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ABSTRACT

Introduction: Schizophrenia is a neuropsychiatric disorder that affects approximately 1% of individuals 
worldwide. There are no available medications to treat cognitive impairment in this patient population 
currently. Preclinical evidence suggests that glucagon-like peptide-1 receptor agonists (GLP-1 RAs) 
improve cognitive function. There is a need to evaluate how GLP-1 RAs alter specific domains of 
cognition and whether they will be of therapeutic benefit in individuals with schizophrenia.
Areas covered: This paper summarizes the effects of GLP-1 RAs on metabolic processes in the brain 
and how these mechanisms relate to improved cognitive function. We provide an overview of pre-
clinical studies that demonstrate GLP-1 RAs improve cognition and comment on their potential 
therapeutic benefit in individuals with schizophrenia.
Expert Opinion: To understand the benefits of GLP-1 RAs in individuals with schizophrenia, further 
preclinical research with rodent models relevant to schizophrenia symptomology are needed. 
Moreover, preclinical studies must focus on using a wider range of behavioral assays to understand 
whether important aspects of cognition such as executive function, attention, and goal-directed 
behavior are improved using GLP-1 RAs. Further research into the specific mechanisms of how GLP- 
1 RAs affect cognitive function and their interactions with antipsychotic medication commonly pre-
scribed is necessary.
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1. Introduction

The treatment of schizophrenia remains a monumental chal-
lenge within medicine as current medications fail to address 
core symptoms within the disorder. On average, individuals 
with schizophrenia experience a 14.5-year decrease in life 
expectancy [1]. In large part this is driven by an increased 
vulnerability toward cardiovascular disease, diabetes, and obe-
sity [2]. Even at the onset of schizophrenia diagnosis, impaired 
glucose homeostasis and insulin resistance are present [3]. 
Crucially, in a population vulnerable to metabolic disturbances 
[4], antipsychotics only worsen metabolic dysregulation [5–7].

Metabolic dysregulation may also exacerbate cognitive dys-
function in schizophrenia. Metabolic syndrome and diabetes 
are both associated with cognitive impairment, a core dis-
abling feature of the disease that reduces individuals’ func-
tional outcome and quality of life [8–10]. Individuals with 
schizophrenia exhibit marked deficits in many domains of 
cognition including executive function, working memory, pro-
cessing speed, attention, and visual/verbal learning [11]. These 
cognitive deficits persist despite antipsychotic medications 
successfully treating positive symptoms within the disorder 
[12] This makes the identification of novel treatments for 
cognitive impairment within schizophrenia vital.

Given the potential relationship between altered metabolic 
function and cognition, numerous therapies have been 

investigated in the hopes of improving central nervous system 
insulin action and cognition. Glucagon-like peptide-1 is an 
endogenous hormone that exerts action over insulin- 
signaling pathways and mediates insulin and glucose levels 
[13]. Mounting evidence shows glucagon-like peptide-1 recep-
tor agonists (GLP-1 RAs) regulate cellular pathways involved in 
neuroinflammation, neuroplasticity, and neurotransmission. 
GLP-1 RAs are effective in reducing weight [14], improving 
glycemic regulation [15], and their potential in exerting neu-
roprotective effects is of relevance in schizophrenia and other 
neuropsychiatric disorders where brain insulin dysregulation 
occurs [16,17]. Here we will provide an overview of the impor-
tance of insulin signaling in cognition in addition to the 
potential mechanisms by which GLP-1 RAs may improve cog-
nition. Finally, we will explore the existing preclinical evidence 
that GLP-1 RAs improve cognition and comment on their 
potential as an adjunctive treatment for schizophrenia.

2. Methods

In this narrative review, we included publications containing 
preclinical studies examining GLP-1 RAs and their effects on 
cognition in animal models relevant to metabolic dysregula-
tion and neuropsychiatric disease. For a study to be included, 
one or more aspects of cognition had to be measured within 
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the study and include the use of a GLP-1 RA as a treatment 
group. We used the guidelines outlined by the Joanna Briggs 
Institute (JBI) for narrative reviews [18]. Searches included 
studies in both English and non-English. We searched the 
databases of PubMed, Google Scholar, SCOPUS, Web of 
science, and PsycInfo from inception until March 1 2021. Our 
search strategy on PubMed was ((GLP-1 RA*) OR (GLP-1 ago-
nist*) OR liraglutide OR exenatide) AND ((metabolism) AND 
(cognition)) AND (((schizophrenia) OR (animal) OR (diabetes) 
OR (Alzheimer’s disease) OR (bipolar disorder) OR (neuropsy-
chiatric disease))) and subsequently adapted to the require-
ments of other databases searched.

