
Found Comput Math

DOI 10.1007/s10208-015-9296-2

Random Gradient-Free Minimization of Convex

Functions

Yurii Nesterov1
· Vladimir Spokoiny2

Received: 15 July 2013 / Revised: 4 May 2015 / Accepted: 24 September 2015

© SFoCM 2015

Abstract In this paper, we prove new complexity bounds for methods of convex

optimization based only on computation of the function value. The search directions

of our schemes are normally distributed random Gaussian vectors. It appears that

such methods usually need at most n times more iterations than the standard gradient

methods, where n is the dimension of the space of variables. This conclusion is true

for both nonsmooth and smooth problems. For the latter class, we present also an

accelerated scheme with the expected rate of convergence O
(

n2

k2

)
, where k is the

iteration counter. For stochastic optimization, we propose a zero-order scheme and

justify its expected rate of convergence O
(

n
k1/2

)
. We give also some bounds for the rate

of convergence of the random gradient-free methods to stationary points of nonconvex

functions, for both smooth and nonsmooth cases. Our theoretical results are supported

by preliminary computational experiments.

Keywords Convex optimization · Stochastic optimization · Derivative-free

methods · Random methods · Complexity bounds

Communicated by Michael Overton.

Y. Nesterov: This work was done in affiliation with Higher School of Economics, Moscow.

B Yurii Nesterov

yurii.nesterov@uclouvain.be

1 Center for Operations Research and Econometrics (CORE), Catholic University of Louvain

(UCL), Leuven, Belgium

2 Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Humboldt University of Berlin,

Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-015-9296-2&domain=pdf

Found Comput Math

Mathematics Subject Classification 90C25 · 0C47 · 68Q25

1 Introduction

1.1 Motivation

Derivative-free optimization methods were among the first schemes suggested in the

early days of the development of optimization theory [12]. These methods have an

evident advantage of a simple preparatory stage (the program of computation of the

function value is always much simpler than the program for computing the vector of

the gradient). However, very soon it was realized that these methods are much more

difficult for theoretical investigation. For example, even for moderate dimension, the

famous method by Nelder and Mead [13] has only an empirical justification up to

now (justification for low-dimensional problems were given in [10,11]). Moreover,

the possible rate of convergence of the derivative-free methods (established usually

on an empirical level) is far below the efficiency of the usual optimization schemes.

On the other hand, as it was established in the beginning of 1980s, any function,

represented by an explicit sequence of differentiable operations, can be automatically

equipped with a program for computing the whole vector of its partial derivatives.

Moreover, the complexity of this program is at most four times bigger than the com-

plexity of computation of the initial function (this technique is called Fast Differentia-

tion, or a backward mode of Automatic Differentiation). It seems that this observation

destroyed the last arguments for supporting the idea of derivative-free optimization.

During several decades, these methods were almost out of computational practice.

However, in the last years, we can see a restoration of the interest to this topic.

The current state of the art in this field was recently updated by a comprehensive

monograph [5]. It appears that, despite serious theoretical objections, the derivative-

free methods can probably find their place on the software market. For that, there exist

at least several reasons.

• In many applied fields, there exist some models, which are represented by an old

black-box software for computing only the values of the functional characteristics

of the problem. Modification of this software is either too costly or impossible.

• There exist some restrictions for applying the Fast Differentiation technique. In

particular, it is necessary to store the results of all intermediate computations.

Clearly, for some applications, this is impractical by memory limitations.

• In any case, creation of a program for computing partial derivatives requires some

(substantial) efforts of a qualified programmer. Very often his/her working time

is much more expensive than the computational time. Therefore, in some situa-

tions it is reasonable to buy a cheaper software and accept significantly increased

computational time.

• Finally, the extension of the notion of the gradient onto nonsmooth case is a non-

trivial operation. The generalized gradient cannot be formed by partial derivatives.

The most popular framework for defining the set of local differential characteristics

(Clarke subdifferential [4]) suffers from an incomplete chain rule. The only known

technique for automatic computations of such characteristics (lexicographic differ-

123

Found Comput Math

entiation [17]) requires an increase in complexity of function evaluation in O(n)

times, where n is the number of variables.

Thus, it is interesting to develop the derivative-free optimization methods and obtain

the theoretical bounds for their performance. It is interesting that such bounds are

almost absent in this field (see, for example, [5]). One of the few exceptions is a

derivative-free version of cutting plane method presented in Section 9.2 of [15] and

improved by [21].

In this paper, we present several random derivative-free methods and provide them

with some complexity bounds for different classes of convex optimization problems.

As we will see, the complexity analysis is crucial for finding the reasonable values of

their parameters.

Our approach can be seen as a combination of several popular ideas. First of all,

we mention the random optimization approach [12], as applied to the problem

min
x∈Rn

f (x), (1)

where f is a differentiable function. It was suggested to sample a point y randomly

around the current position x (in accordance with Gaussian distribution) and move to

y if f (y) < f (x). The performance of this technique for nonconvex functions was

estimated in [6] and criticized by [22] from the numerical point of view.

Different improvements of the random search idea were discussed in Section 3.4

[20]. In particular, it was mentioned that the scheme

xk+1 = xk − hk
f (xk+μk u)− f (xk)

μk
u, (2)

where u is a random vector distributed uniformly over the unit sphere and converges

under assumption μk → 0. However, no explicit rules for choosing the parameters

were given, and no particular rate of convergence was established.

The main goal of this paper is the complexity analysis of different variants of

method (2) and its accelerated versions. We study these methods for both smooth and

nonsmooth optimization problems. It appears that the most powerful version of the

scheme (2) corresponds to μk → 0. Then we get the following process:

xk+1 = xk − hk f ′(xk, u)u, (3)

where f ′(x, u) is a directional derivative of function f (x) along u ∈ Rn . As compared

with the gradient, directional derivative is a much simpler object. Its value can be easily

computed even for nonconvex nonsmooth functions by a forward differentiation. Or it

can be approximated very well by finite differences. Note that in the gradient schemes,

the target accuracy ǫ for problem (1) is not very high. Hence, as we will see, the

accuracy of the finite differences can be kept on a reasonable level.

For our technique, it is convenient to work with a normally distributed Gaussian

vector u ∈ Rn . Then we can define

g0(x)
def= f ′(x, u)u.

123

Found Comput Math

It appears that for convex f , vector Eu(g0(x)) is always a subgradient of f at x .

Thus, we can treat the process (3) as a method with random oracle. Usually, these

methods are analyzed in the framework of stochastic approximation (see [14] for the

state of art of the field). However, our random oracle is very special. The standard

assumption in stochastic approximation is the boundedness of the second moment

of the random estimate ∇x F(x, u) of the gradient for the objective function f (x) =
Eu(F(x, u)):

Eu(‖∇x F(x, u)‖2
2) ≤ M2, x ∈ Rn . (4)

(see, for example, condition (2.5) in [14]). However, in our case, if f is differentiable

at x , then

Eu(‖g0(x)‖2
2) ≤ (n + 4)‖∇ f (x)‖2

2.

This relation makes the analysis of our methods much simpler and leads to the faster

schemes. In particular, for the method (3) as applied to Lipschitz-continuous functions,

we can prove that the expected rate of convergence of the objective function is of

the order O(
√

n
k
). If a function has Lipschitz-continuous gradient, then the rate is

increased up to O(n
k
). If in addition, our function is strongly convex, then we have a

global linear rate of convergence. Note that in the smooth case, using the technique

of estimate sequences (e.g., Section 2.2 in [16]), we can accelerate method (3) up to

convergence rate O(n2

k2).

For justifying the versions of random search methods with μk > 0, we use a

smoothed version of the objective function

fμ(x) = Eu(f (x + μu)). (5)

This object is classical in optimization theory. For the complexity analysis of the

random search methods, it was used, for example, in Section 9.3 [15]1 However, in

their analysis the authors used the first part of the representation

∇ fμ(x) = 1
μ

Eu(f (x + μu)u)
(!)≡ 1

μ
Eu([f (x + μu) − f (x)]u).

In our analysis, we use the second part, which is bounded in μ. Hence, our conclusions

are more optimistic.

Our results complement a series of developments in the machine learning commu-

nity, related to randomized algorithms based on zero-order oracles. First algorithms

of this type were proposed in [8] under the name of bandit convex optimization for a

noisy oracle. The obtained complexity results were of the order ǫ−1/4 for Lipschitz-

continuous convex functions. Another important contribution is [1], where the authors

consider a noisy zero-order oracle and obtain complexity results for different classes

1 In [15], u was uniformly distributed over a unit ball. In our comparison, we use a direct translation of the

constructions in [15] into the language of the normal Gaussian distribution.

123

Found Comput Math

of convex functions (e.g., O(n4

ǫ2) for Lipschitz-continuous functions). In [2], the model

of the oracle admits even more noise. It seems that the methods with the absence of

noise were not in the main focus of this line of research.

Randomized optimization algorithms were intensively studied in the theoretical

computer science literature in the framework of random walks in convex sets (e.g.,

[3]). For global optimization, many authors were applying randomization ideas (e.g.,

[9]; see also [7] for relevant lower bounds). In our approach, we significantly simplify

the analysis allowing random displacements in the full neighborhood of the current

test point.

This paper is an extended version of preprint [18].

1.2 Contents

In Sect. 2, we introduce the Gaussian smoothing (5) and study its properties. In par-

ticular, for different functional classes, we estimate the error of approximation of the

objective function and the gradient with respect to the smoothing parameter μ. The

proofs of all statements of this section can be found in “Appendix”.

In Sect. 3, we introduce the random gradient-free oracles, which are based either on

finite differences or on directional derivatives. The main results of this section are the

upper bounds for the expected values of squared norms of these oracles. In Sect. 4, we

apply the simple random search method to a nonsmooth convex optimization problem

with simple convex constraints. We show that the scheme (3) works at most in O(n)

times slower than the usual subgradient method. For the finite-difference version (2),

this factor is increased up to O(n2). Both methods can be naturally modified to be

used for stochastic programming problems.

In Sect. 5, we estimate the performance of method (2) on smooth optimization

problems. We show that, under proper choice of parameters, it works at most n times

slower than the usual gradient method. In Sect. 6, we consider an accelerated version

of this scheme with the convergence rate O(n2

k2). For all methods, we derive the upper

bounds for the value of the smoothing parameter μ. It appears that in all situations,

their dependence in ǫ and n is quite moderate. For example, for the fast random search

presented in Sect. 6, the average size of the trial step μu is of the order O(n−1/2ǫ3/4),

where ǫ is the target accuracy for solving (1). For the simple random search, this

average size is even better: O(n−1/2ǫ1/2).

In Sect. 7, we estimate a rate of convergence for the random search methods to

a stationary point of a nonconvex function (in terms of the norm of the gradient).

We consider both smooth and nonsmooth cases. Finally, in Sect. 8, we present the

preliminary computational results. In the tested methods, we were checking the validity

of our theoretical conclusions on stability and the rate of convergence of the scheme,

as compared with the prototype gradient methods.

1.3 Notation

For a finite-dimensional space E , we denote by E∗ its dual space. The value of a linear

function s ∈ E∗ at point x ∈ E is denoted by 〈s, x〉. We endow the spaces E and E∗

with Euclidean norms

123

Found Comput Math

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖s‖∗ = 〈s, B−1s〉1/2, s ∈ E∗,

where B = B∗ ≻ 0 is a linear operator from E to E∗. For any u ∈ E , we denote by

uu∗ a linear operator from E∗ to E , which acts as follows:

uu∗(s) = u · 〈s, u〉, s ∈ E∗.

