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E
nhanced encephalization, that is, a greater than expected 
brain mass for a given body size1, has evolved independently 
in numerous groups of animals despite its stringent energetic 

demands and potential developmental costs2–4. The cognitive buf-
fer hypothesis posits that the repeated evolution of relatively large 
brains was driven primarily by the adaptive benefits of being able 
to mount quick, flexible behavioural responses to frequent or unex-
pected environmental change5,6. In line with this view, comparative 
studies have shown that more highly encephalized birds have greater 
potential for behavioural innovation7,8, lower mortality rates9,10 and 
a greater capacity to thrive in human-altered environments11,12.  
In addition, highly encephalized birds have been shown to pref-
erentially occupy environments with more variable climates13,14, 
where biotic and abiotic conditions change considerably within 
and across years.

Although these findings are consistent with the cognitive buf-
fer hypothesis, questions remain regarding its validity as a general 
explanation for the evolution of cognition. In particular, it is cur-
rently unclear whether the observed link between survival and 
encephalization is specifically driven by an enhanced ability to cope 
with environmental change, or driven instead by other adaptive ben-
efits. In addition, a direction of causality in the relationship between 
encephalization and environmental variation has not yet been 
established. Specifically, the cognitive buffer hypothesis predicts 
that relatively large brains evolved in situ as a result of selection for 
coping with environmental variation5. However, large brains could 
have also evolved elsewhere and may have subsequently facilitated 
the colonization of variable habitats, as suggested by recent reports 
that anthropogenic introductions of highly encephalized verte-
brates to new habitats tend to have higher success rates15–17. Here, 
we leverage the power of modern evolutionary analyses, broad-scale 
comparative datasets and citizen science to clarify these fundamen-
tal issues regarding the role of ecological variation in the evolution 
of cognition. We begin by applying current state-of-the-art demo-
graphic analyses to test directly the mechanistic assumption that 
enhanced encephalization improves survival in variable habitats. 
We then apply models of correlated trait evolution to formally assess 

the direction of causality in the observed correlation between the 
occupancy of variable habitats and high encephalization in birds.

Results
Estimating cognitive ability. In line with prior large-scale compar-
ative studies on the evolution of cognition, we use relative brain size 
as a proxy for cognitive ability1. This metric acknowledges that abso-
lute brain size increases naturally in larger species, and estimates 
instead a species’ cognitive ability as the extent to which its brain is 
larger (or smaller) than expected for its body size. The relative brain 
sizes used in our analyses were computed as residuals from a phy-
logenetic generalized least squares (PGLS) regression of ln brain on 
ln body size (slope =  0.59 ±  0.00  s.d.; intercept =  − 2.48 ±  0.05  s.d.; 
λ  =  0.87 ±  0.01 s.d.), including the 2,062 bird species for which brain 
size is currently available (see Methods and Supplementary Data 2). 
While such a proxy for cognition is clearly indirect, we note that 
there is a growing body of experimental and correlative evidence 
linking relative brain size with cognitive ability18–20, and more spe-
cifically with behavioural innovation21,22.

Does greater cognition improve survival in more variable envi-
ronments? One way to evaluate directly whether enhanced cog-
nition increases survival in more variable environments is to test 
explicitly whether the interaction between encephalization and  
environmental variability has a significant effect on population 
dynamics. If behavioural flexibility facilitates coping with unexpected 
ecological challenges, then we predict that population dynamics in 
highly encephalized species should be buffered from environmental 
extremes and should therefore be less affected by increased environ-
mental variability as compared with those of small-brained species.

We tested this prediction in a sample of North American land 
birds for which brain size is known and time series data are sufficient 
to properly estimate year-to-year variation in breeding population 
numbers23 (N =  126 species; Supplementary Data 1). Demographic 
data for this analysis were obtained from the North American 
Breeding Bird Survey (BBS)24, a yearly standardized assessment of 
breeding bird abundances conducted since 1966 at thousands of  
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locations across the continent. Following the current commu-
nity standards25, we used hierarchical Bayesian models to esti-
mate regional population dynamics for each species in each North 
American bird conservation region (BCR; Fig. 1a). BCRs are ecolog-
ically distinct regions26 and are widely regarded as suitable biogeo-
graphic units for the quantification of population dynamics23. The 
hierarchical models implemented here estimate yearly fluctuations 
in abundance while accounting for long-term population trends, 
route-to-route variation in abundance and imperfect detection by 
observers (Fig. 1; see Methods). By explicitly separating the sources 
of error in reported bird counts, these models allow us to estimate 
the extent to which year-to-year fluctuations in true population size 
are a product of ecologically relevant processes such as the mortality 
induced by environmental extremes (also known as ‘process error’ 
or σγ; Fig. 1). Species-specific abundance-weighted averages of the 
process error, ̄σ γ (see Methods), were subsequently used to test the 
hypothesis that population stability is less affected by environmen-
tal variability in larger-brained species. To better align our metrics 
with the narrative of this hypothesis, the dependent variable in these 
downstream analyses was the negative of ̄σ γ, hereafter ‘population 
stability’, such that higher stability scores reflect cases with less pro-
nounced year-to-year fluctuation in population size.

