
1832 J. Opt. Soc. Am./Vol. 73, No. 12/December 1983

Discrete Hartley transform
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The discrete Hartley transform (DHT) resembles the discrete Fourier transform (DFT) but is free from two charac-
teristics of the DFT that are'sometimes computationally undesirable. The inverse DHT is identical with the direct
transform, 'and so it is not necessary to keep track of the +i and-i versions as with the DFT. Also, the DHT has
real rather thaii complex values and thus does not require provision for complex arithmetic or separately managed
storage for real and imaginary parts. Nevertheless, the DFT is directly obtainable from the DHT by a simple addi-
tive operation. In most iniage-processing applications the convolution of two data sequences f, and f

2 
is given by

DHT df [(DHT of fl) X (DHT of f2)], which is a rather simpler algorithm than the DFT permits, especially if images
are. to be manipulated in two dimensions. It permits faster computing. Since the speed of the fast Fourier trans-
form depends on the number of multiplications, and since one complex multiplication equals four real multiplica-
tions, a fast Hartley transform also promises to speed up Fourier-transform calculations. The name discrete Hart-
ley transform is proposed because the DHT bears the same relation to an integral transform described by Hartley
[R. V. L. Hartley, Proc. IRE 30,144 (1942)] as the DFT bears to the Fourier transform.

A RECIPROCAL TRANSFORM

Given a real waveform V(t), we can define the integral
transform

4(co) = (27r)-1/2 V(t)(cos cot + sin cotjdt, (1)

where the integral exists. The waveform may be complex but
will be taken as real in what follows and may contain gener-
alized functions, such as delta functions and their derivatives.
Clearly i(co) is a sum of double-sided sine and cosine trans-
forms from whose reciprocal properties one readily deduces
the inverse relation

V(t) = (27r)'1/2 
X_ t(co)(cos wt + sin cot)dco. (2)

These relations, which were presented by Hartley, 1 have never
disappeared from electrical literature (see, for example, Ref.
2, p. 60, and Ref. 3, p. 178) and reappeared recently in a
mathematical context.4 The direct and inverse relations are
identical in form, and, if the given waveform V(t) is real, so
is its transform i(o).

To connect the transform +(X) with the Fourier transform
S(w) of V(t), it pays us to adopt the following definition:

S(w) = (2-x)-1/2 f V(t)exp(-iwt)dt

and its inverse

V(t) = (27r)1/2 f S(w)exp(icot)dco.

Let (w) = e(w) + o(co), where e(U) and o(co) are the even and
odd parts of iP(w), respectively. Then

e(co) = [kt(w) + #(-w)]/2 = (27 r)j1/2 3| V(t)cos wtdt

and

o(co) = [if'(w) - +(-X)3/2 = (27r)-1/2 X' V(t)sin wtdt.

Given Qt(co), we may form the sum e(X) - io(co) to obtain the
Fourier transform S(M):

S(w) = e(co) - io(w) = (27r)-1/2

X f|' V(t)(cos cot - i sin wt)dt. (3)

Thus we see that from (co) one readily extracts the Fourier
transform of V(t) by simple reflections and additions.

Conversely, given the Fourier transform S(w), we may ob-
tain +I(U) by noting that

,(co) = Re[S(w)] - Im[S(co)]. (4)

Thus from S( ) one finds + (X) as the sum of the real part and
the sign-reversed imaginary part of the Fourier transform.

NOTATION AND EXAMPLE

As an example, take

V(t) = exp(-t)U(t),

where U(t) = 1 (t > 0) and U(t) = 0 (t < 0). Then

S(c) = (2r)- 1 /2(1 - ij)/(j + co2)

and

i(w) = (2rt)-1/ 2 (1 + c)/(1 + C0
2).

Figure 1 shows V(t) on the left-hand side and the Fourier
transform S(coM on the right; the real part of the transform is
a dashed line, and the imaginary part is a dotted line. The
imaginary part has been reversed in sign. Hartley's trans-
form, shown by the solid line, is simply the sum of the real part
and the sign-reversed imaginary part of S(w). It is real and
clearly unsymmetrical. From its even and odd parts, we could
readily reverse the construction to recover the real and
imaginary parts of the complex-valued Fourier transform
S(w). For historical continuity, we have retained the elegant
factors (27r)1 /

2 used by Hartley. But in what follows we drop
these factors and move to the more familiar notation, in which
27r appears only in the combination 27r X frequency.
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Fig. 1. Left, a waveform V(t); right, the real part of the spectrum
S(W) (dashed line), the sign-reversed imaginary part of S(w) (dotted
line), and Hartley's transform of V(t) (solid line).

