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Differences in DNA sequences between people are an 
important source of individual differences in their psy-
chology (Turkheimer, 2000). More closely related rela-
tives more strongly resemble one another in factors 
such as memory, intelligence, personality, self-esteem, 
physical health, and mental health; everything is heri-
table (Polderman et al., 2015). Yet these family-based 
estimates of heritability are “black boxes” regarding 
mechanisms: Heritability estimates reveal neither which 
genetic variants are important nor how differences in 
DNA sequences result in, for example, a person being 
smarter, more prone to depression, or more likely to 
have a psychotic break.

Still a Black Box? From Twin Studies 
to Genome-Wide Association Studies 
(GWASs)

Now, GWASs (see the Appendix for a glossary of key 
terms used in this article) are peering inside the black 

box of heritability. The GWAS method is hypothesis 
free, meaning that it does not focus on specific genetic 
variants selected on the basis of prior knowledge about 
biological function. Rather, a GWAS surveys genetic 
variation across the genome. Each one of millions of 
common genetic variants known as single-nucleotide 
polymorphisms (SNPs) is tested, with a rigorous statisti-
cal correction to control the Type I error rate. Despite 
initial skepticism, GWAS discoveries for human diseases, 
traits, and behaviors now number in the thousands 
(Visscher et al., 2017). Specific SNPs have been identified 
in GWASs of psychology-relevant phenotypes, including 
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Abstract
Genome-wide association studies (GWASs) have identified specific genetic variants associated with complex human 
traits and behaviors, such as educational attainment, mental disorders, and personality. However, small effect sizes 
for individual variants, uncertainty regarding the biological function of discovered genotypes, and potential “outside-
the-skin” environmental mechanisms leave a translational gulf between GWAS results and scientific understanding 
that will improve human health and well-being. We propose a set of social, behavioral, and brain-science research 
activities that map discovered genotypes to neural, developmental, and social mechanisms and call this research 
program phenotypic annotation. Phenotypic annotation involves (a) elaborating the nomological network surrounding 
discovered genotypes, (b) shifting focus from individual genes to whole genomes, and (c) testing how discovered 
genotypes affect life-span development. Phenotypic-annotation research is already advancing the understanding of 
GWAS discoveries for educational attainment and schizophrenia. We review examples and discuss methodological 
considerations for psychologists taking up the phenotypic-annotation approach.

Keywords
genetics, GWAS, gene–environment correlation, polygenic scores, development

http://www.psychologicalscience.org/cdps
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0963721418807729&domain=pdf&date_stamp=2019-01-09


2	 Belsky, Harden

neuroticism, schizophrenia, reproductive behavior, 
intelligence, and educational attainment (https://www 
.ebi.ac.uk/gwas/).

Despite the accelerating pace of GWAS discovery, 
heritabilities of human traits and behaviors largely 
remain black boxes. A key finding from GWASs has 
been confirmation that genetic influence on variation 
in most human phenotypes reflects the combined 
effects of very large numbers of individual genetic vari-
ants, each of which has a tiny effect size (R2 < .01; 
Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). 
However, discovered SNPs have turned up only rarely 
in or near the genes that researchers had hypothesized 
would be important, and, as we discuss below, the 
biology linking discovered SNPs to phenotypes is often 
unclear (Boyle, Li, & Pritchard, 2017). Thus, GWASs 
have opened the black box of heritability only to find 
thousands on thousands of smaller black boxes—geno-
types of uncertain function that are correlated with 
phenotypes via unknown mechanisms.

The dominant approach to making sense of GWAS 
results is bioinformatics annotation. To annotate is to 
add notes that explain and interpret a text. Bioinformat-
ics annotation takes the minimal text rendered by a 
GWAS, a list of associations between individual SNPs 
and a phenotype, and attempts to explain that text 
using insights from biology. For example, bioinformatics 
annotation might draw on research about which tissues 
and in what types of cells genes are expressed, how 
genes have changed over the course of human evolu-
tion, or whether gene products are targeted by known 
pharmacological agents (e.g., Wray et al., 2018). This 
approach is particularly powerful when (a) links 
between GWAS-identified variants and genes are clear 
(e.g., the SNP rs6265, a genome-wide significant “hit” 
in GWASs of obesity and smoking, changes the protein 
encoded by the gene BDNF from valine to methionine); 
(b) the biology of the phenotype is well known, as in 
GWASs of well-characterized blood molecules such as 
lipids; and (c) knowledge of genes relevant to that 
biology is available, as in GWASs of blood proteins, in 
which genes encoding the protein or its regulators are 
known.

