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Abstract There is growing interest in understanding and eliciting division of labor

within groups of scientists. This paper illustrates the need for this division of labor

through a historical example, and a formal model is presented to better analyze

situations of this type. Analysis of this model reveals that a division of labor can

be maintained in two different ways: by limiting information or by endowing

the scientists with extreme beliefs. If both features are present however, cognitive

diversity is maintained indefinitely, and as a result agents fail to converge to the

truth. Beyond the mechanisms for creating diversity suggested here, this shows that

the real epistemic goal is not diversity but transient diversity.

A striking social feature of science is the extensive division of labor. Not only are

different scientists pursuing different problems, but even those working on the same

problem will pursue different solutions to that problem. This diversity is to be

applauded because, in many circumstances one can simply not determine a priori if

a general theoretical or methodological approach will succeed without first

attempting to apply it, study the effects of its application, and develop additional

auxiliary theories to assist in its application.1

The value of diversity presents a problem for more traditional approaches to

scientific methodology, since if everyone employs the same standards for induction

and has access to the same information, we ought to expect them to all adopt the
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theory which at the current time looks most promising. Kuhn suggests this problem

represents a failure of the traditional approach,

Before the group accepts [a scientific theory], a new theory has been tested

over time by research of a number of [people], some working within it, others

within its more traditional rival. Such a mode of development, however,

requires a decision process which permits rational men to disagree, and such

disagreement would be barred by the shared algorithm which philosophers

have generally sought. If it were at hand, all conforming scientists would make

the same decision at the same time (Kuhn 1977, p. 332).

Kuhn’s approach to the problem, allowing diversity in standards for induction, is

supported by others who offer similar solutions (Hull 1988; Sarkar 1983; Solomon

1992, 2001).

Alternatively, Philip Kitcher (1990, 1993, 2002) and Michael Strevens (2003a, b)

have both suggested that homogeneity in inferential strategy can still produce

diversity if the scientific reward system has an appropriate structure and scientists

are appropriately motivated. In a similar vein, Paul Thagard (1993) has suggested

that a uniform method but differential access to information can be of some

assistance in maintaining this diversity.

Just as traditional epistemologists ignored the benefit of diversity, many of these

contemporary champions of diversity ignore the method by which ultimate

consensus is achieved.2 They do however point to an important learning situation

faced by scientists. In these situations, information about the effectiveness of a

theory or method can only be gathered by scientists actively pursuing it. But

scientists also have some interest in pursuing a theory which turns out to be right,

since effort developing an inferior theory is often regarded as a waste. This is

precisely the circumstance described by Kuhn.

Rather than focusing on diversity directly, we will consider this type of learning

situation as a problem in social epistemology. We will begin this investigation by

presenting an important episode from the history of science which illustrates the

need for diversity. After presenting the history of the investigation of peptic ulcer

disease in Sect. 1, we will investigate a model which captures some of the central

features of this episode in the history of science.

This model represents one type of learning situation discussed by the

contemporary champions of diversity, and so presents a situation where the benefit

of diversity can be explicitly analyzed. The analysis of this model demonstrates a

consistent theme, that a certain amount of diversity provides some benefit to the

community. One way to attain this diversity is by limiting the amount of

information available to the scientists. This is achieved by arranging them so that

they only see a proper subset of the total experiments performed, using different

2 Feyerabend is perhaps the most extreme in this regard. He says, ‘‘This plurality of theories must not be

regarded as a preliminary stage of knowledge that will at some time in the future be replaced by the ‘one

true theory.’‘‘ (1965, p. 149). But even in papers of this era (1965, 1968), he does not advocate holding

onto inferior theories indefinitely.
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subsets for each agent. This preserves the diversity present in the agents’ priors

which helps facilitate exploration.

Diversity can be maintained in the models in a second way, extreme priors. If

agents have very extreme beliefs, this has the same effect as limiting information.

But, this solution offers an opportunity to see the downside to diversity. If agents are

both extreme in their initial beliefs and limited in their access to information, the

initial diversity is never abandoned. This shows that in these learning situation

diversity is not an independent virtue which ought to be maintained at all costs, but

instead a derivative one that is only beneficial for a short time.3

Beyond simply maintaining diversity, we also find that in some cases apparently

irrational individual behavior may paradoxically make communities of individuals

more reliable. In this case we have shown that the socially optimal structure is one

where scientists have access to less information. But, before looking at the model in

detail, we will first turn to an actual case of harmful homogeneity in science.

