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Illusory generalizability of clinical prediction models
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John H. Krystal2, Martin Paulus8

It is widely hoped that statistical models can improve decision-making related to medical treatments.

Because of the cost and scarcity of medical outcomes data, this hope is typically based on investigators

observing a model’s success in one or two datasets or clinical contexts. We scrutinized this optimism

by examining how well a machine learning model performed across several independent clinical trials of

antipsychotic medication for schizophrenia. Models predicted patient outcomes with high accuracy

within the trial in which the model was developed but performed no better than chance when applied

out-of-sample. Pooling data across trials to predict outcomes in the trial left out did not improve

predictions. These results suggest that models predicting treatment outcomes in schizophrenia are

highly context-dependent and may have limited generalizability.

O
ne fundamental problem in medicine is

that despite similar treatments some pa-

tients get better whereas others show

no improvement. One goal of precision

medicine is to use machine learning to

find models that will help predict who will

respond to what type of treatment (1). For

precision medicine to affect clinical practice

and improve outcomes, the models that we

develop must robustly predict outcomes for

unseen, future patients (2–5).

However, models are not usually tested on

new patients in a different context because

data—especially data from controlled designs—

are scarce and expensive (6). Instead, research-

ers typically split a study’s participants into

two or more random groups, build a model

using the data from one of the groups, and test

its predictions on the other group (e.g., k-fold

cross-validation) (3, 4). When we use this kind

of approximation based on one data set or

clinical sample, we have a fundamentally lim-

ited insight into the true potential for a model

to improve outcomes in the future. Validating

clinical prediction models in different clinical

samples is an essential step in the model de-

velopment process. It generally results in pre-

dictive performance measures that are lower

but allows for a more realistic assessment of

the potential for statistical models to improve

clinical practice (7–9).

Open data opens possibilities

As efforts towardmandatory randomized con-

trolled trial (RCT) data deposition, archival

data sharing, and open science continue to

advance, opportunities arise to more rigor-

ously examine how well treatment predic-

tion models will fare in different contexts. The

Yale Open Data Access (YODA) Project is one

such effort, which now includes a data archive

of over 246 clinical trials from all medical

fields.

The YODA project included several RCTs

evaluating the comparative efficacy of anti-

psychoticmedications for treating schizophrenia.

Predicting treatment outcomes in schizophrenia

could be especially advantageous because the

clinical response to pharmacological interven-

tions is heterogeneous and depends on many

environmental factors such as individual and

family-related stress, drug abuse, homeless-

ness, and social isolation. Depending on the

clinical outcome definition, up to 20 to 30% of

first-episode individuals (10) and more than

50%with a relapse do not respond sufficiently

to antipsychotic medications (11).

We examined the generalizability of clinical

predictionmodels acrossmultiple clinical trials

using the case study of antipsychotic treat-

ments for schizophrenia. Critically, this study

directly evaluated the performance of a model

on its initial training sample as well as how

the same model performed on truly inde-

pendent clinical trial samples. This allowed us

toassess twokey risks: First,modelsmay “overfit”

the data by fitting the random noise of one

particular dataset rather than a true signal

likely to generalize across samples, leading to

good predictions in the training data that do

not generalize to the testing data. The second

key risk is poormodel transportability.Models

may lack external validity due to patients,

providers, or implementation characteristics

varying across trials (12).

Data sources

Weused treatment data from five international,

multisite RCTs (NCT00518323, NCT00334126,

NCT00085748, NCT00078039, and NCT00083668)

obtained through the YODA Project (https://

yoda.yale.edu/). These trials were selected be-

cause of their comparability and consistency.

All patients had a current DSM-IV diagnosis of

schizophrenia at the start of the trial; all trials

randomized patients to an antipsychotic med-

ication or placebo; all trials used the same

scale tomeasure treatment outcomes (the Posi-

tive andNegative Syndrome Scale, PANSS); all

trials included a 4-week timepoint to measure

outcomes; and all trials collected similar data

about the patients at baseline. Combined, the

trials also provide a heterogeneous patient
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Table 1. Treatment outcomes across trials.