Often, however, these three conditions are not met, 
and this may be especially true for GWASs of pheno-
types relevant to behavioral and brain scientists. In the 
first case, links between GWAS-identified variants and 
the genes whose function they affect are not straight-
forward. For example, an early GWAS discovery for 
obesity, a variant in the gene FTO, was recently revealed 
to influence obesity primarily through the regula-
tion not of FTO but of the gene IRX3, nearly 1 mil-
lion nucleotides away (Claussnitzer et al., 2015). This 

in-trans mechanism, in which a variant affects a phe-
notype by regulating a spatially distal gene, is likely to 
be common. For example, in a recent GWAS of blood 
proteins, 10% of replicated genome-wide significant 
associations were in trans, with some variants even on 
different chromosomes from DNA sequences known to 
encode those proteins (Suhre et al., 2017). In addition 
to the difficulty of annotating variants to genes, knowl-
edge of the biology that influences phenotypic variation 
is frequently incomplete ( Johnson et al., 2017). In fact, 
it is precisely this challenge that motivated the GWAS 
approach in the first place.

Finally, even a perfect understanding of biology 
would be an imperfect understanding of mechanism, 
because genetic effects can involve “outside-the-skin” 
processes—mechanisms that are not located entirely 
inside a person’s body or brain but rather operate 
through exposure to physical or social environments. 
For example, among the first GWAS discoveries for lung 
cancer were nicotine-receptor gene polymorphisms, 
which exert their effect via smoking behavior causing 
exposure to carcinogens in cigarette smoke (Wassenaar 
et al., 2011). Other, less-easy-to-annotate GWAS discov-
eries may similarly have biology → behavior → envi-
ronment → phenotype mechanisms of action on disease 
risk. In sum, small effect sizes, uncertain biology, and 
outside-the-skin processes leave a translational gulf 
between bioinformatics-annotated GWAS results and 
scientific understanding that can improve human health 
and well-being. We propose phenotypic annotation as 
a research agenda that can help bridge that gulf.

Phenotypic Annotation: DNA Variants 
as Building Blocks of Life Courses

Phenotypic annotation comprises a set of social, behav-
ioral, and brain-science research activities that map con-
nections between GWAS discoveries and the neural, 
developmental, and social processes that give rise to 
psychological experiences and behavior. Whereas cur-
rent biologically focused approaches to GWAS transla-
tion are bottom-up research strategies intended to 
answer the question, “How do the genetic variants asso-
ciated with this phenotype change genome biology?” 
phenotypic annotation is a top-down strategy designed 
to investigate the question, “How do the genetic variants 
associated with this phenotype change the development 
and behavior of an organism?” (Belsky, Moffitt, & Caspi, 
2013). Phenotypic annotation involves three important 
shifts in thinking about genotype–phenotype relation-
ships: (a) from genotypes to genomes, (b) from discov-
ery phenotypes to nomological networks, and (c) from 
proximate biology to life-course development.
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From genotypes to genomes

Following up the tiny individual effects identified in a 
GWAS presents a challenge in terms of statistical power, 
and studies that include the measurements needed to 
investigate mechanisms of genetic effects rarely have 
sufficient sample sizes. A solution to this challenge is 
suggested by evidence that genetic effects tend to com-
bine additively, resulting in a quantitative polygenic 
distribution of genetic influence (Plomin, Haworth, & 
Davis, 2009). This polygenic distribution can be mea-
sured by applying GWAS results as a scoring algorithm 
to genetic data from an independent sample of partici-
pants. Specifically, a participant’s polygenic score is 
calculated as the genome-wide weighted average of 
phenotype-associated alleles, where weights are typi-
cally effect sizes from an independent-discovery GWAS 
(Dudbridge, 2013; Fig. 1). Polygenic scores solve the small-
effects problem by aggregating signals from SNPs across 
the genome into a single measure with a larger effect. For 
example, polygenic scores based on GWASs of education 
and intelligence can explain as much as 10% of phenotypic 
variance (Plomin & von Stumm, 2018).

As a result, samples numbering only in the hundreds 
to thousands can be well powered to test genetic effects, 
opening the door to a breadth of behavioral and brain-
science research designs, including randomized trials of 
behavioral interventions, longitudinal cohort studies, 
and neuroimaging studies. This gain in statistical power 
comes with a loss of granularity: Associations with poly-
genic scores cannot be attributed to specific genes. 
However, much of biology is itself polygenic (Iacono, 
Vaidyanathan, Vrieze, & Malone, 2014). Polygenic scores, 
then, are useful tools for testing whether biological 
intermediaries, such as brain structure or function, might 
mediate GWAS-discovered genetic associations with 
more complex traits and behaviors.

From GWAS-discovery phenotypes to 
nomological networks

It would be a mistake to conceptualize the SNPs discov-
ered in a GWAS as narrowly measuring genetic risk for 
the precise phenotype studied in the GWAS itself. For 
example, genes discovered in a GWAS of educational 
attainment are not “education genes” per se (Belsky 
et al., 2016). Discovered SNP associations may arise from 
genetic influence on any correlate of the discovery phe-
notype (Belsky & Israel, 2014). In this way, results from 
hypothesis-free GWAS discoveries pose an interpretive 
challenge similar to the classic construct-validity prob-
lem. Newly discovered SNPs have been selected on the 
basis of their criterion validity (i.e., their ability to pre-
dict the phenotype used in the original GWAS), but the 
constructs measured by the resulting polygenic score 

remains largely unexplored. As Cronbach and Meehl 
described more than 60 years ago, “‘learning more 
about’ a theoretical construct is a matter of elaborating 
the nomological network in which it occurs, or of 
increasing the definiteness of its components” (Cronbach 
& Meehl, 1955, p. 290). We suggest that learning more 
about the theoretical construct of genetic influence, as 
measured by GWAS discoveries, can be advanced by 
elaborating the nomological network in which SNP–
phenotype associations are embedded.

