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In 4 experiments, the authors explored the role of visual layout in rule-based syntactic judgments.

Participants judged the validity of a set of algebraic equations that tested their ability to apply the order

of operations. In each experiment, a nonmathematical grouping pressure was manipulated to support or

interfere with the mathematical convention. Despite the formal irrelevance of these grouping manipu-

lations, accuracy in all experiments was highest when the nonmathematical pressure supported the

mathematical grouping. The increase was significantly greater when the correct judgment depended on

the order of operator precedence. The result that visual perception impacts rule application in mathe-

matics has broad implications for relational reasoning in general. The authors conclude that formally

symbolic reasoning is more visual than is usually proposed.
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How thinking creatures manage to think using symbols is one of

the central mysteries facing the cognitive sciences. Most research

into formal symbolic reasoning emphasizes the abstract and arbi-

trary quality of formal symbol systems (Fodor, 1975; Gentner,

2003; Harnad, 1990; Haugeland, 1985; Jackendoff, 1983; Mark-

man & Dietrich, 2000a, 2000b; Sloman, 1996). Symbolic reason-

ing is proposed to depend on internal structural rules, which do not

relate to explicit external forms (e.g., Harnad, 1990; Markman &

Dietrich, 2000a, 2000b; this perspective is also taken specifically

with regard to notational mathematics in Stylianou, 2002; Zazkis,

Dubinsky, & Dautermann, 1996). Mathematical and especially

algebraic reasoning is often taken to be the paradigmatic case of

pure symbolic reasoning, and to rely for its successful execution on

the use of internally available formal operations (Inhelder & Pi-

aget, 1958).

Although algebra probably is the best example we have of pure

symbolic manipulation, it may not be a very good example. Al-

though notational mathematics is typically treated as a particularly

abstract symbol system, it is nevertheless the case that these

notations are visually distinctive forms that occur in particular

spatial arrangements and physical contexts. These special symbols

are seen far more often in certain physical patterns than in others

and are usually set off from the rest of a page or text. There is some

evidence that people are sensitive not just to the contents but also

to the particular perceptual forms of the representations of abstract

entities when performing numerical calculations (Campbell, 1994;

Zhang & Wang, 2005) and when interpreting algebraic expressions

(McNeil & Alibali, 2004, 2005).

Previous research has also demonstrated the importance of

nonformal context specifically on formal reasoning. In the domain

of mathematics, Bassok (1997, 2001; Bassok, Chase, & Martin

1998; Wisniewski & Bassok, 1999) has demonstrated that com-

putation problems are more readily solved, more easily con-

structed, and less likely to generate surprise when operations are

semantically aligned with the typical structure of their contents. In

deductive reasoning, a wide variety of research (for a review, see

Johnson-Laird, 2001) has demonstrated the importance of nonfor-

mal figural context, such as the order of premises in a syllogism,

on subsequent reasoning (Morley, Evans, & Handley, 2004).

Tukey (1972) and Tufte (1983) have discussed ways that the visual

details in the presentation of graphical data affect how people

interpret those data. More generally, it has been proposed that

many abstract concepts are processed through concrete, spatial

metaphors (Boroditsky, 2000; Lakoff & Nũnez, 2000). The current

research extends these demonstrations of the context specificity of

formal reasoning by attending specifically to the role of the per-

ceptual properties of notations in guiding reasoning. The bulk of

research on physical grounding of mathematics has contrasted a

grounded understanding of mathematics with ungrounded formal

understandings. Our argument is that physical grounding is impor-

tant even when reasoners are processing symbolic notations. Thus,

rather than contrasting symbolic and grounded accounts of math-

ematical reasoning, we argue that both symbolic and nonsymbolic

mathematical processes are grounded.

There is some evidence that intramathematical physical context

influences success with arithmetic computations. Campbell (1994,

1999) explored error patterns in simple, single-operation compu-

tations with small numbers (0–9). Campbell found that error

patterns were systematically affected by notation format (e.g., 9 �

0 vs. “nine plus zero”) and argued that memory for simple math-

ematical operations is subserved not by an amodal, domain-general

mathematical format, but by computation traces that record nota-

tional format. McNeil and Alibali (2004, 2005) similarly found
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that notational similarities between equations used to denote com-

putations (3 � 4 � 5 � ?) affected the ability of prealgebra

students to understand the use of equations to denote balance (3 �

4 � 5 � ?), and that the visual form of the equations strongly

affected their perceived structure. Here, we explore how physical

layout affects the segmentation of simple equations.

Segmenting (parsing) a notational form into its formal compo-

nents is a difficult and routine part of mathematical reasoning.

Current accounts of mathematical reasoning assume that this seg-

mentation is cognitively executed through the application of for-

mal rules to individual notational symbols (Anderson, 2005; Chan-

drasekaran, 2005; Koedinger & MacLaren, 2002; Stenning, 2002).

These rules apply to abstract representations of the written expres-

sions, which contain information regarding only the identity of the

individual symbols and their sequence in the equation. Such ac-

counts make the appealing and tempting assumption that the

cognitive parser can extract abstract symbol sequences from phys-

ical notations in a trivial manner. However, dividing a visually

presented notational expression into units appropriate for mathe-

matical analysis may be a more complex and important process

than it appears. In fact, a reasoner’s syntactic interpretation may be

influenced by notational factors that do not appear in formal

mathematical treatments. In a model that translates atomic symbols

into amodal logical symbols and combines them through syntac-

tical rules, errors are expected to arise from three sources: mis-

reading basic symbols, failing to transform the stored representa-

tion, or failing to generate an appropriate response. If, however,

mathematical syntax is grounded in the visual format of notational

displays, then manipulating the way terms in an equation are

grouped visually should impact the effective order of precedence

judgments. Some perceptual situations will support the mathemat-

ically correct grouping, whereas others will interfere with and

weaken the mathematical representation by presenting a compet-

ing way to visually structure the equation.

In the four experiments described here, we evaluate whether

these structural evaluations are sensitive to nonformal information

available in visual displays, and whether and how that information

is integrated into mathematical reasoning. In mathematical formal-

isms, nonordinal spatial proximity tends to indicate grouping. For

instance, when people write expressions, they tend to put less

space around multiplications than around additions, and they put

even more space around equality signs (Landy & Goldstone, in

press). This arrangement means that physical structures are often

isomorphic to the formally sanctioned mathematical structure.

Many fonts and typesetting programs also place less space around

times signs than around plus signs. Parentheses, which formally

indicate grouping, also create a regular visual segmentation. We

hypothesized that people might use this typically available non-

formal information to make grouping judgments, integrating this

information with formal properties.

In the following experiments, participants were asked to judge

whether individual simple equations were mathematically valid.

Both valid and invalid equations were presented, and that validity

was either sensitive or insensitive to the correct order of opera-

tions. In each experiment, a formally irrelevant grouping pressure

was constructed to be consistent or inconsistent with the order of

operations in the formal stimulus. Before turning to the experi-

ments, we briefly define key terms.

