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Four item response theory (IRT) models were compared using data from tests where
multiple items were grouped into testlets focused on a common stimulus. In the bi-
factor model each item was treated as a function of a primary trait plus a nuisance
trait due to the testlet; in the testlet-effects model the slopes in the direction of the
testlet traits were constrained within each testlet to be proportional to the slope in
the direction of the primary trait; in the polytomous model the item scores were
summed into a single score for each testlet; and in the independent-items model
the testlet structure was ignored. Using the simulated data, reliability was overesti-
mated somewhat by the independent-items model when the items were not indepen-
dent within testlets. Under these nonindependent conditions, the independent-items
model also yielded greater root mean square error (RMSE) for item difficulty and
underestimated the item slopes. When the items within testlets were instead gen-
erated to be independent, the bi-factor model yielded somewhat higher RMSE in
difficulty and slope. Similar differences between the models were illustrated with
real data.

Test items are often grouped into clusters, or testlets, centered around a common
stimulus. For example, the items in a testlet may focus on a reading passage, a lab-
oratory scenario, or a graphic or complex problem. Wainer, Bradlow, and Du (2000)
describe several reasons testlets might be desirable. One of their reasons “is to re-
duce concerns about the atomistic nature of single independent small items” (p. 246).
Testlets allow for more complicated, interrelated sets of items. Another reason they
suggest is the efficient use of the examinee’s time; if examinees must read a pas-
sage or study a stimulus, it is more time efficient to ask several related questions.
These context-dependent items are often regarded as more realistic and perhaps even
better for measuring higher-level skills. This may be particularly important in the
current U.S. testing context; given the political prominence of and school time de-
voted to statewide testing, many educators desire tests that measure problem-solving
in a context that is difficult to develop in a single item. However, items within a test-
let often violate the item response theory (IRT) assumption of local independence
(Sireci, Thissen, & Wainer, 1991; Thissen, Steinberg, & Mooney, 1989; Wainer &
Kiely, 1987; Wang & Wilson, 2005; Yen, 1993); even after controlling for the pri-
mary trait measured by the test, the item response probabilities are not independent.
Responses to items within a testlet, then, are related to a secondary trait. The sec-
ondary trait may be background knowledge or skills specific to the testlet, or it may
be an interest level or other motivational factors specific to the testlet. Typically the
testlet traits would be regarded as nuisance factors. While these testlet traits may be
very important for a given problem, they do not generalize across contexts. The test

145



DeMars

user is not interested in estimating scores on these secondary traits, but ignoring them
can lead to violations of the assumption of local independence.

Modeling Testlet Dependencies

One approach to this situation is to estimate a unidimensional model but treat
items within a testlet as a single polytomous item (Cook, Dodd, & Fitzpatrick, 1999;
Sireci et al., 1991; Wainer, 1995; Yen, 1993). The item scores are typically summed
and the test is calibrated with an IRT model appropriate for polytomous items, such
as the generalized partial credit model, the graded response model, or the nominal
response model. Summing across items within the testlet, though, leads to some loss
of information (Wainer et al., 2000). If there are a small number of items within the
testlet the nominal model could be used with each response pattern coded as a differ-
ent testlet score. This avoids the loss of information that would result from summing
the item scores, but becomes impractical as the number of possible response pat-
terns increases geometrically with the number of items in a testlet and thus is not
frequently used (Thissen et al., 1989).

Responses to testlet items can also be modeled with a multidimensional model.
The bi-factor model is appropriate for this context. In the bi-factor model, each
item response is a function of the primary trait and one of the secondary traits. The
secondary traits are orthogonal to the primary trait and to each other (Gibbons &
Hedeker, 1992; McLeod, Swygert, & Thissen, 2001). When applied to testlets, the
secondary traits would be testlet traits. The multidimensional extension of the three-
parameter logistic (3PL) model is

Pi(θ ) = ci + (1 − ci)
e1.7(a′

i θ+di)

1 + e1.7(a′
i θ+di)

, (1)

where Pi(θ ) is the probability of correct response on item i given the θ vector of traits
and the item parameters, ci is the lower asymptote, ai is a vector of discrimination
parameters, and di is the item difficulty. Notice that using this notation, di is added,
not subtracted, so easier items have higher values for d in contrast to the usual unidi-
mensional notation. For the bi-factor model, each item will have a nonzero value for
a1i, the discrimination in the direction of the primary trait, and for one other element
of ai corresponding to one of the testlet traits. The other discriminations in the vector,
corresponding to the other testlets, are fixed to zero. The covariances among the traits
are also fixed to zero. For identification purposes, the mean and variance of each θ

would typically be set to zero and one, respectively. The TESTFACT (Bock et al.,
2003) software has procedures to estimate the item discriminations and difficulties
for the bi-factor model using marginal maximum likelihood (MML). TESTFACT
uses the normal equivalent to the logistic model in Equation (1). TESTFACT will
provide expected a posteriori (EAP) estimates of the primary trait, along with stan-
dard errors, which take the testlet structure into account.