As an example, studies focused on genetics discov-
ered in GWASs of educational attainment have revealed 
a surprisingly consistent nomological network, including 
behavioral patterns of achievement leading up to and 
extending beyond the completion of formal schooling, 
cognitive and personological characteristics known to 
influence educational success, early realization of devel-
opmental milestones in language and reading, and envi-
ronments conducive to educational success, including 
family socioeconomic status, neighborhood conditions, 
and peer characteristics (Barth, Papageorge, & Thom, 
2017; Belsky, Domingue, et al., 2018; Belsky et al., 2016; 
Conley et al., 2015; Domingue, Belsky, Conley, Harris, 
& Boardman, 2015; Krapohl et al., 2017).

Phenotypic-annotation analyses of genetic loci discov-
ered in GWASs of schizophrenia have yielded a more com-
plicated picture. Polygenic scores illustrate expected 
associations with childhood mental health problems 
(Nivard et al., 2017), early neurocognitive deficits (Riglin 
et al., 2017), and life-course cognitive decline (McIntosh 
et al., 2013). Moreover, schizophrenia-associated genetic 
variants appear to be more common among individuals in 
creative professions (Power et al., 2015) and are associated 
with putative environmental risk factors for the disorder, 
including neighborhood disadvantage and illicit drug use 
(Power et al., 2015; Sariaslan et al., 2016). However, puz-
zlingly, polygenic scores from schizophrenia GWASs are 
not consistently associated with symptom severity or fre-
quency of psychotic episodes ( Jones et al., 2016; Stepniak 
et al., 2014), and there is a surprising positive genetic 
correlation between schizophrenia and educational attain-
ment (Bansal et al., 2018). A further possible research 
challenge is that schizophrenia genetics may be related to 
nonparticipation or loss to follow up (Taylor et al., 2018). 
Overall, more work, particularly focused on early develop-
ment, is needed to elucidate what neural, cognitive, and 
behavioral constructs are being tapped by genes discov-
ered in GWASs of schizophrenia.

From proximate biology to life-course 
development

Individual differences in human psychology do not 
spring forth like Athena from Zeus’s head but are rather 
shaped over time through developmental processes in 
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which early emerging differences structure trajectories 
and shape future outcomes (Belsky, Moffitt, & Caspi, 
2013). Thus, a necessary step in understanding mecha-
nisms through which GWAS-discovered genetics influ-
ence psychology and behavior is to address the question 
of when in human development genetic influences 
manifest. For example, SNPs discovered in GWASs of 
adult body mass index are associated with accelerations 
in weight gain during early and middle childhood 
(Belsky et al., 2012). SNPs discovered in GWASs of adult 
smoking behavior are associated with accelerated pro-
gression from smoking initiation to dependence during 
adolescence (Belsky, Moffitt, Baker, et al., 2013). SNPs 
discovered in GWASs of educational attainment are 
associated with an accelerated pace of cognitive devel-
opment and the acquisition of self-control and inter-
personal skills from infancy through middle childhood 
(Belsky et al., 2016). By interrogating how polygenic 
scores constructed from GWASs of adult samples are 
related to phenotypes measured in early life, these stud-
ies illuminate the developmental intermediaries between 
genotypes that are established at conception and adult 
phenotypes that are canalized later in development.

The developmental processes linking GWAS discov-
eries with mature phenotypes might involve gene–
environment correlations. Childhood social and physical 
environments that predict individual differences in 
health and achievement across life are themselves heri-
table (Plomin & Bergeman, 1991). One implication of 
gene–environment correlations is that genetic differ-
ences potentially confound putative environmental 
effects. A second, less appreciated implication is that 
environments might mediate genetic effects (Scarr & 
McCartney, 1983). Specifically, genetic differences 
between people might cause them to select into differ-
ent environments, a process known as active/evocative 
gene–environment correlation. These environments 
could then reinforce or magnify differences in traits or 
behaviors. For example, a child’s genes might influence 
his or her tendencies toward antisocial behavior in ways 
that lead to social assortment with delinquent peers 
(Mann et al., 2016). This peer environment might, in 
turn, incentivize or facilitate opportunities for more 
antisocial behavior. Genetic differences between people 
might also become correlated with their environments 
when those environments are shaped by genetic rela-
tives. For example, genes influence sexual behavior in 
ways that make some adolescents more likely to experi-
ence early, out-of-wedlock parenthood. Children of 
such unions will inherit their parents’ genes along with 
a single-parent environment that may affect sexual 
behavior (Mendle et  al., 2009). Such “passive” gene–
environment correlations (so-called because they arise 
without any active niche picking on the part of the 

child) are a known potential confound of associations 
between family environments and child outcomes. 
However, they can also confound or contaminate GWAS 
discoveries of genetic effects. Because genotypes are 
shared between relatives, an association between a 
child’s genotype and his or her phenotype could reflect 
the effect of a parental genotype that is mediated 
through an environmental pathway (Koellinger & 
Harden, 2018; Kong et al., 2018).

