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Wording effect refers to the systematic method variance caused by positive and negative item

wordings on a self-report measure. This Monte Carlo simulation study investigated the impact

of ignoring wording effect on the reliability and validity estimates of a self-report measure.

Four factors were considered in the simulation design: (a) the number of positively and

negatively worded items, (b) the loadings on the trait and the wording effect factors, (c)

sample size, and (d) the magnitude of population validity coefficient. The findings suggest that

the unidimensional model that ignores the negative wording effect would underestimate the

composite reliability and criterion-related validity, but overestimate the homogeneity coeffi-

cient. The magnitude of relative bias of the composite reliability was generally small and

acceptable, whereas the relative bias for the homogeneity coefficient and criterion-related

validity coefficient was negatively correlated with the strength of the general trait factor.
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The use of both positively and negatively worded items in

personality and attitude surveys is commonly suggested for

the purpose of reducing or minimizing the potential con-

tamination caused by response set or style, such as acquies-

cence, affirmation, agreement bias, and so on (Weijters,

Baumgartner, & Schillewaert, 2013). However, research

has shown that positively and negatively worded items are

not necessarily psychometrically interchangeable.

Furthermore, greater cognitive efforts are needed to respond

to negatively worded items (e.g., Marsh, 1996; Sliter &

Zickar, 2014). In addition, the inclusion of negatively

worded items might lead to some unintended method effect

associated with the item wording (positive vs. negative

wording effects), which might result in spurious covariances

among the items.

The nature of such wording effect has been debated for a

long time. Some researchers have considered such effect as

irrelevant or “noise” variance that should be removed and

controlled in analyses, or that could be modeled as

correlated uniquenesses among the indicators (e.g., Marsh,

1996). Other researchers have conceptualized the wording

effect as reflecting substantive personality trait or response

style that could be modeled as method factors (DiStefano &

Motl, 2006; Motl & DiStefano, 2002; Quilty, Oakman, &

Risko, 2006; Tomás & Oliver, 1999), and have discussed

the criterion-related validity of wording effect (DiStefano &

Motl, 2009; Quilty et al., 2006); its convergent validity

across different methods, cultures, and instruments

(Michaelides, Koutsogiorgi, & Panayiotou, 2016; Tomás,

Oliver, Galiana, Sancho, & Lila, 2013); its longitudinal

stability (Gana et al., 2013; Marsh, Scalas, & Nagengast,

2010); its heritability (Alessandri et al., 2010), and even its

neural mechanisms (Wang, Kong, Huang, & Liu, 2016).

Wording effect has been found in many personality mea-

sures, such as the Rosenberg Self-Esteem Scale (RSES;

DiStefano & Motl, 2006; Marsh et al., 2010), the General

Health Questionnaire (GHQ–12; Ye, 2009), the Erikson

Psychosocial Stage Inventory (EPSI; Schwartz,

Zamboanga, Wang, & Olthuis, 2009), the Social Physique

Anxiety Scale (SPAS; Motl, Conroy, & Horan, 2000), the

Inventory of Callous–Unemotional Traits (ICU; Paiva-

Salisbury, Gill, & Stickle, 2016; Ray, Frick, Thornton,

Correspondence should be addressed to Professor Zhonglin Wen,

School of Psychology, South China Normal University, Guangzhou,

510631, China. E-mail: wenzl@scnu.edu.cn

Structural Equation Modeling: A Multidisciplinary Journal, 0: 1–11, 2017

Copyright © Taylor & Francis Group, LLC

ISSN: 1070-5511 print / 1532-8007 online

DOI: 10.1080/10705511.2017.1286228



Steinberg, & Cauffman, 2016), the Occupational Personality

Questionnaire (OPQ; McLarnon, Goffin, Schneider, &

Johnston, 2016), the Social Dominance Orientation scale

(SDO; Xin & Chi, 2010), the Loneliness Questionnaire

(LQ; Ebesutani et al., 2012), and so on. In research practice,

however, researchers often ignore the potential wording

effect introduced by positive or negative items on a self-

report measure. As a result, a researcher might either con-

struct a unidimensional model (i.e., the target construct as

the sole latent variable with the items or item parcels as its

indicators), or calculate the total score (or average score) of

the whole scale for further analyses (e.g., correlational ana-

lysis between the scale score and other variables). This

practice of ignoring the potential wording effect of a self-

report measure could have unintended measurement and

statistical consequences. As shown in Gu, Wen, and Fan

(2015), ignoring the possible wording effect of a self-report

measure might not only lead to biased estimates of measure-

ment reliability, but also to biased estimates of the relation-

ships between the measured trait and other variables (e.g.,

criterion-related validity), resulting in misleading conclu-

sions. At this time, however, there have been no studies

that systematically examined the potential consequences

introduced by ignoring wording effect in a self-report

measure.

Accordingly, this study intended to fill in this gap in the

research literature by examining the following questions:

1. What impact could such wording effect have on mea-

surement reliability estimation?

2. What impact could such wording effect have on mea-

surement validity estimation?