Key Terms

Order of Operations

The natural language expression “five plus two times six” could

be interpreted as resolving to either 42 or 17. The notational

expression “5 � 2*6” is unambiguously equal to 17, because we

agree to evaluate multiplications before additions, using parenthe-

ses to indicate the alternate interpretation. There is nothing math-

ematically necessary about multiplication that mandates that it be

evaluated before addition. It is only within the context of standard

algebraic notation that multiplication precedes addition. The rule

that multiplication precedes addition is called the order of opera-

tions.

Permutation

Tables 1 and 2 present examples of the equation structures used

in these experiments. (In each table, a, b, c, and d represent

randomly selected letters; different letters were used in each equa-

tion.) Because the same four variables appear on each side of an

equation, and the same operators appear in the same order, whether

or not the two expressions are necessarily equal depends only on

the relative order of the operands on each side. These relative

orderings are called permutations. There are 24 such permutations;

in order to balance outcomes across the relevant conditions, only

8 were used. The first listed permutation is the identity permuta-

Table 1

Experiment 1: Permutations and Mathematical Properties of Right-Hand Side Orderings, for the Operator Structure Plus-Times-Plus

Permutation Possible left-hand side Right-hand side Valid
Valid if �

precedes *? Sensitivity

a b c d a � b * c � d � a � b * c � d True True Insensitive
d c b a a � b * c � d � d � c * b � a True True Insensitive
b c a d a � b * c � d � b � c * a � d False False Insensitive
c a d b a � b * c � d � c � a * d � b False False Insensitive
a c b d a � b * c � d � a � c * b � d True False Sensitive
d b c a a � b * c � d � d � b * c � a True False Sensitive
c d a b a � b * c � d � c � d * a � b False True Sensitive
b a d c a � b * c � d � b � a * d � c False True Sensitive

Note. Stimuli were created by constructing a symbolic expression as the left-hand side of an equation and permuting its operands to construct the
right-hand side.
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tion, so the first row of Table 1 indicates that if the left-hand side

of a particular stimulus were a � b*c � d, the right-hand side

would be identical to the left.

Validity

An equation is valid if its two sides are necessarily equal. The

equation 5 � x � 6 � x – 1 is valid because the expressions are

equal regardless of the value of x, but 5*x � 6*x is not valid

because it will not hold for all possible values of x. In Tables 1 and

2, the fourth column indicates whether each permutation was

formally valid. Four of the permutations yield valid equations, and

four yield invalid equations, so half of all presented equations were

valid.

Sensitivity

These experiments were designed to encourage participants to

employ an incorrect addition-before-multiplication rule. Column 5

of Tables 1 and 2 indicates whether a particular permutation

generates equations that are “valid” according to this incorrect

operator order. When the equation’s validity under the

multiplication-before-addition rule differs from that found using

the incorrect addition-before-multiplication rule (column 5), that

equation is called sensitive. In Tables 1 and 2, a permutation is

sensitive (column 6) only when the two validity columns have

different values—when one entry is valid and the other invalid.

Inspection of the table shows that four of the permutations are

sensitive and four insensitive, and that sensitivity and validity are

balanced.

Tables 1 and 2 differ only in operator structure. All expressions

were either of the form a � b * c � d or of the form a * b � c *

d. One result of this structure was that half of all equations in each

of the four categories (valid/invalid crossed with sensitive/

insensitive) had an addition as the leftmost operator and half had

a multiplication as the leftmost operator, eliminating the possibility

that our intended perceptual pressures might be confounded with a

possible bias to bind operands in a left-to-right order.

Consistency

In addition to variation in the formal mathematical properties,

stimuli also varied in their physical layout. Our intention was to

produce three classes of physical layouts. In consistent equations,

a formally irrelevant physical feature is manipulated, creating a

visual grouping that matches the formal grouping. In inconsistent

equations, the same irrelevant feature creates a grouping around

addition operations. Finally, neutral equations lack overt grouping

pressures. See Table 3 for examples of each of the three types,

which were constructed using physical proximity as the grouping

pressure. Because these manipulations are entirely confined to the

physical layout of the equation, they are independent of the math-

ematical variations defined above. Each of the mathematical vari-

ations was presented in each consistency mode.

Table 2

Experiment 1: Permutations and Mathematical Properties of Right-Hand Side Orderings, for the Operator Structure

Times-Plus-Times

Permutation Possible left-hand side Right-hand side Valid
Valid if �

precedes *? Sensitivity

a b c d a * b � c * d � a * b � c * d True True Insensitive
d c b a a * b � c * d � d * c � b * a True True Insensitive
b c a d a * b � c * d � b * c � a * d False False Insensitive
c a d b a * b � c * d � c * a � d * b False False Insensitive
a c b d a * b � c * d � a * c � b * d False True Sensitive
d b c a a * b � c * d � d * b � c * a False True Sensitive
c d a b a * b � c * d � c * d � a * b True False Sensitive
b a d c a * b � c * d � b * a � d * c True False Sensitive

Table 3

Experiment 1: Samples of Stimuli Used

Permutation Structure Consistency Validity Example

a c b d �*� Consistent Valid h � q*t � n � h � t*q � n
c a d b �*� Consistent Invalid u � p*k � x � k � u*x � p
b a d c *�* Consistent Valid g*m � r*w � m*g � w*r
b c a d *�* Consistent Invalid y*s � f*z � s*f � y*z
d b c a �*� Neutral Valid b � h * v � k � k � h * v � b
c d a b �*� Neutral Invalid t � j * n � e � n � e * t � j
d c b a *�* Neutral Valid q * r � h * c � c * h � r * q
d b c a *�* Neutral Invalid w * g � x * j � j * g � x * w
a b c d �*� Inconsistent Valid t�p * m�f � t�p * m�f
c d a b �*� Inconsistent Invalid w�n * r�k � r�k * w�n
b a d c *�* Inconsistent Valid s * n�e * c � n * s�c * e
c a d b *�* Inconsistent Invalid g * a�w * j � w * g�j * a
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Experiment 1

If algebraic reasoning uses visual groups as formal groups, then

induced groupings ought to systematically influence the order of

operations employed on the validity task. Proximity is a strong

determiner of perceptual grouping (Koffka, 1935). In Experiment

1, by instructing participants to judge the validity of equations with

nonstandard spatial relationships, we explored whether perceptual

grouping affects mathematical reasoning.

There are many ways to fail on even a simple algebraic task

such as this one. Solving these problems requires that participants

match terms on the left side of the equation with terms on the right

side; because each term must be checked, participants must also

remember which terms have already been checked, and not re-

evaluate those. And, of course, participants must respect the rela-

tional structure of the equation, because in all of our test stimuli the

same individual symbols appear on both sides of the equation. All

of these task components are nontrivial, all are expected to cause

some errors, and importantly, all are equally difficult for sensitive

and insensitive equations. Thus, if physical spacing interferes with

any of these aspects of the task (for instance by interfering with

participants’ ability to remember which symbols they have already

checked), then spacing should affect both insensitive and sensitive

equations. Our prediction, however, was that spacing would affect

only accuracy on sensitive equations. If so, then that implies that

spacing selectively affects order of operations judgments. The

inclusion of insensitive equations thus helps clarify the role visual

groups play in mathematical reasoning in this task.

