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M
ental disorders account for 28% of non-communicable 
disease burden1. Environmental factors account for up 
to 50% of the attributable risk for mental disorders2. The 

environmental measures investigated in mental health research 
include not only individual life events3, such as trauma, abuse, 
neglect or psychosocial stress, but also, albeit to a lesser extent, indi-
vidual physical environments4.

Urbanicity, the living conditions particular to urban areas, is 
among the most important environmental challenges globally5. 
While physical environments are hallmarks of a city, urbanicity 
also includes the social environment and access to health and social 
services5. The physical, social and service dimensions of urbanicity 
form a complex relation with each other that has hitherto prevented 
the development of a unifying concept and measure of urbanicity5.

In 1950, less than 30% of the world’s population lived in urban 
areas, but this fraction has increased to 55% presently and is 
expected to rise to 68% in 2050 (ref. 6). While Europe is among the 
most stable urbanized regions, Asia is home to 54% of the world’s 
urban population and subject to massive demographic changes. 
For example, by 2050, China will have added 255 million urban 

dwellers7. This increasing global urban population emphasizes the 
importance of investigating how the living conditions particular to 
urban areas affect human brain and behaviour.

We were interested in investigating the relation of urbanic-
ity with brain and behaviour in different sociocultural conditions 
and geographies. We also aimed to identify possible susceptibil-
ity periods across the life span in young people, enabling targeted 
preventions when the developing brain may benefit most from 
environmental modification. Whereas there might be distinct influ-
ences of increased population density in urban settings in different 
sociocultural conditions and geographies, there are likely to exist 
common associations with brain and behaviour shared in different 
areas of the globe.

Several studies have focused on the relation of individual physi-
cal environments linked to urban living with brain and behaviour, 
such as green space, air and noise pollution4,8. However, a more gen-
eral measure of urbanicity that can objectively assess urban envi-
ronment with high spatiotemporal resolution and coverage is still 
lacking. Such a general measure is important, as it registers the over-
all and susceptibility period relations of urbanicity with brain and 
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behaviour, and may in a subsequent step enable the identification 
and ranking of the individual features of the physical, social and 
service environment, and their interactions, that contribute most to 
the observed relation.

Traditionally, characterization of urbanicity was carried out 
using census data, which are ascertained infrequently in different 
ways and at different times in different countries5. Thus, census 
data are less useful for comparing urbanicity across different coun-
tries. More recently, the Global Human Settlement Layer (GHSL) 
has provided globally standardized human settlements, including 
urbanization and urbanicity9. GHSL data, however, are only avail-
able at large and infrequent intervals, namely 1975, 1990, 2000 and 
2015 (ref. 9).

To facilitate global comparative analyses of the overall relations 
of urbanicity with brain and behaviour and to identify potential 
susceptibility periods, dense quantitative and longitudinal environ-
mental measures that can be obtained from different geographies are 
required. Remotely sensed satellite data provide globally standard-
ized quantitative environmental measures enabling the tracing of 
environmental features going back nearly 50 years (ref. 10). Population 
density is a well-established and quantifiable general measure of 
urbanicity that is frequently applied for neighbourhood classifica-
tion and used around the globe9. Here, we aimed to use population 
density as a general measure of urbanicity to investigate whether the 
urban environment is correlated with brain and behaviour, and if 
these correlations are comparable in China and Europe. Specifically, 
we developed a satellite-based measure of population density termed 
‘UrbanSat’, and applied it in China and Europe to investigate the 
relation of population density, as a proxy of urbanicity, with brain 
structure, function and behaviour in two neuroimaging datasets 
of young people: as an exploration dataset, we used the Chinese 
CHIMGEN cohort (www.chimgen.tmu.edu.cn)11, and as the repli-
cation dataset, we used the European longitudinal IMAGEN cohort 
(www.imagen-europe.com)12. While we did not have any a priori 
hypothesis, we were interested in investigating whether: (i) UrbanSat 
is associated with brain structure, function and behaviour; (ii) brain 
features associated with UrbanSat mediate the association between 
UrbanSat and behaviour; (iii) correlations of UrbanSat with brain 
and behaviour are similar in Chinese and Europeans; Furthermore, 
we were interested in (iv) identifying susceptibility periods for the 
relations of UrbanSat during child and adolescent development with 
brain and behaviour. A schematic summary is shown in Fig. 1.

Results
Demographics. We recruited young-adult participants with life-
time residential geographies from CHIMGEN (n = 3,306) and 
IMAGEN second follow-up (FU2) (n = 561). Detailed inclusion and 
exclusion criteria are presented in Supplementary Tables 1 and 2. 
Demographics of the samples used in statistical analyses and sample 
attrition are described in Supplementary Table 3 and Extended Data 
Fig. 1. Demographic comparisons between the analysed sample and 
total sample are shown in Supplementary Table 4. Demographic 
variables showing significant differences between the analysed sam-
ple and excluded sample were adjusted during analyses (Methods 
and Supplementary Tables 5 and 6).

UrbanSat: a satellite-based measure of urbanicity. To develop 
a satellite-based measure of urbanicity, we selected information 
from nine types of satellite registrations relevant for detecting and 
characterizing urban settlements, including night-time light (NL), 
normalized difference built-up index (NDBI), normalized dif-
ference water index (NDWI), normalized difference vegetation 
index (NDVI) and five measures derived from land cover mapping 
(built-up%, cropland%, grassland%, forest% and water body%) 
(Supplementary Table 7). We used multiple imputation by chained 
equations (MICE) to impute the nine annual satellite registrations 

and generate ten complete datasets. The multiple training–test 
splits of the dataset were performed to ensure that the estimates 
of generalizability we obtain are unbiased throughout the imputa-
tion (Supplementary Table 8, Extended Data Fig. 2 and Methods). 
We then carried out a tenfold cross-validation to optimize the 
confirmatory factor analysis (CFA) models, and to predict annual 
UrbanSat scores of each participant from birth to age of recruitment 
(Extended Data Fig. 2 and Methods). UrbanSat was generated by the 
optimized CFA model consisting of NL, built-up%, cropland% and 
NDVI, which best captured variation of urban features while maxi-
mizing goodness of fit. UrbanSat in CHIMGEN and IMAGEN-FU2 
had a Tucker–Lewis index and comparative fit index > 0.95, 
root-mean-square error of approximation (RMSEA) < 0.06 and 
standard root-mean-square residual (SRMR) < 0.08, indicating 
excellent model fit (Supplementary Table 9 and Methods). UrbanSat 
was robust across time and geographies, as validated by its correla-
tions with ground-level population density from GHSL-population 
grid (GHSL-POP)9 for China and Europe for the years 1990, 2000 
and 2015 (Fig. 2). Histograms of the distribution of UrbanSat score 
in each centre are shown in Extended Data Fig. 3. UrbanSat showed 
higher correlations with population density in different residen-
tial categories (rural, town, city and overall), countries (Asia and 
Europe) and years (1990, 2000 and 2015) than any individual satel-
lite measures (Fig. 2).

Correlations of UrbanSat with brain structure. Voxel-wise multi-
ple regression of mean UrbanSat before age 18 years with brain grey 
matter volume (GMV) was performed in CHIMGEN (n = 2,176). We 
controlled for age in all analyses, thus accounting for the older and 
wider age spread in CHIMGEN (age 23.54 ± 2.33 years) compared 
with IMAGEN (age 18.89 ± 0.66 years). We also controlled through-
out for gender, education, site, body mass index (BMI), genetic popu-
lation stratification and socioeconomic status (SES) (Supplementary 
Tables 10 and 11). Total intracranial volume was controlled in all 
imaging analyses, except for the analyses of cortical thickness (CT) 
and surface area (SA), where mean CT and total SA were controlled, 
respectively. Parental history of mental illness was an exclusion cri-
terion for CHIMGEN and controlled for in IMAGEN. Uncorrected 
statistical maps of the association of UrbanSat with brain GMV in 
CHIMGEN adjusting for confounding covariates under paramet-
ric testing and non-parametric permutation testing are shown in 
Fig. 3a and Extended Data Fig. 4. We found negative correlation 
of UrbanSat with medial prefrontal cortex (mPFC) volume (peak 
Montreal Neurological Institute (MNI) coordinate: x = −1.5, y = 60, 
z = 0; 294 voxels; peak t value −5.63; Fig.3b) and a positive cor-
relation with cerebellar volume (peak MNI coordinate: x = 10.5, 
y = −51, z = −18; 440 voxels; peak t value 6.43; Fig. 3b) (paramet-
ric testing Pc < 0.05, family-wise error (FWE) corrected for voxel 
numbers, imaging modalities and data categories; see Methods). 
We confirmed the results with non-parametric permutation test-
ing (threshold-free cluster enhancement (TFCE)-FWE, Pc < 0.05, 
Supplementary Methods and Extended Data Fig. 4). Potential impu-
tation bias was ruled out by multiple sensitivity analyses (Methods, 
Extended Data Fig. 2 and Supplementary Results). Uncorrected 
and adjusted vertex-wise correlation maps of UrbanSat with whole 
brain CT and SA are shown in Extended Data Fig. 4 (n = 2,164). The 
mPFC region of interest (ROI) from GMV analyses was projected 
onto fsaverage surface of Freesurfer v5.3.0 (Extended Data Fig. 4). 
UrbanSat was correlated with mean SA (ρ = −0.07, P = 0.002) but 
not mean CT (ρ = −0.02, P = 0.381) of the mPFC cluster (Fig. 3b and 
Supplementary Table 12). Using voxel-wise multiple regression of 
individual satellite measures with GMV, we found significant cor-
relation with mPFC-GMV being driven by NL and built-up%, and 
correlation with cerebellar-GMV being driven by NL and crop-
land%. We found no correlation of NDVI with either mPFC- or 
cerebellar-GMV (Extended Data Fig. 5). We observed similar results 
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in GHSL ground-level population density data, thus validating the 
relation of UrbanSat and GMV (Extended Data Fig. 5).

In IMAGEN-FU2 (n = 415), we replicated CHIMGEN find-
ings. The uncorrected statistical correlation map of UrbanSat with 
brain GMV in CHIMGEN showed significant spatial correlation 
with that of IMAGEN-FU2 (r = 0.40, P < 0.001; Extended Data  
Fig. 4). UrbanSat was correlated with GMVs of the mPFC (ρ = −0.15, 
P = 0.003) and cerebellum (ρ = 0.13, P = 0.009), and SA of the mPFC 

(ρ = −0.19, P < 0.001), but not CT of the mPFC (ρ = −0.03, P = 0.589) 
(Fig. 3b and Supplementary Table 12). In voxel-wise analyses, we val-
idated the negative correlation of UrbanSat with mPFC volume and 
positive correlation with cerebellar volume (Extended Data Fig. 4),  
both driven by NL and built-up% (Extended Data Fig. 5).

To exclude possible scanner and site effects, we performed 
separate analyses for each acquisition site of CHIMGEN and 
IMAGEN-FU2, carrying out a meta-analysis with an inverse 
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variance-weighted random-effects model (Methods and 
Supplementary Methods). UrbanSat remained significantly nega-
tively correlated with mPFC-GMV and SA, and positively correlated 
with cerebellar-GMV (Extended Data Fig. 6 and Supplementary 
Table 13). Heterogeneity of effect sizes was low to moderate for 
all regions (I2 range 0.05–60.21%; Supplementary Table 13). Thus, 

the observed correlation between UrbanSat and brain structure is 
robust across geographies and socio-cultural conditions.