In this paper, we consider functions with different levels of smoothness. It is indi-

cated by the following notation.

• f ∈ C0,0(E) if | f (x) − f (y)| ≤ L0(f)‖x − y‖, x, y ∈ E .

• f ∈ C1,1(E) if ‖∇ f (x) − ∇ f (y)‖∗ ≤ L1(f)‖x − y‖, x, y ∈ E . This condition

is equivalent to the following inequality:

| f (y) − f (x) − 〈∇ f (x), y − x〉| ≤ 1
2

L1(f)‖x − y‖2, x, y ∈ E . (6)

• f ∈ C2,2(E) if ‖∇2 f (x) − ∇2 f (y)‖ ≤ L2(f)‖x − y‖, x, y ∈ E . This condition

is equivalent to the inequality

| f (y) − f (x) − 〈∇ f (x), y − x〉 − 1
2
〈∇2 f (x)(y − x), y − x〉|

≤ 1
6

L2(f)‖x − y‖3, x, y ∈ E .

(7)

We say that f ∈ C1,1(E) is strongly convex, if for any x and y ∈ E we have

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + τ(f)
2

‖y − x‖2, (8)

where τ(f) ≥ 0 is the convexity parameter.

Let ǫ ≥ 0. For convex function f , we denote by ∂ fǫ(x) its ǫ-subdifferential at

x ∈ E :

f (y) ≥ f (x) − ǫ + 〈g, y − x〉, g ∈ ∂ fǫ(x), y ∈ E .

If ǫ = 0, we simplify this notation to ∂ f (x).

2 Gaussian Smoothing

Consider a function f : E → R. We assume that at each point x ∈ E , it is differen-

tiable along any direction. Let us form its Gaussian approximation

fμ(x) = 1
κ

∫
E

f (x + μu)e− 1
2 ‖u‖2

du, (9)

where

κ
def=

∫
E

e− 1
2 ‖u‖2

du = (2π)n/2

[det B]1/2 . (10)

123

Found Comput Math

All results of this section, related to the properties of this function, are rather general.

Therefore, we put their proofs in “Appendix”.

As we will see later, for μ > 0 function fμ is always differentiable, and μ ≥ 0

plays a role of smoothing parameter. Clearly, 1
κ

∫
E

ue− 1
2 ‖u‖2

du = 0. Therefore, if f is

convex and g ∈ ∂ f (x), then

fμ(x) ≥ 1
κ

∫
E

[f (x) + μ〈g, u〉]e− 1
2 ‖u‖2

du = f (x). (11)

Note that in general, fμ has better properties than f . At least, all initial character-

istics of f are preserved by any fμ with μ ≥ 0.

• If f is convex, then fμ is also convex.

• If f ∈ C0,0, then fμ ∈ C0,0 and L0(fμ) ≤ L0(f). Indeed, for all x, y ∈ E we

have

| fμ(x) − fμ(y)| ≤ 1
κ

∫
E

| f (x + μu) − f (y + μu)|e− 1
2 ‖u‖2

du ≤ L0(f)‖x − y‖.

• If f ∈ C1,1, then fμ ∈ C1,1 and L1(fμ) ≤ L1(f):

‖∇ fμ(x) − ∇ fμ(y)‖∗ ≤ 1
κ

∫
E

‖∇ f (x + μu) − ∇ f (y + μu)‖∗e− 1
2 ‖u‖2

du

≤ L1(f)‖x − y‖, x, y ∈ E .

(12)

From definition (10), we get also the identity

ln
∫
E

e− 1
2 〈Bu,u〉du ≡ n

2
ln(2π) − 1

2
ln det B.

Differentiating this identity in B, we get the following representation:

1
κ

∫
E

uu∗e− 1
2 ‖u‖2

du = B−1. (13)

Taking a scalar product of this equality with B, we obtain

1
κ

∫
E

‖u‖2e− 1
2 ‖u‖2

du = n. (14)

In what follows, we often need upper bounds for the moments Mp
def= 1

κ

∫
E

‖u‖p

e− 1
2 ‖u‖2

du. We have exact simple values for two cases:

M0
(10)= 1, M2

(14)= n. (15)

123

Found Comput Math

For other cases, we will use the following simple bounds.

Lemma 1 For p ∈ [0, 2], we have

Mp ≤ n p/2. (16)

If p ≥ 2, then we have two-side bounds

n p/2 ≤ Mp ≤ (p + n)p/2. (17)

Now we can prove the following useful result.

Theorem 1 Let f ∈ C0,0(E), then

| fμ(x) − f (x)| ≤ μL0(f)n1/2, x ∈ E . (18)

If f ∈ C1,1(E), then

| fμ(x) − f (x)| ≤ μ2

2
L1(f)n, x ∈ E . (19)

Finally, if f ∈ C2,2(E), then

| fμ(x) − f (x) − μ2

2
〈∇2 f (x), B−1〉| ≤ μ3

3
L2(f)(n + 3)3/2, x ∈ E . (20)

Inequality (20) shows that increasing the level of smoothness of function f beyond

C1,1(E) cannot improve the quality of approximation of f by fμ. If, for example, f

is quadratic and ∇2 f (x) ≡ G, then

fμ(x)
(20)= f (x) + μ2

2
〈G, B−1〉.

The constant term in this identity can reach the right-hand side of inequality (19).

For any positive μ, function fμ is differentiable. Let us obtain a convenient expres-

sion for its gradient. For that, we rewrite definition (9) in another form by introducing

a new integration variable y = x + μu:

fμ(x) = 1
μnκ

∫
E

f (y)e
− 1

2μ2 ‖y−x‖2

dy.

Since the value and the partial derivative in x of the argument of this integral are

continuous in (x, y), we can apply the standard differentiation rule for finding the

gradient:

123

Found Comput Math

∇ fμ(x) = 1
μn+2κ

∫
E

f (y)e
− 1

2μ2 ‖y−x‖2

B(y − x) dy

= 1
μκ

∫
E

f (x + μu)e− 1
2 ‖u‖2

Bu du

= 1
κ

∫
E

f (x+μu)− f (x)
μ

e− 1
2 ‖u‖2

Bu du.

(21)

It appears that this gradient is Lipschitz-continuous even if the gradient of f is not.

Lemma 2 Let f ∈ C0,0(E) and μ > 0. Then fμ ∈ C1,1(E) with

L1(fμ) = n1/2

μ
L0(f). (22)

Denote by f ′(x, u) the directional derivative of f at point x along direction u:

f ′(x, u) = lim
α↓0

1
α
[f (x + αu) − f (x)]. (23)

Then we can define the limiting vector of the gradients (21):

∇ f0(x) = 1
κ

∫
E

f ′(x, u)e− 1
2 ‖u‖2

Bu du. (24)

Note that at each x ∈ E , the vector (24) is uniquely defined. If f is differentiable at

x , then

∇ f0(x) = 1
κ

∫
E

〈∇ f (x), u〉e− 1
2 ‖u‖2

Bu du
(13)= ∇ f (x). (25)

Let us prove that in convex case, ∇ fμ(x) always belongs to some ǫ-subdifferential

of function f .

Theorem 2 Let f be convex and Lipschitz continuous. Then, for any x ∈ E and

μ ≥ 0, we have

∇ fμ(x) ∈ ∂ǫ f (x), ǫ = μL0(f)n1/2.

Note that expression (21) can be rewritten in the following form:

∇ fμ(x) = 1
κ

∫
E

f (x)− f (x−μu)
μ

e− 1
2 ‖u‖2

Bu du

(21)= 1
κ

∫
E

f (x+μu)− f (x−μu)
2μ

e− 1
2 ‖u‖2

Bu du.

(26)

123

Found Comput Math

Lemma 3 If f ∈ C1,1(E), then

‖∇ fμ(x) − ∇ f (x)‖∗ ≤ μ
2

L1(f)(n + 3)3/2. (27)

For f ∈ C2,2(E), we can guarantee that

‖∇ fμ(x) − ∇ f (x)‖∗ ≤ μ2

6
L2(f)(n + 4)2. (28)

Finally, we prove one more relation between the gradients of f and fμ.

Lemma 4 Let f ∈ C1,1(E). Then, for any x ∈ E, we have

‖∇ f (x)‖2
∗ ≤ 2‖∇ fμ(x)‖2

∗ + μ2

2
L2

1(f)(n + 6)3. (29)

3 Random Gradient-Free Oracles

Let random vector u ∈ E have Gaussian distribution with correlation operator B−1.

Denote by Eu(ψ(u)) the expectation of corresponding random variable. For μ ≥ 0,

using expressions (21), (26), and (24), we can define the following random gradient-

free oracles:

1. Generate randomu ∈ E and return gμ(x) = f (x+μu)− f (x)
μ

· Bu.

2. Generate randomu ∈ E and return ĝμ(x) = f (x+μu)− f (x−μu)
2μ

· Bu.

3. Generate randomu ∈ E and return g0(x) = f ′(x, u) · Bu.

(30)

As we will see later, oracles gμ and ĝμ are more suitable for minimizing smooth

functions. Oracle g0 is more universal. It can be also used for minimizing nonsmooth

convex functions. Recall that in view of (24) and Theorem 2, we have2

Eu(g0(x)) = ∇ f0(x) ∈ ∂ f (x). (31)

We can establish now several useful upper bounds. First of all, note that for function

f differentiable at point x , we have

‖g0(x)‖2
∗ = 〈∇ f (x), u〉2 · ‖u‖2 ≤ ‖∇ f (x)‖2

∗ · ‖u‖4.

2 Presence of this oracle is the main reason why we call our methods gradient free (not derivative free!).

Indeed, directional derivative is a much simpler object as compared with the gradient. It can be easily

defined for a very large class of functions. At the same time, definition of the gradient (or subgradient)

is much more involved. It is well known that in nonsmooth case, collection of partial derivatives is not a

subgradient of convex function. For nonsmooth nonconvex functions, the possibility of computing a single

subgradient needs a serious mathematical justification [17]. On the other hand, if we have an access to a

program for computing the value of our function, then the program for computing directional derivatives

can be obtained by a trivial automatic forward differentiation.

123

Found Comput Math

Hence, Eu(‖g0(x)‖2
∗)

(17)
≤ (n + 4)2‖∇ f (x)‖2

∗. It appears that this bound can be sig-

nificantly strengthened.

Theorem 3 1. If f is differentiable at x, then

Eu(‖g0(x)‖2
∗) ≤ (n + 4)‖∇ f (x)‖2

∗. (32)

2. Let f be convex. Denote D(x) = diam ∂ f (x). Then, for any x ∈ E we have

Eu(‖g0(x)‖2
∗) ≤ (n + 4)

(
‖∇ f0(x)‖2

∗ + nD2(x)
)
. (33)

Proof Indeed, let us fix τ ∈ (0, 1). Then,

Eu(‖g0(x)‖2
∗)

(30)= 1
κ

∫
E

‖u‖2e− 1
2 ‖u‖2

f ′(x, u)2du

= 1
κ

∫
E

‖u‖2e− τ
2 ‖u‖2

f ′(x, u)2e− 1−τ
2 ‖u‖2

du

(80)
≤ 2

κτe

∫
E

f ′(x, u)2e− 1−τ
2 ‖u‖2

du

= 2
κτ(1−τ)1+n/2e

∫
E

f ′(x, u)2e− 1
2 ‖u‖2

du.