We designed a Monte Carlo simulation experiment to

study the measurement and statistical issues introduced by

positive or negative wording in a self-report measure. Here,

we would like to clarify that the focus of this study was on

the potential method effect introduced by negatively worded

items, and the methodological consequences of such a

method effect if it was ignored in research practice. As

discussed in Dalal and Carter (2015), there are two types

of negatively worded items: polar opposite items (e.g., “I

am always on time” vs. “I am always late”) and negated

regular items (e.g., “I am always on time” vs. “I am not

always on time”). In the former situation (i.e., polar opposite

items), both items are positively worded, but the first is

positively keyed, and the second is negatively keyed. The

two items are designed to measure the opposite ends of a

pole. In the latter situation (i.e., negated regular items), the

first item is positively worded, whereas the second item is

truly negatively worded (i.e., involving negative words of

phrasing), and the second item is intended to be the opposite

of the first item. In research practice, the distinction between

these two types of items (polar opposite items vs. negated

regular items) is not always clear, and both types are

considered negatively worded items in a broad sense. In

research practice, these two types of items can be used

interchangeably (e.g., Lindwall et al., 2012). For our

study, our intention was to focus on the second type of

negatively worded items (i.e., negated regular items; see

earlier discussion). Because our study is a simulation experi-

ment, not a real survey, this issue is actually not critical.

This article is organized as follows. In the next section,

we briefly introduced the statistical model of wording

effects. We then present the design of the simulation, fol-

lowed by the results of the study. Finally, for the benefit of

applied researchers, we also provide a decision tree and a

step-by-step procedure for examining and controlling this

method effect.

STATISTICAL MODEL OF WORDING EFFECTS

From the modeling perspective, measures with potential

wording effect introduced by positive versus negative word-

ing in a self-report measure could be modeled by using a

variation of the bifactor model. More specifically, it could

be hypothesized that both the general factor and group

factors exist to account for the covariation of the items

(Chen, West, & Sousa, 2006; Reise, 2012). For measures

with possible wording effect, the targeted trait could be

considered as the general factor, which explains the varia-

tion among all the items. The positive and negative wording

effect could be accommodated by one or two group factors

accounting for the method variance introduced by the posi-

tively and negatively worded items (Donnellan, Ackerman,

& Brecheen, 2016; McKay, Boduszek, & Harvey, 2014;

Vecchione, Alessandri, Caprara, & Tisak, 2014). Empirical

research (e.g., DiStefano & Motl, 2009; Gu et al., 2015;

Tomás et al., 2013) indicates that, in a bifactor model, it is

sufficient to use one group factor (e.g., a factor representing

the negative wording effect) instead of two (i.e., both posi-

tive and negative wording factors).

Without loss of generalization, we assume that a self-

report measure is composed of four negatively worded items

(x1–x4) and four positively worded items (x5–x8), which

measures a general trait factor (G) and a specific method

factor associated with the negative item wording (S); as

such, the measurement model can be expressed as the fol-

lowing equations:

x1 ¼ λg1Gþ λs1S þ δ1; x2 ¼ λg2Gþ λs2S þ δ2;

x3 ¼ λg3Gþ λs3S þ δ3; x4 ¼ λg4Gþ λs4S þ δ4;

x5 ¼ λg5Gþ δ5; x6 ¼ λg6Gþ δ6;

x7 ¼ λg7Gþ δ7; x8 ¼ λg8Gþ δ8

(1)

where λg1 is the factor loading of x1 on the general factor

G, λs1 is the factor loading of x1 on the negative group

factor S, δ1 is the residual term of x1, and so on. For
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identification of the latent variable model and easier inter-

pretation, the general and group factors are also hypothe-

sized to be orthogonal (Chen et al., 2006). Thus, the item

variance can be decomposed into the variance explained

by the general factor (trait variance), the variance

explained by the group factor (method variance), and

the residual variance (error variance). Two model-based

reliability estimates could be defined. The homogeneity

coefficient is the percentage of variance accounted for by

the general factor (Revelle & Zinbarg, 2009), and the

composite reliability (Brunner & Süb, 2005; Raykov &

Grayson, 2003) is the percentage of variance accounted

for by both the general and group factors (Bentler, 2009).

The homogeneity coefficient (also called coefficient

omega hierarchical, ωH) can be represented as:

ωH ¼

ð
P8

i¼1

λgiÞ
2

ð
P8

i¼1

λgiÞ
2 þ ð

P4

i¼1

λsiÞ
2 þ

P8

i¼1

varðδiÞ:

(2)

The composite reliability (also called internal consistency

reliability or coefficient omega, ω) can be expressed as

ω ¼

ð
P8

i¼1

λgiÞ
2 þ ð

P4

i¼1

λsiÞ
2

ð
P8

i¼1

λgiÞ
2 þ ð

P4

i¼1

λsiÞ
2 þ

P8

i¼1

varðδiÞ

(3)

Moreover, the explained common variance (ECV), which

provides the estimate for the relative strength of the gen-

eral to group factors, is defined as follows (Reise, 2012;

Rodriguez, Reise, & Haviland, 2016):

ECV ¼

P8

i¼1

λ2gi

P8

i¼1

λ2gi þ
P4

i¼1

λ2si

(4)

Generally speaking, the higher the ECV, the stronger the

general factor relative to the group factor, thus the less con-

tamination the wording effect has on a self-report measure.

