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C
haritable organizations play an important role in modern 
economies, providing invaluable public goods and employ-
ment opportunities for millions across the United States. 

Not surprisingly, this has prompted substantial research on the 
primitives of the economics of charity and the relationship between 
charities and potential donors. Much of this work has focused on 
the impact of different fundraising techniques and the associated 
impact on both the number of donors and overall contribution 
levels. Such studies cover topics including: (i) matching gifts and 
rebates1–6, (ii) charitable auctions and lotteries7–11, (iii) social com-
parisons12–14, (iv) thank-you gifts15–17, (v) peer solicitations18–20 and 
(vi) seed money announcements21–25. Our study builds on this body 
of work and takes as inspiration studies that highlight the impor-
tance of warm glow26–33 and a related literature in marketing explor-
ing the effectiveness of solicitation appeals highlighting benefits to 
self34–37. Although the warm-glow model38,39 is the canonical exam-
ple, other models that focus on the relative importance of benefits 
to self include work on social pressures40–43 and social identity44,45.

Our goal is to extend this work by examining whether tar-
geted messages and normative appeals affect donor behaviour and 
uncover the motives for giving. To do so, we embedded a natural 
field experiment within Alaska’s Permanent Fund Dividend (PFD) 
annual registration process. The PFD represents an individual’s 
share of the earnings that the state receives from investing oil rev-
enues. Any individual (including children) who was an Alaska resi-
dent for the entire calendar year prior, and who declares an intent to 
remain in the state indefinitely, is eligible to receive a dividend. The 
registration period begins every 1 January and continues through 
the final day of March, with distribution of the PFD occurring in 
early October. From 2009 to 2015, the PFD ranged between US$878 
and US$2,072; in 2014, the year of our study, the PFD was US$1,884. 
Potential recipients must register for the PFD on an annual basis to 
confirm their eligibility. Those individuals who file online (~83% of 
applicants) have the option to voluntarily donate a portion of their 
PFD to Alaskan nonprofits through a programme known as Pick.
Click.Give., which was established in 2009. The minimum allowable 

donation is $25, increasing in $25 increments up to the full amount 
of the PFD. Although the PFD application process is limited to the 
first quarter, the Pick.Click.Give. donation is a pledge that can be 
amended through 31 August, at which time it becomes a binding 
commitment. Additional details about the PFD and Pick.Click.
Give. are provided in the Supplemental Information.

We randomly assigned every household in Alaska to either a 
control group (no postcard) or one of two treatment groups that 
received a postcard (Fig. 1) that included a normative appeal 
designed to highlight one of two main motivations for charitable 
giving: concerns for the benefits to self (impure altruism or ‘warm 
glow’) or concerns for the benefits to others (pure altruism). Figure 
2 shows the spatial distribution of our treatments throughout the 
state. Anchorage, Juneau, Fairbanks and Kodiak Island had multiple 
zip codes; each of the other communities only had a single zip code 
and was thus exposed to a single treatment condition.

The results from our experiment highlight the relative impor-
tance of benefits to self in donation decisions. Individuals who 
received the benefits to self message were approximately 6.6% more 
likely to give and their contributions were 23% larger compared with 
the control group. Messages that highlighted the benefits to others 
increased the propensity to give, but there was no evidence of an 
effect on average donation size. As in Landry et al.46, we found that 
prior donors were more likely to give and provided larger average 
gifts than cold-list counterparts. However, we also found that esti-
mated treatment effects on both the propensity to give and average 
donation size were more pronounced amongst cold-list households, 
suggesting that normative appeals are an effective way to attract  
new donors.

Given past work showing the relative impermanence of behav-
ioural interventions46–49 and the importance that charitable orga-
nizations place on building a long-term relationship with donors, 
it is important to explore whether the effects of our targeted mes-
sages are sustained across campaigns. To provide insights into the 
long-run impacts, we examined whether treatment assignment in 
2014 impacted contributions during the 2015 campaign. The results 
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of this analysis suggest that our intervention impacted long-run 
patterns of giving: those who received the benefits to self message 
were more likely to give and provided larger contributions in 2015 
than others. However, persistence differed across donor types. For 
warm-list donors, the effectiveness of our ‘nudge’ waned over time 
and had little impact on giving in the 2015 campaign. For cold-list 
donors, treatment effects were more persistent and suggest that 
receiving the benefits to self message had long-lasting effects.

