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Abstract-l. Mean levels of body temperatures (Tb) for all birds are (resting/active phase/high activity) 
38.54 k 0.96 (N = 203) 41.02 + 1.29 (N = 724) and 43.85 & 0.94’C (N = 74). 

2. Tb is higher in birds than in mammals: I .87’C higher during rest and 2.43 C higher during the active 
phase. 

3. As in mammals, the range of Tb-oscillation (day/night) decreases with increasing body mass (bm). 
For birds between 10 and 100,000 g this range is 2.48&l .25’C. 

4. Tb decreases slightly with increasing bm. During the resting phase the correlation is not pronounced. 
5. During the resting phase there is no marked difference in Tb between different taxonomic groups. 

Flightless birds and birds with high bm show lower values during activity. 
6. Slight nocturnal decrease in Tb (“hypothermia”) is shown in many birds as an adaptation to low 

food supply and/or heavy cold load. 
7. Daily torpor is a special physiological ability. Tb may fall during the night to a minimum range of 

18-20 C with active rewarming. During “estivation” Tb may even fall to -, 5 -7°C without obvious ill 
effects. 

8. Exogenous, artificial rewarming allows Tb to fall lower than normal torpor-levels. 
9. Many other parameters are involved in the regulation of body temperature (circannual rhythms, 

hormones etc.). 

INTRODUCTION 

Much work has been done on the energetics of 
endotherms (birds and mammals). One major par- 
ameter of endothermy is a high and endogenously 
controlled body temperature (Tb) which is relatively 
easy to measure and, thus, has been often studied. 
Nevertheless there exists only one general analysis of 
Tb in birds and mammals: McNab’s (1966a,b) review 
is based on about 86 species of birds. 

In the last 25 years much additional data have been 
obtained to justify a new review of this problem to 
address the following issues: 

-Mean levels and differences of Tb during diurnal 
cycle. 

-The correlation of Tb with taxonomic group. 
-Tb and body mass. 
-Tb-difference between mammals and birds. 
-Tb and other parameters. 

MATERIALS AND METHODS 

Most data were obtained from the literature but include 
our unpublished values for 61 bird species. Most measure- 
ments were done cloacally (73%) and 21.6% were obtained 
in the proventriculus. Other places include the axilla (1.5%), 
the skin (I.]%), the throat (1.1%) and the breast muscle 
(1%). Only 0.9% of Tb-data were obtained telemetrically by 
implanted temperature-transmitters. 

In many cases we had some problems integrating pub- 
lished data in our review because of the lack of information 
in the papers on time (day/night) and/or circumstances 
(darkness, light, number and/or type of data collection) 

under which measurements were taken. All data included 
in this review were treated equally, independent of number 
and/or how values were obtained. A detailed differen- 
tiation of all figures would not allow us to present a general 
overview of the subject-the major aim of this paper. 

The large number of published works does not make it 
practical to cite all birds (more than 720) and papers 
( > 300) in the text but all are listed in the references. A copy 
of the data and appropriate citations may be obtained by 
sending two formatted disks (5: or 3f inches) to the authors. 

RESULTS AND DISCUSSION 

Meun 1ecel.s and diurnal cycle of body temperature 

Mean levels of body temperature for all birds are 
as follows (N = number of bird species): 

resting phase 38.54 k 0.96-C (N = 203) 
range 35.040.8 

active phase 40.02 _+ 1.29-C (N = 724) 
range 35.6-44.6 

high activity 43.85 + 0.94-C (N = 74) 
range 40.447.1. 

This results in a mean day-night-difference in the 
diurnal cycle of 2.48C. High activity (flying/running) 
may raise Tb up to a mean of 2.84’C above normal 
activity levels. The highest Tb ever recorded from a 
bird was 47.7”C in the white-crowned sparrow 
Zonotrichia leucophrys (Southwick, 1973) and 47.O”C 
in the blue-breasted quail Excalfuctoriu chinensis 
(Bernstein, 1973). 

Based on data from Aschoff (1981) comparable 
values (resting/active phase) from mammals are as 
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follows: 36.67/38.58”C (N = 50), resulting in a mean 
difference of 1.91”C. 