Research that integrates environmental measures and 
polygenic scores can now be used to test specific 
hypotheses about environmental processes that mediate 
and moderate genetic effects. For example, polygenic 
scores for educational attainment, age at first birth, and 
schizophrenia show correlations with a range of mea-
sured environments, including family social class 
(Belsky, Domingue, et al., 2018), growing up without 
a father in the home (Gaydosh, Belsky, Domingue, 
Boardman, & Harris, 2018), peer delinquency (Krapohl 
et  al., 2017), and neighborhood conditions (Belsky, 
Caspi, et  al., 2018; Sariaslan et  al., 2016). Polygenic 
scores will be particularly useful in longitudinal studies, 
which can trace reciprocal associations between people 
and their environments, and in multigenerational family 
designs, which provide opportunities to test for indirect 
genetic effects, that is, genetic effects that are mediated 
via the family environment provided by siblings, par-
ents, and grandparents (Bates et al., 2018; Kong et al., 
2018; Liu, 2018). Finally, studies capitalizing on shifts 
in macroenvironmental contexts, such as policy reforms 
or government changes, can test the environmental 
conditions under which genotype–phenotype relation-
ships are preserved or disrupted (Barcellos, Carvalho, 
& Turley, 2018; Rimfeld et al., 2018).

What’s Next?

Previous efforts to integrate genetics into psychological 
science have been strained by an enduring fear that 
studying genetics will reinvigorate the eugenics move-
ment, by the practical difficulties of addressing certain 
research questions within twin studies, and, more 
recently, by the poor reproducibility of candidate gene 
findings. But the ethical and reproducible integration of 
psychology and genetics is not only possible but also 
essential to the success of both fields. 

Now, large-scale GWASs and polygenic-score analy-
sis offer new opportunities to bring genetics and psy-
chological science together (Table 1). Phenotypic 
annotation is an approach to understanding GWAS dis-
coveries that leverages the expertise of psychological 
scientists in how to measure traits, behaviors, and envi-
ronments and the strength of psychological theories for 
understanding how individuals and their environments 
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interact. By shifting focus from the proximate biology 
of genomes to the life-course development of humans, 
including the environments that individuals grow up in 
and that they build for themselves, phenotypic annota-
tion provides an opportunity for psychological scien-
tists to help unpack the many black boxes the GWAS 
era has delivered.

Appendix

Glossary of key terms
Genome-wide association study (GWAS): data-mining anal-

ysis in which variants scattered across the genome, typically 

single-nucleotide polymorphisms, are individually regressed on 
a phenotype. Because of the large number of statistical tests, 
which can number in the millions, a GWAS adopts stringent 
p-value thresholds (e.g., p < 5 × 10−8) to avoid false discoveries.

Heritability: the proportion of variance in a measured phe-
notype that can be statistically accounted for by genetic differ-
ences between people.

Missing heritability: the difference in heritability estimate 
from twin studies and the heritability that can be explained 
by measured DNA differences between unrelated people. Typi-
cally, twin-study estimates of heritability are about twice as large 
as the variance explained by measured single-nucleotide poly-
morphisms. Causes of missing heritability remain much debated 
in genetics. Potential causes include interactions between genes 

Table 1.  Dos and Don’ts of Integrating Genetics and Psychological Science

Do . . . genotype your participants. Even if your study is too small for a primary genetic-discovery analysis such as a GWAS, 
there are lots of opportunities for high-impact research. Genetic data are special. DNA sequences do not change, so they have 
to be measured only once. And they are all purpose. The same genetic data can be used to follow-up results from any genetic-
association study, including studies that will be conducted in the future. Collecting genetic data is already inexpensive, and 
costs are falling. For example, companies such as Gencove now offer services that include sample collection, DNA analysis, 
and data cleaning and processing for less than $100 per subject.

Do . . . focus on whole genomes rather than individual genes. Unless you have many thousands of participants, your 
research is probably underpowered to study single genetic variants. For smaller studies, polygenic-score analysis is more likely 
to yield reproducible results.

Don’t . . . forget about statistical power. GWAS is a data-mining method. Samples greater than 10,000 are a minimum 
threshold for successful discovery analysis of most phenotypes, and samples an order of magnitude larger are much more 
valuable. Polygenic scores developed from an underpowered GWAS are less likely to yield reproducible results. While 
psychologists are trained to value measurement precision, a coarsely measured phenotype in a very large sample can result in 
more replicable GWAS discoveries than a precisely measured phenotype in a smaller sample. For example a polygenic score 
derived from a GWAS of years of education in 1 million people predicts performance on an IQ test better than a polygenic 
score derived from GWAS of cognitive test scores in a sample one third that size (Lee et al., 2018).