Because consistent equations have, by our hypothesis, redun-

dant information specifying syntax, such expressions might well

be solved more quickly than neutral equations; similarly, one

might expect inconsistent stimuli to take more time to correctly

solve. However, by our hypothesis, the same processes are in-

volved in solving sensitive and insensitive equations, thus consis-

tency should affect response time on both types of problem, if on

either. Therefore, if inconsistent equations take longer than con-

sistent ones, they should do so on both insensitive and sensitive

equations.

Method

Participants. Fifty-one undergraduates participated in the ex-

periment, which fulfilled a partial course requirement.

Apparatus. All expressions were presented in black text on a

white background, using the Lucida Grande font on Macintosh

computers. Monitor resolution was 1,024 � 768, and the monitor

size was 38 cm. Participants sat approximately 55 cm from the

monitors. The symbols were 3 mm across. Symbols were separated

by 1.6 mm, 4.8 mm, or 12.7 mm, depending on condition (de-

scribed in detail below). Therefore, the spaces between symbols

subtended 0.17°, 0.5°, or 1.3° of visual arc in the narrow, neutral,

and wide spacing cases, respectively. Participants used the key-

board to report validity judgments. The P and Q keys signified

valid and invalid judgments, respectively.

Design. Our experiment was designed to orthogonally manip-

ulate three factors: validity (the equation was valid or invalid),

consistency (perceptual grouping was consistent, inconsistent, or

neutral with respect to the normative multiplication-before-

addition precedence rule), and sensitivity (whether or not validity/

invalidity would be preserved given precedence of either

multiplication-before-addition or addition-before-multiplication).

We expected consistent equations to facilitate application of the

correct multiplication-before-addition operator rule and inconsis-

tent equations to promote application of an erroneous addition-

before-multiplication rule.

Each participant viewed 240 test stimuli and 60 distractors. An

individual stimulus consisted of a single symbolic equation. A

response was a judgment of that equation’s validity. Each stimulus

equation consisted of two expressions (a left-hand side and a

right-hand side) separated by an equals sign. Each expression

contained four symbols, connected by three operators. Although

operators appeared in the same order on both sides of the equation,

the operand order could differ on the left- and right-hand sides.

These constraints held for all test equations.

Each equation contained four unique symbols; due to their

similarity to other symbols, the letters i, l, and o were omitted from

the set of available letters. The 240 test equations were preceded

by 10 unrelated hand-generated equations, and another unrelated

equation appeared after every 5th test equation. Performance on

these distractor equations was not included in any analysis. Dis-

tractors included different symbols on each side of the equation,

division and subtraction, parentheses, and other complicated struc-

tures. The purpose of distractor equations was to discourage par-

ticipants from solving problems using ad hoc shorthands or tricks

based on the particular permutations, operator structures, and

symbol constraints used in test equations.

Procedure. Participants were asked to proceed quickly, with-

out sacrificing accuracy; instructions also reminded participants of

the order of operations and stepped through a sample arithmetic

computation. There was no time restriction; equations remained

visible until participants responded. Immediately after the re-

sponse, either a check mark or an X mark was displayed, depend-

ing on whether the response was correct or incorrect. This feed-

back remained on the screen for 300 ms, followed by a 700-ms

delay, during which the screen was blank, and after which the next

equation was displayed. Every participant received the equation set

in a unique random order; the only constraint was that the first 10

equations and every 5th subsequent equation were randomly se-

lected distractors. Participants received breaks after every 50 stimuli.

Results

Seven participants whose neutral-trial performance was lower

than 60% in the neutral spacing condition were removed from

subsequent analysis, leaving 44 whose results were analyzed. A

cutoff was employed in order to eliminate participants who lacked

knowledge of the correct rule, or who simply did not attempt the

task. Sixty percent was chosen as a cutoff because of a natural

division in the participant’s scores. In all four experiments dis-

cussed here, the reported effects remain significant when all data

are included in the analysis.

Accuracy differed between the sensitivity and consistency fac-

tors according to a two-way within-participants analysis of vari-

ance (ANOVA). Both main effects were significant. Participants

were less accurate on sensitive judgments, F(1, 42) � 54.3,

MSE � 7.56, p � .001. Accuracy was highest for spatially con-

sistent equations, intermediate for neutral, and lowest for incon-

sistent equations, F(2, 41) � 62.621, MSE � 3.789, p � .001. For
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our purposes, however, the most interesting effect is the interac-

tion: participants were far more affected by spatial consistency

when the order of operations judgment affected the correct answer,

F(2, 41) � 55.7, MSE � 3.1, p � .001. For insensitive trials, the

mean difference between consistent and inconsistent accuracies

was only 2%; for sensitive trials, the difference rose to 38.7%.

Mean accuracies for each factor are shown in Figure 1.

The data were also analyzed with normative validity as a factor

in the analysis. Accuracy was higher on valid (86.4%) than on

invalid (82.2%) equations, F(1, 42) � 52.93, MSE � 5.1, p �

.001. Validity did not interact with either consistency or sensitiv-

ity. Inclusion of validity did not affect the main results of interest

in this or any subsequent experiments, and will not be discussed.

Another useful measure of the impact of the consistency ma-

nipulation is the fraction of participants who were more accurate

on consistent trials than on inconsistent trials, in the sensitive and

insensitive conditions. On insensitive trials, 25 of the 44 partici-

pants had higher accuracies on consistent trials, 16 had higher

accuracies on inconsistent trials, and 3 had equal accuracies on

each. If consistency had no effect on accuracy, then we would

expect about as many participants to have higher scores in the

consistent condition than in the inconsistent condition. According

to the binomial test of significance, and discounting the 3 partic-

ipants whose scores were equal in both conditions, the fraction of

participants who scored higher in the consistent condition on

insensitive trials (25 of 41) is consistent with a probability of 0.5,

and with no significant effect of consistent versus inconsistent

trials. Only 1 participant showed the reverse; this proportion is

significantly different from chance ( p � .0001) and also from the

proportion of participants showing a benefit of consistency on

insensitive trials (�2
� 15.7, p � .001). These results (along with

the results of a binomial by-participants analysis from the remain-

ing three experiments) are summarized in Table 4.

While the principal theoretical interest is in the existence of an

impact of consistency on accuracy, response time (RT) differences

across conditions were large and robust. Mean RT on all (accu-

rately judged) trials was 2,264.48 ms, with a standard error of

977.76 ms. According to a two-way within-subjects ANOVA, RT

differed significantly across consistency conditions, F(1, 42) �

8.8, MSE � 715,734, p � .005 (see Figure 2). There was no

significant main effect of sensitivity on RT, nor was there an

interaction between sensitivity and consistency; this is strongly

consistent with the perceptual grouping account but is not neces-

sarily inconsistent with a more amodal symbolic account.