Another model proposed for use with testlets, the testlet-effects model, involves a
random testlet effect (Bradlow, Wainer, & Wang, 1999; Wainer et al., 2000; Wainer
& Wang, 2000). The model is (Wainer & Wang, p. 205):
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P = ci + (1 − ci)
e1.7(ai(θ−bi−γg(i)))

1 + e1.7(ai(θ−bi−γg(i)))
, (2)

where P is the probability of correct response on item i by person j, ci is the lower
asymptote, ai is the discrimination parameter, θ is the primary trait of person j, bi is
the item difficulty, and γg(i) is the random testlet effect or testlet trait for person j of
testlet g(i), the testlet to which item i belongs. The variance of γg(i) is a parameter to
be estimated; larger variance indicates a greater effect for testlet g. When multiplied
by ai, the difficulty bi in Equation (2) should be the negative of the difficulty di in
Equation (1). This model was originally specified by Bradlow et al. without the lower
asymptote and without the 1.7 constant.

Li, Bolt, and Fu (2004) observed that because the testlet-effects model applies
the same discrimination parameter to both the primary trait θ and the testlet trait γ ,
items that discriminate well on the primary trait are also modeled as discriminating
well on the testlet trait, when the opposite might seem more reasonable. They mod-
ified the model to include separate discrimination parameters for the primary and
testlet traits, equivalent to the bi-factor model, and found that this model fit their
data better. The relationship with the bi-factor model can be illustrated by re-writing
Equation (2) as follows:

P = ci + (1 − ci )
e1.7(ai θ−ai bi −ai γg(i))

1 + e1.7(ai θ−ai bi −ai γg(i))
, (3)

where all terms are as defined for Equation (2). If di = −aibi, and γg(i) is scaled to
have a mean of 0 and SD of 1 and symbolized as θg(i)+1, the equation becomes

P = ci + (1 − ci )
e1.7(ai θ1−ai αg(i)θg(i)+1+di )

1 + e1.7(ai θ1−ai αg(i)θg(i)+1+di ) , (4)

where αg(i) is equal to the SD of γg(i) in Equation (2). Comparing Equation (1) to
Equation (4), the difference is that the testlet slope in Equation (4) is a product of
the item slope, ai, (a1i in Equation (1)) and a testlet constant, αg(i), that is equal
for all items within the same testlet. If the product were written as a single slope
as in Equation (1), the testlet slopes within the same testlet would be proportional
to the primary slope. In the bi-factor model, the testlet slopes are independent of
the primary slope. Thus, the testlet model is a constrained version of the bi-factor
model. Li et al. (2004) showed this relationship, except with no lower asymptote in
the model.

The standard 3PL model for independent items is nested within the testlet-effects
(as well as the bi-factor) model; γ is constrained to zero and thus it and the cor-
responding slope drop out of the model. Also, the model is typically transformed
such that the item difficulty, b, is equal to −d/a and a is brought outside the
parentheses.

Consequences of Ignoring Local Dependencies

Ignoring violations of local independence can lead to overestimates of reliabil-
ity or information and underestimates of the standard error of the ability estimates
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(Sireci et al., 1991; Wainer, 1995; Wainer & Wang, 2000; Yen, 1993). It can also
lead to misestimation of item parameters. Wainer and Wang (2000) found that when
testlet dependencies were ignored item difficulties were still well estimated but
lower asymptotes were overestimated. Discriminations were underestimated on one
test and overestimated on another. Bradlow, Wainer, and Wang (1999) showed that
when the testlet dependencies were not modeled the item discriminations for test-
let items were underestimated and the item discriminations for independent items
were overestimated. Ackerman (1987) found that item discriminations were over-
estimated when a subset of the items were locally dependent. Wainer et al. (2000)
also showed that traits and difficulties were recovered better than discriminations
and lower asymptotes when the testlet dependencies were omitted from the model.
Further, the item discriminations from the testlet model replicated in another sam-
ple much better than the item discriminations from the usual 3PL model. In a study
by Glas, Wainer, and Bradlow (2000), the mean absolute errors of both discrimina-
tion and difficulty were larger for the 3PL model than for the testlet model when the
testlet factor was large. Lee, Kolen, Frisbie, and Ankenmann (2001) found that treat-
ing each testlet as a polytomous item was more effective in equating than ignoring
the local dependencies and using the usual 3PL model, which suggests that ignoring
the dependency led to less accurate item parameter estimates. Dresher (2004) found
that, when all items on a test were in testlets, the root mean square error (RMSEs)
for ability were higher when the dependencies were ignored than they were when the
testlets were each treated as a polytomous-cluster or when the testlet-effects model
was used. For the item difficulties and discriminations, RMSEs were lowest for the
testlet-effects model.