1 The Case of Peptic Ulcer Disease

In 2005, Robin Warren and Barry Marshall received the Nobel Prize in Physiology

or Medicine for their discovery that peptic ulcer disease (PUD) was primarily

caused by a bacteria, Helicobacter pylori (H. pylori). The hypothesis that peptic

ulcers are caused by bacteria did not originate with Warren and Marshall, it predates

their births by more than 60 years. But, unlike other famous cases of anticipation,

this theory was the subject of significant scientific scrutiny during that time. To

those who have faith in the scientific enterprise, it should come as a surprise that the

widespread acceptance of a now well supported theory should take so long. If the

hypothesis was available and subjected to scientific tests, why was it not widely

accepted long before Warren and Marshall? Interestingly, the explanation of this

error does not rest with misconduct or pathological science, but rather with simple,

and perhaps unavoidable, good faith mistakes which where convincing to a wide

array of scientists.

The bacterial hypothesis first appeared in 1875. Two bacteriologists, Bottcher

and Letulle argued that peptic ulcers were caused by an unobserved bacteria. Their

claim was supported by observations of bacteria-like organisms in glands in the

stomach by another German pathologist. Almost simultaneously, the first sugges-

tions that PUD may be caused by excess acid began to appear (Kidd and Modlin

1998).

Although both hypotheses were live options, the bacterial hypothesis had early

evidential support. Before the turn of the century, there were at least four different

observations of spirochete organisms (probably members of the Helicobacter genus)

in stomachs of humans and other mammals. Klebs found bacteria in the gastric

glands in 1881 (Fukuda et al. 2002), Jaworski observed these bacteria in sediment

3 This result is explicitly impossible in the models considered by Kitcher and Strevens. In their models a

theory succeeds or fails and this success or failure is known by all agents.
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washings in 1889 (Kidd and Modlin 1998), Bizzozero observed spiral organisms in

dogs in 1892 (Figura and Bianciardi 2002), and Saloon found similar spirochetes in

the stomachs of cats and mice in 1896 (Buckley and O’Morain 1998).

By the turn of the century, experimental results appeared to confirm the

hypothesis that a bacterial infection might be, if not an occasional cause, at

least an accessory requirement for the development of gastroduodenal ulcers.

Thus, although a pathological role for bacteria in the stomach appeared to

have been established, the precise role of the spirochete organisms remained to

be further evaluated. (Kidd and Modlin 1998)

During the first half of the twentieth century, it appeared that both hypotheses

were alive and well. Observations of bacteria in the stomach continued, and reports

of successful treatment of PUD with antibiotics surfaced.4 At the same time the

chemical processes of the stomach became better understood, and these discoveries

began to provide some evidence that acid secretion might play a role in the etiology

of PUD. Supporting the hypoacidity theory, antacids were first used to successfully

reduce the symptoms PUD in 1915. This success encouraged further research into

chemical causes (Buckley and O’Morain 1998). In 1954, a prominent gastroenter-

ologist, Palmer, published a study that appeared to demonstrate that no bacteria is

capable of colonizing the human stomach. Palmer looked at biopsies from over

1,000 patients and observed no colonizing bacteria. As a result, he concluded that all

previous observations of bacteria were a result of contamination (Palmer 1954).

The result of this study was the widespread abandonment of the bacterial

hypothesis, poetically described by Fukuda, et al.,

[Palmer’s] words ensured that the development of bacteriology in gastroen-

terology would be closed to the world as if frozen in ice... [They] established

the dogma that bacteria could not live in the human stomach, and as a result,

investigation of gastric bacteria attracted little attention for the next 20 years

(Fukuda et al. 2002, pp. 17–20).

Despite this study, a few scientists and clinicians continued work on the bacterial

hypothesis. John Lykoudis, a Greek doctor, began treating patients with antibiotics

in 1958. By all reports he was very successful. Despite this, he was unable to either

publish his results or convince the Greek authorities to accept his treatment.

Undeterred, he continued using antibiotics, an action for which he was eventually

fined (Rigas and Papavassiliou 2002). Although other reports of successful

treatment with antibiotics or observation of bacteria in the stomach occasionally

surfaced, the bacterial hypothesis was not seriously investigated until the late 1970s.

