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Abstract 

We establish a number of properties associated with the 

dynamical system H = [H,[H,N]], where H and N are sym- 
metric n by n matrices and [A,B] = AB-— BA. The most 
important of these come from the fact that this equation is 

equivalent to a certain gradient flow on the space of orthogo- 

nal matrices. We are especially interested in the role of this 

equation as an analog computer. For example, we show how 

to map the data associated with a linear programming prob- 

lem into H(0) and N in such a way as to have H = [H{H, N]]| 
evolve to a solution of the linear programming problem. This 

result can be applied to find systems which solve a variety of 

generic combinatorial optimization problems and it even pro- 

vides an algorithm for diagonalizing symmetric matrices. 

Introduction 

The astounding resurgence in interest in analog comput- 

ing which has come about recently under the banner of neural 

networks seems to be based on the hope that scientists and 

engineers will have more success using analog parallel comput- 

ing than they have had using digital parallel computing. In 

engineering analog computation is usually used as a simula- 

tion tool; however in this paper we approach it as a means to 

solve optimization problems. By this we mean that one will 

associate with each optimization problem in a given class a de- 

scription of f and an initial condition (0) such that z= f(z) 
evolves to a state z(0o) which characterizes the solution of the 
given problem. Of course the computational complexity asso- 

ciated with the identification of f and x(C), together with the 

complexity of passing from (oo) to the variables of interest, 

must be modest. Toward that end, in this paper we establish 

some results on the solution of linear programming problems 

with special emphasis on the question of sorting lists of real 

numbers by analog computation. 

Our main result is that given appropriate choices for H(0) 
and N the equation H = [H,[H,N]] can be used to solve 
certain standard problems in applied mathematics. From a 

mathematical point of view, this equation is a way of study- 

ing the gradient (steepest descent or steepest ascent) equation 

associated with functions of the form tr(QONO"), viewed as 
functions of © with © belonging to the orthogonal group. This 

approach is an outgrowth of the work on matching done in [1]. 
We are not aware of any other study of such gradient flows, 

however, the results we obtain make contact with a variety of 

interesting work including, {i) Schur-Horn theory (e.g. how the 
eigenvalues of a symmetric matrix relate to its diagonal entries) 

[2,3], (ii) Lax pairs and isospectral flows (the Hamiltonian the- 
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ory of equations for the form L = [B, A(L)}) [4,6], and (iii) von 
Neumann’s results on the relationship between eigenvalues and 

singular values [5]. 

A Gradient Flow on Orthogonal Matrices 

The results to be described later depend on properties of 

two closely related differential equations. These are matrix 

equations which describe a gradient flow; that is, they are dif- 

ferential equations evolving in a Riemannian manifold and are 

the counterparts of the familiar 

z=V¢e 

evolving in Euclidean n-space. Although from our point of view 

it looks accidental, the equations turn out to have properties 

in common with equations which have appeared in the theory 

of completely integrable Hamiltonian systems. In particular, 

although they are not the same, the equations are similar to 

the matrix version of the (finite) Toda lattice problem when 
studied from the “Lax pair” point of view. (See, for example, 

the work of Deift et al. [4] or the recent survey [6].) 

Let SO(n) denote the set of n by n orthogonal matrices and 
let so(n) denote the set of n by n skew symmetric matrices. 

If Q and N are fixed n by n symmetric matrices, and if tr M 

denotes the sum of the diagonal entries of a square matrix M, 

then tr(QON67) defines a smooth function on SO(n). In [1] 
we show that the gradient flow corresponding to this function 
(using the natural Riemannian metric on SO(n)) is 

© = ONO™QE- QeEN. (1) 

For the sake of completeness we make this calculation in ap- 

pendix 1. Using the fact that @7@ = I, equation 1 can also be 
expressed as 

© = 0(NOTQO — ETQEN) 

Because (NO™QO — OTQEN) is skew symmetric, @ will re- 
main orthogonal if ©(0) is orthogonal. Moreover, the values of 

© which make the right-hand side vanish are easily character- 

ized. If we limit our attention to the case where the eigenvalues 

of Q and N are distinct, the following theorem describes the 
equilibrium states. 

