,

there are two orthogonal nodal diameters and no nodalcircles ; a similar motion occurs in

the water in a drinking glass when the edge is excited by a violin bow. A footnote tells us

that with difficulty a mode in which there is but a single nodal diameter may be excited,
 

1) Hntdeckungen tiber die Theorie des Klanges, Leipzig, Weidmanns Erben und Reich, 1787.

P.1

18

19

21—-24

24

25-—29

29—30
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Figure 89. CHLADNI’s figures showing nodal lines (1787)

He GH Ss
Figure 90. CHLADNI’s “variants” of the mode with eight nodal lines and no nodal ring (1787)

  
 

 

  
but CHLADNI regards it as of another kind from the rest. There are modes in which any

number of nodal diameters occur (Figure 89). The greatest motion occurs at certain points

lying fairly near the edge and on the bisector of the angle between adjacent nodal dia-

3334 meters ; in the last drawing in Figure 89, these are indicated by dots. In manycases instead

of the star-like figure there results what CHLADNIcalls a “‘variant’’, giving the samesound;

three such variants are shown in Figure 90 as belonging to the mode with eight nodal

34—35 lines. The sounds given out contradict EULER’s conjecture that the tones of a bell

are the same as those of a circular rod,

whether the theoretical or experimental 8. "9: 20.

results for the rod be used for comparison.

36 Both the variant figures and the positions of Pog r

the points of maximum excursion contradict .
™ * 7any analogy to the motion of a circular rod.

36—46 There are also modes in which there are a7. 91.

any number of nodal rings (Figure 91). Great

variations are possible ; in practice, any large

number of nodal lines meeting in the center

is hard to produce. Several observed kinds of Figure 91.

motion are shown in Figure 92. These figures CHLADNI’s figures showing nodal rings (1787)
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Figure 92, Two of Cutapni’s figures showing nodal patterns for circular plates (1787)

CuLADNIis able to classify, since “... the rings for each kind of sound exhibit a definite

numborof bends, except for the innermost one, which is sometimes quite circular but more

usually oval. The number of bends is the same for each circle...’ Thus CHLADNI’s

Figures 28, 29, and 30 all show two nodal rings, two nodal diameters, and six bends,all

three being variants of the pure mode shown in his Figure 31. If nz, n,, n, denote the

number of nodal diameters, nodal rings, and bends, respectively, then in all figures

Ny 2 q+ N,, Dut he indicates also such cases as n,=2,n,=7 or 8, n, = 8. The

experiments go as faras n,— 7 and n, = 8 or more.

The pitches corresponding to the various 46

 

 

 

   

 

   

  

  

yo pater ann the C1elg modes are shown at the left: The tone C' is chosen

9 ea eyo -— =|—|"2"| arbitrarily as corresponding to n, = 0, ng = 2;

t . * ne= = los = CHLADNIestimates the error as less than a semi-

fa]PRY feae tone, even for the highest notes. Converting these 47—48

: > * ssams ason 2 : —| pitches to frequencies, he infers that

"Ts = = = = There are also certain kinds of vibration which 49—51

gl =| 2) Ps he is unable to explain satisfactorily as variants

fi =| of the above. Some of these are shown in Figure

NG 93. [CHLADNIis a firm believer in the theory of            
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Figure 93. Nodal figures CHLADNI is unable to classify (1787)

simple modes,] so that his criterion for identity or difference of two motionsis solely the

frequency emitted.

Similar experiments on square plates are sufficiently summarized by someof the nodal

diagrams (Figure 94), which ‘“‘could suffice to enrich the sample books of the drapers and

carpet makers.” The frequencies are as follows:
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The frequencies in the first column agree with those for a rod with both endsfree ; “regard-

ing the other tonal ratios I prefer to say nothing further, lest error result from too hasty
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Figure 94. Two of Cunapni’s plates showing nodal patterns for square plates (1787)

claims.” [As is now well known, the vibrations of a square plate present problems of a

higher order of difficulty than those for a circular one.]

For plates of the same material, the frequency of a given modeobeysthe rule

h , .
(408) ya a h = thickness, d = diameter.

CHLADNI takes pains to exposethe errors of several contemporary non-mathematical

writers on acoustics. His discussion is based on the concept of coexistence of small oscil-

lations!), which he attributes expressly to EuLER and DanrzxL BERNOULLI, and on his

experiments. He considers it diffiuclt if not impossible to produce a pure tone unmixed

with harmonics, but he is certain that every sound is composed only of tones which could

(presumably, in principle) be emitted singly by the same sounding body. “‘A sound results

when an clastic body makes isochronous and audible oscillations. The isochrony of vibra-

tions is incontestably the single essential property that distinguishes a sound from any

Other noise... A soundis called a tone when account is taken only of... the greater or

lesser speed of its vibrations” [2. e., of its frequency].

 

1) On p. 68 CHLapDNI cites TaAyLor’s book andall the papers of EULER, DANIEL BERNOULLI, and

LAGRANGE on the vibrating string, after which he mentions ‘‘various writings of D’ALEMBERT. Certain

more recent authors should have made better use of the essays cited above than in fact they have.”

64

65—73
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After describing a three-dimensional vibratory motion of a rod analogous to the

elliptical vibrations of strings discussed theoretically by DANIEL BERNOULLI and EULER

(below, pp. 376—377), CHLADNI mentions a motion of a plate in which the corners vibrate

while there are two orthogonal nodal surfaces in the interior.

CHLADNI’s work ends with a program for theory. ‘“Perhaps the above remarks . . . may

give the stimulus to develop further the theory of the curvatures of a surface or a body,

which offers an unbounded field for further investigations ...’”’ and he cites EULER’s re-

marks to this sameeffect (above, p. 330).

The challenge of CHLADNI’s experiments was taken up at once by Jamgss II Bzr-

NOULLI, but in disregard of CHLADNI’s warning he made nopreliminary attempt to analyse

the deformation of surfaces. His Theoretical essay on the free vibrations of rectangular elastic

plates1), [the first paper in the history of rational elasticity for which the problem is sug-

gested by the results of experiment, is also one of the few early mathematical works that

rests on entirely wrong principles,] for BERNOULLI, heedless of CHLADNI’s express contrary

admonition, postulates an analogy between a plate and a network of rods. Regarding the

restoring force as arising solely in response to the bending of two orthogonalrods, he obtains

as the equation for the simple modes

042 04z 2(409) gat +yee

While a similar analogy between a flexible membrane and a network of strings had led

EULER to correct results, [we nowadayssee at once that (409) cannot represent any physical

problem concerning an isotropic plane, since it is not invariant under rotation of co-ordi-

nates]. BERNOULLI admits the insufficiency of his model, but he mentions only two pos-

sible sources of error. (1) The motion is assumed normal to the plate, but he considers the

error negligible for small vibrations. (2) A different set of rods, as for example concentric

and axial rings, might lead to different results, but this he regards as indicative merely

that his solutions are special ones. [Thus, unlike Caiapnt, he fails to grasp the mechanical

reason invalidating his model for all vibrations except those for which z= z(x) or

z = z(y).] “But also I give this memoir only as a first attempt...”

BERNOULLI calculates the proper frequencies and nodal lines for a rectangular plate,

and for a square plate he compares them with CHLADNI’s experimental results. There is

little or no agreement.

 

1) “Essai théoretique sur les vibrations des plaques élastiques rectangulaires et lubres,’’ Nova acta

acad. sci. Petrop. 5 (1787), 197—-219 (1788).
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An unpublished work!) of JAMES IL BERNOULLI discusses the vibrations of circular

plates according to the same [erroneous] theory.

[Not failure of mechanics but lack of a sufficient differential geomet
ry of surfaces, as

CuLapnti had implied,left the eighteenth century geometers
incapable of a proper theory of

elastic plates.]

IVE. Diserete models

rd, Discrete models”). Evuur’s paper of 1764, On the equilibrium and motion of bodies

connected by flexible joints®), attempts to illumine the nature of elastic bodies, especially

elastic plates, by @ model of rigid

bodies connected by elastic junc-

M
tions. Consider bodi

es with centers

of mass at A and B (Figure 95),

where the perpendiculars Aa and

Bb to the ‘axis of bending” Mm

need not lie in a plane; the X18

Mm represents an elastic wire

which can be twisted. After the 
m.

twisting, regard Aa as unchanged

Figure 95. Evimr’s model for Figure 96. Clearer sketch of and Bd as rotated through an

torsion (17638-1764)
Euier’s model for torsion

.
angle w (Figure 96) to the con

figuration b B'. Replace the elasticity of torsion by an elastic cord, shown dashed, along

the are from 5 to B’. The length of this arc is 2bsin 3 @. The “elastic force”’, being pro-

portional to the change of length of the elastic cord, is K.2bsin}w. The bending

moment exerted by this force is

(410)
2Kb sin $a-b cos tw = Kb? sin ,

Now regard A and B! as connected by 4 thread ; the moment exerted by the tension T

of the thread must equal the bending moment (410). Writing E = Kb?, we have

_ Esin oVa? + O — 2ab cos(A — @)

(411)
T= ab sin(A — @)

        

 

1) Universitatsbibliot
hek Basel, MS L I® 39°, pp- 1—16. On pp. 6—8 Bernounu “by an alto-

gether different route”’ derives EULER'S
[false] second theory of the vibrations of circular rings, and on

pp. 9—10 he obtains (409) in polar co-ordinates.

2) LAGRANGE’S work of 1760 on setting up the equations of motion of discrete systems will be

discussed below in § 55.

3) E374, “De aequilibrio et motu corporum flexuris elasticis sunctorum,” Novi comm. acad. sci.

Petrop. 18 (1768), 959—304 (1769) = Opera omnia IT 11, 3.61. Presentation dates: 1 December 1763,

93 August 1764.

1—2

3—4
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where Ais the angle between Aa and Bb before bending. Supposing 7’ = D is the tension

required for equilibrium, EuLrmr then regards the point A as fixed, takes 1 = 0, and

considers the tension 7’ as a constant D, independent of w. Then it is easy to set up equa-

tions of motion by equating the torque of D less the torque Kb? sin w to the rate of

change of angular momentum. A discussion of the integration leads to nothing definite.

[The tentative and diverse nature of the contents of this paper is doubtless respon-

sible for the neglect bestowed upon the results just obtained. EuLER has in fact introduced

the concept of twist of a straight rod and has constructed the first theory of torsion. The

formula he derives from his discrete model implies that for small twists, the torque is pro-

portional to the twist. This now classic law of elasticity is to be inferred directly from

experiments by CoULOMB more than a decadelater (§ 61, below). EULER, however,intent on

plates, gives no further attention to the result just derived.]

Problem 1: To find the condition of equilibrium for a body composedof an arbitrary

number of parts connected by elastic joints and subject to arbitrary forces. EULER proposes

a principle of solidification, asserting that if all the joints suddenly becomerigid, equi-

librium is not disturbed. Hence the total force and total moment of the external load must

vanish. At a junction, in imagination divide the body in two. The bending momentof the

load on one part equals the bending moment exerted by the joint. EuLER regards this

principle, which generalizes that he has used for many years for setting up special cases

concerning bending(e. g., in E8, above, pp. 148—150), as of the greatest importance. [In-

deed, we see here a step toward the principle of moment of momentum for general bodies. ]

The solution of Problem 2 is a proof of the vectorial character of moments, in three dimen-

sions.

The remainder of the paper consists in applications of these principles to special cases,

leading to Problem 6, in which equations of motion are established for three bodies con-

nected by elastic junctions and free to move in a plane. The momentsofthe joints are taken

as proportional to the sines of the angles between the lines connecting the centers of gravity

of the bodies to the junctions. EULER is unable to draw any conclusions from the equations.

[This paper, following shortly upon EULER’s treatment of membranes by conceiving

them as a network of taut cords, shows us that EULER, years before CHLADNI’s warnings,

saw that the elastic response of a plate is more complicated than that of a network of bent

rods. Plainly he hoped, despite the mainly negative results of earlier experience with dis-

crete models for cords, chains, and rods, that a discrete model might here suggest the right

approach to a theory of plates!). The result is again negative. While EULER demonstrates

his mastery of the principles of linear and angular momentum in setting up the equations
 

1) This is supported by thetitle, ‘“Principles for the equilibrium and motion of elastic bodies,”’

which EuLERsets at the head of a preliminary study on p. 32 of Notebook EH (1760 or 1761—1762).
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for complicated discrete systems, the paper achieves no advance in the principles of elas-

ticity.

All further work in the eighteenth century on discrete mechanical systemsis of modest

scope, aimed only toward details. ]

About 1765 LaGRANGE mentions the problem of the weighted string hung up by one

end1). The differential equations,

 
a? — — 2(412) “Eh Yi HEU ~(k —1) Yu-a He 1 Yns —(

[derived long ago by p’ALEMBERT (above, pp. 188—189)], are of the type LAGRANGE can

can solve#), [but he does not advance beyond EULER’s old results (118) and (119).] He

writes, “it would be difficult, perhaps impossible” to determine the proper frequencies,

but ‘“‘one may assure oneself, by the very nature of the problem, that these roots are

necessarily all real, unequal, and negative’, since otherwise the displacements could

increase to infinity, “which would be absurd.”’ [While Lacranag, like p’ALEMBERT before

him (above, p. 192), proves nothing, his assertion is true, since the equation LZ, (x) = 0

has n positive and distinct roots.]

A contrast of methods is furnished by two late papers of DANIEL BERNOULLI and

KuLER on the compound pendulum’). It is plain that EULER considers BERNOULLI’s use of

the old, directly postulated methods for obtaining the equations of motion ofrigid bodies as

unfortunate. HULER’s paper, printed on the pages following BERNOULLI’s, easily sets up the

exact equations of motion on the basis of the “first principles of mechanics’’, BERNOULLI’s

results then follow as approximations.
 

The neat attempt, on p. 36, has almost the sametitle as E374; here EULER considers each member of

the system subject to a force and to two equal and contrary forces acting at equal distances from its

center of inertia [t. e. a couple], “so that these two forces should have no effect on the progressive

motion.’’ In addition, as in E174 (above, p. 228), a force of arbitrary direction acts at each junction;

this foree represents the elasticity of the link. The “paradox” which is observed and explained in

E374 is noted on p. 38.

1) § 36 of op. cit. ante, p. 278.

2) As had Euuzn in solving (235), LAGRANGE is essencetries for solutions of the type y, = U,ee.

In § 30 he had discussed the more general system

GY
dt?
 

k

+ pay Arp Yp =.

p=1

3) D. Bernovuttt, “Vera determinatio centri oscillationis in corporibus qualibuscunquefilo flexilt

suspensis evusque ab regula communi discrepantia,’? Novi comm.acad. sci. Petrop. 18 (1773), 247—267

(1774).

EvuLeR, E455, ‘“Determinatio motus oscillatori in praecedente dissertatione pertractat ex primis

mechanicae principiis petita,” ibid. 268—288 = Opera omnia II 11, 142—157. Presentation date:

9 December 1773.
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In two further papers!) BERNOULLI dwells upon special cases of the possible motion

of a pendulum of two parts. In the same year, EULER?) returns to the old problem of the

weightless string loaded by discrete weights. The equationsof finite motion are obtained by

adding M,g to the right-handside of (209),, so that the x-axis points vertically downward,

and by using the slope angles, 0b= im — g,. When 6, is small, these equations and the

constraints yield (156) and y, = 2'a,6,. Putting these results into (209), yields
r=1

 

kK

r=1

where «, = it = J M,/M,. Put 6,= A,z. Then (413) admits a solution such that
k r=k

z= — Kgz, provided that
k

(414) 2'a,A, = K [a,A; — (0%, — 1) A x41] :
r=1

In order that these linear equations for the coefficients be compatible, K must satisfy an

algebraic equation of degree &. EULER is unable to proceed explicitly except in the special

case when & = 4, and even then the result is complicated. The general solution of (413)

is to be gotten by superposition of particular solutions corresponding to these values of

K., Ever considers that “scarcely anyone would go to the trouble” of determining the

arbitrary constants from theinitial conditions, so that “this solution, however elegant and

perfect, is plainly unsuited to be adapted ...to specific cases.” Its importance lies in

showing that “the principle of the most illustrious Dante, BERNOULLI... is thoroughly

founded in the first principles of motion and can be derived immediately from them.”’

For the case of equal weights equally spaced, KuLER derives again his old results (118) and

(119).
[Further studies of discrete oscillating systems do not seem to have contributed even

indirectly to theories of flexible or elastic bodies#).]
 

1) §§ 7—11 of op. cit. ante, p. 291, followed by “‘Commentatio physico-mechanica specialior de

motibus reciprocis compositis multifariis nondum exploratis qui in pendults bimembribus facilius observari

possint in confirmationem principi sur de coexistentia vibrationum simpliciorum,”? Novi comm.acad.sci.

Petrop. 19 (1774), 260—284 (1775).

2) E468, “De oscillationibus minimis penduli quotcunque pondusculis onusti,”’ Novi comm.acad.

sci. Petrop. 19 (1774), 285—301 (1775). Presentation date: 3 October 1774.

3) EvuLer, E469, “De motu oscillatorio binarum lancium ex libra suspensarum,” Novi comm.

acad. sci. Petrop. 19 (1774), 302—324 (1775). Presentation date: 10 October 1774.

EvuLer, E470, Hxplicatio motus oscillatorita mirabilis in libra majore observati,” ibid. 325—339.

Presentation date: 10 October 1774.

EuLER, E525, ‘‘De motu oscillatorio mixto plurium pendulorum ex eodem corpore mobili suspen-

sorum,”? Acta acad. sci. Petrop. 1779: I, 89—102 (1782). Presentation date: 13 October 1774.

EuULER, E533, “De motu oscillatorio pendulorum ex filo tenso dependentium,” Acta acad. sci.

Petrop. 1779: II, 95—105 (1783) = Opera omnia II 7, 91—-100. Presentation date: 17 October 1774.
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IVF. Planestatic deflection and buckling of straight bars?)

51. EuLEen’s calculation of buckling loads for columns of non-uniform section (1757).

[EvLER’s brilliant discovery of the phenomenon of buckling in 1743 had attracted no

notice ;]in 1759 he published a paper, On the strength of columns), which presents calculations

of buckling loads without much accompanying material on elastic curves. He remarksthat

“this difference between the action of a horizontal force and a vertical one will seem not a

little paradoxical : It seems that if a large force bends a column, a smaller one ought always

to produce a similar effect, even if perhaps imperceptible. The principle of continuity

seems to require it...’ But in fact the bending may be “imaginary’’. [Instead of approx-

imating the exact solution (172),] EULER now employs an approximate differential equa-

tion,

(415) By" + Py=0,

which follows from (171) by changes of notation and by supposing that the load P acts in

the direction of the unbent bar and produces only slight bending. When @ = const.,

the sinusoidal solution (178) follows at once, as does thecritical load (185),. “If one develops

the calculation more accurately,” not neglecting the difference between s and 2, one will

find that

(416)  
P
P= sec x ,

where « is the angle between the load and the tangent at the point of application. If

P< FP,., the angle « is imaginary. [EvuLER does not disclose how he obtains the crude

approximation (416). It is unfortunate that his work on buckling has become known

mainly through this paper instead of through the exact treatment given in the work of

discovery E65, where, among other things, the bent forms are determined and, in par-

ticular, the exact formula (187) renders unnecessary any such approximation as (416).

KULER’s explanation that « is imaginary when P/P,, while not illuminating now that

Lereniz’s law of continuity is no longer believed, is true in respect to the exact formula

(19'7),

The value of this paper lies in] its calculation of critical loads for columns of non-uni-

form steffness. The differential equation to be solved is (415), with @ = @(x). Evumr

puts y =e!"ond obtains

(417) wtwitP/B=0.

N. Fuss, “‘Determinatio motuum penduli composite bifili ex primis mechanicae principiis petita,”’

Nova acta acad. sci. Petrop. 1783: I, 184—202 (1787).

N. Fuss, ““Addtteiones analyticae ad dissertationem de motu pendula bifilr,” bid. 204—212.

1) For this part I have found helpful the essay of Nrxouwat, cited above, p. 212.

2) E238,“Sur la force des colonnes,” Hist. acad. sci. Berlin [18] (1757), 252—282 (1759). Presen-

tation date: 1 September 1757.
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For a column such that

 

a
(418) B= By (« + fe) ;

he carries out the integration for certain values of A and discusses the results. LH. g., if

A= 4, he finds that

VPla
419 = A(«l + Bx) sin
an) 4 ( pa) VByx(al + Bx)

Hence when both endsare pinnedthecritical load is given by
2 2

(420) P, = yeFPN"Bq -

If «= 0 or=a— f, then P, = 0; “hence we see that a column pointed either above

or below has no strength.’ As EULER remarks later, these results are appropriate to a

conical column. [If the diameters at top and bottom are d, and d,, so that « = d,/dy,

o + B =d./dy, where dy is a typical diameter, then EULER’s result (420) may be written in

the form
djidy

(421) Po =aa

EULER slips in deriving a result of this kind.] EvLER begins some comparisons of the

strengths of different conical columns, [but his results are inconclusive if not incorrect].

Considering (418) for any 1, EuLER showsthat the solution is of the form

 
V VPI (a + F*)ah Q

—. 2 2a] —_— ——(422) y=AVER+ @* sin 8VG,(21 — 1) Arc tan R +. const. ,

where Q and & are certain series which he gives explicitly. The buckling load can then becal-

culated in principle. The singular case A = 4, appropriate to a column having a para-

bolic profile, leads to

(423) P, = (3 + m 3 ") Pa :
fos(t +2)

Next Ever takes up the problem of bending of a column due to its own weight.

Deriving afresh [DANIEL BERNOULLI’s] formula (90), written in the form

 

a

(424) By" + Py+gofsudy=0,
0

E __ gox f_ ,svdz .ULER puts §€=1+po ye’, and obtains

dv P8a a

[but the result of his attempt to solve this equation approximately is faulty')].
 

1) EvuLerR supposes that P/W>> 1, where W = gol is the weight of the column. Setting
—4 .

m= W/P, he takes 1 + — rey (1 73 so as to effect the integration. A long approximate
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Returning to the problem of buckling of weightless columns supporting a terminal XLIV—

load, EULER concludes the paper by discussing the scaling laws for tests by models made

of the same material. Supposing that ©@ad* for cylindrical columns (see below, pp.

403—404), from (185), we have?)
4

(426) Po x d
[2°

52. The distinction of different kinds of buckling by DANIEL & JouNn III BERNOULLI

(1766). While nothing concerning elastic curves was published in the following decade,

valuable work on several aspects of elasticity was being done in Basel by DANIEL BurR-

NOULLI in collaboration with his nephew, Joun III Bernovxzt. This work is known,

unfortunately, only through the unpublished correspondence?) between the two after

JOHN III BERNOULLI arrived in Berlin in 1763 and through the papers he later published,

with the encouragement of his uncle, in his own name alone. From the correspondenceit

appears that most if not all of the results of any importance in these papers are due to

Daniet Bernovriut. Most of this work will be discussed in § 57, below.

The second of JoHN IIT BERNOULLI’s papers, Problems on the force and curvature of

elastic bands*), concerns only small deflection but gives the first solution of an important
 

calculation based on this dubious device leads to

B mn? — 8

[2 2 72

This is not correct. First, (424) itself, for reasons we shall learn below (pp. 359—365), is not the correct

differential equation of the problem, since it applies only when the top is free to movelaterally. For

(A) Pe = 7 Ww. 

this case, (A) is to be replaced, approximately, by

B
/?

as is suggested by Hunmn’s later researches (below, p. 364) and is borne out by a result of N. Grisu-

coFF, cited by TIMOSHENKOin § 23 of his Theory of elastic stability, New York and London, McGraw-

Hill, 1936. When the top is pinned, an approximate result given by TrmOSHENKO(loc.cit.) 18

 

(B) Pew —sW,

(¢) Py, = aw2 ZY >

. . . m?—8 1
while the numerical factor in HuLER’s formula (A) is e727 © i0°

1) O}. MusscHENnpRoEK’s experimental law (94) for rectangular prisms and the criticism of it in

footnote 3, p. 153.

2) Originals in the Basel University Library.

3) “Sur la cohérence des corps, second mémoire. Problémes sur la force et la courbure des lames élas-

tiques,’’ Hist. acad. sci. Berlin [22] (1766), 99—-107 (1768). The paper was read in 1766.

In his first letter to Jonn ITI Bernovuru, dated 7 December 1763, DANIEL BERNOULLI writes,

‘As for the force of beams, there one must speak less positively ... The theorem on the relation that

holds between the force of a vertical beam sustaining a weight and that of the same beam clamped

horizontally in a wall deserves much attention, and the theory will agree with the experiments if

propercare is taken.” In a letter of June 1766 he mentions the subject again.
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simple problem. For a uniform horizontal band of weight W, clamped at the end xz = 0

and loaded at the end «=I by a weight P, the differential equation is

(427) By"= Pil—«)+ yw£— ,

Hence

(428) By = 5 WS—*) 5 ppd — a+ 4(P +4) Be — HP + EME.

The deflection 6 at the end x = is given by

(429) 5 =(§P+5W)5.

and this may be used to eliminate @. For example, if W = 0, we have

¥_3/#\_4/2\

a formula which expresses the shape of the loaded beam without reference to the load

acting or to the elastic properties of the material. [These results generalize (159) and (160).]

The last part of the paper discusses buckling in com-

pression ; [EKULER’s work is not cited, and Joun III Brr-

NOULLI’s derivation is clumsy andill explained,] but his

figures (Figure 97) show that he distinguishes two kinds

of buckling. [At bottom, BERNOULLI’s argument is the 5 f I

same as that EvLER had used to derive (179) ;] his con-

tribution is to observe that when the top of the columnis

A
E 

 

 

 
free to move laterally, (179) applies with f =1. Thatis, F. D

B

aa
for this case. Since the amplitude is not involved in (431),   mamnund

Cc

elasticity this band will immediately reestablish itself in Figure 97. The two kinds of buck-
ling distinguished by Jon III Brr-

NOULLI (1766)

“,.. thus it will always happen that for any weight P

considerably too small to break the spring, in virtue ofits ®©

the vertical.’’ Further discussion, mentioning the ‘‘latitude

of equilibrium’, indicates that BERNOULLI knowsa spring

can assume a bent form without breaking, though most of his remarks rest onthe assumption

that a column breaks whenits critical load is reached. “If the length of the spring is 21,

but it is not fixed except by supportingit [7. e., if it is pinned at each end,] it can support

the same weight as the spring previously considered ... ,”’ since each half is a spring of
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length J subject to the conditions of the previous problem. Writing / for the entire length

yields (185),.

[Thus Joun IIT Bernovt.i explains, though not very clearly, how different buckling

loads are appropriate to different end conditions. His argument does not sufficiently

emphasize the fact that EULER’s formula (180), applies always; the different cases are

distinguished only by the relation of the length J of the column to the parameter f, which,

for all, is the length of the quarter period of the bent form. Indeed, as EULERis to remark

later (below, p. 362), if both ends of the band are clamped in the same vertical, we must

take 1 = 4f in (180), yielding
B

(432) P, = 4a" =e .

These arguments rest only upon the symmetries of the elastic curve ; they apply not

only to buckling but to all deflection problems. In this more general context they were made

long before by JAMES BERNOULLI(cf. his Re- aL. a

mark 3, p. 93, above); in connection with = oo

rupture, by GALILEO (above, pp. 40—41); and Ju

they were repeated, in more definite form, by

DANIEL BERNOULLI in his letter of criticism

of this paper by his nephew); his drawings

are shown in Figure 98. It is a pity Joun III

BERNOULLI did not see fit to publish] his

uncle’s clear argument to show that if a load 3

P produces a certain deflection when applied at (4?)

the free end of a clamped band, then a load 4P .
Figure 98. DaNniEL BERNOULLI’s sketch to show

produces the same deflection when applied at the the three results that can be read off from any one

middle of band pinned at cach end, while a load solutionfor the otastica (2700)
8P produces the same deflection tf applied at the middle of a band clamped at each end.

 

 

 

53. LAGRANGE’s two memoirs (1770, 1773). The problem of the elastica now became

again a@ major issue. LAGRANGEH’s paper On the force of bent springs?) takes up an inverse
 

1) Universitatsbibliothek Basel MS L Ia 676, 45.

2) “Sur la force des ressorts pliés,”” Mém. acad.sci. Berlin [25] (1769), 167—203 (1771) = CEuvres

3, 77—110. Read 20 September 1770.