The minimum of the right-hand side in τ is attained for τ∗ = 2
n+4

. In this case,

τ∗(1 − τ∗)
n+2

2 = 2
n+4

(
n+2
n+4

) n+2
2

> 2
(n+4)e

.

Therefore,

Eu(‖g0(x)‖2
∗) ≤ n+4

κ

∫
E

f ′(x, u)2e− 1
2 ‖u‖2

du.

If f is differentiable at x , then f ′(x, u) = 〈∇ f (x), u〉, and we get (32) from (13).

Suppose that f is convex and not differentiable at x . Denote by g(u) an arbitrary

point from the set Arg max
g

{〈g, u〉 : g ∈ ∂ f (x)}. Then

f ′(x, u)2 = (〈∇ f0(x), u〉 + 〈g(u) − ∇ f0(x), u〉)2.

123

Found Comput Math

Note that

Eu(〈∇ f0(x), u〉 · 〈g(u) − ∇ f0(x), u〉) (13)= Eu(〈∇ f0(x), u〉 · f ′(x, u)) − ‖∇ f0(x)‖2
∗

= 〈∇ f0(x), Eu(u · f ′(x, u))〉 − ‖∇ f0(x)‖2
∗

(24)= 0.

Therefore,

Eu(‖g0(x)‖2
∗) ≤ n+4

κ

∫
E

(
〈∇ f0(x), u〉2 + D2(x)‖u‖2

)
e− 1

2 ‖u‖2
du

(13)= (n + 4)

(
‖∇ f0(x)‖2

∗ + D2(x)
κ

∫
E

‖u‖2e− 1
2 ‖u‖2

du

)

(14)= (n + 4)
(
‖∇ f0(x)‖2

∗ + nD2(x)
)
.

⊓⊔
Let us prove now the similar bounds for oracles gμ and ĝμ.

Theorem 4 Let function f be convex.

1. If f ∈ C0,0(E), then

Eu(‖gμ(x)‖2
∗) ≤ L2

0(f)(n + 4)2. (34)

2. If f ∈ C1,1(E), then

Eu(‖gμ(x)‖2
∗) ≤ μ2

2
L2

1(f)(n + 6)3 + 2(n + 4)‖∇ f (x)‖2
∗,

Eu(‖ĝμ(x)‖2
∗) ≤ μ2

8
L2

1(f)(n + 6)3 + 2(n + 4)‖∇ f (x)‖2
∗.

(35)

3. If f ∈ C2,2(E), then

Eu(‖ĝμ(x)‖2
∗) ≤ μ4

18
L2

2(f)(n + 8)4 + 2(n + 4)‖∇ f (x)‖2
∗. (36)

Proof Note that Eu(‖gμ(x)‖2
∗) = 1

μ2 Eu

(
[f (x + μu) − f (x)]2]‖u‖2

)
. If f ∈

C0,0(E), then we obtain (34) directly from the definition of the functional class and

(17).

Let f ∈ C1,1(E). Since

[f (x + μu) − f (x)]2 = [f (x + μu) − f (x) − μ〈∇ f (x), u〉 + μ〈∇ f (x), u〉]2

(6)
≤ 2

(
μ2

2
L1(f)‖u‖2

)2
+ 2μ2〈∇ f (x), u〉2,

123

Found Comput Math

we get

Eu(‖gμ(x)‖2
∗) ≤ μ2

2
L2

1(f)Eu(‖u‖6) + 2Eu(‖g0(x)‖2
∗)

(17),(32)
≤ μ2

2
L2

1(f)(n + 6)3 + 2(n + 4)‖∇ f (x)‖2
∗.

For the symmetric oracle ĝμ, since f is convex, we have

f (x + μu) − f (x − μu) = [f (x + μu) − f (x)] + [f (x) − f (x − μu)]

(6)
≤

[
μ〈∇ f (x), u〉 + μ2

2
L1(f)‖u‖2

]
+ μ〈∇ f (x), u〉.

Similarly, we have f (x + μu) − f (x − μu) ≥ 2μ〈∇ f (x), u〉 − μ2

2
L1(f)‖u‖2.

Therefore,

Eu(‖ĝμ(x)‖2
∗) = 1

4μ2 Eu

(
[f (x + μu) − f (x − μu)]2‖u‖2

)

≤ 1
2μ2

[
Eu

(
μ4

4
L2

1(f)‖u‖6
)

+ Eu

(
4μ2〈∇ f (x), u〉2‖u‖2

)]

(17),(32)
≤ μ2

8
L2

1(f)(n + 6)3 + 2(n + 4)‖∇ f (x)‖2
∗.

Let f ∈ C2,2(E). We will use notation of Lemma 3. Since

[f (x + μu) − f (x − μu)]2 = [f (x + μu) − f (x − μu) − 2μ〈∇ f (x), u〉

+ 2μ〈∇ f (x), u〉]2 ≤ 2[au(μ) − au(−μ)]2

+ 8μ2〈∇ f (x), u〉2
(7)
≤ 2μ6

9
L2

2(f)‖u‖6+8μ2〈∇ f (x), u〉2,

we get

Eu(‖ĝμ(x)‖2
∗) ≤ μ4

18
L2

2(f)Eu(‖u‖8) + 2Eu(‖g0(x)‖2
∗)

(17),(32)
≤ μ4

18
L2

2(f)(n + 8)4 + 2(n + 4)‖∇ f (x)‖2
∗.

⊓⊔

Sometimes it is more convenient to have in the right-hand side of inequality (35)

the gradient of Gaussian approximation.

Lemma 5 Let f ∈ C1,1(E). Then, for any x ∈ E we have

Eu(‖gμ(x)‖2
∗) ≤ 4(n + 4)‖∇ fμ(x)‖2

∗ + 3μ2 L2
1(f)(n + 4)3. (37)

123

Found Comput Math

Proof Indeed,

(f (x + μu) − f (x))2 = (f (x + μu) − fμ(x + μu) − f (x) + fμ(x)+ fμ(x + μu)

− fμ(x))2 ≤ 2(f (x+ μu) − fμ(x + μu) − f (x)+ fμ(x))2

+ 2(fμ(x + μu) − fμ(x))2.

Note that | f (x + μu) − fμ(x + μu) − f (x) + fμ(x)|
(19)
≤ μ2 L1(f)n, and

(fμ(x + μu) − fμ(x))2 ≤ 2(fμ(x + μu) − fμ(x) − μ〈∇ fμ(x), u〉)2

+ 2μ2〈∇ fμ(x), u〉2 ≤ μ4

2
L2

1(f)‖u‖4+2μ2〈∇ fμ(x), u〉2.

Applying (32) to function fμ, we get Eu(〈∇ fμ(x), u〉2‖u‖2) ≤ (n + 4)‖∇ fμ(x)‖2
∗.

Hence,

Eu(‖gμ(x)‖2
∗) ≤ 1

μ2 Eu((f (x + μu) − f (x))2‖u‖2)

≤ 2μ2 L2
1(f)n2 M2 + μ2L2

1(f)M6 + 4(n + 4)‖∇ fμ(x)‖2
∗

≤ μ2 L2
1(f)(2n3 + (n + 6)3) + 4(n + 4)‖∇ fμ(x)‖2

∗.

It remains to note that 2n3 + (n + 6)3 ≤ 3(n + 4)3. ⊓⊔

Example f (x) = ‖x‖, x = 0, shows that the pessimistic bound (34) cannot be

significantly improved.

4 Random Search for Nonsmooth and Stochastic Optimization

Unless otherwise noted, we assume that f is convex. Let us show how to use the

oracles (30) for solving the following nonsmooth optimization problem:

f ∗ def= min
x∈Q

f (x), (38)

where Q ⊆ E is a closed convex set and f is a nonsmooth convex function on E .

Denote by x∗ ∈ Q one of its optimal solutions. Recall that we measure distances

in E by the primal Euclidean norm ‖u‖ = 〈Bu, u〉1/2, u ∈ E . Distances in E∗ are

measured by the conjugate norm: ‖g‖∗ = 〈g, B−1g〉1/2, g ∈ E∗.

123

Found Comput Math

Let us choose a sequence of positive steps {hk}k≥0. Consider the following method.

Method RSμ : Choosex0 ∈ Q.Ifμ = 0, weneedD(x0) = 0.

Iteration k ≥ 0.

a).Generateukandcorrespondinggμ(xk).

b).Computexk+1 = πQ

(
xk − hk B−1gμ(xk)

)
.

(39)

We use notation πQ(x) for Euclidean projection onto the closed convex set Q. Thus,

‖πQ(x) − y‖ ≤ ‖x − y‖ for all y ∈ Q.

Method (39) generates random vectors {xk}k≥0. Denote by Uk = (u0, . . . , uk)

a random vector composed by independent and identically distributed variables

{uk}k≥0 (i.i.d.) attached to each iteration of the scheme. Let φ0 = f (x0), and

φk
def= EUk−1

(f (xk)), k ≥ 1.

Theorem 5 Let sequence {xk}k≥0 be generated by RS0. Then, for any N ≥ 0 we

have

N∑
k=0

hk(φk − f ∗) ≤ 1
2
‖x0 − x∗‖2 + n+4

2
L2

0(f)
N∑

k=0

h2
k . (40)

Proof Let point xk with k ≥ 1 be generated after k iterations of the scheme (39).

Denote rk = ‖xk − x∗‖. Then

r2
k+1 ≤ ‖xk − hk g0(xk) − x∗‖2 = r2

k − 2hk〈g0(xk), xk − x∗〉 + h2
k‖g0(xk)‖2

∗.

Note that function f is differentiable at xk with probability one. Therefore, using

representation (25) and the estimate (32), we get

Euk

(
r2

k+1

)
≤ r2

k − 2hk〈∇ f (xk), xk − x∗〉 + h2
k(n + 4)L2

0(f)

≤ r2
k − 2hk(f (xk) − f ∗) + h2

k(n + 4)L2
0(f).

Taking now the expectation in Uk−1, we obtain

EUk

(
r2

k+1

)
≤ EUk−1

(
r2

k

)
− 2hk(φk − f ∗) + h2

k(n + 4)L2
0(f).

Using the same reasoning, we get

EU0

(
r2

1

)
≤ r2

0 − 2h0(f (x0) − f ∗) + h2
0(n + 4)L2

0(f).

Summing up these inequalities, we come to (40). ⊓⊔

123

Found Comput Math

Denote SN =
∑N

k=0 hk , and define x̂N = arg min
x

[f (x) : x ∈ {x0, . . . , xN }].
Then

EUN−1

(
f (x̂N)

)
− f ∗ ≤ EUN−1

(
1

SN

N∑
k=0

hk(f (xk) − f ∗)

)

(40)
≤ 1

SN

[
1
2
‖x0 − x∗‖2 + n+4

2
L2

0(f)
N∑

k=0

h2
k

]
.

In particular, if the number of steps N is fixed, and ‖x0 − x∗‖ ≤ R, we can choose

hk = R
(n+4)1/2(N+1)1/2 L0(f)

, k = 0, . . . , N . (41)

Then we obtain the following bound:

EUN−1

(
f (x̂N)

)
− f ∗ ≤ L0(f)R

[
n+4
N+1

]1/2
. (42)

Hence, inequality EUN−1

(
f (x̂N)

)
− f ∗ ≤ ǫ can be ensured by RS0 in

n+4
ǫ2 L2

0(f)R2 (43)

iterations.