We used PGLS regression models estimated across a sample of 
1,000 tree topologies from ref. 27 to investigate the potential effects 
of environmental variability and encephalization on population 

stability. Environmental predictors for these models included 
the mean, within-year variance and predictability of tempera-
ture, precipitation and net primary productivity (see Methods). 
Predictability was estimated through Colwell’s P, an index that cap-
tures variation among years in the onset, intensity and duration of 
periodic phenomena28. Given the strong spatial covariance that is 
typically observed among environmental parameters29, all environ-
mental variables were first extracted globally at a spatial resolution 
of 0.5 ×  0.5° and subsequently reduced to composite variables at the 
same resolution using principal component analysis (PCA; Table 1; 
Supplementary Fig.  1a,b; Methods). As environmental correla-
tions are often region-specific30, the PCA for this regional analysis 
included only map cells located within our North American study 
region. The first principal component recovered from this analy-
sis showed a clear latitudinal trend, where lower scores occurred 
primarily in northern, more seasonal climates with colder and less 
predictable temperatures, and high scores occurred in southwestern 
sites with hotter temperatures and more variable, unpredictable pre-
cipitation patterns (Supplementary Fig. 1a). The second component 
of the North American environmental PCA captured differences in 
mean precipitation as well as in mean, variance and predictability of 
net primary productivity. In this case, higher scores indicated wet-
ter environments with higher, but more seasonal and unpredictable, 
productivity including those found along the Pacific coast of the 
northern USA and Canada, boreal forests, and much of the eastern 
USA. Low scores for PC2 were found in southwestern deserts and in 
the far north (Supplementary Fig. 1b).

When characterizing the typical habitats of each species in our 
sample, we considered both spatial distribution and geographic 
variation in abundance. We first calculated mean environmental 
components for every North American BCR (PC1 iBCR  and PC2 iBCR ).  
Then, we estimated species-specific habitat values, hereafter H1 
and H2, by computing the weighted averages of PC1BCR and PC2BCR,  
where weights were proportional to the relative abundance of the 
species in each BCR. Correlation between H1 and H2 was high 
(r =  − 0.56; Supplementary Fig. 1c), so we excluded the latter from 
our list of predictors to prevent possible multicollinearity and unnec-
essary variance inflation. The decision to keep H1 rather than H2 
was based on the fact that H1 most directly captures the measures 
of variability that are relevant for testing the mechanism behind the 
cognitive buffer hypothesis. We note that both high and low values 
of H1 reflect increasingly variable and unpredictable conditions. 
Specifically, low H1 scores indicate variable temperatures, whereas 
high scores indicate variable precipitation. Thus, to explore the gen-
eral effects of environmental variability on population dynamics, we 
included H1 as a quadratic term (H12) in our models of population 
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Fig. 1 | graphical representation of our method for estimating and 

comparing population dynamics of North American birds. Population 

dynamics were first estimated independently for every species, here 

the northern bobwhite (Colinus virginianus), in every North American 

conservation region (outlined in purple) and subsequently reduced to 

individual weighted averages per species. a, Data come from counts 

(shown as inset plots) reported at routes (depicted as dots on the map) 

within conservation regions. b, Models estimate the log of abundances 

that follow a general long-term trend (dark red line) and yearly fluctuations 

around the trend (light red line) that that are drawn from a normal 

distribution with mean of 0 and standard deviation of σγ.

Table 1 | Summary of PCA of environmental variables across 
North America

loadingsa

PC1 PC2 uniqueness

Temperature predictability 0.84 0.17 0.27

Temperature variance −0.82 − 0.26 0.26

log(precipitation variance) 0.79 0.40 0.21

Mean temperature 0.75 0.51 0.18

Precipitation predictability −0.71 0.41 0.33

sqrt(NPP variance) − 0.05 0.94 0.11

log(mean NPP) 0.28 0.93 0.06

NPP predictability −0.56 −0.76 0.11

log(mean precipitation) 0.57 0.65 0.25

Cumulative variance 0.42 0.80
aLoadings for main contributors to each component are in bold.
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stability. As H1 is centred at zero, this quadratic term captures the 
potential effects of both variable temperatures and variable precipi-
tation, and is therefore labelled ‘environmental variability’ hereafter.