Our paper contributes to several different literatures and extends 
previous work along two dimensions. We explore the impact of 
targeted messages and normative appeals on charitable giving in a 
natural field experiment. In this regard, our paper shares similarity 
with research exploring the impact of social information on con-
tributions to a charity or online message board12,13,20,50–52. Moreover, 
prior work has focused on behaviour in the context of a fundrais-
ing drive to explore how various strategies affect giving to a spe-
cific cause. Our study, in contrast, explores behaviour in the context 
of a government-sponsored programme designed to encourage 
giving to a range of eligible charitable organizations and how our 
messages impacted aggregate patterns of giving through this pro-
gramme. In this regard, our study is closest in spirit to an emerg-
ing literature that explores the use of social norms to induce uptake 
of in-home energy audits as a means to promote the adoption of 
improved technologies53–55. More broadly, our findings contribute 
to the literature on social norms and the use of normative appeals to 
promote behavioural change. This literature has largely focused on 
using such appeals to influence outcomes such as retirement savings 
and the use of credit56,57, tax compliance58,59, traffic violations51 or the 
amount of water or energy used by residential households48,49,60–65.

Second, our paper contributes to a body of research in marketing 
and social psychology exploring the impact of self- and other-benefit 
appeals on charitable donations35–37,66. However, much of this litera-
ture relies upon laboratory experiments and hypothetical decisions 
such as statements about one’s intention to donate to a given cause. 
Moreover, the aim of this literature is to explore whether factors 
such as self-image concerns, public observability or social exclusion 
moderate the effectiveness of such appeals. Our paper extends this 
literature by exploring the impact of such appeals on both contem-
poraneous and long-run patterns of giving in a field setting.

Third, our paper contributes to a literature exploring the eco-
nomic impacts of universal cash transfers such as Alaska’s PFD 
payments. This literature has focused on how receipt of the PFD 
payments impacts outcomes such as intertemporal patterns of con-
sumption67,68, short-term mortality69, aggregate employment70 or 
crime71. We extend this literature by exploring how the PFD pay-
ments influence charitable giving and the private provision of public 
goods.

Finally, our paper contributes to a literature that sets forth to 
identify the underlying motives for charitable giving. Broadly 

speaking, such studies focus on two main drivers of behaviour, that 
is, concerns for the benefits to self or concerns for the benefits to 
others, and attempt to disentangle the motives by testing the extent 
to which donations by others are a substitute for one’s own gifts. For 
example, there is a rich body of work that relies upon variation in the 
gifts of others and government funding to test for crowding27,32,72–78. 
Although such an approach tests the defining characteristic of the 
pure altruism model (complete crowding), identification requires 
strong assumptions regarding fundraising effort and what is known 
by potential donors regarding the gifts of others. Our study pro-
vides an alternate approach to disentangle the relative importance 
of benefits to self and benefits to others, that is, the use of targeted 
messages that make salient a given motive.

results
Overall, in 2014, approximately 4.9% of all individuals gave more 
than US$3.1 million (~US$5.79 per person) to the nonprofit orga-
nizations registered with Pick.Click.Give. Relative to the 2013 cam-
paign, these figures correspond to an approximate 9.3% increase 
in the total number of donors and a 23.9% increase in total US$ 
raised (which partly reflects an increase in PFD registrations from 
2013). Table 1B shows that 4.4% (or 7,552) of the individuals in the 
control group donated a portion of their PFD, and they donated 
a total of US$807,548 or approximately US$4.765 per person (s.d. 
0.206). Those individuals who received the benefits to self message 
were approximately 29.5% more likely to give (5.7% versus 4.4%) 
than were counterparts in the control group (95% CI [0.004, 0.021], 
P = 0.001). Moreover, average contributions for those in the ben-
efits to self treatment were approximately 54.3% greater (US$7.36 
versus US$4.77) compared with control group (95% CI [1.051, 
4.135], P = 0.001). This leads to our first set of results and provides 
evidence that targeted messages, particularly those that emphasize 
warm-glow motivations, influence charitable contributions:

Result 1: Individuals receiving the benefits to self message 
(‘Warm Your Heart’) were more likely to give and provided larger 
gifts than those in the control group.

This first result shares similarity with prior work showing the 
influence of normative appeals on behaviours such as environmen-
tal conservation48,79,80, honesty in markets81 or tax compliance59. 
Result 1 also shares similarity with work in marketing showing that 
self-benefit appeals increase the frequency with which laboratory 
subjects express willingness to support a charitable cause35–37. More 
broadly, our data suggest the importance of self-interest as a driver 
of donor behaviour, a finding consonant with prior work showing 
the importance of motives such as prestige and concerns for social 
image52,82–86 or the impact of donor gifts or other private benefits 
linked to the contribution itself8–11,45,87–90.