3. Cognitive and metabolic dysfunction in 
schizophrenia

Alongside positive and negative symptoms, cognitive impair-
ment is considered a cardinal feature of schizophrenia [19]. 
More than 80% of individuals with schizophrenia exhibit cog-
nitive impairment [8]. Although its presentation varies 
between individuals, cognitive impairment contributes to the 
long-term burden associated with the disease and leads to 
reduced quality of life [20]. Numerous cognitive domains are 
impaired in schizophrenia including verbal learning and mem-
ory, visual learning and memory, reasoning and problem sol-
ving, attention, and processing speed [21]. While a number of 
treatments for cognitive impairment have been investigated, 
therapeutic options remain limited [22]. Furthermore, first- 
and second-generation antipsychotics appear to have limited 
efficacy in improving cognition [23] and appear to exacerbate 
metabolic dysfunction [6,24].

Individuals with schizophrenia experience severe dysregu-
lation in metabolic functioning even prior to the onset of 
illness [25]. Metabolic syndrome refers to a cluster of cardio-
vascular risk factors, including insulin resistance, obesity, 
atherogenic dyslipidemia, and hypertension [26]. The inci-
dence of metabolic syndrome is approximately 33.5% in schi-
zophrenia [27]. A range of lifestyle, biological, and genetic 
factors associated with schizophrenia contribute to this ele-
vated risk. Greater sedentary lifestyle and poorer diet choices 
are common in schizophrenia [28,29]. Additionally, genes 

related to insulin signaling [30], glucose metabolism [31], 
and inflammation [32] are altered in schizophrenia. Crucially, 
antipsychotics that are used to treat positive symptoms 
increase the prevalence of diabetes and metabolic syndrome 
in individuals with schizophrenia.

Convergent evidence suggests that there is an overlap 
between cognitive impairment and metabolic abnormalities 
in schizophrenia. As reviewed by MacKenzie and colleagues 
[6], several genes such as the methylenetetrahydrofolate 
reductase gene and serotonin receptor gene 5HT2A are asso-
ciated with an increased risk of metabolic abnormalities and 
deficits in cognitive flexibility, attention, and verbal recall [33]. 
Clinical studies show that individuals with schizophrenia and 
co-morbid diabetes show lower global cognitive function [34]. 
Specifically, deficits in attention, processing speed, memory, 
and reasoning are more severe in those with schizophrenia 
with co-morbid metabolic syndrome compared to those with 
schizophrenia alone [8,35]. This is consistent with evidence 
that cognitive impairment is associated with metabolic 
abnormalities independent of schizophrenia. Overall, meta-
bolic syndrome, obesity, and diabetes are all associated with 
impairments in cognitive functioning [36–38].

3.1. Insulin signaling as a common pathway to cognitive 

impairment in schizophrenia

Even before the widespread use of antipsychotic treatment, 
a unique vulnerability toward impaired insulin action was 
observed in schizophrenia [39]. Insulin resistance is defined 
as a state where there is failure of exogenous and endogenous 
insulin to increase glucose uptake and utilization [40]. Around 
15% of antipsychotic drug naïve patients with schizophrenia 
show insulin resistance [41]. Critically, antipsychotics contri-
bute to increased insulin resistance [42]. Reduced insulin 
receptor signaling in the dorsolateral prefrontal cortex has 
been found in postmortem samples of individuals with schizo-
phrenia [43]. Magnetic resonance spectroscopy shows brain 
insulin resistance is associated with impairments in verbal 
memory in individuals with schizophrenia [44]. Additionally, 
research using animal models shows that insulin resistance 
induced by high-fat diets is associated with impairments in 
learning and memory [45].