We also took into account the possibility that population stability 
is influenced by a variety of life history and ecological traits. First, 
we accounted for potential relationships between relative popula-
tion variability and population size31 by including log-transformed 
mean abundance as a covariate in our models. Additionally, we 
considered that environmental variability could affect population 
dynamics through interactions with traits other than brain size. For 
example, we considered that lifespan could be a predictor of popu-
lation stability because longer-lived species tend to exhibit higher 
adult survival32, and we included an interaction with environmental 
variability (H12) because highly unpredictable conditions may pre-
vent individuals from realizing their maximum lifespan potential. 
Similarly, we considered the fact that species with higher annual 
reproductive output may experience more intense year-to-year 
population oscillations33 and that this effect could potentially be 
amplified in more variable habitats. Additionally, we explored the 
possibility that variable conditions have weaker effects on the popu-
lation dynamics of large-bodied species because those species tend 
to be more resilient to periods of resource scarcity34. The same may 
be true for cooperative breeders—which seem to be able to buffer 
the effects of harsh years through helping at the nest35—for species 
with generalist habits—which are typically able to exploit a wider 
variety of environmental conditions36—and for migrants—which 
typically avoid the harshest conditions of their breeding grounds by 
temporarily leaving the area29. Further details on how these traits 
were defined and quantified can be found in the Methods. All of our 
data on population stability, brain size, ecology and life history are 
available in Supplementary Data 1.

Our demographic analysis revealed that a number of ecologi-
cal traits are significantly associated with population variability 
(adjusted R2 for PGLS model =  0.22; Table 2). We found that while 
populations of resident species are less stable in increasingly vari-
able environments, migratory species maintain relatively stable 
populations across all types of environment ( ̄P  < <  0.001; Fig. 2a). 
Similarly, long-lived species were found to exhibit more stable 
dynamics than short-lived ones in only the most mild, predictable 
environments ( ̄P  < <  0.001; Fig.  2b), indicating that the potential 
benefits of long life spans may diminish when conditions are uncer-
tain. Consistent with the idea that cognitive ability improves sur-
vival in variable environments, we found a significant interaction 
between encephalization and H12. Specifically, while species with 
high encephalization were found to maintain relatively stable pop-
ulations in both stable and variable environments, those with low 
encephalization showed a significant decline in population stabil-
ity as environmental variability increased ( ̄P  < <  0.001; Fig. 2c). Our 
findings are qualitatively similar when phylogenetic relationships 
are estimated from a consensus tree rather than across a sample of 
tree topologies (Supplementary Table 1).

Although these initial results support the basic mechanistic 
premise of the cognitive buffer hypothesis, the hierarchical models 
described above do not account for the fact that variation in popu-
lation size can be driven not only by exogenous (environmental) 
factors, but also by internal, or density-dependent factors. In the 
context of hierarchical modelling, density-dependent processes can 
be investigated by modelling an explicit demographic process that 
assumes that true population sizes oscillate around a demographic 
equilibrium value that does not change over time37 (for example, 
the Gompertz function38). This assumption is nevertheless clearly 
violated whenever populations undergo long-term changes in mean 
abundance, as is the case in many North American land birds39 and 
nearly 80% of the species in our dataset. As models with density 
dependence are known to perform poorly in such species40, we 
explored the effects of density dependence exclusively on the subset 

of species that did not show any evidence of long-term changes in 
mean abundance in our initial set of demographic analyses. Given 
the relatively small number of species in this category (N =  27), these 
confirmatory analyses could not meaningfully explore the entire set 
of initial predictors and were therefore focused on evaluating only 
the potential effects of relative brain size, H12 and their interaction. 
These more narrowly defined analyses indicate that accounting for 
density dependence does not change our main finding. That is, the 
interaction between relative brain size and environmental variabil-
ity is significant in PGLS models based on the consensus tree (rela-
tive brain size ×  H12: β =  0.63, P =  0.04; relative brain size: β =  − 0.05, 
P =  0.84; H12: β =  − 0.35, p =  0.01), and marginally significant across 
the entire sample of 1,000 tree topologies (relative brain size ×  H12: 

̄β  =  0.61, ̄P  =  0.06, f =  0.41; relative brain size: ̄β  =  − 0.04, ̄p  =  0.88, 
f =  0; H12: ̄β  =  − 0.32, ̄P  =  0.02, f =  1.00). The marginal significance 
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Fig. 2 | Significant two-way interactions between species traits and 

environmental variability on population stability. a–c, Partial residual 

plots from phylogenetic generalized linear model with fitted lines 

indicating the effect of environmental variability on population stability 

for different migratory strategies (a) and at different values of longevity 

(b) and relative brain size (c) in a sample of 126 species of North 

American birds. Environmental variability is measured H1, with low values 

indicating cold, seasonal habitats with unpredictable temperatures, 

and high values indicating hot habitats with variable and unpredictable 

precipitation patterns (see text and Table 1). Traits in b and c were analysed 

as continuous variables but, for visualization purposes, the fitted lines 

depicted here predict population stability trends for species at the 5th, 

25th, 50th, 75th and 95th percentiles of each focal trait while holding 

all other predictors at their mean value and setting migratory status as 

resident.
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observed in the latter case highlights the greater effect of phyloge-
netic uncertainty and the generally low statistical power of compar-
ative tests that are based on only a small number of species.