Outcome definition

Adults first

episode

(n = 321)

Adults -

Chronic #1

(n = 430)

Adults -

Chronic #2

(n = 481)

Older

adults

(n = 99)

Teens

(n = 182)

Total

(n = 1513)

25% Reduction PANSS
264

(82.2%)

208

(48.4%)

266

(55.3%)

32

(32.3%)

47

(25.8%)

816

(54.0%)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

50% Reduction

PANSS

119

(37.1%)

85

(19.8%)

82

(17.0%)

7

(7.1%)

12

(6.6%)

306

(20.3%)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

RSWG remission

criteria

152

(47.4%)

129

(30.0%)

153

(31.8%)

24

(24.2%)

58

(31.9%)
517 (34.2%)

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Percentage change

in PANSS total

score (SD)

-44.1

(23.1)

-26.9

(28.2)

-28.4

(25.3)

-18.0

(21.8)

-13.7

(21.5)

-28.8

(26.7)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Baseline total

PANSS (SD)

103.0

(14.3)

92.4

(13.0)

92.9

(10.9)

91.1

(8.8)

90.0

(13.1)

94.4

(13.2)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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population, with patients recruited from 194

sites across 4 continents, a pediatric trial, an

older adult trial, and a trial of individuals with

a first episode (see SM for more details). The

study design, outcome measure, and cross-

validation approach were preregistered on

2 August 2016 (YODA 2016-1005). Minor up-

dates to the preregistrationwere submitted on

2 May 2023 (included in the SM).

Patients and outcomes

From 29 March 2004 to 30 March 2009, 1962

total patients aged 12 to 81 years were enrolled

across five randomized controlled trials at

194 sites in North America, Asia, Europe, and

Africa. We assessed symptomatic outcomes

based on the PANSS (13) at week 4 for the

1513 participants with baseline and 4-week

follow-up data. Different definitions of re-

sponse, remission, and recovery are used in

schizophrenia research, which makes com-

paring and applying results in clinical practice

difficult (14–16). The primary outcome re-

ported here is the Remission in Schizophrenia

Working Group criteria (RSWG) (17). To ensure

that our findings were not driven by idiosyn-

crasies in howwe defined treatment response,

we included three other definitions commonly

used in the field, including percentage change

with baseline correction (15, 16), and two bi-

nary definitions of 25 and 50% symptom re-

duction. Table 1 reports treatment outcomes

for all definitions across the five trials.

We extracted all information available at

baseline across all trials and retained it as a

predictor variable if it was available for more

than 80% of patients. We also computed con-

dition (control versus treatment) X predictor

interaction terms. Drug dose was standar-

dized to paliperidone dose equivalents using

the defined daily dose method (18). Together,

this yielded 217 predictor variables that in-

cluded basic demographic features, psychiat-

ric history (DSM-IV diagnosis category, age of

diagnosis, psychiatric hospitalizations), clin-

ical data (PANSS, Clinical Global Impression)

(17), extrapyramidal symptom scales (Abnor-

mal Involuntary Movement Scale) (19) and

Simpson Angus Scale (20), biometric data

(blood chemistry panel, hematology, urinaly-

sis), and treatment randomization. The de-

tailed list of predictors, selection criteria, and

missing data approach is provided in the SM.

Machine learning approach

We applied machine learning methods using

baseline data to predict whether a patient

would achieve clinically significant improve-

ments in symptoms over four weeks of anti-

psychotic treatment. We used the elastic net

algorithm (21, 22), a penalized regressionmeth-

od that is appropriate when covariates are

correlated with one another and predictors

may only be sparsely endorsed. It has been

successful in research predicting psychiatric

treatment outcomes (5, 23–25).

The elastic net model uses two penalty pa-

rameters, lambda and alpha, which balance

stability with parsimony. We examined 400

combinations of alpha and lambda penalties

(see supplement) and selected the optimal pe-

nalties using repeated 10-fold cross-validation.

The cross-validation part of this procedure se-

parates the data set into 10 random folds and

uses 9 of the subsets for training, repeating the

process such that each subset is left out once

for testing. The repeated part of this procedure

re-splits the data ten times to reduce the im-

pact of the random data split; in aggregate,

100 total models were fit to the 10 folds by 10

repeats. Model performance was calculated

by averaging the performance metric across

all 100 models. This entire procedure was run

for each of the 400 combinations of alpha and

lambda values, and the final values were

chosen as the combination of alpha and

lambda values that optimized the model

performance metric. We used the metrics

of area under the receiver operating curve

for binary outcomes and root mean square

error for continuous outcomes. The final

alpha and lambda values were applied to the

aggregate sample to estimate the prediction
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Fig. 1. Balanced accuracy for models predicting treatment outcome (Remission in Schizophrenia Working Group criteria) across all modeling scenarios.

Gray intervals represent 95% confidence intervals, not adjusted for multiple comparisons. Red markers denote statistical significance after applying the Benjamini-

Hochberg adjustment with the false discovery rate set to 5%. Repeated 10-fold cross-validation; FE, first episode.
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model coefficients. To interpret differential

performance across samples, we report a

metric known as balanced accuracy [(sensi-

tivity + specificity) / 2] whose null distribution

is centered on 50% (26, 27). To determine

whether balanced accuracy was statistically

significantly above chance, we bootstrapped

confidence intervals and adjusted for multiple

comparisons across all 35 comparisons using

the Benjamini-Hochberg adjustment with the

false discovery rate set to 5% (28). All analysis

was conducted using R version 4.1 (29), with

machine learning models fit using the caret

package (30).

