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Solid-body trajectoids shaped to roll along 
desired pathways

Yaroslav I. Sobolev1,5 ✉, Ruoyu Dong1,5, Tsvi Tlusty1,2 ✉, Jean-Pierre Eckmann3 ✉, 

Steve Granick1,4 ✉ & Bartosz A. Grzybowski1,4 ✉

In everyday life, rolling motion is typically associated with cylindrical (for example, 

car wheels) or spherical (for example, billiard balls) bodies tracing linear paths. 

However, mathematicians have, for decades, been interested in more exotically 

shaped solids such as the famous oloids1, sphericons2, polycons3, platonicons4 and 

two-circle rollers5 that roll downhill in curvilinear paths (in contrast to cylinders  

or spheres) yet inde�nitely (in contrast to cones, Supplementary Video 1). The 

trajectories traced by such bodies have been studied in detail6–9, and can be useful in 

the context of e�cient mixing10,11 and robotics, for example, in magnetically actuated, 

millimetre-sized sphericon-shaped robots12,13, or larger sphericon- and oloid-shaped 

robots translocating by shifting their centre of mass14,15. However, the rolling paths  

of these shapes are all sinusoid-like and their diversity ends there. Accordingly, we 

were intrigued whether a more general problem is solvable: given an in�nite periodic 

trajectory, �nd the shape that would trace this trajectory when rolling down a slope. 

Here, we develop an algorithm to design such bodies—which we call ‘trajectoids’—and 

then validate these designs experimentally by three-dimensionally printing the 

computed shapes and tracking their rolling paths, including those that close onto 

themselves such that the body’s centre of mass moves intermittently uphill 

(Supplementary Video 2). Our study is motivated largely by fundamental curiosity, 

but the existence of trajectoids for most paths has unexpected implications for 

quantum and classical optics, as the dynamics of qubits, spins and light polarization 

can be exactly mapped to trajectoids and their paths16.

Let us begin by drawing some curve T on a plane, copying it multiple 

times to form an infinite periodic trajectory T∞, and inclining the plane 

slightly (Fig. 1a). The question we then ask is whether it is possible to 

design a solid body—which we will call a ‘trajectoid’—to roll exactly 

along T∞ without slipping or pivoting (in which ‘pivoting’ means spin-

ning about a normal to the plane at a point of contact).

To develop intuition about engineering such objects, we begin with 

the simplest case: a cylinder of radius r rolling without slipping or  

pivoting over a horizontal plane is a trajectoid of a straight line (Fig. 1b). 

For the preferred, linear path, the cylinder’s centre of mass (CM) is 

always at a height r above the plane (Fig. 1b, green dot): in this sense, 

the path is an ‘equipotential’ one, and any deviation from it would raise 

the cylinder’s CM (to the red dot), thereby increasing the gravitational 

potential energy (green surface).

Extending to a flat path T composed of several straight lines (Fig. 1c), 

we consider a ‘virtual’ assembly of a heavy sphere (radius r) encased 

inside a weightless spherical ‘ghost’ shell of radius R > r. We shave off 

part of the shell to leave behind a locally cylindrical region of radius r: 

in this way, the object can roll along the first segment, with the points 

of attachment of the inner, heavy sphere tracing precisely this portion 

of the path T. When the starting point of the next segment is reached, 

we trim the shell to define another local cylinder to roll along this new 

direction. The procedure is then repeated until reaching the end of the 

polygonal path (or, in general, of a curvilinear path approximated by a 

union of infinitesimally short linear segments). The body thus shaped 

can be construed as a piecewise combination of gradually reorienting 

cylinders whose axes remain parallel to the plane below, and pass 

through the body’s CM. This CM always remains at a height r above the 

plane, and the planar path defines an equipotential ‘trench’ in the tra-

jectoid’s landscape of gravitational energy (Fig. 1b). Whereas the sphere 

touches the plane at a single point at a time, the final shape touches it 

at many points at once (as with cylinder-to-plane contact), giving stabil-

ity to the roll. Some examples illustrating the morphing procedure for 

different trajectories and for different values of R r/  are shown in Fig. 1d,e.

Condition for trajectoid existence

For an object to qualify as a trajectoid, it must periodically regain its 

initial three-dimensional orientation. Noting that the points of the 

object’s contact with the planar trajectory T also trace a certain curve 
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on the surface of this object’s inner, heavy sphere (Figs. 1c and 2a), the 

condition for periodic motion can be recast in terms of the rotation 

group acting on this rolling sphere. Specifically, an n-period trajectoid 

exists for a translationally invariant path T∞ if there exists a ball of finite 

radius r, which, after rolling (without slipping or pivoting) along n 

periods T composing the subpath T =AΩn , regains the same orientation 

at endpoint Ω as it initially had at starting point A. Repeating this cycle, 

the trajectoid then rolls indefinitely along T∞.

The path T =AΩn  can be represented by the dependence of its normal 

t ψ t ψ t( ) = (cos ( ), sin ( ), 0)n  (blue in Fig. 2a) on the arc length t along  

the trajectory, where ψ is the angle t( )n  forms with the planar projec-

tion of gravity. Alternatively, Tn can be specified by the curvature 

κ t ψ t( ) = d /d  and the initial angle ψ(0) (ref. 17). The translational perio-

dicity of the path Tn (as in Fig. 1a) indicates that the curvature obeys 

an index theorem18,

∫ψ t κ t t I( ) = ( )d = 2π , (1)
T T

T

where IT is the rotation index of the period T, for example, I =0T  if T 

does not self-intersect. A complementary scenario was recently con-

sidered19 where bodies are designed such that their rolling paths are 

confined to a finite region on the plane. These ‘non-trajectoids’ 
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Fig. 1 | Rolling paths and trajectoid shapes. a, An arbitrary curve T (dark  

blue) drawn on an inclined plane (grid) serves as one period of an infinite 

translationally symmetric trajectory T∞ to be traced by the trajectoid.  

b, A cylinder (gold) rolling along the plane (blue grid) must tilt sideways, as 

shown, to deviate from its preferred linear path of rolling (thick grey line on the 

grid). Such a tilt inevitably raises the cylinder’s CM (red dot) along a cycloid-like 

curve (solid black) away from CM’s original level (green dot): the preferred 

linear path corresponds to a trench in the gravitational potential landscape 

(green surface, also see Extended Data Fig. 6). For an illustration in frontal 

projection, see Extended Data Fig. 1a. c, The design of a trajectoid shape starts 

with a rigid core (blue) of radius r surrounded by a massless concentric shell 

(gold colour) of radius R r> . This composite structure, shown here in central 

cross-section, is forcibly moved in infinitely small steps such that the spherical 

core rolls along the target path (grey polygonal chain) without slipping or 

pivoting (Supplementary Video 1). To allow such rolling, the shell is ‘shaved’ to 

leave a patch of cylindrical surface (orange). The point CM is the centre of mass 

of the core, and therefore of the whole assembly. d, Trajectoids for a linear path 

using different ratios R r/  consist of a cylindrical part (orange) of radius r and 

two surviving spherical segments of the shell (gold). e, Trajectoids for the 

curvilinear path (same as in Fig. 2a and experimentally realized in Fig. 4d) using 

different ratios R r/ . At R r/ = 1.01, the body is still roughly spherical but for 

higher values shown, the shape becomes complex (and does not change for 

R r/  ≳ 2.80) and has improved stability due to deeper potential energy trench  

(b and Extended Data Fig. 1a).
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Fig. 2 | Path-to-sphere mapping and trajectoid existence. a, Condition 

necessary for trajectoid existence. A flat path T =AΩn  (starting at point A and 

ending at point Ω) can be construed as a sticky metal strip that easily bends out 

of the plane yet maintains its length and geodesic (initially, in-plane) curvature. 