Purpose

Most of the studies summarized above have compared either the independent-
items model with the testlets-as-polytomous-item model (Lee et al., 2001; Sireci
et al., 1991; Wainer, 1995; Yen, 1993) or the independent-items model with the
testlet-effects model (Bradlow et al., 1999; Glas et al., 2000; Wainer et al., 2000;
Wainer & Wang, 2000). Li et al. (2004) compared the equivalent of the bi-
factor model to the testlet-effects model, but not to the polytomous model or the
independent-items model. In the current study, item and trait parameters for sim-
ulated data and for two real testlet-based tests were estimated using the bi-factor
model, the testlet-effects model, the testlets-as-polytomous-items model, and the
independent-items model. The purpose was to compare the ability, reliability, item
difficulty, and item discrimination estimates from the different models. These com-
parisons were made with data generated to fit the bi-factor model, with data generated
to fit the testlet-effects model, and again with data generated to fit the independent-
items model. Because the independent-items model is nested within the testlet-
effects and bi-factor model, the more complex models should lead to the same aver-
age item and trait estimates with data generated from the independent-items model
but they may introduce more error due to chance overfitting. Similarly, because the
testlet-effects model is nested within the bi-factor, the bi-factor model may lead to
less stable parameter estimates when the data follow the testlet-effects model. When
the model used for parameter estimation is more constrained than the model used
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to generate the data (independent-items model used with testlet-effects or bi-factor
data, or testlet-effects used with bi-factor data), item or trait estimates may be inac-
curate, as several researchers have found when using the independent-items model
when items were not locally independent (Ackerman, 1987; Bradlow et al., 1999;
Glas et al., 2000; Wainer et al., 2000; Wainer & Wang, 2000). Also in the latter
conditions, estimated standard errors would generally be too low, and reliability es-
timates would be too high (Sireci et al., 1991; Wainer, 1995; Wainer & Wang, 2000;
Yen, 1993). Finally, using the testlets-as-polytomous items model the local depen-
dencies from the bi-factor and testlet-effects should not systematically affect the trait
estimates or estimated reliability (item parameter estimates will not be comparable).
However, the loss of information from summing items would be expected to lead to
true increases in RMSE and decreases in reliability.

Study 1: Simulation Study

Method

Data. For consistency, the parameters (slopes and item difficulties) used to generate
the data are described in terms of the parameters of Equation (1). Six tests were cre-
ated by crossing two test lengths (25 or 50 items) with three models (bi-factor model,
testlet-effects model, and unidimensional model). Each set of five items formed a
testlet, with one of five magnitudes of testlet effects. Primary item slopes ranged
from .6 to 1.4 and item difficulties ranged from −1.5 to 1.5. Lower asymptotes were
set to .2. The same primary slopes and difficulties were used with each of the three
simulation models. When the testlet slopes were independent of the primary slope,
as in the bi-factor model, the testlet slopes were set to 0 in one testlet, and .3, .6, .9,
and 1.2 in each of the others. The testlet slope was set the same within each testlet
only for convenience in organizing results and to keep the testlet and primary slopes
independent; these slopes were not constrained to be equal when estimating the bi-
factor model. When the testlet slopes were proportional to the primary slope, as in
the testlet-effects model, the testlet slopes were set to 0 in one testlet, and .3 times
the primary slope in another testlet, and .6, .9, or 1.2 times the primary slope in each
of the others. For the unidimensional model, all the testlet slopes were 0. The item
parameters used to generate the data are shown in Table 1; for the tests with 25 items
the first 25 items in the table were used.

For each of the conditions, 2,000 simulated response patterns were generated. For
each simulee, a primary trait and 10 testlet traits were independently drawn from
standard normal distributions. Based on the item parameters, the primary trait, and
the appropriate testlet trait, probability of correct response was calculated for each
simulee on each item and if a draw from a uniform distribution between 0 and 1 was
less than this probability the response was coded correct. This process was repeated
100 times. The same data sets were used for the 25-item and 50-item conditions,
except that only the first 25 items were used in the 25-item condition.

Estimation. The item parameter and primary traits for all conditions, regardless of
the model used to generate the item parameters, were estimated using the bi-factor
model, the unidimensional 3PL model, the testlet-effects model, and the testlets-as-
polytomous-item model.

149



TABLE 1
Item Parameters Used to Simulate the Data

Testlet Slope

Item Primary Slope Difficulty Bi-Factor Testlet-Effects

1 0.6 −1.5 0.0 0.00
2 0.8 −0.5 0.0 0.00
3 1.0 0.0 0.0 0.00
4 1.2 0.5 0.0 0.00
5 1.4 1.5 0.0 0.00
6 0.6 −0.5 0.3 0.18
7 0.8 0.0 0.3 0.24
8 1.0 0.5 0.3 0.30
9 1.2 1.5 0.3 0.36
10 1.4 −1.5 0.3 0.42
11 0.6 0.0 0.6 0.36
12 0.8 0.5 0.6 0.48
13 1.0 1.5 0.6 0.60
14 1.2 −1.5 0.6 0.72
15 1.4 −0.5 0.6 0.84
16 0.6 0.5 0.9 0.54
17 0.8 1.5 0.9 0.72
18 1.0 −1.5 0.9 0.90
19 1.2 −0.5 0.9 1.08
20 1.4 0.0 0.9 1.26
21 0.6 1.5 1.2 0.72
22 0.8 −1.5 1.2 0.96
23 1.0 −0.5 1.2 1.20
24 1.2 0.0 1.2 1.44
25 1.4 0.5 1.2 1.68
26 0.6 1.5 0.0 0.00
27 0.8 0.5 0.0 0.00
28 1.0 0.0 0.0 0.00
29 1.2 −0.5 0.0 0.00
30 1.4 −1.5 0.0 0.00
31 0.6 0.5 0.3 0.18
32 0.8 0.0 0.3 0.24
33 1.0 −0.5 0.3 0.30
34 1.2 −1.5 0.3 0.36
35 1.4 1.5 0.3 0.42
36 0.6 0.0 0.6 0.36
37 0.8 −0.5 0.6 0.48
38 1.0 −1.5 0.6 0.60
39 1.2 1.5 0.6 0.72
40 1.4 0.5 0.6 0.84
41 0.6 −0.5 0.9 0.54
42 0.8 −1.5 0.9 0.72
43 1.0 1.5 0.9 0.90
44 1.2 0.5 0.9 1.08
45 1.4 0.0 0.9 1.26
46 0.6 −1.5 1.2 0.72
47 0.8 1.5 1.2 0.96
48 1.0 0.5 1.2 1.20
49 1.2 0.0 1.2 1.44
50 1.4 −0.5 1.2 1.68
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The bi-factor model was estimated using TESTFACT. All items were free to load
on the primary factor, and items from the same testlet were specified as loading on
an additional secondary factor. The lower asymptote was fixed to .2. The maximum
number of cycles was increased to 50, which generally led to a maximum change of
.01 between the last two iterations. For item estimation, 19 quadrature points were
used for each trait in the 25-item tests and 9 quadrature points were used for each trait
in the 50-item tests, with default priors applied to the slopes. The score of interest in
this context was the primary trait, estimated in TESTFACT using EAP scoring with
a normal prior and nine quadrature points.