Discussion

The physical spacing of formal equations has a large impact on

successful evaluations of validity. Furthermore, the impact seems

to be limited to order of operations evaluations. Symbols placed

physically closer together tend to be evaluated as syntactically

bound. It is not immediately obvious that interference and facili-

tation of the specific mathematical order of operations is respon-

sible for the effects seen in Experiment 1. For example, one might

suppose that because the unusually spaced equations are nonstand-

ard, it would be more difficult to treat them as mathematical forms

or to extract relevant information from them. However, if partic-

ipants were simply unable to apply symbolic processes learned

with neutrally spaced equations to unusually spaced stimuli, and

were consequently making nonmathematical judgments on these

displays, then we would expect performance to be impaired on

both inconsistent and consistent stimuli, because both were spaced

very unusually. (It is quite likely that naturally encountered equa-

tions tend to be slightly consistently spaced. However, in the

equations we used, the spacings were quite exaggerated). Instead,

performance was higher on consistent stimuli than on the presum-

ably more familiar neutral cases.

A further indication that this benefit really is mathematical in

character is that both facilitation and interference occurred only for

sensitive permutations of the symbols. Although performance on

insensitive equations was higher than on neutral sensitive, it was

not at ceiling; although accuracy on some insensitive permutations

(such as the identity permutation) was very high, the mean accu-

racy on consistent insensitive equations was not substantially

higher than on consistent sensitive equations (94.8% vs. 93.7%,

respectively; p � .17 by a within-subjects t test). The relative

sparing of equations insensitive to the order of operations strongly

indicates that participants were in fact engaging their mathematical

faculties by using the grouping implied by the visual structure, and

not simply failing to treat the unusually spaced terms as equations.

An interesting possibility is that different participants may have

used different strategies when approaching the validity task; be-

cause of their complexity, mathematical tasks such as validity are

often amenable to a variety of different solution strategies. If

individual participants pursued different strategies, one might ex-

pect that some strategies would be highly sensitive to visual form,

whereas other strategies—perhaps linguistic or symbolic —would

be more-or-less unaffected by a perceptual manipulation. How-

ever, if this were the case, we would expect that many partici-

pants—those pursuing linguistic strategies, for instance—would

be largely unaffected by spacing. Our results are incompatible with

this expectation: only 1 of the 44 participants correctly solved

more inconsistent trials than consistent trials in the sensitive con-

Figure 1. Experiment 1: Spacing. Values are mean accuracies, divided

across consistency and sensitivity conditions, averaged across subjects.

Error bars are standard errors.
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dition. The impact of proximity on performance seems to be

ubiquitous throughout our sample.

This impact is not predicted by existing accounts of notational

mathematical reasoning. It is quite possible that an account that

retains the notion of mathematical knowledge as knowledge of a

formal syntax could be made to predict the systematic influence

we observed, but such an account would not provide a theoretically

motivated explanation of why proximity and order of operations

are connected in this way. Because this connection is not obviously

motivated by either overt instruction or mathematical rules, it is

not clear why such a connection would appear in a system driven

by structural rules between singular terms.

Other potential accounts cannot be eliminated by the data in

Experiment 1. One important possibility is that experience with

parenthesized equations interferes with participants’ ability to treat

space as unimportant. This could result from an (implicit or ex-

plicit) inference that the spacing information must be relevant

because it is so noticeably present, and therefore that it must

signify parentheses; it could also result from the perceptual simi-

larity of the inconsistently spaced equations to familiar parenthe-

sized ones. One straightforward way to disentangle the parenthesis

and the perceptual grouping explanations is to construct equations

with grouping pressures that do not resemble parenthesized ex-

pressions.

Another possible explanation of the connection between prox-

imity and order of operations is that participants use their knowl-

edge of written language in interpreting mathematical forms. In

written English, spaces are used to specify the appropriate group-

ing of letters into words; participants might implicitly apply train-

ing in visual word segmentation to equation interpretation. How-

ever, in English, spacing in particular, and not grouping in general,

is used to indicate segments. Experiment 1 confounds associations

that are specifically tied to physical spacing with our hypothesis

that perceptual grouping in general contributes to mathematical

segmentation and that proximity cues grouping. In the remaining

experiments, we confirm the robustness of the hypothesized rela-

tionship between perceptual grouping and relational interpretation

in mathematics notation by exploring the impact of other classic

grouping principles on notational reasoning.

Experiment 2

This experiment used the common region grouping principle to

encourage subjects to make particular visual interpretations. Ac-

cording to the common region principle, visual elements that are

located within the same visual region are grouped (Palmer, 1992).

Regions can be demarcated using color shifts, visual separators, or

object boundaries. In Experiment 2, visual regions were created

around subexpressions to selectively group those expressions.

Method

Participants, apparatus, and procedure. Forty-seven Indiana

University undergraduates participated in exchange for partial

course credit. Apparatus and procedure were identical to those

used in Experiment 1.

Figure 2. Experiment 1: Spacing. Values are mean response times (in

milliseconds) divided across consistency and sensitivity conditions. Error

bars are standard errors.

Table 4

Experiments 1–4: No. of Participants Whose Accuracy on Consistent Trials Was Higher Than,

Lower Than, or Equal to Their Accuracy on Inconsistent Trials

Condition

Trial type with highest accuracy
Binomial significance

(null hypothesis p � 0.5)Consistent Inconsistent Equal

Exp. 1: Proximity
Insensitive trials 25 16 3 �.22
Sensitive trials 43 1 0 �.001

Exp. 2: Region
Insensitive trials 17 12 16 �.46
Sensitive trials 35 5 5 �.001

Exp. 3: Similarity
Insensitive trials 13 17 3 �0.52
Sensitive trials 18 5 7 �.01

Exp. 4: Familiarity
Insensitive trials 30 22 13 �.33
Sensitive trials 36 14 15 �.01
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Design. The design of Experiment 2 was nearly identical to

that of Experiment 1. Once again, participants judged the validity

of visually presented symbolic equations. The mathematical vari-

ations in the stimuli were identical: Each expression consisted of

four terms, separated by either the plus-times-plus or the times-

plus-times operator structure. As in Experiment 1, the operands

and operators on the right- and left-hand sides of the equation were

identical; only the order of the operands differed. The eight per-

mutations used in Experiment 1 were used again in Experiment 2.

Once again, participants viewed 240 test equations and 60 distrac-

tor equations.

The sole difference between Experiments 1 and 2 was the

perceptual manipulation employed. In Experiment 2, the actual

mathematical forms were not altered (nor was anything in the

physical line of the equation). Instead, embedding some of the

symbols inside implied oval-shaped regions created perceptual

structures. Of the 240 test stimuli, 160 contained ovals around

some of the symbols (see Figure 3). In 80 of the stimuli, the

perceptual groups were designed to be consistent with the order of

operations: Multiplicands were placed together in a common re-

gion (along with the multiplication operator). In the other 80, the

perceptual groups were inconsistent with the order of operations.

In these, addends (and addition operators) were embedded in a

common region. The remaining 80 test equations lacked ovals and

thus were considered neutral. The distractor equations were similar

to the neutral test equations but were more general; symbols

sometimes differed between the left- and right-hand expressions,

and operators appeared in varied orders.

Results

Participants who scored less than 60% over all trials were

removed from subsequent analysis. Seven participants were re-

Figure 3. Experiment 3: Examples of stimuli used. Implied oval-shaped regions embedded in the equations

were used to create perceptual grouping.
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moved for this reason, leaving 40 participants whose results were

analyzed.