Insulin receptors are widely distributed in the brain [46,47] 
and insulin readily crosses the blood–brain barrier [48]. Insulin 
receptor signaling has a regulatory role in cerebral glucose 
metabolism, hedonic, and non-hedonic aspects of feeding, 
and levels of midbrain dopamine and glutamate transmission 
[5]. Single-cell digital polymerase-chain reaction in the rat 
cerebral cortex shows insulin is also expressed in gamma- 
aminobutyric acid (GABA)-ergic neurogliaform cells [49]. This 
local insulin secretion is thought to support the synaptic 
function necessary for normal excitatory and inhibitory func-
tion. Indeed insulin also plays a role in regulating synaptic 
plasticity by recruiting GABAA receptors to postsynaptic mem-
branes within the central nervous system [50]. Insulin has 
neurotrophic functions within the brain that regulate neuronal 
proliferation [51] and neurite growth [52]. Insulin also plays 
a neuroprotective role in the brain in a dose-dependent man-
ner, preventing cell death [53] and protecting against 

Article Highlights

● Individuals with schizophrenia experience an increased incidence of 
metabolic dysfunction that co-occurs with cognitive impairment.

● GLP-1RAs are currently used to reduce metabolic side-effects caused by 
antipsychotics. However, further investigation is required to assess 
whether they can improve cognition in individuals with schizophrenia.

● Preclinical testing of GLP-1RAs in animal models that recapitulate key 
cognitive deficits in schizophrenia is needed. We suggest that future 
studies should utilize translational rodent assays such as touch-screen 
testing to investigate the effects of GLP-1RAs on executive function, 
attention, and working memory.

● Adjunctive treatment with other antipsychotic medication may offer an 
effective strategy to counter weight-gain and improve cognitive status 
in individuals with schizophrenia. Further research is required to under-
stand whether newer GLP-1RAs are effective in reducing weight and 
improving cognition.
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oxidative stress in cortical neurons [54]. All these function to 
support aspects of cognitive functioning that are known to be 
impaired in individuals with schizophrenia.

One of the primary signaling pathways of insulin is the via 
the AKT1/GSK3 signaling pathway. This pathway has been 
implicated in the pathogenesis of schizophrenia through sev-
eral genetic linkage studies that show a significant association 
between an AKT1 haplotype and development of the disease 
[55]. AKT1 is reduced in the hippocampus and frontal cortex of 
those with schizophrenia compared to healthy subjects [55]. 
Efforts to link alterations in these pathways have looked at the 
association between AKT1 single nucleotide polymorphisms 
(SNPs) and specific domains of cognition. For example, Tan 
and colleagues [56] found that variants in AKT1 SNPs were 
associated with deficits in cognition such as executive func-
tioning and processing speed. Abnormal GSK3 signaling has 
also been reported in schizophrenia patients. Examination of 
postmortem brain tissue from patients with schizophrenia has 
revealed decreased phosphorylation levels and GSK-3B protein 
levels in the frontal cortex, and decreased GSK-3B mRNA levels 
in the dorsolateral prefrontal cortex [55,57,58]. N-methyl- 
D-aspartate (NMDA) receptor hypofunction also plays a key 
role in the cognitive dysfunction seen in schizophrenia and is 
important for learning and memory [59]. Several studies have 
also demonstrated that GSK3 influences cell trafficking and 
cell surface expression of α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) and N-methyl-D-aspartate 
(NMDA) receptors [60,61]. Additionally, the AKT/GSK3 signal-
ing pathway directly regulates synaptic plasticity and down 
regulates neuroinflammation [62,63].

In summary, cognitive dysfunction is a core feature of 
schizophrenia and contributes to a lower quality of life [20]. 
No effective interventions exist to improve cognitive deficits in 
individuals with schizophrenia [64] and current antipsychotics 
exacerbate metabolic dysregulation already present before 
the onset of the disease [6]. Insulin resistance and aberrant 
insulin signaling features in diabetes and metabolic syndrome 
and is also present in individuals with schizophrenia. Taken 
together, the evidence from these studies indicates that ther-
apeutic interventions that improve insulin signaling and meta-
bolic function may also have a beneficial impact on cognition 
within the brain.

4. GLP-1RA therapeutic mechanisms of action: 
insulin signaling, neurotransmission, 
neuroprotection, neuroinflammation, synaptic 
plasticity

GLP-1 is an incretin hormone that exerts action over insulin- 
signaling pathways and mediates insulin and glucose levels 
[13]. GLP-1Rs are widely distributed throughout the human 
and rodent brain with GLP-1R binding found within the cere-
bral cortex, thalamus, hypothalamus, substantia nigra, circum-
ventricular organ, hippocampus, cerebellum, and brainstem 
nucleus [65–67]. GLP-1RAs are currently used to treat obesity 
and insulin resistance in diabetes [68]. Additionally, prelimin-
ary clinical and preclinical studies suggest GLP-1RAs have 

therapeutic efficacy in improving cognition and preventing 
cognitive decline in neuropsychiatric disorders [69].