The independent-items model was also estimated using TESTFACT, using the
same options, but with all items loading only on the primary factor.

The testlet-effects model was estimated using WinBUGS (Spiegelhalter, Thomas,
Best, & Lunn, 2003). The model was specified in terms of Equation (4) because it
could be easily transformed to the parameters in Equation (1) for comparisons. The
prior distributions for the primary and testlet traits were each standard normal and
limited to the interval (−5, 5). The primary slope and testlet coefficient each had a
log-normal prior with a mean of zero and a precision of .25 (SD of 2). The prior for
the item difficulties was N(0, 2), limited to the interval (−4, 4). Initial trait values
and item difficulties were all set to zero; initial slope values were set to one. For con-
sistency with the bi-factor and unidimensional models, the lower asymptotes were
fixed to .2. The first 1,000 iterations were treated as the burn-in and were discarded;
this was conservative and convergence generally appeared to be reached in 200–300
iterations. Estimates were obtained from the mean of the next 2,000 iterations. Be-
cause of the time needed to run this procedure, only the first 50 replications were run
for each condition.

PARSCALE (Muraki & Bock, 2003) was used for the testlet-as-polytomous-item
model. The item scores in each testlet were summed and the sum was treated as a
single item using the generalized partial credit model (Muraki, 1992). Default priors
were applied to the slopes and step parameters, and the POSTERIOR option was
used to adjust the scaling such that the estimated posterior distribution had a mean
of zero and SD of one. The default 30 quadrature points were used. As with the other
three models, traits were estimated using EAP scoring and a standard normal prior.

TESTFACT and PARSCALE use MML procedures; to avoid possible confound-
ing of model with estimation method, the bi-factor, unidimensional, and testlet-as-
polytomous-item models could have been specified in WinBUGS. However, one of
the purposes of this paper was to compare these models as they are commonly used in
practice. The MML procedures in TESTFACT and PARSCALE require a small frac-
tion of the time that MCMC procedures require to run, and they require a far lower
level of user knowledge, so these software packages are in widespread use. Simi-
larly, one could write a program to estimate the testlet-effects model using MML (see
Glas, Wainer, & Bradlow, 2000 for an example), but WinBUGS or self-programmed
MCMC procedures are more commonly used.

Results

Model fit. Because the testlet-effects model is nested within the bi-factor model
(see Equations (1)–(4)) and the independent-items model is nested within the
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testlet-effects model, the significance of the difference in −2 log-likelihood can be
tested with a χ2-difference test1 (du Toit, 2003, pp. 587–588). TESTFACT provides
the marginal −2 log-likelihood, the probability of the data averaged over the trait
distribution. One advantage of using the marginal likelihood is that it does not de-
pend on the accuracy of the trait estimates; studies with item-level fit measures for
unidimensional items have shown that using trait estimates changes the distribution
of the fit index (Orlando & Thissen, 2000; Orlando & Thissen, 2003; Stone, 2000;
Stone, 2003; Stone & Hansen, 2000). Given that the testlet traits are each based on
only five items and thus are likely to be unstable, their use might be particularly prob-
lematic. Marginalizing over the trait distribution avoids using these trait estimates.
The deviance statistic reported in WinBUGS is not marginalized over the trait distri-
bution, so the marginal −2 log-likelihood for the testlet-effects model was calculated
separately, using a routine written in SAS. To avoid differences due to the number of
quadrature points or to rounding differences in the algorithm, this procedure was also
used for the bi-factor and independent-items model; in trial runs using the quadra-
tures used by TESTFACT, the results were nearly identical to those reported in the
software output. Quadrature points from −3 to 3 at intervals of .5 were used for each
trait. For each examinee, the probability of the testlet response pattern was found for
each combination of the primary trait and the testlet trait, then marginalized across
the testlet trait distribution. The probability of the complete response pattern was then
found at each quadrature of the primary trait, and marginalized across the primary
trait distribution. The model marginal −2 log-likelihood was then calculated as the
negative of twice the sum, over examinees, of the natural logs of these likelihoods.
Fit was calculated only for the first 50 replications within each condition because of
the extensive time involved; this was adequate to give a picture of whether the mod-
els fit as expected, and the purpose was not to estimate exact Type I error rates or
power, which would have required many more replications. The fit of the testlets-as-
polytomous-items model was not compared to the fit of the other models. Even if an
index appropriate for comparing nonnested models such as the Akaike Information
Criterion (AIC) were used, the comparison would not be meaningful because, for the
testlets-as-polytomous-items model, the likelihood would have to be computed for
the summed testlet score, not the individual items.