In his letter of 8 November 1771 to LAGRANGE, D’ALEMBERT raises numerous objections to

points in this paper. LAGRANGE on 16 December admits a minor error pointed out by D’ALEMBERT

(but left uncorrected in the reprint in LaGRANGE’s Cwvres). D’ALEMBERT repeats in his letter of

26 February 1772 that since for the case of purely tangential load the exact solution, which is given in

the footnote on our next page, does not allow a finite length to the rod, doubt is cast upon La-

GRANGE’s linearized theory supposedly appropriate to just this case. LAGRANGE in his letter of 24 Febru-
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problem suggested by the design of the spiral spring of a watch, [which had been discussed

unsuccessfully by JAMES BERNOULLI (above, Note 1, p. 105)]: One end of a spring of

given length being pinned, find the force which is sufficient when applied at the other end

to bring that end to a specified point. Taking the origin at the end wherethe forceacts,

LAGRANGE derives the appropriate special case of (91); he introduces the slope angle 0

and thus expresses [EHULER’s solution (172)] in the equivalent form

6
___ dé

6) = vi@[
6) ° ‘ VP.,,(1 — cos £) — P, sin é

sin €d&

1 — cos €) — P, sin é

 

 

 

 

6

(438) 10) = VE[— ,

 

 

6
(0) = 7a[ cos dé |

: VP,,(1 — cos é) — P, sin é

where 6 is taken as 0 at the origin. If 6 =o at the end s=1 where x= X,y= Y,

then (433) gives three equations for the three unknowns 9, c

P,, P, in terms of 1=s(0), Y = y(0), and X = a(po). If

the load P,, P, is resolved into forces R and 7 along and

 

normal to the chord between the two ends (Figure 99), and *

if R= ,f=psing, th1 p COS g p sin q en ZS _ TN

e

(434) Ps — POs (7+@); X = 1 cos (@ —o) Figure 99. LAGRANGE’s dia-

P,=psin (¢+a«—o), Y=rsin(o —a«a). gram for the elastica (1770)

Abandoning the exact problem'), LacRANnGE takes «, 9, and q as small quantities of
 

ary is unable to find an effective defense; on 25 March D’ALEMBERTrepeats the objection; on 19 April

1772 LAGRANGEreplies that he will “‘speak about the theory of springs on another occasion,’? but when

on 25 September 1776 LacRranGE finally comes back to the matter, he contents himself with agreeing

that the straight line is includedas a possible exact solution when the load is tangential. On 14 Febru-

ary 1777 D’ALEMBERTreplies with polite formulae to break off the discussion, remarking only that he

still sees “‘some clouds over this theory”’.

1) Not mentioning EULmR’s result (182), LAGRANGE in § ITI obtains the exact integral of (433)

when Py = 0:

V2
$s = p, log tanz@+A,

x

B
y= leon sin 30+ B,

Vz
__ __ 1ct=s+2 P, cos50+C.
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the same order and by approximate evaluation of (433) obtains

 
q sin w

a w cos w — SIN w
3

oO w(cos wa — 1)

“eo  ocoso —sinw

]

 (435)

L

r (sin w — w)? + la@sin2a — 2wsin w + 3?
oe 2(w cos w — sinw)?

where w =l1V —P,/@, the load P, being assumed negative. When [J and r are given,

w is determined by (485), as a function ef «? ; this result put into (435),, determines g and

  
3

m; since px —P,= — Bw'/l*?, the problem is solved. Since R ~ p and T wx pq,

we have
Bw? Bw?(436) R--—?, T=?

If 7 = 0, so that the load acts along the chord, then g=0, and hence sin w = 0, but

w cos w —sinw ~ 0; therefore w= ma,m>1, and

(437) R= — mit, m==—1,2,3,...

These are the only possible loads acting along the chord that can equilibrate the band. In

particular, this result yields KULER’s buckling formula (185), since the smallest possible

chordal load is given by putting m=1. Putting w7=2—t, Lacranee effects the solution

of (485) when ¢ is small, so constructing an approximate theory of nearly straight columns

subject to nearly tangential end loading ; [later writers have found errors in the analysis !)].

He applies it to a discussion of the balance wheel, concluding that any leaf spring bent but vit

slightly exerts a force proportional to the arc through which its end is displaced and thus

will produce isochronousoscillation of the balance wheel, ‘which no one, so far as I know,

hag yot proved with all rigor.”’ [It is scarcely necessary to comment on sotrivial a conclusion

to pages of calculation?).]

Whenthere is 4 couple L, visualized by [JAMES BERNOULLI’s] device of a force acting xX—xI
 

Since, as EuLER had observedlong ago, this curve cannot pass through @ andbeoffinite length unless

it is a straight line, LacRANGE decides that the angle @ must be infinitely small. Another attempt in

§§ VITI—IX results only in formulae “too complicated to yield any enlightenment’’. A numerical

error here has been corrected by the editors of LAGRANGE’s CEuvres.

1) According to ToDHUNTER, §§ 153—154 of op. cit. ante, p. 11, there are two errors which

invalidate all the results, and the first of these was noticed by PLANA in a work, dated 1809, where a

presumably correct linearized theory is obtained.

2) PEARSON, § 103 ofop. cit. ante, p. 11, not noticing the remarks of TODHUNTER cited in the

foregoing footnote, describes it as “this elegant property”’.
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at the end of a rigid rod, the quantity 4.L?/should be added underthe radicals in (433).

If P =0, the bandis circular, [as EuLER had shown long ago]; assuming P/(4L?/@)

to be small, LAGRANGE linearizes (433). Putting R= W/L, T=@P,/L?, V=S&P,/L’,

he thus obtains

= R[S —T(® — sin B®) — V(1 — cos ®)] ,

(438) y = R[1 —cos ® —7T(2? —cos®+ 4008 26) —V(4@G — } sin 29)] ,

a= Rk {sind + T(4G —sin® + 4sin 20) — V(t —} cos29)] .

For this approximate theory, some further approximate calculations lead to a solution

of the inverse problem set at the beginning of the paper.

[Thus LAGRANGE’s paper, dense with calculations though it is, succeeds only in

deriving two new linearized theories ; one, incorrect in detail, for terminal load that is

nearly tangential, the other for loading that differs little from a couple. Although more

elaborate in tone, LAGRANGE’s paper accomplishes less than the simple little note, which he

does not cite, that was published three years before by his junior colleague, Joun III

BERNOULLI.|

LAGRANGE’s next paper, On the shane of columns'), attacks a more important prob-

lem, [but with even less success. Referring to the entasis of the columns madein classical

antiquity and copied in modern times, he proposes to determine that figure of revolution

which should be given to a column of given height and mass in order that tt support the greatest

nossible weight without bending. [Repeating EULER’s derivation] of (415) and its sinusoidal

solution (178), LAGRANGE observes that the end conditions for a bent form aresatisfied if

and only if P = — &, where £ is given by (437). Thus in order for a vertically loaded

column to assumea bent form with m—1 nodes,it is necessary that the load beat least as

great as m?n?Z/l?. [LAGRANGE does not discuss the matter further.]

Turning to the exact theory, LAGRANGE [in effect] puts x =csin@® in [EULER’s]

formula (172), and obtains

ds
(439) a=    

(2n — 1)!! c# cos? D\"

yep tz @nyi! ( 2a? y}          

where P = 2%/a?. Integration from 0 to mz yields?) [EULER’s] formula (175), with

1 = 2m}, where J is the whole length of the band, assumed to be bent into a form with

m —1 nodes. Hence 1> ; equivalently, for the form with m = 1 nodesit is neces-V5

 

1) “Sur la figure des colonnes,’”’ Misc. Taurin. 5, (1770/1773), 123—166 = Ciuvres 2, 125—170.

2) Pearson, § 110 of op.cit. ante, p. 11, notes that LAGRANGE makes a slip here, but he does

not note that the result was given correctly by EULER long before.
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sary, according to the exact theory, that

B
(440) P> mx? TE :

“Hence it follows that if P< a*@/l?, the column cannot be curved; if

wBlIP<P <4B/P ,

the column will be curved but will have only one loop; if 42? @/l?< P < 9n?@/I?, the

column will necessarily be curved but may form either one or two loops; eéc.”’

[While the existence of this sequence of critical loads and this multiplicity of possible

bent forms are obvious from theperiodicity of the bent forms which had been proved long

ago by EuLEr (above, p. 206), EULER did not infer them, and LaGranGex deserves credit

for being the first to remark this bifurcation of equilibrium. We notice that he carefully

avoids any conjecture as to which oneof the possible bent forms will actually be assumed.|]

LAGRANGE claims that since the critical load as calculated from the linearized theory 11

has been proved to be the exact critical load for the uniform band, this agreement will

hold for non-uniform bands also. We are to integrate (415). LAGRANGE secks solutions of 12—18

the form y = sin ®, [as indeed is most natural in view of EULER’s solutions (419) and

(422)] ; (415) will be satisfied if

(441) BE" — EO") + PE=0, 2H’—EG"=0.

Integrating the second of these equations, substituting the result into the first, and rear-

ranging, LAGRANGE showsthat a solution of (415) is given by
x

(442) y= Vhu sin[= ,

Lo

where A is & Constant of integration and wu is chosen so as to satisfy

(443) 4Pu*+ B(2uu" —u’* —4)=—0.

Since (442) contains two constants of integration, x) and h, we need not solve (443) in 14

general but may rest content with any particular solution. Taking x, = 0, we have a

form of length ? with m —1 nodes if ;

ax(444) - = mn.

0

Since (443) contains no arbitrary constants, (444) is an equation for determining P/(0)

as a function of J and m. We should thenselect m so as to give the smallest value to P/@ (0),

‘“‘and this value will be the desired limit’’.

(After this interesting start toward the SturmM-LIoUVILLE problem,] LAGRANGE 15—16

abandons the general theory and turns to “the simplest hypothesis’’, that the column has
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the form of a conic of revolution, d?=«-+ Bu+yax"*; taking @adt*, because “theory

and experiment agree sufficiently ..., as one can see in the works where this subjectis

treated” (see below, pp. 403—404), LAGRANGE puts |

(445) B= Bila + But yore.

A particular solution of (443) for this caseis

(446) u=g(a + pot fBu*)?, where g = :
VP/ZBy — wy — $P

i

Putting A=f(« + Pu + yax?)-dx, from (444) we obtain A/g = mz, so that the
0

  

critical load is given by
m7? ,

(447) Po = (ar + +P — x7] Bq ;

with m= giving the least critical load. [When y= 0 and m= 1, this reduces to

EKULER’s formula (423).] If 6? = 4ay, the profile is a straight line, and the columnis

conical. LAGRANGE shows that (447) with m= then takes the form (421). He cal-

culates the ratio of P, to the square of the volume of the column andfinds that it is a

maximum when d, = d,; thus he concludes that amongall conical columns, the cylin-

drical one is strongest.

More generally, he takes P,/V? as the measure of the “relative force‘ of a column.

Considering various cases, he concludes that among all columns such that (445) holds,

the cylinder is the strongest. He then gives a definite formulation to the problem heset at

the beginning, “‘a problem of a rather new kind, the solution of which requires somespecial

devices that may be useful to me on other occasions” : To find a curve z = z(x) such that

P/V? is a maximum when P,is given by the solution of (444) with m= 1, when is
1

any solution of (443) with @oacz, and V =a {fz2dx. There follow pages of manipula-
0

tions, from which LAGRANGE concludes that the strongest column is the cylindrical one.

[J.-A. SERRET, the editor of LAGRANGE’s works, notices that the analysis contains many

errors, which heis able to correct only up to a certain point. However, it does not seem to

have been remarked that LacRanGE’s formulation of the problem is not adequate. The

quantity P,i*/(£V?) is dimensionless and is independent of the form of the column, but

it is not clear that maximizing this quantity is equivalent to maximizing P, when V and 1

are fixed1). The problem LAGRANGE seems to think he solves?) may be put as follows:
 

1) Pearson, § 112 of op. cit. ante, p. 11, approves the use of P,/V? as a measure of the effi-

ciency of a column,sinceit ‘‘frees us from the indeterminateness which would otherwise arise from the

possibility of infinitely increasing the magnitude of P, by simply increasing the dimensions of the

column.”’

2) Pearson, § 113 of op. cit. ante, p. 11, oblivious of the mass of errors noted above, says that

this paper by LAGRANGE “mayfairly be said to have shaken the then current architectural fallacies,”
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Among all columns of given length and volume, to find that one whose critical load is

greatest. This problem has been solved subsequently); the solution is not of uniform

cross-section.

LAGRANGE’s contribution to the theory of buckling has been exaggerated.]
 

but what these fallacies were, he does not state. Since LAGRANGE on the basis of his faulty analysis

concluded that the cylindrical column is the strongest, possibly PEARSON took him asa torch carrier

for Victorian architectural practise, according to which, it seems, the ugliest forms turn out to be the

most useful. For the later views of PEaRSsoN, see the next footnote.

1) Apparently no one has everreally gone through LAGRANGE’s calculations. The problem was

reformulated by CLAUSEN, ‘‘Uber die Form architektonischer Sdulen,” Bull. cl. physico-math. acad.

St. Pétersbourg 9, 369—-380 (1851), as that of finding the form of given length and buckling load for

which the volumeis least. His analysis is somewhat simplified by PEarson, §§ 477—479 of A history

of the theory of elasticity and of the strength of materials from GALILEI to the present time, Vol. 2, Cam-

bridge, 1893, but elements of mystery remain. Both CLAUSEN and PEARSON seem to think LAGRANGE

merely went astray somewhere in the integration; both of them accept LAGRANGE’s measure ofeffi-

ciency. PEARSON cites a second memoir of CLAUSEN, which I have been unable to see, in Mélanges

math. astron. St. Pétersbourg 1 (1849/53), 279—294 (1853). CLAUSEN drawsa figure representing half

of the optimum profile; its form, essentially that of a phallos, he regards as “‘eine dem Auge nicht

ungefallige”’, but Parson disagrees. CLAUSEN asserts that among similarly situated similar cross-

sections, the circle is not the best, but he gives no analysis; PEARSON concludes that certain rect-

angular sections are better than circular ones (§ 480).

H. Ff. Wernpercer and J. KELLER have kindly shown mesimple and irreproachable methods

whereby the original problem of LAGRANGE can besolved directly, with no use made of his measure

of efficiency. Both for a circular section and for a rectangular section of fixed breadth, suitable entasis

increases strength, and the optimum profile is flat at the ends and similar in form to an arch of a

cycloid.

For the circular section, the radius z is given by

 (I) 7 =Viksn6é, >=
Tho critical load,

is 4 that for the uniform column of equal length and volume. As compared with the uniform column,

the form (1) is thinner in the region between the end and parts not farther from the ends than the

V3
distanee 1 3 —| ey 0,19551, thicker elsewhere; the greatest diameter is Vi that of the correspond-

ing uniform column.

For the rectangular section of fixed breadth B, the half depth $D is given by

 

1 V
(II) ne = § K’ sin? 0, — = 3[2—cos 6 + }cos* 0] ;

The critical load is 125 Ep

¢™ 108 Bis ’
. , 125

greater than that for the uniform rectangular column in the ratio 02 © 1,407. As compared with

the uniform column, the form (II) is thinner in parts not farther from the ends than the distance

41(1—Z V5)  0,1871; the greatest diameter is 5 that of the corresponding uniform rectangular

column.
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54. EULER’s determination of the height at which a heavy column buckles (1776—1778).

Before describing the more important works which followed it, we summarize KULER’s

paper entitled, On the wonderful properties of the elastic curve contained in the equation

y = fj x2dx/V 1 — x41), written by 1775 but not published until after his death; it is

devoted to accurate calculation of the rectangular elastica. EULER begins by obtaining

[JAMES BERNOULLI’s] series (50) and (51) for the rectangular elastica, but he considers

them too slowly convergent to be useful. Then he shows that

y (x) = 5 int Bin9haye
 
 

  

1 _(#\! nao (40 + 3) (4n —1)---3\c,

(448) mo x © (4n — 1) (4n — 5)---3/ a \t1ae (=e

|/1

—(2)' © nai (4n + 1)(4n —3)--1\o

but these cannot be used when x =c. Another expansion leads to

VO yal yeBpfORS BET 2EL 

 

(449) Cc (2n)!! 2n + 2

s(c) 20 nl (2% — ADLER

patil ear yy.
A recurrence formula shows that

 

1 1

y (c) =f dx _ff 4n —] wit ©dar
C : Vi— a4 nai dn — 3 Vi— x ’

1 1

Te ede i 4n uitdx

4 1 — gw n=1 4n — 2 ViI— 24 ,

(450) y "4
s(c) xwrda it 4n+] git~da

 

C os Vi— 2 n= 4n—1 Vi— x
0

1

xedax i 4n +2 git ede

JVi-w oa 4m Vina”
0

EvLeEr asserts that the four integrals indicated on the right are all equal and hence may

be divided out between any pair of the four formulae (450). [The inference is not strict

but the results are correct.] Among them are

5

 

The problem in its most general form has been solved definitively by KELLER, “‘T'he shape of

the strongest column,’’ Arch. Rational Mech. Anal. 5, 275—285 (1960). He shows that twisting cannot

increase strength; that the best cross-section is an equilateral triangle; that combination of this form

with entasis as above increases the strength by 61,2% over the uniformly circular column.
; . xadx .

1) E605, “De mirts proprietatibus curvae elasticae sub aequatione y = —==—— contentae,
‘ V1— x

Acta acad. sci. Petrop. 1782,, 34—61 (1786) = Opera omnia I 21, 91—-118. Presentation date:

4 September 1775.
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4y(c) © (4n—1)(4n—2)_ & 1
mo gy (an) (4n — 8) =it\1+ 2n(4n — | ,

2s(c) ~ (4nj(4n71) _ 7A
= (4n — 1) (4n + 2) =li|1+ (2m + 1)

these, too, he considers of little use for calculation.

(451) ;

 

  

ama—a|}

Going back to the alternating series (449), EULER decides to sum them by his method 15—20

of differences!). His results are s(c)/c = 2-0,417314 = 1,311031, y(c)/c = 2-0,190687

= 0,599061; [cf. James BERNOULLI’s estimates (52) and EULER’s own earlier result

(p. 208) ].

By multiplying together (451), and (451),, EULER’s old result (141) follows?). Then 20—25

he gives another proof based on the transformation

sy = J (yds + sdy) ,

- |=yr safe

where y and s are given by theseries (51).

(452)

EULER then proves a remarkable property of the rectangular elastica. First he recalls 26

the addition theorem for elliptic functions that he had discoveredearlier) : If

  

  

 

H(o) = (x + BE*)dé

Vi+ mé&2 + né4
(458)

_ @Vit+my+nyt+yVitme+nat
= 1 — nary?

then

(454) H(z) = H(x) + Aly) + Bayz .

The quadratures defining s(x) and y(x) are both of the form (453),, so the addition theorem 28—35
 

1) See §§ 8—12 et seqg. of Ch. I of Part IT of E212, Institutiones calculi differentialis, Petrop.,

1755 = Opera omnia I 10. While the modernliterature often asserts that EULER neglected questions

of convergence, both his explicit statements and his examples show that he regarded this transformation

as sometimes useful in hastening the convergence of a convergent series, in transforming a divergent

series into a convergent one, or in transforming “‘a very divergent series ...into a more convergent

one, which, though still not sufficiently convergent, in the same way may be converted into a more

convergent one’’ (§ 10), The case mentioned in the text aboveis a striking example of the first kind.

2) This is essentially the proof EULER had published in E122, cited in footnote 2, p. 174, but

here it is easier to follow.

3) See § 29 of E581, “‘Plenior explicatio circa comparationem quantitatum in formula integrali
Zdz

Vi + mez + nz
sci. Petrop. 1781,, 3—22 (1785) = Opera omnia I 21, 39—56. Presentation date: 14 August 1775.

 contentarum denotante Z functionem quancunque rationalem ipsius zz ,’’ Acta acad.
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(454) may be applied to each. Theresult is as follows : Given two points distant s, and s,

from the end of the elastica, with abscissae 2, and 2, then at the point where

 

  

(455) S == 8, + Se

we have

Xy Ly \2 Lo x, \2“ty /y (22 Me y/y — (

(456) xo = — (©) a (3)

1+ (Aa)
Also

Ly Ho X

(457) Y=%"mA+Y%+ “a

The proof is achieved by simple substitutions in (453) and (454). The special case when

x =c yields

ante)458 m2 \ oa
( ) ( C 1 4 (=)

S(C) = 8(%) + 8(%),

y(c) = y(%) + y(%)+ |

Since 2,/c and x,/c are both smaller than 1, the series (51) will converge much more rapidly

than (50), and both s(c) and y(c) may be calculated more easily. EULER selects (%,/c)? = 4,

(x_/c)? = 4 and writes down theresulting series. The rest of the paper gives the solution

to the following problem : Given three points whose distances from the end of the rec-

tangular elastica are s,, s,, and s;, to find the abscissa of a fourth point at s such that

S$ — 83 = 8 —8,. The value of x(s,) is exhibited as a rational function of x(s,), (5),

and x(s,). EuLER remarks that since both the quadratures (170) can be reduced to special

cases of (453), , corresponding results may be obtained for the general elastic curve.

EuLER’s Determination of the weights that columns may bear1) concerns the buckling
 

1) E508, ‘‘Determinatio onerum, quae columnae gestare valent,’ Acta acad. sci. Petrop. 2 (1778),

121—145 (1780). Presentation date: 16 December 1776 = Opera omnia IT 17%.

In §§ 1—2 occurs what is, so far as I know, the unique case in which EULER enters a claim for

priority : In regard to his discovery of the phenomenonof buckling, he writes, “It seemed to me . not

only entirely new but also most remarkable... Therefore in recently leafing over the very famous

French Encyclopaedia I was not a little astonished to find my result brought forward fluently in the

midst of the article on columns as if commonly known ...; nor is any other author cited as con-

firming this result either by experiment or by theory.” In fact, EULER is unjust. While we might expect

that he is replying to one of the vicious attacks D’ALEMBERT put into the Encyclopaedia (cf. above,

pp. 245, 262, 311), this is not the case. The article “Colonnes”’ (Ency. 8, 1753), signed by the Chevalier
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of a heavy vertical column. The equation to be solved is (424) with P=0. Writing

m = @/og, Ever shows that the only powerseries solution is

y_ & © ayy (8% — 2)!! (_2 sk+1

(459) A m8 +e 1) (3k + 1)!! \mi8

where the end x = 0 is the top. [In the notation of BussEx functions this solution may

be written as
2 1/a

y 3 m

(460) ag = J Fonlode,
mieq

where a is a dimensionless constant.] The length J at which the column will buckle is then

iven by | = (mv)"®, wherev is the smallest positive root of the e uation
g y p q

(3k —2)!1 ,
Bk i)t

“It is plain that this series converges emphatically, however great is v .’ EULER asserts

(461) 0=14+5(—1)F
k=1

that the sum of the series is always positive if » < 24; then, putting v = 6u, he attempts

to determine by successive approximation the root ofthe series in w. Obtaining for u the

sequence of values 4, 7, 11, 20, —23, he says that these “converge to no certain end” and

concludes that (461) “plainly has no real root.” Trying «= 10, he shows that the sum

of the series on the right in (461) is 0,1577663 + 0,0000012. He decides that these results

constitute “a most remarkable paradox, namely, that cylindrical columns, no matter to

what height they are erected, neverfall from their own weight,” but, seeing the unreason-

ableness ofsuch a conclusion, he says “‘all these matterscall for a more accurate examination,

which we shall begin in the following paper.”

The immediately following paper is EULER’s Hxamination of a remarkable paradox im

the theory of columns1). EULER decidesfirst that the “paradox” arose not from mechanics

 

DE Jaucovrt. cites some specific experimental results of MusscHENBROEKonthecollapse of columns;

while no authoris cited when the rule P,cc 1/2? is stated a little further on, the reader would naturally

connect it with MusscHENBROEK, who indeed obtained the more definite rule (94). This makes HULER’s

claim all the stranger, since in §§ 26—28 he cites some of MusscHENBROEK’s experimental data from

the very passage where (94) is inferred. |

1) E509, ‘““Haamen insignis paradoxi in theoria columnarum occurrentis,” Acta acad. sci. Petrop. 2

(1778), 146—162 (1780). Presentation date: 22 January 1778 = Opera omnia IT 1%.

EULER’s work on columns must have been called to DANIEL BERNOULLI’S attention at this time,

for on 18 March 1778 he wrote to Fuss, “I recall having examined this matter some fifteen years ago

[t. e., in 1763 (cf. above, p. 347, footnote 3)] and having subjected my results to experiments which

confirmed my theory well enough, except for those I made on the strength of vertical columns, where

I was but middlingly satisfied. Could you not engage Mr. KouLIBINE to test Mr. EULER’s theory by

similar experiments, without which it will be only hypothetically true. I did my experiments with

30—32

33—35

36—37

37—38

39
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Figure 100. EvuLEer’s drawing for the form of a heavy vertical column with free
top (1778). The vertical coordinate is the cube root of the height, measured down-
ward; thus the drawing is much distorted from the actual shape.

but from improper analysis, since ‘‘the method?) is... extremely

slippery and very often can lead to error,” as he indeed verifies in

a simple case. ““The reason for this imperfection is to be sought in

the imaginary roots, and since our equation doubtless involves very

many imaginary roots ..., there is no wonder that the operation

failed of success.” He decides to suspend judgement regarding the

roots but to investigate instead the shape which a column loaded

only by its own weight assumes. Plotting the curve (459) should

solve the problem, since if x increases to co but y remainspositive,

this would certainly prove that a column does not buckle underits

own weight. By numerical summation of the series, EULER obtains

the form shown in Figure 100, where the numbers are values of

x°/m, [so that the top part of the column is represented on a much

compressed scale]. EULER notices the many maxima and minima,

including the rapid increase of y/A to its first maximum y/A=1,60

at approximately 2°/m = 8. Carrying the calculation as far as

 
 

 

 

o
10 ____)
£0 —
30
#0
50)
60
70
&0
90
200)

£120

2£to0

£00    
x3/m = 400, he finds no indication that y ever vanishes. He then determines more accu-

rately the values of x°/m at which the extremes occur:
 

parallelepipeds of dry and hard wood having several different lengths, but all of exactly the same base,

of the same kind of wood and cut in the same direction, and on these I made very various tests.”

It is strange that BERNOULLI does not mention the work of MUSSCHENBROEK.

1) In § 3 Evter says that his method of “‘recurrent series” is the same as that he used ‘‘with

happy event...’ in the oscillatory motion of a chain, but I do not understand this reference. The

method used by EULER in connection with the hanging rope rests upon obtaining expressions for the

sum of the pth powers of all the roots and has been explained above, p. 318. For it to be effec-

tive, the roots must decrease rapidly. The method of “‘recurrent series’”” used in E509 takes account of

only one root; while EvLER does not explain it, his steps may be motivated by the following argument.

To solve co

|= 2Amam 9

m=1

consider the approximation n
(*) 1 — os Amxm °

m=s1

For n=1, wehave v=1/A,=2,, say. Forlarger values of n, replace win (*) by tn %n—1-.-Un—m41-

Thus
1
 Ln =
Ay + A» ln—1 + Ag Ln—1 Tm—2 + eee + An Un—1 Mn—2--- xy

This is EULER’s result. For it to be effective, A, should be large and the root x small.
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7,84 Max.

56,10 Min.

149,59 Max.

288,31 Min.

472,26 Max.

701,44 Min.

975,85 Max.

1295,49 Min.

[The series whose roots EULER is finding we should now write as

(462) ay _ gtJ (3 Vt) =0,
dx Co

lt
where ¢ = 2°/m. Thus, in effect, he calculates the first eight roots!) of J-1 (v) = 0.

The first three he obtains by trial, the remaining, by a method not presented in sufficient

detail to be understood]

Unable to draw any definite conclusion from the analysis, EULER attempts an ex-

planation from the principles of mechanics. To this end, he returns to the

problem of buckling of a weightless loaded column, but he now represents the

load P as due to the weight of a rigid vertical column of length p superimposed

upon the given column, made of the same material and having the samecross-

2 sectional area. There results “almost a single column PAB...subject to its

\ own weight” (Figure 101). “Since this columnis almost disjointed at A, there

A is no doubt at all that such a column if continuous should be regarded as

muchstiffer.’’ [J.e., the buckling load for a continuous columnforced to remain

straight in the part PA will be at least as great as that for the column AB

loaded at A by means of the superincumbent rigid column PA.] For the B Figure 101. Euxmn’s device for bounding the buckling load of a heavy vertical column with
pinned top (1778)
 

1) The values tz of ¢ are related to the roots vg of J_1(v) = 0 as follows: i = $v2. Froma
3

modern table of J_1(v) I infer the following valuesoftz:
3

7,8369

55,53

148,35

285,28

466,56

687,72

963,17

1277,71

17
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comparison, however, we should regard the composite column as having continuousslope;

since the upper part is vertical, the tangent to the lower part must also be vertical at A.

“For this purpose, let us conceive the upper end of the column A B to befixed within a

stationary panel, or so acted upon by horizontal forces that it cannot be bent out of a

vertical position.’’ [We should now describe EULER’s process as assuming that] a couple

— Q« acts at A so as to maintain the vertical tangent there. The differential equation is

now Py —Q« + By" =0; the solution is y = (1 — cos ), where c? = @/P. Ifthe

length of AB is 1, we must have < = 27, and hence (432) follows. [While this result,

the buckling load for a column whose ends are clamped in the same vertical, may be read

off more simply from EvLER’s exact theory of thirty-five years previous(cf. above, p. 211),

here we encounterits first recognition.|

Let p be the height of a column of weight W and of like material and cross-section as
2

the column AB. Then W=ogp, so that p= Pao the total length h of the com-

posite column is then given by

4? ZB46 — —~[4.27~ ,(463) h=l+p=I+ Fog

[As Evxzrhas said, a simple column subject to its own weight will always be weaker than

the compound column considered here, since additional stabilizing horizontal forces are

supplied at A. Hence the least value of h for which the compound column will buckle is

not less than the buckling height for the column subject to its own weight.] For a given
820? ZB

o”g
 value of %@/(og), the least possible value of h arises from taking [? =

3 j,——_—— 3
2

(464) ho = 3/2 Sw 6,5 a ,
og og

Thus the paradox is resolved, for a column ofheight h will surely not fail to break from its

5 4. @.

 

own weight. If W is the weight of a column of length / and P is the buckling load for a

weightless column of the same length pinned at each end, then by (464) and (185) we have

3

P
(465) he = 31 |/a, .