DESIGN OF THE SIMULATION STUDY

This simulation study was designed to examine the impact

that wording effect could have on the estimation of mea-

surement reliability and validity, if the method factor of

wording was ignored. Previous studies (e.g., Dahal &

Carter, 2015; Gu et al., 2015) indicated that wording effect

was primarily reflected by negatively worded items. For the

analytical model to be simulated, we assumed that a self-

report measure was composed of both positively and nega-

tively worded items. All items measured a general trait

factor (Trait), and a specific method factor was associated

with the negative-wording items (NWE). Moreover, for the

purpose of assessing criterion-related validity, a criterion

factor (Criterion) was specified and measured by three con-

tinuous and normally distributed indicators, and the loadings

of the indicators on the criterion factor were 0.70. The basic

simulated true model is shown in Figure 1 for easy

understanding.

The simulation experiment had a 4 × 4 × 2 × 3 factorial

design with four design conditions. The four design condi-

tions were fully crossed, creating 96 (4 × 4 × 2 × 3 = 96)

unique cell conditions. Within each of the 96 unique cell

conditions, two models were fitted to each simulated sample

FIGURE 1 Simulated model. Note. P1–P6 = positively worded items; N1–N6 = negatively worded items; Trait = trait factor; NWE = factor for negative

wording effect (method factor); Criterion = external criterion factor with three indicators (I1–I3). In the simulation experiment, the misspecified model does not

include the negative wording effect factor (the component as indicated by dashed lines). For the sake of simplicity, all indicators have residuals that are not

shown in the graph.
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data set, a true model (with negative wording effect cor-

rectly modeled) and a misspecified model (with negative

wording effect ignored). The details of these design condi-

tions and their levels are described next.

1. Numbers of positively and negatively worded items

(Np:Nn). The number of items on the “self-report” measure

was either 12 or 18, and the proportion of positively to

negatively worded items was either 1:1 or 2:1, so four

different combinations were used as shown in Table 1.

2. Item loadings on the general trait factor and specific

method factor (λg:λs) were specified as having the following

sets of population values:

a. 0.6:0.6

b. 0.6:0.3

c. 0.3:0.6

d. 0.3:0.3

3. The simulated population validity coefficient (ρ)

between the self-report measure and the external criterion

variable (factor) were (a) 0.4 and (b) 0, respectively.

4. Simulated sample size conditions were (a) 200, (b)

500, and (c) 1,000.

Within each unique design condition, 500 sample data sets

were generated based on a set of specified population para-

meters. Each simulated sample data set was fitted to twomodels:

(a) the bifactor model (the true model) including both the trait

factor and the method factor (i.e., negative wording factor) as

shown in Figure 1; and (b) the unidimensional model (the

misspecified model, as shown in Figure 1 without the compo-

nents of the dashed lines) that only has the trait factor without the

method factor (i.e., negative wording effect factor).

The factor loadings and the number of positively and

negatively worded items might both have an effect on the

strength of the general trait factor relative to the method

factor, so the ECV value was calculated based on these two

factors (see Table 2). In light of Equations 2 and 3, true

values of the homogeneity coefficient and composite relia-

bility would be obtained in each treatment.

For each unique combination of the four design condi-

tions (1–4 as just outlined), Mplus 6.11 was used to generate

500 sample data sets under the true model (see Figure 1,

with all the components). For each sample data set gener-

ated under the true model, both the true model (i.e., bifactor

measurement model with negative wording effect modeled)

and the misspecified model (i.e., unidimensional measure-

ment model with negative wording effect ignored) were

fitted to the sample data. From both the fitted true and

misspecified models, sample estimates of both the homo-

geneity coefficient (ωH) and composite reliability (ω) were

obtained. Because we were interested in whether the fit

indexes could suggest the misspecified unidimensional

model, comparative fit index (CFI) and root mean square

error of approximation (RMSEA) were also reported.

Finally, for criterion-related validity coefficient under both

the true model (bifactor measurement model) and the mis-

specified model (unidimensional measurement model), the

relationship between the trait factor of the “self-report”

measure and the external factor representing the criterion

was estimated for each sample replication.

RESULTS

First, we removed the sample data sets that did not converge

or converged on improper solutions (i.e., estimated variance

term was negative). We then compared the true and mis-

specified models in terms of model goodness of fit. Finally,

we examined the relative bias of reliability and validity

estimates, power, and Type I error rates under both the

bifactor (correct) and unidimensional (misspecified) models.

Fully Proper Solutions

The proportion of samples with fully proper solutions for each

cell of the design (the estimation procedure converged to a

proper solution such that no estimated variance term was nega-

tive) is presented in Table 2. For all conditions, all analysis in the

unidimensional model resulted in proper solutions. Within the

framework of the bifactor model, except when N = 200 and

loadings on the general and specific factors are 0.3:0.3, the

proportions of fully proper solutions were close to 100%. In

evaluating goodness offit and parameter estimates, only samples

with fully proper solutions were considered.