As expected, the more complex model fit better than the constrained models, but
this difference was most often not significant when the data were generated using the
constrained model. The only unexpected result was when the data were generated
by the independent-items model and there were 50 items; the testlet-effects model
always fit the data significantly better in this condition. The ratio of the likelihoods
was quite close, .9996 on average, yet the difference was statistically significant.
This suggests there may be some problems in using this index with large numbers of
items. With this exception, the more complex model fit better than the constrained
model when the data were generated with a more complex model but not when the
data were generated by the more constrained model.

Accuracy of trait estimates. Before comparing the trait estimates, if needed the item
and trait parameters for each replication were scaled such that the estimated popu-
lation posterior distribution for the primary trait had a mean of zero and SD of one.
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This rescaling was based on the estimated posterior distribution, not on the distribu-
tion of the estimated scores. The mean of the estimated traits is approximately equal
to the mean of the posterior trait distribution, but the SD of the estimated scores
underestimates the SD of the trait distribution, because the EAP scores are biased
toward the mean (du Toit, 2003, p. 607). Rescaling such that the posterior distribu-
tion had a mean of zero and SD of one was done within the PARSCALE routine for
the testlets-as-polytomous-items model by choosing the POSTERIOR option. In the
MCMC routine used for the testlet-effects model, setting the prior distribution of the
primary trait to a SD of one also resulted in an estimated posterior distribution with
a SD of one. For the 25-item tests the posterior distribution also seemed to be scaled
to these constants in TESTFACT as well; the same was not true for the 50-item tests,
where the posterior SD was generally greater than one. The sum of the variance of
the estimated traits and the average error variance equals the variance of the poste-
rior distribution printed after the last iteration in the TESTFACT output, so this sum
was used in rescaling the items and primary traits. For consistency, rescaling was
applied to all models, though the constants were virtually zero and one in all condi-
tions except for the 50-item tests estimated with the bi-factor and independent-items
models.

For each simulee, within each condition, bias was calculated using the typical
definition of the mean difference across the 100 replications (50 replications for the
testlet-effects model) between the estimated primary trait and the true primary θ used
to generate the data. RMSE for each simulee was calculated as the square root of the
average squared difference between the estimated and true primary θ . These values
would be expected to vary as a function of θ , so they are plotted across the θ distribu-
tion in Figures 1 and 2 for the conditions in which the data were simulated using the
bi-factor model and 25 items. The same patterns held in the other conditions, except
where noted. In the middle ranges of θ , bias and RMSE were nearly equal regardless
of the estimation model. At the extreme ends, where bias and RMSE were greater
in general, they were greater for the testlet-as-polytomous-item model than for the
other models, likely because the slight loss of information from using this model gave
the prior distribution greater weight. These patterns were similar for the conditions
where the data were generated with the other models (not shown to save space, avail-
able on request) and for the 50-item tests, except that for the 50-item tests, at high
levels of θ the testlet-as-polytomous-item model did not yield greater bias and RMSE
than the other models. As would be expected, the RMSE and the absolute value of
bias were lower when there were 50 items instead of 25. RMSE was slightly but
consistently lower when the data were generated with the independent-items model.
This same information was averaged across the primary θ and displayed in Table 2.
Only the mean RMSE and not the mean bias is not shown because in all conditions
bias at one end balanced bias at the other and the mean bias was virtually zero.

Because RMSE is the deviation around the true value of the parameter, it includes
the effects of bias. The deviation around the expected value does not include the
bias. The SD around the average estimated θ is shown in Figure 3, again for the
conditions in which the data were simulated using the bi-factor model and 25 items.
These average estimates spanned a narrower range than the true θs because the ex-
treme values were biased inward. The SDs were fairly stable across the range of
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FIGURE 1. Bias for the primary θ , for the 25-item test with the data generated using the
bi-factor model.

estimated θ . Without the prior distribution, the SDs would have been higher at the
extremes, but the prior distribution had a larger effect at the extremes, and as there
was no variance in the prior this decreased the variance in the estimated abilities.

Reliability and estimated reliability. One definition of reliability in the classical test
theory is the squared correlation between the estimated and true scores. The true θs
were known because the data were simulated. The correlation was calculated within
each replication and averaged over replications, with the results reported in Table 3.
Within the same simulation model and test length, these reliabilities were very sim-
ilar regardless of the model used to estimate the primary θ ; reliability was very
slightly lower for the polytomous model due to a small loss of information from ig-
noring the exact pattern of item responses within the testlet (as suggested by Wainer
& Wang, 2000; Zenisky, Hambleton, & Sireci, 2002). Comparing the different data-
generating models, reliability was higher for the independent-items model because
the testlet θ added additional error from the perspective of estimating the primary θ .
This is consistent with the finding of smaller RMSE for this model in Table 2.

Usually the true θs are not known and reliability must be estimated. In IRT, where
the standard error is not constant across examinees, marginal reliability can be esti-
mated as 1 − (s2

e /s2
T), where se is the average standard error and sT is the estimated

SD of the population distribution (the sum of the variance of the EAP scores and
the error variance). This reliability estimate is labeled the empirical reliability in
TESTFACT (du Toit, 2003, p. 34). Again, this parallels classical test theory, except
that se is not a constant across examinees. These reliability estimates are also re-
ported in Table 3. When the data were generated using the bi-factor or testlet-effects
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FIGURE 2. RMSE for the primary θ , for the 25-item test with the data generated using the
bi-factor model.

model, the reliability estimates were higher when the scores were estimated using
the independent-items model. These scores were not truly more reliable. Rather, the
independent-items model overestimated the reliability of the scores when the data
were generated by the bi-factor or testlet-effects model. These scores appeared to be
more precise than they really were.