At the 1978 meeting of the American Gastroenterology Association, it appeared

that tide had begun to turn. At this meeting, it was widely reported that the current

acid control techniques could not cure ulcers but merely control them (Peterson

et al. 2002). When antacid treatment was ceased, the symptoms would invariably

return. The very next year, Robin Warren first observed Helicobacters in a human

4 Although, bismuth (an antimicrobial) had been used to treat ulcers dating as far back as 1868, the first

report of an antibiotic occurs in 1951 (Unge 2002).
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stomach, although reports of this result would not appear in print until 1984 (Warren

and Marshall 1984).

Initial reactions to Warren and Marshall’s discovery were negative, primarily

because of the widespread acceptance of Palmer’s conclusions. Marshall became so

frustrated with his failed attempts to convince the scientific community of the

relationship between H. pylori and PUD, that he drank a solution containing

H. pylori. Immediately after, he became ill and was able to cure himself with

antibiotics (Marshall 2002). Eventually after replication of Marshall and Warren’s

studies, the scientific community became convinced of Palmer’s error. It is now

widely believed that H. pylori causes PUD, and that the proper treatment for PUD

involves antibiotics.

While we may never really know if Palmer engaged in intentional misconduct,

the facts clearly suggest that he did not.5 Palmer failed to use a silver stain when

investigating his biopsies, instead relying on a Gram stain. Unfortunately, H. pylori

are most evident with silver stains and are Gram negative, meaning they are not

easily seen by using the Gram stain. Although the silver staining technique existed

in the 1950s, it would have been an odd choice for Palmer. That stain was primarily

used for neurological tissue and other organisms that should not be present in the

stomach. Warren did use the silver stain, although it is not clear what lead him to

that choice.

Without looking into the souls of each and every scientist working on PUD, one

can hardly criticize their behavior. They became aware of a convincing study,

carefully done, that did not find bacteria in the stomach. Occasionally, less

comprehensive reports surfaced, like those of Lykoudis, but since they contradicted

what seemed to be much stronger evidence to the contrary, they were dismissed.

Had the acid theory turned out to be true, the behavior of each individual scientist

would have been laudable.

Despite the fact that everything was ‘‘done by the book,’’ so to speak, one cannot

resist the urge to think that perhaps things could have been done differently. In

hindsight, Palmer’s study was too influential. Had it not been as widely read or been

as convincing to so many people, perhaps the bacterial theory would have won out

sooner. It was the widespread acceptance of Palmer’s result which led to the

premature abandonment of the diversity in scientific effort present a few years

earlier. But it is not as if we would prefer scientists to remain diversified forever,

today we consider further effort attempting to refute the bacterial hypothesis

wasteful. Thinking just about PUD, these are likely idle speculations. On the other

hand we might consider this type of problem more generally. We might then ask,

what features of individual scientists and scientific communities might help to make

these communities less susceptible to errors like Palmer’s.6

5 Marshall speculates that the long delay between the reports of his own discovery and the widespread

acceptance of the bacterial hypothesis were (partially) the result of the financial interests of

pharmaceutical companies (Marshall 2002). While this may be an example of pathological science, the

dismissal of the bacterial hypothesis from 1954 to 1985 probably is not.
6 For the interested reader, Paul Thagard (1998a, b) presents a discussion of the relationship between this

episode and the history of science which considers different philosophical aspects of the history.
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In order to pursue this more general analysis, we will turn to abstract models of

scientific behavior. Through the analysis of these models, perhaps we can gain

insight into ways that scientific communities may be more and less resistant to

errors of this sort.

2 Modeling Social Interactions

In attempting to generate a more abstract model, we must both find a way to

represent the learning problem faced by PUD scientists and also a way to model the

communication of their results. We will here generalize an approach described in

(Bala and Goyal 1998; Zollman 2007). This model employs a type of problem

devised in statistics and used in economics known as bandit problems and models

communication among scientists as a social network (a technique widely used in the

social sciences).

2.1 Bandit Problems: The Science of Slot Machines

Beginning in the 1950’s there was increasing interest in designing statistical

methods to more humanely deal with medical trials, like those conducted for PUD

(see, e.g. Robbins 1952). A scientist engaging in medical research is often pulled in

two different directions by her differing commitments. On the one had she would

like to gain as much information as possible, and so would prefer to have two large

groups, one control and one experimental group. On the other hand, she would like

to treat as many patients as possible, and if it appears that her treatment is

significantly better than previous treatments she might opt to reduce the size of the

control group or even abandon the experiment altogether.7 These two different

concerns lead to the development of a class of problems now widely known as

bandit problems.