Empirical estimates presented in Fig. 3b provide additional sup-
port for the unconditional analysis discussed above. Treatment 
effects are estimated using a difference-in-differences estimation 
strategy in which 2013 is the reference year. In 2014, households 
in the benefits to self treatment donated approximately US$1.10 
(β2,2014 = 1.095, 95% CI [0.493, 1.697], P = 0.001) more than they 
otherwise would have (see Supplementary Table 4 for a more 
detailed set of estimation results and hypothesis tests underlying 
Fig. 3). This represents a 23% increase in average donations relative 
to the approximate US$4.766 average gift in 2014 from counterparts 
in the control group. With 183,215 online filers in the benefits to 
self group donating an additional US$1.10, distributing this mes-
sage raised an estimated US$201,536. Had all online filers received 
this message, we estimate that Pick.Click.Give. would have raised an 
additional US$594,136.

To provide insights into the factors that influence an individu-
als’ decision about whether to contribute through Pick.Click.Give., 
we estimate the linear probability of the contribution decision of 
individuals who registered for PFD online. Empirical estimates are 

a b

Benefits to self Benefits to others

Fig. 1 | treatment postcards. a,b, Images printed on standard-sized 

postcards to achieve framing by treatment for benefits to self (a) and 

benefits to others (b). The Pick.Click.Give. programme granted permission 

to use the content shown in the figures.
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presented in Fig. 4 and again indicate that messages that make salient 
self-interest influence the decision to donate (see Supplementary 
Table 5 for a more detailed set of estimation results and hypothesis 
tests underlying Fig. 4). For example, referring to Fig. 4b, we find 
that exposure to the benefits to self postcard in 2014 caused a 0.3 
percentage point (approximately 6.6%) increase in the propensity to 
give (β2,2014 = 0.003, 95% CI [0.001, 0.005], P = 0.002).

We next explore the effect of our benefits to others appeal. From 
Supplementary Table 3, the average donation among people in the 
benefits to others group (US$5.21) was similar to that in the control 
group (US$4.77); there is no evidence of a difference in the average 
donation between these groups (95% CI [−1.283, 2.171], P = 0.612). 
We find that participation rates were similar across the two groups 
(4.53% versus 4.46%). There is no evidence of a difference in par-
ticipation rates between these groups (95% CI [−0.008, 0.010], 
P = 0.871). However, comparing unconditional means can obscure 
important pre-existing differences in giving across treatments. To 
complement these raw statistics, we return to the empirical esti-
mates presented in Figs. 3 and 4, which present linear regression 
models exploring the impact of treatment on average contributions 
and underlying rates of giving, respectively. Figure 3a,b show that 
exposure to the benefits to others treatment in 2014 increased the 
average donation size by US$0.32 (β1,2014 = 0.320, 95% CI [−0.301, 
0.943], P = 0.311). The difference in treatment effects was approxi-
mately 0.77 (β2,2014 − β1,2014 = 0.774, 95% CI [0.110, 1.438], P = 0.023), 
suggesting that exposure to the benefits to self treatment was more 
effective at increasing average donations than the benefits to oth-
ers treatment. Because differences in treatment effects are linear 

combinations of multiple parameter estimates from the baseline 
estimation equation, the delta method was used to construct con-
fidence intervals (see Supplementary Tables 4 and 5 for a more 
detailed set of results regarding average contributions and the pro-
pensity to donate).

Considering average participation rates, Fig. 4a,b shows no 
evidence of a difference in the likelihood of giving between those 
in the benefits to self and benefits to others treatments in 2014 
(β2,2014 − β1,2014 = 0.0007, 95% CI [−0.001, 0.003], P = 0.472). Relative 
to 2013, people in both groups were more likely to contribute than 
those in the control (β1,2014 = 0.002, 95% CI [0.0003, 0.004], P = 0.025; 
β2,2014 = 0.003, 95% CI [0.001, 0.005], P = 0.002).

Viewed in its totality, these data suggest a second result:
Result 2: The benefits to others message had the same positive 

contemporaneous impact on the likelihood of giving as the benefits 
to self message, but there is no evidence that it had an effect on aver-
age donation size relative to the control.