Model Fit

As depicted in Table 2, the bifactor model performed much

better than the unidimensional model in terms of model fit as

indicated by the widely used model fit indexes (i.e., CFI,

RMSEA). More specifically, the bifactor model fitted the data

well in all the conditions, with CFI being greater than 0.95,

and RMSEA being lower than 0.02. In contrast, the unidi-

mensional model performed considerably worse in 13 out of

48 conditions (nearly one fourth), with CFI being lower than

0.90, RMSEA being far above 0.08, or both. Because model

misspecification was intentional, poorer model fit for the

misspecified unidimensional model was expected, and thus

not surprising. Our major research interest was on the poten-

tial bias such a misspecified model would cause for reliability

and validity estimates, as discussed later.

TABLE 1

Positive to Negative Items (Np:Nn) on the Simulated Self-

Report Measure

Total Number of Items

Ratio of Np and Nn 12 18

1:1 6:6 9:9

2:1 8:4 12:6
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TABLE 2

Percentage of Fully Proper Solutions and Goodness-of-Fit Indexes

Bifactor Model Unidimensional Model

N Np:Nn λg:λs ECV

% Fully

Proper RMSEA CFI

% Fully

Proper RMSEA CFI

200 6:6 0.6:0.3 0.89 94.0 0.015 0.994 100.0 0.032 0.980

0.6:0.6 0.67 100.0 0.016 0.996 100.0 0.090 0.930

0.3:0.3 0.67 77.8 0.012 0.971 100.0 0.021 0.932

0.3:0.6 0.33 94.6 0.014 0.989 100.0 0.034 0.959

8:4 0.6:0.3 0.92 89.6 0.015 0.993 100.0 0.030 0.980

0.6:0.6 0.75 100.0 0.016 0.995 100.0 0.107 0.874

0.3:0.3 0.75 77.0 0.015 0.952 100.0 0.022 0.912

0.3:0.6 0.43 100.0 0.015 0.980 100.0 0.044 0.900

9:9 0.6:0.3 0.89 99.0 0.015 0.992 100.0 0.033 0.973

0.6:0.6 0.67 100.0 0.016 0.995 100.0 0.082 0.917

0.3:0.3 0.67 91.4 0.013 0.963 100.0 0.022 0.921

0.3:0.6 0.33 99.8 0.014 0.987 100.0 0.034 0.951

12:6 0.6:0.3 0.92 99.0 0.015 0.991 100.0 0.031 0.975

0.6:0.6 0.75 100.0 0.016 0.994 100.0 0.093 0.864

0.3:0.3 0.75 87.8 0.013 0.951 100.0 0.022 0.905

0.3:0.6 0.43 100.0 0.015 0.978 100.0 0.042 0.889

500 6:6 0.6:0.3 0.89 100.0 0.009 0.998 100.0 0.033 0.983

0.6:0.6 0.67 100.0 0.010 0.999 100.0 0.090 0.931

0.3:0.3 0.67 100.0 0.009 0.986 100.0 0.018 0.955

0.3:0.6 0.33 100.0 0.009 0.995 100.0 0.034 0.965

8:4 0.6:0.3 0.92 100.0 0.009 0.997 100.0 0.031 0.983

0.6:0.6 0.75 100.0 0.009 0.998 100.0 0.108 0.874

0.3:0.3 0.75 100.0 0.009 0.981 100.0 0.019 0.939

0.3:0.6 0.43 100.0 0.009 0.992 100.0 0.045 0.905

9:9 0.6:0.3 0.89 100.0 0.007 0.998 100.0 0.031 0.979

0.6:0.6 0.67 100.0 0.007 0.999 100.0 0.080 0.921

0.3:0.3 0.67 99.2 0.007 0.987 100.0 0.017 0.953

0.3:0.6 0.33 100.0 0.007 0.996 100.0 0.032 0.959

12:6 0.6:0.3 0.92 100.0 0.007 0.998 100.0 0.029 0.980

0.6:0.6 0.75 100.0 0.007 0.998 100.0 0.093 0.865

0.3:0.3 0.75 98.8 0.007 0.984 100.0 0.018 0.938

0.3:0.6 0.43 100.0 0.007 0.994 100.0 0.041 0.898

1,000 6:6 0.6:0.3 0.89 100.0 0.006 0.999 100.0 0.033 0.984

0.6:0.6 0.67 100.0 0.006 0.999 100.0 0.091 0.931

0.3:0.3 0.67 99.4 0.006 0.994 100.0 0.018 0.963

0.3:0.6 0.33 100.0 0.006 0.998 100.0 0.035 0.966

8:4 0.6:0.3 0.92 100.0 0.006 0.999 100.0 0.031 0.984

0.6:0.6 0.75 100.0 0.006 0.999 100.0 0.107 0.875

0.3:0.3 0.75 99.4 0.006 0.991 100.0 0.019 0.947

0.3:0.6 0.43 100.0 0.006 0.997 100.0 0.045 0.908

9:9 0.6:0.3 0.89 100.0 0.005 0.999 100.0 0.031 0.979

0.6:0.6 0.67 100.0 0.005 0.999 100.0 0.080 0.921

0.3:0.3 0.67 100.0 0.005 0.994 100.0 0.018 0.957

0.3:0.6 0.33 100.0 0.005 0.998 100.0 0.032 0.960

12:6 0.6:0.3 0.92 100.0 0.005 0.999 100.0 0.029 0.981

0.6:0.6 0.75 100.0 0.005 0.999 100.0 0.093 0.865

0.3:0.3 0.75 100.0 0.005 0.992 100.0 0.019 0.942

0.3:0.6 0.43 100.0 0.005 0.997 100.0 0.041 0.899

Note. ECV = explained common variance; % fully proper = percentage of solutions that converged to fully proper solutions (other results are based on fully

proper solutions); RMSEA = root mean square error of approximation; CFI = comparative fit index.
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Relative Bias of Homogeneity Coefficient and

Composite Reliability Estimates

The relative bias of estimation was calculated by subtracting

the true value from the average of estimates and then divid-

ing by the true value:

Biasðθ̂Þ ¼
θ̂ � θ

θ
; (5)

where θ̂ represents the average of the parameter estimates in

each condition and θ is the population parameter. A relative

bias (i.e., Biasðθ̂Þ) less than 5% could be considered negli-

gible (Hoogland & Boomsma, 1998), and bias less than