This metal strip attaches (maps) to the sphere being rolled along it and 

becomes the sequence of the sphere-plane contact points. For a trajectoid of 

AΩ to exist, on reaching the point Ω, the sphere must arrive at the same 3D 

orientation as it had at the starting point A. This condition is equivalent to 
⌢

AΩ 

being a closed spherical curve splitting the sphere’s surface into two equal 

areas 2πr2 (shaded green and yellow on the rightmost sphere in a). b–d, When a 

path T (b, one period) does not map onto a closed curve on a sphere it can be 

either appended with a bridge (c, coloured in red and orange here) or deformed 

(d, green lines connect the points of original black T to respective points of its 

deformed blue version, see main text and Methods for details). Some T can be 

transformed in this way to yield viable one-period trajectoids (experiments in 

Fig. 4d,e,g,n,o). e, By contrast, a two-period trajectoid exists for most paths 

and no amendments to the path are needed (the green circle shows where the 

two periods meet).
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therefore violate the property in equation (1) and are bound to halt 

when rolling autonomously down a slope.

Let us now model the rolling motion in a frame of reference in which 

the sphere’s centre is stationary and the sphere rotates around it. We 

approximate the planar path tAΩ= ( )n  by a polygon made of N short 

straight segments of length δt. In the said coordinate system, each 

segment δt with starting point ti induces a rotation of the sphere around 

an axis parallel to the normal to the path n t( )i  (blue arrows in Fig. 2a) 

by an angle δt r/  (Methods). The rotation is captured by a rotation matrix 

R δt r t= exp[( / )( ( ) ⋅ )]i in L , where the generators of the rotation group 

SO(3) are L L L L= ( , , )x y z . As the sphere is rolling, the rotations Ri act on 

the sphere sequentially, progressing from the first to the last segment 

(Fig. 1c), and the overall rotation RAΩ is then their ‘time-ordered pro-

duct’, R R R R= NAΩ 2 1⋯ . In the limit N→∞, the overall rotation RAΩ becomes 

an infinite product of minute rotations, which takes the form of a 

time-ordered exponential, familiar from quantum field theory20,

∫R
r

t t= exp
1

d ( ) ⋅ (2)AΩ A

Ω




















n LT

where the time-ordering operator T  ensures that the rotations and the 

generators are multiplied in the correct order according to their posi-

tion t along the path. In terms of rotation matrices, the trajectoid must 

obey R = 1AΩ , where 1 is the identity matrix.

Per the illustration in Fig. 2a, this condition can be visualized by 

imagining that the flat curve T =AΩn  is cut out of a flexible metal sheet 

as a narrow ribbon that can bend out of plane and stick onto the rolling 

ball, producing a curve AΩ
⌢

 on the sphere. As the sticking ribbon 

deforms only out-of-plane, it conserves the arc length t (by forbidding 

stretching due to slipping) and the geodesic curvature κ t( ) (by forbid-

ding in-plane bending due to pivoting). Thus, κ t( ) would now become 

the geodesic curvature of the ‘attached’ spherical curve AΩ
⌢

.

The R = 1AΩ  condition implies that AΩ
⌢

 is a closed curve on the  

sphere. By the Gauss–Bonnet theorem18,19,21, 
⌢

AΩ encircles an area, 
⌢S r I= 2π (1 − )2
AΩ , where the rotation index is   �I tκ t= (2π) d ( )AΩ

−1
⌢ . The 

invariance of κ t( ) , as illustrated by the sticky ribbon, indicates that  

its integral, the rotation index, is also conserved,  I I nI= =AΩ AΩ T
⌢ . Hence, 

by equation (1), the area enclosed by AΩ
⌢

, on either side (green and 

yellow in the rightmost panel of Fig. 2a) is S r I r= 2π (1 − ) = 2π2
AΩ

2, for 

I =0T . If 
⌢

AΩ self-intersects, then the standard definitions of signed 

oriented area are in effect18 and, with this convention, the area must 

be a multiple of 2πr2.

One- and multiple-period trajectoids

It is obviously not guaranteed that an arbitrary one-period path T will 

map onto the rolling sphere as a closed loop, let alone enclose an area 

of exactly 2πr2. In fact, these conditions are typically not met and 

one-period trajectoids (n = 1) are expected to be rare. This said, a given 

path T can sometimes be heuristically adjusted to produce a similar 

trajectory that does close up on a sphere and encloses 2πr2 areas. One 

way to do so is by appending a specially constructed bridge to the given 

path (Fig. 2b,c, see details in Extended Data Fig. 3 and Methods). 

Another is to deform the given path as illustrated in Fig. 2d and Extended 

Data Fig. 2. In both approaches, the quantity to minimize is the angle 

θ of mismatch between the initial and final orientations of the sphere 

on completing one path period T (for details, see Methods). As we will 

see later, these procedures generally produce trajectoids that, when 

physically fabricated, trace the adjusted paths faithfully and periodi-

cally (Fig. 4).

In striking contrast to n = 1, we prove below that two- and higher-period 

trajectoids, n ≥ 2, exist for a broad class of paths defined by a general 

property π described below. In our numerical experiments, a random 

graph drawn on the plane always belonged to this class. This includes 

wildly self-intersecting and convoluted graphs (Extended Data Fig. 4).

Two-period trajectoid theorem

Two-period trajectoids (TPTs) can be constructed for paths T∞ whose 

period T has the following property π: As a sphere of finite radius r > 0 

rolls along the period T = AM, the contact point traces on the sphere’s 

surface a spherical curve 
⌢

T, which is not necessarily closed (green in 

Fig. 3a–c). Together, T
⌢

 and a great arc 
⌢

U  (red) connecting its ends M 

and A enclose some oriented spherical area S r( ). The condition requires 

that there exists an r for which S r r( )/ = ±π2  (red dots in Fig. 3f).

The proof relies on the following simple observation: by the  

Gauss–Bonnet theorem, the integral of geodesic curvature along a 

spherical curve with property π is, modulo 2π, � t κ t S r rd ( ) =2π− ( )/ =π2   

(details in Methods). However, the curvature integral vanishes along 

T
⌢

 (by periodicity, equation (1)), and along the great arc U
⌢

 (because it 

is geodesic), so the only remaining contribution comes from the corners 

A and M whose angles therefore add up to π ( απ−  and α in Fig. 3e). 

This property allows us to draw a 180°-rotated image T180
⌢

 (Fig. 3e, blue) 

of the original curve 
⌢

T  (Fig. 3e, green), such that the two curves con-

nect smoothly at A=Ω and M to form a closed two-period curve, 
⌢

T2 , 

enclosing an area S r r( ) = 2π 2, thus obeying condition R = 1AΩ . This  

proves the TPT theorem. We make three remarks about this result.

(1) Having property π is not obvious, because S r r( )/ 2 may often be a 

non-monotonic function of r (Fig. 3f and Extended Data Fig. 4e,h 

and figure captions). Also, property π is sufficient but not necessary 

for the existence of a TPT: for instance, a degenerate loop in which 

a flat curve is traversed forward and then in reverse, automatically 

yields a period-one trajectoid, and therefore a TPT as well. Alterna-

tive forms of property π are discussed in the Methods.

(2) The TPT theorem proof implies, in particular, that splitting the 

trajectoid through the plane of the great arc 
⌢

U  produces two iden-

tical halves: we illustrate this twofold rotational symmetry in Sup-

plementary Video 2 (first experiment) with a trajectoid built from 
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Fig. 3 | Property π and TPT theorem. Illustration of property π ensuring the 

existence of TPTs (see text for details) for a path whose period (green or blue  

in d) consists of a semicircle, two straight lines and two small arcs to smooth  

the corners. a–c, Spherical trace 
⌢

T  (green) of the contact point on rolling a unit 

sphere along one period of the path. We use control parameter σ L r= /(2π )—the 

ratio of the path’s length L and the sphere’s circumference (for example, σ= 1  

for a great circle). a, σ = 0.304. b, σ = 0.526. c, σ = 0.81. As σ  increases from a to c, 

the area S σ( )  (shaded green) enclosed by the green spherical trace T
⌢

 and 

the red arc 
⌢

U  also increases (plotted inf, orange curve and bottom axis) and 

eventually reaches π in d (also shown by a left red dot in f). For an animation, see 

Supplementary Video 3. Points marked on the orange curve S σ( ) in f correspond 

to a–c. The purple curve in f is a respective plot for a random walk path (Extended 

Data Fig. 4g), its trajectoid solution marked by the rightmost red circle. Note 

that this function is non-monotonic (text). e, Illustration of the proof of the TPT 

theorem. See text and Supplementary Video 3 for details.
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such halves (Fig. 4j). Generalizing this construction to n-fold sym-

metry, we prove that multi-period trajectoids (MPT) with any n > 1 

exist for paths having property 2π/n (MPT theorem in the  

Methods).