Exploring the generalizability of machine

learning models

We evaluated the applicability of machine

learning models across four distinct scenarios

to gain insights into their generalizability:

First, we assessed the predictive accuracy of

the model within the trial, without any ex-

ternal validation beyond the training data.

Second, we also focused on within-trial pre-

diction accuracy but this time estimated using

the data excluded from the training set in a

repeated tenfold cross-validation process. Third,

we conducted a paired-across-trial prediction

accuracy assessment. In this case, models

trained on one trial were applied to all other

trials to evaluate their performance. Finally, in

the fourth scenario, we implemented a leave-

one-trial-out prediction accuracy assessment.

Models were trained using data aggregated

from four trials and their predictive accuracy

was tested on the fifth trial (Fig. 1). Balanced

accuracy for the RSWG criteria are shown in

Fig. 1, and data for alternative outcome de-

finitions and additional outcomemetrics are

shown in the supplement.

No validation

In the scenario where we assessed within-trial

performance without any external validation,

the final prediction model created for a spe-

cific trial was applied to the entire sample

from that same trial. The balanced accuracy

was high and significantly above random

chance for all models, with an average of 0.72

(range: 0.66 to 0.77) across all five prediction

models. However, because themodel was eval-

uated on the same sample used to develop it,

there is a risk of overfitting, making these re-

sults less likely to generalize.

Cross-validation

To estimate more generalizable prediction ac-

curacy, we employedwithin-trial cross-validation.

Performance characteristics of the optimal

alpha and lambda valueswere averaged across

the 100 left out folds (10 folds * 10 repeats)

from the repeated cross-validation procedure.

Each trial’s data were divided into 10 subsets,

with coefficients developed on 9 subsets and

then tested on the remaining subset. In this

scenario, balanced accuracy was lower in each

dataset, averaging 0.60 (range: 0.56 to 0.67)

across all five prediction models. Only three

out of five models performed above chance.

Paired-trial validation

Next, we directly assessed out-of-sample per-

formance in the paired-trial validation (16).

We applied the prediction models developed

using within-trial models across each of the

other trials, for a total of 20 trial pairs. Model

performance was low (mean across all trial

pairs was 0.54, range 0.48 to 0.61) with only

three trial pairs performing above chance.

Leave-one-trial-out validation

Given the availability of multiple archival trials

for developing a prediction model, a natural

extension of the paired-trial validation would

be a leave-one-trial-out approach. This approach

might enhance generalizability by allowing the

algorithm to be exposed to more information

through between-trial variability in baseline

phenotypes. We aggregated data across four

trials, leaving the fifth out for testing, and

repeated the process 5 times so that each trial

was left out once. Performance was once again

poor with low balanced accuracy in all con-

ditions (mean across all left out trials was 0.54

with range 0.50 to 0.58) and performance was

significantly above chance in only two of the

five testing sets.

Sensitivity analyses

The pattern of results observed was not due

to idiosyncrasies of how we measured treat-

ment response. We found the same pattern of

results when we reproduced all four modeling

scenarios using other binary and continuous

definitions of treatment response (see SM).

This lack of model generalizability to un-

seen patients was also observed for another

machine learning algorithm.Whenwe applied

random forest models, which can detect com-

plex patterns of interactions amongst predic-

tor variables, we observed the same pattern of

results except that excessive overfitting occur-

red for no-validation conditions (see SM).

Discussion

Machine learning prediction of treatment out-

comes in medicine is exciting but challenging.

Our modeling scenarios using antipsychotic

treatment outcome prediction in schizophrenia

suggest that predictive models are fragile and

that excellent performance in one clinical con-

text is not a strong indicator of performance

on future patients. This is highly concerning as

most predictive studies today rely on internal

samples for testing and validation. When

models were tested on the same sample on

which they were developed, models routinely

produced strong predictions. Cross-validation

tempered these performance estimates but

even the models that performed well in cross-

validation were little better than chance when

predicting outside of the sample in which they

were developed—even when the unseen sam-

ples were well-phenotyped. In a world where

we hope that predictive models might eventu-

ally improve clinical practice, the ability to

generalize to other carefully controlled clin-

ical contexts is only the first step to generalize

to settings with more heterogeneity in patient

presentations and methods of care delivery.

Why model generalizability is challenging

There are three key reasons why predictive

models might not generalize across trials.