The underlying metaphor is that of a gambler is confronted with two slot

machines which payoff at different rates. The gambler sequentially chooses a slot

machine to play and observes the outcome. For simplicity we will assume that the

slot machines have only two outcomes, ‘‘win’’ or ‘‘lose’’.8 The gambler has no idea

about the probability of securing a ‘‘win’’ from each machine; he must learn by

playing. Initially it seems obvious that he ought to try out both machines in order to

secure information about the payoffs of the various machines, but when should he

stop? The controlled randomized trial model would have him pull both machines

equally often in order to determine with the highest accuracy the payoffs of the two

machines. While this strategy would result in the most reliable estimates at its

conclusion, it will often not be the most remunerative strategy for the gambler.

7 For example, a recent study on the effect of circumcision on the transmission of HIV was stopped in

order to offer circumcision to the control group because the effect was found to be very significant in the

early stages of research.
8 Nothing requires that we limit ourselves in this way. The models described later in this paper have a

larger set of possible outcomes.
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The gambler is confrontedwith a problem that is identical to the clinical researchers

problem, he wants to gain information but he would also like to play the better

machine. Discovering the optimal strategy in these circumstances is very difficult, and

there is significant literature on the subject (see, e.g. Berry and Fristedt 1985).

While used primarily as a model for individual clinical trials, situations of this

structure pervade science. PUD researchers were confronted with this choice when

they decided which of two different treatment avenues to pursue. They could

dedicate their time to developing more sophisticated acid reduction techniques or

they could search for the bacteria that might cause PUD. Their payoff, here, is the

reward given for developing a successful treatment, and their probability of securing

that reward is determined largely by whether or not a bacteria is responsible for

PUD. Since Palmer’s results suggested that this was unlikely, the researchers

believed they were more likely to secure success by pursuing research relating to

acid reduction.

The application of other theories may follow a similar pattern. In population

biology for instance, one can pursue many different modeling techniques. One might

choose to develop in more detail a model of a particular sort, say a finite population

model, because one believes that this type of model is more likely to yield useful

results. Of course, one cannot always know a priori whether a type of model will be

successful until one attempts to pursue it. Again, we have a circumstance akin to a

bandit problems. Zollman (2007) suggests that the bandit problem model fits well

with Laudan’s (1996) model of paradigm change, since Laudan believes these

changes are based on something like expected utility calculations.

Here the payoff of the bandit is analogous to a successful application of a given

theory. One attempts to apply a theory to a particular case and succeeds to different

degrees. Individual theories have objective probabilities of success which govern

the likelihood that it can be successfully applied in some specified domain. Since

they are interested in successful applications of a theory, scientist would like to

work only on those theories which can most successfully be applied. It is usually

assumed in the bandit problem literature that the payoff to a particular bandit (or

treatment, or theory, etc.) is an independent draw from a distribution and this

distribution remains constant over time. That is, past success and failure do not

influence the probability of success on this trial (conditioning, of course, on the

underlying distribution).

Are scientific theories like this? Do past successes influence the probability of

future success? Certainly they do, and they can in many different ways. For

instance, it may be that a particular theory has only finitely many potential

successful applications. Applying the theory then is like drawing balls from an urn

without replacement. Disproportionate past success now reduces the chance of

future success, because most of the successful applications have been found.9 It

might also be the case that past success increases the chance of future success, a new

successful application of a scientific theory might open up many new avenues for

9 This point is due to a conversation with Michael Weisberg and Ryan Muldoon. They present a rather

different model of scientific practice which centrally models science in this way (Weisberg and Muldoon

2008).
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application that were not previously available. In this case, previous success

increases the probability of future success.

There are many cases however, where the assumption of independence is not far

off. Even if there are only finitely many possible applications, if that number is very

large the probability of current success will be very near to the probability of past

success. Alternatively, perhaps the number of new potential applications opened up

by a past success balances out the number of past successes. While I acknowledge

the limitations of the assumption, this model will assume that individual attempts at

applications are independent and drawn from a common distribution for that

scientific theory. Extending this model to cases where the probability of future

success is determined by past success will be left to future research.