We applied distributed lag models (DLMs) to identify suscep-
tibility periods of lifetime UrbanSat on GMV and SA (Methods). 
We observed a negative association of UrbanSat with mPFC-GMV 
from age 4 to 15 years (Fig. 3c) and SA from age 5 to 7 years  
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Fig. 3 | Correlations of urbanSat with brain structure. a, Uncorrected statistical maps in the voxel-wise multiple regression of mean UrbanSat before 

18 years with brain GMV under parametric testing in CHIMGEN (n = 2,176). b, In CHIMGEN, UrbanSat is negatively (blue) correlated with mPFC-GMV 

(left) and positively correlated with cerebellar-GMV (right) (FWE Pc < 0.05). The correlation of UrbanSat with mPFC-GMV is driven by SA rather than 

CT, and these correlations are replicated in IMAGEN-FU2 (n = 415); UrbanSat is correlated with brain volumetric change in mPFC (n = 340) in IMAGEN 

BL-FU2, which is driven by the change of SA rather than CT (n = 325). Dashed red lines indicate the threshold of P = 0.05. c, Susceptibility period analysis 

of brain structure using DLM. In CHIMGEN, we observed a negative association of UrbanSat with mPFC-GMV during childhood and adolescence (age 4–15 

years) and mPFC-SA during childhood (age 5–7 years) as well as a positive association with cerebellar-GMV during childhood (age 1–10 years). The y axis 

represents the changes of brain structural features associated with an increase of interquartile range of UrbanSat; the x axis is UrbanSat lag in years of ages. 

Grey areas indicate 95% CI. A susceptibility window is identified for the ages where the estimated 95% CI (shaded area) does not include zero. d, Numbers 

of participants migrating to city at different ages. Inset, UrbanSat is highest in participants with life-long city living (n = 562), medium in participants 

moving to city before 14 years (n = 229) and lowest in participants moving to city after 14 years (n = 1,385). e, Participants who were born in the city or 

migrated to an urban environment at an earlier age showed smaller mPFC-GMV and mPFC-SA as well as greater cerebellar-GMV than those with later 

exposure. Error bars show mean and s.e.m. BL, IMAGEN baseline assessment acquired at 14 years old; BL-FU2, IMAGEN BL-FU2 measures brain structural 

changes rate between BL of 14 years and FU2 of 19 years; CT, cortical thickness; DLM, distributed lag model; FU2, IMAGEN second follow-up assessment 

acquired at 19 years old; L, left; R, right; SA, surface area. *P < 0.05.
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(Fig. 3c), indicating a susceptibility period during childhood and ado-
lescence, driven by NL, built-up%, cropland% and NDVI (Extended 
Data Fig. 7). Correlation of UrbanSat with cerebellar-GMV was sig-
nificant from age 1 to 10 years, indicating a susceptibility period 
during childhood (Fig. 3c), driven by NL, built-up% and cropland% 
(Extended Data Fig. 7).

To investigate the relation between UrbanSat and brain develop-
ment, we used the longitudinal IMAGEN dataset to calculate volu-
metric (n = 340) and SA/CT change rate per year (n = 325) between 
baseline (BL) at 14 and FU2 at 19 years (IMAGEN BL-FU2). 
Consistent with the susceptibility periods identified, UrbanSat was 
significantly correlated with brain volumetric development in the 
mPFC-ROI (ρ = 0.24, P < 0.001) but not cerebellum-ROI (ρ = −0.04, 
P = 0.456). This correlation was driven by mPFC-SA changes 
(ρ = 0.23, P < 0.001), not by CT changes (ρ = 0.002, P = 0.967) 
(Supplementary Table 12).

To measure the relation between age of migration and brain 
structure, we split CHIMGEN participants into those who migrated 
to the city before age 14 years (n = 229, mean age at migration 
8.24 ± 4.86 years), after age 14 years (n = 1,385, mean age at migra-
tion 17.17 ± 2.68 years) and life-long city-dwellers (n = 562) (Fig. 3d).  
We found that participants born in the city or early migrants 
showed smaller mPFC-GMV (P = 0.032) and SA (P < 0.001) as well 
as greater cerebellar-GMV (P < 0.001) than those with later expo-
sure (Fig. 3e and Supplementary Table 14).

No correlation of UrbanSat with white matter microstructure. 
Using tract-based spatial statistics (TBSS) analysis of diffusion ten-
sor imaging (DTI) data, we did not find significant correlation of 
UrbanSat with brain fractional anisotropy (FA) in either CHIMGEN 
or IMAGEN-FU2 (TFCE-FWE, Pc < 0.05).

Correlations of UrbanSat with resting-state functional network 
connectivity. Using group-independent component analysis of 
estimated 30 independent components (Supplementary Methods), 
we identified 17 resting-state networks (RSNs) related to cognitive 
and sensory-motor processes13 in both CHIMGEN and IMAGEN 
(n = 2,156) (Extended Data Fig. 8). For each RSN, we tested the 
relation between mean UrbanSat and within-network functional 
connectivity (WNFC). A voxel-wise multiple regression analysis 
controlling for all confounders revealed a negative correlation of 
UrbanSat with WNFC in the mPFC of the anterior default mode 
network (aDMN) (peak MNI coordinate: x = −3, y = 69, z = 0; 142 
voxels; peak t value −6.33), and positive correlations in the cerebel-
lar vermis of the cerebellar network (CN) (peak MNI coordinate: 
x = −15, y = −63, z = −15; 156 voxels; peak t value 7.09), in the left 
lingual gyrus (LG) of the medial visual network (mVN) (peak MNI 
coordinate: x = −12, y = −90, z = 0; 114 voxels; peak t value 6.98) 
and in the left LG of the lateral visual network (lVN) (peak MNI 
coordinate: x = −24, y = −81, z = −13; 141 voxels; peak t value 6.97)  
(FWE Pc < 0.05, additionally corrected for 17 RSNs; Methods)  
(Fig. 4a). Voxel-based correlations of individual satellite measures 
with WNFCs of each RSN are shown in Extended Data Fig. 9. The 
correlations of UrbanSat with WNFCs in CHIMGEN were repli-
cated in ROI-based analyses in IMAGEN-FU2 (n = 351) (aDMN: 
ρ = −0.18, P < 0.001; CN: ρ = 0.26, P < 0.001; mVN: ρ = 0.24, 
P < 0.001; lVN: ρ = 0.24, P < 0.001) (Fig. 4b and Supplementary 
Table 12). Only the aDMN and CN results were replicated in 
voxel-wise analyses in IMAGEN-FU2 (Extended Data Fig. 9).

Among 136 BNFCs, UrbanSat was correlated with 49 BNFCs 
in CHIMGEN (Pc < 0.05, 10,000 permutations; Methods) (Fig. 4e), 
four of which were replicated in IMAGEN-FU2 (Fig. 4f). These four 
BNFCs (aDMN-CN, aDMN-ECN, aDMN-rFPN and rFPN-lFPN) 
connect five brain functional networks (aDMN, CN, executive con-
trol network (ECN) and right or left frontoparietal network (r/lFPN)), 
implicated in self-referential thoughts14 and executive control15.

The correlations of UrbanSat with WNFCs and BNFCs  
were stable in a meta-analysis of all CHIMGEN and IMAGEN  
sites (Extended Data Fig. 6 and Supplementary Table 13). Brain 
localization (Fig. 4b,f) and susceptibility periods (Fig. 4d,h) of 
WNFCs and BNFCs in CHIMGEN and IMAGEN were consistent 
with those observed for brain structure (Extended Data Figs. 7 and 
9), except for non-significance during adolescence. The changes 
in WNFCs and BNFCs between 14 and 19 years in IMAGEN 
were correlated with UrbanSat (Fig. 4b,f, Supplementary Table 12 
and Supplementary Results). In CHIMGEN, WNFCs and BNFCs 
were correlated with age of migration to the city (Fig. 4c,g and 
Supplementary Results).

Correlations of UrbanSat with behaviour. We investigated whether 
UrbanSat is related to measures of cognition and mental health, 
that is, depression and anxiety. In CHIMGEN (n = 2,148), the 
social cognition measure ‘perspective-taking’, perceiving a situation 
from an alternative point of view16, was positively correlated with 
UrbanSat (reaction time for perspective-taking: ρ = −0.16, Pc < 0.05, 
Bonferroni corrected for data categories and 21 behavioural assess-
ments; Methods) and replicated in IMAGEN-FU2 (ρ = 0.14, 
Pc < 0.05) (Table 1, Extended Data Fig. 10 and Supplementary Table 
15). A negative correlation between UrbanSat and reaction time for 
perspective-taking performance was observed from 12 to 22 years 
in CHIMGEN (Fig. 5a).

UrbanSat was correlated with depression symptoms assessed 
by Beck Depression Inventory (BDI) in CHIMGEN (n = 2,170) (ρ 
= 0.15, Pc < 0.05) (Table 1) with a susceptibility period from 3 to 12 
years (Fig. 5a). As BDI was not available in IMAGEN, we validated 
this association using an instrument measuring core features of 
depression, the Ruminating Scale Questionnaire (RSQ) (ρ = 0.14, 
Pc < 0.05) (Table 1 and Supplementary Methods).

In CHIMGEN and IMAGEN, increased NL and built-up% and 
decreased NDVI and cropland% were significantly correlated with 
enhanced perspective-taking performance and increased depression 
symptoms (Table 1). The susceptibility periods for individual satel-
lite measures were similar to UrbanSat in CHIMGEN (Extended 
Data Fig. 7). Although most correlations of UrbanSat with brain and 
behaviour were consistent between males and females, some cor-
relations, especially with brain development in IMAGEN BL-FU2, 
were sex specific (Supplementary Tables 16 and 17).

Multiple mediation in UrbanSat–brain–behaviour. We applied  
multiple mediation analysis to investigate whether the signifi-
cant brain imaging measures mediate correlations of UrbanSat 
with perspective-taking and depression symptoms in CHIMGEN 
and IMAGEN-FU2 (Methods). In CHIMGEN, 9.15% of the cor-
relation between UrbanSat and reaction time for perspective- 
taking was mediated by brain, namely mPFC-GMV (1.16%), 
the cerebellar-GMV (1.48%), WNFCs in aDMN (1.31%) and 
CN (1.52%), as well as by the BNFCs of aDMN-CN (1.07%), 
aDMN-ECN (2.15%) and aDMN-rFPN (1.95%) (Fig. 5b). Mediation 
was replicated in IMAGEN-FU2, with the association of UrbanSat 
with perspective-taking being mediated by mPFC-GMV (1.46%), 
WNFCs in aDMN (2.03%) and CN (0.92%) as well as BNFCs of 
aDMN-CN (1.62%) and aDMN-rFPN (1.20%) (Fig. 5b). There was 
no mediation of cerebellar-GMV in IMAGEN-FU2 (Supplementary 
Table 18).