(3) Property π is obeyed by a rich variety of unusual paths, including 

self-intersecting, spiralling and two-dimensional random walk 

paths shown in Extended Data Fig. 4. On the other hand, there  

exist special paths that violate property π. A simple example is a sym-

metric, V-shaped path with an acute angle between the equal arms  

(Extended Data Fig. 5a–c and Supplementary Video 4) or some more 

complex V-like paths with perfect symmetry of the arms (Extended 

Data Fig. 5d and further details in Methods). Because of this extra 

symmetry, they are much rarer than paths having property π. Also 

note that any slightest tapering of the acute angle of V-shaped path 

already gives it property π (Extended Data Fig. 5g). Although we 

cannot prove that these are the only paths that violate property 

π, we conjecture that paths without property π are infinitely rare, 

because they never appeared among random paths in our numeri-

cal experiments.

Experimental validation

Turning to the experimental validation of the algorithm, we recall that 

the location of the trajectoid’s CM was assumed to be insensitive to the 

final shape itself, and so the CM of the manufactured object must be 

at this predefined point CM. This can be achieved in several ways.  

For example, voids can be strategically introduced into the design of 

a three-dimensionally printed object22,23 (Fig. 4a), including voids that 

reach the surface: these would not affect the rolling as long as they do 

not influence the shape’s convex hull. Instead, we simply placed a heavy 

1-inch (2.54 cm) ball bearing (steel, ρ = 7.8 g cm−3) into a spherical  

cavity centred on CM (Fig. 4b) inside a trajectoid  made of a light, 

ρ = 1.25 g cm−3, polylactic acid (PLA). As shown in the image in Fig. 4c, 

we three-dimensionally printed the shape in two halves, each one hav-

ing a hemispherical cavity for the steel ball, and glued them together 

after the ball was inserted. The shape of the PLA shell was determined 

by the shaving procedure described earlier (Fig. 1) and implemented 

numerically as described in the Methods. Readers can do it for a path 

of their own by using the online Google Colab notebook released with 

this paper. We used the R r/  value of 1.3 to ensure adequate depth of 

the potential energy groove (Fig. 1 and Extended Data Fig. 1a) and  

better stability along the path. Overall, this fabrication scheme ensured 

that our trajectoids were heavy despite the low density of the PLA part, 

which is experimentally convenient as it makes gravity dominant rela-

tive to stray forces of other nature. Furthermore, it makes rotational 

inertia more isotropic, with moments of inertia dominated by those 

of the heavy steel ball.

The fabricated trajectoids were released to roll down a flat plane 

inclined at angles 0.6–1.7°, with the instantaneous locations of the 

centre of gravity estimated and tracked (Methods). Figs. 4d,e,n,o and 

Extended Data Fig. 6a,b show the trajectories traced by one-period 

(n = 1) trajectoids. As seen, there is generally close correspondence 
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Fig. 4 | Experimental validation. a,b, Methods of CM engineering: introducing 

strategically placed voids (a) or using a heavy sphere concentric with the desired 

location of the CM (b). c, Photograph of two three-dimensionally printed halves 

of one shape, each containing a hemispherical void for housing a steel ball 

bearing (1-inch diameter). d–o, Examples of specific paths and corresponding 

bodies. Solid black lines are intended trajectories of the CM. Blue curves are 

experimental trajectories obtained by image-processing of top-view 

experimental videos (Methods and Supplementary Video 2). Filled black  

(or black and red in f) markers denote locations corresponding to the body’s 

single revolution. The smallest period is between any two adjacent black circles 

(empty or filled). Green circles highlight sharp corners at which tumbling or 

recoiling was observed. Yellow arrows point to slight zig-zag wiggling of  

the experimental trajectory around the intended path. d,e, Examples of 

single-period, n = 1 trajectoids of strictly downhill paths. f,i, Examples of paths 

that have no single-period trajectoid; the body shaped to match this path  

stops after one period at the point marked red. g, However, the single-period 

trajectoid exists for a path similar to f but with a bridge (orange) appended  

to it. h, Alternatively, the input path from f can be traced by a two-period, n = 2 

trajectoid. Correspondence to f and g is emphasized by brown dashed lines. 

Along path h, the trajectoid gains enough kinetic energy to cut some corners 

(for example, purple arrows) and occasionally escape the main potential  

trench illustrated in Extended Data Fig. 7c. j,m, Further n = 2 trajectoids. The 

trajectoid in j is manufactured from two identical halves (magenta and green) 

corresponding to two periods (symmetry axis OC in Fig. 3e). n,o, The n = 1 

trajectoids that roll, respectively, intermittently upwards and in loops. Scale 

bars are 1 cm. Each experiment was replicated at least 5 times.
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between the intended and experimental results, save for some wiggling 

at sharp corners that is due to non-zero inertia of the physical bodies  

(if the trajectoid loses too little energy to friction and inelastic colli-

sions, its total energy might eventually become sufficient for escap-

ing the potential trench that follows the target path; see the last two 

periods in Fig. 4h and Supplementary Videos 1 and 2). Next, Fig. 4f,i 

shows bodies for which the single-period path T mapped onto the 

sphere does not close up: as predicted, the rolling for such a body is 

not periodic and it stops after one period (red dot). However, a trajec-

toid can be constructed when T is either corrected by adding a bridge 

(orange colour in Fig. 4g) or when, in accordance to TPT theorem, two 

periods T are used (n = 2 trajectoids in Fig. 4h,j). More examples of 

n = 2 trajectoids are shown in Figs. 4j–m. Apart from being a source 

of local wiggling, inertia can be harnessed to follow trajectories that 

intermittently roll upwards (Fig. 4n) or even in loops (Fig. 4o). Although 

the energy of a downward-rolling object decreases owing to friction, 

its kinetic component (inertia) may be sufficient to climb along the 

potential groove yet insufficient to escape it (Extended Data Fig. 7). 

In practice, such trajectoids performed reliably only for sufficiently 

smooth paths, because recoils and oscillations near sharp turns  

render the energy loss stochastic and thereby the progression along 

the periods unpredictable.

Extensions and outlook

The TPT theorem is a universal property of rotations that can be  

translated from trajectoids to other physical systems governed by  
the rotation group SO(3). In quantum-mechanical systems, the  
overall rotation RAΩ (2) can be seen as a time-evolution operator, 

T ∫i ħ tH t= {exp[−( / ) d ( )]}A AΩ
Ω

U , with a time-dependent Hamiltonian 

n LH t t( ) ( ) ⋅  and a time-varying field n t( ). Notable examples are a 
magnetic dipole in a planar magnetic field24 and the Bloch sphere 

representation of a qubit driven by an electric field25–27 (Extended Data 

Fig. 9a and Methods). By ‘almost any’ rotation sequences we hence-

forth mean those having property π. The TPT theorem suggests that 

almost any planar field pulse n t( ), once scaled by an appropriate fac-

tor r > 0 and applied twice in a row, will return the system exactly to 

its original state, U = 1AΩ . Such 360°-rotation pulses play a role in com-

mon pulse sequences, as found in rotary echo28,29 and Wimperis 

sequences30, and the TPT theorem may inspire a new sequence design 

for nuclear magnetic resonance (NMR)16, atom interferometry31 or 

verification of quantum simulators32. The scaling factor r can be inter-

preted as modulating the magnitude of the pulse, n nt t r( ) → ( )/ , or as 

stretching it in time, n nt tr( ) → ( )  (Extended Data Fig. 9b,c and Sup-

plementary Video 5). In this analogy, very small trajectoids, r→0, 

represent the adiabatic limit, where the field n tr( ) changes very slowly 

relative to the revolutions of the state vector: to such a tiny rolling 

trajectoid, smooth paths seem straight and therefore trace great cir-

cles on the core ball (Fig. 2), such that the trajectoid becomes a cylin-

der (shown in Supplementary Video  8, Extended Data Fig.  10  

and Methods).