In this model we will present the scientists with the choice between two potential

methods (two ‘‘bandits’’). A scientist will choose a method an attempt to apply it (a

pull of a bandit’s arm) Success will be represented by a draw from a binomial

distribution (n = 1, 000). This number represents the degree of success of that

method (the payoff from a pull of a bandit’s arm). Each method has a different

intrinsic probability of success, and scientists pursue the theory they think is

currently most likely to succeed on each given application. They update their beliefs

using Bayesian reasoning (described below) based on their own success and also

based on the success of some others. In order to allow us to study different ways of

distributing the results, we will use social networks to represent which experimental

results are observed by each individual.

The reader will note that this model of scientific practice is a bit different from

the traditional ones. Loosely following in the pragmatist tradition, scientists are not

passive observers of evidence, instead they are actively engaged in the process of

evidence gathering.10 In addition, rather than gathering evidence for or against a

particular theory, they are attempting to estimate the efficacy of different

methodologies which can both succeed but to differing degrees. I do not mean to

suggest that the traditional model is wrong—scientists are often engaged in both

types of inquiry. Instead, I present this model as one of many which treats a

particular aspect of scientific practice.

2.2 Social Networks

Beginning in sociology and social psychology, scholars have become increasingly

interested in mathematically representing the social relations between people. Much

of recent work on social networks in sociology has focused on studying the

underlying structure of various social networks and modeling the evolution of such

networks over time. However, there is also increasing interest in considering how

existent social networks effect the change of behaviors of individuals in those

networks. Two recent examples include Alexander’s (2007) work on the evolution

of strategies in games and Bala and Goyal’s (1998, see also Goyal 2005) work on

10 Although evidence is always arriving, what evidence arrives depends on the actions taken by

individual scientist. Their actions, depend, in turn, on what their beliefs are about the efficacy of different

methodologies. This represents a violation of the ‘‘relative autonomy of facts’’ which is criticized by

Feyerabend (1965, 1968).
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learning in networks. Both of these studies have found that different network

structures can have significant influence on the behavior of the system.

A social network consists of a set of individuals (nodes) connected to one another

by edges. Edges may be directed or undirected depending on whether or not the

underlying relationship being represented is symmetric. While edges in a social

network can represent many different relationships, we will here focus on the

transmission of information from one person to another. A link between two

individuals represents the communication of results from each one to the other. We

will here presume that this relationship is symmetric, and so will use undirected

graphs.

2.3 Learning in Bandit Problems

As suggested above, individuals will learn based on Bayesian reasoning. In earlier

work, I (Zollman 2007) studied the effect of social interaction in Bandit problems

with a very limited set of potential outcomes. I considered a circumstance where the

probability of success of one methodology was known—learning outcomes from it

were uninformative—while the other was either x or y (with x being higher than the

mean outcome of the known action and y being lower). This model may not be

sufficiently general; scientist can entertain a large variety of possibilities which are

informed by previous success and failure.

If they entertain a large enough range of alternatives we cannot use the simple

Bayesian model of discrete hypotheses. Instead we must turn to using functions to

represent an agent’s belief over infinitely many hypotheses. One way of modeling

this type of Bayesian learning for Bernoulli trials is with beta distributions.

Definition 1 (Beta Distribution) A function on [0, 1], f(�), is a beta distribution iff

for some a[ 0 and b[ 0

f ðxÞ ¼
xa�1ð1� xÞb�1

Bða;bÞ

where B(a, b) = $0
1ua- 1(1 - u)b- 1du.

The beta distribution has some very nice properties. In addition to having only

two free parameters it has the property that if one has a beta distribution as a prior,

and one takes a sample of any size and updates, one will have a beta distribution as a

posterior. Suppose someone has a coin of unknown bias and performs n flips of the

coin and receives s heads. If this individual has a beta distribution with parameters a

and b as a prior, then his posterior will also be a beta distribution with the posterior

parameters a ? s and b ? n - s (cf. DeGroot 1970).

The expectation for a beta distribution is given by a
aþb

: This enables a rather brief

convergence result. Suppose an agent starts out with priors a and b. She then

performs a series of trials which result in s successes in n trials. Her posterior has

parameters a ? s and b ? n - s. As a result her posterior mean is given by:

aþ s

aþ sþ bþ n� s
¼

aþ s

aþ bþ n
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As s and n grow, s
n
approaches the true probability of successes and since they will

eventually grow well beyond a and b, the mean of the agent’s beliefs will approach

the true mean (cf. Howson and Urbach 1996).