In CHIMGEN, 9.68% of the correlation between UrbanSat and 
BDI was mediated by brain, namely mPFC-GMV (2.21%) and 
SA (0.80%), cerebellar-GMV (3.42%), WNFCs in aDMN (1.17%) 
and mVN (1.03%) and BNFC of aDMN-ECN (1.90%) (Fig. 5c). 
In IMAGEN-FU2, the correlation between UrbanSat and rumi-
nation was mediated by mPFC-GMV (1.89%), WNFC in aDMN 
(1.02%) and BNFC of aDMN-ECN (1.26%) (Fig. 5c), but not by 
cerebellar-GMV (Supplementary Table 18).
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Discussion
Using UrbanSat, a remote-sensing satellite measure, we character-
ized the relation of population density, a proxy of urbanicity, with 

brain structure, function and behaviour during childhood and ado-
lescence in large datasets in China and Europe. We provide con-
verging evidence for association of UrbanSat during childhood and 

0

4

8

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

aDMN CN mVN lVN aDMN CN mVN lVN

a

PN

rFPN

lFPN

LN

dAN

inSN

dSMN

CN

vAN

vSMN

lVN

pDMN

aDMN

AN
mVN

aSN

9

8

1

11

13

1
46

17

2

7

10

4

15

1
2

5

3

16

PN

rFPN

lFPN

LN

dAN

inSN

dSMN

ECN

CN

vANvSMN

lVN

pDMN

aDMN

AN

mVN

aSN

10

4

7

6

17

1
12

12

1

8

5

3

16

1
5

1
3

9

14

lVNmVNCNaDMN

70

140

b

0.04

0

–0.02

UrbanSat lag

–0.04

0.02

0.06

–0.06

UrbanSat lag

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

UrbanSat lag 

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20  25 30

UrbanSat lag

a
D

M
N

m
V

N

lV
N

C
N

d

*

*
*

*

*

*
*

c

0

4

8

aDMN-CN aDMN-rFPN rFPN-lFPNaDMN-ECN

e

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–
lg

(P
)

0.04

0

–0.02

UrbanSat lag 

–0.04

0.02

0.06

–0.06

UrbanSat lag 

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

UrbanSat lag 

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

0.04

0

–0.02

–0.04

0.02

0.06

–0.06

0 5 10 15 20 25 30

UrbanSat lag 

h

a
D

M
N

-C
N

a
D

M
N

-r
F

P
N

rF
P

N
-l
F

P
N

a
D

M
N

-E
C

N

*

aDMN-CN aDMN-rFPN rFPN-lFPNaDMN-ECN

f g *
*

*
*

*

–
lg

(P
)

L R L R L R

–0.2

–0.1

0

0.1

0.2

ECN

IMAGEN BL-FU2

IMAGEN FU2

CHIMGEN

IMAGEN BL-FU2

IMAGEN FU2

CHIMGEN

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Fig. 4 | Correlations of urbanSat with WNFC and BNFC. a, Voxel-wise multiple regression analysis controlling for confounders identified four WNFCs 

(aDMN, CN, mVN and lVN) correlated with mean UrbanSat before 18 years in CHIMGEN (n = 2,156). b, UrbanSat is negatively (blue) correlated with WNFC 

in mPFC of aDMN and positively correlated (red) with WNFC in CV of CN and left LG of mVN and lVN (FWE Pc < 0.05). These correlations are replicated 

in IMAGEN-FU2 (n = 351). UrbanSat is correlated with change in these four WNFCs between 14 and 19 years in IMAGEN (n = 83). c, Life-long city-dwellers 

(n = 559) and earlier migrants (n = 222) showed greater WNFCs in CN, mVN and lVN but smaller WNFC in aDMN than later migrants (n = 1,375).  

d, Susceptibility period analysis of WNFCs using DLM. In CHIMGEN, we observed significant negative association of UrbanSat with WNFC in aDMN during 

childhood and adolescence (age 4–12 years), positive association with WNFC in CN during childhood (ages0–9 years) and with WNFC in lVN during 

childhood (age 5–9 years). No significant susceptibility periods are observed in the association of UrbanSat with WNFC in mVN. e, There are 49 BNFCs 

correlating with UrbanSat and 45 BNFCs correlating with NL in CHIMGEN (Pc < 0.05, 10,000 permutations). f, Correlations of UrbanSat with BNFCs of 

aDMN-CN, aDMN-ECN, aDMN-rFPN and rFPN-lFPN are replicated in IMAGEN-FU2; UrbanSat is also correlated with change in these four BNFCs between 

14 and 19 years in IMAGEN BL-FU2. g, Life-long city-dwellers and earlier migrants showed greater BNFCs than later migrants. Error bars show mean and 

s.e.m. h, Susceptibility period analysis of BNFCs using DLM. In CHIMGEN, we observed significant positive association of UrbanSat with BNFCs of aDMN-CN 

(age 3–7 years), aDMN-ECN (age 3–6 years), aDMN-rFPN (age 4–10 years) and rFPN-lFPN (age 4–9 years) during childhood periods. L, left; R, right.

NATuRE HuMAN BEHAVIOuR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ARTICLES NATURE HUMAN BEHAVIOUR

adolescence with GMV and SA of mPFC as well as WNFCs and 
BNFCs of aDMN. No significant association was observed with 
CT and FA. mPFC and aDMN mediate the correlation between 
UrbanSat and improved perspective-taking and increased depres-
sion symptoms. We also found positive correlations of UrbanSat 
during childhood with cerebellar volume, which mediated the 
association with perspective-taking and depression symptoms. We 
extend previous observations reporting an association of depression 
symptoms with urban settings17 by demonstrating the stability of 
this observation in different geographical and sociocultural regions, 
and by discovering possible underlying brain mechanisms and sus-
ceptibility periods during childhood and adolescent development.

Our results suggest that urban living has both beneficial and 
adverse correlations with health: enhanced social cognition 
(perspective-taking) and increased depression symptoms, in con-
trast to previous studies, which mainly reported adverse aspects of 
urbanicity18. The mPFC, the core brain area of the aDMN, has been 
implicated in a variety of social cognition and affective functions 
commonly compromised in psychiatric disorders19. The susceptibil-
ity of mPFC to urban environment is supported by the greater sen-
sitivity of mPFC to urbanicity-related risk factors including chronic 
stress20 and air pollution21. While our findings are consistent with 
reports of an association between urbanicity and mPFC in smaller 
European samples22, they differ from these studies as we found 
associations with GMV and SA rather than CT, and an absence of  
sex specificity.

We found a positive correlation of UrbanSat with cerebel-
lar volume, a mediator for the association of UrbanSat with 
perspective-taking and depression symptoms. The functional net-
work connectivity of the cerebellum also mediates the association of 
UrbanSat with perspective-taking. Cerebellar lesions cause the cer-
ebellar cognitive affective syndrome, characterized by impairments  

in executive function and memory, as well as affect23. Animal stud-
ies extend these findings to stress-dependent depressive affect24 
and impairment in social behaviour25. It is tempting to speculate 
that these pathways may connect to brain regions involved in 
perspective-taking and depression symptoms26. Imaging features 
related to cerebellum showed susceptibility periods to high popula-
tion density at age 1–10 years, during which cerebellum and cortex 
are increasing in volume27–29.

While previous studies focused on the effect of mean exposure 
to urban living on brain and mental health30, we identified neu-
rodevelopmental periods with increased susceptibility to urban 
living. Consistent with observations of susceptibility periods of 
non-affective psychosis to residential mobility during childhood 
and adolescence31, we found that structure and function of mPFC, 
as well as depression symptoms, have pronounced susceptibility 
to high population density during childhood and adolescence, a 
period more sensitive to social stress32. Perspective-taking was more 
sensitive to high population density during adolescence and young 
adulthood, implying a time window for neurobehavioural interven-
tions targeting social cognition.

Our results are suggestive of a cumulative relation of urbanicity 
with brain and behaviour, whereby participants born or migrating 
to the city at an earlier age had more pronounced effects than those 
who become city-dwellers later. Given that CHIMGEN partici-
pants were students who moved to cities for their studies, we do not 
have any data on people who, after spending some years in the city, 
moved back to the countryside. We also do not have data to distin-
guish possible short but extreme exposure to urban life, in utero or 
during susceptibility periods from moderate continuous exposure.

We found several shared relations of high population density in 
urban settings with brain structure and function as well as on social 
cognition and mental health in both CHIMGEN and IMAGEN, 

Table 1 | Correlations of urbanSat and individual satellite measures with behaviour in CHIMGEN and IMAGEN

Item Statisticsa urbanSatb NL Built-up% Cropland% NDVI

CHIMGEN

PT and Ag (n = 2,148)

 ACCpt 0.21 (0.38) 0.061 (−0.04) 0.043 (−0.04) 0.141 (−0.03) 0.188 (0.03) 0.027 (0.05)

 ACCagency 1.00 × 10−9 (0.21) 0.788 (−0.01) 0.568 (−0.01) 0.677 (−0.01) 0.948 (−0.001) 0.826 (0.01)

 RTpt (ms) 1160.67 (740.39) <0.001 (−0.16) <0.001 (−0.14) <0.001 (−0.13) <0.001 (0.14) <0.001 (0.13)

 RTagency (ms) −7.44 (363.22) 0.618 (0.01) 0.336 (0.02) 0.369 (0.02) 0.854 (−0.004) 0.122 (−0.03)

Mental health (n = 2170)

 BDI 2.00 (5.00) <0.001 (0.15) <0.001 (0.16) <0.001 (0.11) <0.001 (−0.14) <0.001 (−0.10)

 SA 30.00 (9.00) 0.637 (0.01) 0.548 (0.01) 0.418 (−0.02) 0.383 (−0.02) 0.690 (−0.01)

 TA 33.00 (9.00) 0.250 (0.02) 0.085 (0.04) 0.832 (0.01) 0.218 (−0.03) 0.309 (−0.02)

IMAGEN-Fu2

PT

 IRI (n = 342) 19.00 (5.00) 0.009 (0.14) 0.565 (0.03) 0.008 (0.15) 0.085 (−0.10) 0.879 (−0.01)

Mental health

 RSQ (n = 346) 35.00 (15.00) 0.009 (0.14) 0.431 (0.04) 0.002 (0.17) 0.926 (−0.01) 0.653 (0.02)

 DAWBA-GA 355/92 0.451 (−0.22) 0.914 (0.001) 0.901 (0.06) 0.319 (−0.55) 0.513 (−3.35 × 10−4)

 (n = 447) (Y/N)

 CIDI-AS (n = 391) 6.00 (10.00) 0.196 (0.07) 0.559 (0.03) 0.202 (0.07) 0.339 (−0.05) 0.588 (−0.03)

ACC, accuracy; Ag, agency performance; BDI, Beck Depression Index; CIDI-AS, Anxiety Screening from the Composite International Diagnostic Interview; DAWBA-GA, Generalized Anxiety Scale from The 

Development and Well-Being Assessment Interview; IRI, Interpersonal Reactivity Index; PT, perspective-taking; RSQ, ruminating scale questionnaire; RT, reaction time; SA, state anxiety; TA, trait anxiety. 
aStatistics are shown as median (quantile interval). bSpearman correlations are used to test the correlations between individual satellite measures and behaviours (except for DAWBA-GA) controlling 

for confounding covariates, which is shown as correlation P value (ρ value). In the DAWBA-GA, logistic regression is used to test the correlations between individual satellite matures and anxiety, which 

is shown as P value (β value). In CHIMGEN, the significant results after Bonferroni Pc < 0.05 (uncorrected P < 0.05/2/21 = 0.001) are shown in bold; in IMAGEN, the significant results after Bonferroni 

Pc < 0.05 (uncorrected P < 0.05/5 = 0.01) are shown in bold.
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indicating their generalization to other sociocultural conditions 
and geographies. The relation of urban living with brain develop-
ment during adolescence was confirmed by exploring the correla-
tion of UrbanSat with brain structural and functional changes from 
age 14 to 19 years in IMAGEN. Taking into account normative 
references27–29, our observations are consistent with an accelerated 
development in densely populated urban areas of cerebellum dur-
ing childhood and mPFC during childhood and adolescence. We 
also found inconsistent results between CHIMGEN and IMAGEN: 
only 4 of 49 BNFCs correlating with UrbanSat in CHIMGEN were 
replicated in IMAGEN. The more extensive relations of urban living 
with BNFCs in CHIMGEN may reflect the more drastic changes in 
urbanization in China compared with Europe6, but may also relate to 
confounding factors beyond the covariates controlled in our study33.