Heterogeneity in the response to the benefits to self and benefits 
to others treatments provides evidence that donors were respond-
ing to the content of our messages and not only the receipt of a 
message highlighting Pick.Click.Give. Importantly, this allows us 
to rule out models such as bounded rationality91,92 or observation 
(‘Hawthorne’) effects93 as, under any such model, the act of receiv-
ing a targeted message advertising Pick.Click.Give. should lead to 
increased donations. Hence, we would expect to observe treatment 
effects in both treatment groups.

Taken together, our first two results provide evidence that 
targeted messages and normative appeals can influence donor 

Alaska

Control

Make Alaska Better

Warm Your Heart

Fig. 2 | Geographic overview of treatment assignment. Alaskan zip codes shaded according to their random treatment assignment to the no-postcard 

control group (light grey), benefits to others postcard (medium grey, Fig. 1b) and benefits to self postcard (dark grey, Fig. 1a). White spaces indicate 

national parks or areas with very low population density, which were excluded from the randomization. Circles represent PO boxes and their respective 

treatment assignment.
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behaviour. However, the efficacy of such appeals depends upon the 
way in which the benefits of giving are framed. Donors are more 
motivated by appeals that highlight self-benefits than those that 
highlight how giving benefits others. Such differences are consistent 
with findings from the marketing literature showing the superiority 
of self-benefit appeals to give when the choice is made in private or 
in environments with low observability35. Moreover, our findings 
share similarity with prior work using tests of crowd-out to iden-
tify the relative importance of impure altruism or warm glow versus 
altruism and concerns for the wellbeing of others27,32,72–78. As in this 
prior work, donors in our experiment appear to be motivated more 
by self-benefit concerns than the wellbeing of others.

Before proceeding, we note that the observed differences in the 
effect of the benefits to self and benefits to others treatments on 
average contributions reflect heterogeneous effects of these treat-
ments on conditional contributions. As shown in Fig. 3g,h, con-

ditional on participation in Pick.Click.Give., individuals in the 
benefits to self group gave US$8.77 more than they otherwise would 
have (β2,2014 = 8.769, 95% CI [0.526, 17.011], P = 0.037). In contrast, 
the effect of the benefits to others treatment on conditional con-
tributions was smaller (US$4.74) and not statistically significant 
(β1,2014 = 4.736, 95% CI [−6.776, 16.247], P = 0.418).

Our analysis thus far has examined behaviour pooled across all 
donor types. However, as noted in Landry et al.46, there are impor-
tant differences in behaviour across warm- and cold-list house-
holds: prior donors are more likely to give and are less responsive 
to both conditional and unconditional gifts. As we observe dona-
tions made through Pick.Click.Give. from 2011 to 2013, our data 
are sufficiently rich to allow us to explore heterogeneity across dif-
ferent donor types. To do so, we restrict our data to warm-list (those 
who gave at least once in 2011, 2012 and 2013) and cold-list donors 
(those who never donated in those years) and re-estimate our base-
line equations. Results for these models suggest a third set of results:

Result 3a: Prior donors (warm list) were more likely to give and 
provided larger average gifts than prospective donors.

Result 3b: Among prospective (cold-list) donors, exposure to the 
benefits to self treatment increased average donation size and the 
propensity to give; there is no evidence that exposure to the benefits 
to others treatment had an effect.

Support for result 3a is provided in Table 1B. In 2014, aver-
age donations for warm-list individuals in the control group were 
approximately US$64 greater than that for cold-list, or prospective, 
donors (95% CI [57.21, 73.45], P = 0.001). Much of this difference 
is explained by dramatic differences in participation rates. Whereas 
less than 2% of prospective donors gave through Pick.Click.Give., 
over half of all warm-list individuals elected to give. Model 2 of 
Supplementary Tables 4 and 5 conditions treatment effects on 2013 
donation decisions and reinforces the idea that past donors were 
more likely to give and gave larger donations.

Support for result 3b is also provided in Figs. 3 and 4. For exam-
ple, relative to 2013, in 2014, prospective donors in the benefits 
to self treatment provided average gifts that were approximately 
US$0.56 (39%) greater than those prospective donors observed in 
the control group (β2,2014 = 0.559, 95% CI [0.189, 0.928], P = 0.003). 
For prior donors, the relative effect of the benefits to self mes-
sage was less pronounced: such people provided average gifts that 
were approximately 11% greater than they would have been in the 
absence of treatment (β2,2014 = 7.301, 95% CI [2.39, 12.21], P = 0.004). 
Importantly, both of these differences are statistically significant at 
conventional levels.