GLP-1RAs have direct modulatory effects on insulin signal-
ing pathways that may benefit cognition. In preclinical animal 
models of Alzheimer’s disease, GLP-1RAs reduces brain insulin 
resistance [70] and amplifies insulin signaling [71]. GLP-1R 
agonism also activates cyclic adenosine monophosphate 
(cAMP) [72]. This in turn promotes neuronal development, 
neuroprotection, attenuate oxidative stress, and neuroinflam-
mation independent of insulin signaling [73–75]. By reducing 
cellular damage that accumulates over time, GLP-1R agonism 
may mitigate the consequences of aberrant insulin signaling 
and alleviate cognitive impairment.

GLP-1RAs may also act to restore alterations in neurotrans-
mitter function which may benefit cognition. Alterations in 
glutamate and GABA have long been thought to contribute 
to the neuropathology of schizophrenia [76,77]. One of the 
most influential hypotheses is that NMDA receptor hypofunc-
tion may disrupt excitatory and inhibitory neurotransmission 
in the brain, contributing to cognitive impairment in schizo-
phrenia [71]. NMDA receptors are a subtype of the ionotropic 
glutamate receptor family and play a crucial role in regulating 
synaptic development, neuroplasticity, and differentiation [71]. 
Postmortem brain tissues from individuals with schizophrenia 
shows hypofunction of NMDA receptor subunits [78]. 
Importantly, ketamine administration has been broadly 
shown to induce cognitive impairments in animals and 
healthy human individuals that are similar to those seen in 
schizophrenia [79]. Additionally, levels of GluN1 are decreased 
in the hippocampus of postmortem tissue samples from indi-
viduals with schizophrenia [80]. Furthermore, elevated gluta-
mate levels, due to reduced glutamate uptake, have been 
demonstrated in H-MRS studies in individuals with schizophre-
nia during their first episode of psychosis [81]. The GLP-1RA 
exendin-4 reversed decreases in glutamate uptake and 
increased GluN1 content in an animal model of diabetes 
mellitus, and increased glutamate uptake in astrocyte cell 
cultures and hippocampal slices in vitro [82]. NMDA function 
is also important for regulating neuroplasticity in the brain 
including synaptic plasticity, the ability of a synapse between 
two neurons to change in strength over time, and non- 
synaptic plasticity which itself is a modification of the intrinsic 
excitability of the neuron mediated through changes in struc-
tures, such as the soma, axon, or dendrites [83].

Inhibitory neurotransmission within the prefrontal cortex is 
critical for maintaining normal cognitive function, and post-
mortem studies of brain tissue from those with schizophrenia 
have shown that there is a decrease in GAD67, the synthesiz-
ing enzyme for GABA, which subsequently alters inhibitory 
neurotransmission and contributes to cognitive dysfunction 
[84]. It has been demonstrated that GLP-1R analogues act to 
enhance GABA signaling within the hippocampus [85] and to 
upregulate GABAA receptors in the prefrontal cortex. This 
make sense given GLP-1RAs activate similar downstream sig-
naling cascades as insulin receptors that have also been 
demonstrated to restore GABA function [86,87].

GLP-1RAs may also normalize insulin signaling within the 
brain, stimulating neuroplasticity. GLP-1R analogues have 
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been shown to increase long-term plasticity in the CA1 of the 
hippocampus [88] and prevent apoptosis occurring due to 
excessive glutamate release [89], a phenomenon that occurs 
in schizophrenia [90]. GLP-1RAs may also act to stimulate the 
release of brain-derived neurotrophic factor (BDNF), a growth 
factor that regulates activity-dependent neuroplasticity, 
important for learning and memory and low levels of which 
have been linked to poorer cognitive performance in indivi-
duals with schizophrenia [91].