Theorem 1: Suppose that Q = U?DgW and N = B7Dyf 
with W and © orthogonal, Dg = diag(A1, A2,.-.,An) and Dy = 

diag(/1, M2,---,/m). Assume that A; > Ap > ++» > A, and yi > 

Ha > +++ > fy. Then the values of © such that ONOTQO — 

QON vanish are the values of © such that 

6 = vox? 

is the product IID of a permutation matrix II and a diagonal 

square root of the identity D. That is, D = diag(+1,+1,...,+1). 

Proof (Compare with [1].): Without loss of generality we 
can suppose that Q and N are diagonal. Because the ij‘ 

element of NP — PN is (ni — n;;)piz we see that NP — PN



vanishes only when P is diagonal. Thus NO™TQ@ — OTQON 

vanishes only if @7QO is diagonal. If Q is diagonal and if there 

is a diagonal matrix D such that ©'QO = D, then D has the 

same eigenvalues as Q and QO = OD. For this to be true we 

must have 

A855 = Ang l<ijen 

for some permutation m of the indices (1,2,...,n) whereby 
i++ x(t). This means that either \; = A,;), so that ¢ = m( d)s 
or that 9; = 0. Fixing 1, we see that 1(j) equals j for exactly 
one value of 7 and so only one 6;; can be nonzero. Because 

the rows of @ are unit vectors, the nonzero value must be +1. 

From this all else follows. 

Equation 1 evolves in the space of orthogonal matrices 

and is cubic in ©. We now introduce a very useful change 

of variables which recasts this equation as one which evolves 

in the space symmetric matrices and which is quadratic. Let 

H = 07QO. Then 

@7Q(ONO7Q0 — QON) + (O7QONOT ~— NOTQ)QE 
HNH —H?N+HNH-NH? 

[H,{N, H]] 

where [A,B] = AB — BA is the Lie bracket. 

H 

(2) 

Because H satisfies H = ©7QO with Q constant, this last 

equation defines an isospectral flow; that is, as H evolves its 

entries change in such a way as to leave the eigenvalues of H 

invariant. 

Theorem 2: Suppose that N is a real diagonal matrix with 

unrepeated eigenvalues. If H(0) is symmetric and H = [H,(H, NJ], 
then 

jim H(t) = H(oo) 

exists and is a diagonal matrix. 

Proof: First of all, because [H, N] is skew-symmetric [H[H, N]] 
is symmetric and this equation evolves in the space of symmet- 

ric matrices. A direct calculation shows that 

SiHN) = tN(H,(H,N]] 
-tr(HN — NH) 

Because HN ~— Ni is skew-symmetric, this is expressible as 

£ (HN) = tr(HN —NH)(HN — NH)? 

Thus tr(HN) is monotone increasing and is bounded from 
above. Therefore, it has a limit and its derivative goes to zero. 

However, its time derivative vanishes only if H and N com- 

mute, and since N has distinct eigenvalues, HN = NH if and 

only if H is diagonal. Thus H approaches a diagonal matrix. 

It is important to note that in theorem 2, H(0) (and hence 
H(é) for all t) is permitted to have repeated eigenvalues. Of 
course H = [H, [H, N]] has many equilibrium points and the- 

orem 2 claims only that its solution approaches one of them. 

The situation for the gradient flow on SO(n) expressed in terms 
of © is a bit more complex and is described by the following 

theorem only in the case where both N and H have unrepeated 

eigenvalues. 

Theorem §: Suppose that Q and N have unrepeated eigen- 

values. With the exception of certain initial points contained 

in a finite union of codimension-one submanifolds of SO(n), 

all solutions of equation (1) approach a matrix of the form IID 

800 

with D being a diagonal square root of J and II being that 

permutation matrix which reorders the diagonal of Q in such 

a way as to maximize 

n= >» x (i) x(a) i 
#1 

The proof of this is given in [1]. 