UrbanSat was correlated with GMV, SA and functional con-
nectivity, but not with FA and CT, indicating different sensitivities 
of brain properties to residential environments. UrbanSat showed 
positive correlation with cerebellar volume, negative correlation 
with mPFC volume, but non-significant correlation with volumes 
of other regions, suggesting different spatial sensitivities to residen-
tial environments. The cerebellum was sensitive to urban residential 

environments during childhood, whereas the mPFC was sensitive 
during both childhood and adolescence, indicating different tem-
poral sensitivities to residential environments. This framework of 
different spatial and temporal sensitivities to urban residential envi-
ronments may help to understand the association of urban living 
with brain and mental health.

High population density, a general measure of urbanicity, 
can cause increased social stress and air pollution, both of which 
affect brain structure in young people34,35. A recent study observed 
an association of urbanicity with brain activity in regions linked 
to social stress processing30. Such brain changes may mediate the 
well-established relation of urbanicity with mental health, includ-
ing mood disorders36 and social cognition18. Stress in childhood 
can accelerate brain development and lead to faster maturation of 
certain brain regions during adolescence, including cerebellum 
and mPFC37. Faster brain maturation results in enhanced cogni-
tive development38 and may account in part for the positive cor-
relation of urbanicity and perspective-taking observed in our study. 
However, faster maturation of mPFC and cerebellum may come at 
a cost of decreased plasticity, including of fear extinction mecha-
nisms (mPFC), which may contribute to increased vulnerability to 
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Fig. 5 | Susceptibility periods of behaviour using DLM and multiple mediation of urbanSat–brain–behaviour. a, UrbanSat is negatively correlated 

with reaction time for perspective-taking (top) from age 12 to 22 years but not with that for agency (medium) in CHIMGEN (n = 2,148). UrbanSat is 

positively correlated with depression symptoms (BDI) from age 3 to 12 years in CHIMGEN (n = 2,170) (bottom). b, In CHIMGEN, the correlation of 

UrbanSat with perspective-taking performance is mediated by mPFC and cerebellar-GMV, WNFCs in aDMN and CN, as well as BNFCs of aDMN-CN, 

aDMN-ECN and aDMN-rFPN (left); These mediation effects are replicated in IMAGEN-FU2 except for cerebellar-GMV and BNFC of aDMN-ECN (right). 

c, In CHIMGEN, the correlation between UrbanSat and BDI is mediated by mPFC-GMV and SA, cerebellar-GMV, WNFCs in aDMN and mVN as well 

as BNFC of aDMN-ECN (left); The mediation effects of the mPFC-GMV, WNFC in aDMN and BNFC of aDMN-ECN are replicated in IMAGEN-FU2 

(right). PT, perspective-taking measured by interpersonal reactivity index (IRI); RSQ, Ruminating Scale Questionnaire; RTpt and RTagency, reaction time for 

perspective-taking and agency.
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anxiety and depression39. Air pollution induces neuroinflammation 
in the brain, leading to damage and loss of neural tissue in prefron-
tal cortex35, and may provoke depression symptoms40. Thus, urban 
upbringing may cause affective and anxiety symptoms by way of 
both increased social stress and pollution.

Remotely sensed satellite data play a critical role in monitoring 
the Earth’s surface to track environmental conditions that are inti-
mately related to human health10. Satellite data are applied to map 
urbanization, poverty, climate change and pollution, as well as the 
spread of infectious diseases10. Our study extends the application of 
remote-sensing satellite data and provides a method to characterize 
and monitor spatial and temporal patterns of risk for mental disor-
ders. In the optimized CFA models, the four satellite measures con-
tributing to UrbanSat showed different factor loadings. NL with the 
highest factor loading can capture the physical environmental fea-
tures of urbanicity, such as patterns of human settlements41, urban 
expansion42 and population counts43, as well as information about 
social–environmental features of urbanicity, such as economic 
activity44. Built-up% and cropland% with medium factor loadings 
mainly reflect physical–environmental features of urbanicity. NDVI 
with the smallest factor loading measures residential greenness and 
has been used extensively to record the distribution of green spaces 
in urban settings45. UrbanSat mainly reflects the physical–environ-
mental features and indicates the social–environmental features of 
urbanicity only indirectly.

For privacy reasons, our satellite measures were obfuscated to 
a spatial resolution of 1 km, preventing the capture of important 
aspects of urban life, such as daily mobility paths. Future studies will 
investigate the integrated effect of urban physical and social envi-
ronment, and their interaction with genetics and relation to brain 
and behaviour. MICE is a flexible tool for multiple imputation of 
missing data, which properly accounts for uncertainty in the down-
stream estimates by combining subsequent estimates from different 
imputed datasets. This approach also accommodates the multiple 
training–test splits of the dataset to ensure that the estimates of 
generalizability we obtain are unbiased throughout the imputation. 
The disadvantage of MICE is the difficulty in combining multiple 
imputed datasets with voxel-wise neuroimaging statistics. Although 
several sensitivity analyses were applied after the multiple imputa-
tion and led to identical conclusions, we are still not in a position 
to fully exclude the potential bias derived from missing data. This 
study is not epidemiological but neurobiological, aiming to identify 
brain mechanisms by which urbanicity influences behaviour. How 
representative the identified mechanisms are among the general 
population is a different task, for future epidemiological studies.

Our findings were made possible due to recent advancements in 
remote-sensing satellite technologies which were leveraged to mea-
sure the relation of urbanicity with brain and behaviour. We were 
able to (1) apply a general measure of urbanicity, that is, population 
density, which is not dependent on census definitions of urban areas 
that might be conflated by densely populated rural areas or sparsely 
populated areas within urban settlements, or that may vary between 
nations;5 (2) obtain a high spatial and temporal resolution;10  
(3) use a measure applicable anywhere on Earth from the 1970s to 
the present day. Thus, UrbanSat provides a unique opportunity to 
identify the cumulative effects and susceptibility periods of urbanic-
ity on brain and behaviour. However, we note that UrbanSat cannot 
unravel environmental pathways and their interactions that cause 
the aversive effects of urban living. This is a task for subsequent 
studies with access to sufficient ground-level data for comprehen-
sive characterization of causal environmental pathways that under-
lie the observed correlations.

In the current work, we provide proof of principle establishing 
the use of satellite data to inform the relation between urban envi-
ronment, brain and behaviour. As our approach can be extended and 
generalized to other geographies and is easy to implement even in the 

absence of detailed or directly comparable ground-level data, it may 
be relevant for public health, policy and urban planning globally.

Methods
Ethical approval. The Chinese Imaging Genetics (CHIMGEN) project was 
approved by the ethics committee of 31 centres in China1, and written informed 
consent was obtained from each participant11. The IMAGEN study was approved 
by local research ethics committees at each research site. Informed consent was 
sought from all participants and a parent or guardian of each participant12.

Participants. The CHIMGEN project collected genetic, transcriptomic, 
environmental, neuroimaging and behavioural data of 7,306 healthy Chinese Han 
participants aged 18–30 years recruited from 31 centres of 21 cities in Mainland 
China11. At the time of data analysis (January 2018), data were available for 5,425 
participants. The IMAGEN project is the first European multisite and longitudinal 
study12, and comprehensive genetic, transcriptomic, epigenetic, environmental, 
neuroimaging and neurocognitive data were collected from more than 2,000 
14-year-old adolescents in 2009. Brain imaging measures were longitudinally 
assessed at age 14 years (baseline, BL) and 19 years (second follow-up, FU2). Most 
of the neurocognitive and mental health outcomes were longitudinally assessed at 
BL, FU1 (16 years) and FU2. The approach for sample selection in CHIMGEN and 
IMAGEN is described in the Supplementary Methods and is shown in Extended 
Data Fig. 1.

Data collection. Residential geographies. For each CHIMGEN participant who had 
consented to provide residential information, we recorded the precise residential 
addresses in each year from birth to recruitment and the category of each place 
(1 for rural, 2 for town or 3 for city) as determined according to the National 
Bureau of Statistics of China (Supplementary Methods). However, since residential 
histories were not obtained prospectively, we were not in a position to fully exclude 
the possibility of recall bias. Finally, 3,336 participants who provided their lifetime 
residential geographies were included in the further analysis. The remaining 2,089 
participants were excluded because they only provided their residential addresses 
at the time point of recruitment but refused to provide their residential addresses at 
any other time points since birth.

At the time of the second follow-up, 561 IMAGEN participants provided 
their precise residential addresses for each year from birth to recruitment and 
the category of each place (1 for rural, 2 for town or 3 for city) (Supplementary 
Methods). To protect the anonymity of participants in CHIMGEN and IMAGEN, 
these addresses have been obfuscated to 1 km scaled longitude and latitude based 
on the Google Earth Engine (GEE) coordinate system using code (https://github.
com/crickfan/geo-anonymization).

Remote-sensing satellite data. GHSL9, NL46, NDVI47, NDBI48, NDWI49 and GLCM50 
were extracted from GEE and the European Space Agency platform to measure 
different urban characteristics based on the acquired lifetime individual geographies 
(Supplementary Methods and Supplementary Tables 7 and 24). There are 22 
indicators in GLCM, which belong to 9 land cover types: cropland%, forest%, 
grassland%, shrubland%, bareland%, snow%, ice%, water body% and built-up%51,52. 
Among the 3,336 participants from CHIMGEN, we successfully extracted satellite 
measures from 3,306 participants. The other 30 participants were excluded because 
extraction of satellite measures failed in more than three years. In the present study, 
only land cover types with mean percentage above 1% before 18 years of participants 
from CHIMGEN (n = 3,306) and IMAGEN-FU2 (n = 561) were included in 
further analysis, including the land cover types of cropland% (CHIMGEN, 64.21%; 
IMAGEN, 13.65%), forest% (CHIMGEN, 5.00%; IMAGEN, 7.31%), grassland% 
(CHIMGEN, 3.01%; IMAGEN, 7.54%), water body% (CHIMGEN, 3.81%; 
IMAGEN, 1.37%) and built-up% (CHIMGEN, 29.14%; IMAGEN, 67.03%). Finally, 
nine satellite-based measures of urbanicity (NL, NDVI, NDBI, NDWI, cropland%, 
forest%, grassland%, water body% and built-up%) from CHIMGEN (n = 3,306) and 
IMAGEN-FU2 (n = 561) were included in further analysis.

Confounding covariates data. In CHIMGEN and IMAGEN, we controlled for age, 
gender, education, site, BMI, genetic population stratification, total intracranial 
volume, mean corticle thickness, total surface area and SES in the correlation of 
satellite-based measure of urbanicity with brain and behaviour. Parental history  
of mental illness was an exclusion criterion for CHIMGEN, but not in  
IMAGEN, where this variable was controlled for in IMAGEN data analyses 
(Supplementary Methods).