Did larger brains evolve in more variable environments? Our 
demographic analyses lend support to the underlying mechanis-
tic premise of the cognitive buffer hypothesis, which is that higher 
encephalization can improve survival, specifically when environ-
mental conditions are increasingly unstable. However, to evaluate 
the extent to which this mechanism provides a general explana-
tion for the evolution of cognition in birds, it is critical to explore 
the direction of causality in the correlation between an enhanced 
potential for cognition and the occupancy of variable environments. 
A clear understanding of the sequence of evolutionary events is 
particularly necessary in this context because the adaptive benefits 
invoked by the cognitive buffer hypothesis may just as well promote 
the evolution of cognition in variable habitats, or facilitate instead 
the secondary colonization of variable habitats by already highly 
encephalized species41.

We evaluated the support for these two non-mutually exclusive 
evolutionary scenarios by using reversible-jump Markov chain 
Monte Carlo (rjMCMC) to estimate models of correlated trait evo-
lution42 fitted to an exhaustive global sample of non-migratory birds 
for which brain size is known (N =  1,288 species; Supplementary 
Data 2). These models allow inference into potential evolutionary 
timelines by assessing the likelihood that rates of evolutionary tran-
sitions between states of a binary trait (for example, moderate to 
large encephalization) are dependent on the state of a second binary 
trait (for example, stable versus variable environmental habitats). In 
the context of the cognitive buffer hypothesis, these models allow 
us to test whether the transition from small to large brains is indeed 
more likely in variable than in stable environments (that is, whether 
variable environments tend to pre-date large brains). Similarly, these 
models allow us to evaluate the likelihood of alternative, yet non-
mutually exclusive, timelines such as the ‘colonization advantage’ 
scenario, which predicts that the transition from stable to variable 
environments should be more likely in large- than in small-brained 
species.

As in our demographic analysis, environmental variables were 
first extracted for the relevant study region (here, the entire globe) 
and subsequently reduced to composite variables through PCA 

(Supplementary Table 2). The first component of this global PCA, 
hereafter ‘temperature variability’, captured a gradient of increas-
ing exposure to colder, more seasonally variable and less predict-
able temperatures (Supplementary Fig. 1d). The second component, 
hereafter ‘xeric variability’, captured a gradient of increasing expo-
sure to drier and less productive environments with more unpre-
dictable precipitation (Supplementary Fig.  1e). Species-specific 
habitats were characterized in this case by computing the mean val-
ues of local temperature and xeric variability across entire breeding 
distributions (see Methods).

Because transition rate analyses require discrete trait states, we 
explored a reasonable range of thresholds for classifying species as 
having either small or large encephalization, and as being exposed 
to highly variable or fairly stable environments (30th, 50th, 75th 
and 90th percentile; see Methods). Encephalization categorizations 
were based on whether a species’ relative brain size was above or 
below the predefined threshold. Similarly, exposure to environ-
mental variability was considered high for a given species if either 
or both environmental principal component scores belonged in a 
percentile above the predefined threshold. Considering information 
from both principal components when characterizing exposure to 
environmental variability allowed us to maintain consistency with 
our demographic analyses (see Table 1) and to explore the general 
effects of environmental variability rather than the specific effects of 
temperature or precipitation variation.

Our models of correlated trait evolution do not support the main 
prediction of the cognitive buffer hypothesis under any combina-
tion of thresholds. Specifically, the evolution of larger relative brain 
sizes was generally found to be equally likely for species occurring 
in stable environments and in harsher, more variable ones (that is, 
there was no support for a difference in transition rate from mod-
erate to large encephalization between environment types; Bayes 
factor (BF) <  3; Fig.  3d,f; Supplementary Table  3). Furthermore, 
under certain classification criteria, we even find evidence that 
advanced encephalization could be more likely to evolve in stable 
than in highly variable habitats (for example, highly variable envi-
ronments: >50th percentile; large encephalization: > 50th per-
centile; BF =  3.15; Fig.  3a,c; Supplementary Table  3). Collectively, 
these results indicate that while environmental variability can  
theoretically select for enhanced cognition, it is in fact unlikely 
to have driven many of the major transitions towards large brains  
in birds.

In stark contrast, we found that the evidence of an improved 
colonization ability of variable habitats in highly encephalized avian 
lineages is both general and strong (Fig.  3b,c,e,f; Supplementary 
Table  3). Such colonization advantage seems to be specifically 
linked to an improved ability to deal with environmental variability, 
because we did not find support for a difference in transition rate 
from variable to stable habitats between species with small and large 
encephalization values (Supplementary Table 3). Additionally, our 
results indicate that even moderate enhancements in cognitive abil-
ity and/or moderate increases in environmental variability can help 
accrue such advantages: when thresholds for classification are too 
conservative (for example, variable environments: > 90th percentile; 
large encephalization: > 75th percentile), differences in transition 
rates from stable to variable environments are no longer detectable 
between very large- and moderately large-brained species.