Another potential mechanism by which GLP-1RAs may 
improve cognitive function is by reducing neuroinflamma-
tion. Schizophrenia is characterized by significant structural 
changes that include gray and white matter volume loss 
that are progressive over the course of the illness [92]. 
Neuroinflammation has been proposed as a potential patho-
physiological mechanism by which these structural abnorm-
alities may arise and worsen cognition in the disorder. 
Specifically, changes in inflammatory cytokines including 
interleukins 1 and 6 (IL-1, IL-6) and tumor necrosis factor 
alpha (TNF-α) are associated with a deterioration of cogni-
tive function [93]. At the onset of illness, individuals with 
first-episode psychosis display a consistent co-occurrence of 
metabolic and inflammatory changes [94,95]. A recent study 
investigating changes in biomarkers in those with first- 
episode psychosis identified an increase in inflammatory 
markers MIP-1b/CCL4, VEGF, IL-6, and PAI-1, while IL-17 
and metabolic regulators ghrelin, glucagon, and GLP-1R 
were decreased in these individuals [94]. Given the evidence 
that the 2–5 year period after first-episode psychosis is 
crucial in the evolution and long-term prognosis of the 
disease [96], the pro-inflammatory actions of incretin 
mimetics may represent a potential ameliorative effect in 
the long-term prognosis of the disorder on inflammatory, 
metabolic, and cognitive processes. One pathway by which 
GLP-1RAs may decrease neuroinflammation is supressing 
TNF – α as has been demonstrated in vitro [97]. 
Furthermore, in a rat model of Alzheimer’s disease where 
intracerebroventricular streptozotocin was infused to induce 
hyperglycemia with concomitant intraperitoneal exenatide 
injections over 2 weeks, TNF-α levels remained stable in 
animals administered a GLP-1R agonist compared to rats 
that did not receive it. While the relationship between 
immune function disruption and glucose homeostasis is 
still being uncovered in schizophrenia, it is important to 
note many of the inflammatory cytokines exert pleiotropic 
effects within the body and undergo changes after antipsy-
chotic administration. IL-1 and IL-6 for example are key 
mediators of the anti-obesity effects of GLP-1R [98], yet 
their elevation at the onset of schizophrenia has been 
linked with disturbances in glucose utilization [32]. IL-6 
also shows decreased levels after antipsychotic administra-
tion in schizophrenia individuals [99] which may be 
a consequence of weight gain, suggesting the importance 
of intervening at the onset of illness to mitigate long-term 
metabolic dysregulation and subsequent cognitive impair-
ment. Given the evidence that peripheral immune changes 
within schizophrenia can modulate brain function and beha-
vior, GLP-1RAs have therapeutic potential as an adjunctive 
therapy, especially at the onset of illness.

5. GLP-1RA effects on cognition in preclinical 
research

GLP-1RA analogues have been used in a variety of animal 
disease models to examine their efficacy in improving cogni-
tion. In addition to treating altered metabolic functioning in 
diseases such as diabetes, GLP-1RAs have the potential to 
improve cognition in neuropsychiatric diseases that share 
underlying pathophysiology with diseases of metabolic dysre-
gulation. Preclinical studies demonstrate GLP-1RAs exert ben-
eficial effects on several cognitive domains, such as executive 
function, spatial learning and memory, and recognition mem-
ory. Models of diabetes that recapitulate metabolic abnormal-
ities such as impaired glucose homeostasis, obesity, and 
impaired insulin sensitivity have all shown that GLP-1RAs can 
improve glucose homeostasis and improve memory [100– 
104]. Yang and colleagues [104] recently showed that in 
Goto Kakizaki (GK) rats with disrupted glucose homeostasis, 
liraglutide improves spatial learning and memory on the 
Morris water maze. Alterations in signaling cascade pathways 
related to insulin such as PI3K, Akt, AMPK, and mTOR were 
reversed in the treatment group compared to controls. In 
a model of juvenile diabetes mellitus, Iwai, and colleagues 
[105] showed GLP-1 improved learning and memory on 
a Y-maze test. This was confirmed by Palleria and colleagues 
[102] also showing liraglutide lead to improvements in spatial 
learning and memory on the Morris water maze and passive 
avoidance in a model of juvenile diabetes mellitus. Liraglutide 
also lead to reduced hippocampal neuronal cell death and 
a reduction of alterations in the insulin signaling cascade in 
this study, suggesting targeting the metabolic alterations pre-
sent in the model is central to its procognitive effects.