Accuracy was affected by the sensitivity and consistency factors

according to a two-way, within-participants ANOVA. Both main

effects were significant. Participants were less accurate on sensi-

tive judgments than on insensitive judgments, F(1, 38) � 34.7,

MSE � 36.1, p � .001. On sensitive trials, accuracy was highest

for spatially consistent equations, intermediate for neutral, and

lowest for inconsistent equations, F(1, 38) � 23.6, MSE � 17.8,

p � .001. The interaction term was also significant. Participants

were far more affected by spatial consistency on sensitive trials

than on insensitive ones, F(1, 38) � 25.8, MSE � 17.0, p � .001.

Mean accuracies for each condition are shown in Figure 4.

Once again, we analyzed the performance of individual partic-

ipants by comparing accuracy on consistent trials with accuracy on

inconsistent trials by means of a binomial significance test. The

results of this analysis are summarized in Table 4. In this experi-

ment, no response time results reached significance.

Discussion

It is clear that the manipulation of common region has a strong

impact on validity judgments. Because the manipulation affects

accuracy only on permutations that are sensitive to the order of

operations, it seems that perceptual grouping directly affects va-

lidity judgments. This result is expected only if visual processes

are directly applied to multisymbol units to perform validity judg-

ments. The results of Experiment 2 provide support for our inter-

pretation of the previous experiment: that perceptual grouping, and

not literal similarity to parenthesized equations, is responsible for

the consistency effect. However, the ovals used to determine

common region are highly salient features and (to some observers

at least) resemble parentheses; it is quite possible that participants

(contrary to instructions and trial-by-trial feedback) treated the

illusory ovals as a task demand to group against the normal order

of operations. In the remaining two experiments, more subtle

manipulations of equation format were employed to provide con-

verging support for the perceptual grouping interpretation.

Experiment 3

Experiment 3 examined a kind of pressure different from that of

the previous experiment: perceptual similarity. Here, rather than

using single letters or numbers as the symbols to be grouped, we

used compound parenthesized expressions. These expressions

came in one of several regular structures. Because objects with

similar shapes tend, in general, to group together visually (Koffka,

1935), we hypothesized that identical mathematical and visual

structure would cause a similar grouping pressure, which would

then assist or impair application of the order of operations.

Method

Participants, apparatus, and procedure. Thirty-three Indiana

University undergraduates participated in exchange for fulfillment

of a course requirement. Apparatus and procedure were identical to

those used in Experiment 1.

Design. The design was similar to that of Experiment 1. The

same basic mathematical setup was employed: Each stimulus

consisted of an equation. Each expression in the equation consisted

of four terms, separated by either the plus-times-plus or the times-

plus-times operator structure. Again, the same operands and oper-

ators appeared on both sides of an equation. Once again, the only

difference between the left- and right-hand sides was the order in

which the operands appeared. The same 8 permutations used in

Experiments 1 and 2 were also used for Experiment 3, so the

design employed the same sensitive and insensitive categories, and

once again counterbalanced validity and operator order within

these categories. Therefore, there were again 240 test equations,

with 60 distractors. Once again, participants were instructed to

determine the validity of a putative equation and to press a corre-

sponding key.

The sole difference between Experiments 1 and 2 and Experi-

ment 3 is the nature of the consistency manipulation. Whereas

physical spacing was manipulated in Experiment 1, internal rela-

tions between the four operands were varied in Experiment 3. The

operands in Experiment 3 were compound parenthesized terms

such as (8/m) rather than simple letters or numbers. This feature

facilitated the manipulation of internal operand similarity through

the systematic manipulation of structure; for instance, (8/m) is

more similar to (2/q) than to (y*y*y). There were four basic term

schemas (see Table 5); each actual operand term was derived from

one of these types by replacing each of the slots (the words letter

and number) in the schema with a randomly chosen selection of

letters and numbers. Physical similarity is assumed to be high

among pairs of terms derived from a common schema, and low

between terms derived from different schemas. Once again, stimuli

were constructed so as to be perceptually consistent, inconsistent,

or neutral with respect to the mathematical order of operations.

With inconsistent equations, highly similar terms—terms derived

from a common schema—surrounded multiplication operators,

while dissimilar terms surrounded addition operators. With incon-

sistent equations, terms surrounding additions were derived from

common schemas, while terms surrounding multiplications were

Figure 4. Experiment 2: Common region. Values are mean accuracies,

divided across consistency and sensitivity conditions, averaged across

subjects. Error bars are standard errors.
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structurally similar. On neutral trials, all four terms were drawn

from the same schema, and this was always Schema 1. The use of

four identical structures, rather than a random disjoint combina-

tion, prevented contamination from any implicit similarities be-

tween the different structures. Sample stimuli are presented in

Table 6.

One unfortunate feature of the manipulation used here is that it

can be presented only on one side of an equation. For example,

consider a consistent equation with operator order times-plus-

times, in which the first two terms are drawn from Schema 2, and

the last two from Schema 3. The left-hand side might be (5a – x)

* (3n – j) � (2/g) * (8/y). This is a consistent expression because

the multiplicands are drawn from a common schema, whereas the

addends are drawn from different schemas. However, consider

what happens when the right-hand side is constructed using the

acbd permutation. The right-hand side will then be (5a – x) *

(2/g) � (3n – j) * (8/y), which is neither consistent nor inconsis-

tent. This complication is inherent in the basic experimental design

and afflicts most of the permutations used in the experiment, but it

is not fatal. Because the consistency structure does exist on the

left-hand side of the equation (which is usually read before the

right-hand side), and no strong conflicting structure exists on the

right, any systematic effects of the manipulation are still attribut-

able to the consistency structure of the operand terms on the

left-hand side. In all cases, expressions are genuinely valid or

invalid, and therefore participants are given a sensible task.

Results

Three participants were removed from the analysis because they

did not meet a criterion of 60% performance in the neutral trials.

Once again, a two-way repeated measures ANOVA with accu-

racy as the dependent variable confirmed significant main effects

of sensitivity, F(1, 28) � 22.1, MSE � 3.12, p � .001, and

consistency, F(1, 28) � 5.608, MSE � .067, p � .01, and a

significant interaction between sensitivity and consistency, F(1,

28) � 4.96, p � .01. The mean accuracies within each condition

are displayed in Figure 5. Note that, once again, the increase in

accuracy with consistent alignment is much stronger in equations

that are sensitive to the order of operations than in those that are

equal or unequal regardless of grouping. The number of individual

participants with a higher consistent than inconsistent accuracy,

along with binomial tests of significance, is summarized in Table

4. In this experiment, no response time results reached signifi-

cance.

Discussion

The results of Experiment 3 support those of Experiments 1 and

2. The similarity of effects of physical spacing and internal struc-

ture on order of operations evaluation implies that each affects that

evaluation in a similar way. Generally, these results support the

perceptual grouping account. Except for a common impact on

grouping, the physical manipulation employed in Experiment 3

was quite different from that of the first two experiments. Unlike

the results of Experiment 1, the results of manipulating similarity

cannot be accounted for by physical similarity of the given equa-

tions to parenthesized ones. Furthermore, the manipulation is quite

subtle and clearly semantic, making it unlikely that participants

inferred parentheses.