Discussion
Our demographic analysis broadly supports the notion that 
enhanced cognition can lead to more stable population dynamics. 
Furthermore, the significant interaction between H12 and encepha-
lization is consistent with the idea that these benefits can be gen-
erally accrued under different types of environmental variability  
and unpredictability (see Table 1). We therefore conclude that there 
is general support for the proposed mechanism underlying the  

Table 2 | Summary results of our PglS regression models of 
population stability across a sample of 1,000 potential tree 
topologies for the avian phylogeny

Predictor β SSEE tt PP f a

(Intercept) − 0.17 0.07 − 2.32 0.02 1.00

H12b 0.06 0.04 1.67 0.10 0

Relative brain size − 0.01 0.05 − 0.22 0.82 0.00

Migration − 0.03 0.03 − 1.31 0.19 0.00

log(longevity) 0.03 0.02 1.30 0.20 0.00

Migration:H12 0.05 0.01 3.60 < 0.001 1.00

log(longevity):H12 − 0.06 0.01 − 3.90 < 0.001 1.00

Relative brain 
size:H12

0.08 0.02 4.91 < 0.001 1.00

Only terms present in the final reduced model are presented here (see text for details). Coefficient 

estimates (ß), standard errors (SE;), t scores and significance levels reported are averages for 

1,000 model runs with randomly selected phylogenetic trees based on the Hackett backbone 

in ref. 27. d.f =  118; λ  =  0.60. af is the frequency of trees for which P values were < 0.05. bH12 is 

the quadratic term of composite measure, H1, which captures various aspects of environmental 

variability. Low values of H1 represent cold seasonal habitats with unpredictable temperatures; 

high values represent warm habitats characterized by variable and unpredictable patterns of 

precipitation.
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cognitive buffer hypothesis, which is that bigger than expected 
brains improve survival when environmental change is frequent 
and unexpected.

Despite this finding, our transition rate analyses strongly indi-
cate that the general timeline of evolutionary events suggested by 
the cognitive buffer hypothesis is not broadly supported across 
the avian phylogeny. Specifically, our results unambiguously indi-
cate that evolutionary transitions towards occupancy of more vari-
able habitats did not generally precede the evolution of enhanced 
encephalization in birds. Ancestral state reconstructions facilitate 
the visualization of this result (Fig.  4): several of the most highly 
encephalized clades in the bird phylogeny (for example, parrots, 
bowerbirds and hornbills) evolved big brains without any apparent 
exposure to particularly harsh or variable habitats throughout their 
evolutionary history (Fig. 4b,c,e). Furthermore, even in clades that 
currently occupy variable habitats (for example, corvids or wood-
peckers), it is unclear that exposure to relatively high ecological 
variability preceded the evolution of larger brains (Fig. 4d,f). Why 
then do we see today a correlation between variable habitats and 
encephalization? Our analyses suggest that this correlation results 
from either the preferential colonization of variable and unpredict-
able habitats by highly encephalized species, or the preferential 
persistence of these highly encephalized species in habitats that 
underwent major environmental change and became more variable.  

One possible reason for this pattern is that highly encephalized birds 
have lower risk of extirpation during the early stages of coloniza-
tion (that is, when abundances are low43) because of their enhanced 
ability to withstand environmental change. Similar links between 
cognition and range expansion have been made in studies docu-
menting the success of highly encephalized species in colonizing 
new habitats16,17,41, and are the basis of our current understanding of 
the process of human expansion out of Africa8,44.

Overall, our results suggest that even though environmental vari-
ability can be a viable agent of selection in the evolution of cognition 
(as also concluded by refs 14,45), this particular mechanism is unlikely 
to have driven many of the most striking cases of encephalization 
among birds. It is nevertheless possible that other types of ecological 
variability not included in this study can explain such transitions. 
For example, although many parrots and hornbills tend to occupy 
habitats with fairly stable climates, these species must typically cope 
with high levels of variation in the location and timing of fruiting 
trees (a similar situation is likely to occur in other species with com-
plex feeding ecologies45). While we acknowledge that a broad inter-
pretation of ‘variability’ can increase the scope and generality of the 
cognitive buffer hypothesis5, we note that overgeneralization may 
lead to the inadvertent mischaracterization of very different types of 
selection (for example, problem solving, long-term memory, or spa-
tial awareness) as different but equivalent forms of a single process. 
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Fig. 3 | Testing the sequence of evolutionary events predicted by the cognitive buffer and colonization advantage hypotheses. The cognitive buffer 

hypothesis predicts that larger brains should preferentially evolve in variable environments, whereas the colonization advantage hypothesis predicts that, 

once evolved, they should subsequently aid in colonizing variable habitats. a,d, Posterior distributions of the difference in transition rate from moderate 

to large encephalization in stable versus variable climates (depicted by blue arrows in c and f). b,e, Posterior distribution of the difference in transition 

rate from stable to variable environments in moderate vs large brained species (depicted by green arrows in c and f) estimated from a sample of 1,288 

resident terrestrial bird species from around the globe. Distributions in a, b, d and e are derived from the posterior distributions of rjMCMC analyses (see 

Supplementary Fig. 3). Positive values indicate support for a particular hypothesis (see Methods). Horizontal red lines in these panels mark the maximum 

proportion of steps in which the rjMCMC chain can visit a rate difference of 0 while still supporting a scenario in which the two rates of interest differ (that 

is, BF =  3). Thus, we see positive support for difference in transition rates in a, b and e but not in d. c,f, The full transition matrices summarizing estimated 

rates of transition between stable (grey) and variable (black outlined) environments or between moderate (purple) and big (pink) relative brain size. 