Accuracy of estimated item parameters. Differences in the item parameters matter
not only because they can impact the trait scores but also because they may be used

TABLE 2
Mean RMSE of the Primary θ Scores

Data Simulation Model

Test Length Estimation Model Bi-Factor Testlet-Effects Independent Items

25
Bi-Factor .21 .22 .17
Testlet-Effects .21 .22 .16
Independent Items .23 .23 .17
Polytomous Items .25 .24 .19

50
Bi-Factor .13 .13 .10
Testlet-Effects .12 .12 .09
Independent Items .14 .14 .10
Polytomous Items .14 .14 .11
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FIGURE 3. SD of the estimated primary θ , for the 25-item test with the data generated
using the bi-factor model.

to equate test forms or to select items for a test form. Because the testlet-effects and
independent-items models are of the same form as the bi-factor model, with addi-
tional constraints, the item parameters from these models can be reasonably com-
pared. The testlets-as-polytomous-items model is of a different form and so it will
not be included in these comparisons.

TABLE 3
Mean Squared Correlation Between True Primary θ and Estimated Primary θ , and
Model-Based Estimated Reliability of the Primary θ Scores

Data Simulation Model

Test Length Estimation Model Bi-Factor Testlet-Effects Independent Items

25
Bi-Factor .792, .795 .787, .790 .837, .845
Testlet-Effects .792, .793 .791, .788 .846, .843
Independent Items .775, .827 .773, .823 .837, .846
Polytomous Items .761, .765 .762, .765 .817, .824

50
Bi-Factor .873, .883 .871, .880 .898, .913
Testlet-Effects .882, .882 .881, .879 .915, .912
Independent Items .864, .901 .862, .899 .898, .915
Polytomous Items .860, .866 .861, .867 .892, .903

Note. The first value in each cell is the mean correlation between true and estimated scores, and the
second value is the model-based reliability estimate.
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Testlet-Based Tests

Table 4 shows the mean difference between the estimated and true parameters and
RMSE for item difficulties, in the conditions where the data followed the bi-factor
model. Because the bias was averaged over items within each testlet, bias toward the
mean would be compensated for; only bias consistently in the same direction would
appear in the mean difference. Within each condition, results are broken down by the
size of the testlet slope for the bi-factor model or the testlet coefficient for the testlet-
effects model (the coefficient αg(i) in Equation (4), which is multiplied by the primary
slope to obtain the testlet slope in Equation (1)). None of the estimation models led
to consistent under- or over-estimation of the item difficulties, though the RMSE was
larger for the independent items when the testlet slope was large, and larger for the bi-
factor model when the testlet slope was zero. The same pattern was seen in Table 5
where the data were generated using the testlet-effects model. Finally, in Table 6
where the data were generated using the independent-items model, the RMSE was
greatest for the bi-factor model.

Mean differences and RMSE for the slopes in the direction of the primary trait
are shown in Tables 7–9. Unlike the item difficulties, the slopes were consistently
underestimated by the independent-items model when the data were generated with
the bi-factor or testlet-effects models. The extent of the underestimation increased
as the testlet slope increased. The testlet-effects model, when used with data that
followed the bi-factor model, overestimated the slopes slightly and had increased
RMSE when the testlet slope was large. In contrast, the bias and RMSE for the bi-
factor model, when used with data that followed the testlet-effects model, was no
larger and was sometimes smaller than that of the testlet-effects model. When the
data were generated by the independent-items model, using the bi-factor or testlet-
effects models for estimation led to a small positive bias, and the bi-factor model
increased the RMSE of the slopes.

Real Data Example

In the simulation study, data were generated to fit at least one of the models. Real
data generally will not fit any of the models as well. This second study is an example
showing how the model fit, primary trait estimates, standard errors/reliability, and
item parameters compare when the four models are used with two real data sets.

Method

Instrument. The data sets used in this study were from the Programme for Interna-
tional Student Assessment 2000 (PISA 2000) public release data set (Organization
for Economic Cooperation and Development, 2002). Selected math and reading tests
were utilized for this study.

The items on the math test came from Booklet 1. There were 15 items: two 2-item
testlets, two 3-item testlets, one 4-item testlet, and one independent item. Each item
was scored right or wrong.

The items on the reading test came from Booklet 7 of the PISA 2000 data set. In
the PISA study, three types of reading items were used: retrieving information, inter-
preting texts, and reflection and evaluation. The PISA technical report (Adams & Wu,
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TABLE 6
Mean Difference Between True and Estimated Item Difficulties and RMSE, Data Generated
with the Independent-Items Model

Test Length Estimation Model MD RMSE

25
Bi-Factor −.03 .14
Testlet-Effects .00 .08
Independent Items −.01 .09

50
Bi-Factor −.01 .15
Testlet-Effects .00 .09
Independent Items .01 .10

2002, p. 153) reported a correlation of .97 between the retrieving and interpreting
factors, so for the current study both types of items were treated as a unidimensional
construct; the reflection and evaluation items were not used because the model would
have been much more complex if they were included: two correlated primary traits,
each with multiple testlet traits. This left 40 items in 14 testlets: 8 two-item testlets, 3
three-item testlets, and 3 five-item testlets. In the PISA database manual, 38 of these
items were scored right or wrong while the scoring for two items allowed for partial
credit. For the current study, the partial credit scores were coded as incorrect so that
dichotomous IRT models could be used.