Higher Tb-values in birds (+ 1.87”C for the resting 
phase and +2.43”C for the active phase) seem to be 
mainly caused by their higher level of energy metab- 
olism (McNab 1966). The greater oscillation in diur- 
nal rhythm is presumably caused by higher 
behavioural activity requirements (e.g. flying) in 
birds. In mammals and birds the range of oscillation 
decreases with increasing body mass. Based on the 
correlations of Fig. 1 the following values were 
calculated: 

Range of 
Body mass oscillation 

(g) ( ‘C) 

10 2.48 
100 2.16 

1000 1.86 
10,000 1.55 

100,000 1.25 

The true (empirical, not calculated) values of a 
100 kg ostrich are obviously below 1°C. 

Body temperature and body mass 

Figure 1 gives mean levels of Tb in relation to body 
mass. Tb shows a clear relationship with body mass. 

body mass M in g r% 

Fig. 1. Body temperature versus body mass in birds during 
high active phase (A; flight, running), activity time (B) and 
resting phase (C); see text. The corresponding regression 
equations are given in the figure (solid lines = regression 
curves; broken lines = range of SD). The right part of the 
figure gives relative portions (%) of the different body 

temperatures (see appendix). 

In birds, body temperatures are lower in larger 
species. The correlation is more distinct in the active 
phase, and most pronounced during high activity. 
The corresponding correlation-exponents of mass are 
3.4 x 10m4, 36 x 10 4 and 42 x 10 -4. 

The following calculated data in Table I are based 
upon the equations in Fig. I and show the relation- 
ship very clearly. 

In mammals there seems to be no pronounced 
dependence of body temperature on weight. There- 
fore the correlation in birds requires an explanation: 
the mass-dependence during rest is negligible (0.12 C 
over the whole mass-range). Tb increases with in- 
creasing activity. From this it may be assumed that 
an increase in activity has a more distinct effect in 
birds than in mammals. Energy expenditure for flying 
in birds is much more mass-dependent than other 
forms of movement. Smaller birds need much more 
energy for flying than walking or running mammals 
of similar size, and this results in higher mass depen- 
dent Tb-increase. Flightless birds and/or those with a 
high body mass should have a low body temperature. 
and this was observed (see below). Here we wish to 
add a note of caution. All measurements of Tb may 
not be physiologically similar. For example, a Tb 
measured at a depth of 1 cm into the cloaca of a 10 g 
bird does not necessarily equate to a measurement 
made 10 cm deep in a 100 kg bird. 

The large bird may have a higher deep core 
temperature than the one normally obtained. 
When this situation is taken into account the relation- 
ship between Tb and body mass may be less 
pronounced. 

Body temperature and taxonomic group 

Table 2 shows body temperature from birds in 
different orders. In some cases it is not possible to 
separate taxonomic and mass effects. For example all 
species of Struthioniformes and Casuariformes have 
high body masses and low Tb. Additionally it is 
difficult, if not impossible, to determine if these 
differences in Tb are statistically significant because 
of the great differences in number of species per 
order. If only biological relevant differences are taken 
into account, that means Tb-values which are not 
within a range of mean value + SD/2 (resting: 38.0.. 
39.0; activity 39.3-41.6”Q only in very few orders we 
can find statistically significant differences (see Table 
2). In the resting phase we find no obvious differ- 
ences. In the active phase Passeriformes have slightly 
increased Tb, whereas the ratites (Casuariformes, 
Struthioniformes, Apterygiformes), the petrels (Pro- 
cellariformes) and the penguins (Sphenisciformes) 
show lower values. Petrels were measured during 
breeding, where they often show hypothermia (see 

Table I. Mass dependence of mean body temperature calculated 
from data in Fig. I 

Body mass 

(8) Tb resting Tb active Tb highly active 

IO 38.87 41.30 44.24 
100 38.84 41 .oo 43.81 

IO00 38.81 40.67 43.39 
10,000 38.78 40.33 42.97 

100,000 38.75 40.00 42.56 

Range 0.12 1.35 I .68 
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Table 2. Body temperatures in different orders of birds. The first row 
shows resting levels, the second row active phase levels and the third 
row high activity levels. Significant difference to mean values of all 

birds: *(for explanation see text and Fig. I) 