Arrow widths are proportional to estimated rates, single asterisks indicate positive support for a difference between rates (BF >  3) and double asterisks 

indicate strong support for a difference between rates (BF >  12).
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A perhaps more fruitful approach would therefore be to explore the 
possibility that there is no single primary driver in the evolution of 
relatively large brains, and that this process is instead driven by the 
combined effects of both the constraints2–4 and the various poten-
tial adaptive benefits of increased processing capacity, including 
the ability to respond more quickly to new challenges46,47, navigate 
more complex social interactions48,49, process more intricate sensory 
information50, and cope with greater spatial and/or temporal vari-
ability15,22. As data on these different processes become more readily 
available, we are confident that future comparative studies will be 
able to disentangle the relative extent to which these different forces 
have shaped the evolution of cognition on different taxonomic 
scales. In the meantime, we hope that the realization that variation 
in brain size was more likely to shape the distribution of bird species 
across the globe rather than the other way around can help inform 
more immediate research agendas.

Methods
Quantification of relative brain size. Our estimates of relative brain size were 
based on body size data from ref. 51 and brain size data either from published 
accounts (N =  1,949 species; cited in Supplementary Data 2) or measured 
directly from museum specimens (N =  113 species). Our total brain dataset 
includes several species that are not used in either our demographic or correlated 
trait evolution analyses. Specifically, pelagic species (orders Sphenisciformes, 
Suliformes, Procellariiformes and Phaethontiformes; families Pelecanidae, 
Laridae, Stercorariidae and Alcidae) were initially included when computing 
encephalization values but were subsequently excluded from downstream 

analyses because land surface temperature and precipitation values are unlikely 
to be indicative of the actual conditions experienced by species that spend most 
of their time at sea. All brain size measurements from museum specimens were 
obtained following the procedures outlined in refs 3,52. Briefly, the foraminae of 
the cranial nerves are sealed with masking tape and lead shot is poured into the 
foramen magnum. To prevent the formation of lacunae, the skull is lightly tapped 
throughout this procedure. Once the shot has risen to the foramen magnum, the 
contents are decanted into modified syringes or graduated cylinders to determine 
volume. This method is highly repeatable and provides an accurate estimate of 
brain size in birds52,53. Brain sizes that were originally reported as volumes in the 
literature were converted to mass by multiplying millilitres by the average density 
of fresh brain tissue (1.036 g ml−1)52.

To account for phylogenetic uncertainty, the log-log regression of brain size on 
body size was independently run on 1,000 randomly selected tree topologies with 
the Hackett backbone in ref. 27 (www.birdtree.org; downloaded 14 July 2016). The 
encephalization values used in all of our downstream analyses were computed as 
the median residuals for each species across these 1,000 models.

Characterization of environmental variability. The environmental variables 
we consider here include the mean, within-year variance and predictability of 
temperature, precipitation and net primary productivity. Monthly raster maps 
of temperature and precipitation values were obtained for years 1900–2005 from 
ecoClimate.org (provided at 1° resolution, resampled to 0.5° resolution; downloaded 
25 July 2016)54. Monthly net primary productivity data for years 2000–2016 were 
obtained from the MODIS dataset downloaded from NASA Earth Observations 
(provided at 0.5° resolution; http://neo.sci.gsfc.nasa.gov; accessed 18 March 2016). 
Predictability was measured as Colwell’s P28, an information-theory-based index 
that captures variation in the onset, intensity and duration of periodic phenomena 
and ranges from 0 (completely unpredictable) to 1 (completely predictable).

As environmental variables tend to be strongly correlated29, we reduced the  
original set of environmental predictors (transformed when required55, centred 
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Fig. 4 | Ancestral trait reconstruction of relative brain size and environmental niche. a, phylogeny of the 1,288 species in our global sample depicting 

the reconstructed ancestral states of avian encephalization. b–g, reconstruction details for six highly encephalized clades: encephalization (left panels; 

pink =  upper 25th percentile; grey =  lower 75th percentile) and variable environmental niches (right panels; blue, upper 25th percentile of ‘temperature 

variability’ (tv); yellow, upper 25th percentile of ‘xeric variability’ (xv); black, upper 25th percentile for both measures; grey, bottom 75th percentile for 