EULER conjectures that (464) corresponds to a root of (461); this would give

23/m = 277? ~ 266, [but this conjecture, scarcely compatible with his calculated data

and figure, is false.] Since for columns of the same material we have oad? and Ba d*,

where d is the thickness, (464) yields the ‘‘very remarkable theorem”’

2
3(466) hod? .
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There follows immediately EULER’s paper On the height of a column that collapses from

its own weight). KULER writes that “the very remarkable curve, having innumerable

maximum and minimum abscissae,’”’ which is given by (459) “led me so far astray as to

conclude that a column may be madeinfinitely long without danger of breaking. After-

ward, from different principles, I showed very clearly that the matter is otherwise...

Since, however, the equation is derived from the most certain principles of equilibrium,

no error can be demonstratedif all circumstances ... are properly taken into account...

It was assumed that the top of the column .. . is subject to the action of no force, so that

it can movefreely from its place ..., which circumstanceis very different from the con-

dition which... we consider. For ... plainly we are supposing that the top and bottom

are constantly held in the samevertical... But... if full freedom were given to the top,

there would be nothing at all absurd in that remarkable curve .. .”’

Indeed, if we imagine the beam as clamped at any of the maximum or minimum

abscissae (Figure 100), we have a possible bent form for an initially vertical column subject

to its own weight. [Though EuLER doesnot go into detail, this observation of his, together

with his earlier proof that the first maximum occurs at x*/m = 7,84, implies that a

column of weight W clamped at the bottom and free at the top will buckle when / reaches
the value

(467) he = \/7.84 yp = 2,80 ar

this is to be compared with (431), which gives a numerical factor 42 ~ 1,57 for a weight-

less columnsubject to vertical load W at its top. If we write @ = HI =xHAD*, where «

is a numerical factor depending on the cross-section, and o = @A, then (467) becomes?)

468) , [TSP
‘ |—

Moreover, if we pin the band at a point of inflection in Figure 100, we again get a pos-

sible bent form for a column resting on a floor. [EULER does not determine the point of
 

1) E510, “De altitudine columnarum sub proprio pondere corruentium,” Acta acad, sci. Petrop. 2

(1778), 163—193 (1780). Presentation date: 22 January 1778 = Opera omnia IT 17.

2) Puarson, § 910 ofop. cit. ante, p. 11, fails to notice this passage. He compares solutions by

HEIM (1838) and GREENHILL for this same problem with EuLEer’s formula (481), failing to observe

that it refers to a different problem. According to PEARSoN, the numerical factor obtained by Hem

is 7,837325. I have been unable to see Herm’s work; the numerical result quoted is not accurate beyond

the third decimal (cf. footnote 1, p.361). The paper of A. G. GREENHILL, “‘Determination of the

greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to

which a tree of given proportions can grow,”’ Proc. Cambridge phil. soc. 4 (1880—1883), 65—73 (1881), in

§ I gives a treatment inferior to EuLER’s; for the smallest root of J-1(v) =0 GREENHILL obtains the

value 1,88, which leads to the factor 7,95 in place of EuLEr’s correct factor 7,84.
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inflection exactly; from his numerical table we see that it occurs at approximately

x3/m = 29, so that

(469) he & 5,4 7 ,

this is to be compared with (185), which gives a numerical factor x for a weightless column

subject to vertical load W at its top.] But none of these cases can be applied to the present

problem, where we have to assign a hori- _ A

zontal force sufficient to restrain the top to

lie in the same vertical as the bottom. The

magnitude of this horizontal force is un-

known and will have to be determined as

part of the solution of the problem.

To clarify the question, EULER con-

siders a model in which the columnis repre-

sented as two rigid rods of weight 4W and

of length 41, hinged together by an elastic

joint exerting a moment proportional to  the angle between them (Figure 102).   Forces F,, #3, Fo are supplied as needed.  Equilibrium of forces and of moments |_ B |

ifot iW, PFB= afom iW. Since the Figure 102. Modern sketch of EvunEr’s framework
. . eas modelfor the buckling of a heavy vertical column with

torque of the spring is K-26, equilibrium pinned top (1778)

of moments about C yields + Wild + 4F,1 = 2K6. Hence

_ 8K — Wi
i 6.(470) Fo

This force vanishes, for 6 ~ 0, if and only if

8K
(471) l=.

That is, in order for the bent form to be possible without a horizontal force Fy being sup-

plied, the weight, length, and elasticity of the column mustsatisfy the definite relation

(471). [The presence of the horizontal force F, provides the resolution of the paradox,

since EULER’s earlier formulation took no account of the fact that the load, being the

weight of the column,lies to one side of the vertical through the bottom when thetop is

constrained to lie directly above the bottom.]
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EULER proceeds to solve the same problem for the uniform continuous band. Hori-

zontal forces F', and F, act at the top and bottom ; the load distributed along the column

is taken as a uniform weight og and a uniform force f, pressing the column outward.

Equilibrium of the band as a whole requires that

P,+ Fs =hfy

(472) FP, =HHob + ogc, Fp =4hh —oge,
h

where c is the deflection of the center of gravity from the vertical, ch = fyd«z. While
0

EULER derives the equation of local equilibrium in detail, [it follows at once from appro-

priate substitution and linearization in his old general equation (91), vz]

xz

(473) Fax — tifa tog { xdy+@5¥=0
dx? ,

where the U-HXiS points vertically downward. Eliminating Ff, by (472), yields

" 1 /0 0 2
(474) — yy + fadyt (c+ at)e—y tee =O,

This equation is to be solved in such a way that y » «2 for small x, where « is the slope

at the top, “and it is to be noted in advance that this angle is the whole effect that the

horizontal force f,...can produce.’ But the “principal condition’’ to be satisfied by the

integral is that y(hk) = 0. Thus should follow an equation connecting the constants

occurring in (474) with the angle «. The quantity c is to be eliminated throughtherelation
h

ch — f ydw. For anyf, will follow a definite angle «. The case of interest is when fy = 0.
0

[It would have been possible to set f, = 0 from the start; the horizontal force acting on

the column gsarved only to help EULER visualize the need for horizontal forces at the sup-

ports+). We are thus to solve
t

(475) my" + fady +cx=0,
0

where m = Z%/(og). A solution is given by y=ap-+ cq, where q is a solution of the

case when c= and pis a solution of the homogeneous equation. For the solution such

that y ~ «x for small x, take p(x) as the right-hand side of (459) and

co __ 3\z%

(476) a(2) =3(—yr() .
 

1) Pearson, §§ 83—84 of op.cit. ante, p. 11, fails to understand what EULER does here, and he

persists in describing the problem of a beam with both ends pinned in EULER’s incorrect formulation

of E508 rather than in the correct formulation EULER achieveshere. In any case, PEARSON’s description

of HuLER’s process makes no sense.
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h h
Now ch=afpdx-+cfqdx; therefore

0 0
h

aw | pdx
(477) _{_—_— .

h — § qdx
0

The condition ap(h) + cq(h) = 0 then implies that

h h

(478) hp(h) — p(h) Sada + q(h) J pdx = 0.

Since p and g do not depend upon any constant but m, (478) furnishes an equation re-

lating h and m. It is this equation that determines the greatest height h, the column may

have before it bends beneath its own weight.
h h

Put ¢=h3/m, P=p(h)/h, —Q=aqh), J pda =h?P*, | qdx = — hQ*; then

(478) assumes the form?) ° °

(479) P+ PQ* —QP*=0.

This is an equation for ¢ alone. If ¢ is its smallest root, then the desired height h, is given
3 3

3

by h,= Vim= oa =a , where # is a numerical constant. Therefore for

columnsof the same material we again obtain the remarkable scaling law (466). Expressing

BE in terms of the buckling load P, for a column made of the same material and form

but of length / and cross-sectional area A’, by (185) we have

3) —_________—

tA P,

“ee heteg
where W = 0gA'l is the weight of the column used for comparison (but P,is its buckling

load when weight is neglected).

From (476) and (459) follow series for P,Q, P*, and Q*. To solve (479) Evxzr has no

alternative but to try substitution of values of ¢ in the series. From the result (464) of the

preceding paper, he is sure that ¢ < 266 [ 2727], and he begins by trying ¢ = 200.

After a staggering numerical calculation he finds that this first guess is indeed a good one,

the true root being slightly less than 200, and ‘‘it would be superfluous to seek more accu-

rately for its value.” Thus (464) is to be corrected by

3 —____ 3 —_—_

200B B / 200@ B

1) This equation can be expressed in terms of BrssEn functions but becomesless intelligible.
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Suppose a column of weight W is just long enough to bend under its own weight in these

conditions ; then the same column, similarly supported but regarded as weightless, will

buckle subject to terminal load P as soon as P reaches the value

(482) P= Was,

this being the special case of (480) obtained by supposing A = A’, hc=1. This settles

the problem EULER is attacking : Long before a column will collapse under its own weight,

it will collapse from terminal load. “Since only such columns as may bear a load much

greater [than their own weight] are used, it is plain that the error [resulting from neglect

of the weight] is of no importance at all and may be safely neglected in practice...”

[While the inference is not strict, the result is true.

These three extraordinary papers, which form EULER’s last major work in our subject

and which were written when he was approaching or past his seventieth year, make a

powerful impression. More revealing of his methods than are any pages from his un-

published notebooks, they frankly lay before the reader the course of EULER’s thought and

question. His serene confidence in the principles of mechanics refused to let stand the para-

doxical conclusion from the first attempt. After a period of doubt whether the analysis

itself is correct, KULER returns to the mechanical problem and by a simple and just model

derives (464) as an upper bound. The idea used here leads him to see, at last, the easy

resolution of the paradox : His first treatment had neglected the torque which the supports

must supply in order to equilibrate the torque due to the weight of the bent beam. The

corrected analysis leads to the formidable transcendental equation (479), but Eunmr, as

indefatigable a calculator at the end of his life as at the beginning, by a combination of

insight, brute foree, and good luck arrives at the excellent bound (481).

The least of the many impressionsleft by these papers is that, judged on any grounds,

Kurzr is the topless giant of mechanics in his century. The greatest of his intense love for

the subject. Perhaps as valuable as any of the other definite results is the “wonderful

curve+)’’ determinedin the first paper, by which the shape and the maximum height (467)

of a heavy straight rod clampedvertically at the bottom andfree at the top are determined.

While HULER was writing these masterpieces?), D’ALEMBERT attempted to start

 

1) In regard to it PEARSON, § 79 of op. cit. ante, p. 11, says “‘the process is extremely complex

and leads to no definite result.”

2) Printed immediately following them is a work of N. Fuss, “Varia problemaia circa statum

aequilabria trabium compactilium oneratarum, earumque vires et pressionem contra anterides,’’ Acta acad.

Petrop. 1778 I: 194-215 (1780). The major part gives simple calculations of the forces acting at the

joints of statically determinate trusses. While essentially equivalent problems had been solved suc-

cessfully by STEVIN, VARIGNON, and others, they were not put in the explicit context of frameworks,

39

40
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another of his miserable polemics.] His Reflections on the theory of springs) [presents a

pitiful accumulation of errors and misunderstandings which need no detailed comment’).

 

and the possible occurrence of compressive forces in the members was not emphasized. Fuss con-

siders a truss of arbitrary polygonal form without supernumerary members, but the applied loads

are always assumed vertical. While this paper seems extraordinarily simple in regard to the mathe-

matics of 1780, it should be viewed against the appalling vacuity of the structural engineering theory

of that time. Cf. § VI of 8S. B. Hamitton, “Building and civil engineering construction,” A History of

Technology 4, 442—488 (1958). Thus it is not surprizing that TaHomas Youne awardsto this little

budget of freshman exercises, which,in his typical jargon, he classifies under “‘carpentry’’, one of his

rare marks of “‘superior merit and originality” (see below, pp. 413—414).

In § 2 Fuss mentions EULER’s critical load but uses it only to determine the minimum thickness

of the members of a given truss when the tensions have been determined.

In § 17 Fuss passes to the limit as the number of members becomesinfinite. Thus he obtains the

equations of a perfectly flexible line subject to loads parallel to a fixed direction.

1) ‘‘Reflextons sur la théorie des ressorts,’> Opusc math. 7, No. 52, § I (pp. 1—38) (1780). There are

additional remarks on pp. 384, 388—390.

§§ XVII—XXX of LamBERtr’s paper of 1777, cited above, p. 325, concern the terminally

loaded elastica but fail by far to reach the level of EULER’s treatment of 1742.

2) In 9 q 2—8 heraises anddispels a doubt that the bent elastica is a lever; his “‘proof”’ is no more

than a complicated restatement of this unprovable postulate of the equilibrium of a deformable line.

His incomprehensible qq 12—16 seem to conclude that loads must be distributed unless they happen

to be isolated.

The articles written by D’ALEMBERT for the French Encyclopaedia reveal a limited and defective

knowledge of elasticity, both theoretical and experimental. The article “Elasticité’’ (Ency. 5 (1755))

cites ’s GRAVESANDEas the author of the law of proportionality between mean stress and strain (cf.

above, pp. 116—117) and gives an incomplete form of MERSENNE’slaw (8). Cf. also footnote 3, p. 245,

footnote 1, p. 262, and footnote 2, p. 311. The article “Elastique”’ (ibid.) compliments JAMES BER-

NOULLI but gives none of his results. Nothing whateveris said concerning the nature and properties of

the elastic curves. Instead, a few manipulations are reproduced from the inferior treatment of JOHN

BERNOULLI (above, p. 89). The article “Résistance” (Ency. 14 (1765)) gives little beyond GALILEO’s

theory. The work of MARIorrE and VaRiaNon is mentioned vaguely. D’ALEMBERT explicitly supposes

that the neutral line is the fibre on the concave side and concludes that the cross-section of given area

having the greatest resistance to bendingis that having the greatest moment of inertia about its lower

edge. (While EuLER always took the neutral line on the concave side, he never discussed any conse-

quences of this assumption or made anyuseof it. D’ALEMBERT’s conclusion,in effect, that a Z7'-beam is

stiffer than an I-beam of equal cross-sectional area, is so manifestly in contradiction to experience that

we might be justified in expecting it to have aroused his celebrated physical intuition.)

D’ALEMBERT offers a paradox to the history of science. It is generally conceded that he had a

good knowledge of experimental phenomena. In formal pure mathematics he had unusual talent. But

in attempting to connect physical experience with mathematics, he heaped folly on folly. His critical

gift was high but almost entirely sterile, and he never applied it to his own work, where misconceptions

and misunderstandingsjostle slips in easy algebra. Though an accomplishedlittérateur and an acknowl-

edged philosopherof his day, in his mathematical writings he swaggered from one obscurity to another.

It is difficult to account for the high reputation gained by D’ALEMBERT despite the contempt he
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As usual, D’ALEMBERT finds the major problem to be “impossible’’, this time, the problem

of the elastica subject to a force that is not tangential. [How hefalls into this ridiculous

blunder is obscure. Spinning out the matter,| he concludes thatfor a flexible line the distrib-

uted load must be normal and hence proportional to the curvature. JAMES BERNOULLI,

EULER, andall others who have treated this problem with the exception of LAGRANGE are

wrong ; LAGRANGE’s construction D’ALEMBERT wishes to replace by a simpler argument’).

He presents a theory of his own which seemsto be the special case of the theory offlexible,

not elastic lines when the load is normal ; his work seemsto be faulty at that. He finds that

his solution will not fit the [overdetermined] conditions of the problem.Criticizing EuLER’s

theory of buckling, D’ALEMBERTlets the terminal load act in any direction ; the solution

is no longer uniquely determined. Also, oblique loads less than EvLEr’s critical load can

produce a bent form. [All this is of course obvious.] D’ALEMBERT then obtains some approx-

imate solutions for elastic curves. After more objections, he concludes ‘‘Most ofthe questions

I have discussed... are rather doubts proposed to the mathematicians than positive

assertions. I should consider myself recompensed for my work and myreflections on this

subject if they stimulate the geometers to search for a theory . . . subject to no difficulty.”

[This is his ““Olympian tone’’, to which BERNOULLI and EULER so oftenreferin their letters.

D’AtemeeEnrt wishes to provoke EvLzrinto citing him, and this time he succeeds.]

KULER replies with a note On the shape of the elastic curve, against certain objections of

the tllustrious D’ALEMBERT*), which contains a simple andstraightforward treatment of the

equilibrium of an elastic band when the load P acts parallel to the wall into which the band

is clamped. [The problem is the sameas that solved long ago in E65 (above, pp. 203—206),

but the choice of variables is different.] Let x= 0 be the clamped end, x= X the

end where the load is applied, and take the y-axis vertically downward. If 6 is the slope
 

earned from almost all the few who in his own day were competent to judge mathematical researches

in the subjects which he studied, a reputation which lives on today. Here and there in his writings

are sparkling jowels. These, however, aro unknown to his enthusiasts, who praise him in general

terms, attributing to him general ideas misrepresented as being clearer and more nearly correct than

any independent reader would belikely to infer at first hand. It is not at all to be laid to the difficulty

of reading the older authors: CLATRAUT, the BERNOULLIS, MACLAURIN, HUYGENSare indeed difficult
to read, but after the labor there is real fruit, while I can think of no more distaseful part of the

historian’s duty than that of giving a fair trial to D’ALEMBERT.

1) This is politeness on the part of D’ALEMBERT. As we have seen in § 53, LAGRANGE’s treatment

is merely derivative from those of JAMES BERNOULLI and EuULER.

2) E537, “De figura curvae elasticae contra obiectiones quasdam illustris D’°ALEMBERT,”’ Acta acad.

sci. Petrop. 1779,, 188—192 (1783) = Opera omnia II 11, 276—279. Presentation date: 10 June 1782.

Meanwhile LEXELL, §§ 13—17 of op.cit. ante, p. 322, had corrected D’ALEMBERT’S major error

and some minor ones, but did not attempt to follow “all the labyrinths of the arguments by which from

his first fallacy he draws further precarious conclusions .. .”’

9—11

17—18

22, 32, 19,
27—28

37—41

42—51

52—63

64—70

71—77, 83
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angle, then (171) assumes the form

dé
(483) Ppa tA Te

since dz/ds = cos 6, we have

Bl(do\? _. ; \> ——_—___
(484) 3 S-(e) = sine — sind, xX —x“= —p Vsing —siné ,

where 9 = 9 when o = 0, t.e,at «=X. [Thus 9 = « —3a, where is the angle

between the load and the tangent to the band at the end 2 = X.] EULER says that

pD’ALEMBERT seems to have forgotten to take account of the condition 6 = 0 when

 

“s sing . Hence

x(0) = =pine — Vsin 9 — sin 6) ,

6

B | dy485 s(0) =(489) =o) Vases

y (6) =] | ZB f sin gd

2P Vsino—sing —

[This system is essentially a simplification of LAGRANGE’s form (433).] Then

a= 0. By (484), this gives X =

  

  

sin @

voltfrome -VB‘) 2P Woe 2P eS

sin 0

0) =| | B J sin ody D f 2dz

2P Vsino—sing 2P » Vsin o — z V1 —2?

Expanding (1 — z*)~2 in series and integrating term by term, EULER obtains

  

 

(486)

  

 

where F=1+4+2 2” sin?” 9 ,

(487) l= XF, nar (4n + 11!

Py oe Qn+U'lQn—D!! og,|seq F— tateof +2 (in + 3)it 2” sin?” 0

 

\ P
gql=Vsinef, 0 (2n — 1)!!}?

 

These formulae express the length and the deflection in terms of the angle o through which

the end is turned by application of the load. When g is small, these formulae yield (430).

[While this note of EULER does not present anything new,it reformulates the problem

of the elastica in terms of the equations (485) and (486), used often in later researches.|
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IVG. The statics and dynamics of skew curves

55. LAGRANGE’S variational equations of motion for flexible lines (1761). [Although the

formulation of the differential equations for the three-dimensional motion of discrete

models and perfectly flexible lines was made easy by EULER’s ‘‘first principles” (above,

§ 35), | the first occurrence of such equationsis in a work ofLAGRANGE, published in 1762 and

concerned with the principle of least action'). For a discrete system of mass-points La-

GRANGE lays down the variational principle

k

where wu, is the speed and s, the space traversed by the k*" mass. [The conditions under

which this holds are not stated clearly.] Setting x,, y,, 2, for the co-ordinates of the k™
body, LAGRANGEregards (488) as equivalent to

(489) | 2 M,. E (ue| 6%, + d(u,3) 6y, + d(us5) 62, — udu di=0.

In all applications he sets di = ds,/du,; thus (489) becomes

(490) jx uM, [*,,- dx, — u,du,] = 0 ,
k

whore #, stands for the position vector (2,, ¥,,2,) and where u, = |x,|. This is the form

of the equations of motion that LAGRANGE actually uses. ‘“To find the motion of a thread

fixed at one of its ends and loaded by an arbitrary number of heavy bodies...,’’ he

sets up the equations of constraint

(491) (Ly, — Vy) (O%;, — OXy_1) + (Yu — Ya) (OY — OYea) + (Ze — 24-1) (82, — 62,1) = 0.

Thus

]
(492) dx,—0%,4= —2a[Yi — Yu-s) (OYn — OYx1) + (2% — Zn-a) (02, — O%y-1)] -

vy — Uy

Summing this formula from k— 1, 2,...,n, and taking é2) = dy) = 625 = 0, La-

GRANGE expresses all the dx, in terms of the dy; and 62; :

bx, = © (Y,;,8y; + Zaz 82,) ,
j=l

 (493) Yj44 7 Y; __ Y; _ Ys if l < j < k —]

Viol eteMGa
=

° Yun — Yr if j —f

a
 

1) ‘Application de la méthode exposée précédente a la solution de différens problémes de dyna-

mique,” Misc. Taur. 2, (1760/1761), 196—298 [1762] = CBuvres 1, 365—468.

XAXIV
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there being a similar expression for Z,;. Take the x-axis as vertical. Then 2 M,u,du,

=g 2+ M,6x,, and (490) yields

0= jou, [Y 1. OYx + 24,02 5 + (2, —g) Ox,] ,

(494) 7 ‘
= j>m, [Yn OYn + 2,02, + (2, — 9) &(Fg Os + 24; 62;)] -

= j=

Since the variations dy, and 6z, are independent, from (494) follows

MYx +2M; (25 —9) Y¥;,=0,

(495) i="
My, 2% +2Ms (1; —9)Z;,=0.

j=

[Thus in LAGRANGE’s result the tensions and the constraints are eliminated, and the for-

malism is unsymmetrical.|

XXV Results for the continuous case are obtained by a limit process. Setting 7'=ja(g—zx)ds,

we obtain
. Gy we dy $ 0s _

(496) ods| j +gh@—a|-atr —Jog — #)dx] = 0 ;

0
where dy/dz = wv /— , together with a like equation for z. The constraintis

dSda + dydy + da&dz=0.

For small motions in a string of uniform thickness we have x = 0,

8

fo(g —x)ds=ogs, T=ogl,
0

and (496) becomes

0 dy dy _

XXVI [As usual, to treat the case of an elastic cord variationally an entirely new approach

is required. The constraint (491) must be replaced by

(498) a, 0Q;, = (%y4— X41) (6%,—98%y_1) + (Yu— Yaa) (OYr— OYna)+ (Zp— Ze-1) (0%,— 9% p41)»

and if “the forces of elastic extension or contraction” are f’,, then

(499) 2MUyOt, = g % (Mba, — F,6a,) .

Combination of (490) and (499) leads to the three-dimensional generalization of [EULER’s]

XXVII system (209), with x, replaced by x, —g. The limit form for the continuous case is
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02x _ @ Ox ood — d oy ole _ @ Oz

(500) 0(Se — ‘ = a? 3) 8aOs (72aa(t 2) 2
[Thus LAGRANGEis the first to publish the correct and general equations of finite motion

of a flexible line in this form. Cf. EULER’s result (222), which we showedto be equivalent to

 

(227).] For small motion, neglect g and take x ~ 8s; then 7 = const., and (500), , become

1 a'y = dy 1 0% = 2 tf

(501) SOP ee? @oe’? =a"
]

 

LAGRANGE remarks that the limit process is not necessary, since the same variational XXVIII

method may be applied directly to the continuous string. For the loaded inextensible XXIX

string we have

0= dfdmfuds ,

(502) = {dm f (udds + duds) ,

= fdm f (udds + wdudé) .
Now

1 1

fusas =Ji [dadéx + dyddy + dzdéz],

0

dt

= [ioe + Shon Seo]f[a(Soe a(Sovao
(504) fdmuédu = —JSdmF- 6x .

(503) fleedda +. 24.oy déy + G82
0

Hence when 6x = 0 at the ends, (502) becomes

(505) 0 — fdm f (dx + Fdt).dx .

Various boundary conditions are considered: One or both ends fixed, one end attached to Xxx—

a ring sliding along a line; and both ends fixed to rings sliding along arbitrary curves. ,

Then follows the modification for the case when a mass is added at one end. XXXII

In the extensible case, (504) is to be replaced by XXXIII

1 1 J
fdmudu = — [[dmF. 6x + J Téds] ,
0 0 0

1 1

_1sbx
 

— fdmF. 5x + {a(r 32).. bax
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[With the slipperiness all too common among adherents of variational principles,] La-

GRANGE now abandons (502) and replaces it by (505), [irrespective of whether dx = 0 at

the ends or not]. Thus follows

(507) O= jama + Fdt) — a(r =) Ox — joe és dt .
0Os

 

Writing dm = ods, we obtain the differential equations

(508) o(% - F) = a(P iE)

with the general end condition

l
=(Q.

0

Ox

 

oxIf at x—0 and «=1 we have 6x = 0, then norestriction on 5

then n.- saan = 0 at the ends,ec.

follows; if dxan,

56. EULER’s theory of the skew elastica. [While LAGRANGE’s analysis concerned only

flexible mechanical systems, for which the three-dimensional equations of motion were

virtually obvious once those for plane motion were known,a decade later EULER attacked

a more difficult problem.] His paper On the whirling motion of musical strings, wherein also

the whole theory of equilibrium and motion of flexible and also elastic bodies is briefly ex-

plained+), which follows directly on E481 (described below, pp. 395—396), establishes the

general equations for the bending of an initially straight band into a skew curve. [The

exposition, apparently unrevisedfrom the methodofdiscovery, reveals the course ofthought

which enabled EuLzr to recognize his first and plausible proposal as false and to substitute

a, correct onefor it.] The idea is to write down a set of equations that reduce to (91) in each

co-ordinate plane. EULER makes the [unfortunate] choice of using the apparently simpler

method of moments in place of the “‘first principles’. From the previously derived result

(576), below, we see that in space the general expression for the moments about a point A

exerted by the load force F per unit length acting along the thread from B to A is

B s
(510) M = —fR'ds x J Fds ,

A A
 

1) E471, “De motu turbinatorio chordarum musicarum ubi simul universa theoria tam aequilibrit

quam motus corporum flexibilium simulque etiam elasticorum breviter explicatur,”’ Novi comm.acad.

sci. Petrop. 19 (1774), 340—370 (1775) = Opera omnia II 11, 158—179. Presentation date: 10 No-

vember 1774. BURKHARDT, footnote 9 of op. cit. ante, p. 11, attributes to this paper the distinction

between the numberof particles and the number of degrees of freedom, but this seemsto bea slip.
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where R’ =dR/ds, R(s) being the radius vector to a typical point on the curve. The

tension 7’, as suggested by (578), is

(511) +T=R'.jFds ,

where the sign is determined by a convention ; EULER usually takes it as —. In all prob- 8—9

lems concerning motion, we have only to replace F by F*, where

oR
* = — ——_(512) F* =F—o aR

For perfectly flexible bodies, the equation of equilibrium is 4

(513) M=0.

For an elastic band, EULER first suggests that the bending moments U,, M,, M, 6

be taken as proportional to the radii of curvature of the projection of the band upon the

respective co-ordinate planes:

D(dyd®z — dzd?y)
(dy? + dz?)3l2 ’
 etc.,(514) M,=

with three possibly different elasticities D, H, F.Then he remarks that it is strange that 11

three equations are required to express equilibrium of moments in space, while one suf-

fices for the plane. “But if we think more closely about the matter, we shall easily find

that the three equations depend upon each other in such a way that any oneis implied by

the other two.” Indeed,if (513) is to hold for all portions of the curve, we must have

(515) M'=0,

where

(516) M' — —R'xjfFds.

From (516) follows

(517) M’.R’ = ,

so that if any two components of (515) hold, so does the third. But the right-hand sides of 12

(514) do not satisfy (517) ; “therefore we are driven to reject them and to inquire more

closely into the true principles...”

HULER now decides, as he explains [rather obscurely] at the end of the paper (§ 35),

to regard the bending momentas of amount @%/r, acting in the osculating plane. “For since

in order to produce the curvature occurring in our thread there is required a certain mo-

ment of forces acting in the osculating planeitself, .. . this very moment of forces can be

resolved according to the [co-ordinate] planes .. .”’ To resolve this moment, EULER needs
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not only 7 but also the cosines b,, b,, b, of the angles made by the osculating plane with

the co-ordinate planes [2. e. the components of the binormal]. The ‘‘not a little tedious cal-

culation”’ of these quantities he puts into an appendix (§§ 29—34); the results are‘)

1
(518) b=r(R x R’), "=TR'X RY]

T'o replace (514) EuLER then proposes the equations

(519) M=—b=@Z(R' x R).

Since M’ = &@(R” x R’), the hypothesis (513) is compatible with (517).