In classical optics, the evolving state vector can be taken as polariza-

tion vector of light rotating on the Poincaré sphere (Extended Data 

Fig. 9d). When light passes through a thin uniaxial waveplate, its polar-

ization vector rotates by an angle proportional to the plate’s thickness 

δt, around a planar axis n ψ ψ= (cos , sin , 0) (refs. 33,34), where ψ/2 is 

the angle of the waveplate’s optical axis (Extended Data Fig. 9e and 

Methods). Here, the TPT theorem implies that for almost any given 

sequence of waveplates—with arbitrary thicknesses δti and optical axis 

directions ψ /2
i

—there exists a scaling factor r such that any light enter-

ing the doubled sequence of waveplates with thicknesses δt r/i  regains 

its original polarization when it exits (Extended Data Fig. 9e–g and 

Supplementary Video 6). This basic property may become another 

tool in an optical designer’s toolbox, perhaps an aid in creating 

polarization-insensitive (‘phase-only’) optical devices based on liquid 

crystal electro-optic effects for LIDAR (laser imaging, detection and 

ranging) and holographic displays35–37.

Further examination of the basic geometric problem of trajectoids 

may lead to unexpected analogies and applications in other physical 

settings, for example, when the trajectoids in time-varying driving 

field (for example, magnetic12,13) could be used to achieve complex 

motions with fewer moving parts and inside sealed spaces. Moreover, 

trajectoids morphing on-the-fly by means of piezoelectric actuators 

for solids38 or gas inflation of soft hollow shapes39 could be useful  

in robotics.
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Methods

Numerical calculation of the trajectoid shape

Once we approximate the planar path AΩ by a polygon made of short 

line segments of length δt, as described in the main text, the matrix 

Rk←0 for rotation from the start of the path (t =00 ) to the position tk is 

a product:

⋯∏R R R R R= = (3)k
i

k

i k←0
=1

2 1

The removal of a shell fragment (shaving) is performed by applying 

Boolean mesh operations to subtract a series of cubes C R C= ( )k k←0
−1  

from the initially geodesic mesh of the shell that envelopes (and is 

concentric with) the core sphere. The inverse rotations slide the cube 

along the spherical path, instead of rotating the core with respect to 

C. Meshes of the cubes Ck were produced with Python by rotations of 

a cube C whose position and orientation are shown in Extended Data 

Fig. 1b, then the Ck were imported into Autodesk 3ds Max 2018 (ref. 40) 

for executing standard Boolean mesh operations, although any other 

3D CAD software would also be suitable for the purpose. Readers can 

supply their intended paths to the online Google Colab notebook 

released with this paper (Code availability statement at the end of the 

paper) to calculate trajectoid shapes.

Fabrication

After the trajectoid’s shape was calculated numerically as described 

above and using parameters r = 15.88 and R = 20.64 mm, three- 

dimensional (3D) printing of calculated shape was performed with  

PLA on Ultimaker 3 Extended printer (Ultimaker B.V.) with triangular 

infill at 50% density (generated by Ultimaker Cura slicer). To ensure that 

the CM of the manufactured object was always at the predefined point 

(CM in Fig. 1c), a heavy steel ball (diameter 2.54 cm or 1 inch = 1.6r) was 

placed into a spherical cavity centred on CM (Extended Data Fig. 1d and 

Fig. 4c). As shown in Fig. 4c, the trajectoid was three-dimensionally 

printed in two halves, each having a hemispherical cavity for the steel 

ball. After the ball was inserted, the halves were glued together with 

cyanoacrylate (Loctite) glue. This approach yielded a heavy object 

despite the low density of the 3D-printing material (PLA) and ensured 

that gravity dominated stray forces of different natures. Furthermore,  

it made rotational inertia more isotropic, with moments of inertia 

dominated by those of the heavy steel ball.

Analysis of experimental trajectories

Silicon carbide abrasive paper (electro-coated, 2000Cw) was glued 

onto a sloped 12-mm-thick glass slab to prevent slippage and pivo-

ting during rolling. Slope angle and direction were measured by high- 

precision, two-axis digital inclinometer (Dong-Do IM-2DT). Videos were 

acquired at either 60 or 120 frames per second using a digital camera 

(D850, Nikon) placed 1.62 m above the slope. The centroid of the object’s 

apparent projection on the top-view videos was found by thresholding 

the red, green, blue values of video frames to detect the projection out-

line. Before finding the centroid, a convex hull operation was applied to 

the detected projection to eliminate any possible non-convexity: as the 

object’s shape is convex by construction, its projection must be convex. 

To evaluate whether the centroid of the visible shape can be used as 

an adequate estimate of the object’s CM location, we simulated shape 

projections of the trajectoid onto the plane as it rolled along the target 

path. We then compared the trajectory of the simulated projection 

centroid (orange solid lines in Extended Data Fig. 8a–c) to the target 

path, that is, to the theoretical trajectory of projection of the CM onto 

the plane (black solid lines in Extended Data Fig. 8a–c). The difference 

between these two trajectories was found to be negligible. Further-

more, for trajectoids of paths as in Extended Data Fig. 9a,c, the planar 

distance between the projection of the CM and the centroid of the shape 

projection never exceeds 8.7% of the trajectoid’s minimal radius r = 1 

for all possible orientations of the trajectoid (Extended Data Fig. 8d,f).

Note 1: the location of the CM can also be estimated more precisely 

by applying the standard algorithms of six-degree-of-freedom (6D) 

pose (position and orientation) tracking to the experimental video: 

these algorithms yield global location and orientation of the solid’s own 

reference frame, in which location of the true CM is known a priori. To 

test this method, we applied markers to the surface of a manufactured 

trajectoid (black dots in Extended Data Fig. 8e), filmed its rolling at 

120 frames per second and applied 6D pose estimation algorithms of 

the Blender software41 (Supplementary Video 6). Data presented in 

Extended Data Fig. 8h,i evidenced that the 6D pose approach produces 

only a negligible improvement of precision as compared to the shape 

centroid method described above.

Note 2: the symmetry of the two halves of the TPT is illustrated at 

the beginning of Supplementary Video 2 with a two-colour trajectoid. 

However, only one-colour trajectoids were used for analysis of experi-

mental trajectories.

Path integral form of the RAΩ = 1 condition

For an infinitesimal path segment td , the rotation matrix can be written  

in terms of the rotation group generators: n
n LR t t r( ( ), d / ) = e =t r(d / )( ⋅ )

n Lt r1 + (d / )( ⋅ ). Hence, the matrix of net accumulated rotation after 

rolling along the entire period AΩ is a product integral,

n n L
n L∏ ∏ ∏R R t

t

r

t

r
t= ( ),

d
= e = 1 +

d
( ( ) ⋅ ) ,

t t

t
r t

t
AΩ

=A

Ω

=A

Ω
d

( ( )⋅ )

=A

Ω




















where each further rotation matrix is multiplied from the left-hand 

side. Equivalently, one can write a path-ordered exponential,

T





















∫R
r

t t= exp
1

d ( ) ⋅ (4)AΩ A

Ω

n L

where the time-ordering operator T  makes sure that the rotations and 

the generators are multiplied in the correct order according to their 

positions along the path. This compact form links the trajectoids to 

the basic concept of propagators and path integrals of quantum field 

theory20. In this language, the trajectoid existence condition means 

that the time-evolution operator in equation (2) is equal to the unity 

rotation R = 1AΩ .