10% could be acceptable (Bandalos, 2002; Reise,

Scheines, Widaman, & Haviland, 2013). Because reliability

estimation was unrelated to the population validity coeffi-

cient value between the Trait factor and the Criterion factor,

for presentation clarity and simplicity, in Table 3, we present

the relative biases of the homogeneity coefficient and com-

posite reliability for the condition of validity of 0.4.

The relative biases of homogeneity coefficient and com-

posite reliability in the bifactor model were generally less

than 5%. Moreover, there were only two cells for the homo-

geneity coefficient where the relative bias was greater than

5%, but less than 10%. In summary, the estimation of

homogeneity coefficient and composite reliability in the

bifactor model was accurate without noticeable bias.

As for the unidimensional model, all the relative biases

of the homogeneity coefficient were positive, which indi-

cated that the model overestimated the homogeneity of a

self-report measure. For about 50% of conditions in Table 3,

the relative bias of homogeneity coefficient was very sub-

stantial (e.g., considerably larger than 10%). The relative

biases of the composite reliability were all negative, and

their absolute values were slightly less than those in the

bifactor model, but most of them were within 5%, which is

generally considered negligible, as discussed earlier.

Sample size showed no observable effect on the relative

bias of reliability estimation. As shown in Figure 2, the

larger the ECV value, the less the relative bias of homo-

geneity coefficient in the unidimensional model when

N = 200. With an ECV larger than 0.75, the relative bias

was at acceptable levels.

Relative Bias of Validity Coefficient Estimation

The relative biases of validity estimation for the conditions

of population validity of 0.4 are reported in Table 3. The

relative bias of the validity estimates under the correct

bifactor model was generally less than 5%. For the misspe-

cified unidimensional model, all the relative biases of valid-

ity estimates were negative, indicating general

underestimation for the validity coefficient when the word-

ing effect was ignored. Sample size did not appear to have

any systematic effect on the relative bias of validity estima-

tion. The larger the ECV value, the less the relative bias of

validity coefficient in the misspecified unidimensional

model when N = 200 and ρ = 0.4 (see Figure 2). With an

ECV less than 0.75, the unidimensional model would

severely underestimate the criterion-related validity. When

the population validity was 0, the unidimensional model

performed almost the same as the correct bifactor model,

and the absolute bias was minimal for most of the condi-

tions. (Due to space limitations, we do not present these

biases in our tables.)

Power and Type I Error Rate

We also evaluated the statistical power in statistically detect-

ing the validity coefficient (when the population validity

coefficient was nonzero) and the Type I error rate (when

the population validity coefficient was zero) for both the

correct bifactor model and the misspecified unidimensional

model (see Table 4). As expected, statistical power

increased with sample size. The bifactor model had higher

levels of power than the unidimensional model, except

when both the general and group factor loadings were 0.3.

When the ECV value was less than 0.75, the levels of power

of the bifactor model were much higher than those of the

unidimensional model. Otherwise, the differences were neg-

ligible. Figure 3 showed that the ECV value had significant

impact on the power levels of both models: The larger the

ECV value, the higher the statistical power for detecting the

validity coefficient.

The unidimensional model performed better than the

bifactor model in terms of Type I error rates (see Table 4).

In general, Type I error rate decreased as the sample size

increased. For example, Type I error rates were all accep-

table (less than 0.075 is acceptable according to the sugges-

tion of Bradley, 1978; Wu, Wen, Marsh, & Hau, 2013)

when N = 500, but those in the bifactor model were larger

than 0.09 when N = 200 and ECV was less than 0.67. Type I

error rates from the unidimensional model were generally

lower than those from the bifactor model, regardless of the

ECV value (see Figure 4). The reason for this finding is

unclear.