Same as in the standard nonsmooth minimization, instead of fixing the number of

steps apriori, we can define

hk = R
(n+4)1/2(k+1)1/2 L0(f)

, k ≥ 0. (44)

This modification results in a multiplication of the right-hand side of the estimate (42)

by a factor O(ln N) (e.g., Section 3.2 in [16]).

Let us consider now the random search method (39) with μ > 0.

Theorem 6 Let sequence {xk}k≥0 be generated by RSμ with μ > 0. Then, for any

N ≥ 0 we have

1

SN

N∑

k=0

hk(φk − f ∗)≤ μL0(f)n1/2 + 1

SN

[
1

2
‖x0−x∗‖2+ (n + 4)2

2
L2

0(f)

N∑

k=0

h2
k

]
.

(45)

Proof Let point xk with k ≥ 1 be generated after k iterations of the scheme (39).

Denote rk = ‖xk − x∗‖. Then

r2
k+1 ≤ ‖xk − hk gμ(xk) − x∗‖2 = r2

k − 2hk〈gμ(xk), xk − x∗〉 + h2
k‖gμ(xk)‖2

∗.

123

Found Comput Math

Using representation (21) and the estimate (34), we get

Euk

(
r2

k+1

)
≤ r2

k − 2hk〈∇ fμ(xk), xk − x∗〉 + h2
k(n + 4)2 L2

0(f)

(11)
≤ r2

k − 2hk(f (xk) − fμ(x∗)) + h2
k(n + 4)2 L2

0(f).

Taking now the expectation in Uk−1, we obtain

EUk

(
r2

k+1

)
≤ EUk−1

(
r2

k

)
− 2hk(φk − fμ(x∗)) + h2

k(n + 4)2 L2
0(f).

It remains to note that fμ(x∗)
(18)
≤ f ∗ + μL0(f)n1/2. ⊓⊔

Thus, in order to guarantee inequality EUN−1

(
f (x̂N)

)
− f ∗ ≤ ǫ by method RSμ,

we can choose

μ ≤ ǫ
2L0(f)n1/2 , hk = R

(n+4)(N+1)1/2 L0(f)
, k = 0, . . . , N ,

N = 4(n+4)2

ǫ2 L2
0(f)R2.

(46)

Note that this complexity bound is in O(n) times worse than the complexity bound (43)

of the method RS0. This can be explained by the different upper bounds provided by

inequalities (32) and (34). It is interesting that the smoothing parameter μ is not used

in the definition (46) of the step sizes and in the total length of the process generated

by method RSμ.

Finally, let us compare our results with the following Random Coordinate Method:

1. Generateauniformlydistributednumberik ∈ {1, . . . , n}.
2. Updatexk+1 = πQ

(
xk − heik

〈g(xk), eik
〉
)
,

(47)

where ei is a coordinate vector in Rn and g(xk) ∈ ∂ f (xk). By the same reasoning as

in Theorem 5, we can show that (compare with [19])

1
N+1

N∑
k=0

(φk − f ∗) ≤ n R2

2(N+1)h
+ h

2
L2

0(f).

Thus, under an appropriate choice of h, method (47) has the same complexity

bound (43) as RS0. However, note that (47) requires computation of the coordi-

nates of the subgradient g(xk). This computation cannot be arranged with directional

derivatives, or with function values. Therefore, for general convex functions method

(47) cannot be transformed in a gradient-free form.

A natural modification of method (39) can be applied to the problems of stochastic

optimization. Indeed, assume that the objective function in (38) has the following

form:

f (x) = Eξ [F(x, ξ)]
def=

∫
�

F(x, ξ)dP(ξ), x ∈ Q, (48)

123

Found Comput Math

where ξ is a random vector with probability distribution P(ξ), ξ ∈ �. We assume that

f ∈ C0,0(E) is convex (this is a relaxation of the standard assumption that F(x, ξ)

is convex in x for any ξ ∈ �). Similarly to (30), we can define random stochastic

gradient-free oracles:

1. Generaterandomu ∈ E, ξ ∈ �. Return sμ(x) = F(x+μu,ξ)−F(x,ξ)
μ

· Bu.

2. Generaterandomu ∈ E, ξ ∈ �. Return ŝμ(x) = F(x+μu,ξ)−F(x−μu,ξ)
2μ

· Bu.

3. Generaterandomu ∈ E, ξ ∈ �. Return s0(x) = Dx F(x, ξ)[u] · Bu.

(49)

Note that the first and the second oracles require computation of two values of random

function F(·, ξ) defined by the same value of stochastic parameter ξ . In some applica-

tion, this is impossible. For example, the random function F(·, ξ) can be observable

during a very short period of time, which is sufficient only for measuring some of its

instantaneous characteristics. Then, the third oracle must be used.

Consider the following method with smoothing parameter μ > 0.

Method SSμ : Choose x0 ∈ Q.

Iteration k ≥ 0.

a). For xk ∈ Q, generate independent random vectors ξk ∈ � and uk .

b). Compute sμ(xk), and xk+1 = πQ

(
xk − hk B−1sμ(xk)

)
.

(50)

Its justification is very similar to the proof of Theorem 6.

Theorem 7 Let L0(F(·, ξ)) ≤ L for all ξ ∈ �. Assume the sequence {xk}k≥0 be

generated by SSμ with μ > 0. Then, for any N ≥ 0 we have

1
SN

N∑
k=0

hk(φk − f ∗) ≤ μLn1/2 + 1
SN

[
1
2
‖x0 − x∗‖2 + (n+4)2

2
L2

N∑
k=0

h2
k

]
, (51)

where φk = EUk−1,Pk−1
(f (xk)), and Pk = {ξ0, . . . , ξk}.

Proof In the notation of Theorem 6, we have

r2
k+1 ≤ r2

k − 2hk〈sμ(xk), xk − x∗〉 + h2
k‖sμ(xk)‖2

∗.

123

Found Comput Math

In view of our assumptions, ‖sμ(xk)‖∗ ≤ L‖uk‖2. Since Eξ

(
sμ(x)

)
= gμ(x), we

have

Euk ,ξk
(r2

k+1) ≤ r2
k + Euk

(
−2hk〈gμ(xk), xk − x∗〉 + h2

k L2‖uk‖4
)

(21),(17)
≤ r2

k − 2hk〈∇ fμ(xk), xk − x∗〉 + h2
k(n + 4)2L2

≤ r2
k − 2hk(fμ(xk) − fμ(x∗)) + h2

k(n + 4)2 L2.

Taking now the expectation in Uk−1 and Pk−1, we get

EUk ,Pk
(r2

k+1)
(11)
≤ EUk−1,Pk−1

(r2
k) − 2hk(φk − fμ(x∗)) + h2

k(n + 4)2 L2.

It remains to note that fμ(x∗)
(18)
≤ f ∗ + μLn1/2. ⊓⊔

Thus, choosing the parameters of method SSμ in accordance with (46), we can

solve the minimization problem (38) with stochastic objective (48) in O(n2

ǫ2) iterations.

A similar justification can be done also for method SS0.

Some minimization schemes can be used for justifying adjustment processes in a

stochastic environment, where even the data transmission is subject to random errors.

Consider, for example, the following optimization procedure, which takes into account

the random implementation errors.

Method SDμ. Fork ≥ 0do :

a).Atxk ∈ Q, generaterandomindependentvectorsξk ∈ �, u′
kandu′′

k .

b).Formy′
k = xk + μu′

kandy′′
k = xk + μu′′

k .Computeδk = F(y′
k ,ξk)−F(y′′

k ,ξk)

2μ
.

c).Updatexk+1 = πQ

(
xk − hkδk(y′

k − y′′
k)

)
.

(52)

Using the same arguments as for method (50), we can prove the complexity bound for

this scheme of the order O(n2

ǫ2).

5 Simple Random Search for Smooth Optimization

Consider the following smooth unconstrained optimization problem:

f ∗ def= min
x∈E

f (x), (53)

123

Found Comput Math

where f is a smooth convex function on E . Assume that this problem is solvable and

denote by x∗ one of its optimal solutions. For the sake of notation, we assume that

dim E ≥ 2.

Consider the following method.

Method RGμ : Choose x0 ∈ E .

Iteration k ≥ 0.

a).Generateukandcorrespondinggμ(xk).

b).Computexk+1 = xk − h B−1gμ(xk).

(54)

This is a random version of the standard primal gradient method. A version of

method (54) with oracle ĝμ will be called R̂Gμ.

Since the bounds (35) and (36) are continuous in μ, we can justify all variants of

method RGμ, μ ≥ 0, by a single statement.

Theorem 8 Let f ∈ C1,1(E), and sequence {xk}k≥0 be generated by RGμ with

h = 1
4(n+4)L1(f)

. (55)

Then, for any N ≥ 0, we have

1
N+1

N∑
k=0

(φk − f ∗) ≤ 4(n+4)L1(f)‖x0−x∗‖2

N+1
+ 9μ2(n+4)2 L1(f)

25
. (56)

Let function f be strongly convex. Denote δμ = 18μ2(n+4)2

25τ(f)
L1(f). Then

φN − f ∗ ≤ 1
2

L1(f)

[
δμ +

(
1 − τ(f)

8(n+4)L1(f)

)N (
‖x0 − x∗‖2 − δμ

)]
. (57)

Proof Let point xk with k ≥ 0 be generated after k iterations of the scheme (54).

Denote rk = ‖xk − x∗‖. Then

r2
k+1 = r2

k − 2h〈gμ(xk), xk − x∗〉 + h2‖gμ(xk)‖2
∗.

123

Found Comput Math

Using representation (26) and the estimate (35), we get

Euk

(
r2

k+1

)
≤ r2

k − 2h〈∇ fμ(xk), xk −x∗〉+h2
[

μ2(n+6)3

2
L2

1(f)+2(n + 4)‖∇ f (x)‖2
∗
]

(11)
≤ r2

k −2h(f (xk) − fμ(x∗)) + h2
[

μ2(n+6)3

2
L2

1(f) + 4(n + 4)L1(f)(f (xk) − f ∗)
]

(19)
≤ r2

k − 2h(1 − 2h(n + 4)L1(f))(f (xk) − f ∗) + μ2nhL1(f) + μ2(n+6)3

2
h2 L2

1(f)

(55)= r2
k − f (xk)− f ∗

4(n+4)L1(f)
+ μ2

4

[
n

n+4
+ (n+6)3

8(n+4)2

]
≤ r2

k − f (xk)− f ∗
4(n+4)L1(f)

+ 9μ2(n+4)
100

.

Taking now the expectation in Uk−1, we obtain

ρk+1
def= EUk

(
r2

k+1

)
≤ ρk − φk− f ∗

4(n+4)L1(f)
+ 9μ2(n+4)

100
.

Summing up these inequalities for k = 0, . . . , N , and dividing the result by N + 1,

we get (56).

Assume now that f is strongly convex. As we have seen,

Euk

(
r2

k+1

)
≤ r2

k − f (xk)− f ∗
4(n+4)L1(f)

+ 9μ2(n+4)
100

(8)
≤

(
1 − τ(f)

8(n+4)L1(f)

)
r2

k + 9μ2(n+4)
100

.

Taking the expectation in Uk−1, we get

ρk+1 ≤
(

1 − τ(f)
8(n+4)L1(f)

)
ρk + 9μ2(n+4)

100
.

This inequality is equivalent to the following one:

ρk+1 − δμ ≤
(

1 − τ(f)
8(n+4)L1(f)

)
(ρk − δμ) ≤

(
1 − τ(f)

8(n+4)L1(f)

)k+1
(ρ0 − δμ).