Order N Mean + SD (range) Significance 

All birds 202 38.54 + 0.96 
724 41.02 &I 1.29 

74 43.85 + 0.93 

Passeriformes 

Piciformes 

Trochiliformes 

Caprimulgiformes 

Strigiformes 

Columbiformes 

Charadriiformes 

Gruiformes 

Galliformes 

Falconiformes 

Anseriformes 

Ciconiiformes 

Pelecaniformes 

Procellariformes 

Casuariformes 

Sphenisciformes 

Coliiformes 

Struthioniformes 

Apterygiformes 

Tinamiformes 

Gaviiformes 

Podicipediformes 

Psittaciformes 

Apodiformes 

Coraciiformes 

Cuculiformes 

59 
298 

45 
I 

20 
2 

19 
64 

-Y 
9 
2 
8 

20 
1 
6 

20 
5 

16 
64 

2 
I 

II 

4 
39 

3 
5 

24 
1 
5 

45 
4 
4 

15 
I 
5 

17 
2 

22 
24 

a 
6 

10 
10 

4 
5 
1 
3 
3 

7 
3 

I 
1 

1 
2 

1 
4 

1 
6 
1 
3 
4 

T 
- 
- 

8 
1 

38.9 & 0.87 (36.wO.8) 
41.6+ l.13(39.&44.1) 
43.9 + 0.78 (43.1-47.7) 

39.0 
41.8 +_ 0.95 (39&43.0) 
43.7 (43.3-44.2) 
38.1 i 1.26 (35.3-39.5) 
40.3 + 1.48 (35.U4.6) 

37.9 & 1.51(35&39.5) 
39.7 + 1.70 (37.IK42.4) 
43.9 (43.5-44.3) 
38.7 + 0.56 (38.s39.8) 
40.2 + 0.66 (38&41.2) 

44.2 
38.6 k 0.66 (37.7-39.9) 
40.9 f 1.35 (38.ti3.3) 
44.6 f 0.91 (43.&46.2) 
38.5 k 0.99 (35.2-39.5) 
40.9 f 0.86 (38.342.4) 
43.6 (43.343.9) 

37.5 
40.4 * 0.77 (39.141.4) 

38.9 + 1.1~(37.5-40.5) 
41.4 i 0.92(38.2-42.5) 
44.8 f 1.59 (43.3-17.0) 
39.0 i 0.86 (38.&40.3) 
40.0 _I 0.96 (39.442.8) 

43.3 
39.0 + 0.42 (38.3-39.5) 
41.3 + 0.77 (39.8-43.0) 
43.2 f 0.04 (43.1-43.2) 
39.3 k 0.38 (38.7-39.6) 
40.5 f 0.82 (39.5-42.3) 

44.3 
37.9 _+ 0.73 (37.1-38.9) 
40.6 f 0.81 (39.0-42.7) 
43.7 (43.2-44.2) 
38.3 k 0.68 (37.&39.6) 
39.4 f 0.84 (37.5-41 .O) 

38.6 i 0.58(37.7-39.2) 
38.8 f 0.43 (37.9-39.2) 
37.8 + 0.76 (36.0-39.0) 
38.2 + 0.68 (37.c39.0) 

38.2 + 0.93(36.&39.0) 
39.5 f 1.21 (38.0-41.5) 

43.2 
38.3 k 0.31 (38.0-38.7) 
39.3 f 0.58 (38.7-40.1) 

38.2 k 0.65(37.439.0) 
38.3 + 0.51 (38.1-39.0) 

39.2 
40.5 

39.2 F 0.25(39.&39.5) 
39.3 * 0.35 (39.G39.0) 

38.9 k 0.40(38.5-39.3) 
39.5 + 0.65 (38.5-40.2) 

37.9 f 0.20(37.7-38.1) 
41.3 _+ 0.20(41.&41.5) 

43.5 
38.6 i 0 
40.0 +_ I .43 (38.-l .8) 

39.1 
40.0 f 0.24(40.&40.5) 

- 

41.3 T 0.81 (39.9-42.3) 
43.5 

Table 3 and below) and all other species are large and 
flightless (“mammal-like”). By this, all taxonomic 
effects can easily be explained by mass-specific and/or 
behavioural parameters. The lack of distinct differ- 
ences in the resting phase (the best phase for compari- 
sons) shows, that there are no marked differences 
between the taxonomic groups. 

Controlled hypothermia 

In some birds, food scarcity and/or cold load can 
lead to a marked decrease in Tb during the resting 
phase which is well below normal Tb (e.g. “hypother- 
mia”). These birds have the ability to actively and 
spontaneously increase their Tb (therefore referred to 
as “controlled” hypothermia). In this review only 
those cases where Tb was clearly well below +35”C 
were used because a decrease of only l-3°C below 
normal resting levels is presumably characteristic of 
all birds (and mammals). Torpor (see below), on the 
other hand, is a totally different physiological 
(lethargic) state not to be confused with controlled 
hypothermia. When in controlled hypothermia birds 
can respond instantly to external factors, such is not 
the case when birds are in deep torpor. Therefore, Tb 
values below +25”C were omitted here as this range 
of temperatures probably reflects birds that were in a 
state of torpor. Table 3 lists birds in which controlled 
hypothermia has been recorded. This table contains 
birds from six orders, nine families and 3840 species. 
It is possible that controlled hypothermia occurs in all 
species of birds if hunger and/or cold load is excep- 
tionally severe. This question needs to be investigated 
more thoroughly in the future. 