DISCUSSION

In social and psychological measurement, it has been a

common practice to use either the correlated-trait and corre-

lated-method (CTCM) model or the correlated-trait and

correlated-uniqueness (CTCU) model to model the wording

effect, and to determine whether the wording effect was a

meaningful and stable response style, or simply meaningless

response noise (Weijters et al., 2013). However, many

important issues have been ignored, such as the impact of

the wording effect on the reliability and validity of a self-
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report measure. Methodologically, the bifactor model is a

special case of the CTCM model: When there is only one

trait factor, the CTCM model would be equivalent to the

bifactor model. From Equation 3, it is easy to see that the

method effect of negative wording would be confounded

with the random measurement error if correlated unique-

nesses were used to represent the method effect, and that the

internal consistency reliability would be significantly under-

estimated. Moreover, method factors explicitly estimate

construct-irrelevant sources of variance, whereas correlated

TABLE 3

Relative Bias of Homogeneity Coefficient, Composite Reliability, and Validity

Bifactor Model Unidimensional Model

N Np:Nn λg:λs ECV Bias_H Bias_C Bias_V Bias_H Bias_C Bias_V

200 6:6 0.6:0.3 0.89 0.1 0.0 0.3 5.6 −0.6 −3.0

0.6:0.6 0.67 0.0 −0.1 0.5 22.5 −2.1 −22.5

0.3:0.3 0.67 6.3 0.5 −2.8 29.7 −2.5 −14.5

0.3:0.6 0.33 1.9 −0.3 −1.5 92.5 −3.6 −50.3

8:4 0.6:0.3 0.92 −0.1 0.1 1.3 2.2 −0.6 −0.8

0.6:0.6 0.75 −0.1 0.0 0.3 8.1 −2.7 −15.3

0.3:0.3 0.75 −1.7 0.2 −0.8 8.1 −2.8 −6.0

0.3:0.6 0.43 −0.7 −0.3 −0.5 31.5 −8.9 −44.5

9:9 0.6:0.3 0.89 0.0 0.0 0.0 5.8 −0.4 −3.3

0.6:0.6 0.67 −0.4 0.0 0.0 23.2 −1.4 −23.0

0.3:0.3 0.67 1.1 −0.3 −1.8 22.6 −1.9 −15.3

0.3:0.6 0.33 −0.5 −0.2 −1.8 94.6 −2.7 −50.8

12:6 0.6:0.3 0.92 0.0 0.0 0.0 2.4 −0.4 −1.3

0.6:0.6 0.75 0.1 −0.1 0.3 9.2 −1.8 −15.8

0.3:0.3 0.75 −0.3 −0.3 −0.5 8.9 −2.1 −6.8

0.3:0.6 0.43 −0.2 −0.5 0.0 34.4 −7.0 −44.5

500 6:6 0.6:0.3 0.89 0.1 0.0 0.5 5.6 −0.6 −3.3

0.6:0.6 0.67 0.1 −0.1 0.5 22.7 −2.0 −22.8

0.3:0.3 0.67 −1.3 0.3 0.0 30.1 −2.1 −15.3

0.3:0.6 0.33 0.5 0.0 0.8 92.8 −3.5 −50.8

8:4 0.6:0.3 0.92 0.0 0.1 0.5 2.2 −0.6 −1.0

0.6:0.6 0.75 −0.1 0.0 0.3 8.1 −2.7 −15.8

0.3:0.3 0.75 −0.6 0.2 1.0 8.7 −2.3 −6.8

0.3:0.6 0.43 −0.4 −0.2 0.5 31.5 −8.9 −45.8

9:9 0.6:0.3 0.89 0.0 0.0 1.0 5.9 −0.3 −2.5

0.6:0.6 0.67 −0.1 0.0 1.0 23.4 −1.3 −22.0

0.3:0.3 0.67 0.5 0.0 1.0 23.2 −1.4 −14.3

0.3:0.6 0.33 0.0 0.0 1.3 95.1 −2.5 −49.8

12:6 0.6:0.3 0.92 0.0 0.0 1.3 2.5 −0.3 −0.5

0.6:0.6 0.75 0.0 −0.1 1.0 9.2 −1.8 −15.8

0.3:0.3 0.75 0.0 −0.1 1.7 9.4 −1.6 −6.3

0.3:0.6 0.43 −0.2 −0.3 1.7 34.7 −6.7 −45.3

1,000 6:6 0.6:0.3 0.89 0.0 0.0 0.0 5.6 −0.6 −3.8

0.6:0.6 0.67 0.0 −0.1 0.0 22.7 −2.0 −23.5

0.3:0.3 0.67 6.8 0.0 0.0 30.3 −2.0 −15.5

0.3:0.6 0.33 0.0 0.0 0.0 92.8 −3.5 −51.3

8:4 0.6:0.3 0.92 0.0 0.0 −0.2 2.3 −0.5 −1.5

0.6:0.6 0.75 −0.1 0.0 −0.2 8.1 −2.7 −16.5

0.3:0.3 0.75 −0.2 0.0 0.0 8.7 −2.3 −7.3

0.3:0.6 0.43 −0.4 0.0 −0.2 31.7 −8.7 −46.0

9:9 0.6:0.3 0.89 0.0 0.0 0.3 5.9 −0.3 −3.3