Alzheimer’s disease is a neurodegenerative disorder 
whereby patients also exhibit altered glucose regulation 
from hyperinsulinemia and insulin resistance [106,107]. 
Within transgenic models of Alzheimer’s disease, GLP-1RAs 
also appear to be effective in alleviating memory deficits 
that are apparent in animal models and human patients 
[108,109]. Chen and colleagues [110] used an APP/PS1/Tau 
triple transgenic model while administering liraglutide for 
8 weeks. It was found that liraglutide treatment alleviated 
deficits in escape latency and time to find the platform in 
the Morris water maze. Alterations to JNK and ERK signaling 
were also normalized, suggesting improvement of cellular 
metabolism. Similarly, Long-Smith and colleagues [111] 
found that in APP/PS1 mice, 8 weeks of treatment with liraglu-
tide was effective in improving spatial learning and memory 
on the Morris water maze. This improvement was also seen in 
a reversal phase of the task. Interestingly, improved recall was 
associated with significantly better long-term potentiation in 
the CA1 area of these mice. The findings from Mclean and 
Hölscher [112] also demonstrated liraglutide increased long- 
term potentiation in the hippocampus, and Hansen and col-
leagues [113] have demonstrated that liraglutide increases 
CA1 pyramidal neuron number. Research by Tai and collea-
gues [114] also confirms that liraglutide increases spatial learn-
ing and memory in models of Alzheimer’s disease, but also 
decreases markers of neuroinflammation and increases neuro-
genesis within the hippocampus.
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Limited research exists demonstrating GLP-1RAs improve 
cognition in animal models of schizophrenia, depression, or 
bipolar disorder. Filho and colleagues [115] recently investi-
gated whether liraglutide could reverse memory deficits in an 
amphetamine-induced model of bipolar disorder. The effect of 
liraglutide was observed in monotherapy or combined with 
lithium to observe its effectiveness against amphetamine- 
induced mania-like symptoms of bipolar disorder. They 
found liraglutide on its own showed efficacy in reversing 
deficits in amphetamine-induced hyperlocomotion, executive 
function and spatial learning and memory deficits, but did not 
reverse risk-taking behavior and fear learning impairments. 
When combined with lithium, liraglutide was effective in 
reversing most behavioral changes and successfully reversed 
the pro-oxidative measures associated with the model. To 
examine potential effects of liraglutide in a rodent model 
relevant to depression, Kamble and colleagues [116] adminis-
tered liraglutide in rats and mice to see whether anti- 
depressive and anti-anxiolytic effects could be observed. 
Performance was examined on the elevated plus maze, 
Morris water maze, forced swim test, and T-maze test. 
Memory deficits were induced by scopolamine or pentylene-
tetrazole and administration of liraglutide prior to testing 
showed an improvement of performance on the Morris 
water maze.

Liraglutide has also been found to improve spatial learning 
and memory impairments when metabolic dysregulation is 
present. Babic and colleagues [117] showed liraglutide 
reduced olanzapine-induced weight gain and glucose intoler-
ance in a cohort of rats that received liraglutide co- 
administered with either olanzapine or clozapine. 
Importantly, liraglutide prevented working memory deficits 
on the T-maze test when liraglutide was administered along-
side olanzapine in rats. Within schizophrenia there is 
a complex interplay of preexisting metabolic dysfunction and 
the metabolic side-effects induced by antipsychotics that wor-
sen these symptoms. This study suggests that liraglutide may 
be effective at improving measures of cognition related to 
memory when metabolic dysregulation is present, however, 
further human studies are needed to confirm whether GLP- 
1RAs can improve cognition from the onset of illness.

Current preclinical evidence suggests that GLP-1RAs such 
as liraglutide and exenatide are effective at improving spatial 
learning and memory, recognition memory, episodic memory, 
and recognition memory. When used in conjunction with 
psychiatric medications such as lithium, clozapine, and olan-
zapine, it is effective in reducing metabolic dysregulation and 
preventing cognitive impairment in rodent models of schizo-
phrenia, depression, and bipolar disorder. The evidence that 
GLP-1RAs improve executive function is limited and other 
domains of cognition such as processing speed and goal- 
directed behavior require further investigation. In addition, 
variations in treatment administration method, duration of 
administration, and differences in dosing regimens make it 
difficult to directly compare studies. Furthermore, a causal 
mechanism of how GLP-1RAs exert their procognitive effect 
is still needed. However, it is important to highlight that GLP- 
1RAs improve cognition in models of diabetes as well as 

neurodegenerative diseases such as Alzheimer’s disease sug-
gesting that the improvements in cognition function are not 
dependent on glucose normalization. GLP-1RAs appear to 
have a multifunctional throughout the brain by influencing 
important metabolic processes that are neuroprotective. GLP- 
1RAs increase long-term potentiation within the hippocam-
pus, improve alterations in insulin signaling. Furthermore 
they act to decrease neuroinflammation, oxidative stress, and 
apoptosis within the brain.