We observe similar data patterns when exploring participa-
tion rates. Referencing Fig. 4, relative to in 2013, in 2014, cold-list 
donors in the benefits to self treatment were 0.37 percentage 
points (roughly 22%) more likely to give than prospective donors 
in the control group (β2,2014 = 0.0037, 95% CI [0.001, 0.006], 
P = 0.006). For warm-list donors, the relative impact was again 
less pronounced. There was an approximately 6.2% increase in 
the likelihood of giving for a warm-list individual in the benefits 
to self treatment (β2,2014 = 0.035, 95% CI [0.017, 0.054], P = 0.001). 
As noted in Fig. 4, the effect of the benefits to others treatment on 
participation rates was driven entirely by warm-list households: 
whereas warm-list donors receiving the benefits to others mes-
sage were significantly more likely to contribute than counter-
parts in the control group, there is no evidence of a difference 
in participation rates for prospect donors assigned to the ben-
efits to others treatment and counterparts in the control group 
(β1,2014 = 0.0007, 95% CI [−0.002, 0.003], P = 0.549). Taken jointly, 
these differences suggest an interesting asymmetry. Whereas the 
benefits to self message impacted both prospective and prior 
donors, the effects (on both the propensity to donate and average 
donation size) were greatest for people who had not previously 
participated in Pick.Click.Give.

Table 1 | Summary statistics for 2014 treatment assignment

Panel A: 2013 Control others Self

Individuals 152,916 165,377 164,871

Donors 7,103 7,589 9,644

Donation rate 0.046 0.045 0.058

Total donations 648,475 733,300 999,875

Average donation: all 4.24 4.434 6.064

Average donation: PCG 
donors

91.30 96.63 103.68

Panel B: 2014 (year of treatment)

Individuals 169,441 187,468 183,215

% female 0.494 0.498 0.497

Avg. age 35.78 34.98 35.86

Donors 7,552 8,498 10,560

Donation rate 0.044 0.045 0.057

Donation rate (warm list) 0.563 0.572 0.590

Donation rate (cold list) 0.013 0.014 0.017

Total donations 807,548 976,725 1,348,310

Average donation: all 4.765 5.209 7.358

Average donation: PCG 
donors

106.93 114.94 127.68

Average donation (warm 
list)

66.44 73.63 82.70

Average donation (cold 
list)

1.113 1.223 1.668

Zip codes 89 90 89

Panel C: 2015

Individuals 154,169 167,359 166,441

Donors 9,304 9,985 12,298

Donation rate 0.060 0.059 0.073

Total donations 941,137 1,084,536 1,464,782

Average donation: all 6.10 6.48 8.80

Average donation: PCG 
donors

101.15 108.62 119.11

Note: Summary statistics are presented for campaign years 2013 (panel A), 2014 (panel B) and 

2015 (panel C). All cell entries are based on the random treatment assignment for the 2014 PFD 

registration campaign. Treatment postcards were only delivered for the 2014 PFD registration. 

Statistics are for online filers only. Warm list (cold list) donors gave at least once (not even once) 

from 2011 to 2013. "Average donation: all" is the average donation dof both donors and non-donors 

combined. "Average donation: PCG donors" is the average amount donated, conditional on having 

donated to Pick.Click.Give. (PCG).
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A final result of interest concerns the impact of age and gender 
on donor behaviour. As noted in List94, there are marked differences 
in generosity across men and women, particularly when exploring 

the behaviour of young men. As we observed data on the age and 
gender of every individual in our data, we can explore similar pat-
terns. We augment our baseline specifications to include indicators 
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for women, those 50 years or older, and those under the age of 18 
years. Given that prior donors were more likely to give and provided 
larger average gifts than others, one may be concerned that these 
demographic effects are capturing differences in the likelihood that 
an individual had given in the past. To rule out such a possibil-
ity, we condition these demographic effects on whether a person  
gave in 2013.

As shown in model 2 of Supplementary Tables 4 and 5, we 
find significant differences in giving across the age distribution. 
For example, those aged 50 years or older were more likely to give 
(βmature = 0.006, 95% CI [0.005, 0.007], P = 0.001) and provided 
larger gifts than other types of donor (βmature = 2.725, 95% CI [2.226, 
3.223], P = 0.001). In contrast, those under the age of 19 years 
were less likely to give (βyoung = −0.006, 95% CI [−0.007, −0.005], 
P = 0.001) and provided smaller gifts than others (βyoung = −1.251, 
95% CI [−1.491, −1.012], P = 0.001). Exploring gender differ-
ences, we find data patterns consistent with DellaVigna et al.95: 
unconditional of 2013 giving, on average, women were more likely 

to give (βfemale = 0.026, 95% CI [0.024, 0.027], P = 0.001) and pro-
vided larger gifts (βfemale = 2.261, 95% CI [2.005, 2.516], P = 0.001) 
than men. However, conditioned on giving in 2013, we find that 
men provided similar-sized gifts (βfemale = 0.0775, 95% CI [−0.118, 
0.273], P = 0.436). Taken jointly, this suggests that the distribu-
tion of altruism for women was less disperse than the distribution 
for men, which is the precise pattern identified by the structural 
estimates in DellaVigna et al.95. There is a growing body of work 
showing that behavioural interventions tend to wane over time46–