Further considerations for the proof of the TPT theorem

Here, we give the proof for a simple path T = AM, which, in the plane, 

has the same tangent direction at the beginning and the end, such that 

the integral IT of the curvature (1) vanishes modulo 2π. When the  

curve is mapped onto the sphere, the beginning and end points are 

map ped to two points A and M and we draw the geodesic arc from M  

to A (the shorter of the two). By property π discussed in the main text, 

there exists a radius r of the sphere, for which the area enclosed by the 

curve and the arc is exactly πr2. By the Gauss–Bonnet theorem, the  

(interior) angles at A and M add up to r2π− (enclosed surface)/ = π2 .  

Because the tangents at A and M in the plane are the same, the exit angle 

at M is equal to the entry angle at A, as illustrated in Fig. 3e. It follows 

that on rolling over the second period, the graph on the sphere MΩ is 

the same as the first, but now turned by 180°. Therefore, the area 

enclosed by the second part is again πr2 and the sum is 2πr2, which is 

half the area of the sphere. This means that the R = 1AΩ  condition is  

satisfied, and therefore the trajectoid will be in exactly the same  

orientation as when it started at A, once it has rolled over two copies of 

the original path. The path can be continued indefinitely. For the more 

general cases, the argument is the same, taking into account that the 

tangents at A and M might be unequal, and that the areas might overlap, 

in which case the orientation of the curvature will come into play. For 

an animated illustration of this proof, see Supplementary Video 3.



Paths without property π

Let us consider a path consisting of just two straight segments whose 

normals are 1n  and 2n , such that the sphere undergoes just two rota-

tions: around axes 1n  and 2n  by angles ασ  and βσ  where α and β are 

arbitrary positive fixed values and σ>0 is the scaling factor. The rota-

tion angle of the composition of the two rotations is equal to π if and 

only if42

ασ βσcot( /2)cot( /2) = ⋅ (5)1 2n n

If α β≠ , a solution σ>0 of equation (5) always exists, because in this 

case the right-hand side of equation (5) is limited to an interval [−1, 1], 

but the left-hand side spans (−∞, ∞). If α β= , the left-hand side of equ-

ation (5) is positive—spans (0, ∞)—for all σ>0 and equation (5) can  

only be satisfied for ⋅ ≥ 01 2n n  and has no solutions if n n⋅ < 01 2 .

Supplementary Video 4 and Extended Data Fig. 5 explore paths that 

are similar to acute-angle isosceles V paths. We found that an 

acute-angle symmetric V-like path still does not have property π even 

after we introduce a kink into the arms of V-path at points K1 and K2 as 

shown in Extended Data Fig. 5d: note that S σ( ) plot in Extended Data 

Fig. 5e never reaches π or −π. Sweep of the kink angle α is shown in 

Supplementary Video 4. At the same time, introducing a slightest taper 

at the corner of the V-path, as shown in Extended Data Fig. 5g, produces 

a path that has property π: solution of S σ( ) = π is marked by the red dot 

in Extended Data Fig. 5h. Furthermore, deviation from the perfect sym-

metry of the V-like path’s arms (Extended Data Fig. 5k) also produces 

a path that has property π: the function S σ( ) reaches −π (red dot in 

Extended Data Fig. 5l). Asymmetry in the last example is controlled by 

a parameter Ξ responsible for the difference between kink angles α  

and β in two arms: β α= (1 + Ξ) as shown in Extended Data Fig. 5k. The 

sweep of asymmetry Ξ is shown in Supplementary Video 4.

Last, we discuss a version of how one could define rare paths. We have 

shown that certain piecewise linear functions, with some extra sym-

metry, define paths for which neither one nor TPTs exist. Clearly, the 

space of such functions has finite dimension, whereas the functions of 

differentiability class C 1 considered above form an infinite dimensional 

space. However, there might be other curves for which no TPT exists, 

and we leave this as an open question. Apart from examples such as those 

in Extended Data Fig. 5a,d, numerical experimentation yielded no other 

curves without TPTs, and so we conjecture that there may be none.

Generalization of the TPT theorem to MPT

For any n≥ 2, we prove the following theorem:

MPT theorem

The n-period trajectoids can be constructed for paths T∞ whose period 

T has the following property 2π/n: as a sphere of finite radius r >0  

rolls along the period T=AM, the contact point traces on the sphere’s 

sur face a curve T
⌢

 (which is generally not closed; green in Extended 

Data Fig. 1c,d). 
⌢

T  can then be closed by an isosceles V-shaped wedge 

made of two great arcs 
⌢

MΛA (red in Extended Data Fig. 1c,d), with an 
angle 2π/n at Λ (orange angle in Extended Data Fig. 1c). Together, T

⌢

 

and the wedge MΛA
⌢

 connecting its ends enclose some oriented spher-

ical area S r( ) (shaded green in Extended Data Fig. 1c,d). The condition 

requires that there exists an r  for which S r r n( )/ = ±2π/2 .

The proof again uses the Gauss–Bonnet theorem: the area having 

property 2π/n is �S r r n t κ t( )/ = 2π/ = 2π − d ( )2 . However, the curvature’s 

integral vanishes along T
⌢

 (by periodicity, equation (1)), and along the 

two big arcs of MΛA
⌢

 (as these are geodesic), so the only remaining con-

tribution comes from the corners with their angles, α at A, λ n= 2π/  at 

Λ and µ at M: n α λ µ n α µ2π/ = 2π − [(π − ) + (π − ) + (π − )] = 2π/ + ( + − π). It 

follows that, for any n≥ 2, the two side corners of the wedge add up  

to 180°, α µ+ =π. This allows us to draw n copies of 
⌢

T , i n= 1,…,  (blue 

and yellow in Extended Data Fig. 1c, also magenta and sky-blue in 

Extended Data Fig. 1d), each rotated by an angle 2πi/n around OΛ with 

respect to the original 
⌢

T , such that all n paths connect smoothly to 

form a closed n-period path, Tn
⌢

, enclosing an area S(r) = 2πr 2, thus obey-

ing condition R = 1AΩ , which proves the MPT theorem. The correspond-

ing trajectoid will show n-fold rotational symmetry and can therefore 

be assembled from n identical parts. The case n = 2 corresponds to the 

TPT theorem and property π, where the wedge becomes a single great 

arc. For n = 1, the arc vanishes and T must be closed with property 2π, 

which is simply the Gauss–Bonnet form of condition R = 1AΩ .

In the context of ref. 19, the property 2π/n says that the holonomy 

(change in the orientation and position of the trajectoid with respect 

to the plane) is a pure translation after having covered exactly n copies 

of the original path.

Because of the limits S r rlim ( )/ = 0r→∞
2  and nlim 2π/ = 0n→∞ , one may 

be tempted to prove that for any given T, there exists a large enough  

n such that an n-period trajectoid exists for T. The obstacle to  

such attempts is the discontinuity of S r( ) for n> 2. Note that the  

above mentioned MΛA
⌢

 can be constructed only when the arc length 
MA
⌢

 is not larger than 2πr/n. This can be seen from the spherical  

rule of cosines applied to the spherical triangle MΛA, cos =cos +
r r

MA 2AΛ
⌢ ⌢

sin cos ≥cos
r n n

2AΛ 2π 2π
⌢

 and therefore we find r nMA≤2π /
⌢

, where equality 

applies only when 
⌢ ⌢

rMΛ=AΛ =π /2 . As a consequence, S r( )  is not a  

continuous function of r: it is undefined when r nMA>2π /
⌢

. In practice, 

this means that increasing n typically reduces the domain of S r( ) . It is 

also noteworthy that S r( ) is multivalued: whenever MΛA
⌢

 can be con-

structed, it can be constructed in two different ways that are mirror 

reflections of each other in the plane AMO. This ambiguity allows S r( )  

to have two values for each r in its domain.