THE DISCRETE HARTLEY TRANSFORM

Now consider a discrete variable T that is like time but can
assume only the N integral values from 0 to N - 1. Given a

function f (r), which one could think of as the representation
of a waveform, we define its discrete Hartley transform (DHT)

to be

N-1
H(v) = N- 1 E f(r)cas(21rvr/N), (5)

T=O

where casO = cos 0 + sin 0, an abbreviation adopted from

Hartley. For comparison, the discrete Fourier transform F(v)

is

N-1
F(v) = N- 1  

E f(T)exp(-i27rVT/N).
T=0

The inverse DHT relation is

TV = 0 1 2 3 4 5 6

f(T) = 20 15 6 1 0 0 0

H(v) = 4 3.56 2.49 1.32 0 0.12 0.01
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f ( ) =0.5,
/0)-lexp(-r/2),

r = 0

which represents the earlier function of continuous t by N =

16 equispaced samples. The value at r = 0, since it falls on

the discontinuity of V(t), is assigned as [V(0+) + V(0-)]/2
= 0.5. The result for H(v), which is shown in Fig. 2, closely
resembles samples of the transform of Fig. 1 taken at intervals

Aw/2T- = 1/16.

The discrepancies, which are small in this example, are due

partly to the truncation of the exponential waveform and
partly to aliasing, exactly as with the DFT. As a final exam-

ple, take the binomial sequence 1, 6, 15, 20, 15, 6, 1 repre-

senting samples of a smooth pulse. To obtain the simplest
result, assign the peak value at r = 0. Thus

7
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0
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0 0 0 0 0 1 6

0 0 0 0.12 0.5 1.32 2.49

15,

15,

3.56.

N-1
f(/) = Z H(v)cas(27rvT/N).

V=O

To derive this result, we use the orthogonality relation

N-E N=
Z' cas(27rvr/N)cas(27rvr'/N) =_

T = T'

r F# 7'

Substituting Eq. (5) into the right hand side of Eq. (6),

N-1
E H(v)cas(2wvr/N)

V=0

N-1 N-1
= E N-1 E f(r')cas(27rv7'/N)cas(2wv1/N)

V=0 r'=O

N-1 N-1
= N-1 E f(-') E cas(27rv'/N)cas(2wv7/N)

T'=O V=O

N-1 [N
= - /_0-i') x T = T'

7- d 7-'

The- result in Fig. 3 is the expected smooth pulse peaking
(6) atv=0.

For numerical checking, it is useful to know that, as for the

discrete Fourier transform, the sum of the DHT-values WH(v)

is equal tof(0). Conversely, the sum of the data values Nf(T)
is equal to NF(O).
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Fig. 2. A 16-point representation of the truncated exponential
waveform used in Fig. 1 (left) and its DHT (right).

which verifies Eq. (6).
We see that the DHT is symmetrical, apart from the factor

N-1, which is familiar from the DFT, and it is real. To get the
DFT from the DHT, split the latter into its even and odd
parts,

H(v) = E(v) + 0(v),

where

E(v) = [H(v) + H(N -)]/2
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Fig. 3. Samples representing a smooth binomial hump (left) and its
DHT (right).
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and

0(v) = [H(v) - H(N - v)I/2.

Then the DFT is given by

F(v) = E(v) - iO(v).

Conversely, H(v) = [feven] - odd].

EXAMPLES OF THE DISCRETE HARTLEY

TRANSFORM

For comparison with Fig. 1, consider

V(t)

1.0 -

- 2 -1I 0 1 2
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DISCUSSION

At first sight it may seem strange that N real values of the
DHT can substitute for the N complex values of the DFT, a
total of 2N real numbers. We can understand this, however,
by remembering that the Hermitian property of the DFT
means redundancy by a factor of 2. The N/2 real numbers
that suffice to specify the cosine transform combine with the
N/2 needed for the sine transform to form a total of N DHT
coefficients containing no degeneracy that is due to sym-
metry.

The function cas 0, which may be thought of as a sine wave
shifted 450, automatically responds to cosine and sine com-
ponents equally. If, as a kernel, we use 21/2 sin(O + a), where
a is an arbitrary shift, the responses will be unequal, but no
information will be lost unless a = 0, 7r/2,.... Consequently,
one would expect to be able to invert; the inversion kernel is
cotl/2 a sin 0 + tan1/2a cos 0.