It remains to note that φk − f ∗ (6)
≤ 1

2
L1(f)ρk . ⊓⊔

Let us discuss the choice of parameter μ in method RGμ. Consider first the min-

imization of functions from C1,1(E). Clearly, the estimate (56) is valid also for

φ̂N
def= EUk−1

(f (x̂N)), where x̂N = arg min
x

[f (x) : x ∈ {x0, . . . , xN }]. In order

to get the final accuracy ǫ for the objective function, we need to choose μ sufficiently

small:

μ ≤ 5
3(n+4)

√
ǫ

2L1(f)
. (58)

Taking into account that Eu(‖u‖) = O(n1/2), we can see that the average length of

the finite-difference step in computation of the oracle gμ is of the order O
(√

ǫ
nL1(f)

)
.

123

Found Comput Math

It is interesting that this bound is much more relaxed with respect to ǫ than the bound

(46) for nonsmooth version of the random search. However, it depends now on the

dimension of the space of variables. At the same time, inequality φ̂N − f ∗ ≤ ǫ is

satisfied at most in O(n
ǫ

L1(f)R2) iterations.

Consider now the strongly convex case. Then, we choose μ satisfying the equation
1
2

L1(f)δμ ≤ ǫ
2

. This is

μ ≤ 5
3(n+4)

√
ǫ

2L1(f)
· τ(f)

L1(f)
. (59)

The number iterations of this method is of the order O
(

nL1(f)
τ (f)

ln
L1(f)R2

ǫ

)
. It is natural

that a faster scheme needs a higher accuracy of the finite-difference oracle (or a smaller

value of μ).

The complexity analysis of the method R̂Gμ can be done in a similar way. In

accordance with the estimate (35), the corresponding results will have slightly better

dependence in μ. Note that our complexity results are also valid for the limiting version

RG0 ≡ R̂G0.

6 Accelerated Random Search

Let us apply to problem (53) a random variant of the fast gradient method. We assume

that function f ∈ C1,1(E) is strongly convex with convexity parameter τ(f) ≥ 0.

Denote by κ(f)
def= τ(f)

L1(f)
its condition number. And let θn = 1

16(n+1)2 L1(f)
, hn =

1
4(n+4)L1(f)

.

Method FGμ : Choosex0 ∈ E, v0 = x0, andapositiveγ0 ≥ τ(f).

Iteration k ≥ 0 :

a)Computeαk > 0satisfyingθ−1
n α2

k = (1 − αk)γk + αkτ(f) ≡ γk+1.

b)Setλk = αk

γk+1
τ(f), βk = αkγk

γk+αkτ(f)
, andyk = (1 − βk)xk + βkvk .

c).Generaterandomukandcomputecorrespondinggμ(yk).

d).Setxk+1 = yk − hn B−1gμ(yk), vk+1 = (1 − λk)vk + λk yk − θn

αk
B−1gμ(yk).

(60)

Note that the parameters of this method satisfy the following relations:

1 − λk = (1 − αk)
γk

γk+1
, 1 − βk = γk+1

γk+αkτ(f)
, (1 − λk)

1−βk

βk
= 1−αk

αk
. (61)

123

Found Comput Math

Theorem 9 For all k ≥ 0, we have

φk − f ∗ ≤ ψk · [f (x0) − f (x∗) + γ0

2
‖x0 − x∗‖2] + μ2L1(f)

(
n + 3(n+8)

16
Ck

)
,

(62)

where ψk ≤min

{(
1− κ1/2(f)

4(n+4)

)k

,
(

1+ k
8(n+4)

√
γ0

L1(f)

)−2
}

, and Ck ≤min
{

k,
4(n+4)

κ1/2(f)

}
.

Proof Assume that after k iterations, we have generated points xk and vk . Then we

can compute yk and generate gμ(yk). Taking a random step from this point, we get

fμ(xk+1)
(12)
≤ fμ(yk) − hn〈∇ fμ(yk), B−1gμ(xk)〉 + h2

n

2
L1(f)‖gμ(yk)‖2

∗.

Therefore,

Euk

(
fμ(xk+1

)
)

(26)
≤ fμ(yk) − hn‖∇ fμ(yk)‖2

∗ + h2
n

2
L1(f)Euk

(
‖gμ(yk)‖2

∗
)

(37)
≤ fμ(yk) − hn

4(n+4)

(
Euk

(
‖gμ(yk)‖2

∗
)
− 3μ2 L2

1(f)(n + 5)3
)

+ h2
n

2
L1(f)Euk

(
‖gμ(yk)‖2

∗
)

= fμ(yk) − 1
2
θn Euk

(
‖gμ(yk)‖2

∗
)
+ ξμ,

where ξμ
def= 3(n+5)3μ2

16(n+4)2 L1(f). Note that (n+5)3

(n+4)2 ≤ n + 8 for n ≥ 2.

Let us fix an arbitrary x ∈ E . Note that

δk+1(x)
def= γk+1

2
‖vk+1 − x‖2 + fμ(xk+1) − fμ(x)

= γk+1

2
‖(1 − λk)vk + λk yk − x‖2 − θnγk+1

αk
〈gμ(yk), (1 − λk)vk + λk yk − x〉

+ θ2
n γk+1

2α2
k

‖gμ(yk)‖2
∗ + fμ(xk+1) − fμ(x).

Taking the expectation in uk , and using the equation of Step a) in (60), we get

Euk
(δk+1(x))

(21)
≤ γk+1

2
‖(1 − λk)vk +λk yk −x‖2−αk〈∇ fμ(yk), (1−λk)vk +λk yk −x〉

+ 1
2
θn Euk

(
‖gμ(yk)‖2

∗
)
+ Euk

(
fμ(xk+1)

)
− fμ(x)

≤ γk+1

2
‖(1 − λk)vk + λk yk − x‖2 + αk〈∇ fμ(yk), x − (1 − λk)vk

−λk yk〉 + fμ(yk) − fμ(x) + ξμ.

123

Found Comput Math

Note that vk = yk + 1−βk

βk
(yk − xk). Therefore,

(1 − λk)vk + λk yk = yk + (1 − λk)
1−βk

βk
(yk − xk)

(61)= yk + 1−αk

αk
(yk − xk).

Hence,

fμ(yk) + αk〈∇ fμ(yk), x − (1 − λk)vk − λk yk〉 − fμ(x)

= fμ(yk) + 〈∇ fμ(yk), αk x + (1 − αk)xk − yk〉 − fμ(x)

(8)
≤ (1 − αk)(f (xk) − fμ(x)) − 1

2
αkτ(f)‖x − yk‖2,

and we can continue:

Euk
(δk+1(x)) ≤ γk+1

2
‖(1 − λk)vk + λk yk − x‖2 + ξμ

+ (1 − αk)(f (xk) − fμ(x)) − 1
2
αkτ(f)‖x − yk‖2

≤ γk+1

2
(1 − λk)‖vk − x‖2 + γk+1

2
λk‖yk − x‖2 + ξμ

+ (1 − αk)(f (xk) − fμ(x)) − 1
2
αkτ(f)‖x − yk‖2

(61)= (1 − αk)δk(x) + ξμ.

Denote φk(μ) = EUk−1
(fμ(xk)), ρk = γk

2
EUk−1

(‖vk − x∗‖2). Then, taking the

expectation of the latter inequality in Uk−1, we get

φk+1(μ) − fμ(x) + ρk+1 ≤ (1 − αk)(φk(μ) − fμ(x∗) + ρk) + ξμ

≤ . . . ≤ ψk+1 ·
(

fμ(x0) − fμ(x) + γ0

2
‖x0 − x‖2

)

+ ξμ · Ck+1,

where ψk =
k−1∏
i=0

(1 − αi), and Ck = 1 +
k−1∑
i=1

k−1∏
j=k−i

(1 − α j), k ≥ 1. Defining ψ0 = 1

and C0 = 0, we get Ck ≤ k, k ≥ 0. On the other hand, by induction it is easy to see

that γk ≥ τ(f) for all k ≥ 0. Therefore,

αk ≥ [τ(f)θn]1/2 = κ1/2(f)
4(n+4)

def= ωn, k ≥ 0.

Then, Ck ≤ 1 +
k−1∑
i=1

k−1∏
j=k−i

(1 − ωn)i = 1 + (1 − ωn)
(1−(1−ωn)k)

ωn
≤ ω−1

n . Thus,

Ck ≤ min
{

k,
4(n+4)

κ1/2(f)

}
, ψk ≤

(
1 − κ1/2(f)

4(n+4)

)k

, k ≥ 0.

123

Found Comput Math

Further,3 let us prove that γk ≥ γ0ψk . For k = 0, this is true. Assume it is true for

some k ≥ 0. Then

γk+1 ≥ (1 − αk)γk ≥ γ0ψk+1.

Denote ak = 1

ψ
1/2
k

. Then, in view of the established inequality we have:

ak+1 − ak = ψ
1/2
k −ψ

1/2
k+1

ψ
1/2
k ψ

1/2
k+1

= ψk−ψk+1

ψ
1/2
k ψ

1/2
k+1(ψ

1/2
k +ψ

1/2
k+1)

≥ ψk−ψk+1

2ψkψ
1/2
k+1

= ψk−(1−αk)ψk

2ψkψ
1/2
k+1

= αk

2ψ
1/2
k+1

= γ
1/2
k+1θ

1/2
n

2ψ
1/2
k+1

≥ 1
8(n+4)

√
γ0

L1(f)
.

Hence, 1
ψk 1/2

≥ 1 + k
8(n+4)

√
γ0

L1(f)
for all k ≥ 0. It remains to note that

EUk−1
(f (xk)) − f (x∗)

(11)
≤ φk(μ) − f (x∗)

(19)
≤ φk(μ) − fμ(x∗) + μ2

2
L1(f)n

≤ ψk ·
(

fμ(x0) − fμ(x∗) + γ0

2
‖x0 − x∗‖2

)
+ ξμ · Ck + μ2

2
L1(f)n

(19)
≤ ψk ·

(
f (x0) − f (x∗) + γ0

2
‖x0 − x∗‖2

)
+ ξμ · Ck + μ2 L1(f)n.

It remains to apply the upper bounds for ψk . ⊓⊔
Let us discuss the complexity estimates of the method (60) for τ(f) = 0. In order

to get accuracy ǫ for the objective function, it suffices that both terms in the right-hand

side of inequality (62) be smaller than ǫ
2

. Thus, we need

N (ǫ) = O

(
nL

1/2
1 (f)R

ǫ1/2

)
(63)

iterations. Similarly to the simple random search method (39), this estimate is n times

larger than the estimate of the corresponding scheme with full computation of the

gradient. The parameter of the oracle μ must be chosen as

μ ≤ O

(
ǫ1/2

L
1/2
1 (f)(n·N (ǫ))1/2

)
= O

(
ǫ3/4

nL
3/4
1 (f)R1/2

)

= O

(
1
n

[
ǫ

L1(f)
·
[

ǫ
L1(f)R2

]1/2
]1/2

)
.

(64)

As compared with (58), the average size of the trial step μu is a tighter function of ǫ.

This is natural, since the method (54) is much faster. On the other hand, this size is

still quite moderate (this is good for numerical stability of the scheme).

3 The rest of the proof is very similar to the proof of Lemma 2.2.4 in [16]. We present it here just for the

reader convenience.

123

Found Comput Math

Remark 1 1. Method (60) can be seen as a variant of the constant step scheme (2.2.8)

in [16]. Therefore, the sequence {vk} can be expressed in terms of {xk} and {yk}
(see Section 2.2.1 in [16] for details).