Following the example of the TPT, we find that counterexamples to 

property 2π/n are also single isosceles V paths, with corners γ sharper 

than π/n (generalizing the TPT case, γ <π/2 where n= 2). To show that 

these are counterexamples, note that for V to have property 2π/n, roll-

ing along one V must give a matrix of rotation by an angle 2π/n around 

some axis. Then, using the formula for the composition of two rotations 

with α β=  to obtain the rotation angle n2π/  requires:

n ασ ασ

ασ ασ γ

ασ γ ασ γ γ

cos(π/ ) = cos ( /2) − sin ( /2)( ⋅ )

= cos ( /2) + sin ( /2)cos

≥ cos ( /2)cos + sin ( /2)cos = cos

2 2
1 2

2 2

2 2

n n

However, for any γ n<π/ , we find a contradicting inequality, 

n γcos(π/ ) < cos . It follows that such a V-shaped path with γ n<π/   

violates property 2π/n.

Bridging and scaling paths to support one-period trajectoids

Paths T typically do not satisfy condition R = 1AΩ  for one-period (n = 1) 

trajectoids and, consequently, the corresponding one-period trajec-

toids are rare. Still, one can find a path similar to the given one that 

allows for a one-period trajectoid. We developed two methods to 

achieve this: either by appending a specially constructed ‘bridge’ to 

the given path, or by deforming the given path itself. In both approaches, 

the quantity to minimize is the angle θ of mismatch between the initial 

and final orientations of the sphere on completing one path period T. 

This angle is computed from Euler’s axis-angle representation of the 

overall rotation matrix









θ

R
= arccos

tr − 1

2
, (6)

AΩ

where tr is the trace operator.

Deforming the input path was performed as follows. Keeping a con-

stant r = 1, we applied non-uniform scaling to T with two scaling coef-

ficients, kx along the downward direction and ky perpendicular to it. 

For an example path from Fig. 4d (same as path in Fig. 1a and Fig. 2a), 

the map of angle θ k k( , )x y  is shown in Extended Data Fig. 2a. Our goal 
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is then to find scaling factors (k k,x y) that give θ closest to zero, as long 

as ky is not too small, because there is always a degenerate solution 

with k =0y , which turns the curve into a straight line whose trajectoid 

is a cylinder, but this solution is of no interest. For the example in 

Extended Data Fig. 2, we required k >0.5y . In Extended Data Fig. 2a, 

there are two locations with small θ. For the one in Extended Data Fig. 2b, 

the corresponding curve T
⌢

 traced on the surface of a rolling sphere 

does not self-intersect; by contrast, for the minimum in Extended Data 

Fig. 2c, 
⌢

T  has many self-intersections.

If one needs a one-period trajectoid, deforming T by just two scaling 

factors in orthogonal directions is not always enough to fulfil R = 1AΩ . 

In practice, for some paths, no combination of kx  and ky can yield 

θ k k( , ) < 2°x y  (a mismatch angle acceptable in light of the imperfections 

of our fabrication process). In these cases (Fig. 4d,e,n,o), we slightly 

adjusted the nodes of the Bezier spline through which the initial T was 

defined (shown in Extended Data Fig. 2e) and recalculated the θ k k( , )x y  

map again (Extended Data Fig. 2d,f). Generally, global optimization 

algorithms must be used for such deformation of the input path,  

but, for instance, a path in Extended Data Fig. 2e needed just three to 

four iterations of adjustment to end up with a minimum value 

θ k k( , ) < 2°x y .

Instead of deforming the input path, a special bridge may be 

appended to it such that a one-period trajectoid exists for the overall 

curve (input path plus the bridge). To improve the practical perfor-

mance, we avoid using sharp corners in the bridge: curvature of bridge 

elements must not exceed certain κmax. The bridge thus consists of two 

straight arms (Extended Data Fig. 3, orange) connected to each other 

and to the ends of input path by arcs of curvature κmax (Extended Data 

Fig. 3, red). Each bridge is made to close the spherical trace of the over-

all curve (input path plus the bridge, Extended Data Fig. 3b). To ensure 

that trajectoid does not need to rely on inertia, straight sections of the 

bridge must always be directed ‘downhill’ with respect to the projection 

of gravity onto the plane (in Extended Data Fig. 3a taken to be from the 

left to the right). For a more robust practical performance, the elements 

of bridge must not self-intersect. Under all these constraints, for a given 

scale σ of the input path (for example, blue in Extended Data Fig. 3a,b), 

we construct a family of bridges shown in red and orange Extended 

Data Fig. 2b and parameterize by declination of arms (orange) away 

from the arc connecting the ends of the spherical trace of the scaled 

input path. In this family, we then find a bridge such that the overall 

spherical trace (of input path and the bridge together) splits the sphere 

into two spherical regions of equal area (2πr2) and by the Gauss– 

Bonnet theorem satisfies the R = 1AΩ  condition. An example of such  

a solution is shown in Fig. 2c and validated experimentally in Fig. 4g. 

The entire algorithm begins with a value of σ giving the smallest pos-

sible distance between the ends of the input path’s spherical trace 

(Extended Data Fig. 3b, blue). If we are unable to find a proper bridge 

among the family of bridges for a given σ, we decrease σ and try again.

Application of the TPT theorem in quantum and classical systems

Here, we illustrate how the TPT theorem can be translated from trajec-

toids to four other physical systems governed by the rotation group 

SO(3): (1) magnetic dipoles in planar magnetic field, (2) NMR, (3) elec-

tric dipole transitions in a two-state quantum system under driving 

electric field, (4) the polarization state of light in classical optics. The 

Bloch sphere representation describes cases (2) and (3), and the closely 

related Poincaré sphere representation describes case (4). By almost any 

sequences, we henceforth mean those with property π.

(1) In a time-varying planar magnetic field B t B t x ψ t( ) = ( )(ˆcos ( ) + 

y ψ tˆsin ( )), a magnetic dipole moment rotates with instantaneous 

angular velocity t γB t( ) = − ( )n , where γ is the gyromagnetic ratio. 

The dynamics of a dipole in a field of constant magnitude (B t B( ) = ) 

has been described24 by rolling a sphere of radius r γB= 1/( ) along 

a flat curve that has t( )n  as its normal vector. A scale factor r can be 

applied in two ways: either to the field magnitude (B t B t r( ) → ( )/ ), 

or by rescaling time (B t B r( ) → ( )). By the TPT theorem, almost  

any given B(t) can be scaled so that applying the scaled magnetic 

field twice, sequentially, brings any magnetic dipole back to the 

orientation it had before the experiment, whatever that  

orientation was.

(2) In the NMR context, a strong static magnetic field B0 along the z 

axis causes precession of the dipole moment around that axis  

with Larmor frequency ω γB=0 0 , and a pulse of magnetic field 

B t B t x ω t ψ t y ω t ψ t( ) = ( )(ˆcos( − ( )) + ˆsin( − ( )))1 1 0 0  rotating in the xy 

plane is applied. For example, a linear increase of the phase  

shift ψ t t( ) = ∆  will occur when the pulse is detuned slightly off- 

resonance25,26: that is, it oscillates with frequency ω( − ∆)0  instead 

of ω0. If the phase shift ψ t( ) and magnitude B t( )1  change slowly with 

time t, it is common to use the reference frame that rotates togeth-

er with Larmor precession and formulate optical Bloch equations 

in a rotating wave approximation26,27, where state vector ρ t( ) is the 

normalized magnetic dipole moment in the rotating frame, and  

its instantaneous angular velocity n t γB t x ψ t y ψ t( ) =− ( )[ˆcos ( ) + ˆsin ( )]1   

belongs to the xy plane. For the application of the TPT theorem, see 

the discussion after (3).