In Hardy, Littlewood and Polya’s classic book on inequal- 

ities [5] they study the. problem of rearranging sequences so 

as to maximize the sum of the products such as those which 

arose above. The basic result is that the product is maximized 

when the sequences are “similarly ordered”, e.g. when both are 

monotone decreasing. One point of view which makes this ob- 

vious, at least in the case where all the entries are positive, is 

to identify the sum of the products with the moment generated 

when one starts with a straight horizontal beam supported by 

a pivot and fastens weights of weight u; to hooks positioned at 

distance y;. It is intuitively clear that the way to get the largest 

moment is to attach the heaviest weight as far as possible from 

the pivot, the next heaviest at the next furthest, etc. 

Theorem 4: If N is symmetric and n by n with distinct 

eigenvalues and if H(0) is symmetric with distinct eigenvalues, 
then H = [H,[H, N]] has n! equilibrium points. The eigenval- 
ues of the linearization of [H,[H, N]] at an equilibrium point 
take the form 

(Asta — An(y)(4j— oe) 5 USES FEN 

for some permutation x. In particular if N is diagonal, all 

the eigenvalues of the linearization of [H,[H, N]] at a point Hy 
where H is diagonal have negative real parts if and only if the 

eigenvalues of Hy and N are similarly ordered. 

Proof: As in the proof of theorem 1 we can make a prelim- 

inary transformation to put N in diagonal form. From theo- 

rem 2 we see that H approaches a diagonal matrix which must 

be of the form 

H= diag(A.(1), Ax(2))-++2An(n)} - 

Near the diagonal we can linearize. [H,[H,N]] as 

boss = (Antsy — Axtay) (Hey — Hs) eg 

for t > j. 

We see from this theorem that exactly one of the n! equilib- 

rium points is asymptotically stable. The proof makes it clear 

that if either H(0) or N has repeated eigenvalues, exponential 
stability (but not asymptotic stability) is lost. 

In a 1937 paper von Neumann [5] studied the problem of 
maximizing tr(U AV B) for A and B fixed Hermetian matrices 
and U and V unitary matrices. He computed the maximum 
and investigated the Hessian at all the stationary points of 
tr(U AV B). He did not look at a gradient flow, but his critical 
point results are similar to those given here. 

The Symmetric Eigenvalue Problem 

The gradient flow, as expressed in terms of H, provides a 
means for diagonalizing a symmetric matrix. Techniques of 
this type have been investigated before, see, e.g., Deift et al. 

[4] and Chu [6]. The usual scheme involves a map II which



projects a symmetric matrix onto its strictly lower triangular 

part and/or a preliminary transformation to Hessenberg form. 

Our approach is, we believe, more elegant but it does involve 

the selection of a diagonal matrix N whose role is to guide 

the algorithm as to the order in which the eigenvalues are to 

appear on the diagonal. Figure 1 shows the evolution of the 

diagonalization process for a seven by seven symmetric matrix. 
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Figure 1: A plot of the diagonal elements of H as t evolves. 

Linear Programming 

A convex polytope is a bounded subset of R” which has 

nonempty interior and which takes the form X = {z|Az < b}. 

If we are given a vector c in R” and asked to find c € X 

such that 7 = (c,x) is as large as possible, we have a linear 

programming problem. The simplex method is usually used to 

find a solution. Of course in recent years other methods have 

been proposed but a clear consensus as to the relative merits of 

these newer algorithms does not seem to have emerged. In this 

section we want to show how the descent equation introduced 

above can be used to solve linear programming problems when 

the constraint set is a polytope. This fails to be the general 

case by virtue of the assumption that X is bounded. Of course 

in any specific instance this could be circumvented. 

Lemma 1: Given a convex polytope P in R” having k ver- 

tices there exists a map T : R* — R"” such that T maps the 

“standard simplex” in R*, i.e. the set 

S={2lzeR* ; 2,20; Ux, =1} 

onto the given polytope. 