[In modern terms, we should say that EULER here givesthefirst example of the testing

of a proposed constitutive equation for the right kind of invariance. While in fact (514)is

not vectorially invariant, this is not what EULER observes; rather, the requirement (517)

is a mechanical principle. The proposal (514) fails the test and thus is rejected ; the pro-

posal (518), based on a well poised geometrical concept, meets it (and in fact is vectorially

invariant as well).] “This criterion ... furnishes us the firmest ground that our formulae

are now consonant with the truth, even though perhaps it would have been difficult to

discern the basis of these formulae a priori.”” [While the inference is not just, anyone who

has faced and solved such a problem appreciates the temptation.

After this extraordinary display of geometrical and mechanical power,] EULER

descends to the vibrating string?). Considering small motion, he puts 7 = — f F,ds,
3 2

F* — F,, F* = — oe, Fe = — ot, and from the differential form of (513) obtains

 

1) This seems to be the first occurrence of the osculating plane and the binormal. They are im-

plied, of course, by any determination of the acceleration of a particle moving upon a skew curve. For

example, in §§ 223—277 of E289, Theoria motus corporum solidorum seu rigidorum ..., Rostock and

Greifswald, Rése, 1765 = Opera omnia IT 3—4, EULER determinesthe direction of the normal force on

such a particle; this is the direction of the principal normal, but EULER does not mention the osculating

plane. For his later and fuller development of the geometry of skew curves, see E 602, ‘““Methodus facilis

omnia symptomata linearum curvarum non in eodem plano sitarum investigandi,” Acta acad. sci. Petrop.

1782,, 19—57 (1786) = Opera omnia I 28, 348—381; cf. Professor SPEIsER’s description on pp.

XLITI—XLIV. Notice that the presentation date of E602 is 28 May 1775; thus there is reason to

suppose that EuLEr’s geometrical researches on skew curves were occasioned by the mechanical

problem described in the text above.

2) On p. 173 of Notebook EH 6 (1750—1757) Euumr had derived and had attempted to solve the

differential equation of small motion of a string when longitudinal as well as transverse vibration is

allowed.
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~ Ray + ode Saano
7

(520) —odz{ ds24roJ. ody f§ ds $2 =0,

— ods f ds2aa“47dz2=0.

From these equations it follows at once that each transverse displacement y, 2 satisfies

an equation of the type (251), ‘and hence it is plain that the determinations of the two

variables y and z are altogether independent ..., which circumstance is without doubt

of the greatest importance, since it allows all whirling motions to be determined just as

easily as those that take place in one plane.” If both y and z experience simple harmonic

motions of the same frequency, the points of the string move in ellipses normal to the

w-axis, but if the frequenciesare different, the string gives out two sounds simultaneously,

and the path is a curve of higher order. More generally, BuRNOULLI’s principle of composi-

tion of sounds continues to hold, with a double infinity of arbitrary constants, so that

‘an even greater multiplicity of motions may take place.’”’ However, EULERstill considers

the class of motions so obtained as special, and he shows how the solution (257) still holds

and may be applied to extend to whirling motionsall the known properties of the plane case.

KULER’s paper, On the pressure of taut ropes stretched upon bodies and upon their motion

when hindered by friction ...1), does not concern skew curves, with the possible exception

of helices, but it rests upon results derived in the paper just described. Its subject is the

force exerted by a rope wound about a cylinderand theeffect of friction upon the motion

of such 2 rope. EULER writes that this problem has been investigated before in special

cases, but he is now in a position to give a fully general theory”). A rope is hung over a
 

1) E482, “De pressione funium tensorum in corpora subjecta eorumque motu a frictione impedito

ubt praesertim methodus traditur motum corporum tam perfecte flexibilaum quam utcunque elasticorum non

in eodem plano sitorum determinandi, dissertatio prior e¢ dissertatio altera,” Novi comm.acad.sci:

Petrop. 20 (1775), 304—326, 327—342 (1776) = Opera omnia IT 11, 194—210, 211—222. Presentation

date: 15 May 1775.

The latter part of the title refers only to an introductory paragraph repeating (510) and (513).

9) The problem of purely normal load, friction being neglected, has been traced above, foot-

note 8, pp. 30—31. In the work of SAUVEUR,cited there, friction is considered but no specific law is

proposed, although SAvvzUR somehow manages to conclude that the tension increases proportionally

to the amount of rope in contact with the cylinder.

I have been unable to see the work of Szanrer, Programma de pressionibus, quas fila corporibus

certis circum ducta et utriusque viribus aequalibus tracta in ea corpora exercent, et lineis in eorum corpo-

rum superficiebus describendis, quibus imposita eo modo fila quiescunt, 4to, Gottingen, 1735.

The idea that frictional force is proportional to normal force, widely applied in the eighteenth

century, derives from a famous paper of AMONTONS,“De la resistance causée dans les machines, tant par

18

22

au

24-38
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[convex] cylinder and held taut by masses M, and M, hanging vertically from its two ends.

Consideringfirst the perfectly flexible case and assuming that the rope exerts only a normal

pressure F,, upon the cylinder, [by an unnecessarily elaborate process] using formulae

from the previous paper EvLER arrives at results [which can be read off from (40) and

(42),.] viz, T = Myg = Myg, hence M, = M,, and F, = Myg/r.

For a [flexurally] elastic rope, the sameplan of calculation, using (519), leads to

B d2 | By dr BC

(621) P= —Tpdar tVigtda

[as corrected]. When the cylinder is circular, we again find that C = M,g.

Whenfriction is assumed to exert a tangential force AF’, per unit length on a per-

fectly flexible rope, the same process leads to the result

(522) Ff, = Ww e—A@ , T = M,ge-* ,

where @ is the non-negative angle between the tangent to the rope and the direction

opposite to that of the load M,, the greater of the given loads M, and M,. With M, given,

we thus obtain M, = M,e~*’, where # is the value of at the end where MV,acts. But if

we regard M, as given, we may use the same result to calculate the load M, just

 

les frottemens des parties qui les composent, que par la roideur des cordes qu’on y employe, et la maniere

de calculer l'un et Vautre,’’ Mém.acad. sci. Paris 1699, 314 ed., 4°, Paris, 206—-227 (1732). On p. 208

AMONTONS announcesthe following experimental laws for the static and dynamic friction of solids in

contact:

1. The resistance depends upon the normal!force only.

2. The resistance of greased surfaces is independent of the material of which they are made.

3. The modulusofstatic resistanceis 3.

4. Dynamic resistance is proportional to the normal force, the time, and the velocity.

AmONTONSis not able to state such simple conclusions from his experiments on the friction of a rope

encompassing a circular rod (pp. 217-220); instead, he gives extensive tables (pp. 223—-227).

Immediately thereafter, PARENT gave an ingenious static model in which the apparently rough

plane surfaces are in fact perfectly smooth but studded with small hemispherical bosses; the frictional

force is identified with the tangential force sufficient to pull one set of bosses out of the troughs and

onto the summits of the others. Parent calculates this force and confirms some of AMONTONS’ ex-

perimental results. See Hist. acad. sci. Paris 1700, 204 4to ed., 151—152 (1761).

EULER may have forgotten that he himself had obtained long agoall the results of real interest

in the paper analysed in the text above. On pp. 361—362 of Notebook EH3, a passage that can be

dated with some certainty as having been written between 24 May and 20 December 1738, by the

method used in the second part of the present paper EuLER had derived (40), (522), and (524), from

which everything else follows easily. There he found also the “‘mean direction ofall the forces’.
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sufficient to maintain equilibrium, namely, M,e~*”. Thus

for equilibrium we must have

(523) M,e-*” < M,< M,e.

In all this, there is no need that the cross-section be a re- 27

entrant curve: The results apply equally to a curve such as

that shown in Figure 103. The second part of the paper starts by observing that 1—6 most of the calculations of the preceding may be replaced

Figure 103. Evzzr’s problem of by use of (40) and (42). For the flexible rope with the 7—10
the frictional force of a rope on a . J

cylinder (1775) hypothesis of friction given in the first part we have then

aT T' dy
(524) qs F, AF, A - AT qe?

whence (522) follows at once.

These results are so simple that one can proceed to determine the motion in the case 11—13

when the difference of the forces on the two endsis too great to permit equilibrium. We 14—17

have only to replace (524) by

aT _ dy

where u is the acceleration and o is the line density. Integration yields

T 8

(526) >= e—*” [U(t) — u feeds] ,
0

where U (t) is an arbitrary function of ¢. Consider a cylinder whose tangent is vertical at 18

ita two edges, so that » = 0 at one end, y=wz at the other. Then at s—0 we have

T =oU. If the motion is produced by a weight UM, attached at the end where s = 0,

the balance of linear momentum there yields

(527) T\,-.9 =oU = Myg —ulog + M) ,

where q is the displacement,7. ¢., the amount of rope which has slipped over the cylinder.
1

Similarly, if we write C = { e’?ds, where s =1 corresponds to yz, we obtain 19
0

(528) oe*"(U — uC) = Mog + ulo(e —9) + My] ,
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where is the length of rope initially hanging down from the point s = 1 to the suspended

mass M,. Elimination of U between (528) and (527) yields

d’q M,e-** — M,
0?) a"=9 meq + M, + 06) +oe—g + Mh-
 

This result is consistent with (523) in that we must have M,e~**> M, in order for the

displacement g to increase, as assumed in establishing the equations. While a first integral

is easily obtained, EULER is not able to proceed further except by replacing the right-hand

side of (529) by its value when q = 0.

KULER’s later paper, A more accurate development of the formulae found for the equi-

librium and motion of flexible threads1), takes up the three-dimensional theory of E471

and converts it, through rather long calculations, to intrinsic form. Thefirst part deals

with the perfectly flexible string in equilibrium. From (515) and (516) it follows that

f Feds is parallel to R’ ; from (511), then,

(530) { Fds = —TR'.

Therefore

(531) F= —T'R' —TR’.

The tangential and normal components of F are given by F,=R’-F, F, = R' x F.

From (531), then,

(532) F,= —T', F,=—T(R' xR).

By (518), it follows that

(533) F,=7|R’ x R|=—.

The results (532) and (533) generalize [JAMES BERNOULLI’s] formulae (40) and (42) to

three dimensions. From (532), and (533) we have

(534) F,= —(rF,), rF,= —JFids .

The theory offriction given in E482 is defined by F, = AF,. From (534), it follows

at once in this case that

(535) For AgFtpRo
 

1) E608, “‘Accuratior evolutio formularum pro filorum flexibilium aequilibrio et motu inventarum,”

Nova acta acad. sci. Petrop. 1782,, 148—169 (1786) = Opera omnia II 11 335—354. Presentation

date: 22 May 1775.
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Setting
d(536) p= /—,
r

we obtain
—A —Ag

(537) papate

generalizing (522). On a smooth surface, the stretched rope would assume the curve of 17

shortest possible length between its end points, but so as to visualize the results more

generally, we think of the rope as lying in a groove of given shape.

EULER now introduces formally the components p, g, 7 of the vector 19

(538) B=R’ xR’,

which had appeared in (518) and (519). EULER remarks upon (518), 7.e. B=1/r, and

(539) B.R'’=0.

From (531) follows also 20—21

(540) F.B=0,

“a remarkable property of the state of equilibrium.” [KULER’s purely algebraic procedure

is somewhat difficult to follow ; what has been shown, indeed already at (532), is that in

order for there to be no resultant torque on any section of a line subject to a force F,

that force must lie in the osculating plane.

There follows a sequence of manipulations rather difficult to motivate ; a result equi- 22—23

valent to HULER’s may be derived by a shorter analysis he himselfuses as check, as follows.]

Differentiating (531) yields

(541) F’ = —T’'R' — 27’'R’ —TR’,

From this result and from (531) we have

(542) R’ x F= —T'B, R' x F' = 27'B+ TR” x R' = 27'B + TB’,

so that

(543) R' x F’ + 2R" x F=TB'.

Both this last result and (532),, which we may express in the form F,, = 7B, assert the

collinearity of two vectors, and in both cases the factor of proportionality is 7’. We may

write this result as a condition on the force F’, as follows:

B’ B
(544) R xF -2R’xF RxF 

EULER observes that if this proportionality holds for any one component, and if (540)
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holds, then (544) holds for all three components. EULER’s result then is that for a force

freld F acting on a curve to yield zero resultant torque, it 1s necessary and sufficient thatit lie in

the osculating plane and satisfy (544).

 

24—27 For the helix x = « coss, y= «a sins, 2 = ns, we reduce (540) and one component

of (544) to the forms

(545) —onf,sins+anF,coss —a®F, = ,

2F,coss+ F, sins —2F,sins + FLcoss=0.

These formulae enable us to calculate two of the components F,, F,, F, in terms of any

one. If instead we regard the tension 7' as given, then we obtain

(546) Fi,=«T' sins+aTcoss ,

f,= —aT' cosstaT sins ,

F,=—nT'.

29-30 Before turning to elastic wires, EULER notes that (538) implies not only (539) but also

(547) B-R' =0.

Also

(548) B' — R" x R', sothat B’.R'—0, B’-R” =0

and

(549) B2 = RAR? — (R'.R")?

(which EULER writes as
2 2 2 2(550) R= ddx* +- ddy*? + ddz dds

ds4

31 By (516), a differential form of (519) is

(551) — R' x jf Fds = @B';

32 hence

(552) jf Fds = —TR'+ ZRx B',

and

(553) F=— —T'R' —TR'+ @(R' xB +Rx B’),

33 and therefore
F,=F.R' = — ZB.B'—T',

554 '
(554) =B——T'.

r

34 Further progress does not seem possible.
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[While EULER is unable to solve any particular problems concerning the equilibrium

of skew lines, he has assembled many of the formulae that are to be used in later theories.

Completely lacking is any concept of twist. HULER’s results here pertain rather to the geo-

metry of space curves than to the more complicated problems concerning the spatial defor-

mations of elastic bands. The reader will have remarked EULER’s easy mastery of the

methods of vectorial algebra ; the formulae we have presented are shortened by use of

vector symbols, but the operations indicated are those used by EULER.]

IVH. The laws of elasticity and flexibility

57. Miseellaneous researches (1754—1768). Shortly before his death in 1754 JAMES

RiccatTi wrote two qualitative essays!) on the general nature of elasticity. The second of

these puts forward a fundamental idea: ‘To induce constipation [%. e., condensation]

there is required beyond any doubt a live force, which is lost in producing this effect. And

since this employed force does not go into nothing, it is necessarily absorbed by the body

and passes into dead force, which the body conserves within itself.’’ This dead force is

available, at least in part, for unbending the fibres. Riccati explains that part of this force

can go into producing vibrations of the body, and part or evenall of it can be held in

‘‘a stable condensation’’, so that the fibres persist in a “violent configuration’’. These con-

clusions he infers from the fact that ‘‘the present universe is a well conceived system,”’

which could not allow nature “to go successively more slowly, until matter ... became

but a lazy mass.”’ Moreover, “since the communicated force, which maintains itself in

the fibres, must have someeffect in its quality of dead force, it necessarily manifests itself

only in mutual attempts and in equal and opposite pressures. So struggling together, the

pushing not prevailing over the counter push, the elements of the body dispose themselves

in equilibrium...”

[Thus Riccatr suggests that a part, at least, of the work done in deforming a body

as stored as potential energy) available for reversing the deformation; in its deformedstate,

the body manifests the presence of this energy by equilibrated mutual forces (now called

“‘stresses’’) in its interior. While these ideas in the hands of GREEN and CavucHy a century

later were to furnish the basis of the general theory of elasticity, RiccaTi expresses them
 

1) They appearin his “‘Saggio intorno il sistema dell’universo,’”’ Opere 1, 598 pp., Lucca (1761):

Book II, Part 1, Ch. ITI (pp. 152—164), “‘Delle forze elastiche.” Ibid., Ch. IV (pp. 164—173), ““Da

quale primi princip) derivi la forza elastica.”

Thefirst of these is merely physical and seems to lead to no definite conclusion.

2) While DanreL BERNOULLI had proposed the definite and indeedcorrect “potential live force”’

(140) for the elastica in 1738, he described it only in connection with a minimal principle and did not

discuss the availability of this live force for reversing the deformation.
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but vaguely, and, lacking the mathematical apparatus necessary to put them in a definite

form, he rests content perforce with repeating them often in different words.|

In 1767 his son JoRDAN Riccatti published a paper Onthe proportion between the exten-

sions of strings and the forces that produce them). After citing his father’s statement that

longitudinal and transverse vibrations obey similar laws, he points out that these two

types of vibrations arise from different causes : the “intrinsic rigidity” [7. e., elasticity]

‘which depends upon the structure of the string and the entanglement of the fibres,”

and the “‘extrinsic ..., which depends on the stretching forces.”

JORDAN Riccati claims to demonstrate seven ‘‘canons’’; [if these be drawn from

experiment, he does not say so]. A wire is of length LZ, when loaded by a tension P,;

then the “‘canons”’ are summarized by the following formula relating the present length D

to the present tension P :

(555) pe_ L=L, when P=P,,
P+——

where b and £ are constants of proportionality and A is the cross-sectional area. [The

integral of (555) is
_ EADOL, £ \e+1 L\e

er") P= Gear) — +z.)
Therefore Hb is what is nowcalled ‘““Youne’s modulus.’’] Riccatt obtains a formula similar

to (556) but not identical with it ; [his integration is faulty ?)].

In a following paper*) Riccatt remarks that if HA is very large [and L — LZ, is
 

1) Sched. I, “‘Della proporzione fra la distension: delle corde, e le forze che le producono,”’ op. cit. ante,

p. 280. As mentioned above, p. 115, an earlier version of this paper was published as an annotation to

the Opere of JamEs Riccatt in 1761.

2) From experiment, Riccatr observes that “‘not all materials called by the same name are

equally rigid. For example, not all brasses have the samerigidity.”’ There follows a reference to drawing

which I do not fully understand; it seems to mean thatif a wire of cross-section A and rigidity h = HA

is drawn until it has a smaller cross section A’, then h’ is a little greater than HA’; ¢. e., drawing in-

creases ‘“Youne’s modulus’’ (§ VI). On the basis of (556) Riccatti claims to evaluate the frequency of

longitudinal oscillation by means of an energy argument. I do not follow the reasoning; the result is

1 bg(HA + Po)

"2x Libmg + Py)
No end conditions are mentioned; when P, = 0, this result does not give the correct answer for any

of the usual end conditions.
3) In the same volume, Sched. III, “Della proporzione fra le forze applicate a squadra alla meta

delle corde tese, ed ¢ varj effetti da esse forze cagionati,”’ pp. 33—64, see § XIX. The bulk of this paper

deals with the problems treated by Riccati’s father in the third and first papers cited in note 1,

p. 116, swpra. The difference is that the younger Riccati uses his own law (555) for the elastic force
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small], (555) implies that Pa ZL —L, when P,=0. “Now since therigidity HA is

rather large in respect to the weights used in practice, this is the reason why the extensions

are found to be in the same ratio as the added weights.” [This is the earliest appearance of

an incremental law of elasticity, unless the vague wordsof the elder Riccatt (above, p. 116)

may be so interpreted. The proposal (555) would be moreinteresting if Riccari had brought

forward more definite support for it, either from experience or from reason.

We have described above, pp. 347—349, the second of the three papers in which

Joun IIT BERNOULLI published the results of researches done earlier under the direction

of his uncle, DANIEL BERNOULLI. The first of these, Researches on the extension suffered

by wires prior to breaking!), attacks some of the same problems [as those studied by the

Riccatis]; BuRNOULLI uses [HooKn’s] law and thusarrives at simpler results, but the con-

figurations he considers are somewhat more general. All of his work is phrased in terms of

rupture ; [following DanrteEL BERNOULLI?),] he assumes that rupture occurs when a certain

elongation or deflection is attained, but as he supposes tacitly that bodies are linearly

elastic up to this limit, all his calculations are set within elastic theory, [in terms of which

«a _ >a . we phrase them here].
 

The problem including most of
 

the results at the beginning of the

paper is explained in Figure 104.

An elastic cord ACB is loaded by a

weight P applied at the point C, not
 

necessarily the midpoint ; we are to

find the deflections ¢ and 6. Jouwn ITT

Figure 104. Variables used in Danret BeRNOvLrI’s calculation BERNOULLI gives two solutions ; for
of the form of an elastic cord loaded at one point (1766) the first, he acknowledges Eviur’s

 

 

rather than his father’s law (72). Both from measured frequencies of oscillation (§§ ILII—IX) and from

direct experiments (§ XVIII), he confirmshis (false) integrated form. Here he states moreclearly that

wires are made morerigid by drawing (§ XIX).

1) “‘Recherches sur Vextension que souffrent les fils avant de se rompre,” Hist. acad. sci. Berlin

[2%] (1766). 78—98 (1768). A footnote says the paper was read in 1764.

In nis first letter to JOHN IIL BERNOULLI, dated 7 December 1763, DanrEL BERNOULLI writes,

“It is good that you are putting in order the researches we did on the force of wires and beams. Begin

with the force of wires, more susceptible of exact determination; there is enough material to make two

fine memoirs. The effect of shocks on wiresis still new and worthy of note. For example,it is very para-

doxical that a string which is much stronger than another can be broken by a much weaker shock.

I am sure that the experiments will conform to the theory the more precisely, the more precise are

the experiments themselves. But it is inconceivable how many ways there are to sin against pre-

cision of experiment...”

2) Indeed, in an undatedletter of 1764, DanreL BERNOULLI expresses the more plausible hypo-

thesis of rupture at a certain maximum strain. Given a cord of length / that breaks whenits elongation

10
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help, and the second hecites from a letter of his uncle, DANIEL BERNOULLI"). This latter

is the simpler. We have

P cos B ~ P_ »P Pab
  

 

 

(557) 11 = Gn tA Yate “To Fars) ~™
a b

02

AE=V(a—CP?+ewa—f+—_,2a

Al, = AE AC 2 Al, = BE BC 2.L,= — a, 7S: = — opts -

Al
Since T= KTT and 7, ~ T,, we have

02 6?
sp 7S Ur te2a 2b b—a

(558) a — b ; or C=—ya, 0 -

Thus the transport ¢, “which seems to characterize the problem,’’ is of the second order in

the small deflection 6, and to neglect it would lead to very small error. To determine 6,

we apply the elastic law to the whole wire, which is subject to tension _Pab and
; . , 6(a + b)

which has experienced the total elongation Al, + Al, :

 

1 1
6? (— + —(559) Pab —1K E 5) or 5—1Ze

d(a + 6) a+b K(@+b) *
3

If a=b=43, this gives pas K.

Next is considered the deflection caused by a weight allowed to fall upon the mid-

point of a horizontal wire. BERNOULLI’s hypothesis is that the wire when its midpoint has

descended the distance y exerts upon the striking mass just the same force as would be

required to effect the static deflection y. He then calculates the velocity the striking mass
 

is a, take another cord of length 4; then ‘‘one sees at once that the cord will break if the shock of the
A

little body z can extend the string more than the quantity + a; if not, the cord willnot be broken.” This

passage refers to “‘the strength of wires or cords intendedto sustain shocks,” the results being “‘the

newest, the most curious, and the most unexpectedin all this matter.’’

1) In an undatedletter, probably of 1766, DANIEL BERNOULLI, after acknowledging receipt of

a draft of this paper, advises JoHN ITI BERNOULLI to check it over and rewrite it in such a way as to

emphasize not the calculation but the experiments, many more of which he then proposes. He criti-

cizes EULER’s solution of the problem indicated by Figure 104 and then gives his own. A later letter,

also undated, contains a further claim of the superiority of his solution over EULER’s.

A solution of this problem is given on p. 358 of EULER’s notebook EH 4, written in 1740—1744.

On p. 359 is a solution for the inverse problem of the flexible and extensible cord; given the shape and

the forces, the amount of extension is calculated.
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must have whenit first encounters the wire in order that it be just brought to rest when

the wire breaks at an assigned deflection d.

Now consider a wire such that a weight P hung from one end produces an elongation

« according to [HooKs’s] law, P = Ko; then attach to the end a weight W and let it

drop from a height s. How great must s be in order that the resulting elongation be exactly

«? The weight is assumed tofall freely until the wire reaches its natural length, after which

time gravity is neglected and the weight is regarded as a mass subject to a linear spring.

An elementary calculation yields

(560) s= ta

[This result resembles the equally elementary but not yet published remark that a load

suddenly applied to a linear spring produces a maximum deflection twice as great as does

the same load applied statically.] BERNOULLI solves the same problem for the more general

case when gravity is taken into account and when the oscillatory elongation is compared

with the static elongation of a string of different length. Then he considers the oscillatory

motion of a flexible elastic wire strung horizontally and supporting a weight at its mid-

point. The paper closes with remarks which seem to imply that BERNOULLI considers the

laws of bending and extension to be analogous.

Wehave seen that by 1727 Hunzr had derived the formula (86) expressing the bend-

ing moment in an elastic band in terms of properties of the cross-section, and thus that he

had in his hands results equivalent to the basic law (87), by which JAMES BERNOULLI’s

law for the elastic band is derived from Hooxn’s law for the fibres comprising it. [This

result, however, EULER appears to have forgotten,] since in his work of 1743 he not only

omitted it but proposed instead the [incorrect] formula (189). In connection with his second

analysis of the buckling of beams*), EvLER writes in 1757 that the ‘absolute elasticity”

of a bent beam should be called the ‘‘“moment of spring” or ‘“momentof stiffness,’’ since he

now considers the theory of the elastica to be applicable to the loading of non-elastic beams

as well as elastic ones; “‘...it makes no difference at all whether or not the body after

bending is endowed with a force for reestablishing itself.’’ Taking the depth D as the maxi-

14

15—16

Li

18

I, Iil

It

mtm dimension in the plane of bending and the breadth B as the maximum dimension .

perpendicular to that plane, EULER considers it “rather plain’ that “2a B, but the

depth “‘offers more resistance to bending,” and it seems that @ a D? or D®. For circular

cylinders of diameter d, the two possibilities lead to “a d® and d* respectively. EULER

calls for experiments and possibly also a theory, [forgetting his own unpublished work of

1727,] to relate @ to the material of the beam and the shapeof its cross-section. Since

dim= [Force] [Distance]*, the momentofstiffness is “similar to the expressions denot-

1) E238, cited above, p. 345.
 

VI
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ing the moments of inertia of bodies.’”’ Tentatively EULER adopts the relation @ a d?

at first, but by the end of the paper he has decided [correctly] that both theory and ex-

periment favor Za d'.

[While EULER does not state what the theory may be, it B

is natural to conjecture that he has recalled his own of many a

years before,] since in his paper on bells!), written not long

after the paper we have just discussed, he publishes a clarified    and shortened form of his old analysis for a beam of circular c D

 

V

Figure 105. Euier’s second
bending moment about M, a point on the inside of the bent derivation of Brrnovti1’s law

from Hooxke’s law (1760)

form and rectangular cross-section. We are to calculate the

ring (Figure 105), where w = NMn, thesmall angle produced

by the bending.Since the elongation wz ofthe filament zZ at a distance z from MV is assumed

to obey [HooxKz’s] law, the force acting on the filament is proportional to wzdz, and hence

the moment of that force about M is proportional to wz?dz. The integral of all these

momentsis 3 w.D?, where Dis the depth MN.“T do not take accountofthe absolute magni-

tude of this moment, since it may be studied by experiment in each particular case.”

Thusif B is the breadth of the ring, the total moment is 4D?Bw, where £ is a constant

1 ; , .
— BR where 7 is the radius of curvature of the bent ring

“at some mean point between M and N” and R is the original radius, we obtain (87) in

, . . ]
of proportionality. Since w = ~

the special case when J = 4.D°B. [The “constant of proportionality”, which in EuLER’s

notation is 3H, is ““Youne’s modulus.’’|

In this work as in all his later papers, EULER tacitly supposes that the neutral line is

the fibre on the concave side. [This had been recognized as false by several earlier authors, as

EULER must surely have known. In none of his papers or notes is there any discussion of

the matter, perhaps because it does not affect the theory itself but only the manner in

which the theoretical results are to be interpreted in practice.|

The effect of the location of the neutral line is recognized in a work of 1766, Problems

on the resistance of beams?), by JouN III BeRNovutzi*). The first part of the paper

tacitly puts the neutral line at the bottom and follows the older writers (above,

pp. 60—62, 102-104) in neglecting the curvature though taking account of the tension
 

1) See §§ 3—4 of E308, cited above, p. 320.

2) “Sur la cohérence des corps, troisitéme mémoire. Problémes sur la résistance des poutres,”’ Hist.

acad. sci. Berlin [22] (1766), 108—116 (1768).

3) The silence of all the great geometers of the eighteenth century regarding the neutral line is

difficult to explain. Thus Danizt BERNOULLI’s criticism of this paper, given in an undatedletter of

1766, does not mention the subject. Indeed, the consideration of the neutral line is the only matter in

JOHN III BERNOULLI’s entire ceuvre on elasticity that cannot be identified as coming directly from

DANIEL BERNOULLI.
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varying linearly over the cross-section. BERNOULLI again regards rupture as occurring when

a certain maximum elongation is attained ; he compares the breaking strength in tension

and in bending by supposing that a beam breaks in bending when the elongation of the

outermost fibre equals that which is sufficient to break all the fibres of a beam stretched

along its length, [but his rough calculations do not yield the correct scaling laws because

his theory, as just mentioned, is incomplete].

Then he concedes that “‘if the experiment were done, it might perhaps be found”

that the breaking strength in extension would be much greater than calculated. This can

be explained by “a special theory, founded in nature itself.’ To construct this theory,

BERNOULLI observes that according to the previous treatment the point on the underside

of the beam at the wall would be the fulcrum and thus “would supportall the stress of

the weight P ...and thus would suffer prodigiously, which is repugnant to the order of

nature,’ To reduce this suffering, one can suppose the neutral line somewhere higher up in

the cross-section, so that the fibres below are compressed and help to bear the weight.