A CONVOLUTION ALGORITHM IN ONE AND
TWO DIMENSIONS

The convolution theorem obeyed by the DHT is as follows.
If f(-) is the convolution of fi(r) with /2(T), i.e.,

N-1
/(T) fl(T) * /2(T) = E fl(Tf2 (T -0,

T '=O

then

H(v) = Hi(P)H2 e(V) + H1 (-v)H2 0 (V),

where H(v), H&(v), and H2(v) are the DHT's of f(r), fl(r), and
/2 (r), respectively, and H2(v) = H 2e(v) + H 2o(v), the sum of
its even and odd parts.

A customary way of performing convolution numerically
is to take the discrete Fourier transform of each of the two
given sequences and then to do complex multiplication, ele-
ment by element, in the Fourier domain, which will require
four real multiplications per element. Then one inverts the
Fourier transform, remembering to change the sign of i.
Analogous use of the Hartley transform for convolution will
require only two real multiplications per element.

However, it often happens, especially in image processing
but also in digital filtering in general, that one of the con-
volving functions, say, / 2(r), is even. In that case H2o(v) is
zero, and the convolution theorem therefore simplifies to H(v)
= H1 (v)H2(v). In view of this simplified form of the theorem,
one need only take the DHT's of the two data sequences,
multiply together term by term the resulting two real se-
quences, and take one more DHT. Thus the proposed pro-
cedure is

fl() * /2(7) = DHT of [(DHT of fl) X (DHT of /2)].

Before taking the DHT, one extends the given sequences to
twice the original length with zeros in order to have space for
the convolution. The zeros may lead, trail, or bracket the
data.

For image processing in two dimensions, exactly the same
procedure is available, and the advantages of avoiding com-
plex arithmetic and nonreciprocal subprograms are in-
creased.
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TWO DIMENSIONS

Manipulation of two-dimensional images may also benefit
from the existence of a real transform. An image f(Ti, r2)
represented by an M X N matrix does indeed possess a two-
dimensional DHT, which is itself an M X N matrix H(vl, v2)
of real numbers. The transformation and its inverse are

M-1 N-1
H(vl, V2) = M-1N-1 E E f(ir, T2)

n=1=0 T2=0

X cas(2wP 1 ,r1 )cas(27v22 T2 ),

M-1 N-1
f(lr, r2) = E E H(v1 , v2)cas(27rvlTl)cas(27Vv2 r2 ).

v1=0 P2=0

The transform formulas generalize regularly to three (and
more) dimensions.

THEOREMS

There is a Hartley-transform theorem for every theorem that
applies to the Fourier transform, some of the theorems cor-
responding exactly, as with 2H(v) = f (O) and 2f(r) = NF(O).
Likewise, the Hartley transform of most convolutions is the
product of the separate Hartley transforms, as mentioned
above. In other cases there are differences. For example, the
shift theorem, needed in implementation of the fast Hartley
algorithm, is

DHT of f(Cr + a) = H(v)cos(27rav/N) - H(-v)sin(2zrav/N).

There is a quadratic content theorem

N-1 N-1
E [f(T)]2 = N E [H(V)]2

r=0 v=0

that resembles the analogous theorem for the discrete Fourier
transform except that no complex conjugates enter, only real
numbers. The cross-correlation theorem is

N-1
DHT of E fl(7')f2(T + T') = NH1(V)H2 (-V)-

To interpret H 2 (-v), or any other f( ) or H( ) where the
argument falls outside the range 0 to N - 1, add or subtract
multiples of N as needed. Thus H2 (-1) is interpreted as
H2(N - 1). According to the reversal theorem, f(-r) trans-
forms into H(-v).

CONCLUSION

The properties of the DHT commend themselves for appli-
cation to numerical analysis. It goes without saying that on
some computers it will be faster to replace cas 0 by 21/2 sin(O
+ 7r/4), but where speed is of the essence one may use a fast
Hartley transform (FHT). In the author's opinion, many
users' programs would run significantly faster with a FHT
than with the fast Fourier transform (FFT) in applications
such as convolution; on personal computers, the simplicity of
the Hartley transform would be an advantage. Also, in spite
of the perfection toward which FFT algorithms for a variety
of purposes have evolved, one complex multiplication equals
four real multiplications. So it is quite possible that a Hartley
transform on a large central computer would prove faster than
the FFT for taking the Fourier transform of a large data set,
such as an image. Experience is reported elsewhere. Of



JOSA Letters

course, it may well be that there exist among the diverse FFT

schemes some that really are already implementations of the

DHT presented here or could profitably be so viewed.
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