Neuroimaging data. Among participants with lifetime satellite measures and 
confounding covariates, 2,176 participants from CHIMGEN and 482 participants 
from IMAGEN-FU2 with at least one modality of neuroimaging data were 
included in the analysis. T1-weighted imaging, DTI and resting-state functional 
imaging were acquired using 3.0-T MRI scanners from 28 sites of CHIMGEN and 
6 sites of IMAGEN-FU2 (Supplementary Tables 19–23). Brain GMV, CT and SA 
were calculated from the T1-weighted imaging, FA from the DTI, as well as WNFC 
and BNFC from the resting-state functional MRI. The detailed preprocessing  
and calculation methods are described in Supplementary Methods and  

NATuRE HuMAN BEHAVIOuR | www.nature.com/nathumbehav

https://github.com/crickfan/geo-anonymization
https://github.com/crickfan/geo-anonymization
http://www.nature.com/nathumbehav


ARTICLESNATURE HUMAN BEHAVIOUR

http://chimgen.tmu.edu.cn/en/index.php?c=article&id=2034. Finally, in 
CHIMGEN, qualified GMV data were available in 2,176 participants, CT and SA 
data in 2,164 participants, FA of TBSS data in 2,158 participants as well as WNFC 
and BNFC data in 2,156 participants.

In IMAGEN, among the remaining 482 participants, 415 (FU2) were included 
in GMV analysis, 420 (FU2) in CT and SA analysis, 436 (FU2) in TBSS analysis 
and 351 (FU2) in WNFC and BNFC analyses (Supplementary Methods). For 
the 340 participants with qualified structural imaging data at both BL (14 years) 
and FU2 (19 years) in IMAGEN, structural imaging data were pre-processed 
using the pairwise longitudinal tool implemented in SPM12 for longitudinal 
voxel-based morphometry analysis53. Finally, we obtained year-averaged GMV 
change maps for 340 participants and year-averaged CT and SA change maps for 
325 participants. In 83 participants with qualified fMRI data at both BL (14 years) 
and FU2 (19 years), we calculated WNFC and BNFC for each participant at each 
stage, then obtained the WNFC and BNFC change maps of the 83 participants 
(Supplementary Methods).

Behavioural data. Among the 2,176 participants with at least one type of qualified 
MRI data in CHIMGEN, 2,173 were finally included in the analysis of verbal 
learning memory, 2,063 in working memory, 2,139 in information processing 
speed, 2,148 in social cognition (Extended Data Fig. 10), 2,024 in cognitive 
control and 2,170 in depression and anxiety state of mental health assessment 
(Supplementary Methods).

Only statistically significant behavioural variables with UrbanSat would 
be validated in IMAGEN. Among the 482 participants, complete data on 
perspective-taking was available for 342 participants (FU2). Complete data were 
available for the RSQ in 346 participants (FU2), the Generalized Anxiety Scale 
from The Development and Well-Being Assessment Interview (DAWBA-GA) i 
n 447 participants (FU2) and the Anxiety Screening for Composite  
International Diagnostic Interview (CIDI-DIA) in 391 participants (FU2) 
(Supplementary Methods).

Statistical analysis. Demographic statistics. We compared demographic 
characteristics between the final analytical sample (n = 2,176 for CHIMGEN; 
n = 415 for IMAGEN-FU2) and total sample (n = 5425 for CHIMGEN; n = 1411 
for IMAGEN-FU2) using bias-corrected bootstrapping (Supplementary Methods). 
To test selection bias, we compared differences in demographic and behavioural 
variables between the included sample (n = 3,306 for CHIMGEN; n = 561 for 
IMAGEN-FU2) and the excluded sample (n = 2,119 for CHIMGEN; n = 850 for 
IMAGEN-FU2) using Wilcoxon rank sum test and chi-square analysis. While we 
found subtle but significant differences in a minority of variables that did not relate 
to the main behavioural results (perspective-taking and depressive symptoms) 
(Supplementary Tables 5 and 6), we cannot fully rule out an influence of selection 
bias on our findings. We controlled for demographic variables in the main analyses, 
including the significantly different variables age, gender, education, BMI and SES.

UrbanSat calculation. Tenfold cross-validation of multiple imputation for missing 
values. To calculate annual UrbanSat scores for each participant (n = 3,306 for 
CHIMGEN) from birth to age of recruitment, we required satellite data from 1986 
to 2018. However, the available satellite data did not cover the entire time period. 
For example, NL data were only available from 1992 to 2013 (Supplementary 
Table 7), indicating that 7,560 of 78,315 spatiotemporal points were missing (data 
missing rate 9.65%). Thus, we needed to impute the missing values for the nine 
satellite measures. The numbers of imputed years for each satellite-based measure 
and the number of CHIMGEN participants with missing data are presented in 
Supplementary Table 8. The imputation strategy is shown graphically in Extended 
Data Fig. 2.

We used MICE as implemented in the ‘mice’ R package54 to impute the nine 
annual satellite registrations and generate ten complete datasets. The data were 
input as ‘wide’ format. The imputation models of predictorMatrix with default 
settings and predicted mean matching approach in the ‘mice’ R package were used 
in the multiple imputation process. We used 20 iterations of Gibbs sampling in the 
‘mice’ R package.

Multiple training–test splits of the dataset were performed to ensure that 
the estimates of generalizability we obtain are unbiased throughout the analytic 
pipeline. Specifically, the nine satellite measures of 3,306 participants with 
missing data were randomly and equally divided into ten groups. Then, tenfold 
cross-validation was used to build the imputation diagnostic models in the training 
datasets and to predict missing values of satellite measures in the test datasets using 
MICE. For each fold, 90% of participants were used as a training dataset to build 
the imputation diagnostic model, then this diagnostic model was used to predict 
the missing values in the other 10% of participants in the test dataset. This process 
was applied in ten folds to predict all missing satellite data of 3,306 participants 
(Extended Data Fig. 2).

The IMAGEN participants born between 1994 and 1998 were recruited from 
2009 to 2010 at baseline and followed up from 2015 to 2016. Thus, we have almost 
all true exposure values of the nine satellite measures for these participants. The 
only exception is the lack of NL data for 2014, 2015 and 2016. The same imputation 
methods were applied in these three years.

Tenfold cross-validation of CFA. NL, NDVI, NDBI, NDWI, cropland%, forest%, 
grassland%, water body% and built-up% have all been reported to measure urban 
environment (Supplementary Methods). As we hypothesize that each individual 
satellite-based measure contributes to the measurement of urban environment, 
we directly apply CFA but not exploratory factor analysis. The aim of CFA in 
this study is to construct a latent variable (UrbanSat) to comprehensively reflect 
urban environments, which was carried out using the R package ‘lavaan’ (https://
cran.r-project.org/web/packages/lavaan)55. The same ten cross-validation splits 
as applied in the imputation process were used to optimize the CFA models 
and to predict annual UrbanSat scores of each participant from birth to age of 
recruitment. For each fold, 90% of participants were used to build the CFA model, 
and the optimized CFA model was used to calculate the UrbanSat scores for the 
other 10% of participants. For each fold, two criteria were used to optimize the 
CFA model by selecting appropriate satellite-based measures of urbanicity. The 
first criterion was the goodness of fit of the CFA model, which can be assessed 
by Tucker–Lewis index, comparative fit index, chi square, RMSEA and SRMR. 
The criteria for excellent model fit were TSI > 0.95, comparative fit index > 0.95, 
RMSEA < 0.06 and SRMR < 0.08 (refs. 56–58). The second criterion was the inclusion 
of satellite-based measures as much as possible to better reflect different aspects of 
urbanicity. Specifically, in the first imputed satellite dataset, we initially constructed 
a CFA model by including all nine satellite-based measures of urbanicity in the 
training dataset of each fold. Based on the factor loadings of the nine satellite-based 
measures, we removed the satellite measure with the smallest factor loading and 
repeated the CFA modelling. These steps were iterated until the resulting CFA 
model satisfied our criteria for excellent model fit in the training dataset. The 
factor loadings of the optimized CFA model were used to calculate UrbanSat scores 
in the test dataset. This process was applied in ten folds to predict all out-of-sample 
lifetime UrbanSat scores of 3,306 participants. And the same process was applied 
from the first imputed satellite datasets to the tenth ones to generate ten datasets of 
lifetime UrbanSat scores of 3,306 participants (Extended Data Fig. 2).

The statistical estimate combination between voxel-wise neuroimaging analyses 
and the multiple imputed UrbanSat is not supported by the current version of 
Statistical Parametric Mapping (SPM12) software implemented in MATLAB 
R2018a (http://www.fil.ion.ucl.ac.uk/spm) during the model estimation. Therefore, 
we applied Rubin’s rules59 to combine the ten datasets of UrbanSat scores derived 
from MICE imputation. The combined UrbanSat scores were related to the further 
voxel-wise whole brain analysis and susceptibility period analysis. Subsequently, we 
performed several sensitivity analyses as explained below.

Sensitivity analysis. The combined UrbanSat scores according to Rubin’s rules 
may understate the uncertainty in the downstream statistical estimates since 
they do not propagate uncertainty about the multiple imputation process. To test 
the potential uncertainty caused by the multiple imputation of satellite data, we 
combine this with multiple sensitivity analyses including the statistical comparison 
of subsequent mass-univariate voxel-wise neuroimaging analyses using multiple 
versions of the imputed UrbanSat and the estimation of ROI-level analyses where 
the multiple imputed UrbanSat were combined in a statistically principled fashion. 
Firstly, voxel-wise multiple regression analysis of each imputed UrbanSat with 
whole brain GMV adjusted for all confounding covariates in 2,176 participants 
was performed (FWE Pc < 0.05). Secondly, the significant brain ROI was firstly 
identified from the voxel-wise multiple regression between the combined UrbanSat 
score following Rubin’s rules59 and whole brain GMV after controlling confounding 
factors (FWE Pc < 0.05). The ‘mice’ R package54 was applied to pool the statistical 
estimates between ten imputed UrbanSat scores and brain ROI GMV value after 
controlling for confounding factors.

To test the potential bias caused by the imputation of satellite data, sensitivity 
analysis was additionally performed in participants with complete satellite and 
neuroimaging data. Among the 3,306 CHIMGEN participants with complete 
residential information, 1,460 participants had nine complete satellite measures 
from birth to age of recruitment and brain imaging data. This subset of participants 
was used to construct the out-of-sample CFA models and to calculate the annual 
UrbanSat scores before 18 years for each participant. Then the sensitivity analysis 
was performed to identify voxel-wise analysis between GMV and UrbanSat 
adjusted for all confounding covariates in 1,460 participants (FWE Pc < 0.05).

In addition, the ‘mice’ R package54 was also applied to pool the multiple 
statistical estimates between ten imputed datasets of UrbanSat scores and 
behaviours after controlling confounding factors.