Participants. For each test, 5,000 examinees were randomly selected from among
those who completed the selected test booklet. Students who left items blank at the
end of the test were considered noncompleters and were not eligible for selection for
the current study, but students who omitted items in the middle of the test were eligi-
ble for selection. Items omitted in the middle of the test were scored as incorrect.

Estimation. The models were estimated using the same software programs and op-
tions as were used for the simulation study.

Local-dependence due to testlets. DIMTEST (Stout, Douglas, Junker, & Roussos,
1999) was used to test for essential unidimensionality; if the tests were unidimen-
sional then there would be no significant testlet factors. In DIMTEST, a group of
items possibly measuring a secondary dimension is designated the assessment test.
Another group of items of similar difficulty is reserved to correct for bias, and ex-
aminees are grouped by their scores on the remaining items, called the partitioning
test. Information on calculating the test statistic can be found in the DIMTEST man-
ual. For the present study, the items from one testlet that accounted for the greatest
proportion of variance in the bi-factor analysis were used as the assessment test. For
both the reading and math tests, Stout’s T was statistically significant (p < .0001),
indicating the tests were not essentially unidimensional.
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TABLE 9
Mean Difference Between True and Estimated Slopes and RMSE, Data Generated with the
Independent-Items Model

Test Length Estimation Model MD RMSE

25
Bi-Factor .04 .14
Testlet-Effects .03 .11
Independent Items .00 .10

50
Bi-Factor .01 .12
Testlet-Effects .03 .10
Independent Items −.04 .10

Results

Using the difference in −2 log-likelihood test described in the simulation study,
for the math test the bi-factor model fit better than the testlet-effects model (χ2(9) =
670, p < .0001), which in turn fit better than the independent-items model (χ2(5) =
103, p < .0001). Similarly, for the reading test the bi-factor model fit better than
the testlet-effects model (χ2(26) = 81, p < .0001), which in turn fit better than the
independent-items model (χ2(14) = 1182, p < .0001).

Because real data were used and the true parameters were unknown, estimates
from the different methods were compared to each other rather than to the true pa-
rameters. For the reading test, as for the 50-item simulated tests, the estimated poste-
rior distribution of the primary trait in TESTFACT had a SD greater than one so the
trait and item estimates were rescaled using the procedures described for the simu-
lated data. The average correlations among traits and the average root mean square
difference (RMSD) between the traits are shown in Table 10. The RMSD was cal-
culated in the same way as the RMSE would be, except that it was based on the
difference between two estimates instead of the difference between an estimate and
a true value. The RMSD were averaged across traits, rather than graphed by ability
as was done in Figures 1 and 2, because the number of pairs to be compared would
have yielded multiple figures (or many lines within each figure). Differences were of
course greater further away from the mean.

Correlations among the trait estimates from the different models were very high (at
least .99). The average difference between trait estimates was nearly zero in all cases,
so no model consistently overestimated or underestimated ability relative to the other
models; this would be expected because each method scales the estimates such that
the estimated posterior distribution has a mean of zero and SD of one. Therefore, the
average differences were not displayed in the table. In math, the RMSD was some-
what smaller between the bi-factor model and the testlet-effects model, and it was
largest between the independent-items and each of the other three models. In reading
the bi-factor and independent-items model estimates had the smallest RMSD.

Reliability was estimated as described for the simulation study, as the ratio of
the variance of the trait estimates (EAP scores) to the sum of this variance plus the
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TABLE 10
Correlations Among θ Estimates and Root Mean Square Difference in θ Estimates

Correlation RMSD

Math
Bi-Factor vs. Testlet Effects .999 .04
Bi-Factor vs. Independent Items .992 .12
Bi-Factor vs. Polytomous Items .995 .09
Testlet Effects vs. Independent Items .990 .13
Testlet Effects vs. Polytomous Items .995 .09
Independent Items vs. Polytomous Items .990 .13

Reading
Bi-Factor vs. Testlet Effects .995 .09
Bi-Factor vs. Independent Items .998 .05
Bi-Factor vs. Polytomous Items .991 .12
Testlet Effects vs. Independent Items .993 .11
Testlet Effects vs. Polytomous Items .996 .08
Independent Items vs. Polytomous Items .990 .14

average squared standard error, which is the empirical reliability in the TESTFACT
output. The reliability estimates for math were .80 for the independent-items model
and .75 for the other models. For reading, the estimates were .89 for the independent-
items model and .87 for the other models. If the testlet effects are small, there should
be little or no difference between the estimated reliability using the independent-
items model and the estimated reliability using the other models. This seems to be
the case for the reading test. If the testlet effects are large enough to make a differ-
ence in the reliability estimates, then the independent-items reliability is likely an
overestimate, which appears to be the case for the math test.