The location of this “point of rest ...is not determined, but probably enough,it is just

about in the middle. In any case it cannot be on the top ; the experiment indicated will be

the best way of determining it.” [It is difficult to explain BERNOULLI’s work, since he

docs not have the complete formula (87), but rather a result of the old type (61). What

he has doneis to rediscover PARENT’s observation (above, p. 112) : In effect, though not in

his own words,|

(561) Ll=aAD* ,

where the numerical constant « depends upon the position of the neutralline.

BERNOULLI compares the resistances of a cylindrical beam of diameter D with that of

a square beam of the depth D. First taking the neutral line on the concaveside, by an

elaborate calculation he gets the ratio ee [this is correct, since the two moments of

inertia are anD! and 3D, respectively]. For the case when the neutral line is in the

middle, the ratio is in, [since the respective moments of inertia are a7Dt and 75D'}.

"And since several experiments made by Mr. MUSSCHENBROEK give just about this ratio,

they confirm the hypothesis by which we have found it.”’

BERNOULLI observes that a beam whose cross-section is a triangular prism with one

face horizontal can be broken part way through by a terminal weight. This suggests to

him that a trapezoidal beam maybe stronger than a triangular one of greater cross-sec-

tional area. [On his hypothesis that rupture occurs when a certain elongation is achieved,

this is true!).] He calculates the resistance of the lower part of a slender triangular section

 

1) The idea was suggested by DANIEL BERNOULLI in a letter of June 1766. In this same letter

he explains DE REAUMUR’s paradox (above, p. 58): In a twisted rope, someof the fibres have been

10

1]
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andfinds that this resistance is a maximum when theratio of the height of the trapezoid

to that of the triangle from whichit is cut is 3 ;

In the same year appeared D’ALEMBERT’s note, On the law of compression of springs").

Referring to the old essay of Jonn II BERNOULLI (above, p. 171) and to DANIEL BER-

NOULLI’s criticism of it (above, p. 172), D-ALEMBERT objects, in effect, that the force F of

a spring need not be a smooth function of the elongation when x = 0. For example,if

Fas" and m>1, small motion is not isochronous, contrary to DANIEL BERNOULLI’s

principle?). After a long calculation he decides that small motion subject to force of the

type F =a«v-+ Bx? is sensibly isochronous. He attempts) to treat the case when

F=«2z-+ fB2', but decides to “leave the discussion to others.”’

It is perhaps to these remarks that LAGRANGE alludes in 1770 when he writes‘)

that since the law of the elastica has been doubted by “a very great geometer’’, he will

establish it in a manner “as simple as it is rigorous.’”’ He represents the band as a poly-

gonal linkage in which each link is pulled back towardthe straight form by a spring whose

tension is proportional to the angle between the links. [This is the law that was set up by

EULER in his first paper (cf. Figure 54) as a postulate to be tested by experiment; in prin-

ciple, LAGRANGE’s approach by means of a model recalls JamES BERNOULLI’s first treat-

ment, except that LAGRANGE’s arrangement of springs seems entirely ad hoc, while

JAMES BERNOULLI’sis plausible 5). ]

58. EuLEen’s introduction of shear force and derivation of the general equations of

equilibrium for a deformable line (1771, 1774). [A pinnacle of our subject is achieved by
 

stretched in the fabrication and hence cannot bear their full breaking loads, so that the breaking

strength of the rope falls short of the sum of the breaking strengthsof all its fibres.

1) “Sur la lot de la compression des ressorts,’? Opusc. math. 5, No. 36, § I (pp. 216—222) (1768).

2) It is typical of p’ALEmMBERT that while his own manipulations nearly always presuppose

analytic functions, he is quite ready to call non-analytic functionsto his aid in attacking others.

3) In §IV of No.44, pp. 503-504, p’ALEMBERT seemsto have decided that when F = ax + Bx",

n + 2, it is impossible for the motion to be approximately isochronous.

4) $I of op. cit. ante, p. 349.

In his letter of 4 April 1771 to p’ALEMBERT, LAGRANGE mentions this paperas giving a “rigorous

proof”’ of the law of the elastica, which p’ALEMBERT had doubted. D’ALEMBERTreplies on 17 August

that he remains unconvinced,for a spring is “an imperfect lever ..., neither perfectly stiff nor per-

fectly flexible.”

5) There is a paper whichis sometimescited as giving a false theory of the spiral spring: JOHN IIT

& James II Bernovurui, ‘Mémoire sur usage et la théorie d’une machine qu’on peut nommer Instru-

ment ballistique’’ (1782), Nouv. Mém.acad. sci. Berlin 1781, 347—-376 (1783). § III indeed considers

the work done in compressing a spiral spring but quite explicitly presupposes no elastic law whatever

for it; the force F as a function of the displacement x is to be measured experimentally so that the

work, f F'dz, can be calculated approximately by a sum.
This paper derives from the instruction given by DANIEL BERNOULLI to his nephews.
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two great papers of EULER written in 1771 and 1774.] Over forty years had passed since he

had composed thefirst treatise organizing and unifying the theories of elastic and flexible

lines as they were then known (E8, described above, pp. 148—150). The genuine prin-

ciples of the doctrine of equilibrium and motion of flexible or elastic bodies!) treats the same

class of problems. [First, EULER recasts the whole body of known results on elastic and

flexible bodies in the simple, direct way made possible by “‘the first principles of mecha-

nics” (above, § 35).] As explained at the outset, ‘“‘we are still far distant from a complete

theory, sufficient to determine the shapeofflexible surfaces and bodies,” and in this paper

perforce he rests content with a ‘‘more accurate’’ study of ‘“‘simple threads, whether per-

fectly flexible and elastic, as they have been treated up to now by the geometers. But since

the numerous solutions . .. that may be found here and there are derived from principles

either too special or not sufficiently clear and perspicuous, I will take pains to explain so

lucidly the true and general principles ...that not only the figures of equilibrium but

also the [finite] motion of such bodies may be determined.”

[Second, this paper revives and greatly extends JAMES BERNOULLI’s careful distinc-

tion between the laws of mechanics and the constitutive equations defining particular kinds

of continuous bodies (above, pp. 105—108). It is EvLER’s achievement to obtain the

general equations of equilibrium and motion of a deformable line in the plane, independent

of any special hypothesis regarding the material of whichit is composed and of any assump-

R c B tion of small deformation.]

The “‘General Problem”’

B~ “ with which the paper begins

r is to establish the equations

of equilibrium for a [plane]

curve subject to arbitrary

forces [acting in its plane.

As to be expected from

A x D EvuLER’s successful treat-
Figure 106. EULER’s diagram for the general line stress in a rod (1771) ment of perfect fluids), he

foreshadows the stress principle] by considering the curve BMA to be cut in imagination

into two pieces BM and MA, then replacing the action of the part MA on the part BM

by that of a force and a moment (Figure 106). The force, [which is the stress resultant,]

 

 

  

he splits into a tangential component 7’ and a normal component V;thelatter is regarded
 

1) E410, “Genuina principia doctrinae de statu aequilibrit et motu corporum tam perfecte flexibilium

quam elasticorum,” Novi comm. acad. sci. Petrop. 15 (1770), 381—-413 (1771) = Opera omnia II 11,

37—61. Presentation date: 14 January 1771.

2) Cf. pp. LAXXI—LXAXAXII of my Introduction to L. EutER1 Opera omnia IT 12.
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as acting at the point V, a distance v along the tangent from UM, so that Y= vV. [While

in former treatments the total force and moment were calculated,] EuLER now demands

that the resultant force and moment on the element ds shall vanish. The assigned tangential

and normal forces per unit length acting upon ds are F, and F,,, the radius of curvature

is r, and ds=rdgy, » being the complement of the slope angle. [Under the tacit

assumption that if the part BM is cut away its action on AJ is equivalent to that of — T

and — V acting at M,] EULER resolves the forces acting at the point s+ ds, denoted by

m in the figure, into components tangential and normal to the tangent at J. The vanish-

ing of tangential force, normal force, and moment then lead to the following exact

statical equations in intrinsic form :

aT y _

dstds
dV dp

2 — —_ Jot = —
(502) ds Tis Pas

We yg.
ds

[Thus EvuLsEr tacitly assumes that the rod is not subject to any couples applied along its

length.]

If F=0, by elimination of dy/ds between (562), and (562), we obtain

(563) T+ V2=C?, T=Ccosg, V=Csing,

where a constant of integration has been set equal to zero by choice of the line from which

the angle y is measured. [This is a statical theorem: When a line is subject to terminal

loads only, the stress resultant 1s constant along it.]

The perfectly flexible case is obtained by setting V = 0; (92) follows at once. The

equations for the general elastica are obtained by adjunction of the hypothesis (69). [It

is clear that all differential equations refer to the deformed band; when &%, the absolute

elasticity, is not constant, it will generally be an assigned function of S, the arc length in

the undeformed band, though in most problems treated in the eighteenth century the

elastica was taken as inextensible, s = S.]

There is also an analysis of the initially straight band of uniform elasticity. [Nothing

new regarding the elastic curves themselves is to be expected. Whatis sought is the unz-

fication of the theory of the elastica with the general theory based upon the full statical

equations (562). In particular, EULER determines the tension 7' and the shear resultant

V.] Substitution of the elastic hypothesis (89) into (562), and then into (562), leads to an

equation for 7’ which maybe integrated; elimination of 7’ by (562), then yields a differential

equation for the slope,
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(564) aoe + p2(2)= —~2 i Rds — FP, ,

including all known casesof theinitially straight elastic bands and offlexible lines. When 28

Ff, = F,= 0, the equation for 7’ becomes

 
_ dy dp dp0 pa B—ya(%e)oe [a0

The equation (565), may be integrated once. Putting wu = dy/ds, we may write the result

Tegare }

Putting (563), into (89) also yields an equation which can be integrated ; the result is 30

VB

in the form

(566)   

 
 

 

567 = .
(587) VB — 2C cos

Since dav/ds = sing and r= ds/dy, we may integrate (567) and obtain 31—32

VB(B—2C
(568) r= ( cos 9) + const. 

C

Take x = 0 at a point where the curve is normal to the axis of x; by rearrangement of

constants we get

 

 

  

 

 

cos = | - wrOS 9 = a Ge?

20D. 2nZB V —
(569) V=—.—- sing, T= ~- COS — , oe =2 fay id En COs PS

a 27” sin

dy (a? —ax — nx*)B

da V2a3a + (2n — 1l)a*a® — 2naa? — n? x4

Writing (567) in terms of the constants a and , we obtain 33

a _ a(570)   

  
7 V4n + 1—4n cos 7 V1 + 8” sin? ip

Eliminating cos » by (569), yields
a2 a

(571) v= Onr on’

‘‘a remarkable property commonto all elasticas.”’ [This is of course the law (171) that was

used as the starting point in HunER’s characterization of elastic curves.]

The “second general problem”is to find the equations of motion. The method used is 34—40



42

43
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the balance of linear momentum, according to EULER’s “‘first principles” (above, § 35). To

the actual forces acting upon ds are to be added ‘“‘the forces instantaneously required to

  

2

produce the motion,” viz [in general units] — o _ and — o ou Thus from (562),»

we obtain
oT op 0?x Yet apa (— Bet org) sine (Fybag)oom

(572) 97 3 B 32
e x

35 —7T=(— Fi,+o any|FitoFE) ee |

 

The equation of moments, (562),, remains unchanged, because the assigned forces do not

occurin it.

To get the usual equation for the vibrating string, set F, = F, = V = 0 and assume

e?x/ot? = 0, cosy = 0. From (572), follows 7’ = const.; “thus during the motion the

tension of the thread is assumed to be kept constant.” With cos » = ov. and sing = I,

(572), reduces to the usual equation (251) with s replacing x.

 

            

 

 

 

To get the equation for small oscillations of an elastic band, we proceed as above
ap osy
a2 eae so that

oT O*y d3y Oty Oy Oy
573 a -- SS =
(573) ds r ds? as 0: On Fe8 + Peast ae?

The integral of (573), is
1 oy 2

(574) T = Bit) — 1( 5)

Eliminating 7 “leads to a differential equation of fourth order such as has been found by

those who have treated this problem in greater detail.”’ [This equation is

oty o*y \? Cy op Oy
(575) Das +42 5) 1 OG = Ber

 

   

So far as I know, it had not been derived previously. EULER’s formula (565) shows that

the tension is of two kinds : The part B(¢), an arbitrary uniform tension independent of

the transverse motion and possible because longitudinal inertia and elastic force has been
2 2

neglected, and a pressure 4%(se arising from the transverse acceleration. When both

these tensions are neglected, as is usual, (575) reduces to (273) ; if @=0, (575) reduces to

(251).
While no new special problems are solved by this memoir, its value for co-ordination

of the whole theory of deformable lines is great. More than this, it achieves a major step

toward the concept of stress by supposing that the action of one part of the line upon the other 1s
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equipollent to a force and a couple and in recognizing that when theline is not perfectly

flexible, a cross force is required. Thus while the concept of shear strain remained unfor-

mulated, the simplest case of shear stress at last takes its place in the equations ofmechanics.

Moreover,in respect to the laws of mechanics this paper marks a turning point,forit is

the first work on deformable continua in which the principles of linear momentum and mo-

ment of momentum appear on a par, independent and separately necessary. Thus is closed

the dichotomy signalled by JAMES BERNOULLI’s “two keys’’ (above, p. 89). While in

his first attempt Ever had shown that the balance of moments, in the integral form (91),

suffices to derive equations of flexible lines as well as of the elastic band, the part to be

taken by the balance of forces in the general theory, and, in particular, in the theory of the

elastica, remained mysterious. Here it is made plain that neither principle, by itself, suf-

fices except in special cases. This is the result of years of trial and reflection’). EunEr’s

final formulation of the general principle of moment of momentum has been described

elsewhere 2).

But EULER remained unsatisfied. In the paper just described, written in his sixty-

fifth year, he had finally shown how everything concerning deformable lines follows from

differential statements of the principles of linear momentum and moment of momentum.

But what of the old integral equation (91) that had served him so well for nearly half a cen-

tury ?] The purpose of his next paper, On the two methods of determining the equilibrium and

motion of flexible bodies and on their extraordinary agreement®), is to obtain integral equations

expressing the same mechanical principles. [While he phrases many of his results here in
 

1) Wo mention some of the many examples that may be noticed.
1. In E174, from 1744, the principles of linear and angular momentum are invoked independently

to derive general equations of motion for a system of linked bars (above, pp. 223—229).

2. On pp. 268—269 of Notebook EH(c. 1750), EuLEr gives “another method for finding the

curvesofflexible wires. This method is HERMANN’s”’ [and JAMES BERNOULLI’s] (cf. above, pp. 81—87).

Then he solves the same problem by balance of moments and compares the two methods.

3. After caleulating on p. 181 of Notebook EH 8 (1759—1760) the moments acting on a line sub-

ject to arbitrary load, on p. 181la Evi obtains results equivalent to (576) with F replaced by

—o dée jot and with Wfgiven by theelastic hypothesis (89). ““This methodis to be preferred to that in

which the tensions of the thread are considered, since the tension cannot be applied to theelasticity.”

4. On p. 35 of Notebook EH7, just following a remark dated 26 April 1763, EuLEr states a

theorem: For a body in general, equilibrium of forces does not suffice; equilibrium of moments is

necessary as well. The latter principle is stated in the form f(r x df) = 0, where df'is the element of

applied force.

2) See § IX ofmy “‘Newere Anschauungen tiber dte Geschichte der allgemeinen Mechantk,” Z. angew.

Math. Mech. 88, 148—157 (1958).

3) E481, “De gemina methodo tam aequilibrium quam motum corporum flexibilium determinands

et utriusque egregio consensu,” Novi comm. acad. sci. Petrop. 20 (1775), 286—303 (1776) = Opera

omnia II 11, 180—198, Presentation date: 31 October 1774.
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terms of elastic bands, his ideas are purely statical, and we shall so express them.] The

statical notion leading to (91) is

(576) —fdyfP,ds+fdzcfFyds= PW.

When F= @B# , (576) yields (91), which suffices to determine the shape of the band,

but “the accompanying ... features, such as the tension...and the normal force.. .,

cannot be found in this way, which defect I have tried to supply by the other method...”

We are now to show that the new method, expressed by (562), also implies (576).

We multiply (562), and (562), by cos g and sin g, respectively, add and subtract, and

integrate, obtaining
no=—tF

(577) P’ cos + V sin » jf fds ,

T sing —Vcosy = —f F,ds ,
[generalizing (39)]. Hence

T = —cosp f F,ds —sing f F,ds ,(578)
V= —singf F,ds+ cosy f F,ds .

Substituting (578), in (562), and integrating yields (576). EULER explains that integrals

such as f ds represent the total force and thus “such finite forces as act upon the end
of the band can be included”’[%. e., the integrals are taken in the StreLrszs sense]. The

equilibrium of each element of the band requires that the forces 7’, V representing the

action of one part on the other change in sign but not in magnitude when the parts are

interchanged. [That is, if S, is the stress vector 7't + Vn representing the action of the

material to one side of a given point on that to the other, while S_ results when theroles

of the twosides are interchanged, then EULER asserts that

(579) S,+S_=0]]

EULER shows that the moment 77=vV maybereplaced by the action of twoforces

at arbitrarily assigned points on the tangent. These forces remain finite and non-vanishing

even if v=oco, V=0 [i.e., in the case of a couple].

59. COULOMB’s introduction of interior shearing stress (1773). [We have seen above,

p. 113, that PARENT in 1713 had conceived the interior shearing stress in a beam, but he

was unable to use it, and no notice was taken of his work. Some five years after EULER

had published his general equations (562) for deformable lines, which rest upon his

introduction of the cross force or resultant shear force V ,] there appeared an important

memoir of CouLOMB, Essay on an application of the rules of maxima and minima to some

statical problems relevant to architecture1), where, among other things, we find the reintro-
 

1) “Hssai sur une application des régles de maximis et minimis a quelques problémes de statique,
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duction and fruitful use of interior shear stress. CouLoMB states that this material had

been composed for his own use someyears before, [and there is every reason to believehis

work independent of EULER’s, since it is different in character and in content]. First,

CouLomB tests specimens of ‘“‘a fine grained, homogeneous white stone’ for rupture :

“Tf wished to see if in

breaking a solid of stone b &.

by a force directed along 1 f Au... &\ ] |
its plane of rupture the \ / =—

same force would have . ;
ar /3 i

to be employed as when

 

 

 

 
breaking it... by a

 

stress) perpendicular to

that plane (Figure 107).

(‘Thus CouLOMB compares

Figure 107.
CouLomp’s drawing for
rupture in tension and

— rupture in shear (1773)  

 

    
breaking in tension with

breaking in shear.] For the former, he obtains a value of 215 lbs./sq. in., [this being the

first occasion on which an experimenter reports a result in terms of stress rather than

force,| and for the latter, 220 lIbs./sq.in. “I have repeated this experiment several

times, and I have found almost always that a greater force is needed to break the solid

whenthe force is directed along the plane of rupture than when it is perpendicular to this

plane. Nevertheless, since this difference is here but i of the total weight and is often even

less, I have neglected it in the following theory.”

[Thus CouLoMs assumes that rupture occurs, other things being equal, when a certain

maximum stress is attained.| To visualize the effect of the bending moment, CouLOMB

says “itis plain . . . that all the points of the line AD (Figure 108) resist in such a way as to

hinder the weight from breaking the solid ; that, consequently, an upper portion AC of

this line is stressed by a traction along YP, while the lower part is stressed by a pressure

along Y’ P’.” The curve BMCeis the curve of tensions PM, P’M’ ; [no curve is drawn to

represent the variation of the shear stress MQ, M’Q’, but Covutoms plainly allows it to

vary arbitrarily]. COULOMB then applies the principles of statics to the portion of the beam

from AD on. If we take the x co-ordinate as vertical, y as horizontal, then dx = Pp,

and if we write 7',, for CouLomsB’s PM, P'M' and 7,for his MQ, M’Q’, then his results are

 

relatifs & Varchitecture,’’ Mém. math. phys. acad. sci. divers savans [7] (1773), 343—-382 (1776). I have

found helpful the account of this paper given by TrmosHENKO, §§ 12, 14, and 15 of op.cit. ante, p. 11.

1) From this point onward I translate the French “‘effort’’ as ‘“‘stress’’, but the reader is not to

infer therefrom that a precise definition has been given by CouLoms or any other old author.

Vil
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Figure 108. CovuLoms’s drawing for the stresses in a loaded beam (1773) 
equivalent to?)

D

fT,dz=0,
0

D

rs
fuT,dx=(l—y)¢@,
0

where | —y is the distance from the section AD to the line KLZ along which the load »

acts. COULOMB interprets (580), as a statement that “the area ABC of the tensions equals

the area CeD of the pressures.”’ [The momentrelation (580), is only VARIGNON’s “‘funda-

mental rule” (58), which is due in principle to Lersniz and which all writers on this prob-

lem had used explicitly or implicitly. The equation of horizontal forces (580), is PARENT’s

rule (above, p. 113),] which CouLoMBinterprets [just as had PARENT]: The area under the

curve of tensions must vanish. [What is new is the recognition that there must be shearing

stress T,, in order to support the weight. PARENT had mentioned the possibility of shearing

stress but had not given it prominence or stated any condition regarding it. The system

(580) constitutes a fundamental case of the stress principle, which is to be formulated in

general terms by Caucuy in 18227?).]

In the case of a “‘perfectly elastic’’ body, “‘that is, one which when loaded along its

length is compressed or extended proportionally to the force which compressesordilates it,”’

COULOMBconsiders fg to be the elongation of the topmost fibre, mA the contraction of the

lowest. Since the areas of the two triangles fge and emh must be equal, we have fe = 4fh,

 

1) In terms of the breadth B and Caucuy’s stress tensor t;;, we have 7, = Btyz, Ty = Blyy.

2) Of. my note, “Zur Geschichte des Begriffes ,mnerer Druck‘,”’ Phys. Blatter 12, 315—326 (1956).
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[z. e., as PARENT had shown, if Hooxn’s law holds, the neutral line must be the middle line,|

and therelation (580), gives *)

(581) $D? (Ty)max =I .

[This result is equivalent to the special case of PARENT’s formula (71) when D, = 4D;

cf. also the remarks of Jonn III BERNOULLI (above, p. 389).] If, on the other hand, the

solid remains rigid up to rupture, and if one assumes the body turns about h as a fulcrum

in breaking, then 7’, = const., and (580), yields

(582) 1D*T, =I9 ,

[equivalent to GALILEO’s formula (11); cf. the work of Varienon, above, p. 104].

Covutoms decides to apply (582) to his experiments. For the stone which broke in tension

or shear at about 215 lbs./sq. in., (582) predicts that a beam of dimensions D = 1",

B= 2",t=9" should break when subjected to a terminal load of 24 lIbs., but in fact

20 lbs. suffices. ““Therefore, in the breaking of stone, one cannot suppose either that the

stiffness of the fibres is perfect, or that the fulcrum is precisely at f.’’ [In fact, the hypo-

thesis J’, = const. contradicts the condition (580), unless, as suggested by Jouwn IIIT

BERNOULLI (above, p. 389), we suppose there is a suitable

concentrated force (infinite stress) along the lowest fibre.

Notice also that CouLoMB expressly rejects HooxKE’s law; if

we accept CouLOMB’s hypothesis that rupture occurs when a

certain maximum stress is attained, then in fact his experi-

mental values conform more nearly to GALILEO’s formula than

to the result (581) inferred from HooxKn’slaw.]

To construct a model for the rupture of a pillar in com-

pression, CouLomsB divides it by a plane Ci making an D arbitrary angle x with the horizontal and supposes the upper

Figure 109, force of the shear stress upon it. Calling this stress o, if it is
COULOMB’s drawing for rupture “4: . =
tm compression through failure to equilibrate the weight P we have o- (area of CM) = oA

in shear (1773) sec x = P sin xz, where A is the area of the base. Hence

   
part free to slide over the lower (Figure 109) except for the

 

1) Recall that 7', = Bt,, = BHe,, where ¢e, is the strain of the longitudinal]fibre.

An attempt to locate the neutral line is made in §§ IV—VI of LAmsBeErRtr’s paper of 1777, cited

above, p. 325. Lampert takes the law of tension for the fibres of a bent beam as a powerseries in the

elongation. Calculating the moment about the neutral line, he asserts that this moment must be a

minimum, “‘since the beam bends in the fashion that is easiest of all.’’ There results an equation for

determining the position of the neutral line; for small bending, it turns out to be the central line. In

§ XVIII LAMBERT remarks that Ever “left undecided”’ the question of the neutral line, but Lam-

BERT’S other remarks here show that he failed to follow EKULER’s derivation of (87).

VII
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P 20

(583) A sin2a '

Thus if a material fails when a certain shear stress o is reached, then in order to prevent

failure it is necessary that
(584) P 20

A~sin2e for all x.

The right-handside is a minimum when x = 45°, and hence P/A = 2c. [Asa theory of

failure, this is not very impressive, but we recognize the result as the first occurrence of

. the theorem of Horxiys'*).] If we take account of frictional force, which according to

AMONTONSis proportional to the normal force, in place of (583) we get

(584A) oAsecxr+uPcosx=Psing ,

where yu is the coefficient of friction. The minimum of P is now attained when

]

Vi+ we — pb

For bricks he has found that wu = 2; this gives tany = 2 and P/A = 40, and this

[mere curve-fitting] agrees fairly well with MusscHENBROEK’s results on the collapse of

(585) tan x = 

square brick pillars?). However, CouLoMB regards this agreement as accidental since

MUSSCHENBROEK asserted that a column does not break until it starts to bend and found

that the buckling load is given by (94), while CouLoms’s theory yields a breaking load

that is proportional to the area but independent of the length. [Since his theory neglects

deformation altogether,] it is easy for CoULOMBto find “the height to which one can raise

a tower without its falling by its own weight” and to solve some related problems.

[CovuLomB does not mention any other theories of collapse, but he must surely know

EULER’s theory, and he makesit plain that he considers any dependence of the strength

of a column on its length to be wrong; apparently he considers only such materials as

masonry and brick.

This memoir of CouLoMB has been praised very highly. On the basis of it Trmo-

SHENKO®) asserts, ‘No other scientist of the eighteenth century contributed as much as
 

1) I. e., the extreme shearstresses occur across the planes making equal angles with the principal

axes of stress, and the magnitudes of these extremal shears are + $(t; — t), + $ (tg — ts), + $ (tg —h),

where the ¢, are the principal stresses.
V. §§ 4—5 of W. Hopxins, “‘On the internal pressure to which rock masses may be subjected, and tts

possible influence in the production of the laminated structure,” Trans. Cambr. Phil. Soc. 8 (1844—1849),

456—470 (1847).
2) Where these experiments are reported I do not know. The work of MusscHENBROEK we have

described above (p. 153) refers to wooden struts.

3) § 12 of op. cit. ante, p. 11.
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CouLomsB to the science of mechanics of elastic bodies.’”’ Opinion aside, this estimate is

misleading, since, as we have seen, there is scarcely a hint of elasticity in the paper’).

In one respect CoULOMB’s work,since it reverts to purely statical arguments in the manner

of GaILtzo, LErBNIz, and VARIGNON,is a step backward. In another, however, it is of the

very greatest importance, since it reintroduces PARENT’s conceptof interior shear stress,

essential to any complete theory of deformable bodies. This aspect justifies the more

definite praise of St: Venant?), which is restricted to § VII: “It is only in our century

that his paper, which in the three pages entitled Remarks on rupture contains so many

things on this subject, has finally been studied and understood.’’|

60. Euten’s formal definition of the modulus of extension and final sealing laws for

the frequencies and buckling loads of straight rods (1774, 1776). Only in the last of his

papers on vibrating rods*), written in 1774, does EULER at last derive scaling laws for the

frequencies as functions of the cross-section. Here he takes the absolute elasticity % as

bc*, ‘“‘where 0 is a quantity depending upon the nature of the material of the rod” and c is

“the diameter of the area.”’ [This is of course consistent with (87),, but it is not clear what

KuLER means by c.| At first he takes A = c? and finds that for a given mode

C
(586) ya pe

in rods made of the same material and having similar cross-sections. [The general law

which follows at once from (87), and (136)is

_ @ kY/EA & ke
(87) "3a EV oan FV @ °

1) We have discussed only that part of its contents referring to problems which, if properly

treated, would involve deformation. The remainderofthe paper concerns two problemsofpurestatics:

the pressures exerted by earth masses andthe stability of arches composedoffinite rigid bodies. Much

of this is described by TIMOSHENKO,loc.cit.
Coutoms deals with only one case of truly deformable media, viz, the arch of infinitesimal links,

or, in other words, the perfectly flexible line. He derives the differential equation immediately (§ XVIT)

from the observation that the resultant force on any finite section is parallel to the tangent at the end;

 

 

as he says, this generalizes the result of Grecory (above, p. 80) and yields the appropriate special

case of EULER’s result (92). He is just in remarking that his methodis entirely different from EULER’s,

sinee in fact it is Joan BERNOULLI’s (above, p. 75).

2) Quoted by TopHuNTER, § 117 of op. cit. ante, p. 11.

3) §§ 4 and 45—46 of E526, cited above, p. 326. EULER uses here the special units he has used

since 1750; cf. pp. XLII—XLIV of my Introduction to L. Euter1 Opera omnia IT 12.

In all of EuLER’s earlier treatments of the subject, including even E443 (described above, pp.