Don’t . . . wait for a GWAS of your exact phenotype of interest. Avoid thinking of GWAS results as measuring genes 
“for” the GWAS target phenotype. Instead, think about how your phenotype of interest might be related to an existing, well-
powered GWAS. New methods and analytic approaches are expanding opportunities. For example, methods are now available 
to combine results from multiple GWASs of related traits to refine polygenic prediction (Grotzinger et al., 2018; Turley et al., 
2018). And multiple polygenic scores could be combined into a single analysis (Krapohl et al., 2018).

Do . . . pick the low-hanging fruit. GWAS results are as much questions as answers. The ever-growing crop of GWAS 
discoveries for social and behavioral phenotypes creates opportunities for psychological scientists. Several examples of low-
hanging fruit ripe for picking by psychological scientists include the following:

  •  Genetic analysis of brain-imaging studies to test genetic associations with structural and functional differences in the brain
  • � Genetic analysis of randomized trials to test genetic heterogeneity in response to interventions, ranging from quality 

preschool to psychotherapy, as well as to evaluate genetic differences in participation and adherence
Don’t . . . ignore development. Most GWASs are conducted in samples of adults. But most GWAS phenotypes have early-

developmental origins. Phenotypic-annotation analysis should consider developmental antecedents that fall within the 
nomological network of a target GWAS phenotype. For example, the onset of schizophrenia typically occurs in adulthood, but 
it has a neurodevelopmental etiology that could influence brain development and behavior from infancy.

Do . . . think about how genotypes can help understand the environment. Testing Gene × Environment interactions is one 
way that genetic data can help us understand environments, but there are many others.

  • � Running an intervention study? Including polygenic scores as control variables can boost statistical power in analyses testing 
treatment effects (Rietveld et al., 2013).

  • � Studying school, peer, or family environments? Integrating polygenic scores offers an opportunity to test environmental 
processes as mechanisms for genetic effects.

  • � Studying families? Genetic analysis can test environmental effects, called “indirect genetic effects” or “genetic nurture.”
  • � Running longitudinal studies with high-density measurements? Genetic analysis can test hypotheses about reciprocal 

transactions between people and their environments.

Note: GWAS = genome-wide association study.
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(epistasis), unmeasured Gene × Environment interactions, and 
rare DNA variants that have not been measured.

Phenotype: anything that is not a genotype—including phys-
ical and personality characteristics, behaviors, disease diagno-
ses, brain structure and function, gene-expression levels, and 
DNA methylation states.

Single-nucleotide polymorphism (SNP): a single-nucleotide 
change in the human DNA sequence prevalent in more than 
1% of a population. A strand of DNA is composed of a unique 
sequence of four nucleotides: guanine (G), cytosine (C), thia-
mine (T), and adenine (A). For example, one person might have 
an A at a particular location on his or her genome, whereas 
another person has a C.

Recommended Reading

Belsky, D. W., Moffitt, T. E., Corcoran, D. L., Domingue, 
B., Harrington, H., Hogan, S., . . . Caspi, A. (2016). (See 
References). An example of comprehensive phenotypic-
annotation analyses applied to developmental data.

Plomin, R., Haworth, C. M. A., & Davis, O. S. P. (2009). (See 
References). Contains high-quality figures that illustrate 
polygenic influence on traits.

Scarr, S., & McCartney, K. (1983). (See References). A classic 
theoretical article on the importance of the environment 
for understanding genetic effects.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, 
M. I., Brown, M. A., & Yang, J. (2017). (See References). 
A general summary of recent discoveries in genome-wide 
association studies.

Action Editor

Randall W. Engle served as action editor for this article.

Acknowledgments

D. W. Belsky and K. P. Harden contributed equally to this 
manuscript.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest 
with respect to the authorship or the publication of this 
article.

Funding

D. W. Belsky and K. P. Harden are supported by Early Career 
Research Fellowships from the Jacobs Foundation.

References

Bansal, V., Mitjans, M., Burik, C. A. P., Linnér, R. K., Okbay, 
A., Rietveld, C. A., . . . Koellinger, P. D. (2018). Genome-
wide association study results for educational attainment 
aid in identifying genetic heterogeneity of schizophrenia. 
Nature Communications, 9(1), Article 3078. doi:10.1038/
s41467-018-05510-z

Barcellos, S. H., Carvalho, L. S., & Turley, P. (2018). Education 
can reduce health disparities related to genetic risk 

of obesity: Evidence from a British reform. BioRxiv. 
doi:10.1101/260463

Barth, D., Papageorge, N. W., & Thom, K. (2017). Genetic 
ability, wealth, and financial decision-making (IZA 
Discussion Paper No. 10567). Rochester, NY: Social 
Science Research Network. Retrieved from SSRN website: 
https://papers.ssrn.com/abstract=2923653