Correlation analyses of mean UrbanSat with brain imaging measures. The 
voxel-wise multiple regression of mean UrbanSat before 18 years with brain 
GMV was performed in CHIMGEN (n = 2,176) using Statistical Parametric 
Mapping (SPM12) implemented in MATLAB R2018a (http://www.fil.ion.ucl.
ac.uk/spm) (Supplementary Methods). Statistical significance of the voxel-wise 
multiple regression models in relation to mean UrbanSat with neuroimaging 
data was assessed by parametric testing FWE correction, where we corrected 
for voxel numbers, six imaging features (GMV, CT, SA, FA, WNFC and BNFC) 
and two data types (neuroimaging and behavioural data). We therefore set a 
significance threshold of FWE-corrected Pc < 0.05 (equal to an uncorrected 
P < (1.25 × 10−6/6/2) = 1.01 × 10−7) in brain structure analysis in CHIMGEN.  
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The voxel-wise multiple regression model of UrbanSat with brain GMV adjusting 
for confounders was also performed using permutation-based non-parametric 
testing with TFCE with correcting for FWE (TFCE-FWE, Pc < 0.05) as 
implemented in ‘randomise’ for FMRIB Software Library (FSL) v5.0 (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide). The more conservative results 
were used for the further ROI analysis.

For the voxel-wise WNFC analyses, we additionally corrected for the 
number of functional networks (n = 17), resulting in an FWE-corrected Pc < 0.05 
(uncorrected P < (1.25 × 10−6/6/17/2) = 6.13 × 10−9). For the pairwise BNFC 
analyses, statistical significance of the partial correlation between UrbanSat 
and BNFC was assessed by permutation testing in reference to a prior study60 
(Supplementary Methods).

Meta-analysis. To exclude possible scanner and site effects, we repeated the 
ROI-based correlation analyses of UrbanSat with neuroimaging measures in each 
site (both CHIMGEN and IMAGEN) and performed meta-analysis to integrate the 
results. The meta-analyses pooled each centre’s effect size of correlation coefficient 
between UrbanSat and neuroimaging measure of each ROI, using an inverse 
variance-weighted random-effects model as implemented in the R package ‘metafor’ 
(version v2.1-0)61 (Supplementary Methods). The Fisher’s z-transformed correlation 
coefficient, standard errors (SE), z values, P values, CIs and measure of heterogeneity 
(I2 statistics) were computed in the meta-analysis (Supplementary Methods).

Correlation analyses of mean UrbanSat with behaviour. For the behavioural 
analysis, partial correlation analysis was firstly applied to test the correlation of 
UrbanSat with each neuropsychological domain and mental health in CHIMGEN 
under Bonferroni-corrected Pc < 0.05 after controlling for the same confounding 
covariates. Bonferroni correction for the two data types and 21 items (Table 1 
and Supplementary Table 15) was applied in CHIMGEN. We therefore set a 
significance threshold of Bonferroni-corrected Pc < 0.05 (equal to an uncorrected 
P < (0.05/2/21) = 0.001) in CHIMGEN. All the significant results would be 
replicated in IMAGEN at Bonferroni-corrected Pc < 0.05 (equal to an uncorrected 
P < (0.05/4) = 0.013), where we only include four measures of behaviour (IRI, RSQ, 
DAWBA-GA and CIDI-AS).

Identification of susceptibility periods using a distributed lag model. To account 
for within-subject autocorrelation and consider the delayed effect of longitudinal 
UrbanSat, we used a DLM to investigate susceptibility periods of lifetime UrbanSat 
on brain and behaviours by creating an UrbanSat lag space62 (1–30 years in 
CHIMGEN). The DLM is defined through a ‘cross-basis’ function, which allows 
the simultaneous estimation of a linear exposure–response association and 
nonlinear lag–response association across lags. Specifically, we fitted the DLM as 
the following formula:
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Here UrbanSatij is the out-of-sample predicted UrbanSat score in age j of 
lifetime year n, X1i to Xpi are the same confounding covariates adjusted before for 
participant i. To account for collinearity among the yearly UrbanSat, we fitted 
constrained DLMs that assume these effects αj are a smooth function of j year. 
Therefore, the DLM model simultaneously integrates the data from all time points 
and assumes that the association between the UrbanSat and brain/behaviour at a 
given time point, controlling for UrbanSat at all other time points, varies smoothly 
as a function of time. The smooth function of lag structure was modelled using 
a natural cubic spline with five degrees of freedom, setting the knots at equally 
spaced values on the lag scale (1–30 years). The number of knots was chosen based 
on the AIC. A susceptibility period is identified when the estimated pointwise 95% 
confidence intervals do not include zero.

Multiple mediation analysis. In the well-replicated UrbanSat–behaviour 
correlations in both datasets, multiple mediation analysis, an extension of 
mediation analysis63,64, was applied to formally test whether the UrbanSat–
behaviour relationship can be mediated by brain structure and function while 
controlling confounding covariates and other mediators (Supplementary Methods).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the data are available from the authors upon reasonable request and with 
permissions of the CHIMGEN and IMAGEN consortia.

Code availability
Custom code that supports the findings of this study is available from the 
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Extended Data Fig. 1 | A flow diagram of sample selection in CHIMGEN (a) and IMAGEN (b). BDI, Beck depression inventory; BTG, ball tossing games 

task; BL, IMAGEN baseline assessment acquired at 14 years; CIDI-AS, Anxiety Screening from the Composite International Diagnostic Interview; CVLT-II, 

the second edition of California verbal learning test; DAWBA-GA, Generalized Anxiety Scale from The Development and Well-Being Assessment 

Interview; FC, functional connectivity; FU2, IMAGEN second follow up assessment acquired at 19 years; FU2-BL, IMAGEN FU2-BL measures brain changes 

rate between BL of 14 years and FU2 of 19 years; GNG, go/no-go task; IRI, Interpersonal Reactivity Index; RSQ, Ruminating Scale Questionnaire; SA, state 

anxiety; SBM, surface-based morphometry; SDMT, symbol digit modalities test; TA, trait anxiety; TBSS, tract-based spatial statistics; VBM, voxel-based 

morphometry.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Schematic summary of multiple imputation and confirmatory factor analysis. a. A flow diagram for multiple imputation and 

confirmatory factor analysis. b, c. Sensitivity analysis results in voxel-wise correlations of ten imputed UrbanSat (b) and combined UrbanSat (c) with 

brain GMV in CHIMGEN (FWE Pc<0.05). Each imputed UrbanSat from MICE imputation before 18 years show a significant negative correlation with left 

mPFC volume and a significant positive correlation with cerebellar volume adjusting confounding covariates (FWE Pc<0.05) (b), similar to the results 

derived from combined UrbanSat score following Rubin’s rule (c). d. The estimated fractions of missing information (FMI) of UrbanSat were low for the 

GMVs of left-mPFC-ROI (FMI = 1.01%) and cerebellum-ROI (FMI = 1.19%). UrbanSat was still correlated with mPFC-GMV (P < 0.001) and cerebellum-

GMV (P < 0.001) after pooling using mice R package in CHIMGEN. e. Non-imputed mean UrbanSat before 18 years still show a significant negative 

correlation with mPFC-GMV and a significant positive correlation with cerebellar-GMV adjusting confounding covariates (FWE Pc<0.05) (n = 1460). CFA, 

confirmatory factor analysis; FMI, fractions of missing information; L, left; MICE, multivariate imputation by chained equations; mPFC, medial prefrontal 

cortex; R, right. S, satellite; Y, years.
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Extended Data Fig. 3 | Histograms of urbanSat in each center of CHIMGEN (a) and IMAGEN (b). TMUGH, Tianjin Medical University General Hospital; 

TMUCIH, Tianjin Medical University Cancer Institute and Hospital; TFCH, Tianjin First Center Hospital; CPAPFLUPH, Pingjin Hospital, Logistics University 

of Chinese People’s Armed Police Forces; THH, Tianjin Huanhu Hospital; HMUSH, The Second Hospital of Hebei Medical University; SMUFH, The First 

Hospital of Shanxi Medical University; DMUFAH, The First Affiliated Hospital of Dalian Medical University; NMUDTH, Drum Tower Hospital, Medical 

School of Nanjing University; XMUAH, The Affiliated Hospital of Xuzhou Medical University; ZUSAH, The Second Affiliated Hospital of Zhejiang 

University; WMUFAH, The First Affiliated Hospital of Wenzhou Medical University; WMUSAH, The Second Affiliated Hospital of Wenzhou Medical 

University; AMUFAH, The First Affiliated Hospital of Anhui Medical University; USTC, University of Science and Technology of China; SUQH, Qilu Hospital 

of Shandong University; YYH, Yantai Yuhuangding Hospital; ZUPH/HPPH, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital; 

ZUFAH, The First Affiliated Hospital of Zhengzhou University; HUSTTH, Tongji Hospital, Tongji Medical College, Huazhong University of Science and 

Technology; CSUXH, Xiangya Hospital, Central South University; GUCMFAH, The First Affiliated Hospital of Guangzhou University of Chinese Medicine; 

HGH, Hainan General Hospital; FMMUTH, Tangdu Hospital, the Military Medical University of PLA Airforce (Fourth Military Medical University); LUSH, 

Lanzhou University Second Hospital; SUWCH, West China Hospital of Sichuan University; ZUPH, Zhengzhou University People’s Hospital; NMUJH, Jinling 

Hospital, Medical School of Nanjing University.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Correlations of urbanSat with brain GMV, SA and CT in CHIMGEN and IMAGEN. a. Uncorrected correlation statistical maps of 

UrbanSat with brain GMV in CHIMGEN under non-parametric permutation testing (n = 2176). b. Correlations of UrbanSat with brain GMV in CHIMGEN 

under Pc<0.05 in TFCE-FWE using non-parametric permutation testing (n = 2176). c, d. Uncorrected correlation statistical maps of UrbanSat with brain 

GMV in CHIMGEN (c) and IMAGEN-FU2 (d) under parametric testing. e. The overlap results (yellow) in the voxel-wise correlation of mean UrbanSat 

before 18 years with brain GMV in CHIMGEN (red) and IMAGEN-FU2 (green) after controlling confounders (FWE Pc<0.05). f,g. Uncorrected vertex-wise 

correlation maps of UrbanSat with surface area (f) and cortical thickness (g) in CHIMGEN (n = 2164). h,i. The mPFC-ROI projected onto the volumetric 

map (h) and fsaverage surface in Freesurfer (i).
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Extended Data Fig. 5 | Voxel-wise correlations of individual satellite measures with brain GMV in CHIMGEN (n = 2176) (a-e) and IMAGEN (n = 415) 

(f-j). a–e. In CHIMGEN, there are significant negative correlations of mean night-time light (a) and population density (e) with mPFC GMV and positive 

correlations with cerebellar GMV after controlling confounders (FWE, Pc<0.05); There are significant negative correlations of mean built-up with 

mPFC GMV (b) and of mean cropland with cerebellar GMV (c); There are no correlations of mean NDVI with brain GMV (d). f–j. In IMAGEN, there are 

significant negative correlations of mean night-time light (f), mean built-up (g) and population density (j) with mPFC GMV and positive correlations 

with cerebellar GMV after controlling confounders (FWE, Pc<0.05); There are no correlations of mean cropland (h) and NDVI (i) with brain GMV. L, left; 

mPFC, medial prefrontal cortex; NDVI, normalized difference vegetation index; R, right.
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Extended Data Fig. 6 | Forest plot of meta-analysis in CHIMGEN and IMAGEN-Fu2. Effect size of correlations of UrbanSat with mPFC GMV (a), 

cerebellar GMV (b), mPFC CT (c), mPFC SA (d), WNFCs in aDMN (e), CN (f), mVN (g) and lVN (h), BNFCs of aDMN-CN (i), aDMN-ECN (j), 

aDMN-rFPN (k) and rFPN-lFPN (l) for meta-analysis in CHIMGEN and IMAGEN-FU2. We exclude SUWCH center from CHIMGEN for all meta-analysis 

and Dublin center from IMAGEN for the meta-analysis of brain functional features, because there are only 8 and 10 participants from each site, which 

more than the numbers of covariates while performing Spearman correlation analysis.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Susceptibility analysis of individual satellite measures with brain (a-d) and behaviors (e-h) using distributed lag models in 