In addition, learning via beta distributions is relatively efficient. Figure 1

illustrates simulation results for a single agent learning the probability of a coin. Her

starting distribution is a beta distribution where a and b are randomly chosen to be

any number between zero and four. She then flips the coin 10 times and then updates

her priors.11 The x-axis represents the number of such experiments that have been

performed. The lines represent the average distance from the true mean for 100 such

individuals. Here we see that beta distribution learning can be very fast.

2.4 Individual Choice

Bandit problems represent a difficult problem for the player. If one knows that one

has many pulls available and the present is no more important than the distant

future, one should be willing to (at least sometimes) pull the arm that one regards as

inferior in order to ensure that one is not mistaken about which arm is best.

However, if one has only a few pulls or if today’s pull is much more important than

tomorrow’s, then one may not be willing to explore when it comes at some cost.

Significant mathematics have been developed in order to determine what sorts of

trade-offs one should be willing to make. Determining one’s optimal strategy can

become complex even in relatively simple circumstances (Berry and Fristedt 1985).

The movement from a single gambler to a group of gamblers who can observe

one another introduces yet another layer of complexity. If you and I are both playing

slot machines and you get to observe how I do, you may want to play the machine

you currently think is better and leave the exploration to me. After all, you learn as
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Fig. 1 Learning using beta distributions

11 The chose of [0, 4] was chosen so that the initial beliefs do not swamp even a single experimental

result.
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much from the information I get as the information you get, but only you lose by

playing the machine that seems currently worse. This introduces what is known as a

free-rider problem in economics. We both want to leave the exploration to the other

person, and so it is possible that no one will do it.

For various reasons, we will ignore these complexities, and instead focus on

individual scientists who are myopic. They are unwilling to play a machine they

think inferior in order to gain the information from that machine. Instead, on each

round they will pull the arm that the currently think is the best arm, without regard

for th informational value of pulling the inferior one. Why should we make this

assumption? First, I think it more closely accords with how individual scientists

choose methodologies to pursue. Second, it closely mimics what would happen if

individuals were being selfish and leaving the exploration to one another. This is a

possibility in social circumstances because of the free-rider problem noted above.

Third, myopic behavior is optimal when one cares significantly more about the

current payoff then about future payoffs. Scientists are rewarded for current

successes (whether it be via tenure, promotion, grants, or awards), and I believe that

this causes a sort of myopia with large scale decisions like research methodology.

Finally, even if one finds this assumption unreasonable, it represents an interesting

starting point from which we can gauge the effect of making scientists care

increasingly about the future. This is another avenue of research that has yet to be

explored, but could provide interesting insights.

3 Limiting Information

Individuals will be assigned a random initial ai’s and bi’s for each action i from the

interval [0, 4]. Since there is more than one available methodology which might be

applied, it is possible for individuals to lock-in on the sub-optimal methodology.

Consider a single learner case where the individual has the following priors:

a1 ¼ 1

b1 ¼ 3

a2 ¼ 3

b2 ¼ 1

This yields an expectation of 0.25 for action 1 and 0.75 for action 2. Suppose that

action 2 does have an expectation of 0.75, but action 1 has a higher objective

expectation of 0.8. Since the individual thinks that action 2 is the superior action, he

will take it on the first round. So long as the results he receives do not take him too

far from the expectation of action 2, he will continue to believe that action 2 is

superior and will never learn that his priors regarding action 1 are skewed.

Of course estimating the probability of this happening can be very complex,

especially in social settings where individuals’ priors are influenced by other

individuals who are also influenced by still other individuals. Instead of attempting

to prove anything about this system, we will simulate its behavior. In these

simulations a group of individuals is allowed to successively choose a methodology

to apply and learn the degree of success and the method chosen by their neighbors.
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After 10,000 iterations, we observe whether every individual has succeeded in

determining which methodology has the highest intrinsic probability of success.

We will first consider three networks which represent idealizations of different

social circumstances (the networks pictured in Fig. 2). The first network, the cycle,

represents a circumstance of perfect symmetry—every individual has exactly two

neighbors and each is equally influential. In this network, information is not widely

shared. The network on the right, the complete graph, represents the other extreme

where all information is shared. Again, like the cycle, there is perfect symmetry, but

the amount of information is radically different. The middle graph, the wheel,

represents a circumstance where symmetry is broken. Here the individual at the

center shares his information with everyone, but other individuals do not.