Bates, T. C., Maher, B. S., Medland, S. E., McAloney, K., 
Wright, M. J., Hansell, N. K., . . . Gillespie, N. A. (2018). 
The nature of nurture: Using a virtual-parent design to test 
parenting effects on children’s educational attainment in 
genotyped families. Twin Research and Human Genetics, 
21, 73–83. doi:10.1017/thg.2018.11

Belsky, D. W., Caspi, A., Arseneault, L., Corcoran, D., 
Domingue, B. W., Harris, K. M., . . . Odgers, C. (2018). 
Genetics and the geography of health, behavior, and 
attainment. BioRxiv. doi:10.1101/376897

Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L., 
Boardman, J. D., Caspi, A., . . . Harris, K. M. (2018). Genetic 
analysis of social-class mobility in five longitudinal stud-
ies. Proceedings of the National Academy of Sciences, USA, 
115, E7275–E7284. doi:10.1073/pnas.1801238115

Belsky, D. W., & Israel, S. (2014). Integrating genetics and 
social science: Genetic risk scores. Biodemography and 
Social Biology, 60, 137–155. doi:10.1080/19485565.2014
.946591

Belsky, D. W., Moffitt, T. E., Baker, T. B., Biddle, A. K., Evans, 
J. P., Harrington, H., . . . Caspi, A. (2013). Polygenic 
risk and the developmental progression to heavy, persis-
tent smoking and nicotine dependence: Evidence from a 
4-decade longitudinal study. JAMA Psychiatry, 70, 534–
542. doi:10.1001/jamapsychiatry.2013.736

Belsky, D. W., Moffitt, T. E., & Caspi, A. (2013). Genetics 
in population health science: Strategies and opportuni-
ties. American Journal of Public Health, 103(Suppl. 1), 
S73–S83. doi:10.2105/AJPH.2012.301139

Belsky, D. W., Moffitt, T. E., Corcoran, D. L., Domingue, 
B., Harrington, H., Hogan, S., . . . Caspi, A. (2016). The 
genetics of success: How single-nucleotide polymor-
phisms associated with educational attainment relate 
to life-course development. Psychological Science, 27, 
957–972. doi:10.1177/0956797616643070

Belsky, D. W., Moffitt, T. E., Houts, R., Bennett, G. G., Biddle, 
A. K., Blumenthal, J. A., . . . Caspi, A. (2012). Polygenic 
risk, rapid childhood growth, and the development of obe-
sity: Evidence from a 4-decade longitudinal study. Archives 
of Pediatrics and Adolescent Medicine, 166, 515–521.

Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded 
view of complex traits: From polygenic to omnigenic. 
Cell, 169, 1177–1186. doi:10.1016/j.cell.2017.05.038

Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & 
Laibson, D. I. (2015). The fourth law of behavior genetics. 
Current Directions in Psychological Science, 24, 304–312. 
doi:10.1177/0963721415580430

Claussnitzer, M., Dankel, S. N., Kim, K.-H., Quon, G., 
Meuleman, W., Haugen, C., . . . Kellis, M. (2015). FTO 
obesity variant circuitry and adipocyte browning in 
humans. New England Journal of Medicine, 373, 895–907. 
doi:10.1056/NEJMoa1502214



8	 Belsky, Harden

Conley, D., Domingue, B., Cesarini, D., Dawes, C. T., Rietveld, 
C. A., & Boardman, J. (2015). Is the effect of parental 
education on offspring biased or moderated by genotype? 
Sociological Science, 2(6), 82–105. doi:10.15195/v2.a6

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in 
psychological tests. Psychological Bulletin, 52, 281–302.

Domingue, B. W., Belsky, D. W., Conley, D., Harris, K. M., 
& Boardman, J. D. (2015). Polygenic influence on edu-
cational attainment: New evidence from the National 
Longitudinal Study of Adolescent to Adult Health. AERA 
Open, 1(3). doi:10.1177/2332858415599972

Dudbridge, F. (2013). Power and predictive accuracy of poly-
genic risk scores. PLOS Genetics, 9(3), Article e1003348. 
doi:10.1371/journal.pgen.1003348

Dudbridge, F., & Newcombe, P. J. (2016). Accuracy of gene 
scores when pruning markers by linkage disequilibrium. 
Human Heredity, 80, 178–186.