The manipulation used here confounds two subtly different

kinds of similarity. First, templates drawn from the same type are

physically alike: They have parentheses, operators, and letter/

numerals in the same physical locations. This makes two terms

drawn from a common schema more perceptually similar than two

drawn from different schemas. For instance, a physical template

constructed from a Schema 1 term will better match another

Schema 1 term than a term derived from Schema 2. The second

kind of similarity is semantic: Two terms drawn from a common

schema will share semantic structure; for instance, any term drawn

from Schema 1 comprises an addition of an atomic symbol and a

product. We suspect that individual terms were not processed in

sufficient depth to make the analogical structural commonalities

important sources of similarity. Problems could always be solved

Table 5

Operand Schemas Used in Experiment 3

Index Schema

1 (letter / number)
2 (letter * letter * letter)
3 (letter � number * letter)
4 (number letter � letter)

Note. The words letter and number indicate slots in the schema. In actual
stimuli, the words would be replaced by actual (randomly selected) letters
and numbers. Spaces are added to the schema for clarity; in actual stimuli,
the operands contained no spaces.

Table 6

Experiment 3: Samples of Stimuli Used

Permutation Consistency Validity Sample stimulus

a c b d Consistent Valid (d*d*d) � (4/q) * (9/m) � (p�2*x) � (d*d*d) � (9/m) * (4/q) � (p�2*x)
b a d c Consistent Valid (t*t*t) * (m*m*m) � (5/h) * (2/v) � (m*m*m) * (t*t*t) � (2/v) * (5/h)
c a d b Consistent Invalid (8/g) � (6a�n) * (3m�p) � (a*a*a) � (3m�p) � (8/g) * (a*a*a) � (6a�n)
b c a d Consistent Invalid (f*f*f) * (u*u*u) � (y�3*k) * (a�2*q) � (u*u*u) * (y�3*k) � (f*f*f) * (a�2*q)
d b c a Neutral Valid (g�4*v) � (u�1*b) * (c�9*f) � (r�8*v) � (r�8*v) � (u�1*b) * (c�9*f) � (g�4*v)
d c b a Neutral Valid (t�6*h) * (y�2*q) � (a�5*x) * (k�9*r) � (k�9*r) * (a�5*x) � (y�2*q) * (t�6*h)
c d a b Neutral Invalid (j�7*t) � (u�1*b) * (w�9*y) � (r�8*v) � (w�9*y) � (r�8*v) * (j�7*t) � (u�1*b)
a c b d Neutral Invalid (t�6*h) * (y�2*q) � (a�5*x) * (k�9*r) � (t�6*h) * (a�5*x) � (y�2*q) * (k�9*r)
a b c d Inconsistent Valid (8/h) � (3/n) * (w�4*c) � (h�1*b) � (8/h) � (3/n) * (w�4*c) � (h�1*b)
b a d c Inconsistent Valid (3/b) * (j*j*J) � (z*z*z) * (7u�y) � (j*j*j) * (3/b) � (7u�y) * (z*z*z)
c d a b Inconsistent Invalid (d*d*d) � (q*q*q) * (4/q) � (9/m) � (4/q) � (9/m) * (d*d*d) � (q*q*q)
c a d b Inconsistent Invalid (v*v*v) * (3r�h) � (8e�u) * (2/s) � (8e�u) * (v*v*v) � (2/s) * (3r�h)
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without deep structural analysis of the parenthesized expressions.

However, either source of similarity could in principle account for

the effects of the consistency manipulation. Of course, neither

manipulation should normatively affect validity interpretations or

grouping, and either would be interesting in its own right. Our

interpretation—that the perceptual structure is principally respon-

sible—is only one possible interpretation, which we favor because

it is consistent with the results of Experiment 1.

Also, unlike the results of the previous experiments, in Exper-

iment 3 many individual participants had higher scores on incon-

sistent trials than on consistent trials. Because the effect is smaller,

this result is not incompatible with the assumption that participants

were all using the visual information; however, this result is also

compatible with the possibility that participants may have used a

variety of strategies on this experiment.

Experiment 4 reinforces Experiments 1, 2, and 3, and explores

further whether the grouping processes of the first two experiments

are driven only by early perceptual forces. Both proximity and

similarity are early perceptual features. In Experiment 4, we ma-

nipulated the presence of a learned category that generates a late

grouping pressure: alphabetic proximity.

Experiment 4

The human visual system groups objects not just by virtue of

their strictly perceptual properties, but also through learned asso-

ciations and pattern familiarity. In Experiment 4, we evaluated the

impact of a highly familiar pattern—the alphabet—on mathemat-

ical grouping. We explored whether alphanumeric proximity/

similarity affects participants’ effective order of operations. Al-

though this visual grouping principle may be expected to be much

weaker than spatial proximity, it is a useful principle to test

because it does not create equations that are easily mistaken for

parenthesized structures.

Method

Participants, apparatus, and procedure. Seventy-two Indiana

University undergraduates participated in the experiment in ex-

change for fulfillment of a course requirement. Apparatus and

procedure were identical to those used in Experiment 1.

Design. The design was very similar to that of Experiment 1.

Once again, participants judged the validity of a series of putative

equations. The same operator structures and permutations were

used, as were the three consistency classes, making again 48 total

types of equation. Again, all participants judged 300 equations,

with 240 randomly ordered test equations and 60 randomly or-

dered but evenly spaced distracter equations.

In Experiment 4, we manipulated consistency between structure

and form by varying the alphabetic proximity of terms across the

two operators. As in Experiment 1, the four operand terms were

single letters or numbers. In the consistent condition, terms sepa-

rated by a multiplication were adjacent in the alphabet, and in the

inconsistent condition, terms separated by the addition were adja-

cent. The symbols picked were always from adjacent elements in

the sets {a,b,c,d}, {p,q,r,s}, {w,x,y,z}, or {2,3,4,5}, which guar-

anteed that symbols which were not adjacent were widely sepa-

rated alphabetically. All letters and numbers excluding i, l, and o

were used in the neutral condition; however, the randomly selected

letters were chosen so that none were separated by fewer than two

other letters.

As in Experiment 3, the grouping pressures arise from properties

intrinsic to the tokens, so it is impossible to preserve the same

grouping pressures on the left- and right-hand sides of the equa-

tion. The equations are categorized by the grouping pressures

hypothesized to exist on their left-hand sides. Sample stimuli are

presented in Table 7.

Results

Seven participants whose performance in the neutral condition

was below 60% were removed from the analysis. A two-way

within-participants ANOVA using accuracy as the dependent mea-

sure revealed main effects both of consistency, F(1, 63) � 7.62,

MSE � .015, p � .001, and sensitivity, F(1, 63) � 25.3, MSE �

0.64, p � .001. There was also a significant interaction; the effect

of consistency was larger on sensitive equations than on insensi-

tive expressions, F(1, 63) � 4.55, MSE � 0.007, p � .05. The

mean values along with standard errors are displayed in Figure 6.