Results for the simulation on these three networks is presented in Fig. 3.12 Here

we find a surprising result, information appears to be harmful. The cycle—where

each individual has access to the smallest amount of information—is superior,

followed by the wheel and then by the complete graph. The degree of difference

here should be taken too seriously; it can be altered by modifying the difference in

objective probabilities of the different methodologies. However, the ordering of the

graphs remains the same—the cycle is superior to the wheel which is superior to the

complete graph.

It would appear here that the amount of information distributed is negatively

impacting the ability of a social group to converge on the correct methodology.

Initially suggestive information is causing everyone to adopt one particular

methodology. Because of the stochastic nature of method application, sometimes an

inferior method can initially appear fruitful or a superior one might seem hopeless.

When this happens, in the complete graph, the information is widely disseminated

and everyone adopts the inferior theory. Once adopted, they are no longer learning

about the other methodology, and unless the right sort of results occur, they will not

ever return. This illustrates how central the assumption that evidence be generated

by applications of a given methodology (the violation of Feyerabend’s ‘‘relative

autonomy of facts’’). If the evidence available to the scientists did not depend on

their own choices, this problem could not come about. Here we have a situation

much like the one of peptic ulcer disease discussed above. The widely read study of

Palmer suggested that one particular method was unlikely to succeed. Because of its

Fig. 2 A 10 person cycle, wheel, and complete graph

12 Each trial represents 1,000 ‘‘pulls’’, which have a 0.5 and 0.499 probability of ‘‘winning’’ respectively.
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influence, everyone began researching the other method and did not learn about the

effectiveness of the former. It was not until repeated failures of the acid suppression

method combined with a remarkable success of the bacterial, that individuals were

willing to entertain switching methods.

In order to ensure that our generalization from these three networks is not due to

some other feature of the networks, we can consider a wider search. It is possible to

exhaustively search all networks with up to six individuals and compare their

relative probabilities of success. Figure 4 shows the result of this simulation. The

x-axis represents the density of the graph—the proportion of possible connections

which actually obtain in the graph. We see here clearly that the more dense

graphs—those where individuals have access to more information—are on average
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worse than less dense ones. Again, here it appears that more information is

harmful.13

4 Different Priors

In beta distributions the size of the initial a’s and b’s determines the strength of an

individual’s prior belief. Figure 5 illustrates three different beta distributions with

differing parameters. Although all three distributions have the same mean, the ones

with higher initial parameters have lower variances. Also, individuals who posses

these more extreme distributions as priors will be more resistant to initial evidence.

If all three receive 8 successes in 12 trials, the expectations after updating will be

0.6, 0.56, and 0.52. The more extreme the initial beliefs an individual has, the more

resistant to change she is.

Since failed learning is a result of misleading initial results infecting the entire

population, one might suggest that increasing an individual’s resistance to change

might help to alleviate this danger. In a more informal setting Popper suggested this

possibility. ‘‘A limited amount of dogmatism is necessary for progress. Without a

serious struggle for survival in which the old theories are tenaciously defended,

none of the competing theories can show their mettle’’ (1975, p. 87).14 If dogmatism

could serve this purpose, it might turn out that the difference between less connected

and more connected networks would vanish.

In order to investigate this possibility we will observe three canonical networks

(a seven person cycle, wheel, and complete graph) and vary the range of initial

beliefs. The results in the previous section were for a and b values between zero and

Fig. 5 Three beta distributions

13 These results are qualitatively similar to the results obtained by Zollman (2007) in studying a more

limited model. This lends additional support to the conclusion that bandit problem-like situations

information is not uniformly helpful.
14 A similar sentiment is echoed by David Hull (1988, 32) and Miriam Solomon (1992).
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four. Figure 6 shows the results for these three graphs as the maximum possible a

and b value is increased. Individuals can still have very low initial parameters, but

as the maximum increases this becomes less likely.

The results are quite striking. For a’s and b’s drawn from [0, 1000], the results

are similar to the smaller initial parameters used before. However, as the maximum

grows, the order of the networks reverses itself. At very extreme initial parameters,

the complete network is by far the best of the three networks. This is not simply the

result of one network reducing its reliability, but rather one network gains while the

other loses.

The cause of this reversal is interesting. Complete networks were worse because

they learned too fast. The wealth of information available to the agents sometimes

caused them to discard a superior action too quickly. In the more limited networks

this information was not available and so they did not jump to conclusions.