49,96. Within the context of charitable giving, evidence on the per-
sistence of treatment effects is mixed. Several studies have found 
that fundraising mechanisms (interventions) have no or a perverse 
impact on long-run patterns of giving4,13,15,46. Other studies, in con-
trast, have provided evidence for habit formation and the persis-
tence of treatment effects46,97. Therefore, it is important to explore 
whether the effects of our targeted messages are sustained across 
campaigns and impact long-run patterns of giving. To better ascer-
tain the long-run impacts of our different messages, we use data 
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Fig. 4 | Propensity to give. a–f, Point estimates corresponding to β1t and β2t from estimation Eq. (1) for the full sample (a,b, N = 1,888,875) and restricted 

to people who gave at least once between 2011 and 2013 (c,d, N = 139,125), and people who did not give between 2011 and 2013 (e,f, N = 1,749,750), 

when exposed to the benefits to others (a,c,e) or benefits to self treatment (b,d,f). All regressions include zip code and year fixed effects, and 2013 is the 

reference year. Errors are clustered at the zip code level, and 95% confidence intervals are shown. The red line indicates zero. Specific point estimates and 

a full set of statistics are provided in Supplementary Table 5.
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on treatment assignment in 2014 and examine whether this affects 
donations in 2015.

Exploring differences across those who received the benefits 
to self message in 2014 and those in our control group, we see the 
first evidence that treatment effects may persist. Figure 3b shows 
that, relative to counterparts who did not receive a message in 
2014, average donations in 2015 for individuals in the benefits to 
self treatment were US$0.99 higher (β2,2015 = 0.991, 95% CI [0.184, 
1.798], P = 0.016). However, there is no evidence of persistence in 
the propensity to donate (β2,2015 = 0.0026, 95% CI [−0.001, 0.006], 
P = 0.181). In contrast, for the benefits to others treatment, there 
is no evidence of persistence in 2015 in either average donations 
(β1,2015 = 0.005, 95% CI [−0.686, 0.696], P = 0.988) or the propensity 
to donate (β1,2015 = −0.0002, 95% CI [−0.003, 0.004], P = 0.890).

Separating the data into cold- and warm-list individuals, per-
sistence in the effect of receiving the benefits to self message was 
driven primarily by cold-list individuals. Relative to the control, 
such individuals were more likely to donate than they were in 2013 
(β2,2015 = 0.005, 95% CI [0.0004, 0.010], P = 0.033) and they donated 
more on average (β2,2015 = 0.661, 95% CI [0.215, 1.107], P = 0.004). 
For warm-list donors, both average donations (β2,2015 = 3.678, 95% 
CI [−2.272, 9.630], P = 0.224) and the propensity to donate reverted 
to 2013 levels (β2,2015 = 0.012, 95% CI [−0.007, 0.031], P = 0.230).

These results suggest that the effect of the benefits to self message 
was persistent for first-time givers, which is consistent with results 
in Meer97. Yet, as in past work13,15,48,49,96, the effectiveness of the ben-
efits to others ‘nudge’ waned over time; subjects in this treatment 
group behaved no differently, on average, than they did in 2013.

Discussion
Enhancing the pool of charitable donations given to private pro-
viders of public goods has never taken on greater import. With 
record-high federal deficits and crumbling state and local budgets, 
the continuing devolution of goods and services will place even 
greater demands on the private provision of public goods and ser-
vices. A growing body of literature sets forth to explore the econom-
ics of charity and the relationship between fundraisers and potential 
donors. Much of this work has focused on measuring the effective-
ness of different fundraising techniques such as charitable lotteries 
or matching gifts that change the relative costs of benefits of giving. 
Our study extends this literature by exploring the effect of targeted 
messages and normative appeals on donor behaviour.