Proof: Define T as 

T= | a, G2, .-- o& 

with a1,@2,...,@_ being the vertices of P in R®. Clearly T 

maps the extreme points of S in R* onto extreme points in R” 

and the remaining points of S serve to fill in the convex hull 

of P. 

From this we can establish the following. 

Theorem 5: Suppose that P is a convex polytope in R” 

having k vertices. Then there exists a k by k symmetric matrix 

Q and an by k matrix T such that P is the image under T of 

the convex hull of points generated by the permutations of the 

vector 

d1(Q) 
A2(Q) 

»(Q) 

Proof: Let Q be asymmetric matrix with eigenvalues (1, 0,0, 
..,0) and apply the preceding lemma. 

The convex hull of the vector of eigenvalues plays a key role 

in Schur-Horn theory; see [2,3,9]. 

Using this lemma we can proceed to give a recipe to solve 

linear programming problems. 

Theorem 6: Let X be a convex polytope in R” with p ex- 
treme points. Suppose that we are to solve the linear program- 

ming problem consisting of maximizing (c,z) over x € X. Let 
T be as in lemma 1. Then there exist diagonal matrices Q and 

N such that for almost all © € SO(n), 

H=(H,[H,N]] ;  H(0)=07Q0 
converges to H = diag(d,,d),...,dm) with the optimal z being 

given by Td. 

Proof: Let Q = diag(1,0,0,...,0) and let N = diag(j1, we, 
.++sHn) with » = eT. The theorem then follows from theo- 

rems 2 and 4, the only further explanation being that we must 

choose © so that H(0) avoids the thin sets associated with the 
stable manifolds of unstable critical points. 

Since this choice of Q has repeated eigenvalues, the sta- 

ble equilibrium of H = [H,[H, N]] is not exponentially stable. 
Thus although the way of generating the convex set X de- 

scribed in theorem 5 is mathematically convenient, it might 

not be the best for algorithmic purposes. 

The Sorter 

If we have a smooth dynamical system ¢ = f(z,u); y = 
h(x), with u being a vector whose components are fixed con- 
stants, and if y is to approach a sorted version of u, what 

can we say about the intrinsic complexity of the system which 

carries out this computation? We see, for example, that as u 

varies it must happen that the equilibrium value of x depends 

on u. The following is obvious but worth stating. 

Lemma 2: No differentiable function of u sorts the compo- 

nents of wu. 

Proof: The function which sorts a list is continuous but not 

differentiable at those points in the domain for which two or 

more values of the components of u are equal. 

Since the sorted rearrangement of u is not a smooth func- 

tion of u and since we have set out to achieve the sorting by 

a smooth system, we see that we cannot achieve the desired 

result without inserting some dynamics. From theorem 2 it 

is clear that the differential equation H = (H,[H,N]| can be 
viewed as defining a sorting mechanism. Again the Hardy- 

Littlewood-Polya theory of rearrangement insures that if N is, 

for example, given by diag{1,2,...,n), then for almost all ©



and for 

H(0) = @7 (diag(A1, Agy+++5An))O 

the solution of H = [H, [H, N]] will approach 

H(00) = diag(A.x(1), Ax(2), +++ 5 Ax(n)) 

with the final list sorted by size. 

In the equation H = [H,[H,N]], H (0) and N play dual 
roles. Although we have viewed H(0) as characterizing the 
list, we could reverse the process and let N characterize the 

list and let H generate the labels. 

Rearranging Functions 

In this section we briefly indicate an infinite dimensional 

version of H = [H,[H,N]] which rearranges functions. Al- 
though our solution seems to be new, there is some literature 

on this problem, see, e.g. [8]. 

Suppose that. we are given two functions, q(-) and p(-), de- 
fined on [0,1]. Following Hardy, Littlewood and Polya [7] we 
say that they are equt-measurable if for all real numbers a the 

measure of the two sets 

A(a) 

B(a) 
{z\q(z) > a} 
{z|p(z) > a} 

is the same. In such a case one may, with some justification, 

refer to q(-) as being a rearrangement of p(-). It is intuitively 

clear that there is a rearrangement of any given function which 

is monotone decreasing. In view of the results of our earlier 

sections it is reasonable to seek an evolution equation which 

computes the monotone rearrangement. 