Gaydosh, L., Belsky, D. W., Domingue, B. W., Boardman, J. 
D., & Harris, K. M. (2018). Father absence and acceler-
ated reproductive development in non-Hispanic White 
women in the United States. Demography, 55, 1245–1267. 
doi:10.1007/s13524-018-0696-1

Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, 
S. J., Mallard, T. T., Hill, W. D., . . . Tucker-Drob, E. M. 
(2018). Genomic SEM provides insights into the multivari-
ate genetic architecture of complex traits. BioRxiv, Article 
305029. doi:10.1101/305029

Iacono, W. G., Vaidyanathan, U., Vrieze, S. I., & Malone, S. 
M. (2014). Knowns and unknowns for psychophysiologi-
cal endophenotypes: Integration and response to com-
mentaries. Psychophysiology, 51, 1339–1347. doi:10.1111/
psyp.12358

Johnson, E. C., Border, R., Melroy-Greif, W. E., de Leeuw, 
C. A., Ehringer, M. A., & Keller, M. C. (2017). No evi-
dence that schizophrenia candidate genes are more 
associated with schizophrenia than noncandidate genes. 
Biological Psychiatry, 82, 702–708. doi:10.1016/j.bio 
psych.2017.06.033

Jones, H. J., Stergiakouli, E., Tansey, K. E., Hubbard, L., 
Heron, J., Cannon, M., . . . Zammit, S. (2016). Phenotypic 
manifestation of genetic risk for schizophrenia during 
adolescence in the general population. JAMA Psychiatry, 
73, 221–228. doi:10.1001/jamapsychiatry.2015.3058

Koellinger, P. D., & Harden, K. P. (2018). Using nature to 
understand nurture. Science, 359, 386–387. doi:10.1126/
science.aar6429

Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J.,  
Young, A. I., Thorgeirsson, T. E., . . . Stefansson, K. (2018).  
The nature of nurture: Effects of parental genotypes. 
Science, 359, 424–428. doi:10.1126/science.aan6877

Krapohl, E., Hannigan, L. J., Pingault, J. -B., Patel, H., Kadeva, 
N., Curtis, C., . . . Plomin, R. (2017). Widespread covaria-
tion of early environmental exposures and trait-associated 
polygenic variation. Proceedings of the National Academy 
of Sciences, USA, 114, 11727–11732. doi:10.1073/pnas.1707 
178114

Krapohl, E., Patel, H., Newhouse, S., Curtis, C. J., von Stumm, 
S., Dale, P. S., . . . Plomin, R. (2018). Multi-polygenic score 
approach to trait prediction. Molecular Psychiatry, 23, 
1368–1374. doi:10.1038/mp.2017.163

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., 
Zacher, M., . . . Cesarini, D. (2018). Gene discovery and 
polygenic prediction from a genome-wide association study 
of educational attainment in 1.1 million individuals. Nature 
Genetics, 50, 1112–1121. doi:10.1038/s41588-018-0147-3

Liu, H. (2018). Social and genetic pathways in multigen-
erational transmission of educational attainment. Amer
ican Sociological Review, 83, 278–304. doi:10.1177/ 
0003122418759651

Mann, F. D., Patterson, M. W., Grotzinger, A. D., Kretsch, N., 
Tackett, J. L., Tucker-Drob, E. M., & Harden, K. P. (2016). 
Sensation seeking, peer deviance, and genetic influences 
on adolescent delinquency: Evidence for person-environ-
ment correlation and interaction. Journal of Abnormal 
Psychology, 125, 679–691. doi:10.1037/abn0000160

Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., 
Neale, B. M., Gravel, S., . . . Kenny, E. E. (2017). Human 
demographic history impacts genetic risk prediction across 
diverse populations. The American Journal of Human 
Genetics, 100, 635–649. doi:10.1016/j.ajhg.2017.03.004

McIntosh, A. M., Gow, A., Luciano, M., Davies, G., Liewald, 
D. C., Harris, S. E., . . . Deary, I. J. (2013). Polygenic risk 
for schizophrenia is associated with cognitive change 
between childhood and old age. Biological Psychiatry, 
73, 938–943. doi:10.1016/j.biopsych.2013.01.011

Mendle, J., Harden, K. P., Turkheimer, E., Van Hulle, C. A.,  
D’Onofrio, B. M., Brooks-Gunn, J., . . . Lahey Benjamin, B.  
(2009). Associations between father absence and age of 
first sexual intercourse. Child Development, 80, 1463–1480.  
doi:10.1111/j.1467-8624.2009.01345.x

Nivard, M. G., Gage, S. H., Hottenga, J. J., van Beijsterveldt, C. 
E. M., Abdellaoui, A., Bartels, M., . . . Middeldorp, C. M.  
(2017). Genetic overlap between schizophrenia and devel-
opmental psychopathology: Longitudinal and multivariate 
polygenic risk prediction of common psychiatric traits dur-
ing development. Schizophrenia Bulletin, 43, 1197–1207. 
doi:10.1093/schbul/sbx031

Plomin, R., & Bergeman, C. S. (1991). The nature of nur-
ture: Genetic influence on “environmental” measures. 
Behavioral & Brain Sciences, 14, 414–427. doi:10.1017/
S0140525X00070588

Plomin, R., Haworth, C. M. A., & Davis, O. S. P. (2009). 
Common disorders are quantitative traits. Nature Reviews 
Genetics, 10, 872–878. doi:10.1038/nrg2670

Plomin, R., & von Stumm, S. (2018). The new genetics of 
intelligence. Nature Reviews Genetics, 19, 148–159. 
doi:10.1038/nrg.2017.104

Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, 
P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. 
(2015). Meta-analysis of the heritability of human traits 
based on fifty years of twin studies. Nature Genetics, 47, 
702–709. doi:10.1038/ng.3285

Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., 
Abdellaoui, A., Nivard, M. M., . . . Stefansson, K. (2015). 
Polygenic risk scores for schizophrenia and bipolar disor-
der predict creativity. Nature Neuroscience, 18, 953–955. 
doi:10.1038/nn.4040

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E.,  
Shadick, N. A., & Reich, D. (2006). Principal compo-
nents analysis corrects for stratification in genome-wide 



Phenotypic Annotation of Discoveries From Genome-Wide Association Studies	 9

association studies. Nature Genetics, 38, 904–909. 
doi:10.1038/ng1847

Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., 
Martin, N. W., . . . Koellinger, P. D. (2013). GWAS of 126,559 
individuals identifies genetic variants associated with edu-
cational attainment. Science, 340, 1467–1471. doi:10.1126/
science.1235488

Riglin, L., Collishaw, S., Richards, A., Thapar, A. K., Maughan, 
B., O’Donovan, M. C., & Thapar, A. (2017). Schizophrenia 
risk alleles and neurodevelopmental outcomes in child-
hood: A population-based cohort study. The Lancet 
Psychiatry, 4, 57–62. doi:10.1016/S2215-0366(16)30406-0

Rimfeld, K., Krapohl, E., Trzaskowski, M., Coleman, J. R. I., 
Selzam, S., Dale, P. S., . . . Plomin, R. (2018). Genetic 
influence on social outcomes during and after the Soviet 
era in Estonia. Nature Human Behaviour, 2, 269–275. 
doi:10.1038/s41562-018-0332-5

Sariaslan, A., Fazel, S., D’Onofrio, B. M., Långström, N., 
Larsson, H., Bergen, S. E., . . . Lichtenstein, P. (2016). 
Schizophrenia and subsequent neighborhood depriva-
tion: Revisiting the social drift hypothesis using popu-
lation, twin and molecular genetic data. Translational 
Psychiatry, 6(5), Article e796. doi:10.1038/tp.2016.62

Scarr, S., & McCartney, K. (1983). How people make their own 
environments: A theory of genotype → environment effects. 
Child Development, 54, 424–435. doi:10.2307/1129703

Stepniak, B., Papiol, S., Hammer, C., Ramin, A., Everts, S., 
Hennig, L., . . . Ehrenreich, H. (2014). Accumulated envi-
ronmental risk determining age at schizophrenia onset: A 
deep phenotyping-based study. The Lancet Psychiatry, 1, 
444–453. doi:10.1016/S2215-0366(14)70379-7

Suhre, K., Arnold, M., Bhagwat, A. M., Cotton, R. J., Engelke, 
R., Raffler, J., . . . Graumann, J. (2017). Connecting genetic 
risk to disease end points through the human blood 

plasma proteome. Nature Communications, 8, Article 
14357. doi:10.1038/ncomms14357

Taylor, A. E., Jones, H. J., Sallis, H., Euesden, J., Stergiakouli, 
E., Davies, N. M., . . . Tilling, K. (2018). Exploring the 
association of genetic factors with participation in 
the Avon Longitudinal Study of Parents and Children. 
International Journal of Epidemiology, 47, 1207–1216. 
doi:10.1093/ije/dyy060

Turkheimer, E. (2000). Three laws of behavior genetics and 
what they mean. Current Directions in Psychological 
Science, 9, 160–164. doi:10.1111/1467-8721.00084

Turley, P., Walters, R. K., Maghzian, O., Okbay, A., Lee, J. J., 
Fontana, M. A., . . . Social Science Genetic Association 
Consortium. (2018). Multi-trait analysis of genome-wide 
association summary statistics using MTAG. Nature 
Genetics, 50, 229–237. doi:10.1038/s41588-017-0009-4

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I.,  
Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: 
Biology, function, and translation. The American Journal of 
Human Genetics, 101, 5–22. doi:10.1016/j.ajhg.2017.06.005

Ware, E. B., Schmitz, L. L., Faul, J. D., Gard, A., Mitchell, 
C., Smith, J. A., . . . Kardia, S. L. (2017). Heterogeneity 
in polygenic scores for common human traits. BioRxiv. 
doi:10.1101/106062

Wassenaar, C. A., Dong, Q., Wei, Q., Amos, C. I., Spitz, M. R.,  
& Tyndale, R. F. (2011). Relationship between CYP2A6 
and CHRNA5-CHRNA3-CHRNB4 variation and smoking 
behaviors and lung cancer risk. Journal of the National 
Cancer Institute, 103, 1342–1346. doi:10.1093/jnci/djr237

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, 
E. M., Abdellaoui, A., . . . Sullivan, P. F. (2018). Genome-
wide association analyses identify 44 risk variants and 
refine the genetic architecture of major depression. Nature 
Genetics, 50, 668–681. doi:10.1038/s41588-018-0090-3