6. GLP-1RAs effects on cognition in clinical research

Current clinical research shows mixed evidence regarding the 
efficacy of GLP-1RAs to improve cognition in individuals with 
schizophrenia. Ishøy and colleagues [118] investigated 
whether exenatide-enhanced cognitive performance on the 
Brief Assessment of Cognition in Schizophrenia test but 
found no improvement in measures of verbal memory and 
learning, working memory, motor function, verbal fluency, and 
executive function. As has been noted previously by Agarwal 
and colleagues [5], individuals also did not lose weight in this 
study, suggesting there could be a confounding factor such as 
duration of treatment or dose that explains the negative find-
ings. In contrast, liraglutide has been shown to improve execu-
tive function and memory in individuals with major depressive 
disorder and bipolar [119] and improve memory in obese 
individuals with prediabetes or early type 2 diabetes [120]. 
However, further clinical trials are needed to establish these 
benefits in individuals with schizophrenia.

7. Conclusion

While antipsychotic treatment for schizophrenia primarily tar-
gets dopamine neurotransmitter systems within the brain to 
effectively alleviate positive symptoms, it has shown limited 
ability to improve cognitive deficits in schizophrenia. Current 
preclinical evidence shows that GLP-1RAs improve metabolic 
dysregulation and may also exert beneficial effects on cognitive 
function. GLP-1RAs clearly exert neuroprotective effects within 
the brain through influencing neurogenesis and synaptic plasti-
city, neuroinflammation, neurotransmission, insulin signaling 
transduction, neuroapoptosis, and reducing oxidative damage 
[121] and may also be useful in attenuating metabolic dysregu-
lation found in antipsychotic naïve individuals and those who 
are undertaking antipsychotic treatment. Although the molecu-
lar pathways by which GLP-1RAs signal through have been 
identified, the direct mechanism by which incretin mimetics 
may improve cognitive processes are yet to be elucidated and 
require further research. Current clinical research has also 
demonstrated partial evidence that GLP-1R agonism may 
improve cognitive performance yet further research is required 
to validate a plausible mechanism by which GLP-1RAs improve 
cognition. A bias in the literature exists toward focusing primar-
ily on models of diabetes and Alzheimer’s disease to observe the 
potentially beneficial effects of GLP-1RAs on cognition. 
Consequently, further studies are needed on the effects of 
GLP-1RAs in models of schizophrenia in order to demonstrate 
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predictive validity of the drug for this patient population. Given 
the range of pathophysiological mechanisms that may be 
responsible for cognitive impairment, modeling combined 
metabolic and schizophrenia-related cognitive dysfunction 
using animal models to increase the translational relevance of 
the findings is essential.

8. Expert opinion

Impaired insulin signaling has been identified as a feature 
of schizophrenia, diabetes, and numerous neuropsychiatric 
diseases. Given the important role insulin has in cognitive 
function, the identification of novel therapies to normalize 
insulin signaling within the brain represents an important 
therapeutic target. GLP-1RAs are a promising therapeutic 
candidate and preclinical research shows they protect neu-
ronal function through improvement of insulin signaling, 
neurotransmission, neuroinflammation, and synaptic plasti-
city. However, further research is still needed to elucidate 
the direct mechanism by which GLP-1RAs improve cogni-
tion and whether this effect translates to humans.

