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A B S T R A C T

Parkinson’s disease (PD) patients have higher rates of melanoma and vice versa, observations suggesting that the
two conditions may share common pathogenic pathways. β-Catenin is a transcriptional cofactor that, when
concentrated in the nucleus, upregulates the expression of canonical Wnt target genes, such as Nurr1, many of
which are important for neuronal survival. β-Catenin-mediated activity is decreased in sporadic PD as well as in
leucine-rich repeat kinase 2 (LRRK2) and β-glucosidase (GBA) mutation cellular models of PD, which is the most
common genetic cause of and risk for PD, respectively. In addition, β-catenin expression is significantly de-
creased in more aggressive and metastatic melanoma. Multiple observational studies have shown smokers to
have significantly lower rates of PD as well as melanoma implying that tobacco may contain one or more
elements that protect against both conditions. In support, smoker’s brains have significantly reduced levels of α-
synuclein, a pathological intracellular protein found in PD brain and melanoma cells. Tobacco contains very high
lithium levels compared to other plants. Lithium has a broad array of neuroprotective actions, including en-
hancing autophagy and reducing intracellular α-synuclein levels, and is effective in both neurotoxin and
transgenic preclinical PD models. One of lithium’s neuroprotective actions is enhancement of β-catenin-medi-
ated activity leading to increased Nurr1 expression through its ability to inhibit glycogen synthase kinase-3 β
(GSK-3β). Lithium also has anti-proliferative effects on melanoma cells and the clinical use of lithium is asso-
ciated with a reduced incidence of melanoma as well as reduced melanoma-associated mortality. This is the first
known report hypothesizing that inhaled lithium from smoking may account for the associated reduced rates of
both PD and melanoma and that this protection may be mediated, in part, through lithium-induced GSK-3β
inhibition and consequent enhanced β-catenin-mediated activity. This hypothesis could be directly tested in
clinical trials assessing lithium therapy’s ability to affect β-catenin-mediated activity and slow disease pro-
gression in patients with PD or melanoma.

Background

Epidemiologic studies have shown cigarette smokers to have a re-
duced risk of Parkinson’s disease (PD) with large prospective cohort
studies showing a mean 77% reduced risk [1]. Although reverse caus-
ality may be a contributing factor (i.e. preclinical PD causing smoking
aversion or smoking cessation) [2]; reduced rates of PD in those ex-
posed to second hand smoke, findings from monozygotic twin studies
and historical variations in PD incidence being inversely correlated
with variations in smoking behavior suggest that tobacco contains one
or more neuroprotective elements that can reduce the incidence of PD
[3–7]. Out of the hundreds of compounds in tobacco, nicotine has re-
ceived the most attention; however, the fact that 1-year of nicotine
patch therapy led to worse clinical outcomes than placebo patch

therapy in the recent NIC-PD trial makes it unlikely that nicotine
therapy can provide disease-modifying benefit in PD [8]. This raises the
possibility that there may be other element(s) in tobacco accounting for
the strong and consistent PD risk reduction observed in smokers.

Another consistent human epidemiologic finding is the approximate
3-fold increased incidence of melanoma in PD patients [9,10]. Also,
having a personal or family history of melanoma; but not colorectal,
lung, prostate or breast cancer; is associated with significant increased
risks for PD [11,12]. These observations suggest that PD and melanoma
share common genetic risks and/or pathogenic molecular pathways. In
addition, 86–89% of malignant melanoma and benign melanocytic le-
sions contain α-synuclein, the pathologic hallmark of PD, while non-
melanocytic cutaneous carcinoma and normal skin do not contain α-
synuclein, which further supports a common pathogenic etiology
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between PD and melanoma [13]. Interestingly, large prospective stu-
dies show male smokers to have a significant 37–47% decreased risk of
developing melanoma with up to a 68% reduced risk associated with
smoking > 15 cigarettes per day [14,15]. Therefore, tobacco may
contain one or more elements that targets a pathogenic pathway
common to PD and melanoma leading to reduced incidences of both
conditions in smokers.