323—325), which was written in 1772, he avoided mentioning the dependence of frequency upon the

cross-sectional form or area. In these earlier papers he madeit plain that for each band the modulus

was to be determined from experiment by use of (137) or of one case of (136).
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where & is the radius of gyration of the cross-section about the central line and ¢ is the

appropriate root of the appropriate characteristic equation.] EULER says that for a rectan-

gular beam we should take c= D, and the breadth plays no part; thus a non-square

rectangular beam has two different sequences of frequencies, according as the vibrations

occur parallel to one face or the other. For a circular beam, c = 3d, where d is the dia-

meter. [These results give the correct scaling laws, but I cannot understand what EuLER

now meansby c.|

We haveseen that the concept of a stress-strain relation, as distinct from a formula

for force as a function of elongation, may be traced back to JAMES BERNOULLI (above,

p. 106) ; also, that an elastic constant having the dimensions [Force]/[Area] and denoting

the stress produced by a definite strain occurred explicitly in EULER’s unpublished work of

1727 (above, p. 145) and in papers published by EULER and by Jorpan Riccatt in 1766

and 1767, respectively (above, pp. 384 and 388). [In effect, the modulus of extension, now

called ‘“Youne’s modulus’’, was in use, but its importance had not been grasped.] In 1776

KULER introduced it in precisely its modern sense). To discuss the elongation of a column,

EULER considers “a little cylindrical or prismatic wand from the same material.” For a

given attached weight, “the elongation gy ...is proportional to the length f of the rod,”

so that if we put » = /6, “there will then be a relation between the attached weight P

andthe letter 6, so that there is no further need to bring the length f into the calculation.

It is also plain that when the weight P increases, the letter 6 ought to increase also, until

finally the wand breaks. But so long as the elongations are small enough, it cannot be

doubted that the value of the letter 6 will be proportional to the weight P, since in all

tiny changes of this kind the effect is always proportional to the cause. Finally, it is also

evident that if the wand were twice as thick, then twice as great a weight would be re-

quired for producing the same elongation,” so that the weight P is always proportional to

g?, where g? is the thickness [?. e. area]. In order to eliminate the thickness, “instead of

the weight P we may conveniently substitute the weight of a volumeof the same material,

which therefore may be represented by a like wand whose length is p, so that P = pg’,

that is, so that P equals the weight of a column madeof the same material whose baseis g?

and whosealtitude is ».’”’ The assumed proportionality of P to 6 then assumes the form

(588) p=ho,

‘where / is a certain length, which will be the samefor all wands madeofthe same material,

since it depends neither on the length f nor on the thickness g?. Thus we shall be able to

regard this length h as a true measure of the tenacity or firmness of the material, what-

 

1) In E508,cited above, p. 358.
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ever be the case in question, so that a certain determined length h belongs to each and

every material.’

[As he usually did, EULER is measuring weights in units of length, so that in general

units p= P/(og) and h = E/(og), where # is what is now called ‘“Youne’s modulus.”

That is, EULER sees that a relation between stress and strain is independent of the dimensions

of the specimen, while a relation between force and extension is not. EULER is thus the

first to grasp the importanceof fully isolating an elastic property of a material as distinct

from elastic properties of particular specimens of a material. It is most regrettable that

Youne’s name has been attached to the modulus H, since YouNG’s concept, while worded

similarly to EULER’s, is more primitive as well as somewhat vague and does not enjoy

independence from the specimen), If any name in addition to EULER’s were to be

associated justly with the modulus of extension, it should be JAMES BERNOULLI’s.]

With this clear concept in hand, Evx=ris then able, at last, to give a clear and general

 

1) “The modulus of elasticity of any substance is a column of the same substance, capable of

producing @ pressure on its base which is to the weight causing a certain degree of compression, as the

length of the substance is to the diminution of its length.”’ This definition is given in § 319 of “‘Mathe-

matical elements of natural philosophy,’ A course of lectures on natural philesophy and the mechanicalarts,

London (1807), 2, 1—86 = Misc. Works 2, 129—140. LovE says of Youne’s definition, ‘“This intro-
duction of a definite physical concept, associated with the coefficient of elasticity, which descends as

it were from a clear sky on the reader of mathematical memoirs, marks an epoch in the history of

the aeienee”’; see p. 5 of Vol. 1 of A treatise on the mathematical theory of elasticity, Cambridge (1892),

p. 4 of the later editions. I hope I may be forgiven a pun: Youna’s epochal sky, as usual, was not

elear, for he had beclouded EULER’s enlightenment.

TODHUNTER, § 139 of op. cit. ante, p. 11, says of Youna’s work on elasticity, ‘The whole section

scoms to mo very obscure like most of the writings of its distinguished author; amonghis vast attain-

ments in sciences and languages that of expressing himself clearly in the ordinary dialect of mathe-

maticians was unfortunately not included. The formulae of the section were probably mainly new at

the time of their appearance, but they were little likely to gain attention in consequenceof the unat-

tractive form in which they were presented.” In fact, most if not all of the contents of YOUNG’s Sect.
IX, “Of the equilibrium and strength of elastic substances,” consists in rephrasing of results derived by

EULER or JAMES BERNOULLI or DANIEL BERNOULLI.

Pzanson, footnote to § 137 of op. cit. ante, p. 11, remarks that Youne defines his modulus as a

volume. This is not true: Perhaps following EutER, Youne defines his modulus as a column, 2. @. asa

mass of material, but unlike EULER he does not specify that it shall be a column of unit base. Thus,
aa was remarked by Pearson, EH is the quotient of the weight of Youne’s own modulus byits cross-

sectional area. Such a measure of elastic force, since it recognizes the concept of extensional strain but

not that of stress, was used, as we have seen, by virtually every writer on elasticity in the eighteenth

century, and Youne deserves no notice whatever for using it in his turn, some decades after EULER

had replaced it by the more useful modulusstill employed today.

While Prarson, § 75 of op. cit. ante, p. 11, remarks that EULER’s h in the paper weare discussing

"ig the constant now termed the modulus of clasticity,’? he does not see fit to mention this in his discus-

sion of the inadequate definition of Young.

18—20
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derivation of the basic formula (87), for the case of a straight beam"). [The idea, of course,

is the sameas that in his papers of 1727 and 1760 (above, pp. 144, 388). As in all of EuLER’s

work, the neutral line is taken tacitly as being on the concave side of the beam.] From

(87), it follows?) that the various formulae for the buckling loads of beams of similar

cross-section of typical linear dimension d always fall into the form

HI Kd‘

[This is the first appearanceof the full correct scaling law for buckling; cf. (426).]

EvLER compares the values of h |=| as determined by the buckling load and by

elastic extension. For the former, he uses the experimental data of MusscHENBROEK on

rupture of wooden sticks 4” or 0.7” square and 4' long, concluding from the results that

h = 2774980’. [If we assumethe density of the woodto be 40 lbs./ft.3, then this statement

is equivalent to H = 7.7 x 10° lbs./in.?, a respectable value.] EULER infers that if a load

equal to the breaking load were applied in tension, the resulting strain «e would be 0,00069.

[This seems to be thefirst occurrence of numbersindicating that very considerable stresses,

such as those occurring at rupture, may produce only minute strains.] EULER cites

MUSSCHENBROEK as asserting that according to his experiments, the breaking loads for

some woods vary as d*, for others, such as oak,in a lesser ratio (see above, pp. 152— 153).

Ever therefore recommends that proper corrections be inferred from “numerous ex-

periments’’.

Writing in 1778, EULER expresses a view toward rupture of columns which had been

adopted tacitly in his earlier work and is often shared today’): “‘...it is convenient to
 

1) CH. also § 21 et segg. of E510 (cited above, p. 363), where EULER writes (7 = A*e, where “e isa

line proportional to the absolute elastic force.”’

The discussion of the law of bending given by JorDAN Riccatt in 1782 (§§ ITI—IVofop.cit.

ante, p. 328) rests upon a somewhat obscure application of Hooxn’s law to the fibres of the bent beam.

Riccatti obtains results equivalent to
BAaHAD? ,

where H, the “rigidity” [7. e. ““Youne’s modulus’’], depends only on the material. This is correct, but it

falls short of (87). RiccatTr seems to be unaware of the work of EULER and JoHN III BERNOULLI on

this problem, since in 1782 he criticizes EvLER for taking C7 a d*, while from 1760 onward EULER

had corrected this to GJ x d! (cf. above, pp. 347, 388 and the text on this page).

2) In §§ 21—23 Evxer finds that @ = 1HD°®B for a rectangular cross-section, @ = 4aHd'

for a circular one, but these results are not new, having been obtained earlier by Parent, by EULER

himself, and by JoHN III BERNOULLI.

3) § 3 of E510, cited above, p. 363.

C}. the remark of v. Miszs, op. cit. ante, p. 212, that a small increase in load beyond the buckling

load causes a large deflection of the beam. Thus “... a rod subject to compressive load almost always

breaks as soon as the buckling load is exceeded.”
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replace a column in imagination by an elastic band of the samestiffness, for it is always

possible to conceive of an elastic band that resists bending as much as a columnresists

breaking, the whole difference being that the elastic band is really bent, while a column

acted upon by the same forces will break.”

[We haveseen that the full scaling law (587) for transverse vibrations of bars follows

at once from combination of two of EULER’s results obtained at different periods, but he

himself derived only the more special') rule (586). After years of uncertainty regarding the

correct dependence of @ on the cross-sectional form, using sometimes correct formulae and

sometimes incorrect ones?), he finally decided in 1776 that his old formula (87), was cor-

rect. His last paper on the vibrations of rods, however, had been written two years before.]

61. CouLomB’s experiments on torsion. [We have seen that in 1764 Eunmr by con-

sideration of a rather precarious discrete model had been led to infer that the torque of a

twisted rod is proportional to the sine of the angle of torsion. This work attracted no

notice.] The last contribution to the laws ofelasticity in our period is made by CoULOMB’s

experimental researches on torsion. These are first reported in his essay for the Paris prize

of 1777, Researches on the best means of making magnetic needles .. .*). Chapter III is

ealled “Experiments and theory on the force of torsion of hairs and silk threads...”

In the first experiment, a copper ball is hung from a silk thread. The torsional vibrations

are found to be isochrone, even when the amplitude is as much assix or seven full turns.

Hence “the forces of torsion... are necessarily proportional to the angle of torsion.”

According to the second experiment, the tension of the thread, caused by the suspended

weight, “does not at all influence the force of torsion. One must remark nevertheless thatif

the weight of the body is very much increased, and if the hairs or silk threads are ready

to break, this same law does not hold exactly. The force of torsion seems then much dimin-

ished, the oscillations are no longer isochrone, the times of the large ones then being much

 

1) The rule (586) seems to be limited to beamsof similar cross-section, while (587) exhibits the
precise attribute of the cross-section that is relevant. H.g., the breadth of a rectangular section is

irrelevant,

9) Bor example, the discussion of the dependence of (Z on B and D is better in E308, written by

1762 and containing ideas of 1727, than in E526, written in 1774, while shortly before writing E303

Eurmr had inclined toward the rule © co d’, which derived indirectly but ultimately from Gatmro

and was supported,if also indirectly, by MusscHENBROEK and other experimenters.

3) ‘“‘Recherches sur la meillewre maniére de fabriquer les aguilles avmaniées ...,’” Mém. math,

phys. divers savans 9, 165—264 (1780).

According to Hopp8,op. cit. ante, p. 11, CouLoms’s law of torsion was given or suggested by

J. MicHEt1, A treatise of artificial magnets, Cambridge, Benthem, 1750, 81 pp., but neither in this

pooklet nor in MIcHELL’s papers in Phil. trans. London have I been able to find a word concerning

torsion.

44
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greater than those of the small ones. It happensin this case that the thread, from too great

tension, loses its elasticity, much as a band retains its spring only so long as it is bent less

than a certain amount.” [J. e., for moderate tensions the torsional moment is independent

of the amount of tension, but large tension diminishes the torsional rigidity and also in-

validates the linear response.

In summary, with the exception just noted, we have

(590) T= —n0 ,

where 6 is the angle of torsion. Hence the equation of motion for the suspended bodyis#)

(591) I6=—n6,

where J is the momentofinertia of the body. Hence the frequency of torsionaloscillationsis

1 /

These formulae are discussed in more detail in CouLomB’s next paper, but also hereall of

his inferences from experiment rest upon use of (592). No static measurements are re-

ported.|

In the third experiment,‘‘the forces of torsion . . . for equal revolutions are in inverse

ratio to the lengths of the hairs.” In the fourth experiment, CouLoMB’s attempts to deter-

mine “how the diameter of the hairs influences the force of torsion’’ are inconclusive and

hence are not reported in detail, but he finds ‘‘generally enough” that the force of torsion

varies as d°, [but this is incorrect, as CoULOMB will shortly learn].

The subject is developed further in CouLoMB’s Theoretical and experimental researches

on the force of torsion .. .*). [This paper inaugurates a new style in the subject, relating at

length the numerical results inferred from a series of repetitions of the same experiment.

However valuable this may be from the standpoint of scientific method, it makes for dull

reading.] COULOMB writes that ‘‘the forces of torsion are proportional to the angle of tor-

sion, a supposition in accord with experiment when the amplitude of the angle of torsion

is not too great.” [Thus he has found a second circumstance that may invalidate (590)3).]
 

1) It is perhaps from this equation that Love, p. 4 of op. cit. ante, p. 403, concludes that Cov-

LOMB supposedthe torsional rigidity n to be proportional to the polar momentof inertia of the cross-

section. No trace of this ridiculous statement, which would make an J-beam stiffer in torsion than a cir-

cular rod of the same cross-sectional area, is to be found in either of CoULOMB’s memoirs on torsion.

2) ‘Recherches théoriques et expérimentales sur la force de torsion, et sur l’élasticité de fils de métal:

Application de cette théorie & V’emploi des métaux dans les arts et dans différentes expériences de physique:

Construction de différentes balances de torsion, pour mesurer les plus petits degrés de force. Observations

sur les loix de l’élasticité et de la cohérence,’’ Mém.acad.sci. Paris 1784, 229—272 (1787). Read in 1784.

3) In § VIII CovuLoms attempts to determine the oscillation when the force oftorsion is n6 + #(6),

where # is some function such as n6™.
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To test (592) and determine the coefficient », CouLOMB measures the frequency of

oscillation in thirteen circumstances for wires of iron or brass of different size and length

and subject to different stretching weights. He infers that the vibrations are isochroneif

the angle of torsion is not too large, and the frequency is independent of the tension in the

wire, providedit suffices to keep the wire taut. ‘Nevertheless, by many experiments made

with very great tensions relative to the force of the metal, it seems that great tensions

diminish or changea little the force of torsion. One perceives in fact that as the tension in-

creases, the wire elongates, its diameter diminishes, which should decrease the period of

oscillation.’? [While plausible, this explanation is insufficient. CouLomMB has observed an

effect of non-linear elasticity related to the Poyntrne effect.] ‘““The force of reaction of

torsion ought to be. . . in inverse ratio to the length of the wire .. .,”’ and that this is so,

CovuLome verifies by experiment. To consider the effect of the diameter, he says that “‘the

moment of the reaction of torsion should increase with the thickness of the wire in three

ways.” First, in a wire doubly thick there are “‘four times as many parts stretched by the

torsion’’; second, ‘‘the mean extension of all these parts will be proportional to the dia-

meter’; third, “‘the mean lever arm relative to the axis of rotation” is proportional to the

diameter. ‘““Thus we are led to believe, according to the theory, that the force of torsion . .

is proportional to the fourth power of the diameter,” and this, too, CouLoMB verifies by

experiment. His “‘general result,’’ then, is

d*

(593) TH= pw TT 6,

“where u is a constant coefficient which depends on the natural stiffness of each metal.”’

CouLoms determines [in effect] numerical values of » for iron and brass, with the result

Miron / Horass © 33 . |

In a long series of experiments CouLomBfinds that when a wire is twisted more than

a certain angle, [the elastic limit in torsion,] “displacement of the center of torsion”

[¢. e. permanent set] results. This set is “rather irregular’’ until a certain greater angleig

reached, after which it is about the sameforall angles, until the wire breaks. The ‘‘reaction

of torsion,” 7. e. the constant mu in (593), is little changed. Measurements of the decreases of

amplitude in successive vibrations show that these are unaffected by the size and shape of

the suspended body and henceare not dueto air resistance but to ‘‘the imperfect elasticity

of torsion’’ (§ II); for small enough amplitudes, they are proportional to the amplitudes.

Also, if a wire is twisted initially far beyond the elastic limit in torsion, the material be-

comes susceptible of far greater twisting before it breaks. This greater hardness can be

removed by annealing.

On the basis of these results, CouLoms decides that “the constituent parts of ...a
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metal have an elasticity that can be regarded as perfect ..., but they are joined together

only by coherence, a constant quantity absolutely different from elasticity.’ [Perhaps he

means that a body has an elastic modulus and an ultimate shear stress.] ‘In the first

degrees oftorsion, the constituent parts change their shape and are extended or compressed,

but the points where they adhere to each other do not change about, since the force neces-

sary to producethesefirst degrees of torsion is less considerable than the force of adherence.

But when the angle of torsion becomessufficient that the force with which these parts are

extended or compressed equals the coherence that unites the constituent parts, then those

parts can separate or slide upon one another. . . But if this slipping . . . causes the body to

compress, the extent of the points of contact increases, and the extent of the elastic range

increases also. However, since the constituent parts have a definite shape, the extent of the

points of contact can increase only to a certain degree, beyond which the body breaks...

Whatproves still more that the cause of elasticity must be distinguished from coherence

is that one can vary the coherencearbitrarily by the amount of heat treatment, but this

leaves the elasticity unaltered.”’

A wire that has been twisted until it nearly breaks can be magnetized to a greater

degree than an unworked one.

To confirm his ideas of elasticity and coherence, CoULOMB experiments with the deflec-

tion of a steel beam by a terminal load. Heat treatment has no effect whatever on theelastic

deflections. A cold worked bar remains perfectly but not linearly elastic up to rupture;

the same holds true of a bar that has been tempered, but it will bear a much greater load

before breaking; a bar that has been heated white hot will admit very great deflections for

imperceptible increase in load beyond a certain limit and will take on a permanent set.

[Thus Coutomsis so taken with the concept of shear stress that he wishes to found a

theory of materials upon it. It is not only because of his limited mathematical ability that

such a theory is beyond him, however, but even more because he fails to introduce the

concept of shear strain1). That CouLtoms does not attempt to explain torsion in terms

of extension shows his insight, at least, to be sound, but, since he makes no analysis of

the deformation, his theory of torsion remains necessarily a disconnected, isolated theory

of a single phenomenon.|

 

1) The account of CouLomB’s work given by Love,p. 4 of op. cit. ante, p. 403,is false.
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Part V. Evaluation

62. An evaluation from the eighteenth century: LAGRANGE’s Méchanique Analitique

(1788). Several parts of LaGRANGE’s celebrated treatise!) concern the problems whose

development we have traced. Not only is the Méchanique Analitique often taken as a final

summary and authority for what was known concerning mechanics before 1800, but also

its historical sections constitute the first history of the mechanics of continuousbodies and,

for mechanics more generally, include most ofthe references consulted by Macu,thusbeing,

doubly, the ultimate source of most of the historical beliefs commonly infused along with

instruction in mechanics today.

In LAGRANGE’s history of statics there is nothing concerning concrete problems or

continuous bodies. Neither here nor in any later passage is there a single attribution for

any of the static problems we have followed in the foregoing pages.

In contents, however, LAGRANGE’s entire statics consists in application of the prin-

ciple of virtual work to obtain equations for systems slightly more general than those

EULER had treated by direct methods or by the principle of minimum energy. The choice

ofwork functions is made easy by EULER’s researches on the latter principle (above, p. 218).

LAGRANGE obtains the differential equations of a linked system in space and determines

afterward the reactions against the constraints, 7.e., the tensions. A case of interest is that

ofthree masses when the middle oneis free to slide along the cord connecting the other two.

There followsa similar treatment of a continuous line subject to arbitrary forces; several

kinds of end conditions, some new,are included. Among the examplesis that of a catenary

on an arbitrary curved surface, an elegant problem “which would perhaps bedifficult to

treat by the ordinary principles of mechanics.” The possibility of extensile elasticity is

included.

LAGRANGEgives also a treatment of the skew elastica?). Some formal manipulations

 

1) Méchanique Analitique, Paris, Veuve Desaint, 1788. I take no account of the extensive changes

made in the second edition (2 vols., 1811, 1815 = Géuvres 11, 12), since these reflect to some

extent the influence of a new style and of new developments occurring after the close of the period I

have set, not arbitrarily, for study. An example of such a change is given above, p. 295, footnote.

2) The variational principle, of course, is evident from EULER’s principle (197A), the essential

thing being to calculate the virtual work done by a moment. While EuLER had faced this problem

squarely (above, p. 218), LAGRANGE avoids it: In Sect. V, § II, q 26 he writes, “Suppose the rod be

elastic in the point where the second bodyis, so that the distances [between the bodies] are constant,

but the angle formed by thelines of these distances is variable, and that the effect of the elasticity

consist in augmenting this angle... Let us call the elasticity H, and the exterior angle according to

which it acts, e; it is easy to conclude from what we have established in Sect. II that the momentof

tho force [¢. ¢ virtual work of the moment] must be represented by Hde...’’ Going back to Sect. I,

we find nothing relevant. All that is given there is the definition of the “moment” [virtual work] of

Part I,

Sect. I

Sect. V, § IL,
q 9 11—28

19

§ III

38—4l

g III,
q § 43—47
43



Part II,
Sect. I

Sect. V,
§ ITI, ¢ 27

35
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I do not understand lead to [EuLER’s] formula (518), in a form similar to (550), for the

curvature of a skew curve!). The resulting differential equation of the elastica is

(594) F— (AR’)' + (@ZR")"=0,

where A is a multiplier. Integration, vector multiplication by R’, and a second integration

lead to [EULER’s] form (519) ?).

LaGRANGE’s history ofdynamics mentions the paper E 40 as if it did no more than apply

Joun BERNOULLI’s method for finding the center of oscillation of a rigid body. Then,

“It would take too long to speak of the other dynamical problems that exercised the wits

of the geometers ... before the art of solving them was reducedto fixed rules,”’ and La-

GRANGE mentions condescendingly ‘“‘those problems that Messrs. BERNOULLI, CLAIRAUT,

and EULER proposed to each other” concerning linked or otherwise constrained systems.

D’ALEMBERT’s Traité de Dynamique, 1743, “put an end to this kind of challenges, by

offering a direct and general method,”’ etc.

LaGranGe himself obtains the general equations of motion of a discrete system by use

of the “Lagrangean equations’. He treats the small motion of a weighted string hung up

 

“powers” [forces] P,Q, R,... as being Pdp+Qdq+ Rdr+..., where p,q,7r,... are

“straight lines... placed in the directions of these powers.”’

1) In my copy an old hand has written, ‘But is not this angle [of contact] double in a curve of

double curvature?’’ This query is natural since there is no mention of the osculating plane or of any

idea equivalent to it. As always, there are no figures.

I take this occasion to give notice that my copy, which I intend to dispose of in a way such as to

make it permanently available, is of uncommonhistorical value by reason of hundreds of annotations

made by a careful student whom I judge to have been a German of about 1820. These annotations,

besides queries and explanations, give cross-references, references to other literature of the period, and

corrections of many errors, most ofwhich remain in the second edition and in the reprint in the Zwvres.

2) To derive the form (594), conversely, from EULER’s form, we begin with thestatical equations

generalizing EULER’s system (562) to three dimensions

(A) S’t+F=0,

(B) M’+RxS=0,

where, as in all work of the period, the applied couple L is assumed to be zero. Now identically

S= RR-S—Rx (RX x §),

= RR’. S + R’ x MW’ 9

by (B). Since (519) implies that M’ = (Z@R'y x R’, we have

S = RR’.S—Rx (R x (GRY) .

= R/R’.S + (ZGR') — RR’ (BR,

=—AR + (BRY,

say, where — 4 = R’-(S — (GR")). Substitution into (A) yields (594).
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at one end; of a string of this kind held taut by a weight M attached to a ring that can

slide smoothly on a vertical rod, and here he obtains the solution for the case when J is

infinitely greater than the sum of the other weights; of the loaded string (cf. above, pp.

265—269); of freely linked rods; of rods with elastic joints. He ends by saying, ‘‘this sub-

ject, at bottom, is merely curious,” but he goes on to obtain the equations (500) for finite

motion of a free flexible line in space; and he discusses the vibrating string and the heavy

chain. “These different examples include nearly all the problems that the geometers have

solved on the motion of bodies or of a system of bodies. We have selected them on purpose

do that the reader may the better judge the advantages of our method, in comparing our

solutions with those to be seen in the works of Messrs. KuLER, CLATRAUT, D’ALEMBERT,

etc., in which the differential equations are reached only by arguments, constructions, and

analyses that are often rather long and complicated. The uniformity and the speed of

progress of [our] method are what should principally distinguish it from all the others. . .”

Comparing LAGRANGE’streatise with the facts presented in the foregoing pages, we see

that, as far as concerns our subject, his histories are worse than none, and as for his pre-

sentation of the results, it would scarcely seem possible to write so many largely correct

pages yet give the readerso little profit. He who would learn the ideas of mechanics in the

Age of Reason and the phenomenathe theories were capable of predicting must look else-

where than in Laqranan’s book.

But this criticism grows from an attempt to share the common esteem of the Mécha-

nique Analitique as a great treatise similar in scope to Nrwron’s Principia. This, however,

it is not, nor, it seems, did Lagranges so intend it. In the famous preface we read, ‘‘No

figures will be found in this work. The methods I present here require neither constructions

nor geometric or mechanical arguments, but only algebraic operations, subject to a regular

and uniform process.” As this sentence indicates, the work is limited, with few exceptions,

to finding the differential equations of problems that fall within the scope of LAGRANGE’s

method, and this suffices to explain, on the one hand, the absenceof concrete results such

as determination of the shape of the elastic curves or of the frequencies and modes of a

vibrating bar, and, on the other, the absence of any mention of the concepts such as

stress, strain, elastic modulus, neutral line,etc.

Once we agree to look upon the Méchanique Analitique, not as a treatise on rational

mechanics but rather as a monograph on one methodof deriving differential equations of

equilibrium and motion, it becomes a successful and sometimes elegant work. Its usefulness

can be appreciated only by a person who has learned mechanics already and hence has

someidea of the significance and source of the work functions LAGRANGErather arbitrarily

introduces.

Granted its scope, estimates of LAGRANGE’s method must remain a matter of taste.

36
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Although LaGRANGE himselfnever succeeded in deriving by it anything ofany consequence

which had not previously been established by EULER’s direct methods, it must be conceded

that the concept of the potential function, while fruitless in our period of study, led in the

next century to new discoveries, particularly to GREEN’s and KELvIN’s concept of a

conservative elastic material.

In LAGRANGE’s own work is no trace of any new concept of mechanics. Rather, the

Méchanique Analitique reflects the extreme formalism of the moribund ancien régime.

Mechanics, however, will not be reduced to differential algebra*). To a reader of 1958

as well as one of 1788, almost any handful of pages from NEwton’s Principia contains

more of mechanics than LAGRANGE’s whole treatise. Despite D’ALEMBERT and LAGRANGE,

the mechanics of NEwToN as reformulated and extended by the BERNOULLIs and EULER

somehow madeits way into the next century. This we now seek to explain.

63. Some later evaluations: CHLapni (1802), T. Youne (1807), LovE (1892).

A juster estimate, though restricted to the domain of vibrations, was given by CHLADNI in

18022). As those ‘‘who have contributed most to the knowledge of vibratory motions,”

CHLADNI names DANIEL BERNOULLI, EULER, LAGRANGE, LAMBERT, and Riccatt. [If

it seems unfair that he passes over D’ALEMBERT,recall that CHLADNI is an experimenter,

while D’ALEMBERTdid not obtain a single result that might be compared with experiment.|

For the last three he names, CHLADNI reports only generalities®). But he recognizes

“DANIEL BERNOULLI on account of his researches on the vibrations of air in organ pipes

and. wind instruments, on the vibrations of a rod, which he wasthefirst to discover, on

the vibrations of a string, and on the composition of several kinds of vibration...” As

for EutER, “Someof his writings of little use to acoustics are mentioned everywhere and

are much better known than some of his much more instructive papers. In his Attempt at
 

1) It will be recalled that LAGRANGE attempted similarly to reduce analysis to differential

algebra. LAGRANGE’s talent for algebra was undoubtedly great, but in respect to fundamental! questions

of analysis or mechanics his work does not attain the logical and conceptual standards of his great

predecessors. Also, the proportion of non-trivial error in LaGRAN@E’s calculation is high compared

with other major mathematicians’. This body of error seems to have attracted little notice, so that

LAGRANGEis generally given credit for having solved several problems on which his work is largely or

totally wrong.
It is time for a reappraisal of the works of the French mathematicians, a reappraisal constructed,

in defiance of the généralités from the obituaries and the descendents of the obituaries, upon critical

study of the work done. I am confident such a reappraisal would much reduce the importance of

D’ALEMBERT and LAGRANGE, would yield a more realistic view of LapLaceE, MonGE, and FOURIER,

would raise Cuarraut and Poisson to their just level, and would reveal Caucuy as the towering

giant of his age and nation.

9) Pp. IV—V of Die Akustik, cited above, p. 329.

3) LaGRANGE is an “honorable veteran ..., useful for the higher mechanics and analysis...,

[who] deserves recognition also in several domains of acoustics...”
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a new theory of music, one of his earliest writings, and also in his Letters to a German princess

occur various things not in accord with nature; for example, his sequence of twelve tones...

is not usable in practise, and the manner in which he measures by degrees the greater or

lesser consonance of tonal ratios fails, for the most part, of confirmation by experience’).