Results from our experiment highlight the relative importance 
of benefits to self as a driver of giving. Individuals who received 
the benefits to self message were approximately 6.6% more likely 
to give and donated approximately 23% more than counterparts in 
the control group. Messages that highlight the benefits to others, in 
contrast, had a similar impact on the likelihood of giving but had no 
impact on average donations. Interestingly, these same data patterns 
were observed for both warm-list households and cold-list counter-
parts, although the effects were more pronounced amongst cold-list 
households.

Pick.Click.Give. is one of a growing number of large-scale fun-
draising programmes that encourage philanthropy, such as Giving 
Tuesday and ArkansasGives. Such programmes are unique in that 
they do not solicit funds for a specific nonprofit. Rather, they pro-
vide a platform for donors to select causes to support from amongst 
a predetermined set of potential recipients. Our paper contrib-
utes to an emerging literature exploring behaviour in such con-
texts as opposed to exploring the response to an appeal to give to a  
single cause97–99.

For academics, our results are noteworthy in that they provide 
a deeper understanding of individual behaviour and what drives 
the private provision of public goods. Importantly, our findings 
suggest that giving is motivated by self-interest rather than con-
cerns for charitable output per se. For practitioners, our results are 

noteworthy in that they suggest ways to increase giving using simple 
messages that appeal to the donor’s self-interest and the good feel-
ings triggered by the act of giving. These findings are of particu-
lar interest to nonprofits in the State of Alaska and the design of 
the Pick.Click.Give. programme, which was established to increase 
overall giving statewide. If we had sent the benefits to self message 
to all households in the state, aggregate contributions would have 
increased by nearly US$600,000.

There are some potential limitations to these conclusions that 
warrant further investigation. Because Pick.Click.Give. is a fund-
raising programme and does not provide services itself, the ben-
efits to others message had to be broad enough to encompass a wide 
range of activities provided by the various nonprofits, hence the 
appeal to ‘Make Alaska Better for Everyone’. We cannot rule out the 
possibility that a more specific benefits to others appeal highlighting 
the charitable activities of a particular nonprofit or presenting an 
identifiable victim100 would yield different results.

Finally, one might wonder about the external validity of our 
experimental results. To provide insight into this issue, we fol-
low List101 and present his selection, attrition, naturalness, scal-
ing (SANS) conditions. First, in terms of selection, our sample 
includes the entire universe of Alaskan households, so there is no 
selection into the experiment. In terms of attrition, our compli-
ance rates are 100%, as we observe donation decisions for every 
individual that filed online for PFD. Considering the natural-
ness of the choice task, setting and time frame, we use a natural 
field experiment102. Thus our setting is one in which subjects are 
engaged in a natural task and are not placed on an artificial mar-
gin. Yet, one should keep in mind that, beyond the message differ-
ences, it is also possible that individuals were more responsive to 
the heart image than the outline of the state map. Accordingly, our 
treatment should be considered a joint test of the message and the 
images across the two solicitation groups. Lastly, in terms of scal-
ing our insights beyond the received sample and situation, since 
we view our main contribution as exploring the underpinnings 
of individual giving, future work should focus on replications to 
understand whether the result can be applied to other settings, 
populations and cultures more broadly. For example, we suspect 
that there will be important boundary conditions across societ-
ies103, and perhaps the timing of the appeal might influence the 
observed treatment effects.

Methods
Ethics statement. The University of Alaska Anchorage Institutional Review 
Board determined that the study protocol met the U.S. Department of Health and 
Human Services requirements for the protection of human research subjects (45 
CFR 46, as amended/revised) as being exempt from full board review. This was 
an observational study using publicly available data, the data do not include any 
personally identifying information, the investigators did not interact with study 
participants and the study presents no or minimal risk to participants. Therefore, 
the requirement for obtaining informed consent was waived.

Experiment design and implementation. As part of the 2014 Pick.Click.
Give. fundraising campaign, we randomly allocated the approximately 290,000 
households in Alaska to either a control group (no postcard) or one of two 
treatment groups that received a postcard promoting Pick.Click.Give. The 
postcards were designed in partnership with a marketing firm to include normative 
appeals that differed in whether the message highlighted either benefits to 
self (‘Warm Your Heart’, Fig. 1a) or benefits to others (‘Make Alaska Better for 
Everyone’, Fig. 1b). These same appeals were printed on the back of the postcard 
along with a montage showing pictures of various Alaska residents. Postcards were 
mailed during the last week of December 2013, and we received information on 
donations for each of the more than 540,000 Alaskans who registered for their 
2014 PFD online during the first quarter of 2014. Mail-in PFD applicants were not 
eligible to donate through Pick.Click.Give. and are excluded from the data. We also 
excluded applications that were denied and did not receive a PFD. We observe total 
donations in excess of US$3.1 million from more than 26,000 unique individuals.