As in PD, nicotine was proposed as an element in tobacco poten-
tially providing protection against incident melanoma, although nico-
tine has never been shown to be cytotoxic to or to prevent proliferation
of melanoma cells [14]. On the contrary, nicotine has been shown to
stimulate the proliferation of lung and pancreatic cancer cells [16].
Smoking-induced downregulation of Notch pathway gene expression
was proposed to account for reduced melanoma incidence in smokers
[14,17]. However, cells expressing α-synuclein were shown to have
reduced Notch levels and neuronal survival, the latter of which was
reversed by overexpression of the Notch intracellular domain [18].
These data imply that smoking would recapitulate, not interfere with,
pathophysiology implicated in α-synuclein-mediated neuronal toxicity.
Several theories have been proposed regarding shared pathophysiology
between PD and melanoma including alterations in melanin synthesis,
tyrosine metabolism, α-synuclein expression and autophagy as well as
several genetic variations [9,11,19–21]. However, none of these the-
ories has incorporated how smoking may influence these pathways and
lead to the reduced associated incidences of both PD and melanoma.

Hypothesis: Inhaled lithium accounts for the reduced risks of PD and
melanoma in smokers by enhancing β-catenin-mediated activity.

In 1980, high levels of lithium were reported in tobacco from India:
levels about 20-fold higher than any plant or animal food tested [22].
Our group recently reported that tobacco from the popular western
cigarette brands, Camel and Marlboro, has as high or higher lithium
levels than Indian tobacco [23]. Although it is not known how much of
the inhaled lithium is systemically absorbed from cigarette smoking, we
estimated that a pack-per-day smoker may absorb about 169–338 µg of
lithium/day. For perspective, a daily oral lithium dose of 300 µg for
15months was shown to significantly slow cognitive decline in a ran-
domized controlled trial among 110 patients with early Alzheimer’s

disease [24]. Furthermore, a large Danish epidemiologic study recently
found significantly reduced rates of dementia and Alzheimer’s disease
in municipalities with the highest levels of lithium in the drinking water
[25]. Therefore, it is plausible that daily microdose lithium exposures in
pack-per-day smokers could potentially prevent or slow neurodegen-
erative disease. Use of prescription lithium carbonate has also been
associated with significantly reduced rates of dementia and Alzheimer’s
disease [26–28]. It was also proposed that the current lack of epide-
miologic data associating prescription lithium use with a reduced in-
cidence of PD may be due to the common occurrence of lithium-in-
duced hand tremors being misdiagnosed as PD [29] when dosed for
mood stabilization (about 600–2000mg/day) [23]. Because lithium-
induced hand tremors are dose related, such tremors would not be
expected to occur from daily exposure to 169–338 µg of lithium in pack-
per-day cigarette smokers and, therefore, not obfuscate its potential
ability to reduce incident PD in this population.

Lithium carbonate was FDA-approved in 1970 for treating bipolar
disorder, although its mechanism of action has never been clearly un-
derstood for this indication. In addition to its symptomatic benefits for
bipolar disorder, lithium also has several neuroprotective actions in-
cluding decreasing the aggregation and phosphorylation of α-synuclein
and tau; enhancing autophagy and reducing oxidative stress, in-
flammation, microglia activation and apoptosis [30–34]. Lithium has
also demonstrated neuroprotective effects in several animal models of
PD including neurotoxin and transgenic models [35–37]. There is
substantial evidence supporting prion-like intraneuronal accumulation
and interneuronal spread of toxic oligomeric α-synuclein as primary
mediators of progressive neuronal demise in PD [38]. The autophagy-
lysosomal pathway is a key route for degradation of intracellular ag-
gregate-prone proteins such as α-synuclein; however, α-synuclein itself
leads to impaired autophagy and lysosomal function [39], which then
impairs the cell’s ability to clear α-synuclein (Fig. 1). Therefore,
therapies that can increase the clearance and/or reduce the formation
of α-synuclein may break this vicious cycle of α-synuclein accumulation
and neuronal demise and potentially offer disease-modifying effects in
PD.