(3) The same Bloch sphere representation of state evolution applies 

also to the electric dipole transitions in a two-state quantum system 

under driving field E t ω t ψ t( )cos( − ( ))0  near the resonant frequency 

ω W ħ= /0 , where W is the energy difference between the two eigen-

states. In this case, the state vector ρ t( ) with unit length and com-

ponents u t v t w t( ( ), ( ), ( )) (Extended Data Fig. 9a) is not in real space 

coordinates anymore: coordinates u and v are called ‘coherences’26 

and w is the population inversion25,26, which is equal to +1 and −1 for 

the system’s eigenstates (poles of the Bloch sphere in Extended 

Data Fig. 9a). Under applied driving field, the state vector ρ t( ), whose 

end is shown by a red circle in Extended Data Fig. 9a, has instan-

taneous angular velocity vector t κE t x ψ t y ψ t( ) = − ( )(^cos ( ) + ^sin ( ))n   

(blue arrow in Extended Data Fig. 9a), where κ µ ħ= /
ab

 and µ
ab

 is  

the transition dipole moment25. Rotation of ρ t( ) is shown by an  

orange arrow in Extended Data Fig. 9a.

As in the case (1), in cases (2) and (3) a scale factor r can be applied 

either to the pulse magnitude (B t B t r( ) → ( )/1 1 , E t E t r( ) → ( )/ , green 

curves in Extended Data Fig. 9b,c and right side of Supplementary 

Video 5), or by stretch ing pulse functions in time (B t B rt( ) → ( )1 1 , 

E t E r( ) → ( ), ψ t ψ rt( ) → ( ), blue curves in Extended Data Fig. 9b,c and 

left-hand side in Supplementary Video 5). By the TPT theorem, al-

most any given pulse can be scaled such that applying the scaled 

pulse twice brings the system back to the original state. Note that 

only the pulse envelope (B t( )1  or E t( ), dotted curve in Extended Data 

Fig. 9b) and phase shift curve ψ t( ) (Extended Data Fig. 9c) must be 

copied and shifted in time by a delay L, but the carrier wave (at fre-

quency ω0) must be shared between the scaled copy and the scaled 

original: for example, if scaling is applied to the electric field mag-

nitude, then the scaled shifted copy is r E t L ω t ψ t L(1/ ) ( − )cos( − ( − ))0  

and the scaled origi nal is r E t ω t ψ t(1/ ) ( )cos( − ( ))0 .

(4) In classical optics, the polarization state of light can be represented 

by a Stokes vector on the Poincaré sphere (Extended Data Fig. 9d), 

with purely circular polarizations at the sphere’s poles, on the S3 

axis, and various linear polarizations in equatorial S S,1 2  plane.  

Consider a single thin uniaxial waveplate whose optic axis lies in 

the plane of the waveplate and forms angle ψ/2 with the vertical 

axis of the global reference frame as shown for one of the waveplates 

in Extended Data Fig. 9e. When light of wavelength λ passes nor-

mally through such a waveplate of thickness δt, the Stokes vector 

on the Poincaré sphere rotates by an angle n n δt λ2π( − ) /e o  around 

the axis n (blue arrow in Extended Data Fig. 9d) that lies in the equa-

torial S S,1 2 plane (shaded blue in Extended Data Fig. 9d) at an angle 

ψ to the S1 axis33,34. Here, n n−e o is the difference of refractive indices 

between extraordinary and ordinary waves. Extended Data Fig. 9e 

shows a sequence of waveplates of various thicknesses and 



orientations of optic axes (indicated by arrows). By the TPT theorem 

in this case, after scaling all thicknesses by an adequate factor r1/  

as illus trated in Extended Data Fig. 9f, and then doubling the  

sequence of waveplates as in Extended Data Fig. 9g, the resulting 

system will have no net effect on the polarization state of light pass-

ing through it. This analogy is illustrated in Supplementary Video 6.

Small-radius limit of trajectoids

Consider a minute sphere rolling along a differentiable planar curve T 

with a geodesic curvature κ t( ). At the scale of the tiny sphere, r→0 or 

σ→∞, the geodesic curvature vanishes, rκ t( ) → 0, such that T is effec-

tively straight and the mapped curve on the sphere 
⌢

T  is a geodesic, 

that is, a great circle (Extended Data Fig. 10a–c and Supplementary 

Video 8, 0:00–0:13). Therefore, the total 3D curvature of the spherical 

curve is ≃κ r κ t r= 1/ + ( ) 1/T
2 2 . The path T

⌢

 will remain in the vicinity 
of the great circle and changes in the direction κ ψ t= d /d  will only tilt 

it very slightly (Extended Data Fig. 10c). The resulting trajectoid is 

therefore a simple cylinder. Only the introduction of infinitely sharp 

corners, where κ κ= →∞T
, can make the curve markedly depart from 

the great circle. In a polygonal curve (Extended Data Fig. 10d), each 

smooth segment will be mapped to a great circle, and corners will 

induce transition among the circles (Extended Data Fig. 10e–g and 

Supplementary Video 8, 0:13–0:26).
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Extended Data Fig. 1 | Additional illustrations. a, Potential energy curve 

corresponding to one half of a period of a sideways rolling of a capped-cylinder 

trajectoid (orange, yellow) from Fig. 1d. The potential energy curve (green) 

starts at a minimum energy mgr, follows a cycloid until reaching maximum 

energy mgR and remains constant afterwards until the edge E contacts the 

plane. In other words, spherical side caps of radius R define the maximum of 

the potential surface. Increasing R increases the mg R r( − ) difference and 

deepens the “trench” in the gravitational potential surface, making the 

adherence to the target path T∞ more reliable. b, Relative positions of objects 

defined in the numerical implementation of the algorithm. See Methods for 

details. Sphere G (the initial “shell” mesh, radius R) is concentric with r-radius 

core W  and intersects with the cube C, whose top face is tangent to W  and lies in 

the plane Q of rolling. c,d, Illustration of the MPT Theorem (see Methods for 

details) with the same path as in Fig. 3d for n= 3 (c) and n= 5 (d).



Extended Data Fig. 2 | Deforming the input path non-uniformly to make it 

have a one-period trajectoid. a, Angle θ between starting and final orientations 

of a sphere rolled along a target path (same as in Fig. 2a and Fig. 4d) that was 

deformed non-uniformly in two directions by scaling factors kx and ky (see 

Methods for details). Examples of deformed path on the left correspond to 

k = 1, 2, 3y  and fixed k = 1x ; examples below correspond to k =0.5, 2x , and k = 1y . 

Fulfilling the R = 1AΩ  condition requires that θ be zero (blue regions). b,c, Curves 

traced over the sphere by sphere-plane contact point when using paths 

corresponding to the local minima marked as b and c in the θ k k( , )z y  map in 

panel (a). d–f, Deformations additional to non-uniform scaling affect the 

minimal mismatch on the θ k k( , )z y  map: a path (blue, same as in Fig. 2a and 

Fig. 4d) is partially modified by adjusting its Bezier curve nodes; the modified 

section is shown in orange in e. Maps (d,f) of mismatch angle θ for both the 

original path (d) and its modified version (f) are plotted for the vicinity of the 

useful minimum of the original path (see full map in panel a). Note the increase 

of mismatch in f compared to d.



Article

Extended Data Fig. 3 | “Bridging” the input path to make it have a period- 

one trajectoid. Example of input path (blue) with “bridges” (red and orange) 

appended to it. Bridge consists of three arcs (red) and two straight “arms” 

(orange). b, Family of bridges constructed for the path in a at a fixed scale.