2. Linear convergence of method (60) for strongly convex functions allows an effi-

cient generation of random approximations to the solution of problem (53) with

arbitrary high confidence level. This can be achieved by an appropriate regular-

ization of the initial problem, as suggested in Section 3 of [19].

7 Nonconvex Problems

Consider now the problem

min
x∈E

f (x), (65)

where the objective function f is nonconvex. Let us apply to it method (39). Now it

has the following form:

Method R̂Sμ : Choosex0 ∈ E .

Iteration k ≥ 0.

a).Generateukandcorrespondinggμ(xk).

b).Computexk+1 = xk − hk B−1gμ(xk).

(66)

Let us estimate the evolution of the value of function fμ after one step of this scheme.

Since fμ has Lipschitz-continuous gradient, we have

fμ(xk+1)
(6)
≤ fμ(xk) − hk〈∇ fμ(xk), B−1gμ(xk)〉 + 1

2
h2

k L1(fμ)‖gμ(xk)‖2
∗.

Taking now the expectation in uk , we obtain

Euk
(fμ(xk+1))

(21)
≤ fμ(xk) − hk‖∇ fμ(xk)‖2

∗ + 1
2

h2
k L1(fμ)Euk

(
‖gμ(xk)‖2

∗
)
.(67)

Consider now two cases.

1. f ∈ C1,1(E). Then

Euk
(fμ(xk+1))

(37)
≤ fμ(xk) − hk‖∇ fμ(xk)‖2

∗

+ 1
2

h2
k L1(f)

(
4(n + 4)‖∇ fμ(xk)‖2

∗ + 3μ2 L2
1(f)(n + 4)3

)

123

Found Comput Math

Choosing now hk = ĥ
def= 1

4(n+4)L1(f)
, we obtain

Euk
(fμ(xk+1)) ≤ fμ(xk) − 1

2
ĥ‖∇ fμ(xk)‖2

∗ + 3μ2

32
L1(f)(n + 4).

Taking the expectation of this inequality in Uk , we get

φk+1 ≤ φk − 1
2

ĥη2
k + 3μ2(n+4)

32
L1(f),

where η2
k

def= EUk

(
‖∇ fμ(xk)‖2

∗
)
. Assuming now that f (x) ≥ f ∗ for all x ∈ E , we

get

1
N+1

N∑
k=0

η2
k ≤ 8(n + 4)L1(f)

[
f (x0)− f ∗

N+1
+ 3μ2(n+4)

32
L1(f)

]
. (68)

Since θ2
k

def= EUk

(
‖∇ f (xk)‖2

∗
) (29)

≤ 2η2
k +μ2(n+6)3

2
L2

1(f), the expected rate of decrease

in θk is of the same order as (68). In order to get 1
N+1

∑N
k=0 θ2

k ≤ ǫ2, we need to choose

μ ≤ O
(

ǫ
n3/2 L1(f)

)
.

Then, the upper bound for the expected number of steps is O(n
ǫ2).

2. f ∈ C0,0(E). Then,

Euk
(fμ(xk+1))

(34)
≤ fμ(xk) − hk‖∇ fμ(xk)‖2

∗ + 1
2

h2
k L1(fμ) · L2

0(f)(n + 4)2

(22)= fμ(xk) − hk‖∇ fμ(xk)‖2
∗ + 1

μ
h2

kn1/2(n + 4)2 · L3
0(f).

Assume f (x) ≥ f ∗, x ∈ E , and denote SN
def=

∑n
k=0 hk . Taking the expectation of

the latter inequality in Uk , and summing them up, we get

1
SN

N∑
k=0

hkη
2
k ≤ 1

SN

[
(fμ(x0) − f ∗) + C(μ)

N∑
k=0

h2
k

]
,

C(μ)
def= 1

μ
n1/2(n + 4)2 · L3

0(f).

(69)

Thus, we can guarantee a convergence of the process (66) to a stationary point of

the function fμ, which is a smooth approximation of f . In order to bound the gap

in this approximation by ǫ, we need to choose μ ≤ μ̄
(18)= ǫ

n1/2 L0(f)
. Let us assume

for simplicity that we are using a constant step scheme: hk ≡ h, k ≥ 0. Then the

right-hand side of inequality (69) becomes

fμ̄(x0)− f ∗

(N+1)h
+ h

ǫ
n(n + 4)2L4

0(f) ≤ L0(f)R
(N+1)h

+ h
ǫ

N (n + 4)2 L4
0(f)

def= ρ(h).

123

Found Comput Math

Minimizing this upper bound in h, we get is optimal value:

h∗ =
[

ǫR

n(n+4)2 L3
0(f)(N+1)

]1/2

, ρ(h∗) = 2

[
n(n+4)2 L5

0(f)R

ǫ(N+1)

]1/2

.

Thus, in order to guarantee the expected squared norm of the gradient of function fμ̄
of the order δ, we need

O

(
n(n+4)2 L5

0(f)R

ǫδ2

)

iterations of the scheme (66). To the best of our knowledge, this is the first complexity

bound for the methods for minimizing nonsmooth nonconvex functions. Note that

allowing in the method (66) hk → 0 and μ → 0, we can ensure convergence of the

scheme to a stationary point of the initial function f . But this proof is quite long and

technical. Therefore, we omit it.

8 Preliminary Computational Experiments

The main goal of our experiments was the investigation of the impact of the ran-

dom oracle on the actual convergence of the minimization methods. We compared

the performance of the randomized gradient-free methods with the classical gradient

schemes. As suggested by our efficiency estimates, it is normal if the former methods

need n times more iterations as compared with the classical ones. Let us describe our

results.

8.1 Smooth Minimization

We checked the performance of the methods (54) and (60) on the following test

function:

fn(x) = 1
2
(x (1))2 + 1

2

n−1∑
i=1

(
x (i+1) − x (i)

)2 + 1
2

(
x (n)

)2 − x (1), x0 = 0. (70)

This function was used in Section 2.1 in [16] for proving the lower complexity bound

for the gradient methods as applied to functions from C1,1(Rn). It has the following

parameters:

L1(fn) ≤ 4, R2 = ‖x0 − x∗‖2 ≤ n+1
3

, n = 256.

These values were used for defining the trial step size μ by (58) and (64). We also

tested the versions of corresponding methods with μ = 0. Finally, we compared these

results with the usual gradient and fast gradient method.

Our results for the simple gradient schemes are presented in the following table. The

first column of the table indicates the current level of relative accuracy with respect to

123

Found Comput Math

Table 1 Simple random search RGμ

Accuracy μ = 0 μ = 8.9 × 10−6 GM

Min Max Mean Min Max Mean

2.0 × 10−3 3 4 4.0 3 4 3.9 1

9.8 × 10−4 20 22 21.3 21 22 21.3 5

4.9 × 10−4 85 89 86.8 85 89 86.8 22

2.4 × 10−4 329 343 335.5 327 342 335.4 83

1.2 × 10−4 1210 1254 1232.8 1204 1246 1231.8 304

6.1 × 10−5 4129 4242 4190.3 4155 4235 4190.4 1034

3.1 × 10−5 12440 12611 12536.7 12463 12645 12538.1 3092

1.5 × 10−5 30883 31178 31054.6 30939 31269 31058.1 7654

the scale S
def= 1

2
L1(fn)R2. The kth row of the table, k = 2, . . . , 9, shows the number

of iterations spent for achieving the absolute accuracy 2−(k+7)S. This table aggregates

the results of 20 attempts of the method RG0 and RGμ to minimize the function (70).

The columns 2–4 of the table represent the minimal, maximal and average number

of blocks by n iterations, executed by RG0 in order to reach corresponding level of

accuracy. The next three columns represent this information for RGμ with μ computed

by (58) with ǫ = 2−16. The last column contains the results for the standard gradient

method with constant step h = 1
L1(fn)

(Table 1).

We can see a very small variance of the results presented in each column. Moreover,

the finite-difference version with an appropriate value of μ demonstrates practically

the same performance as the version based on the directional derivative. Moreover,

the number of blocks by n iterations of the random schemes is practically equal to the

number of iterations of the standard gradient method multiplied by four. A plausible

explanation of this phenomena is related to the choice of the step size h = 1
4·(n+4)L1(f)

.

However, we prefer to use this value since there is no theoretical justification for a

larger step.

Let us present the results of 20 runs of the accelerated schemes. The structure of

Table 2 is similar to that of Table 1. Since these methods are faster, we give the results

for a more accurate solution, up to ǫ = 2−30.

As we can see, the accelerated schemes are indeed faster than the simple random

search. On the other hand, same as in Table 1, the variance of the results in each line is

very small. Method with μ = 0 demonstrates almost the same efficiency as the method

with μ defined by (64). And again, the number of the blocks by n iterations of the

random methods is proportional to the number of iterations of the standard gradient

methods multiplied by four.

8.2 Minimization of Piecewise Linear Functions

For nonsmooth problems, we present first the computational results of two variants of

method (39) on the following test functions:

123

Found Comput Math

Table 2 Fast random search FGμ

Accuracy μ = 0 μ = 3.5 × 10−10 FGM

Min Max Mean Min Max Mean

2.0 × 10−3 7 7 7.0 7 7 7.0 1

9.8 × 10−4 21 22 21.1 21 22 21.1 4

4.9 × 10−4 45 47 45.8 46 47 46.2 10

2.4 × 10−4 93 96 94.1 93 96 94.5 22

1.2 × 10−4 182 187 184.7 180 188 185.4 44

6.1 × 10−5 338 350 345.4 342 349 346.6 84

3.1 × 10−5 597 611 603.2 599 609 604.3 147

1.5 × 10−5 944 967 953.1 948 964 954.9 233

7.6 × 10−6 1328 1355 1339.6 1332 1351 1341.5 328

3.8 × 10−6 1671 1695 1679.4 1671 1688 1680.3 411

1.9 × 10−6 1915 1934 1922.6 1916 1928 1923.1 471

9.5 × 10−7 2070 2083 2075.3 2070 2080 2075.7 508

4.8 × 10−7 2177 2189 2182.1 2177 2187 2182.6 535

2.4 × 10−7 2270 2281 2274.4 2268 2279 2274.4 557

1.2 × 10−7 2360 2375 2366.8 2355 2375 2366.3 580

6.0 × 10−8 4294 4308 4299.9 4291 4308 4300.9 1056

3.0 × 10−8 4396 4410 4402.4 4392 4411 4403.6 1081

1.5 × 10−8 4496 4521 4506.9 4495 4518 4508.0 1107

7.5 × 10−9 6519 6537 6529.0 6517 6540 6529.1 1604

3.7 × 10−9 6624 6669 6646.2 6623 6672 6644.4 1633

1.9 × 10−9 8680 8718 8700.3 8682 8712 8699.1 2139

9.3 × 10−10 10770 10805 10789.9 10779 10808 10791.2 2653

F1(x) = |x (1) − 1| +
n−1∑
i=1

|1 + x (i+1) − 2x (i)|,

F∞(x) = max

{
|x (1) − 1|, max

1≤i≤n−1
|1 + x (i+1) − 2x (i)|

}
.

(71)

For both functions, x0 = 0, (x∗)(i) = 1, i = 1, . . . , n, and F∗
1 = F∗

∞ = 0. They have

the following parameters:

L0(F1) ≤ 3n1/2, L0(F∞) ≤ 3, R2 = ‖x0 − x∗‖2 ≤ n.