Lithium can enhance autophagy and directly reduce α-synuclein

Fig. 1. Hypothesis explaining the reduced rates
of Parkinson’s disease and melanoma in smokers.
Legend: Li: lithium, pathLRRK2: Parkinson’s dis-
ease-causing mutations in leucine-rich repeat
kinase 2 gene, pathGBA: neuronopathic muta-
tions in β-glucosidase gene, GSK-3β: glycogen
synthase kinase-3β, α-syn: α-synuclein, Nurr1:
orphan nuclear receptor Nurr1, lyso. fxn.: lyso-
somal function. Green/red arrows depict actions
that increase/decrease activity or protein levels.
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levels via inhibition of inositol monophosphate [33]. In addition to
stimulating autophagic clearance of intraneuronal α-synuclein, lithium
also enhances β-catenin-mediated activity leading to increased ex-
pression of the orphan nuclear receptor Nurr1, which can decrease the
formation of α-synuclein (Fig. 1) [40,41]. In support, post-mortem
brains of heavy smokers have significantly reduced α-synuclein de-
position compared to non-smokers [42]. Inhaled lithium from smoking
could account for this finding through enhanced autophagy via inositol
monophosphatase inhibition and reduced expression of α-synuclein via
enhanced β-catenin-mediated activity. β-Catenin is a transcriptional
cofactor that, when concentrated in the nucleus, upregulates the ex-
pression of canonical Wnt (Wingless/Integration) target genes, such as
Nurr1, many of which regulate neuronal survival, axonal outgrowth
and synaptic integrity [43]. Nurr1 regulates the expression of several
genes essential for dopaminergic neuronal differentiation, maintenance
and survival [44]. Nurr1 levels are significantly reduced by about 65%
in PD substantia nigra neurons expressing α-synuclein and 61% in PD
peripheral blood mononuclear cells (PBMCs) compared to healthy
controls [45,46]. Several Nurr1 gene mutations have also been identi-
fied as genetic risks for both familial and sporadic PD [44]. Nurr1 ex-
pression in human SN decreases with increasing age, the major risk
factor for PD, and is highly correlated with expression of tyrosine hy-
droxylase, the rate-limiting step in dopamine production [47].

Besides its specific influence on Nurr1 expression, decreased β-ca-
tenin-mediated activity has also been implicated in the pathophysiology
of sporadic PD [43] as well as leucine-rich repeat kinase 2 gene mu-
tations (pathLRRK2) [48], the most common genetic cause of PD, and
neuronopathic mutations in the β-glucosidase gene (pathGBA) [49], the
most common monoallelic genetic risk for PD. PathLRRK2 causes a late-
onset parkinsonism clinically indistinguishable from sporadic PD and
with very similar pathology [48]. As a result, there has been much
interest in identifying pathLRRK2 physiology to identify potential PD
disease-modifying therapeutic targets.

Strong evidence supporting reduced β-catenin-mediated activity in
pathLRRK2 PD pathophysiology stems from the finding that β-catenin-
mediated activity is significantly decreased in several pathLRRK2 cel-
lular models but is significantly increased in cells carrying the PD
protective LRRK2 mutation, R1398H, compared to wild-type LRRK2
[48]. β-Catenin is regulated, in part, via phosphorylation by glycogen
synthase kinase-3β (GSK-3β) leading to its further ubiquitination and
eventual proteasomal degradation [43]. Use of GSK-3β inhibitors, such
as lithium, decreases β-catenin phosphorylation and increases β-ca-
tenin-mediated transcription activity, such as Nurr1 expression (Fig. 1)
[40]. As noted, monoallelic pathGBA, which codes for the lysosomal
enzyme β-glucocerebrosidase, is the most common genetic risk for
sporadic PD and, like pathLRRK2, likely produces pathophysiology
clinically relevant for sporadic PD. Induced pluripotent stem cells with
pathGBA show impaired lysosomal function leading to increased levels
of activated GSK-3β, reduced canonical Wnt/β-catenin signaling, im-
paired ability to differentiate into dopaminergic cells and reduced
survival (Fig. 1). These pathGBA cellular findings were all reversed with
activation of the canonical Wnt/β-catenin pathway or with use of re-
combinant β-glucocerebrosidase [49]. Proper lysosomal activity is be-
lieved to regulate β-catenin levels through lysosomal sequestration of
activated GSK-3β leading to reduced cytosolic β-catenin phosphoryla-
tion and degradation [49]. Thus, lysosomal dysfunction can contribute
to neuronal demise in PD by directly impairing the degradation of toxic
α-synuclein species as well as by reducing β-catenin levels and β-ca-
tenin-mediated activity, such as Nurr1 expression, which are important
for neuronal survival (Fig. 1).