Since state law prohibited the PFD from providing address-level data, 
randomization occurred at the zip code level, with every household in a treatment 
zip code receiving one of two postcards (Fig. 1). We received individual-level data 
on donations made through Pick.Click.Give. for everyone who registered online 
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for PFD in 2013. The data included the zip code in which the individual resides, 
whether they donated some portion of their PFD to registered nonprofits, the name 
of the nonprofits supported and the amount shared with each selected nonprofit. We 
used data from contributions made through Pick.Click.Give. in 2013 to assign zip 
codes to treatment. For each individual, we aggregated the amount shared to get a 
total donation amount. We then used the aggregated data to calculate zip-code-level 
measures of average donations per individual and the fraction of individuals that 
shared their PFD—the outcomes upon which we randomized. We assigned zip codes 
to treatments to ensure balance along these two dimensions. Taking a conservative 
approach whereby each zip code provides a single observation, our resulting sample 
was powered to detect an effect size of approximately 0.42 standard deviation.

Households were assigned to treatments based on the zip code associated with 
an individual’s mailing address. For a majority of the sample, home and mailing zip 
codes were the same. However, as college students and active military personnel 
were eligible for PFD, we observe a fraction of individuals for whom these zip 
codes did not match. Moreover, we do not observe whether an individual received 
or saw the postcard, which reduces the treatment effect if this is random. Finally, 
since there is a temporal delay between stimulus and response, time-varying 
moderators potentially lower the observed treatment effect. As a result, our 
estimates thus capture an intent-to-treat effect and provide a lower bound of the 
‘true’ effect of treatment.

Table 1 summarizes the experimental design and corresponding sample size 
for each treatment. As noted in panel B, the control group included 169,441 
individuals living in 1 of 89 distinct zip codes around the state. The benefits to 
others (‘Make Alaska Better for Everyone’) treatment included data for 187,468 
individuals residing in 1 of 90 distinct zip codes around the state. The benefits to 
self (‘Warm Your Heart’) treatment included data for 183,215 individuals residing 
in 1 of 89 distinct zip codes around the state.

Data analysis. We estimate a series of linear regression models that explicitly 
control for observable and unobservable differences across potential donors. This 
analysis is important as such factors might systematically differ across treatment 
groups, leading to erroneous inference from a simple analysis of the raw data. For 
our baseline specification, we restrict the sample to the years 2011–2015, and only 
include those individuals who registered for PFD in all five years. We estimate 
a linear regression model of the amount contributed for each individual who 
registered for PFD online (including those who did not give) on indicator variables 
for our experimental treatments and other covariates:
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where Dijt is the contribution level of the jth individual in the ith zip code in year 
t, Othersi is an indicator for receiving the benefits to others message and Selfi is 
an indicator for receiving the benefits to self message. Year and zip code fixed 
effects are given by Yt and Zi, respectively. Note that non-interacted indicators for 
treatment are captured by zip code and year fixed effects. As such, the estimated 
effect of receiving the benefits to others message in year t is given by β1t and the 
effect of receiving the benefits to self message (β2t) is similarly interpreted. These 
two coefficients are the estimated difference between the treatment and control 
in year t relative to the treatment–control difference in 2013 (that is, the year 
prior to treatment). Estimating this equation for pre-event years (2011 and 2012) 
reveals any pre-existing trends. We restrict our data to exclude the implementation 
phase of the Pick.Click.Give. programme (2009–2010). As can be seen from 
Supplementary Table 1, participation in the programme was not widespread until 
2011. Further, widespread use of the programme occurred at slightly different 
times across zip codes and therefore treatments. Nonetheless, we reassuringly find 
minimal trend in the two years prior to the event date (2014). Because treatment 
is assigned at the zip code level, this specification allows us to estimate the effect 
of time-invariant individual-level characteristics, such as gender or historical 
patterns of giving. To account for unobservable heterogeneities at the zip code 
level, we cluster standard errors at the zip code level. We similarly model the 
individual decision to donate by replacing the outcome variable in the estimation 
equation above with an indicator equal to unity for individuals who donated. 
Unless otherwise stated, all hypothesis tests are two tailed. See the Supplementary 
Information for robustness checks of our results and conclusions.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used in this study are available at https://osf.io/ycafq/.

Code availability
We used Stata version 16 for the data analysis. The Stata code is available at https://
osf.io/ycafq/.
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