Counts of individual participant differences on consistent and

inconsistent trials are summarized in Table 4. No results regarding

response time reached significance.

Discussion

Although the effect of consistency exhibited in Experiment 4 is

much smaller than that of Experiments 1 and 2, it is worth taking

a moment to be surprised that it is there at all. Although it is quite

usual for people to prefer certain letters or letter sets for certain

semantic roles in an algebraic expression (compare h � tu � n

with y � mx � b), it is counterintuitive (to us, at least) that general

alphabetic proximity should affect simple mathematical judg-

ments, and especially that it should apparently interact with the

application of the order of operations so specifically. Although we

Figure 5. Experiment 3: Shape similarity. Values are mean accuracies,

divided across consistency and sensitivity conditions, averaged across

subjects. Error bars are standard errors.
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cannot rule out the possibility that spacing, structure, and alpha-

betic proximity affect order of operations judgments for unrelated

reasons, or for a reason other than their impacts on grouping, the

factors known to influence perceptual grouping provide support

for the hypothesis that mathematical grouping interacts with per-

ceptual grouping generally.

Unlike the pressures manipulated in the previous experiments,

pressure from alphabetic proximity is categorical rather than

strictly perceptual. Furthermore, the pressure depends on a spe-

cific, highly learned pattern. This experiment therefore explored

the effect of a late, association-based grouping pressure on alge-

braic order of operations.

General Discussion

The current experiments show an influence of perceptual group-

ing on mathematical problem solving. The results are noteworthy

for several reasons. First, they demonstrate a genuine cognitive

illusion in the domain of mathematics. The criteria for cognitive

illusions in reasoning are that people systematically show an

influence of a factor in reasoning; that the factor should norma-

tively not be used; and that people agree, when debriefed, that they

were wrong to use the factor (Tversky & Kahneman, 1974). These

criteria are met in our paradigm. Our participants were systemat-

ically influenced by the grouping variables of physical spacing, al-

phabetic familiarity of variable names, and notational form. The

normative formalism of mathematics does not include these factors.

Postexperimental reviews indicated that some participants real-

ized that that they were affected by grouping. Other participants

believed that their responses were in accordance with the standard

order of operations. In both cases, participants knew that respond-

ing on the basis of space, alphabetic familiarity, and similarity of

notation were incorrect, but they continued to be influenced by

these factors. The influence did decrease somewhat by the end of

240 trials, but even at the end of the experiment, the difference in

accuracy between consistent and inconsistent perceptual grouping, for

example using the spacing manipulation of Experiment 1, was 14%.

The second impressive aspect of the results is that participants

continued to show large influences of grouping on equation veri-

fication even though they received trial-by-trial feedback. One

might have argued that participants were influenced by grouping

only because they believed that they could strategically use super-

ficial grouping features as cues to mathematical parsing. However,

constant feedback did not eliminate the influence of these super-

ficial cues. This suggests that sensitivity to grouping is automatic

or at least resistant to strategic, feedback-dependent control pro-

cesses. Grouping continued to exert an influence even when par-

ticipants realized, after considerable feedback, that it was likely to

provide misleading cues to parsing. Physical spacing might be

thought to be perceptually early and hence resistant to strategic

control. However, alphabetic and format similarity are not com-

puted early in the perceptual processing stream and yet still show

robust, feedback-resistant influences.

The third impressive aspect of the results is that an influence of

grouping was found in mathematical reasoning. Mathematical

reasoning is often taken as a paradigmatic case of purely symbolic

reasoning, much more so than language, which, in its spoken form,

is produced and comprehended before children have acquired

formal operations (Inhelder & Piaget, 1958). Some branches of

Table 7

Experiment 4: Samples of Stimuli Used

Permutation
Operator
structure Consistency Validity Example

a c b d �*� Consistent Valid a � p * q � z � a � q * p � z
c d a b �*� Consistent Invalid u � 2 * 3 � e � 3 � e * u � 2
b a d c *�* Consistent Valid k � m * n � t � m � k * t � n
b c a d *�* Consistent Invalid w * x � q * r � x * q � w * r
d b c a �*� Neutral Valid a � u * j � m � m � u * j � a
c d a b �*� Neutral Invalid r � w * q � b � q � b * r � w
d c b a *�* Neutral Valid r * f � w * n � n * w � f * r
a c b d *�* Neutral Invalid 4 * u � s * e � 4 * s � u * e
a b c d �*� Inconsistent Valid r � s * b � c � r � s * b � c
c d a b �*� Inconsistent Invalid a � b * 3 � 4 � 3 � 4 * a � b
b a d c *�* Inconsistent Valid 4 * b � p * r � b * 4 � r * p
c a d b *�* Inconsistent Invalid c * 4 � 5 * r � 5 * c � r * 4

Figure 6. Experiment 4: Familiarity. Values are mean accuracies, divided

across consistency and sensitivity conditions, averaged across subjects.

Error bars are standard errors.
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mathematics, notably topology and geometry, are often argued to

use visuospatial routines (Hadamard, 1949). However, algebra is,

according to many people’s intuition, the clearest case of widespread

symbolic reasoning in all human cognition. To find an influence of

variable names in algebraic calculation is striking. Participants know

that the names given to variables are not supposed to influence

calculations, but their behavior indicates exactly such an influence.

The current work is consistent with other literature showing that

people may use perceptual cues instead of rules even when they

know that the rules should be applied. For example, Allen and

Brooks (1991) provided participants with an easy rule for catego-

rizing cartoon animals into two groups. If the animal had at least

two of the features long legs, angular body, or spots then it was a

builder; otherwise it was a digger. Participants were trained re-

peatedly on eight animals. Then participants were transferred to

new animals. Some of the animals looked very similar to one of the

eight training stimuli but belonged to a different category. These

animals were categorized more slowly and less accurately than

animals that were equally similar to an old animal and belonged in

the same category as the old animal. Participants seem not to have

been able to ignore perceptual similarities between old and new

animals, even though they knew a straightforward and perfectly

accurate categorization rule. As another example, Palmeri (1997)

had participants judge the numerosity of random patterns with

6–11 dots. After several days of training on a specific set of

stimuli, the classification accuracy of new stimuli was heavily

influenced by their perceptual similarity to old, trained patterns. A

picture with 7 dots that was perceptually similar to one of the

trained 6-dot patterns was often judged to have 6 dots. Participants

knew the rule for counting but ended up being influenced by

similarity factors that they knew to be potentially misleading.

These and other (Keil, 1989; Ross, 1987; Smith & Sloman, 1994)

studies suggest that people often use perceptual similarity as a

basis for their judgments even when they know the correct formal

rules that should be applied.

Our current studies extend these previous demonstrations in two

important ways. First, we demonstrate intrusions of perceptual

grouping even in algebraic reasoning tasks that are taken as ar-

chetypal cases of symbolic rule processing. Unlike the novel and

unfamiliar rules used by Allen and Brooks (1991), the order of

operations rules used in our study were familiar to participants,

thus they might have been expected to deploy these rules without

interference from mathematically irrelevant groupings. Second, we

show influences of perceptual similarity not between items that

affects whether one item will remind a person of another item, but

also perceptual similarity within an item that leads to some ele-

ments of the item to being grouped together.