On the other hand, in several lesser known papers. .., cited on various occasions in this

book, he has made known very manytheoretical discoveries fully agreeing with experiment

on the vibrations of strings, rods, air, etc., so that it would be most unjust to lay upon a

man who has dono so muchthe least reproach because of some few isolated incorrect asser-

tions, many of which he himself later corrected, and others, such as the determination of

the vibrations of a ring or a bell ..., which he would probably have corrected, had he

lived longer... Rather, we should accept his many contributions with thanks and

respect,””

[It is curious that even in 1802 EuLER was better known in mechanics for his few

errors than for his many discoveries.]

An estimate representing a different viewpoint toward mechanics, that of the English,

who had done nothing in rational elasticity or the theory of vibrations since the work of

T'avtor in 1713, is furnished by the famous ‘‘Catalogue” of T. Youne, published in 1807).

This is an eccentric performance indeed. With a great show of learning, some thousands

of works on the most miscellaneous subjects are listed. The elaborate classification bears

so little relation to the true contents of the papers that one cannot be sure what is cited

and what is not. For acoustics the list is fairly complete, but in regard to elastic and

flexible systems more generally, it is nearly vacuous. For work on the catenary prior to

1743, only GRucoryis cited! There seems to be nothing on the position of the neutral line

or on torsional elasticity. How little Youne understands all work on strength since GALI-

LEO's, excepting only CouLomB’s, is shown by the summary on pp. 173—174. It is curious

that he includes, though without attribution, Joun IJ] BrRnovtui’s dubious theory of

the rupture of a beam of triangular cross-section.

YouNG marks with an asterisk a relatively small number of works having “superior

merit and originality.’ For our subject, these are

1. ARISTOTLE (no reference)

2. Mrensenne’s Harmome Universelle

3. GALILEO’s Discorsz

1) Such matters pertain to music rather than to science and thus are primarily expressions of

taste or tradition. We remark, however, that CHLADNI’s opinions are not shared byall. First, EULER’s

measure of accord is praised by HELMHOLTZ,loc. cit. ante, p. 124, who considers it just except that it

disregards combination tones, which had not been observed when EULER wrote (cf. above, p. 271).

Second, EULER’s scale of twelve tones is used in some modern music.

2) Pp. 87—520 of op. cit. ante, p. 403.
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LAGRANGE’s first two papers on the vibrating string

ELLICOTT on resonance

Riccatti’s paper on the vibrations of bars

CovLomps’s work on strength (but in reference to walls and architecture)

Fuss on frameworks

fe
P
N

SP
S
R

CHLADNI’s Enideckungen

An obelisc, denoting work which is “‘erroneous or unimportant’’, is put against

1. LaHtre’s paper of 1709

2. EvnEer’s paper E136 on the propagation of pulses

Dozens if not hundreds of EuLEr’s papers are listed, but no notice is given to them’).

The author awarded the most asterisks of all is RoBIson, an influential Scottish engineer

and prolific writer of surveys for the Encyclopaedia Britannica.

It is an entirely different matter in the lectures preceding the catalogue. There,

with the excuse that the catalogue follows, few references are given. The content,

as far as our subject is concerned, consists in obscure and often defective proofs of pro-

positions translated into Youne’s dialect?) from writings of EULER.

Thus it cannot be claimed that Youne had not seen EULER’s papers or, in respect to

acoustics, that Youne did not appreciate the results. Quite aside from his obvious favor

toward utilitarian studies,it is difficult to conjecture any excusable reason for what Youna

did.

Since the great developments in the theory of elasticity were to come in France and

in England, it was most natural that the next generations of researchers should look to the

treatises of LAGRANGE and YOUNG as summaries of preceding achievement?). Thus arose
 

1) It is curious to note the works of EULER on other subjects to which YounNGgives an asterisk:

E33, on music

E96, on machines

E116, on oars

E179, on SEGNER’s wheel

E194, on machines

H 249, on gears

E 260, (false) theory of fluid friction

E289, Rigid Bodies

E330, on gears

E342, Integral Calculus

2) Cf. footnote 1, p. 403.

3) Specifically, the next great advances in continuum mechanics were made by FRESNEL,

Caucuy, Navier, and Poisson in the period 1820—1845; these men were trained on LAGRANGE’s

Méchanique Analitique. The new British school, initiated by KELLAND, GREEN, STOKES, and KELVIN
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the gross neglect of nearly all of the work of the BERNoULLIs and EvLER. Much of what

they achieved remained unknown and wasrediscovered; since most of what was trans-

mitted by LagrancEe and Youne was presented with no reference to its discoverers, it

was taken by later students as common knowledge or attributed to one or the other of

those two writers. The one major exception is the work on simple modes of vibration, which

passed into the Germanliterature through the just if summary description of CHiapnt.

The famous ‘Historical Introduction” to Lovn’s Treatise+) deserves remark because

it has been read more than has any other historical evaluation written in the last half

century. It rests heavily on TopHuntER & Prarson’s History, criticized many times in

the foregoing text, but Lovz seems to have consulted some of the sources, since he adds

some errors of his own*). Despite these specific faults, Lovi’s essay displays a hearty

enthusiasm for the older writers and is a worthy effort toward a commendable purpose:

Weare surprised to find such an attempt at all, especially when it concludes that?) ‘“‘the

history of the mathematical theory of Elasticity shows clearly that the development of

the theory has not been guided exclusively by considerations of its utility for technical

Mechanies. Most of the men by whoseresearchesit has been founded and shaped have been

more interested in Natural Philosophy than in material progress, in trying to understand

the world than in trying to make it more comfortable.”

Love finds Hooxn’s law the greatest landmark in our period. After mentioning

GatILEo’s work as raising the question of the neutral fibre, LOVE asserts that Maritorrsz

located it as the central fibre and that CouLomMB foundits ‘‘true position’’, though he does

not specify where that position is. CoULOMB’s theory of beams “‘is the most exact of

those which proceed on the assumption that the stress in a bent beam arises wholly from

the extension and contraction of its longitudinal filaments, and is deduced mathematically

from this assumption and HooKksz’s law.”’ A partly false description of CoULOMB’s work

on shear and torsion follows‘).

Jamrs BERNOULLI’s paper of 1705, DANIEL BERNOULLI’s variational principle, and

KULER’s determination of elastic curves and buckling loads are summarized. LAGRANGE

 

from 1898 onward, drew its inspiration mainly from the French writers just named and from FOURIER,

as did the later Italian school, while the German revival found most of its reference material in
French and English works rather than in any indigenousliterature.

1) Cited above, p. 403. In thefirst edition a historical introduction appears at the beginning of

each volume. In the later editions the two are condensed into one. The description of the older work is

better in the first edition, particularly in Vol. 2 (1893).

2) In particular, those in respect to CouLoms’s work; cf. above, pp. 406—408.

3) This passage first appears in the second edition (1906).

4) Cf. our footnotes 1, p. 406, and 1, p. 408. Cf. also Lovn’s estimate of Youna, quoted above,

p- 403.
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is said to have determined the strongest form of column, but we are not told what that

form is.

After a few words on the BERNOULLI-EULER theory of transverse vibrations of rods,

EULER’s faulty theory of bells and Jamzs II BERNOULLI’s faulty theory of plates are

described in greater detail.

This is all that LovzE reports concerning our period for study. He concludes, “‘At the

end of 1820 the fruit of all the ingenuity expended on elastic problems might be summed

up as—an inadequate theory of flexure, an erroneous theory of torsion, an unproved

theory of the vibrations of bars and plates, and the definition of Youne’s modulus. But

such an estimate would give a very wrong impression of the value of the older researches.

The recognition of the distinction between shear and extension was a preliminary to a

general theory of strain; the recognition of forces across the elements of a section of a

beam, producing a resultant, was a step towards a theory of stress; the use of differential

equations for the deflection of a bent beam and the vibrations of bars and plates, was a

foreshadowing ofthe employmentofdifferential equations of displacement; the NEwronian

conception of the constitution of bodies, combined with Hooxn’s law, offered means for

the formation of such equations; and the generalization of the principle of virtual work in

the Mécanique Analytique threw open a broad path to discovery in this as in every other

branch of mathematical physics. Physical Science had emerged from its incipient stages

with definite methods of hypothesis and induction and of observation and deduction, with

the clear aim to discover the laws by which phenomena are connected with each other,

and with a fund of analytical processes of investigation.”

While nearly every specific historical statement LovE makes is misleadingly inac-

curate if not false, and while his fund of sources is miserably meagre, his general conclu-

sions are much the sameas those anyintelligent reader would draw from thefuller material

made available in the present work. In the next andfinal section, rather than repeating

these generalities, I draw up an organized list of facts in summary of the successes and

failures of the great researches which have spoken for themselves in the foregoing pages.

64. A modern evaluation. We give separate summaries for analysis, for geometry, and

for mechanics, and in each of these welist not only positive achievements andclear failures

but also the steps toward concepts and methods that becamefruitful in the next century or

even later.

I, Analysts. Prior to 1730, researches on continuum mechanics applied mathematical

techniques already developed in other subjects, notably in geometry and in the mechanics

of point masses. Starting with the researches on vibrating systems by DANIEL BERNOULLI
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and Ever,this situation was completely inverted. From then on until the end of the cen-

tury, continuum mechanics gave rise to all the major new problems of analysis.

First, the theory of vibrations of an elastic band led at once to EULER’s general solution

of linear differential equations with constant coefficients (1739). Before this, ““BESSEL’s

equation’, both for real and for purely imaginary argument, had been set up andsolved,

and by the end of the century much of its formal theory had been completed by EULER:

the analytic and logarithmic solutions, ‘““PoIsson’s integral’, complete asymptotic expan-

sions, characterization of the reducible cases, calculation of roots.

The problems of the vibrating string of non-uniform density and of the buckling of a

column of varying cross-section led to a study of the general linear differential equation of

second order, but little regarding the nature of its solutions was learned.

The problem of proper frequencies and proper functions, opened byDANIEL BERNOULLI’s

work on the heavy hanging cord (1733), was solved in several typical cases. The mechanical

context madeit plain that the frequencies should be real and distinct, and this was asserted

both for the function J,(x) and for the ‘““LaguERRE polynomials’’, but proof was lacking

except in the case of the four simple transcendental equations arising in connection with

the vibrations of a rod. In these cases and also for the function J, it was found bytrial

that the number of roots of the proper functions increases with the index; 7. e., that the

proper functions are oscillatory. While EULER solved correctly two formidable problemsfor

the buckling of a heavy vertical column (1776—1778) as well as calculating the proper func-

tions and proper frequencies for square and circular membranes (1759), these cast no further

light on the general theory.

Totally lacking was any hint of the orthogonality of the proper functions; hence

not a single expansion, and a fortiori, not a single general solution of an initial value or

boundary value problem in terms of proper functions was obtained, nor can it justly be

said that such solutions were foreshadowed, unless the unsupported claims of DANIEL

BERNOULLI (1753 onward) may be so interpreted.

The one exception was the discrete problem of the loaded string, leading to a finite set

of differential-difference equations of second order. In a major special case, the problem of

initial values was solved by EULER (1748); his explicit solutzon was extended to the fully

general initial value problem by LacRance (1759—1761). Both EULER’s method and the

second and simpler of LAGRANGE’s two methodsrest on the orthogonality relations for

finite trigonometric sums and solve incidentally the problem of trigonometric interpolation

for equidistant data1). These results were not appreciated until well into the next century.

The problem of determining the behaviorof the elliptic functions of real argument was
 

1) EvLer’s solution is for the case when the function is zero at every point except one of the ends,

whereit is given an arbitrary value.
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raised by JAMES BERNOULLI’s elastica (1694) and was solved completely by EULER (1743).

All essential properties of the inflectional and non-inflectional forms were rigorously deter-

mined. Through accidental discovery of a special property of the rectangular elastica

(1738), EULER was led ultimately to the addition theorem for elliptic functions (1775).

The phenomenon of buckling caused EuLER to study a non-linear problem of proper

numbers and to prove that, for this problem, those numbersare the sameas their counter-

parts for the linearized problem (1743). The entire relation between solutions of the cor-

responding linear and non-linear problems may be read off from his results; in particular,

interpretation of them by LaGRANGE (1770, 1773) gave the first example of bifurcation of

equilibrium. These ideas were to remain scarcely noticed for a century. The related question

of stabihty was not raised in our period.

Variational techniques, particularly the formalism of LAGRANGE (1760), were exer-

cised on the equations of motion of complex systems, but these latter cannot be said to

have had any major influence on the theoryitself.

But the great gift of continuum mechanics to analysisis the theory of partial differential

equations. While partial derivatives had occurred here and there before 1745, a calculus of

partial derivatives was lacking. This was supplied by EULER in a series of papers on

mechanical subjects (1748—1766)+), in which changesof all variables, inversion of partial

derivatives, and manipulation of functional determinants were explained, so that by 1788

it could fairly be said that some dozen mathematicians could use the new calculus?),

though it remained the most abstract domain of pure mathematics.

The first partial differential equation subjected to intensive study?) is D’ALEMBERT’S

wave equation (1746). D’ALEMBERT obtained a solution in terms of two functions that he

 

1) For the most part, on hydrodynamics. See also E44, “De infinitis curvis ejusdem generis.

Seu methodus inveniendi aequationes pro infinitis curvis eyusdem generis,’’? Comm. acad. sci. Petrop. 7

(1734 /35), 174—189 (first pagination), 180—183 (second pagination) (1740) = Opera omnia I 22,

36—56. Presentation date: Prior to 12 July 1734. Thisis the first paper on partial differential equations.

It concerns the system oe = P, - = Q. The main theorem,givenin § 6, is soy == ae .

2) Thelist is nevertheless short: EULER, D’ALEMBERT, LAGRANGE, LAPLACE, MONGE (with reser-

vations), Cousin, and a few younger men. EULER’s attempts to gain interest for the new theory by

questions proposed for the Petersburg prizes seem to have evoked some response but scant under-

standing.

3) Ever had derived a partial differential equation for a geometrical problem in 1734 and Cuat-

RAUT had derived the condition of integrability for a differential form in 1740; see p. XXI of my In-

troduction to L. EULER1I Opera omnia II 12 and footnote 6, pp. LXXXIV—LXXXVof Vol. IT 18.

D’ALEMBERT derived the equation for the uniformly heavy cord in 1743, and Euuer derived a com-

plicated system for finite motion of the taut string in 1744 (above, pp. 226—228). However, these

earlier researches cannot fairly be said to give a just idea of what the theory was to become.
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regarded as in some degree arbitrary. The wave equation is of hyperbolic type’). EULER

saw at once that it has non-analytic solutions (1748), the singularities of which are deter-

mined by the boundary, and, eventually, solutions representing travelling disturbances

(1764—1765) whicharereflected from the boundaries; this observation led him to the method

of wmages. He created the concept of piecewise smooth function of a real variable (1748

onward) and showedgreat skill in joining together functions defined overfinite intervals so

as to obtain the explecit solutions of many initial value problemsof considerable generality.

EULER insisted that discontinuous initial data, resulting in moving singularities, are admis-

sible (1760). He realized that the differential equation need not besatisfied at boundary

points, and he proposed smoothing processes and other devices so as to incorporate poly-

gonal solutions within the formal structure of differential and integral calculus. In one

case (1760), he replaced a requirement of continuity by an integrated or smoothed con-

dition.

None of this work of EvuLER’s met any immediate response. In fact, it was at first

rejected by all other mathematicians, on insubstantial grounds; as later experience showed

the need for non-analytic solutions, the formalistic views held at about the time of his

death allowed use of such solutions on equally insubstantial grounds and with little or

no thought regarding their meaning. EULER’s concept of real function cameinto general

use only in the early nineteenth century, and his view of discontinuous solutions of hyper-

bolic equations was not adopted until Rremann’s time.

EKvuLsR directed nearly all his researches toward solutions in arbitrary functions. While

he derived manyinfinite classes of equations for which such solutions can be exhibited.),

and while in some cases his methods have since proved useful and have been rediscovered

in recent times, this approach we now consider of minor importance.

No general solution was obtained by any other method in our period. In particular,

the methodofseparation of variables, introduced by D’ALEMBERT and employed frequently

by EULER, remained abortive from lack of expansion theorems. The proper functions for

vibration problems remainedisolated, special solutions, which could indeed be superposed

to form more general ones, but no rational method for adjusting the coefficients was

known.

To justify some of the formal procedures used, nothing more than a uniqueness theorem

was needed, but of such a theorem there is no trace.

IT. Geometry. Much of the differential theory of skew curves was created by EULER

 

1) A few results concerningelliptic equations were obtained in the course of hydrodynamical

researches, but these give little insight toward general problems. For these and other researches on

partial differential equations, see my Introductions to L. EuLER1 Opera omnia II 12, 18.
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so as to study the bendingofan elastica in space (17741775). In particular, he introduced

the fundamental magnitudes of second order, the osculating plane, and the binormal.

He used vectorial concepts fluently.

Research on curved surfaces in our period does not appear to have grown from

mechanical problems’).

The remarkable results in pure mathematics we have seen to havearisen from prob-

lems of flexible or elastic bodies in the period from 1730 to 1780 are the almost single-

handed creation of EULER?).

ITI. Mechanics*). The mechanicsof flexible or elastic bodies grew up about four very

old problems:

1. The vibration of a string, deriving from classical antiquity

2. The equilibrium of an elastic band, first mentioned by JoRDAN DE NEMORE (13th C.),

who claimed to prove that a terminally loaded band takes on the shape of a circular

are

3. The catenary problem, attacked by LEonarDo Da VINCI (before 1520) in terms of a

discrete model

4. The breaking of a beam,first studied by GALILEO (c. 1606, published 1638).

GALILEO’s derivation of scaling laws, right or wrong, for rupture and vibration, served

as a persuasive example of what can be gotten from mechanical theories of materials;

such results have been expected as a part of the product of every theory of media from

that day to this.

 

1) Cf. A. SpEIsER, Vorwort des Herausgebers, L. EULERI Opera omnia I 28.

2) The important results by others may belisted:

1. DANIEL BERNOULLI’s perception of the sequence of proper functions and proper numbers for

oscillatory systems

2. D’ALEMBERT’s solution of the wave equation in partially arbitrary functions

3. LAGRANGE’s completion of EULER’s results on finite trigonometric interpolation

3) This summaryis limited to mathematical theory. A list of the main experimental results prior

to 1727 was put in footnote 2, p. 139. Those between 1727 and 1788 were:

1. MUSSCHENBROEK’s discovery of the law of buckling in compression (1729)

2. DANIEL BERNOULLI’s rough confirmation of the existence, frequencies, and nodalpositions of the

simple modes as predicted by his theories of the oscillation of weighted strings, continuous

heavy ropes, and rods (1733—-1742)

3. Coutoms’s laws of linear and non-linear torsion (1777, 1784)

4, JORDAN Riccati’s and CHLADNI’s detailed confirmation of the BERNOULLI-EULER theory of free

transverse oscillations of bars (1782, 1787)

5. CHLADNI’s figures of nodal patterns and tables of tones of free vibration of circular and square

plates (1787)

Note that there was a gap of nearly fifty years, 17291777, in which no result of any importance in

our subject was discovered by experiment.
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The concept of perfectly flexible line led to the first successful solutions of problemsof

finite deformation: the suspension bridge (BEECKMAN [?] (1615), HuyaEns (1646), Par-

DIES (1673)), the catenary (LzEIBniz, JouN BERNOULLI, HuyeeEns (1690)), and others.

JOHN BERNOULLI (1690—1691) was the first to calculate correctly the resultant force

acting on a differential element of a curve. JAMES BERNOULLI derived two forms of the

general differential equations for a flexible line subject to arbitrary loading (1691—1704).

He gave four approaches to the problem: balance of forces in rectangular co-ordinates,

balance of forces intrinsically resolved, balance of moments, and the principle of virtual

work. Concerning static deflection of a flexible membrane, nothing was done.

The correct differential equation for equilibrium of a uniform elastic band subject to

terminal load was derived and reduced to quadrature by JAMES BERNOULLI (1691).

Daniet BERNOULLI obtained the linearized solution for nearly normal load (1735). The

quadratures for finite deflection were evaluated explicitly, and the possible bent forms were

characterized and classified exhaustively by EuLER (1743), who gave somesolutions also

for naturally curved rods and for an inverse problem.

Hunnwas led to recognize the phenomenon of buckling of an uniform column and to

derive a formula for the exact critical load which applies in all cases (1743). He himself dis-

cussed the pinned-pinned and clamped-clamped cases (1743, 1778), and the clamped-free

case was remarked by JoHN III BERNOULLI (1766). While LAGRANGE (1770) noticed the

multiplicity of bent forms corresponding to higher critical loads, no theory or even conjec-

ture as to which form is assumed was brought forward. Using the linearized theory, EULER

calculated the first few critical loads and bent forms for a heavy uniform vertical elastica

clamped at its base and free at its top, and he calculated also the first critical load for

such a column whenit is pinned at its top (1778). Earlier KuLER had obtainedthecritical

loads for various columns of non-uniform cross-section (1757); from his result for the conical

case, it follows that the strongest conical frustum of given volumeis the cylinder, and

that a pointed column hasno strength. LAGRANGE gave an incorrect analysis, leading to an

incorrect result, regarding the strongest form of column of given height and volume

(1773).
Mistorians of the last century put upon Hooxe’s linear elastic relation (1675) an em-

phasis which reflects the predilection of physicists of the same period for linear theories.

Hooxe’s law was known to all researchers in the eighteenth century but, from the con-

trary evidence of experiments, was given little credence. As Jounw II BERNOULLI (1736)

and Ever (1742, 1776) observed, on general grounds such a linear formula may be

expected as an approximation valid for small elongations according to virtually any elastic

theory, and this view is held today. Almost all work was directed toward problems of

large deflection. The distinction between large deflection and large strain was not grasped.
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Muchof the early theory, following the precedent set by GALILEO, was compared with

experiments on rupture rather than on elastic deformation; it was shown conclusively

that HooxKz’s law does not hold all the way up to failure. Theory, however, had provided

a result which might have been, but was not, brought out in decisive confirmation of

Hooke’s law for then immeasurably small strains. This is EULER’s final scaling formula for

the frequencies of transverse oscillation of rectangular bars (1776), which was amply

tested and found good by CHLADNI (1787), for this formula rests essentially upon the fact

that the flexural stiffness of bars of like material is proportional to D°B, which, as EULER

had shown, is a consequence of the linear law for the interior tensions’).

The first hint that very great stress may produce but tiny strain comes at the end of

our period with EULER’s remark that for wood a tensile stress equal to the buckling stress in

compression would producea strain of only 0,07°% (1776). Special non-linearelastic relations

were proposed by JAMES BERNOULLI (1695) and others, but were given no support. Funda-

mental studies sought to avoid any specific elastic hypothesis.

Only in this light can we understand the researches on the neutral frbre, the existence

of which was implied by BEEcKmaN (1620) and several later authors. JAMES BERNOULLI’s

attempt to provide a theory for locating the neutral fibre without assuming anyparticular

law of variation of the tensions over the cross-section is a failure (c. 1696). PARENT gave a

correct condition (1713): The area under the curve of tensions must equal the area under

the curve of pressures, as was rediscovered by CouLoMB (1773). Both JAMES BERNOULLI

and PARENT saw that according to Hooxkk’s law, the neutral frbre must be the central fibre,

but Parent regarded the resulting formula for the breaking strength as unsubstantiated by

experiment, hence the supposition (7.e. Hooxkk’s law) as not right. These profound

researches have been little understood by historians, who often imply with condescension

that later work in three-dimensional elasticity in some measure improves upon them, but

this is not true at all, for Sr. Venant’s theory, too, since it rests on HookzE’s law,places

the neutral fibre at the line of centroids, precisely the conclusion that JAMES BERNOULLI

and Parent struggled to avoid! Jonn III Brrnoviii found fair agreement between

theory and MussCHENBROEK’s experiments whenthetension is linear and the neutral line

is the central line (1766); CouLOoMB, contrariwise, inferred that, just before rupture, more

of the beam is in tension than in compression (1773).

JAMES BERNOULLI tried to prove that the location of the neutral fibre is immaterial

(1705), but this was recognized at once as false. While the position of the neutral fibre has

a marked effect on the stiffness of a given cross-sectional form, it has none whatever on
 

1) It has not been proved that no other law wouldyield this formula, but a general stress-strain

relationimpliesthat W/7= EBr*f(D/r), whence amore complicated law of vibration may be expected

to follow.
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the totality of elastic curves obtainable with varying loads. Thus EULER’s persistent error

in placing the neutral fibre on the concave side does not invalidate any of his results con-

cerning elastic curves. Furthermore, these results are in no way revised by the three-

dimensional theory of St. VENANtT, which leads to the differential equation of the linearized

BERNOULLI-EULER theory for the curve, though allowing in the solution an extra arbi-

trary constant, which represents the rotation of the cross-sections. In regard to problems

of finite deflection of beams, toward which nearly all the researchesofthe eighteenth century

were directed, the three-dimensional linear theory of the nineteenth century is a retreat.

Lzrpniz showed how to integrate the tensions over the cross-section of a loaded beam

so as to calculate the moment (1684); after an abortive attempt by JAMES BERNOULLI

(c. 1696), EULER succeeded in taking into account the curvature as well as the tension,

thus deriving James Brrnoutu’s law of bending from Hooxz’s law for the longitudinal

elongation of the fibres (1727, 1760, 1774).

That strain, or change in length per unit length, rather than mere elongation should

appear in the law of elastic stretching was understood by BEECKMAN (1630). In GaLILEo’s

theory of rupture (1638) there appears, in effect, a constant or modulus having the dimen-

sions of stress, or force per unit area; however,it is the breaking stress in tension rather than

an elastic stress. But it is in a deep work of James BERNOULLI (1705) that we encounter a

real framework for one-dimensional theories of elasticity: For a given material, stress is. a

function of strain. Eischewing, as usual, any particular elastic law, JAMES BERNOULLI

does not actually introduce an elastic coefficient, but if we translate his words into equa-

tions, we are led to the tangent modulus of non-linear elastic laws.

The importance of an elastic modulus, independent of the form of the particular

specimen of elastic material, was not felt so long as only strictly one-dimensional problems

were considered; it came into its own with EULER’s derivations of the law of bending from

the law of extension, mentioned above. While what is now called Youwe’s modulus was

introduced in this earliest work of KULER (1727) and was used occasionally by him and

by others in later years, it was only in 1776 that he gave a formal definition and explanation

of it as the elastic stress that would produce unit elastic strain in any specimen of a given

material.

The greatest quantity of definite results was obtained in linearized vibration problems.

After notable progress by BEECKMAN (1614—1615), TayLor finally succeeded in deriving

from a dynamical theory the formula for the fundamental frequency of a vibrating string

(1713). Through experience with special cases!), DANIEL BERNOULLI (1733 onward) came

to believe that a vibrating system has as many independent kinds of harmonic oscillation
 

1) The weighted string (1733), the heavy hanging cord (1733), the transverse motion of an elastic

bar (1735).
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as it has degrees of freedom. In these simple modes, all members of the system occupy

their equilibrium positions simultaneously, and each vibrates at the same frequency, the

proper frequency of that mode. For a given system, the proper frequencies are discrete, and

a mode corresponding to a greater proper frequency has more nodes than does one corre-

sponding to a lesser one. The overtones of sounding bodies arise from the higher modes.

Any numberof these modes, with any small amplitudes, may be set into vibration simul-

taneously, nor do they interfere with one another (1741). BERNOULLI asserted that any

vibratory motion may be resolved into component simple modes (1753 onward), but he gave no

meansofeffecting such a resolution and noproof, either mathematical or physical, that it is

possible. While his idea was rejected by all contemporary theorists, it found favor with

M. YouNG, CHLADNI, and other experimenters later in the century, and in the hands of

FOURIER and other mathematicians of the next it was developed into a method of great

value.

EvULER, LAMBERT, and JoRDAN RiccatTt calculated the proper frequencies and nodal

ratios for the simple modes of the six kinds of transverse vibration of bars and for the

vibration of a heavy hanging cord with more than sufficient accuracy (1743—1782).

All of DaNTEL BERNOULLI’s work and the earliest work of EULER was done without

differential equations of motion. The historical evidence shows that NEwron’sprinciples,

however comprehensive they seemed to Macu, did not put into the hands of Nrewron’s

successors concepts sufficient to set up the equations of motion for compound or continuous

systems. Through what now seems laborious groping from case to case, EULER finally

succeeded in 1744 in determining the general equations of motion for the loaded string and

for the chain of rigid links. In 1748 he calculated all the proper frequencies for longitudinal

vibration of an elastic cord loaded by n equal and equidistant weights, or, equivalently,

for small transverse oscillation of the loaded string, a problem which had been solvedin special

cases byHuyGEns (1673) and JoHN BERNOULLI (1727). EULER solved theinitial-value prob-

lem when only the end massis displaced (1748); LAGRANGE then solved the generalinitial-

value problem (1759). These results furnished justification of DANIEL BERNOULLI’s views,

but only for the particular discrete systems considered.

The first partial differential equation of motion, that for small displacement of the

uniformly heavy cord, was published by p’ALEMBERT in 1743. By a passageto the limit,

Ever found correct but complicated partial differential equations for finite motion of

the continuous string (1744). Several authors had come close to mechanical principles

sufficient to determine the small motion of a string, and in 1746 D’ALEMBERT derived

the linear wave equation, essentially by exploiting one of the intermediate results published

by Taytor. Ever devoted a long series of researches to this equation (1748—1765).