Despite their trivial form, these functions are very badly conditioned. Let us define

the condition number of the level set of function f :

κt (f)
def= inf

x,y

{
‖x−x∗‖∞
‖y−x∗‖∞

: f (x) = f (y) = f ∗ + t
}

, t ≥ 0,

123

Found Comput Math

Such a condition number can be defined with respect to any norm in E . Since all norms

on finite-dimensional spaces are compatible, any of these numbers provides us with a

useful estimate of the level of degeneracy of corresponding functions.

Lemma 6 For any t ≥ 0, we have κt (F1) ≤ 2n
3(2n−1)

, and κt (F∞) ≤ 1
2n−1

.

Proof Indeed, define x (1) = 1 + t
2

, and x (i) = 1, i = 2, . . . , n. Then,

x (1) − 1 = t
2
, 1 + x (2) − 2x (1) = −t,

1 + x (i+1) − 2x (i) = 0, i = 2, . . . , n − 1.

Thus, F1(x) = 3
2

t , and F∞(x) = t . Further, define y(i) = 1+γ t (2i −1), i = 1, . . . , n.

Then,

y(1) − 1 = γ t,

1 + y(i+1) − 2y(i) = 1 + γ t (2i+1 − 1) + 1 − 2[γ t (2i − 1) + 1] = γ t,

i = 1, . . . , n − 1.

Hence, F1(y) = nγ t , and F∞(y) = γ t . Note that ‖x − x∗‖∞ = t , and ‖y − x∗‖∞ =
γ t (2n − 1). Taking now γ = 3

2n
for F1, and γ = 1 for F∞, we get the desired results.

⊓⊔

Using the technique of Section 2.1 in [16] as applied to functions (71), it is possible

to prove the lower complexity bound O(1
ǫ2) for nonsmooth optimization methods.

In Table 3, we compare three methods: method RS0, method RSμ with μ defined

by (46), and the standard subgradient method (e.g., Section 3.2.3 in [16]), as applied to

the function F1. The first column of the table shows the required accuracy with respect

to the scale L0(F1)R. The theoretical upper bound for achieving the corresponding

level of accuracy is κ
ǫ2 , where κ is an absolute constant. We present the results for

three dimensions n = 16, 64, 256. For the first two methods, we display the number

of blocks of n iterations that were required in order to reach this level of accuracy. If

this was impossible after 105 iterations, we put in the cell the best value found by the

scheme. For the standard subgradient scheme, we show the usual number of iterations.

These results correspond only to a single run since the variability in the performance

of the random schemes is very small.

As compared with the theoretical upper bounds, all methods perform much better.

We observe an unexpectedly good performance of method RSμ. It is usually better

than its variant with exact directional derivative. Moreover, for a higher accuracy, it is

often better than the usual subgradient method. Let us present now the computational

results for function F∞ (Table 4).

We can see that at this test problem, the finite-difference version RSμ is less

dominant. Nevertheless, in two cases from three it is a clear winner.

123

Found Comput Math

Table 3 Different methods for function F1, Limit = 105

Method RS0 RSμ SG RS0 RSμ SG RS0 RSμ SG

ǫ\n 16 64 256

2.5E−1 4 1 1 2 9 1 4 33 1

1.3E−1 7 18 4 7 58 3 11 221 3

6.3E−2 11 38 12 25 105 4 21 381 4

3.1E−2 27 60 30 59 137 10 74 482 4

1.6E−2 104 88 40 187 161 24 263 546 14

7.8E−3 328 108 94 685 180 48 1045 590 36

3.9E−3 1086 114 248 2749 199 118 3848 624 94

2.0E−3 4080 273 3866 10828 221 368 14773 656 202

9.8E−4 10809 884 17698 41896 698 904 54615 698 392

4.9E−4 39157 3714 46218 6.0E−4 2213 3570 7.5E−4 981 566

2.4E−4 3.0E−4 11156 85778 9506 18354 3759 904

1.2E−4 26608 2.2E−4 37870 1.8E−4 14961 1.7E−4

Table 4 Different methods for function F∞, Limit = 105

Method: RS0 RSμ SG RS0 RSμ SG RS0 RSμ SG

ǫ\n 16 64 256

2.5E−1 1 1 1 1 1 1 1 1 1

1.3E−1 1 1 1 1 1 1 1 1 1

6.3E−2 43 73 19 1 1 1 1 1 1

3.1E−2 63 207 79 245 675 77 1 1 1

1.6E−2 115 321 278 337 3650 343 1301 9123 322

7.8E−3 201 432 1159 546 6098 1265 1921 56604 1340

3.9E−3 1101 471 5058 2579 7503 5060 3335 95699 5058

2.0E−3 1601 504 20228 7637 8322 20233 12328 3.5E−3 20231

9.8E−4 5972 542 80912 27417 8755 80916 42798 80915

4.9E−4 29873 1923 8.8E−4 91102 9008 8.8E−4 6.9E−4 8.8E−4

2.4E−4 93887 5685 4.3E−4 9431

1.2E−4 1.8E−4 21896 25424

Let us compare these methods on a more sophisticated test problem. Denote by

�m ⊂ Rm the standard simplex. Consider the following matrix game:

min
x∈�m

max
y∈�m

〈Ax, y〉 = max
y∈�m

min
x∈�m

〈Ax, y〉, (72)

123

Found Comput Math

Table 5 Saddle point problem
Dim RS0 RSμ SG

8 1.3E−5 5.3E−6 1.4E−4

16 3.3E−5 8.3E−6 1.3E−4

32 4.80E−5 7.0E−6 1.3E−4

64 2.3E−4 2.2E−4 2.4E−4

128 9.3E−5 3.1E−5 1.6E−4

256 9.3E−5 2.1E−5 1.7E−4

where A is an m × m-matrix. Define the following function:

f (x, y) = max

{
max

1≤i, j≤m

[
〈AT ei , x〉 − 〈Ae j , y〉

]
, |〈ē, x〉 − 1|, |〈ē, y〉 − 1|

}
,

where ei ∈ Rm are coordinate vectors and ē ∈ Rm is the vector of all ones. Clearly,

the problem (72) is equivalent to the following minimization problem:

min
x,y≥0

f (x, y). (73)

The optimal value of this problem is zero. We choose the starting points x0 = ē
m

,

y0 = ē
m

, and generate A with random entries uniformly distributed in the interval

[−1, 1]. Then the parameters of problem (38) are as follows:

n = 2m, Q = Rn
+, L0(f) ≤ n1/2, R ≤ 2.

In Table 5, we present the computational results for two variants of method RSμ

and the subgradient scheme. For problems (73) of dimension n = 2p, p = 3 . . . 16,

we report the best accuracy achieved by the schemes after 105 iterations (as usual, for

random methods, we count the blocks of n iterations). The parameter μ of method

RSμ was computed by (46) with target accuracy ǫ = 9.5E − 7.

Clearly, in this competition method RSμ is again a winner. The two other methods

demonstrate very similar performance.

8.3 Test Functions Based on Chebyshev Polynomials

Chebyshev polynomials of the first kind are defined by the recurrence relation

T0(t) = 1, T1(t) = t,

Tn+1(t) = 2tTn(t) − Tn−1(t), n ≥ 1.

In particular, T2(t) = 2t2 − 1. The absolute value of such a polynomial achieves its

maximum (equal to one) exactly at n + 1 points of the segment [−1, 1].

123

Found Comput Math

Chebyshev polynomials satisfy the following nesting property

Tn(Tm(t)) = Tnm(t),

which allows to create test functions with very high oscillating behavior. Indeed,

consider the system of equations

x (k+1) = T2

(
x (k)

)
, k = 1, . . . , n − 1. (74)

Then the last component of the vector x ∈ Rn depends on the first one in a very

oscillating manner:

x (n) = T2n−1

(
x (1)

)
.

Penalizing the residual in the system of nonlinear equations (74), we can get many

interesting objective functions. On one hand, they do not have local minimums, and

on the other hand, they exhibit an oscillatory behavior of the level sets. The simplest

function of this type is as follows:

f (x) = 1
4

(
x (1) − 1

)2 +
n−1∑
i=1

(
x (i+1) + 1 − 2

(
x (i)

)2
)2

,

x∗ = (1, . . . , 1)T , x0 = (−1, 1, . . . , 1)T .

(75)

However, function (75) is not convex. In order to see that Chebyshev polynomials

can deliver interesting test functions for convex optimization, note that the polynomial

T2(t) is convex.

Consider the following system of nonlinear inequalities:

x (k+1) ≥ 2
(
x (k)

)2 − 1, k = 1, . . . , n − 1,

x (1) ≥ 1.

(76)

Lemma 7 Let point x ∈ Rn be feasible for the system of convex inequalities (76). If

for some δ ∈ [0, 1] we have x (1) ≥ 1 + δ2

2(1+δ)
, then

x (n) ≥ 1
2

[
(1 + δ)2n−1 + (1 + δ)−2n−1

]
≥ 2−1+ δ

2 2n
. (77)

Proof Indeed, let us prove by induction that x (i) ≥ 1
2

[
(1 + δ)2i−1 + (1 + δ)−2i−1

]
.

For i = 1, this inequality is valid by the assumption. Let it be valid for some i ≥ 1.

Then,

123

Found Comput Math

Table 6 Results for problem

(79)
Dim SG RS0 RSμ

8 833650 415165 11862

16 532123 34471 16939

32 454043 441065 34741

64 428966 15665 130

128 421854 5636 250

256 416582 913 2577

512 416143 707 923

1024 413209 1419 2001

x (i+1) ≥ 1
2

[
(1 + δ)2i−1 + (1 + δ)−2i−1

]2
− 1

= 1
2

[
(1 + δ)2i + (1 + δ)−2i

]
.

It remains to note that for δ ∈ [0, 1] we have ln(1 + δ) ≥ δ ln 2. ⊓⊔

Thus, the system of inequalities (76) has very poor Slater condition, which makes

it difficult for the interior-point methods. This ill-conditioning is inherited by another

representation of this set. For example, it can be defined as follows:

√
1+x (k+1)

2
≥ x (k), k = 1, . . . , n − 1,

x (1) ≥ 1.

(78)

Note that the functional components of this representation are Lipschitz continuous

on the positive orthant. Let us define now the following function:

ψ(x) = max

{
1 − x (1), x (n) − 1, max

1≤k≤n−1

[
x (k) −

√
1+x (k+1)

2

]}
, x ∈ Q ≡ Rn

+.

This function is nonnegative on its feasible set and L0(ψ) = 3
4

√
2. It attains its

minimum at x∗ = (1, . . . , 1)T . Thus, our next test problem is as follows:

min
x

{ψ(x) : x ∈ Q}, x0 = (1, . . . , 1, 2)T . (79)

Thus, we can choose R = 1. The results of our experiments are presented in Table 6.

The problem (79) was solved by all methods up to accuracy ǫ = 10−4. As we can

see, the standard subgradient method behaves on this problem rather poorly. This may

confirm an intuition that on highly degenerate problems, the random search directions

have more chances to succeed as compared with regular short-step procedures. On the

other hand, we recall the reader that in this table, the results for random search meth-

ods are given in blocks of n iterations. Therefore, if we would compare the number of

123

Found Comput Math

calls of oracle, subgradient method will be almost the best, at least for the problems

of high dimension.

8.4 Conclusion

Our experiments confirm the following conclusion. If the computation of the gradient

is feasible, then the cost per iteration for random methods and gradient methods is

approximately the same. In this situation, the total time spent by the random methods

is typically O(n) times bigger than the time required for the gradient schemes to reach

the same accuracy. Hence, the random gradient-free methods should be used only if

creation of the code for computing the gradient is too costly or just impractical.