0.6:0.6 0.67 −0.1 0.0 0.3 23.4 −1.3 −22.5

0.3:0.3 0.67 0.0 0.0 0.8 23.2 −1.4 −15.0

0.3:0.6 0.33 0.0 0.0 0.8 95.1 −2.5 −50.0

12:6 0.6:0.3 0.92 0.0 0.0 0.5 2.5 −0.3 −1.0

0.6:0.6 0.75 0.0 −0.1 0.5 9.2 −1.8 −16.0

0.3:0.3 0.75 0.2 −0.1 0.8 9.6 −1.5 −6.8

0.3:0.6 0.43 0.0 −0.1 0.8 34.7 −6.7 −45.3

Note. ECV = explained common variance; Bias_H = relative bias of homogeneity coefficient; Bias_C = relative bias of composite reliability;

Bias_V = relative bias of validity.
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uniquenesses simply partial them out, thus bringing no new

information to the model (Morin, Arens, & Marsh, 2016;

Schweizer, 2012). Because of this, it would be inappropriate

to use CTCU models to control the wording effect

statistically.

In this study, we examined the impact of the method

effect associated with the item wording on the reliability

and validity estimates of a self-report measure under differ-

ent conditions. Results showed that ignoring the wording

effect in modeling had little impact on the composite relia-

bility (e.g., the relative biases were less than 5% in general),

but would lead to severe overestimation of the homogeneity

coefficient (e.g., the relative biases could be substantial, and

even as high as 95%). Because the homogeneity coefficient

reflects the degree to which the total score is interpretable as

a measure of a single common factor (Reise, 2012;

Rodriguez et al., 2016), a very low homogeneity coefficient

would suggest that scoring and reporting the total score (or

average score) of the whole scale would be methodologi-

cally questionable. Thus, overestimation of the homogeneity

coefficient would mislead researchers to calculate and use

the total score of a whole scale for further analyses (e.g., the

analysis of mediation and moderation effects involving the

total scale score). For the issue of the wording effect on

validity coefficient estimation, under certain conditions,

ignoring the wording effect would severely underestimate

the correlations between the trait variable and an external

criterion variable (e.g., relative biases up to 50%), which

would lead to increased Type II error rates.

The study also showed that the relative biases of homo-

geneity coefficient and criterion-related validity coefficient

were negatively correlated with the strength of the general

trait factor (i.e., ECV); that is, the larger the ECV value, the

less impact the wording effect would have on a self-report

measure. The ECV was determined by the factor loadings

on the general and group factors, and the number of posi-

tively and negatively worded items. For a specific balanced

scale, researchers could roughly evaluate the strength of the

wording effect by comparing the item loadings on the gen-

eral and group factors. If the negatively worded items’

loadings on the general trait factor were far larger than
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FIGURE 2 The impacts of the explained common variance (ECV) on the

homogeneity coefficient, composite reliability, and criterion-related validity

of the unidimensional model (N = 200).