Next, the item parameter estimates were compared. Table 11 shows the average
difference and RMSD in item difficulty and for the item discriminations in the direc-
tion of the primary trait. The testlets-as-polytomous-items method was not included
in these tables because the item parameters were not in a comparable form and can-
not be transformed to a comparable form. The items had slightly higher difficulty
estimates in the testlet-effects model, which means the items appeared easier (recall
that the difficulty in Equation (1) is added, not subtracted, so higher difficulties indi-
cate easier items). Item discriminations were lower for the independent-items model,
as they were in the simulation study whenever there was nonindependence within the
testlets.

Overall, the math test showed greater differences than the reading test between
the independent-items model and the other models that explicitly took the testlet
structure into account. These differences suggest that the nonindependence due to
testlets was a larger problem on the math test. For the reading test, it made almost
no difference which model was used, though there was a slight inflation in reliability
and underestimation of item discrimination when the independent-items model was
used.
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TABLE 11
Mean Difference and Root Mean Square Difference in Item Parameter Estimates

Difficulty Slope

MD RMSD MD RMSD

Math
Bi-Factor vs. Testlet Effects −.07 .28 .06 .18
Bi-Factor vs. Independent Items .01 .46 .19 .39
Testlet Effects vs. Independent Items .08 .33 .13 .27

Reading
Bi-Factor vs. Testlet Effects −.01 .16 .00 .10
Bi-Factor vs. Independent Items .09 .27 .10 .18
Testlet Effects vs. Independent Items .11 .20 .10 .15

Discussion and Conclusions

Trait Estimates

Reliability is defined in classical test theory as the squared correlation between the
true and observed scores. Using this definition for the simulated data where the true
scores were known, the reliability of the four sets of estimated scores was similar
(slightly lower for the testlet-as-polytomous-items estimation model). These relia-
bilities were lower than those when there were no testlet effects. Nonindependence
of items within testlets decreased the reliability of trait estimates, regardless of which
model was used to estimate the traits, because the testlet factor added random error.
Examining the reliability estimates based on the mean standard error, the bi-factor,
testlet-effects, and polytomous models accurately estimated this decrease in reliabil-
ity while the independent-items model inflated the reliability estimate. For the real
data, the reliability estimates were higher when the scores were estimated with the
independent-items model, but given the simulation results it is reasonable to assume
these reliability estimates were spuriously high.

For the simulated data, the RMSE was not consistently higher for any estimation
model in the middle ranges of ability. At the lower end of the trait range, the testlet-
as-polytomous-item model had the larger bias and RMSE, likely due to the loss of
information when the items were summed within each testlet. For the real data, cor-
relations among the trait estimates from different models were very high though the
RMSDs showed that the estimates for individuals were not precisely identical.

If the focus is on estimated θ ’s and not on item parameters, any of the models
will perform satisfactorily, though the estimated reliability will be inflated for the
independent-items model if items within testlets are not independent.

Item Parameter Estimates

The choice of model had a bigger impact on the item parameter estimates than
on the trait estimates. If the item parameters are to be used for equating or for as-
sembling test forms, these differences could have a practical impact. When the data
were generated with the bi-factor or testlet-effects model, the item difficulties were
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recovered well, though with larger RMSE, using the independent-items model, but
the item slopes were biased, consistent with previous findings of others (Ackerman,
1987; Bradlow et al., 1999; Wainer et al., 2000; Wainer & Wang, 2000). When the
independent-items model was used for estimation, the RMSE of the estimates of the
difficulty and the discrimination increased as the testlet slope increased. The size of
the testlet slope had little impact on the accuracy of the bi-factor estimates. When
the data followed the bi-factor model, the RMSE for the testlet-effects model were
generally larger for the slopes but not for the difficulties. When the data followed the
testlet-effects model, the RMSE for the bi-factor model was about the same as the
RMSE for testlet-effects model.

When the data were generated with the independent-items model, adding the extra
parameters of the bi-factor where they were not needed over-capitalized on chance
and increased the error variance. The same was not true of the testlet-effects model,
possibly because it introduced fewer parameters or because the proportionality con-
straints prevented the isolated testlet slopes from getting very large. To avoid the
larger error introduced by using the bi-factor model when the items within a testlet
are independent, Yen’s Q3 (Yen, 1984) could be used to check for the violation of
local independence within each testlet, and the bi-factor model could be used only
for selected testlets that showed larger dependencies.

In general, using the most complex model when the least complex model was ad-
equate led to slightly higher RMSE but not to bias. Using the least complex model
when either of the more complex models was appropriate led to an increased RMSE
and to negatively biased slopes. Using the middle-complexity testlet-effects model
when either the more or less complex model was appropriate led to only small in-
creases in RMSE. Generally, this would be evidence favoring the use of the more
parsimonious testlet-effects model over the bi-factor model. However, given the ease
and speed with which the bi-factor model can be run in commercial software, in
contrast to the testlet-effects model, applied practitioners may prefer to use the more
complex bi-factor model. The additional parameters in the bi-factor model do not
appear to decrease the accuracy of the primary trait or slope estimates, even when
the data follow the more constrained testlet-effects model. These additional parame-
ters do increase the RMSE when the items are independent, but the increase is small
and could perhaps be avoided by specifying a testlet slope only for selected testlets
where it is most needed.

Note
1The use of the χ 2 difference test may not be strictly appropriate in this context because,

even though the models are nested, the item parameters are estimated by different procedures.
In trial runs where the bi-factor and unidimensional models were estimated through MCMC
procedures the parameter estimates were quite close to those obtained using MML estimation,
so this was not a substantial issue with these data.
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