In the latter case, for smooth functions, the accelerated scheme (60) demonstrates

better performance. This practical observation is confirmed by the theoretical results.

For nonsmooth problems, the situation is more delicate. In our experiments, the finite-

difference version RSμ was always better than the method RS0, based on the exact

directional derivative. Up to now, we did not manage to find a reasonable explanation

for this phenomenon. It remains an interesting topic for the future research.

Acknowledgments The authors would like to thank two anonymous referees for enormously careful and

helpful comments. Pavel Dvurechensky proposed a better proof of inequality (37), which we use in this paper.

Research activity of the first author for this paper was partially supported by the grant “Action de recherche

concertè ARC 04/09-315” from the “Direction de la recherche scientifique - Communautè française de

Belgique,” and RFBR research projects 13-01-12007 ofi_m. The second author was supported by Laboratory

of Structural Methods of Data Analysis in Predictive Modeling, MIPT, through RF government grant,

ag.11.G34.31.0073.

Appendix: Proofs of Statements of Sect. 2

Proof of Lemma 1 Denote ψ(p) = ln Mp. This function is convex in p. Let us rep-

resent p = (1 − α) · 0 + α · 2 (thus, α = p
2

). For p ∈ [0, 2], we have α ∈ [0, 1].
Therefore,

ψ(p) ≤ (1 − α)ψ(0) + αψ(2)
(14)= p

2
ln n.

This is the upper bound (16). If p ≥ 2, then α ≥ 1, and αψ(2) becomes a lower bound

for ψ(p). It remains to prove the upper bound in (17).

Let us fix some τ ∈ (0, 1). Note that for any t ≥ 0 we have

t pe− τ
2 t2 ≤

(p
τe

)p/2
. (80)

Therefore,

Mp = 1
κ

∫
E

‖u‖pe− 1
2 ‖u‖2

du = 1
κ

∫
E

‖u‖pe− τ
2 ‖u‖2

e− 1−τ
2 ‖u‖2

du

(80)
≤ 1

κ

(p
τe

)p/2 ∫
E

e− 1−τ
2 ‖u‖2

du =
(p

τe

)p/2 1
(1−τ)n/2 .

123

Found Comput Math

The minimum of the right-hand side in τ ∈ (0, 1) is attained at τ = p
p+n

. Thus,

Mp ≤
(p

e

)p/2
(

1 + n
p

)p/2 (
1 + p

n

)n/2 ≤ (p + n)p/2.

⊓⊔

Proof of Theorem 1 Indeed, for any x ∈ E we have fμ(x) − f (x) = 1
κ

∫
E

[f (x +

μu) − f (x)]e− 1
2 ‖u‖2

du. Therefore, if f ∈ C0,0(E), then

| fμ(x) − f (x)| ≤ 1
κ

∫
E

| f (x + μu) − f (x)|e− 1
2 ‖u‖2

du

≤ μL0(f)
κ

∫
E

‖u‖e− 1
2 ‖u‖2

du
(16)
≤ μL0(f)n1/2.

Further, if f is differentiable at x , then

fμ(x) − f (x) = 1
κ

∫
E

[f (x + μu) − f (x) − μ〈∇ f (x), u〉]e− 1
2 ‖u‖2

du.

Therefore, if f ∈ C1,1(E), then

| fμ(x) − f (x)|
(6)
≤ μ2 L1(f)

2κ

∫
E

‖u‖2e− 1
2 ‖u‖2

du
(14)= μ2 L1(f)

2
n.

Finally, if f is twice differentiable at x , then

1
κ

∫
E

[f (x + μu) − f (x) − μ〈∇ f (x), u〉 − μ2

2
〈∇2 f (x)u, u〉]e− 1

2 ‖u‖2
du

(13)= fμ(x) − f (x) − μ2

2
〈∇2 f (x), B−1〉.

Therefore, if f ∈ C2,2(E), then

| fμ(x) − f (x) − μ2

2
〈∇2 f (x), B−1〉|

(7)
≤ μ3L2(f)

6κ

∫

E

‖u‖3e− 1
2 ‖u‖2

du

(17)= μ3L1(f)

6
(n + 3)3/2.

⊓⊔

123

Found Comput Math

Proof of Lemma 2 Indeed, for all x and y in E , we have

‖∇ fμ(x) − ∇ fμ(y)‖∗
(21)
≤ 1

κμ

∫
E

| f (x + μu) − f (y + μu)| ‖u‖e− 1
2 ‖u‖2

du

≤ 1
κμ

L0(f)
∫
E

‖u‖e− 1
2 ‖u‖2

du · ‖x − y‖.

It remains to apply (16). ⊓⊔

Proof of Theorem 2 Let μ > 0. Since fμ is convex, for all x and y ∈ E we have

f (y) + μL0(f)n1/2
(18)
≥ fμ(y) ≥ fμ(x) + 〈∇ fμ(x), y − x〉

(11)
≥ f (x) + 〈∇ fμ(x), y − x〉.

Taking now the limit as μ → 0, we prove the statement for μ = 0. ⊓⊔

Proof of Lemma 3 Indeed, for function f ∈ C1,1(E), we have

‖∇ fμ(x) − ∇ f (x)‖∗
(25)=

∥∥∥ 1
κ

∫
E

(
f (x+μu)− f (x)

μ
− 〈∇ f (x), u〉

)
Bu e− 1

2 ‖u‖2
du

∥∥∥
∗

≤ 1
κμ

∫
E

| f (x + μu) − f (x) − μ〈∇ f (x), u〉| ‖u‖e− 1
2 ‖u‖2

du

(6)
≤ μL1(f)

2κ

∫
E

‖u‖3e− 1
2 ‖u‖2

du
(17)
≤ μ

2
L1(f)(n + 3)3/2.

Let f ∈ C2,2(E). Denote au(τ) = f (x + τu) − f (x) − τ 〈∇ f (x), u〉 −
τ 2

2
〈∇2 f (x)u, u〉. Then, |au(±μ)|

(7)
≤ μ3

6
L2(f)‖u‖3. Since

∇ fμ(x) − ∇ f (x)
(13)= 1

2κμ

∫

E

[f (x + μu) − f (x − μu)

−2μ〈∇ f (x), u〉] Bue− 1
2 ‖u‖2

du,

we have

‖∇ fμ(x)−∇ f (x)‖∗ ≤ 1

2κμ

∫

E

| f (x+μu)− f (x−μu)−2μ〈∇ f (x), u〉| ‖u‖e− 1
2 ‖u‖2

du

= 1

2κμ

∫

E

|au(μ) − au(−μ)| ‖u‖e− 1
2 ‖u‖2

du

123

Found Comput Math

≤ μ2 L2(f)

6κ

∫

E

‖u‖4e− 1
2 ‖u‖2

du
(17)
≤ μ2

6
L2(f)(n + 4)2.

⊓⊔

Proof of Lemma 4 Indeed,

‖∇ f (x)‖2
∗

(13)= ‖ 1
κ

∫
E

〈∇ f (x), u〉Bue− 1
2 ‖u‖2

du‖2
∗

= ‖ 1
κμ

∫
E

([f (x+μu)− f (x)]−[f (x+μu)− f (x)−μ〈∇ f (x), u〉]) Bue− 1
2 ‖u‖2

du‖2
∗

(26)
≤ 2‖∇ fμ(x)‖2

∗ + 2
μ2 ‖ 1

κ

∫
E

[f (x + μu) − f (x) − μ〈∇ f (x), u〉]Bue− 1
2 ‖u‖2

du‖2
∗

≤ 2‖∇ fμ(x)‖2
∗ + 2

μ2κ

∫
E

[f (x + μu) − f (x) − μ〈∇ f (x), u〉]2‖u‖2e− 1
2 ‖u‖2

du

(6)
≤ 2‖∇ fμ(x)‖2

∗ + μ2

2
L2

1(f)M6.

It remains to use inequality (17). ⊓⊔

References

1. A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with

multi-point bandit feedback, in Proceedings of the 23rd Annual Conference on Learning, 2010, pp.

2840.

2. A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin, Stochastic convex optimization

with bandit feedback,. SIAM J. on Optimization, 23 (2013), pp. 213–240.

3. D. Bertsimas and S. Vempala, Solving convex programs by random walks, J. of the ACM, 51

(2004), pp. 540–556.

4. F. Clarke, Optimization and nonsmooth analysis, Wliley, New York, 1983.

5. A. Conn, K. Scheinberg, and L. Vicente , Introduction to derivative-free optimization. MPS-

SIAM series on optimization, SIAM, Philadelphia, 2009.

6. C. Dorea, Expected number of steps of a random optimization method, JOTA, 39 (1983), pp. 165–171.

7. J. Duchi, M.I. Jordan, M.J. Wainwright, and A. Wibisono, Finite sample convergence rate

of zero-order stochastic optimization methods, in NIPS, 2012, pp. 1448–1456.

8. A. D. Flaxman, A.T. Kalai, and B.H. Mcmahan, Online convex optimization in the bandit

setting: gradient descent without a gradient, in Proceedings of the 16th annual ACM-SIAM symposium

on Discrete Algorithms, 2005, pp. 385–394 .

9. R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, in Proceedings

of the 40th annual ACM symposium on Theory of Computing, 2008, pp. 681–690.

10. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of

the Nelder-Mead Simplex Algorithm in low dimensions, SIAM J. Optimization, 9 (1998), pp. 112–147.

11. J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead

algorithm in two dimensions, SIAM J. Optimization, 22 (2012), pp. 501–532.

12. J. Matyas, Random optimization. Automation and Remote Control, 26 (1965), pp. 246–253.

13. J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7

(1965), pp. 308–3013

123

Found Comput Math

14. A. Nemirovski, A. Juditsky, G. Lan, and A.Shapiro, Robust Stochastic Approximation

approach to Stochastic Programming, SIAM J. on Optimization, 19 (2009), pp. 1574–1609.

15. A. Nemirovsky and D.Yudin, Problem complexity and method efficiency in optimization, John

Wiley and Sons, New York, 1983.

16. Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston, 2004.

17. Yu. Nesterov, Lexicographic differentiation of nonsmooth functions’, Mathematical Programming,

104 (2005), pp. 669–700.

18. Yu. Nesterov, Random gradient-free minimization of convex functions, CORE Discussion Paper #

2011/1, (2011).

19. Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

J. on Optimization, 22 (2012), pp. 341–362.

20. B. Polyak, Introduction to Optimization. Optimization Software - Inc., Publications Division, New

York, 1987.

21. V. Protasov, Algorithms for approximate calculation of the minimum of a convex function from its

values, Mathematical Notes, 59 (1996), pp. 69–74.

22. M. Sarma, On the convergence of the Baba and Dorea random optimization methods, JOTA, 66

(1990), pp. 337–343.

123

	Random Gradient-Free Minimization of Convex Functions
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contents
	1.3 Notation

	2 Gaussian Smoothing
	3 Random Gradient-Free Oracles
	4 Random Search for Nonsmooth and Stochastic Optimization
	5 Simple Random Search for Smooth Optimization
	6 Accelerated Random Search
	7 Nonconvex Problems
	8 Preliminary Computational Experiments
	8.1 Smooth Minimization
	8.2 Minimization of Piecewise Linear Functions
	8.3 Test Functions Based on Chebyshev Polynomials
	8.4 Conclusion

	Acknowledgments
	Appendix: Proofs of Statements of Sect. 2
	References