Theorem 7: Suppose p(-) : [0,1] —+ R is a given, strictly 
monotone decreasing function. Suppose that 

$(-,+5°) : [0, 00) x [0,1] x [0,1] > R. 

satisfies the evolution equation 

Og(t,2,y) _ 
ot 

then in the limit as ¢ goes to infinity, (c—y)¢(t, x, y) approaches 

zero and there exists a monotone decreasing function -y depend- 

ing only on ¢(0,-,-) such that for any smooth function ¥(-,-) 

[f 6,2, 8)6¢, €.u) (02) + lu) - 20(0)de 

t-+00 
lim [ , [ * o(t, 2, €)¥(€,2)dédz = [ * (2) (2, 2)de 

Proof: The proof follows from two calculations which are 

analogous to results developed above. In the first place we 

need to show that the flow is isospectral in the following sense. 

For any smooth function f : R' > R! we have 

df dz=0 5 ff f(o(t,2,2))de = 

This follows from the above formula for se using the fact that, 

by reasons of symmetry, 

[ [1 ote.2,€)6(e,€,2)(0(e) ~ al @))deae = 0 
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Add to this the observation 

4 fy O(t,y,y)ply)dy 

= ff o(t, x, €)(p(€) — p(z))(O(t, €, 2) p(é) — p(z))dédx 

= So So a(t, z, é) . o(t, é, z) (p(é) ~ p(z))*dédz 

= Jo So $7(t, 2, €)(p(€) — p(z))*dedx 

Because the integral is nonnegative, $(¢, z, €)(p(€) —p(z)) must 
go to zero. Because p is strictly decreasing we see that p(£) = 

p(z) if and only if € = z and so ¢(t, 2, €) must approach zero 
for €# x. 

Relationship with Realization Theory 

Since system theoretic work done over the past. 25 years on 

the realization problem is directed toward a deep and funda- 

mental understanding of analog computation, it makes sense 

to approach the problem of what a neural net can compute 

from a system theoretic point of view. As studied in system 

theory, the realization problem is usually formulated as the 

problem of discovering a differential system which generates a 

given family of input/output pairs, with the inputs and out- 

puts being defined on [0,7] or [0,00). However, in the case 
of digital electronics it is the equilibrium states which matter; 

how an equilibrium state is reached is. usually unimportant. 

This suggests that it would be useful to formulate a modified 

realization problem in which only the steady state behavior 

is specified. In fact in an earlier paper [10] we studied such 

questions for the case in which the inputs are sine waves. Here 

we have discussed an analogous situation, that for which the 

inputs are constant values. The main interest here is in sys- 
tems which compute discontinuous functions of the input, such 

as the maximum of the components of the input vector or a 

completely ordered version of the components of wu. 
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Appendix 

This appendix is devoted to the derivation of the gradient 

equation on the manifold of orthogonal matrices associated 

with the function tr(Q@NO7). We parametrize a neighbor- 

hood of an orthogonal matrix Op by 

Q(N) = O(7 +2 + 7/2!...) 

with 2 skew symmetric. To first order in M we have 

tr(Q@(I+N)N(I-N)e7 = tr(QeNE*) + tr(QenNe’) 
— tr(Q@eNNS7) 

Using the fact that tr(ABC) = tr(BC.A) = tr(CAB) we see 
that 

tr(Q@(I+0) N(I-0)67-tr(QeNe") = tr((Ve™Qe—-E7QEN)N) 

Define the matrix inner product as (A,B) = tr(A7B), (on 
SO(n) this is proportional to the Killing form). We see that 
(N @7Q0 —-OTQNO)’, -) represents the gradient at ©. Using 
© = ON we can express the gradient flow as 

076 = NOTQO — ETQON 

or 

@ =ONOTQO-QON. 
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