TABLE 4

Power and Type I Error Rate

Bifactor Model Unidimensional Model

N Np:Nn λg:λs ECV Power

Type I

Error Rate Power

Type I

Error Rate

200 6:6 0.6:0.3 0.89 0.994 0.080 0.996 0.064

0.6:0.6 0.67 0.996 0.068 0.968 0.066

0.3:0.3 0.67 0.850 0.094 0.902 0.070

0.3:0.6 0.33 0.812 0.098 0.624 0.064

8:4 0.6:0.3 0.92 0.993 0.065 0.998 0.056

0.6:0.6 0.75 0.998 0.070 0.982 0.056

0.3:0.3 0.75 0.891 0.083 0.936 0.082

0.3:0.6 0.43 0.870 0.096 0.660 0.064

9:9 0.6:0.3 0.89 0.994 0.062 0.996 0.050

0.6:0.6 0.67 0.994 0.060 0.964 0.064

0.3:0.3 0.67 0.920 0.084 0.948 0.058

0.3:0.6 0.33 0.908 0.082 0.622 0.052

12:6 0.6:0.3 0.92 0.994 0.059 0.996 0.054

0.6:0.6 0.75 0.994 0.060 0.984 0.050

0.3:0.3 0.75 0.952 0.078 0.972 0.054

0.3:0.6 0.43 0.940 0.074 0.722 0.038

500 6:6 0.6:0.3 0.89 1.000 0.054 1.000 0.048

0.6:0.6 0.67 1.000 0.056 1.000 0.048

0.3:0.3 0.67 0.998 0.056 1.000 0.046

0.3:0.6 0.33 0.998 0.046 0.944 0.064

8:4 0.6:0.3 0.92 1.000 0.047 1.000 0.048

0.6:0.6 0.75 1.000 0.048 1.000 0.048

0.3:0.3 0.75 0.998 0.063 1.000 0.068

0.3:0.6 0.43 1.000 0.052 0.954 0.058

9:9 0.6:0.3 0.89 1.000 0.050 1.000 0.058

0.6:0.6 0.67 1.000 0.054 1.000 0.050

0.3:0.3 0.67 1.000 0.046 1.000 0.034

0.3:0.6 0.33 1.000 0.030 0.968 0.046

12:6 0.6:0.3 0.92 1.000 0.060 1.000 0.048

0.6:0.6 0.75 1.000 0.060 1.000 0.042

0.3:0.3 0.75 1.000 0.044 1.000 0.042

0.3:0.6 0.43 1.000 0.044 0.974 0.036

1,000 6:6 0.6:0.3 0.89 1.000 0.050 1.000 0.046

0.6:0.6 0.67 1.000 0.048 1.000 0.062

0.3:0.3 0.67 1.000 0.064 1.000 0.058

0.3:0.6 0.33 1.000 0.062 0.998 0.052

8:4 0.6:0.3 0.92 1.000 0.058 1.000 0.054

0.6:0.6 0.75 1.000 0.056 1.000 0.042

0.3:0.3 0.75 1.000 0.064 1.000 0.060

0.3:0.6 0.43 1.000 0.054 1.000 0.050

9:9 0.6:0.3 0.89 1.000 0.042 1.000 0.036

0.6:0.6 0.67 1.000 0.042 1.000 0.036

0.3:0.3 0.67 1.000 0.048 1.000 0.046

0.3:0.6 0.33 1.000 0.044 1.000 0.052

12:6 0.6:0.3 0.92 1.000 0.038 1.000 0.032

0.6:0.6 0.75 1.000 0.038 1.000 0.030

0.3:0.3 0.75 1.000 0.038 1.000 0.042

0.3:0.6 0.43 1.000 0.040 0.998 0.050

Note. ECV = explained common variance.
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those on the specific method factor, it would suggest that the

negative wording effect could be sufficiently small to be

negligible. Otherwise, it would be necessary to include the

wording effect as a group factor in the model to obtain

unbiased estimates. As noted by Stucky and Edelen

(2014), ECV can also be computed at the item level to

identify the percentage of item common variance attributa-

ble to a general dimension (I-ECV). The negatively worded

items with I-ECV values above .80 or .85 should be retained

for further analysis.

Because of the additional complexity of the bifactor

model relative to the unidimensional model, many applied

researchers might prefer to use the unidimensional model

for a measure, even though the measure includes both

positively and negatively worded items, and they might

rely on model fit indexes to inform them about the appro-

priateness of the unidimensional model. In this situation,

however, the information from the commonly used model fit

indexes could be misleading. As shown and discussed ear-

lier, under certain conditions (e.g., the ECV value was 0.33),

the unidimensional model could fit the data well, with CFI

being far above 0.90 and RMSEA being lower than 0.05,

but the relative bias of the homogeneity coefficient could

still be very large (e.g., up to 95%).

In this study, the simulation model only had one trait

factor. If the target construct consists of several related

dimensions, and there might be a hybrid of specific domain

and method factors representing the group factors, the total

covariance among the items can be accounted for by (a) a

general factor underlying all the items, (b) a set of group

factors where variance over and above the general factor is

shared among subsets of items presumed to be highly simi-

lar in content, and (c) a group factor accounting for the

method variance introduced by the negatively worded

items (Gignac, 2010; Gignac, Palmer, & Stough, 2007;

Gu, Wen, & Fan, 2017; Paiva-Salisbury et al., 2016). In

this case, the ECV could be interpreted as the strength of

trait factors (including both the general and specific trait

factors) relative to method factors, and it is still reasonable

to evaluate the impact of the wording effect based on the

magnitude of ECV values.

SUGGESTIONS AND CONCLUDING REMARKS

Should researchers always control for the method effect

associated with the item wording? The practice of ignoring

the wording effect might overestimate the homogeneity

coefficient and underestimate the criterion-related validity,

and the degree of such estimation bias is negatively corre-

lated with the ECV. The larger the ECV is, the smaller the

bias will be for the reliability and validity estimates.

To facilitate researchers in making appropriate analytical

decisions, we provide a decision tree (Figure 5) and the

step-by-step procedure for examining and controlling for

the wording effect in research. First, researchers who use

self-report scales with both positively and negatively

worded items should consider the wording effect and fit a

bifactor model to the data. Second, the strength of the

general trait factor relative to the specific method factor

(i.e., the ECV) should be evaluated and reported. If the

ECV value is large enough (e.g., > .75), researchers could

ignore the impact of the wording effect and fit a unidimen-

sional trait model. Otherwise, researchers should control for

wording effect statistically and use the bifactor model for

further analyses. On the other hand, researchers might con-

sider reducing the use of negative-wording items, and find

ways (e.g., to revise or construct items with stronger load-

ings on the trait; to select items with I-ECV values above

.80) to enhance the dominance of the general trait factor.

Third, the homogeneity coefficient (also called coefficient

omega hierarchical, ωH) should be reported based on the
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unidimensional trait model. If ωH is large enough, it is

reasonable to consider the total score as an estimate of the

construct of interest.
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