He solved the general initial-value problem and proved that all solutions are pervodic with
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the period 7 of the lowest mode; that certain special solutions, among which are the higher

modes, have periods which are submultiples 7'/k of that period; that a necessary and suf-

ficient condition for such a solution is that it have k—1 nodes; that the speed deter-

mined by the fundamental period is also the speed of propagation of pulses in both direc-

tions down the string; that such pulses are reflected, inverted in form, from the ends. He

justified one aspect of DanieL BERNOULLI’s postulated principle of coexistence by the

derived principle of superposition, applicable whenever the governing partial differential

equations are linear. KoLER and DanrEL BERNOULLI found solutions also for several

kinds of non-uniform strings.

Lacranar attempted to derive EvLER’s solution for the uniform string by a passage

to the limit from the solution for the loaded string (1759). While his analysis is faulty, it

can be corrected,

As a result of the accumulated mechanical experience of the preceding seventy years,

EULER in 1750 proposed his farst principles of mechanics, which form the turning point for

methodsof setting up the equations of motion. Here,for thefirst time, what are now called

“NewrTon’s equations” are laid down as the first law governing all mechanical problems,

whother discrete or continuous. In a form often used by Eur, they allow us to derive

equations of motion from equations of equilibrium by adding the reversed accelerations

to the assigned forces per unit mass; this is one of the three different laws now called

‘“p’ALEMBERT’s principle.”

These “first principles” enabled Evuur to write down at once the partial differential

equations governing the motion!) of every system for which the statical equations were then

known: the elastic band, the heavy cord, the flexible line, etc., and in 1759 he obtained the

equations of small motion ofa flexible membrane. From 1750 onward,but not before it, each

mechanical problem becomes a problem in the theory of differential equations, ordinaryorpartial

according as the numberofdegrees offreedom is finite or infinite, of second order in the time.

DANIEL BERNOULLI conjectured the form of the elastic potential or stored energy

of a band and predicted that it should be an extreme in equilibrium (1738); EULER

verified this (1738, 1743). In his studies connected with the principle of least action, EULER

extended BERNOULLI’s principle to the case when distributed forces act on the band (1748);

to this end, he identified the stored energy as the work done by the bending moment.

Jamus Riccati (c. 1754) suggested that at least a part of the work done in deforming any

elastic body is stored, available for reversing the deformation, but he gave no theory. La-

GRANGE in his researches on the principle of least action formulated a variational principle

for the motion of loaded or continuousperfectly flexible lines (1761), but only in 1788 did
 

1) Every student of modern mechanics is aware of the pitfall here, but it does not come up in

our history.
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he succeed in including flexural elasticity in his formalism. While Lagrancx’s approach

did not lead to anything in our period of study, it proved of great use in the nineteenth

century for work on conservative systems. GREEN was to foundhis theory offinite elastic

strain upon LAGRANGE’s methods, applied to a general stored energy, and the credence

given to variational principles in modern physics is extreme. Caucuy, however, entirely

ignoring LAGRANGE’s approach, built his theories of materials upon direct laws of force,

as EvuLER had done before him. While modern physics has followed the tradition of La-

GRANGE, Modern continuum mechanics works almost exclusively in the tradition of EuLER

and CaucuHy.

Historians often refer to the faulty theory of vibration of plates proposed by Jamzs II

BERNOULLI (1787), sometimes also to EULER’s faulty theories of vibration of curved rods

(1760, 1774). These theories deserve no notice, being simply wrong. Correct mechanical

principles were at hand and were applied correctly. The failures here reflect no lack of

“physical intuition” but only insufficient geometry: in the onecase, a differential description

of the small deflection of an inextensible curve, in the other, a proper theory of the curv-

ature of a surface. .

But of the developments in our period, the most important are those pointing toward

the general theories of stress and strain. The steps are short and far apart. GALILEO’s hint at

the tension in a suspended rope carrying a weight (1638) was generalized by PaRpiss’

assertion that when a flexible string is hung up by two points, the force exerted by one

part upon its neighbor acts along the tangent (1673). This is the tension of a perfectly

flexible line, explicitly recognized and clearly defined at last by James BERNOULLI

(c. 1696) and Hermann (c. 1712). Still far ahead lies the interior stress. A single remark of

PARENT in 1713 shows that he realized that such stress need not be normal to the surface

on whichit acts; 7. e., shear stress is possible, but this remark lay unnoticed.

The concept of shear force was evolved by EuLER in 1771 after nearly fifty years of

struggle to gain a theory based on the balance of forces yet general enough to include both

the elastica andthe catenary. In 1728 he had achieveda unification in terms of the balance

of moments, but only by two pieces of luck: In the perfectly flexible case, balance of mo-

ments implies balance of forces, and in the case of the elastica, the additional information

supplied by the balance of forces is not necessary to determine the form of the curve.

Finally he saw that the action of one part of a plane deformable line upon its neighbor

is equipollent to a force and a couple. The force, which is the modern stress resultant, is

a vector not necessarily tangent to the line. With this concept, EuLER achieved the general

statical equations for a plane deformable line (1771).

In the next year CouLOMB revived PARENT’s concept of shear stress and actually

wrote the three conditions of equilibrium for the stresses acting upon a cross-section, but
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CouLoms’s work,like PARENT’s, came nowhere near a theory ofelasticity, since deformation

was neglected. CouLomB showed that the maximum shearstress in simple tension is that

which acts upon a plane making an angle of 45° with the direction of tension.

Still more important for the future was EULER’s concept of fluid pressure in hydro-

dynamics. There the stress vector appears within three-dimensional bodies of arbitrary

form, but is restricted to be normal to the surface on which it acts!).

Thus all the elements of the theory of stress in three dimensions had been created:

. The dimensionsof stress are [force]/[area];

Stress is defined upon an imagined boundary dividing the material into two parts;

C
c

n
w
=

Stress is a vector or vector field equipollent to the action of one part of the material

upon another;

4. The direction of the stress vector, as far as purely mechanical principles are concerned,

is not restricted;

but they appeared in different contexts, in each of which at least one of the fouris violated

by additional restrictions. -

Not only stress but also a general theory of strain is needed for theories of materials.

While extensional strain, a simple concept, the growth of which we have already followed,

is an element in such a theory, so also is shear strain, not a trace of which occurs in the

researches we havestudied. Neither physical intuition nor experiment was what was needed

here; rather, as both EuLeR and CHLapntsaid, it was want of differential geometry that

blocked the way to theories of deformable surfaces and solids. While in logical order the
geometry of motion is preliminary to the mechanical laws whichselect one motion out ofall

the possible ones, in the history of mechanics correct dynamical principles have nearly

always preceded the kinematical analysis necessary to exploit them.

Here we meet a surprise, for the six components of the three-dimensional infinites-

imal strain tensor, including the shear strains, were introduced and carefully interpreted

by EULER in 1766—not in connection with elasticity, where they were needed, but in a

research on the kinematics of fluids, where they served no immediate end 2).

Thus the material was all at hand. This in no waylessens the originality of CaucHy,

who within forty years of KuLER’s death was to create the whole general structure of

continuum mechanics. Rather, to reforge the tradition of his forebears is the greatest

originality a man can have. This EULER proved in respect to JAMES BERNOULLI, and this

CavcHyis to prove in respect to EULER.
 

1) Development of this concept occupies a major part of my Introduction to L. EULERI Opera

omnia IT 12.

2) Cf. p. XIII of the Introduction to L. EULERI Opera omnia IT 18.
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For the results in mechanics, I have thought it superfluous to estimate the relative

achievements of the various geometers. But such an estimate may be inferred from one of

a somewhatdifferent kind. If we except a few pages each from Huycens’ notes and from

the first memoirs of LAGRANGE and CoULOMB, everything of permanent value known in

1788 may be learned from EvLEr’s papers, which incorporate, simplify, and deepen the

results of all earlier researches.

In surveying all these brilliant individual achievements in the theories of flexible or

elastic bodies, we are driven to ask why, when EvLzER had succeededin 1752 in creating a

general theory of perfect fluids in three dimensions, nevertheless after many more years he

failed to reach a general theory of elasticity. Making fair allowance for the greater compli-

cation of elasticity in some regards, I cannot believe it to have been the main reason.

Recall that, with some exceptions, special theories of fluids led only to error or frustration.

To succeed in hydrodynamics, the only hope lay in abandoning a one-dimensional ap-

proach. But for elastic or flexible bodies, one-dimensional theories led to one triumph

after another. It was the brilliant successes of the special theories that blocked the way to

the general theory, for nothing is harder to surmount than a corpusof true but too special

knowledge. What CaucHy was to achieve was sufficient distance from all this material,

both in theory and in experience, to cast aside the accidents and draw out the essentials.

TH OHA
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147, 152-153, 160, 167, 171, 173, 185,
190-191, 199, 201, 203-204, 208, 215,
917, 294, 350-351, 356-357, 368-369,
380, 387, 390-391, 395, 402-403, 412,
415, 418, 421-423, 426-427

BERNOULLI, JAKOB II (1759-1789) 84, 269,

340-341, 390, 416, 426

BERNOULLI, JOHANN (1667-1748) 11, 50-

51, 57, 68, 66, 68-69, 72-79, 82, 84-87,
89, 96, 115, 132-137, 139-140, 142,
146-148, 151, 165-166, 169, 171-174,
176-177, 179, 182-186, 192, 201, 223-
224, 231, 234, 236, 242, 244-245, 251-

252, 257, 265, 281, 285, 295, 368-369,
401, 410, 412, 415, 421, 424

BERNOULLI, JOHANN If (1710-1790) 84,

171-172, 181, 390, 421

BERNOULLI, JOHANN U1 (1744-1807) 84,
93, 117, 148, 165, 254, 257, 276-278,
303, 307-308, 347-349, 352, 385-390,
399, 404, 413, 421-422

BERNOULLI, NIKOLAUS 1 (1687-1759)

83-84, 102, 108
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BERNOULLI, NIKOLAUS II (1695-1726) 84,

114, 115

BERNSHTEIN, 8. A. 11

BESSEL, FRIEDRICH WILHELM (1784-1846)

157-159, 164, 235, 307, 333, 417

Brreu, THomas (1705-1766) 175

BisHop, RicHARD EVELYN DONOHUE

(1925-) 326, 328

BLONDEL, FRANCOIS (1617-1686) 35, 41

BODENHAUSEN, RUDOLF C. Baron von

(2-1698) 63, 70-71

BottTHIvS (c. 480-524) 15-16

BoLtzMann, Lupwia (1844-1906) 187

Bopp, Karu (1877-1934) 282

LA BORDE, JEAN BENJAMIN (1734-1794)

123

BORELLI, GIOVANNI ALFONSO (1608-1679)

82, 243

Born, Max (1882-) 212

BovuLLiauD, IsmMAxEL (1605-1694) 32

Boyz, RoBert (1627-1691) 62, 120, 151

BREDAU, CLAUDE (c. 1550-2?) 29

Brown, D. M. 200

BULFFINGER, GEORG BERNHARD

(1693-1750) 60-61, 94, 103-105,
113-114, 182

BuRKHARDT, HEINRICH FRIEDRICH KARL

(1861-1914) 11, 135, 139, 165, 188, 238,
243, 247, 266-267, 270, 2738, 297, 298,

374

BurNeEY, CHARLES (1726-1814) 123

Camus, CHARLES ErtenneE Lovts (1699-
1788) 117

CARATHEODORY, CONSTANTIN (1873-1950)

88, 202

Carré, Louis (1663-1711) 116, 125-126

Cavucuy, Auacustin-Lovis (1789-1857)

12, 48, 383, 398, 412, 414, 426-428

CHarves IT or Eneuanp (1630-1685)

54-55

CHATELIER, JEAN (fl. 1625) 29

CHLADNI, ERNST FLORENS FRIEDRICH

(1756-1827) 125, 143, 322, 329-330,

334-342, 412-414, 420, 422, 424, 427

CHRISTOFFEL, ERwin Bruno (1829-1900)
290-291, 296-297

CLAIRAUT, ALEXIS CLAUDE (1713-1765)
174, 178, 219, 222-223 262, 274, 276,
298, 303, 369, 410-412, 418

CLAIRAUT, JEAN-BAPTISTE (?—c. 1765) 150

CLAUSEN, THOMAS (1801-1885) 355

CoHEN, Morris RAPHAEL (1880-1947)
15-16

CouLOMB, CHARLES AUGUSTIN (1736-1806)

93, 109, 1138-114, 342, 396-401, 405-408,

413-415, 420-426, 428

Cousin, JACQUES ANTOINE JOSEPH (1739-
1800) 418

CRAMER, GABRIEL (1704-1752) 75, 78, 91,

99, 107, 248

Crew, Henry (1859-1953) 34

DELAMBRE, JEAN BAPTISTE (1749-1822)
263-264

DERHAM, WILLIAM (1657-1735) 151

DESAGULIERS, JEAN THEOPHILE (1683-

1744) 59

DESCARTES, RENE (1596-1650) 12, 24-25,

27-30, 32, 42, 45, 61, 109

DrpERoT, DEentis (1713-1784) 123,

249-243, 249

Dries, HERMANN (1848-1922) 15-17



INDEX OF NAMES 43]
 

DIRIcHLET, PETER Gustav LEJEUNE

(1805-1859) 219

DRABKIN, [sRAEL EDWARD (1905—) 15-16

DunHEM, PIERRE MAURICE MARIE

(1861-1916) 18, 151

ELLIcort, JOHN (?-1772) 175-176, 414

ELLIS, CHARLES ALTON (1876-) 124, 200

Enestrom, Gustav (1852-1923) 142, 165

Bucur (c. 350 a.c.) 15

Evupoxvus(c. 370 a.c.) 15

Ever, LEoNHARD (1707-1783) 11-12, 14,
90, 26, 29, 43, 49, 67, 79, 86-87, 93,
109-110, 117, 124-125, 127, 129, 136-
150, 153-155, 163-182, 184-187, 190-
196, 199-238, 241-257, 259-334, 339-
354, 350-383, 385-388, 390-397, 399,
401-405, 409-428

Fasri, Honors (1606-1688) 41, 89

FELDHAUS, FRANZ MARIA (1874-1957) 13

FonTENELLE, BERNARD LE BOVIER

(1657-1757) 109, 242

Forpr, Daryxiy (1902-) 13

Formety, JEAN HENRI SAMUEL

(1711-1797) 273

FOURIER, JOSEPH (1768-1830) 278, 290,
909, 419, 415, 494

FRACASTORO, GERONIMO (1483-15538) 22,

v4

FRANK, PHILIPP (1884-) 291

FRIEDRICH II OF PRUSSIA (1712-1786)

275, 280

FRESNEL, AUGUSTIN JEAN (1788-1827) 414

Funk, CHRISTLIEB BENEDICT (1736-1786)

329

Fuss, Nicouaus (1755-1826) 316, 345,

359, 367-368, 414

Fuss, Paut Hernricn (1797-1855) 114,

165, 221, 257

GALILEO GALILEI (1564-1642) 11-12, 20,

29-93. 25, 30, 34-45, 47-48, 52, 56,
58-62, 64, 72, 76, 79, 89, 102-104,
106-107, 109-110, 112, 122, 131, 139-
140, 145, 151-153, 175, 214, 243, 245,
349, 355, 368, 399, 401, 405, 413, 415,

420, 422-423 426

GASSEND, PIERRE (1592-1655) 24, 32

GERMAIN, SOPHIE (1776-1831) 321

GILLE, BERTRAND (1920-) 13

GIRARD, ALBERT (?—1633) 24

GOLDBACH, CHRISTIAN (1690-1764) 114

GoLovin, MicHagr. (?—1790) 321

GRANDI, GUIDO (1671-1742) 41

S’ GRAVESANDE, WILHELM JACOB STORM

VAN (1688-1742) 116, 117, 151, 368

GREEN, GEORGE (1793-1841) 383, 412,

414, 426

GREENHILL, ALFRED GEORGE (1847-1927)

363

GREGORY, Davip (1661-1710) 80, 85-86,

140, 401, 413

GRISHKOV, N. 347

GuNTHER, ROBERT WILLIAM THEODORE

(1869-1940) 53-55, 57-58, 120

Hay, ALFRED RvuPERT 13

HAMEL, GEORG (1877-1954) 187

Hamitton, 8. B. 368

HAUvKSBEE, Francis (?-c, 1713) 151

HAUTEFEUILLE, JEAN DE (1647-1724) 14

Hur, J. P. G. von (1792-2) 363

HELMHOLTZ, HERMANN Lupwia FERDI-

NAND VON (1821-1894) 124-125, 280,

413



439 INDEX OF NAMES
 

HERMANN, JAKOB (1678-1733) 80, 82,

86-87, 111, 132, 136, 140, 147, 149, 150,
190-191, 280, 395, 426

HERON OFALEXANDRIA (2504.0. ?—-754.D. 2)

13, 16-18, 20, 27, 153

Hirt, PHILIPPE DE LA (1640-1718) 59,
118, 120, 126, 175, 414

HoLpEr, WirLiam (1616-1698) 58

HoOLMYARD, ERic JOHN (1891-) 13

Hooks, Rospert (1635-1703) 12, 14, 53—

58, 60-62, 78, 80, 89, 94, 98, 104-106,

117, 137, 139-140, 142-145, 153, 276,

294, 385, 387, 399, 404, 415, 421-423

Lt’H6PITAL, GUILLAUME FRANQOIS DE

(1661-1704) 74, 85, 89-90, 242

Hopkins, WILLIAM (C. 1793-1866) 400

Hopper, EpMunp (1854-1928) 11, 289, 405

Hunt, FREDERICK Vinton (1905—) 15, 18

HvyYGENS, CHRISTIAAN (1629-1695) 14, 41,

44-53, 56, 61-62, 65-73, 77, 80, 85, 88,
90, 96-98, 101, 105, 109, 127-128, 131-

132, 139, 157, 159, 175, 184, 252, 265,
296, 369, 421, 428

HvuYGENS, CONSTANTIN (1596-1687) 47,
175, 226

Huyerns, LoDEWIsK (1631-1699) 41

JAUCOURT, LOUIS DE (1704-1780) 358-359

JOHNSON, DANIEL Cowan (1915-) 326,

328

JORDANUS de Nemore(fl. 13th C.) 18-19,

420

JUNG, JOACHIM (1587-1657) 44

JURIN, JAMES (1684-1750) 117

Jusxevic, A.C. 271

KELLAND, Puiiip (1808-1879) 414

KELLER, JOSEPH BisHor (1923—) 355-356

Ketvin, WILLIAM THomson, Baron

(1824-1907) 414

KEPLER, JOHANN (1571-1630) 191, 258

KRAFFT, GEORG WOLFGANG (1701-1754)

150, 174-175, 193

KUERTI, Gustav 10

Kuursin, Ivan Petrovic (1735-1818) 359

LAGRANGE, JOSEPH-LOUIS (1736-1813)

11, 142, 170, 188, 190-191, 219, 252—
253, 261, 263-273, 275, 278, 280, 285-
289, 295-296, 298-299, 301-302, 307-

309, 311, 316-317, 330, 333, 339, 341,

343, 349-355, 369, 370-374, 390, 409-
412, 414-418, 420-421, 424-426, 428

LAGUERRE, EDMOND NICOLAS (1834-1886)
163, 235, 417

LAMBERT, JOHANN HEINRICH (1728-1777)

261, 282, 321, 324-326, 368, 399, 412,
424

DI Lana TERz1, Francesco (1631-1687)

89

LAPLACE, PIzERRE SIMON DE (1749-1827)
992-294, 412, 418

LEEUWENHOEK, ANTONY VAN (1632-1723)
61

LEIBNIZ, GOTTFRIED WILHELM (1646-

1716) 44-45, 50-51, 56, 59-66, 68-73,
75-76, 78-80, 84, 86-91, 93-94, 96-98,

102-105, 107, 109-112, 124-128, 137-
138, 140-141, 145, 169, 244, 248, 328,
398, 401, 421, 423

LENOBLE, ROBERT 29

LEONARDO DA VINCI (1452-1519) 19-22,

26, 31, 40, 44, 122, 153, 420

Levi-Crvira, TunLio (1873-1941) 187

LEXELL, ANDERS JOHANN (1740-1784)

322, 369
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LINDQUIST, JOHANN HENRIK (1743-1798)

328

LINSENBARTH, H. 88-89, 200, 208, 213

LIOUVILLE, JOSEPH (1809-1882) 311-312,

353

Lovrn, Augustus Epwarp HovcH

(1863-1940) 321, 403, 406, 408, 412,

415-416

Lupwic, H. 33

Macu, Ernst (1838-1916) 409, 424

MACLAURIN, COLIN (1698-1746) 150, 180,

203, 252-253, 369

MATRAN, JEAN JACQUES D’ORTOUS DE

(1678-1771) 124-125

MARCHETTI, ALESSANDRO (1633-1714) 41

Maniotre, Epmé (1620-1684) 47, 59-61,

98, 104, 106-107, 111-112, 114, 120,
127, 151-152, 368, 415

Marsu, Narcissus (1638-1713) 118

MAUPERTUIS, PIERRE-LOVIS-MOREAU DE

(1698-1759) 217-218, 273

Mepicr, ANTonIo DB’ (1576-1621) 34

MEHMKE, RUDOLF (1857-1954) 94

Mercer, FRANK 123

MERSENNE, MARIN (1588-1648) 20, 23-33,
35—37, 41-42, 44-48, 52, 58, 63, 65, 109,
118, 121-125, 137, 139-140, 152, 154-
155, 220, 249-943, 971, 290, 368, 413

MICHELL, JOHN (?-1793) 405

MIKHAILOV, GLEB KONSTANTINOVICH

(1929-) 142-143

Miszs, RicHarD Von (1883-1953) 212,
291, 404

MonGgE, GASPARD (1746-1818) 412, 418

DE MontmortT, PIERRE REMOND

(1678-1719) 66, 75, 77, 89

Moopy, Exnzest ADDISON (1903-) 18

Moray, ROBERT (co. 1610-1673) 175

Morean, Morris Hicky (1859-1910) 16

MorHor, DANIEL GEORG (1639-1691)

119-120

MULLER, GERHARD FRIEDRICH (1705-1783)
271, 275

Mounx, Max MiIcHAEt (ob. c. 1920) 244

MUSSCHENBROEK, PIETER VAN (1693-1761)
41, 89, 128, 150-153, 213-214, 347,
359-360, 389, 400, 404-405, 420, 429

NAVIER, CLAUDE-LOUIS-MARIE-HENRI

(1785-1836) 414

Newron, Isaac (1643-1727) 12, 56-57,

61-62, 85-86, 96, 140-141, 162, 187-188,
223, 231, 233-234, 238, 242 248 251—
253, 264, 411, 416, 424-425

Nicoue, Frangois (1683-1758) 125

Nixonal, E. L. 212, 345

Nix, Lupwie Lro Micuasen (1865-1904)
18

Nosue, WitttAM (?-1681) 118-119,
122

OLDENBURG, HENRY (1615[?]-1677) 53,

120

OLDFATHER, WILLIAM ABBOTT (1880-—) 200

Paast, R.(fl. 1638-1685) 175

Parpiss, Ienace-GastTon (1636 or 1638-
1673) 50-53, 59, 70-72, 74, 77, 79, 81,
89, 139, 421, 426

PARENT, ANTOINE (1666-1716) 60, 80, 86,

93, 103, 105, 109-114, 138, 145, 152,

234, 378, 389, 396, 398-399, 401, 404,

422, 426

PaRsons, WILLIAM Barciay (1859-1932)

19-20
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Pearson, Karu (1857-1936) 11, 41, 61,
91, 106, 114-115, 211, 351-352, 354-355,
363, 365, 403, 415

Prrresc, NicoLtas-CLAUDE FABRI,

Seigneur de (1580-1637) 31

PreTTEeR, NIcHOLAS(fl. before 1682) 119

PHILON of Byzantium (180 A.c. ?—1 A.D.2)

13, 16-18, 58

Piaotr, THomas (?-1686) 118-119, 122

PLANA, GIOVANNIANTONIOAMADEO (1781—
1865) 351

PLUMER, Jopocus(fl. before 1682) 119

Porsson, SIMEON-DENIS (1781-1840) 165,

307, 334, 412, 414, 417

PoyYNTING, JOHN HENRY (1852-1914) 407

PREMONTVAL MARIE-ANNE-VICTOIRE PI-

anon, Mme de (1724—1767) 242

PyTHAGORAS (c. 580-500 a.c.) 15-16, 36

RAMEAU, JEAN PHILIPPE (1683-1764)

123-125, 196, 280

RAYLEIGH, JOHN WILLIAM StRouTT, Lord
(1842-1919) 248, 311, 326, 328, 330

DE REAuMUR, RENE ANTOINE FERCHAULT

(1683-1757) 58, 154, 389

REISS, JOZEF WLADYSLAW (1879-) 23

RIcCCATI, GIORDANO (1709-1790) 115-116,

125, 280-281, 322, 324, 328-329, 333-
334, 384-385, 402, 404, 412, 414, 420, 424

Riccati, Jacopo (1676-1754) 94, 114-116,
137, 164, 306, 383-385, 425

Riccl, MicHEL ANGIOLO (1619-1692) 41,

44, 53

RIEMANN, GEORG BERNHARD (1826-1866)

419

Rivet, ANDRE (1572-1651) 29

RoBerts, Francis(fl. 1692) 120-121, 294

Ropinson, Henry W. 54

RoBIson, JOHN (1778-1843) 414

ROUSSEAU, JEAN JACQUES (1671-1741)

245

ROUSSIER, PIERRE JOSEPH (1716-c. 1790)

123

RUMFORD, BENJAMIN THOMPSON, Graf v.

(1753-1814) 152

SAFI AL-Dtn (d. 1294) 18

St. VENANT, ADHEMAR-J.-C. BARRE Comte

DE (1797-1886) 100, 401, 422-423

DE SALvIO, ALFONSO 34

SAUVEUR, JOSEPH (1653-1716) 81-82,
118, 121-124, 129, 137, 143, 155, 159,
242, 245, 250, 265, 271, 312, 377

Scumipt, WILHELM (1862-1905) 18

SCHRAMM, ERWIN ADALBERT (1856-2)
16-17

SEGNER, JOHANN ANDREASV.(1704-1777)
276, 377

SERRET, J.-ALFRED (1819-1885) 354

SINGER, CHARLES JOSEPH (1876-) 13

DE SLuSsE, René FRANCOIS, Baron

(1622-1685) 175

SMIRNOV, VLADIMIR IVANOVIC (1887—) 142

SPEISER, ANDREAS (1885-) 10, 243, 376,

420

Spress, Lupwie Otro (1878-) 10, 66, 85,
148, 165

Stevrin, SIMON (1548-1620) 24, 45-46, 51,

68, 81, 367

STOKES, GEORGE GABRIEL (1819-1903)
297, 414

STRAUB, HANS (1892-) 10

Sturm, JacoB Kart Franz (1803-1855)

311-312, 3538

TARTAGLIA, NIccoLA (Cc. 1506-1559) 18
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TARTINI, GIUSEPPE (1692-1770) 271, 280

TAYLOR, Brook (1685-1731) 51, 80, 82,

86-87, 129-132, 134-137, 139-140, 142-
148, 150, 158, 161, 169, 172, 180, 191,
223, 234, 237-238, 240-242, 245, 248-

249, 251, 255-256, 260-261, 264, 273,
280, 290, 294-295, 332, 339, 413, 424

THEON of Smyrna (c. 125 a.p.) 16

TIMOSHENKO, STEPHEN P. (1878—) 11, 109,

347, 397, 401

TODHUNTER, [Isaac (1820-1884) 11, 938-94,

100, 106, 174, 188, 238, 321, 351, 401,

403, 415

TORRICELLI, EVANGELISTA (1608-1647)

41, 44, 47, 58

TRUESDELL, CrirrorD AMBROSE III

(1919-) 172, 188, 230, 248, 246-247, 251,

203, 273, 284, 286, 301, 305, 322-323,

332, 334, 391, 395, 398, 401, 418-419,
427

TSCHIRNHAUSEN, EHRENFRIED WALTER,

Graf v. (1651-1708) 65

Usurr, Arnporr Payson (1883—) 13-14

VARIGNON, PIERRE (1654-1722) 60, 82,
90, 102-103, 105, 107, 110-112, 127,
137-138, 145, 234, 367-368, 3938-399,

401

VILLARD DE Honnecovurt (fl. 1250) 13

DE VILLE, ANTONIO (fl. 1633-1635) 34

DE VILLIERS, CHRISTOPH (Cc. 1595—betw.

1661 and 1670) 32

Virruvius Potxtio, Marcus (Ist c. A.D.)

16

VIVIANI, VINCENZO (1622-1703) 41

DE WAARD, CORNELIS (1879—) 24, 28

WALLER, RICHARD (Cc. 1650-1715) 57-58

Watts, Joun (1616-1703) 49, 118-119,
121, 125, 242, 245, 294

Watson, GEORGE NEVILLE (1886—) 159,
307, 320

WEINBERGER, HANS FELIX (1928—-) 355

WiiaMs, TREvor Intryp (1921-) 13

WINTER, EDUARD (1896-—) 271

WooDHOUSE, ROBERT (1773-1827) 88

WREN, CHRISTOPHER (1632-1723) 54-55

Youna, MatrruEew (1750-1800) 28, 262,

294-295, 306, 424

Youne, THomas (1773-1829) 144-145, 248,
297, 329, 368, 384, 388, 402-404, 412
416, 423

ZENDRINI, BERNARDINO (1679-1744) 118,

126-128