Table 3. Deep body temperature (“C) during resting phase (con- 
trolled hypothermia) caused by hunger and/or cold load in birds. 

Listed are onlv Tb-values 230 ~35°C (with few exceotions) 

Species 

Ancanfhis /Pammea (redpoll) 
Carduelis chloris (greenfinch) 
Carhartes aura (black vulture) 
Columbia livia (rock pigeon) 
Crotophaga ani (smooth-billed ani) 
Lichenosromus uirescens (singing honeyeater) 
Lichmera indistincta (brown honeyeater) 
Loxia curuirostra (red crossbill) 
Neopelma sulphureivenrer (sulphur-bellied 

manakin) 
Nycteo scandiaca (snowy owl) 
Paws atricapillus (black-capped tit) 
Parus carolensis (Carolina tit) 
Parus cincfa (Siberian tit) 
Parus major (great tit) 
Passer montnnus (tree-sparrow) 
Pipra menralis (red-capped manakin) 
Scardafilla inca (inca dove) 
Turdus merulo (common blackbird 

Minimal 
recorded 

Tb Ref.’ 

32.0 I 
33.0 I 
34.0 2 

35-37 17, 18 
32.6 4 
32.0 5 
32.0 5 
34.0 3 

30.5 6, 12 
32.6 7 
33.8 8 
30.0 9 
32.1 IO 

29-3 I II, 16 
28-3 1 1 
29.0 6, 12 

28.5t II 
37.0 13 

Nectariniidae (sunbirds) down to 35.5 14 
Coliidae (mousebirds down to 35.0 15 

*References: I. Steen (1958), 2. Heath (1962), 3. unpubl. own data, 
4. Warren (1960), 5. Collins and Briffa (1984), 6. Bucher and 
Worthington (1982), 7. Gessaman and Folk (1969), 8. Grossman 
and West (1977), 9. Mayer er al. (1982), IO. Haftorn (1972), Il. 
MacMillen and Trost (1967), 12. Bartholomew er al. (1983). 13. 
Biebach (1977). 14. Prinzingeretal. (1989a), 15. Prinzinger(l988), 
16. Reinertsen (1985), 17. Ostheim (1990). 18. Graf et al. (1989). 

tThreshold for spontaneous arousal (values with exogenous rewarm- 
ing down to +22”(I). 
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Torpor 

Torpor is treated here as defined by Swan (1974). 
Body temperature and metabolism can drop to ex- 
tremely low levels. Entrance, maintenance and 
arousal from this lethargic state is an active and 
regulated process. However, arousal can take up to 
20min. Tb can approximate ambient temperatures 
clearly below f25”C (in contrast to controlled hy- 
pothermia). Metabolism may be reduced to less than 
l/50 of basal levels without ill effects. Some (possibly 
all) birds have the ability to regulate Tb down to a 
range between +25 and +30”C. There are many 
references in the literature of birds being “in torpor” 
with Tb in this range (some authors even use the term 
“torpor” when the bird has a Tb clearly above 
+35‘C; this is not correct). It should be proven in 
every case if this is not only controlled hypothermia 
(see above). In most birds minimal critical Tb during 
daily torpor should principally be able to drop to 
between + 18-20°C. This same range is reported for 
mammals during torpor. 

Tb lower than those reported above, in most cases, 
do not represent deep core Tb as measured via the 
cloaca. Lower Tb may also occur in birds that will 
suffer ill effects after rewarming. Exceptions do occur, 
however, as in the case of the long-fasting poorwill 
(Phaluenoptilus nuttallii) and in the European nightjar 
(Caprimulgus europaeus). These species are reported 

Table 4. Birds that show torpor as defined in text. o = Obligatory 
(regular) torpor during an endogenous diurnal rhythm independent 
of food supply. f = Faculative torpor in an energetic emergency state 
(h = hunger, food scarcity, c = cold load, low ambient temperature 

etc.) 