both measures). Subtrees in b–g are details of reconstructions performed on continuous trait data with branches re-coloured based on the 75th percentile 

threshold used in analyses of correlated trait evolution (see Methods).
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and scaled) through PCA. Separate analyses were conducted to reduce the 
dimensionality of environmental data in the demographic and correlated trait 
evolution sections to account for the fact that environmental correlations are often 
region-specific30. In the demographic analyses, the environmental PCA was based 
only on North American data, including all cell values north of the US–Mexico 
border (that is, only the geographic region where breeding bird survey data are 
available). In the correlated trait evolution analyses, the environmental PCA 
included all global terrestrial habitats, excluding Antarctica. Both environmental 
PCAs recovered similar components (see main text, Table 1 and Supplementary 
Table 2 for details). In the demographic analysis, the average score for each 
principal component was initially computed for every BCR and these regional 
averages were subsequently used to characterize species-typical habitats. 
Specifically, variables H1 and H2 were computed as weighted averages of the 
corresponding environmental components (PC1 and PC2), where weights were 
determined by the species’ relative abundance in each conservation region. Species-
typical environmental values for the global analysis of correlated trait evolution 
were estimated directly by averaging all local (0.5 ×  0.5° cell) PCA scores across the 
species’ entire breeding distribution.

Bird population data. Abundance data for our population dynamics analyses were 
collected between 1966 and 2014 by the North American BBS (available through 
www.pwrc.usgs.gov/bbs/; downloaded 28 August 2015)24. The BBS is coordinated 
by the US Geological Survey (USGS) and the Canadian Wildlife Service and 
conducted annually by trained volunteers during the height of the breeding season. 
Participants travel along 24.5-mile roadside routes, conducting 3-min point count 
surveys at 0.5-mile intervals—recording every bird seen or heard within a 0.25-mile 
radius. Each BBS survey route was assigned to a single BCR based on route starting 
coordinates23. BCR maps were provided by the USGS Patuxent Wildlife Research 
Center (www.pwcr.usgs.gov; downloaded 15 September 2015). Only surveys 
fulfilling BBS quality criteria (that is, runtype =  1) were included in our analyses.

Quantification of population dynamics. We characterized the temporal dynamics 
of bird populations within BCRs across North America using hierarchical Bayesian 
models following ref. 25. The log of abundance, xj,i,t, for a given species at survey 
route j within BCR i in year t is modelled as:

β γ ω η= + × + + + + ɛlog x S t I j t( ) ( , )i i i t i j i j t, , , ,

where Si is the average abundance within BCR i, βi is the temporal trend in 
abundance within BCR i and η is the first-year observer effect where I(j,t) is 1 if the 
survey at year t is an observer’s first record at route j and 0 otherwise. Year effects, 
γi,t, and route-observer effects, ωi,j, are modelled as BCR specific random effects, 
whereas εi,j,t was modelled as a general random effect of count overdispersion. 
Given the potential for differences in observer ability, a separate value of ω is given 
to each unique route-observer combination. To account for imperfect detection 
during surveys, the observed count on route j within BCR i during year t is 
assumed to have a Poisson distribution with mean xj,i,t. Abundances are allowed 
to vary among survey routes within a BCR, but all routes are assumed to follow 
the same relative temporal trend (βi) and to undergo the same yearly fluctuations 
around this trend (γi,t). The variance of route-observer effects within a BCR, σω

2

i
,  

is drawn from a global hyperdistribution. To conform with the assumption of 
normality of residuals in general linear models, we use the negative of the standard 

deviation in annual fluctuations (− 1 ×  sqrt(σγ
2

i
)) as our dependent variable in 

subsequent analyses of population stability. The sign inversion is simply done to 
facilitate interpretation of our results, such that higher values reflect more stable 
populations.

As hierarchical models tend to underestimate the magnitude of annual 
fluctuations when the number of missing survey years is high56, we estimated 
trends for a period when survey data is relatively consistent, namely from 1985 
onwards. In addition, we improved data quality by including only route-observer 
combinations with 10 or more years of survey data and estimating only parameters 
for BCRs with at least 20 years of survey data and a minimum of 14 survey routes39. 
Model parameters were estimated with MCMC analysis using package ‘rjags’57. 
Four independent chains were run for each model, each of which included a 
burn-in of 25,000 steps, an additional chain length of 25,000 steps and a thinning 
interval of 10. Priors for Si, βi and η were normal distributions with mean of 0 and 
variance of 106. Prior distributions for variances were inverse gamma distributions 
with scale and shape equal to 0.001. Our assessment of chain convergence was 
done through the ‘coda’ package in R58 and included both a visual inspection of 
the traces of posterior estimates and an estimation of potential scale reduction 
factors (PSRF) via Gelman and Rubin’s convergence diagnostic59. Only estimates 
obtained from BCRs in which PSRF values were under 1.1 for all parameters (that 
is, chains with proper convergence) were included in our subsequent analyses of 
population stability. We considered positive support for temporal trends when the 
95% credible interval of βi did not include zero.