Possible Mechanisms Mediating Mathematical Grouping

Both formal models (Butterworth, Zorzi, Girelli, & Jonckheere,

2001; Anderson, 2005) and more theoretical conceptions (Sten-

ning, 2002; Chandrasekaran, 2005) conceive of notation interpre-

tation as a two-stage process: First, a visual scene is decomposed

into a string of basic graphemes. Second, abstract representations

of these basic graphemes are recomposed using the internally

represented laws of an algebraic grammar. The first process is a

visual one: the perceptual system uses visible properties to cate-

gorize a symbol into one of a collection of discrete types. At the

intermediate stage, representation of the size, shape, nonordinal

position, color, and other concrete physical characteristics con-

tained in actual physical symbol tokens is dropped, and the symbol

information passed to the reconstruction mechanism is more-or-

less abstract. Although these symbols may still legitimately be cast

as visual (Koedinger & MacLaren, 2002), only the category of the

symbol is retained for subsequent processing. The only relational

structure that is retained is the order in which the symbols appear.

We call such accounts two-stage accounts, because they assume

that visual processes precede and are independent of the formal or

cognitive processes that implement mathematical reasoning.

In the two-stage accounts conception, notational perception is

cleanly separated from mathematical reasoning proper. For this

reason, opportunities for an interaction between the two processes

are strictly limited. Symbols that are poorly written may be diffi-

cult to correctly categorize; and deliberate interference with work-

ing memory might make it difficult to remember one symbol while

reading the next. However, the decomposition of the visual scene

into discrete adjacent symbols makes physical relations between

the individual symbols necessarily irrelevant to mathematical re-

lationships (Stenning, 2002; Chandrasekaran, 2005).

A parsimonious account of the relationship between validity

behavior and perceptual grouping demonstrated here is that the

reasoning processes do not initially represent a viewed equation as

a sequence of individual notational graphemes. Instead, they may

use the hierarchy of groups automatically constructed by the visual

system as the representations over which reasoning processes

occur, resorting to the analysis of individual graphemes only when

necessary. We imagine reasoning as an interaction between typi-

cally visual processes and central reasoning. In the case of validity,

a parsimonious model might go something like this: Perceptual

processes group (“chunk”) scenes at a particular level of the

part–whole hierarchy, and present those chunks (or pointers to

those visual chunks) to a subsequent reasoning process. That

reasoning process verifies that the same chunks appear on the left-

and right-hand sides of the equation, using a visual comparison

process. The reasoning process generally starts at the highest

relevant level of the part–whole hierarchy, viewing the entire left-

and right-hand subexpressions as single chunks. If they do not

match, then the reasoning process can descend the visual hierarchy

through adjusting the spatial grouping of the perceptual system and

reinspecting the equation (or a mental image of the equation). In

this kind of model, the results demonstrated here follow naturally.

Because perceptual grouping is the default method of order of

operations evaluation, the presence of nonstandard grouping prin-

ciples interferes with the effective mathematical procedure. We

call an account like this an interactive account, because it assumes

an interaction between higher level cognitive processes and an

active visual apparatus.

Dehaene (Dehaene, 1997; Dehaene, Bossini, & Giraux, 1993;

Dehaene, Molko, Cohen, & Wilson, 2004) has proposed a “triple-

code” theory in which simple arithmetic facts are stored arithmet-

ically, complex multidigit problems are represented visually, and

numbers are compared through an amodal magnitude estimation

process. Triple-code theory is primarily intended as an account of

basic small-number arithmetic, and as such does not specifically

address algebraic tasks that do not involve numeric computation.

The mathematical task used here is beyond the scope of the current

theory. In addition, triple-code theory has only been discussed in
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terms of single-grapheme atomic representations. However, triple-

code theory is very well suited to account for the kinds of effects

seen here in that it presents formal reasoning as explicitly

grounded in specific, modal processes that are applied to rich

visual representations. Although the current theory does not ad-

dress or include specific visual processes other than symbol rec-

ognition, a model like triple-code theory could readily be expanded

to include these groupings as a key component in formal interpre-

tation without violating the existing theory.

Two-stage and interactive accounts of mathematical reasoning

are very different, but the two are not incompatible; rather, we see

interactive processes as built upon and including more commonly

considered processes. Models such as ACT-R could be adapted to

account for multigrapheme visual units through the overt inclusion

of a visual grouping component, and rules that deal with them,

without radical change in the overall architecture. We feel that

inclusion of such processes would help formal models to address

the pragmatic, though formally incorrect, visual strategies dis-

played by reasoners on this task.

Implications

If multigrapheme perceptual units are the basic representations

of much mathematical reasoning, then modelers ignore them at the

risk of increased complexity in their models. Computational mod-

els typically separate symbol perception and identification from

reasoning processes (such as determining operation order), which

occur on abstracted representations of problem form. Such models

structurally rule out the kinds of interactions we observe. This does

not matter much for modeling basic single-operator arithmetic,

perhaps, but it is important wherever formatting conventions are

important and present. Models that ignore physical format risk

modeling as conceptual interpretative processes that are really

perceptual, and thus constructing processes over atomic graphemes

that are not the basic conceptual units. Perceptual processes are

strongly constrained; these constraints (if used) can provide mod-

elers with valuable information about what symbols and/or sys-

tems can be easily learned, and how those systems are likely to be

approached (Endress, Scholl, & Mehler, 2005).

These results also have practical implications for experimental

work in algebra. Koedinger and MacLaren (2002), for instance,

argued that symbolic expressions are more difficult than word

equations for novice and intermediate algebraic reasoners. They

suggest that many of these difficulties result from problems in

interpreting algebraic equations; these difficulties lead to, among

other errors, many failures to observe the correct order of opera-

tions. This is an important topic, and their experiments are well

designed and compelling. Unfortunately, the symbolic problems

presented to participants were uniformly spaced; our evidence

suggests that many of the order of operations errors may have been

induced by unhelpfully constructed symbolic equations, not from

difficulties with symbolic expressions per se. Experimental claims

about how symbolic information is acquired and used must in

general carefully control, we suggest, the physical format of the

presented equations. Researchers hoping to form general educa-

tional conclusions about higher level formal reasoning must pay

close attention to the physical format of their stimuli, as well as to

the formal content and presentation, when evaluating how reason-

ers engage with formal systems.

Understanding how people build complex relational understand-

ings of mathematical forms is extremely important, both for build-

ing better mathematics instruction methods, and for improving

mathematical notations. Although the effect sizes in Experiments

3 and 4 are not especially large, it is worth remembering that these

effects existed despite feedback instructions to attend to the formal

order of precedence rules. Also, in most practical situations, one

does not simply make a single equality judgment, but instead

makes such judgments while engaged in a more complicated task.

Even in cases in which participants successfully made correct

judgments, they may have used limited cognitive resources to do

so; this could in turn impair performance on a larger task, of which

building a syntactic representation is just a small part of the

equation.
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