Type of 
Speciesltaxonomic group torpor Ref. * 

Caprnnulgidae (nightjars) 
Caprimulgus europaeus (European nightjar) f(h,c) 1 
Eurosropodus guttarus (spotted nightjar) f(h, c) 2 
Chordeiles minor (common nighthawk) f(h,c) 3 
Chord&s acutipennis (lesser nighthawk) f(h.c) 4 
Phalaenoptilus nurrallii (common poorwill) o.f(?)t 57 

Apodidae (swifts) 
Apus apus (common swift) f(h, c)$ 8 
Awonaum saxarilis (white-throated swift) f(h,c)$ 6 

Trochdidae (hummingbirds) 
observed in all species 0 9 

Coliidae (mousebirds) 
observed in all species tested (4 of 6) f(h. c) IO, I I 

Hmmdinidae (swallows) 
Delichon urbica (house martin) f(h,c$ 12-14 
Hirundo rustica (barn swallow) f(h,c)t. 13, I4 
Riporia riparia (sand martin) f(h.c) 13, I4 
Tach@wta rhalassina (violet-green swallow) f(h,c) IS 
Cheramocea leucosrernum (white-backed 

swallow) f(h,c) I6 

Procellariidae (petrels) 
how many species? (all?) f(h,c): 17 

*References (examples): I. Peiponen (1965, 1966, 1970), 2. Dawson 
and Fischer (1969). 3. Las&ski and Dawson (1964), 4. Marshall 
(1955). 5. Jaeger (1948, 1949), 6. Bartholomew er al. (1957). 
7. Howell and Bartholomew (1959), 8. Koskimies (1948, 1950). 
9. summaries e.g. in Kriiger er al. (1982) and Reinertsen (1985), 
IO. Bartholomew and Trost (1970), I I. Prinzinger ef al. 
(198la,b), Prinzinger (1988). 12. Prinzinger and Siedle 1986, 
1988, 1989), 13. Keskpaik (1976, 198la,b), 14. Keskpaik and 
Lyuleyeva (1968), IS. Lasiewski and Thompson (1966), 16. 
Serventy (1970), 17. Boersma (1986). 

tDaily torpor and “estivation” for up to 85 days (and more?) 
:Observed as a survival strategy in young during hunger/bad 

weather conditions. 

to maintain Tb of between +5-7°C during torpor 
and also to undergo spontaneous arousal (e.g. 
Peiponen, 1970; Ligon, 1970). It is often stated that 
sunbirds can maintain Tb as low as +25’C, but this 
value was obtained from only one bird, an eastern 
double-collared sunbird (Nectarinia mediocris) that 
was in poor physical condition and died shortly after 
the experiment (Cheke, 1971). Table 4 contains only 
groups of birds that undergo torpor as defined above. 
Geiser (1988) presents an overview of the occurrence 
of torpor in mammals. 

Other effects on Tb 

There are reports of circannual variations in Tb. 
The gray jay (Perisoreus canadensis) shows a greater 
range of oscillation in Tb during periods of reduced 
gonadal activity (2.4”C, winter) than during summer 
(1.7”C) (Veghte, 1964). In the Japanese quail (Co- 
turnix coturnixjaponica) Tb at rest is lower during the 
reproductive season (mean values: 42.7/41.5’C in 
winter/summer). Sexually inactive (castrated) males 
have greater oscillations in Tb than active ones 
(Feuerbacher, 1981): the same effect has been 
observed in the starling (Sturnus rwlgaris) (Rutledge, 
1974). All increase in body mass during annual cycle 
leads to a decrease in Tb in migratory birds, e.g. in 
the robin (Erithacus rubecula) and the whitethroat 
(Sylvia communis) (Merkel, 1958). 

Differences in Tb between males and females have 
been reported in many birds, with females exhibiting 
slightly higher (0.3-0.5”C) values (e.g. Simpson and 
Galbraith, 1905; Gilbreath and Ru-Chiung Ko, 1970; 
Becker and Harrison, 1975; HBnssler and Prinzinger, 
1979; etc.). 

Many hormones are involved in the regulation of 
Tb. After pinealectomy, for example, the circadian 
rhythm of Tb is abolished and the amplitude of the 
oscillation in Tb is reduced in the house sparrow 
(Passer domesticus) (Binkley et al., 1971). This topic. 
however, requires a separate review. 
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APPENDIX 

Recently found additional data from 70 birds (Oniki. 1974) 
result in the activity time of the slightly different correlation 
Tb = (41.56 k 1.03) x Mc-000294*“‘x’r’5); M = 724. In all 
tables these data are included. 