β-Catenin-mediated activity is also implicated in melanoma patho-
physiology. β-Catenin expression is significantly decreased in more
aggressive and metastatic melanoma compared to less aggressive mel-
anoma and non-malignant melanocytic naevi [50]. Transcriptional
profiling has revealed that activation of the Wnt/β-catenin pathway
leads to upregulation of several genes that are lost in aggressive

melanomas compared to normal melanocytes [50]. Patient survival is
also positively correlated with melanoma nuclear β-catenin levels.
Furthermore, use of a GSK-3β inhibitor was shown to increase β-ca-
tenin-mediated activity and cell death in melanoma cells [51] and li-
thium was also shown to inhibit melanoma cell proliferation, in vitro
[50]. Finally, a large epidemiologic study showed clinical use of lithium
to be associated with a significantly reduced incidence of melanoma as
well as reduced melanoma-associated mortality (Fig. 1) [52]. It should
be noted, however, that the vast majority of patients taking lithium
would be expected to have bipolar disorder, which may have in-
troduced a bias in this study’s results, although no link between bipolar
disorder and melanoma has been previously reported. Also, the lithium
dosages used to treat bipolar disorder are several orders of magnitude
higher than those to which smokers may be exposed, which may be
relevant in terms of melanoma prevention.

A single observational study showed patients with Gaucher’s dis-
ease, an inherited lysosomal storage disease caused by biallelic
pathGBA, to have over 3-fold the risk of developing melanoma com-
pared to people without Gaucher’s [53]. This observation suggests that
lysosomal dysfunction may also contribute to melanoma pathophy-
siology, similar to PD, leading to the intracellular α-synuclein accu-
mulation seen in both conditions (Fig. 1) [13,39].

Although PD is associated with higher rates of melanoma, PD is also
associated with significantly lower rates of several non-skin cancers;
including colorectal, hematologic, prostate and lung cancers; and a
lower risk of dying from cancer [19,54]. These disparities may be re-
lated to β-catenin-mediated activity differentially influencing the in-
cidence of various cancers. For example, reduced β-catenin-mediated
activity has been implicated in melanoma etiology while increased β-
catenin-mediated activity, from constitutively activated Wnt/β-catenin
signaling, has been implicated in the etiology of many other cancers
especially colorectal cancer [55]. Thus, reduced β-catenin-mediated
activity in PD may partially explain both the associated increased in-
cidence in melanoma and decreased incidences in other cancers. Use of
prescription lithium has not been associated with increased incidences
of any cancers [56].

Conclusions

This is the first known report hypothesizing that high lithium levels
in tobacco may account for the reduced rates of both PD and melanoma
in smokers and that these observations may be mediated through li-
thium-induced GSK-3β inhibition and consequent enhanced β-catenin-
mediated activity. Because of the consistent link found in observational
studies between PD and melanoma and their shared pathophysiology
[9,11,13,43,48–50,53], therapies known to inhibit GSK-3β and/or en-
hance β-catenin-mediated activity should be considered for investiga-
tion in PD and melanoma clinical trials. In particular, clinical in-
vestigation of low-dose lithium therapy in PD is merited considering
lithium’s significant neuroprotective effects in preclinical PD models
and abilities to inhibit GSK-3β and enhance β-catenin-mediated ac-
tivity, actions implicated as beneficial based on genetic contributions to
PD [35–37,40,48,49]. Also, low-dose lithium therapy appears to be well
tolerated clinically in PD and may provide symptomatic benefit [57].
The possibility that inhaled lithium from smoking could account for the
77% reduced risk of PD in smokers provides additional support to in-
vestigate lithium’s potential disease-modifying effects in PD as was
recently performed for nicotine therapy based on similar justifications
[8]. These data also support exploring GSK-3β and β-catenin-mediated
activity, perhaps in PBMCs, as potential therapeutic biomarkers of
disease-modifying therapies in PD and melanoma.
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