Similarly, when our agents have very extreme priors, even rather large amounts of

information will not cause them to discard their prior beliefs. As a result, the benefit to

disconnected networks vanishes—no matter how connected the network, agents will

not discard theories too quickly. This explains why the complete network is not so bad,

but does not explain why the less connected network becomes worse. In the less

connected network there is simply not enough information to overcome the extremely

biased priors within sufficient time. Since the simulations are stopped after a certain

number of trials, the extreme priors have biased the agents sufficiently that they cannot

overcome this bias in time. The drop in reliability of the less connected networks is the

result of a substantial increase in networks that failed to unanimously agree on any

theory. As 10,000 experimental iterations are probably already an extreme, failing to

agree in this time should be judged as a failure.

All of this is illustrated in Fig. 7. Here the top three networks are a seven person

cycle, wheel, and complete network with very extreme priors.15 The bottom three
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are the same but with priors drawn from a much smaller distribution. The y-axis

represents the mean variance of the actions taken on that round. The higher the

variance, the higher the diversity in actions.

The steep drop off of the three networks with limited priors is to be expected. The

fact that the cycle and wheel preserve their diversity for much longer than the

complete network illustrates the benefits of low connectivity. (In fact, the complete

network drops of so quickly that is it almost invisible on the graph.) All of the

networks with extreme priors maintain their diversity much longer, however, the

complete network begins to drop off as more information accumulates.

An interesting feature discovered by varying the extremity in the priors can be

seen in Fig. 6. Around a maximum of 3,000 the three networks almost entirely

coincide. Here, we are slightly worse off than at either of the extremes (cycle with

unbiased priors or complete with extreme priors). On the other hand, this represents

a sort of low risk position, since the network structure is largely irrelevant to the

reliability of the model.

Returning again to the case of PUD, if individual scientists had been more

steadfast in their commitment to the bacterial hypothesis they might not have been

so convinced by Palmer’s study. Perhaps they would have done studies of their own,

attempting to find evidence for a theory they still believed to be true. Because of

their steadfast commitments we would want all of the information to be widely

distributed so that eventually we could convince everyone to abandon the inferior

theory once its inferiority could be clearly established.

5 Conclusion

This last result illustrates an important point. At the heart of these models is one

single virtue, transient diversity. This diversity should be around long enough so

that individuals do not discard theories too quickly, but also not stay around so long
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as to hinder the convergence to one action. One way of achieving this diversity is to

limit the amount (and content) of information provided to individuals. Another way

is to make individuals’ priors extreme. However, these are not independent virtues.

Both together make the diversity too stable, and result in a worse situation than

either individually.

For PUD, I have suggested that things might have been better had Palmer’s result

not been communicated so widely or had people been sufficiently extreme in their

beliefs that many remained unconvinced by his study. However, it would have been

equally bad had both occurred simultaneously. In the actual history, 30 years were

wasted by pursuing a sub-optimal treatment. Had the scientists been both

uninformed and dogmatic, we might still be debating the bacterial and hypoacidity

hypothesis today.

Like Kitcher and Strevens (and contra Kuhn) these models demonstrate that

diversity can be maintained despite uniformity in inductive standards. I have shown

that, so long as agents have diverse priors, diversity can be maintained by limiting

information or by making individuals extreme in their initial estimates. Unlike

Kitcher and Strevens, this study provides a series of solutions to the diversity

problem which they do not consider. In addition, this study articulates a negative

consequence of diversity, a problem which does not occur in Kitcher and Streven’s

models.16

The offered solutions to this problem all turn on individuals being arranged in

ways that make each individual look epistemically sub-optimal. The scientists do

not observe all of the available information or have overly extreme priors. Looking

at these scientists from the perspective of individualistic epistemology, one might

be inclined to criticize the scientists’ behavior. However, when viewed as a

community, their behavior becomes optimal. This confirms a conjecture of David

Hull (1988, pp. 3–4), that the characteristic rational features of science are not

properties of individuals but instead properties of scientific groups. Seen here,

limiting information or endowing individuals with dogmatic priors has a good effect

when the overall behavior of the community is in focus. This suggests that when

analyzing particular behaviors of scientists (or any epistemic agents) we ought to

think not just about the effect their behavior has on their individual reliability, but

on the reliability of the community as a whole.
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