Despite promising preclinical evidence of GLP-1RAs 
improving memory, other domains of cognition have not 
yet been thoroughly investigated. To address this, future 
researchers may consider using cognitive assays in rodents 
that have translational relevance in humans. Initiatives 
such as the RDoC matrix [122] have highlighted that 
research into cognitive-enhancing drugs should become 
more focused on cognitive domain-based testing. The 
development of technology such as touchscreen cognitive 
testing [123] means we are now capable of standardizing 
tasks across species in a high through-put manner. This 
technology allows researchers to probe the effects of GLP- 
1RAs in preclinical models of neuropsychiatric diseases 
across multiple cognitive domains, such as attention, cog-
nitive flexibility, and goal-directed action. Human beha-
vioral and neurobiological phenotypes applied to 
preclinical animal research may be of use in assessing the 
efficacy of GLP-1RAs on metabolic and cognitive processes, 
an approach highlighted by Sarnyai and colleagues [124]. 
For example, GLP-1RAs have been shown to increase BDNF 
(see Table 1) and recent evidence shows that variants of 
the CACNA1C gene found in individuals with schizophrenia 
results in lower BDNF expression in the prefrontal cortex 
and impaired reversal learning [125,126]. GLP-1RA admin-
istration may be tested in a knockout model to observe 
whether cognitive performance is improved to gain insight 
into a specific mechanism of action through which GLP- 
1RAs improve cognition. Additionally, future researchers 
may consider using pharmacological approaches, such as 
the sub-chronic ketamine model, to recapitulate alterations 
in NMDA function as well as deficits in cognitive flexibility 
seen in schizophrenia [127]. Using models that recapitulate 
key molecular, genetic, and phenotypic alterations found 
in individuals with schizophrenia will best inform the clin-
ical use of GLP-1RAs such as liraglutide. Furthermore, test-
ing the administration of GLP-1RAs in animals of different 
ages and sex will be important in producing findings that 
are translatable to human clinical populations. Indeed, the 

administration of GLP-1RAs before the progression of dis-
rupted insulin signaling and metabolic disruption may be 
key to preventing cognitive decline in schizophrenia and 
other neuropsychiatric diseases.

A particular approach that will be of future interest is in 
evaluating the effects of dual and triple receptor agonists 
in animal models of schizophrenia. Dual agonists such as 
DA5-CH and DA-JC4 that activate GLP-1 and gastric inhibi-
tory polypeptide (GIP) have been demonstrated to increase 
working memory and long-term spatial memory in animal 
models of Alzheimer’s disease [142]. Indeed these dual 
agonists have shown superior ability to reduce markers of 
inflammation when compared to the GLP-1RA liraglutide 
[143]. Novel triple receptor agonists that target glucagon 
receptors as well as GIP and GLP-1 have demonstrated 
neuroprotective properties in animal models of 
Alzheimer’s disease [114]. The application of these dual 
and triple receptor agonists may be of great interest to 
individuals with schizophrenia with cognitive impairment, 
especially if they demonstrate superior efficacy when com-
pared to preexisting GLP-1RAs.

Further preclinical and clinical studies will investigate the 
effects of GLP-1RAs on cognition to determine whether they 
are effective in terms of treatment outcome, cost- 
effectiveness, and are tolerable as an adjunctive treatment 
in individuals with schizophrenia. In preclinical research, 
future studies will probe the underlying mechanisms of 
how GLP-1RAs improve cognition in animal models of schi-
zophrenia that recapitulate key alterations in insulin signal-
ing, neurotransmitter balance, and cognitive dysfunction. 
Furthermore, preclinical evidence will elucidate whether 
new dual and triple receptor agonists are superior in 
terms of their neuroprotective effects and subsequently 
whether they will be more effective in clinical populations 
for treating cognitive impairment.

Converging preclinical evidence demonstrating mechan-
ism of action and large clinical trials demonstrating GLP- 
1RAs have measurable benefits for cognition in individuals 
with schizophrenia will be required to weigh potential 
side-effects of the drug versus the benefits in this clinical 
population. GLP-1RAs such as liraglutide have common 
adverse effects such as nausea and vomiting and must be 
injected once per day [144]. This presents a barrier to the 
uptake of GLP-1RAs as an adjunctive treatment for schizo-
phrenia. Newly developed GLP-1RAs such as semaglutide 
have been developed as a once-weekly injection [144]. 
However, research comparing their efficacy to liraglutide 
as well as their long-term cost-effectiveness is still 
required. Long-term, further clinical trials are needed to 
assess the benefit of current GLP-1RAs on cognition in 
individuals with schizophrenia. Clinical trials will assess 
the effects of these drugs over a longer duration in 
patients, observe whether there is an effect of dose on 
cognitive enhancement and whether these drugs improve 
cognition independent of their effects on weight-loss. 
Future research will also assess how GLP-1RAs interact 
with antipsychotic medications that may differ in terms 
of their effect on metabolic dysregulation.
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