CHIMGEN. a. There are significant associations of lifetime night-time light with the mPFC-ROI GMV (ages of 4–14 years) and SA (5–12 years), WNFC in 

aDMN (3–11 years) during childhood and adolescence, with cerebellum-ROI GMV (3–7 years), WNFCs in CN (0–6 years), mVN (0–6 years), lVN (3–10 

years), BNFCs in aDMN-CN (4–7 years), aDMN-ECN (4–6 years), aDMN-rFPN (4–6 years) and rFPN-lFPN (4–6 years) during childhood in CHIMGEN. 

b. There are significant associations of lifetime built-up% with the mPFC-ROI GMV (5–16 years) and WNFC in aDMN (4–14 years) during childhood and 

adolescence, with WNFCs in mVN and lVN (14–20 years) during adolescence, with mPFC-ROI SA (5–7 years), cerebellum-ROI GMV (1–10 years), WNFC 

in CN (1–10 years), BNFCs in aDMN-CN (4–10 years), aDMN-ECN (5–7 years), aDMN-rFPN (4–10 years) and rFPN-lFPN (4–6 years) during childhood 

in CHIMGEN. c. There are significant associations of lifetime cropland% with the mPFC-ROI GMV (5–15 years) during childhood and adolescence, with 

mPFC-ROI SA (5–6 years), cerebellum-ROI GMV (4–6 years), WNFCs in aDMN (4–6 years), CN (4–6 years) and lVN (4–10 years), BNFCs in aDMN-CN 

(0–9 years), aDMN-ECN (2–7 years), aDMN-rFPN (4–10 years) and rFPN-lFPN (4–6 years) during childhood in CHIMGEN. d. We find significant 

associations of lifetime NDVI with the mPFC-ROI GMV (5–15 years) and BNFC in rFPN-lFPN (6–17 years) during childhood and adolescence, with WNFCs 

in aDMN (5 years old) and CN (5 years old), BNFCs in aDMN-CN (4–11 years) and aDMN-rFPN (4–10 years) during childhood in CHIMGEN. There are 

significant correlations of lifetime night-time light (e), built-up% (f), cropland % (g) and NDVI (h) with reaction time for perspective-taking performance 

during adolescence (ages of 5–16 years for night-time light, 4–17 years for built-up %, 5–19 years for cropland % and 4–17 years for NDVI) in CHIMGEN. 

Significant correlations of lifetime night-time light (e), built-up % (f), cropland % (g) and NDVI (h) with increasing depression measured by BDI are also 

observed during childhood in CHIMGEN (0–6 years for night-time light, 2–9 years for built-up %, 0–9 years for cropland % and 3–11 years for NDVI). 

The y-axis represents the changes of brain behaviors associated with an increase of interquartile range of individual satellite measures; the x-axis is 

individual satellite measure lag in ages. Grey areas indicate 95% CIs. A susceptibility window is identified for the ages where the estimated pointwise 95% 

CI (shaded area) does not include zero. The blue solid lines indicate negative correlations and red ones indicated positive correlations. aDMN, anterior 

default mode network; BDI, Beck depression index; BNFC, between-network functional connectivity; CN, cerebellar network; CT, cortical thickness; GMV, 

grey matter volume; lVN, lateral visual network; mPFC, medial prefrontal cortex; mVN, medial visual network; RTpt, reaction time for perspective-taking; 

SA, surface area; WNFC, within-network functional connectivity.
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Extended Data Fig. 8 | Seventeen RSNs identified by independent component analysis in CHIMGEN. aDMN, anterior default mode network; AN, 

auditory network; aSN, anterior cingulate cortex part of salience network; CN, cerebellar network; dAN, dorsal attentional network; dSMN, dosal 

sensorimotor network; ECN, executive control network; inSN, insular part of salience network; lFPN, left frontal parietal network; LN, language network; 

lVN, lateral visual network; mVN, medial visual network; pDMN, posterior default mode network; PN, precuneus network; rFPN, right frontal parietal 

network; RSNs, resting-state networks; vAN, ventral attentional network; vSMN, ventral sensorimotor network.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Voxel-wise correlations of individual satellite measures with WNFCs and BNFCs in CHIMGEN (n = 2156) and IMAGEN (n = 315). 

a–f. In CHIMGEN, there are negative correlations (blue) of mean UrbanSat (a) and mean night-time light before 18 years (b) with WNFC in the mPFC 

of the aDMN, positive correlations (red) with WNFCs in the left CV of the CN and left LG of the mVN and lVN (FWE Pc<0.05). c. There are negative 

correlations (blue) of mean built-up% before 18 years with WNFC in the mPFC of the aDMN and positive correlations (red) with WNFC in the left LG 

of the lVN (FWE Pc<0.05). d. There are negative correlations (blue) of mean cropland% before 18 years with WNFCs in the CV of the CN and the left 

LG of the lVN (FWE Pc<0.05). e. There is no correlation of mean NDVI with WNFC of any RSN surviving the multiple correction. f. There are negative 

correlations (blue) of mean population density from GHSL before 18 years with WNFC in the mPFC of the aDMN, positive correlations (red) with WNFCs 

in the left CV of the CN and the left LG of the mVN (FWE Pc<0.05). g–l. In IMAGEN, there are negative correlations (blue) of mean UrbanSat (g), night-

time light (h), built-up% (i) before 18 years with WNFC in the mPFC of the aDMN, positive correlations (red) with WNFC in the CV of the CN (FWE 

Pc<0.05). j. There are negative correlations (blue) of mean cropland before 18 years with WNFC in the CV of the CN (FWE Pc<0.05). k. There is no 

correlation of mean NDVI with WNFC of any RSN surviving the multiple correction. l. There are negative correlations (blue) of mean population density 

from GHSL before 18 years with WNFC in the mPFC of the aDMN, and positive correlation (red) with WNFC in the CV of the CN (FWE, Pc<0.05). 

m–p. The mean built-up% (m) (N = 32), cropland% (n) (N = 41), NDVI (o) (N = 1) and population density (p) (N = 52) show correlations with BNFCs in 

CHIMGEN. The red line indicates positive correlations of UrbanSat with BNFCs and blue line indicated negative correlations. N indicates the numbers of 

significant correlations of BNFCs. aDMN, anterior default mode network; CV, cerebellar vermis; CN, cerebellar network; GHSL, global human settlement 

layers; LG, lingual gyrus; lVN, lateral visual network; mPFC, medial prefrontal cortex; mVN, medial visual network; NDVI, normalized difference vegetation 

index; WNFC, within-network functional connectivity.
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Extended Data Fig. 10 | The schematic summary of ball tossing game task design, which measures perspective taking and agency performance. ACT, 

active agency; 1PP, first-person perspective; 3PP, third-person perspective; PAS, passive agency.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection In CHIMGEN and IMAGEN datasets, Google earth engine was applied to collect the physical environment data (nightlight, 

NDVI,NDBI,NDWI,global land cover mapping) based on the subjects' geolocation. T1-weighted imaging, diffusion tensor imaging and resting-

state functional imaging were acquired using 3.0 Tesla MRI scanners at each center. And  paper-based questionnaire and E-Prime 2.0 software 

was used to collect some of behavioral data.

Data analysis R package lavaan, R package mice, R package meto, MATLAB and SPSS was used to analysis remote sensing data for physical environment and 

behavioral data. And Statistical Parametric Mapping software package (SPM12), FMRIB’s Software Library (FSL v6.0.1) toolbox , Freesurfer, 

Data Processing Assistant for Resting-State fMRI (DPARSFA) and Group ICA Of fMRI Toolbox (GIFT) were used to analysis neuroimaging data.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The raw remote sensing data are free access from Google earth engine. The raw neuroimaging data and behavioral data that support the findings of this study are 

available from the corresponding author upon reasonable request. These data were used to generate images in Table 1 ,Figs. 1-5, all supplementary Tables and Figs.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 1. UrbanSat 

CHIMGEN: n=3306; 

IMAGEN:n=561; 

2. Participants with remote sensing data and neuroimage data:  

CHIMGEN:  

GMV (n=2176); CT and SA (n=2164);TBSS (n=2158);WNFC and BNFC (n=2156) 

IMAGEN: 

GMV(FU2,n=415; BL-FU2=340); CT and SA (FU2,n=420;BL-FU2, n=325); TBSS (FU2, n=436;BL-FU2, n=321); WNFC and BNFC (FU2, n=351;BL-

FU2,n= 83);  

3. Participants with remote sensing data and behavioral data 

CHIMGEN: 

CVLT-II (n=2173); N-back(n=2063);SDMT(n=2139); PT(n=2148); Go/no-go(n=2024); Depression(n=2170); Anxiety(n= 2170) 

IMAGEN: 

PT(n=342); Depression(n=346); Anxiety(n=447; n=391)

Data exclusions CHIMGEN: 

(1) Excluding participants without lifetime residential information 

Among the 5425 participants, 3336 participants had provided lifetime residential geographies. The remaining 2089 participants were excluded 

because they only provided their residential addresses at the time point of recruitment but they refused to provide their residential addresses 

at any other time points since birth. From the 3336 participants, we successfully extracted satellite-based measures of urbanicity of 3306 

participants. The other 30 participants were excluded because extracting satellite measures failed in more than three years during their 

lifetime. 

(2) Excluding participants without confounding covariates 

Potentially confounding covariates including age, gender, education, site, body mass index (BMI), genetic population stratification, 

socioeconomic status (SES), total intracranial volume (TIV), mean cortical thickness (MCT) and total surface area (TSA) were corrected in the 

correlation analyses of satellite based-measure of urbanicity with brain and behavior. Complete information of confounders was available in 

2176 participants, with 1130 participants being excluded from the 3306 participants with lifetime geopositioned data. 

(3) Excluding participants without qualified neuroimaging data 

For each neuroimaging measure, we had to exclude participants with unqualified raw imaging data and participants failed to pass the quality 

control (QC) during imaging data preprocessing. In the 2176 participants, 2176 participants were included in the voxel-based morphometry 

(VBM) analysis of gray matter volume (GMV) and 2164 participants in the surface-based morphometry (SBM) analysis of cortical thickness 

(CT) and surface area (SA) based on T1-weighted neuroimaging data ; 2158 participants in the Tract-based Spatial Statistics (TBSS) analysis of 

fractional anisotropy (FA) based on diffusion tensor imaging (DTI) data; and 2156 participants in the within-network (WNFC) and between-

network (BNFC) functional connectivity analyses based on resting-state functional MRI (rsfMRI) data. 

(4) Excluding participants without qualified behavioral assessments 

For each behavioral measure analysis, we had to exclude participants without qualified behavioral assessment. In the 2176 participants with 

at least one type of the qualified MRI data, 2173 participants were finally included in the analysis of verbal learning memory, 2063 in working 

memory, 2139 in information processing speed, 2148 in social cognition, 2024 in cognitive control, and 2170 in mental health.  