First, patient groups may be too different

across trials. The umbrella category of schiz-

ophrenia is useful for clinical practice but also

means that patients with different disease

stages are coerced into the same diagnostic

category in clinical trials. If key information

that differentiates patients is not captured in

the data or if the range of that information is

more restricted in the dataset used to develop

the model compared with the target trial, pre-

dictions may be inaccurate. Thus, patient pop-

ulations may differ considerably between trials

within the same diagnostic category. However,

the current study found little evidence that

results would generalize across even the most

similar trials. The three cross-trial pairs with

predictions slightly greater than chance were

amongst the three studies of adults aged 18

and over but this pattern of results did not

consistently replicate across other outcome

definitions.

Second, these trials may not have collected

the type or volume of data needed to make

good predictions. This study used clinical,

sociodemographic, and simple biomarker data-

based on almost 2000 patients. However,

additional data types may have been more

relevant to treatment outcomes. Psychosocial

information and social determinants of health

were not included in this study but have pre-

viously been found to predict treatment out-

comes in first episode psychosis (27). Preliminary

research suggests that longitudinal patterns

of symptom co-occurrence—either before or

during treatment—can be specifically relevant

to how a patient will respond to treatment

although it may delay care to collect this data

(31–34). Some have suggested the use of

neuroimaging and genetic data but there

is currently little evidence to suggest that

such data would improve predictions; further,

collecting these data would pose additional

barriers for routine implementation (35–37).

Finally, having data from more participants

may allow for more nuanced modeling of in-

dividual differences.

A third reason why predictive models may

not generalize is that patient outcomesmay be
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too context-dependent. Trials may have subtly

important differences in recruiting procedures,

inclusion criteria, or treatment protocols. Be-

cause these characteristics do not vary across

patients within a trial, they cannot bemodeled

as predictors within a single trial. However,

this study usedmultinational RCTs conducted

by large pharmaceutical companies and con-

tract research organizations, minimizing non-

specific concerns especially in comparison to

the variability we would expect in real clinical

practice going from one site or provider to the

next. Of course, different antipsychotic drugs

may differ from one another in ways that af-

fect outcome prediction, and theD2 dopamine

receptor blockade intended to correct overstim-

ulation of D2 receptors by endogenous dopa-

mine may be too far downstream from the

primary pathology of schizophrenia or the symp-

tom severity criteria used to measure it (38).

Improving model generalizability

It is worth considering howwemight improve

the situation in the future. From a statistical

modeling perspective, capturing important

heterogeneity through phenotyping or strat-

ification procedures might help improve the

generalizability of models. Identifying trial-

level characteristics that relate to patient out-

comes may provide information to better

equip prediction models to generalize across

settings. Such trial-level variation can be studied

using Bayesian approaches or recent techni-

ques that incorporate replicability across con-

texts or populations into the algorithm training

process (39). From a population perspective,

there may be some patients for whom the

choice of treatment has no impact on their

clinical course, which represents an inherent

limitation of predicting treatment outcomes.

However, this could also be an opportunity for

further improvement in identifying which

patients have a wider range of potential out-

comes and for whom selecting the optimal

treatment would provide clinical benefit (40).

Longitudinal validation methods, in which

a validation sample is drawn from the same

population at a later point in time, may pro-

vide a limited but pragmatic path to avoid

generalizing from one clinical setting to an-

other. The growth of large mental health care

delivery systems provides the opportunity to

collect large amounts of data and deploy pre-

diction models in the same setting in which

they were developed (41). This strategy can

reduce challenges associated with patient het-

erogeneity and context-dependence, and also

help identify temporal or geographic trends

that affect a model’s predictions. However,

when a model is trained and validated on

samples from the same population, it may

perform well in that specific context but fail

when applied to a different population with

different characteristics.

Conclusions

The present study offers an underwhelming

but realistic picture of our current ability to

develop truly useful predictive models for schiz-

ophrenia treatment outcomes. Models that

performed with excellent accuracy in one sam-

ple routinely failed to generalize to unseen

patients. These findings suggest that approx-

imations based on a single data set are a

fundamentally limited insight into future per-

formance and represent a potential concern

for prediction models throughout medicine.

The field as a whole—present authors included—

hope that machine learning approaches can

eventually improve the allocation of treatments

in medicine; however, we should a priori re-

main skeptical of any predictive model find-

ings that lack an independent sample for

validation.
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Editor’s summary

A central promise of artificial intelligence (AI) in healthcare is that large datasets can be mined to predict and identify

the best course of care for future patients. Unfortunately, we do not know how these models would perform on new

patients because they are rarely tested prospectively on truly independent patient samples. Chekroud et al. showed

that machine learning models routinely achieve perfect performance in one dataset even when that dataset is a large

international multisite clinical trial (see the Perspective by Petzschner). However, when that exact model was tested in

truly independent clinical trials, performance fell to chance levels. Even when building what should be a more robust

model by aggregating across a group of similar multisite trials, subsequent predictive performance remained poor. —

Peter Stern
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