Extended Data Fig. 4 | Existence of trajectoids completing two periods in 

one revolution: paths having Property π. a,d,g, Two periods of the input 

planar, complex paths. Color represents progression within a single period 

(from blue to yellow, see color scale in a). Orange circle shows diameter of the 

sphere from c,f,i relative to the path. b,e,h, Correspond to paths in a,d,g 

respectively. Top plot is the mismatch angle (degrees) between initial and final 

orientations of the sphere after completing two periods of the scaled path – 

plotted against the path scale σ. This angle is obtained by Euler’s axis-angle 

representation of the matrix of net rotation accumulated by the sphere 

formula (6) in Methods: θ R= arccos((tr − 1)/2)AΩ . Bottom plot in each panel 

shows oriented spherical area S σ( ) enclosed by the spherical trace of scaled 

first period, also plotted against the scale σ. Scale corresponding to a two- 

period trajectoid is marked by red dots. c,f,i Spherical trace of contact point of 

a unit-radius sphere rolling along scaled paths in a,d,g corresponds to value  

of σ  indicated by red dots in respective plots b,e,h. a, Archimedes spiral with 

random noise added. d,g, Path obtained by a 2D random walk (making equal 

steps in random directions) – in piecewise linear version (d) and smoothed 

version (g).
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Extended Data Fig. 5 | Search for paths not having Property π. Representation 

analogous to Extended Data Fig. 4, but for different input paths. a, Acute-angle 

isosceles V-path does not have Property ππ: for this path, S σ| ( )| < π for all σ. The 

trace c corresponds to a one-period trajectoid as shown by the green dot in b.  

d, V-like path whose arms have “kinks” parameterized by angle α. It does not 

have Property ππ, and a two-period trajectoid does not exist for this path. The 

trace f corresponds to a green dot in e showing a near miss (i.e., not a trajectoid). 

g, V-like path similar to the one in panel a, but here the acute corners are tapered 

(“dulled”) by straight segments A T1 1, T T2 3, T M4 1. Trajectoid for this path exists 

(red points in h). k, Asymmetric V-like path with kinks – as in panel d, but here 

kinks in two arms are unequal: angle of the left kink is α, but angle of right kink is 

β α= (1 + Ξ). Trajectoid for this path exists (red points in l). In panels k,l,m, we 

used asymmetry Ξ=0.37. See Supplementary Video 4 for dependence of these 

plots on angle α in d, taper ratio in g, and asymmetry Ξ in k.



Extended Data Fig. 6 | Trajectoid tumbling at sharp turns. In Fig. 4d, g, h, the 

trajectories feature some sharp turns (marked therein by green circles) at which 

trajectoids tumbled/recoiled. These features of dynamics can be understood 

by looking at the trench made by the trajectoid in the gravitational potential 

surface. The representation here resembles Fig. 1b except that the trench 

makes a sharp turn. In this dynamic analogy, resulting motion can be illustrated 

by a small particle (colored here in blue) rolling down such a trench: prior to 

encountering a sharp turn, the particle may have a zig-zag trajectory bouncing 

between the trench walls (cf. Fig. 4d, h yellow arrows), and then might recoil 

back at the sharp turn instead of making the turn immediately. It may take a few 

bounces before the particle finally turns the corner. For the actual trajectoids 

we fabricated, these bounces and zig-zagging correspond to precessions that 

may result in net rotation of the object around the axis normal to the sloped 

plane. In the case of the second corner in Fig. 4d (bottom orange circle), the 

unintended net rotation due to recoils causes a turn of the entire subsequent 

trajectory with respect to the intended path T. We believe that these dynamic 

defects may be minimized by engineering the trench profile (presently we keep 

it cycloid-like, which might be overly sharp) or making smoother turns of path T.
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Extended Data Fig. 7 | Energetic considerations for intermittent uphill 

rolling. Energy landscapes illustrating design considerations for traversal of 

uphill excursions (as in the path in the main-text Fig. 4n, o). The gravitational 

acceleration vector gg (vertical arrow) points down. The trajectoid’s total 

energy (blue surface) decreases with descent due to losses such as friction.  

The potential energy surface (green) is defined by trajectoid’s shape and the 

angle of the slope. Parts of the potential surface that are below the total energy 

surface are accessible to the rolling trajectoid. Proper balance between losses, 

shape, and slope are shown in a: the total energy suffices to overcome the 

potential barrier along the target path (uphill excursion, short arrows), yet is 

insufficient to escape walls of the potential trench that follow the target  

path. b, When losses are too high, the net energy is insufficient for an uphill 

excursion. When losses are too low, as in c, net energy decreases more slowly 

than the potential energy and becomes sufficient to escape the potential 

trench as indicated by the dashed arrow. Note that strictly speaking, the net 

energy is not a function of only the 2D location on the plane and, furthermore, 

the potential energy depends on the trajectoid’s 3D orientation, which is not an 

unambiguous function of the 2D planar location even for slipless rolling. Still, 

the concept of potential landscape is useful as a first approximation.



Extended Data Fig. 8 | Centroid of a visible shape as an estimator of the 

center of mass. a–c, Comparisons between the target path of a trajectoid 

(solid black curves) and the theoretical trace of the centroid of trajectoid’s 

shape projection, simulated assuming perfect performance (orange curves). 

The difference between curves in a is barely visible. Note that the discrepancy 

between orange and black curves in a,b,c is smaller than or comparable to the 

discrepancies between the experimental trajectories and the respective  

target paths (Fig. 4o, n, l). d,f, For every possible orientation of the trajectoid 

(parameterized by latitude and longitude of contact point on the trajectoid), 

color on these maps shows planar distance between the projection of the 

center of mass and the centroid of the shape projection. Maps in d and f are 

computed for the trajectoids constructed for paths b and c, respectively. Note 

that the distance in these maps never exceeds of the trajectoid’s minimal radius 

r = 1. e,g, Illustration of 6D pose (full orientation and position) tracking from 

video frames (see Supplementary Video 7): e is the raw video frame of the 

trajectoid (same as in Fig. 4k) whose surface has black dots (markers)  

painted on it; g shows the same raw frame overlaid with the trajectoid’s green 

3D mesh (the one used for 3D-printing the trajectoid) matching the location 

and orientation evaluated by 6D pose tracking algorithm applied to apparent 

trajectories of black markers on the video (reconstructed 3D locations of 

markers are shown in orange). h, Comparison of theoretical (intended) path of 

the 2D projection of the center of mass (black curve) and the experimental path 

evaluated by two methods: by the centroid of the visible shape (blue curve) or 

by the 6D pose tracking algorithm (orange curve). Both methods were applied 

to the same video. i, Difference in the Y coordinate between the experimental 

and the intended path for the two methods of evaluating the center-of-mass 

location: here, the black curve in h has been subtracted from the blue and 

orange curves in h, respectively. The standard deviations for the two methods 

are: 0.845 mm when using centroid of visible shape, 0.765 mm when using the 

6D pose tracking.
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Extended Data Fig. 9 | Optical and quantum-mechanical analogies to  

the existence of two-period trajectoids. a, Illustration of the Bloch sphere 

representation of a single qubit. The state represented by a red circle on the 

sphere rotates (orange arrow) around an instantaneous axis tnn( ), which is 

defined by the driving field. b,c, Field pulse equivalent to a single period T   

(b, solid curves), its envelope (b dashed curves) and phase shift (c) as functions 

of time. Shown are two possible analogies to varying the radius r of the rolling 

sphere in case of a given field pulse (black): either scaling the applied pulse’s 

magnitude (green) or stretching the pulse’s functions (envelope and phase 

shift) in time (blue). d, Illustration of the Poincaré sphere representation of 

polarization state of light. Squares show polarization states corresponding to 

respective black points: two circular polarizations at the poles and four linear 

polarizations at the equatorial plane. e–g, Given almost any (i.e. those having 

Property ππ) sequence of waveplates (dark blue in e), their thicknesses can be 

scaled (f) by such a factor r1/  that the doubled sequence (g) has no net effect on 

polarization state of light ( yellow helices) passing through it. In this example, 

curved green arrow shows left-handed circular polarization, curved orange 

arrows show right-handed elliptic (f) and right-handed circular (g) polarization. 

See also Supplementary Videos 5, 6.



Extended Data Fig. 10 | Small-radius (“adiabatic”) limit of trajectoids.  

a–c, Effect of ball radius r (or path’s scale σ L r= /(2π )) on the trace of the contact 

point upon rolling along a finite smooth path (two periods of path from Fig. 4k). 

Value of r decreases from a to b to c. See Supplementary Video 8 for more 

details. d,e–g, Effect of ball radius r (or path’s scale σ L r= /(2π )) on the trace of 

the contact point upon rolling along a polygonal path (path shown in d). Value 

of r decreases from e to f to g. See Supplementary Video 8 for more details.
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