IMAGEN: 

(1) Excluding participants without lifetime residential information 

Among the 1411 participants of IMAGEN-FU2, 561 participants provided lifetime residential geographies. All participants’s satellite-based 

measures of urbanicity at each year have been extracted successfully. 

(2) Excluding participants without confounding assessments  

From these 561 participants, we excluded 79 participants without the confounding assessments (SES, parental history of mental illness and 

genetic population stratification) and the remaining 482 participants were included in the further analysis.  

(3) Excluding participants without qualified neuroimaging data 

Among the remaining 482 participants (FU2), 415 participants were included in VBM analysis after passing QC; 420 participants in SBM 

analysis; 436 participants in TBSS analysis; and 351 participants in WNFC and BNFC analyses. Participants with both BL (age 14) and FU2 (age 

19) imaging data after QC were used in brain development analyses, including 340 participants in VBM analysis, 325 participants in SBM 

analysis, 396 participants in TBSS analysis, and 83 participants in WNFC and BNFC analyses. It is notable that during IMAGEN baseline 

assessment in the year of 2009, resting state MRI was only carried out in 156 participants. 

(4) Excluding participants without qualified behavioral assessments 

Among the 482 participants (FU2), complete data of perspective taking was available in 342 participants, Ruminating Scale Questionnaire 

(RSQ) in 346 participants, Generalized Anxiety Scale from The Development and Well-Being Assessment Interview (DAWBA-GA) in 447 

participants and Anxiety Screening for Composite International Diagnostic Interview (CIDI-DIA) in 391 participants.  

Replication The results from CHIMGEN could be replicated in IMAGEN datasets
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Randomization Our study aims to test the effect of global urbanicity on brain development and behaviors. We don't have group allocation

Blinding Our study aims to test the effect of global urbanicity on brain development and behaviors. We don't have group allocation

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics CHIMGEN: 

n=3306; 

age(mean/SD)=24.00/3.00 

Male/Femal=1213/2093 

IMAGEN: 

n= 561 

age(mean/SD)=18.74/0.97 

Male/Female=254/307 

Recruitment CHIMGEN project has 31 centers, IMAGEN project has 8 centers. The written informed consent is obtained from each 

participant of two datasets. 

Ethics oversight The CHIMGEN and IMAGEN project were approved by the ethic committee of each sub-center. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type In CHIMGEN and IMAGEN datasets, T1-weighted imaging, diffusion tensor imaging and resting-state functional imaging 

were acquired using 3.0 Tesla MRI scanners. 

Design specifications Please see the below sequence & imaging parameters

Behavioral performance measures 1. Verbal learning memory (Calfornia verbal learning test) 

2. Working memory (N-back test) 

3. Information processing speed (Symbols Digit Modality Test ) 

4. Social cognition 

CHIMGEN: In Ball tossing game, we record the accuracy and reaction time in perspective taking session and agency 

session, respectively; 

IMAGEN: perspective taking, fantasy, empathic concern and personal distress score from Interpersonal Reactivity Index 

(IRI) questionnaire was recorded; 

5. Executive control (Go-No go test) 

6. Mental health 

CHIMGEN: Beck Depressive Inventory and State-Trait Anxiety Inventory  

IMAGEN: Ruminating Scale, International Diagnostic Interview and The Development and Well-Being Assessment 

Interview 
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Acquisition

Imaging type(s) structural, diffusional and functional

Field strength 3.0 Tesla

Sequence & imaging parameters CHIMGEN:  

1. T1 weighted images acquisition. For the Discovery™ MR750 scanner, sagittal high-resolution three-dimensional T1-

weighted imaging were acquired by Brain Volume imaging (3D-BRAVO) series with the following parameters: repetition 

time (TR)/echo time (TE) = 8.14/3.17 ms; inversion time (TI) = 450 ms; field of view (FOV) = 256mm × 256 mm; matrix = 

256 × 256; flip angle (FA) = 12°, slice thickness (ST) = 1 mm; no gap; 188 sagittal slices. For the TrioTim Verio Skyra 

scanner, sagittal high-resolution three-dimensional T1-weighted imaging data were acquired by magnetization prepared 

gradient-echo (MP-RAGE) series with the following parameters: TR/TE = 2000/3.44 ms; TI = 900 ms; FOV = 256mm × 

256 mm; matrix = 256 × 256; FA = 9°; ST = 1 mm; no gap; 192 sagittal slices;  

2. Diffusion tensor images (DTI) acquisition 

For the Discovery™ MR750 scanner, diffusion tensor images were acquired using spin-echo single-shot diffusion tensor 

echo plannar imaging (SE-SS-DT-EPI) sequence with the following parameters: TR/TE = 6000/61 ms; FOV = 256mm × 256 

mm; matrix = 128 × 128; FA = 90°, ST = 3 mm; no gap; 50 axial slices; 64 diffusion gradient directions with b-value 1000 

s/mm2; 5 non-diffusion-weighted images (b = 0 s/mm2); For the TrioTim Verio Skyra scanner diffusion tensor images 

were also acquired using the SE-SS-DT-EPI with the following parameters: TR/TE = 6500/89 ms; FOV = 256mm × 256 

mm; matrix = 128 × 128; FA = 90°, ST = 3 mm; no gap; 50 axial slices; 64 diffusion gradient directions with b-value 1000 

s/mm2; 1 non-diffusion-weighted images (b = 0 s/mm2). 

3. Resting-state fMRI acquisition 

For the Discovery™ MR750 scanner, resting-state functional MRI data were collected using gradient-echo single-shot 

echo-planar imaging (GRE-SS-EPI) with the following parameters: TR/TE = 2000/30 ms; FOV = 220mm × 220 mm; matrix 

= 64 × 64; FA = 90°; ST = 3 mm; gap=1mm; 40 interleaved transverse slices; 180 volumes. For the TrioTim Verio Skyra 

scanner, resting-state functional MRI data were also collected using GRE-SS-EPI with the following parameters: TR/TE = 

2000/30 ms; FOV = 220mm × 220 mm; matrix = 64 × 64; FA = 90°; ST = 3 mm; gaP=0.99 mm; 36 interleaved transverse 

slices; 180 volumes.  

IMAGEN: 

1. T1 weighted images acquisition 

High resolution sagittal three-dimensional T1 weighted MP-RAGE images were acquired according to the ADNI protocol 

(http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/) with the following standardized parameters across 

sites: TR/TE = 2300/2.8 ms; FA = 8°; matrix = 256×256; 160 volumes.  

2. DTI acquisition 

DTI were acquired using spin-echo single-shot diffusion tensor echo plannar imaging (SE-SS-DT-EPI) series with the 

following parameters: TR/TE = 6000/104 ms; FOV = 256mm × 256 mm; matrix = 128 × 128; FA = 90°, ST = 3 mm; no gap; 

60 axial slices; 32 diffusion gradient directions with b-value 1300 s/mm2. 

3. Resting-state fMRI acquisition 

Resting state fMRI scanning of the IMAGEN subjects were carried out at multiple sites with the following parameters: 

TR/TE = 2220/30ms; FOV = 218mm × 218mm; matrix = 64× 64; FA = 75°; ST = 2.4 mm; gap=3.4 mm; 164 volumes. 

 

Area of acquisition A whole brain scan

Diffusion MRI Used Not used

Parameters CHIMGEN: 

For the Discovery™ MR750 scanner, diffusion tensor images were acquired using spin-echo single-shot diffusion tensor echo plannar 

imaging (SE-SS-DT-EPI) sequence with the following parameters: TR/TE = 6000/61 ms; FOV = 256mm × 256 mm; matrix = 128 × 128; 

FA = 90°, ST = 3 mm; no gap; 50 axial slices; 64 diffusion gradient directions with b-value 1000 s/mm2; 5 non-diffusion-weighted 

images (b = 0 s/mm2); For the TrioTim Verio Skyra scanner diffusion tensor images were also acquired using the SE-SS-DT-EPI with the 

following parameters: TR/TE = 6500/89 ms; FOV = 256mm × 256 mm; matrix = 128 × 128; FA = 90°, ST = 3 mm; no gap; 50 axial slices; 

64 diffusion gradient directions with b-value 1000 s/mm2; 1 non-diffusion-weighted images (b = 0 s/mm2). 

IMAGEN: 

DTI were acquired using spin-echo single-shot diffusion tensor echo plannar imaging (SE-SS-DT-EPI) series with the following 

parameters: TR/TE = 6000/104 ms; FOV = 256mm × 256 mm; matrix = 128 × 128; FA = 90°, ST = 3 mm; no gap; 60 axial slices; 32 

diffusion gradient directions with b-value 1300 s/mm2.

Preprocessing

Preprocessing software 1. Gray matter volume (GMV) calculation based on T1 weighted image: Computational Anatomy Toolbox (CAT12 v1364) 

(http://dbm.neuro.uni-jena.de/cat) implemented in Statistical Parametric Mapping (SPM12) software package (http://

www.fil.ion.ucl.ac.uk/spm)  

2. Cortical thickness and surface area based on T1 weighted image: Freesurfer v6.0.0 (http://surfer.nmr.mgh.harvard)  

2. Tract based spatial statistics (TBSS) calculation based on DTI data: FSL v6.0.1 toolbox was used both in CHIMGEN and 

IMAGEN. 

3. Within- and between functional network connetivity (WFNC and BNFC) calculation based on resting-state functional 

imaging data:  

CHIMGEN:  

Data Processing Assistant for Resting-State fMRI (DPARSFA) v4.4  

IMAGEN: 
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FSL v5.0.9 and Advanced Normalization Tools (ANTs v1.9.2)  

Group ICA Of fMRI Toolbox (GIFT) software v4.0 was used to construct brain functional network in both datasets.  

Normalization Non-linear

Normalization template 1. Gray matter volume (GMV) calculation based on T1 weighted image: Montreal Neurological Institute (MNI) space; 

2. Tract based spatial statistics (TBSS) calculation based on DTI data: MNI space 

3. Resting-state functional MRI data: standard echo planar image (EPI) template 

Noise and artifact removal 1. Gray matter volume (GMV) calculation based on T1 weighted image: correct for variance in individual brain sizes; 

2. Tract based spatial statistics (TBSS) calculation based on DTI data: correct for eddy currents and subject movement 

3.Resting-state functional MRI data: correct for six rigid-body realignment parameters and average BOLD signals of the whole 

brain and ventricular and white matter regions 

Volume censoring Rigid realignment was performed to estimate and correct the motion displacement. Subjects had a maximum displacement 

in one or more of the orthogonal directions (x, y, z) of > 2 mm or a maximum rotation (x, y, z) > 2.0° were excluded.

Statistical modeling & inference

Model type and settings For the remote sensing data, confirmatory factor model was applied to construct UrbanSat, a index for urbanicity. For the 

relation between UrbanSat and neuroimaging, multiple regression model was applied.  For the relation between UrbanSat 

and behaviours, spearman correlation was applied. For the relation between UrbanSat, brain and behaviour, multple 

mediation analysis was applied. 

Effect(s) tested Comparative Fit Index (CFI), Akaike(AIC), sample-size adjusted Bayesian(BIC), root mean square error of approximation 

(RMSEA), standard root mean square residual (SRMR), Tucker-Lewis index (TLI), T value , effect size Phi value, effect size  r 

coefficient, r value, SE, 95% CI, z value and I2 statistics in meta analysis, Spearman rho value 

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

voxel-wise

Correction FWE correction, TFCE non-parameter correction and permutation test

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity partial correlation
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