Hierarchical models with density dependence were also fitted to all species 
that did not exhibit evidence of linear trends in our initial analysis (n =  27). 

Specifically, we re-estimated population stability for these species using a discrete 
time, stochastic Gompertz model following ref. 38. These models estimate 
density-dependent population change at the route level while allowing random 
environmentally driven fluctuations and accounting for observer error in reported 
abundances. The log of abundance at time t, log(xt), is modelled here as a function 
of log(xt−1):

= + × +
−

x a b x Elog( ) log( )t t t1

where a is the intrinsic rate of increase and b is the strength of density dependence. 
Values of b were allowed to range from − 1 (strong) to 1 (no density dependence)37. 
Relative annual fluctuations, Et, have a normal distribution with mean zero and 
variance σ2

E. Similarly, the log of observed counts in year t is assumed to have 
a distribution with mean of log(xt) and a variance of τ2. To conform with the 
assumption of normality of residuals in general linear models, we used the negative 
log of the estimated year-to-year variance (that is, − 1 ×  log(σ2

E)), as our dependent 
variable in subsequent analyses of population stability. As above, the sign inversion 
here is simply done to facilitate interpretation of our results, such that higher 
values reflect more stable populations. Data quality checks for hierarchical models 
with density dependence included estimating only models for routes with at least 
20 years of survey data from 1985 onwards and no more than three consecutive 
years of missing data. Parameters were estimated using MCMC analysis with four 
independent chains, each ran with a burn-in period of 100,000 steps, an additional 
chain length of 50,000 steps and a thinning interval of 10 steps. Priors for a were 
drawn from a non-informative uniform distribution from 0 to 106, for b from 
a uniform distribution from − 1 to 1, and for σ2

E and τ2 from an inverse gamma 
distribution with scale and shape equal to 0.001. As with our linear trend models, 
chain convergence diagnostics were performed through visual inspection and 
the Gelman and Rubin convergence diagnostic59. Data for downstream analyses 
of population stability only included estimates for routes that reached proper 
convergence.

For both linear trend and density-dependence hierarchical models, we 
excluded species that typically pose clear challenges to detection, such as aquatic 
(families Gaviidae, Podicipedidae, Pelecanidae, Phalacrocoracidae, Anhingidae, 
Anatidae, Rallidae, Ardeidae, Threskiornithidae and Ciconiidae), nocturnal 
(families Tytonidae, Strigidae and Caprimulgidae) and primarily aerial species 
(families Apodidae and Hirundinidae). For all other species, we summarized 
regional measures of population stability into a single species-specific value by 
computing density-weighted averages across BCRs (linear trend models) or routes 
(density-dependence models). Thus, our measures of population variability 
account for differences in population dynamics across a species’ range60, but place 
greater importance on the population dynamics that occur in regions or sites where 
the species is better represented.

Estimating correlates of population stability. Data on longevity and annual 
reproductive output were obtained from ref. 51 (the latter was calculated as the 
product of clutch size and clutches per year). Social systems were classified as 
either cooperative or non-cooperative breeding based on ref. 61. Habitat generalism 
was measured as the number of different BCRs in which a species was reported 
throughout the BBS dataset. Migratory status was determined from range maps 
by BirdLife International (birdlife.org; downloaded 18 March 2016). Specifically, a 
species was considered resident if there was complete overlap between winter and 
breeding portions of its range, and considered migratory otherwise.

To test the effects of putative predictor variables on population stability 
scores we used PGLS regression models estimated with the ‘geiger’62 and ‘nlme’63 
packages in R64. All regression models (including the one used to estimate 
relative brain sizes) were computed using Pagel’s λ  transformation. To account for 
uncertainty in phylogenetic relationships, every regression model reported here 
was independently run with 1,000 different tree topologies from ref. 27. Model fit 
was assessed through adjusted R2 (ref. 65). In the main text we report the average 
estimated coefficient for each parameter and the proportion of trees in which 
such estimates were significant (that is, the f statistic). Body size, longevity, annual 
reproductive output and estimated mean abundance were log-transformed prior 
to analysis. Our fully parameterized models included all main effects as well as 
interactions between longevity, annual reproductive output, habitat generalism, 
body size, relative brain size, sociality and migration with H12. Models were 
subsequently reduced by iteratively removing, one at a time, terms with the highest 
P value (removing interactions prior to main effects) and assessing whether 
removal led to a significant improvement of Akaike information criterion (AIC) 
values (that is, Δ AIC >  2). We also computed variance inflation factors (VIF) for 
all of our reduced models to confirm low potential for multicollinearity (all VIF 
values were < 2).

Estimating evolutionary rates of transition between character states. We 
investigated the potential timeline of evolution of encephalization and climactic 
niche in birds using models of correlated trait evolution42, implemented 
through the discrete function of BayesTraits v2 on a global sample of species 
(Supplementary Data 2). Pelagic and migratory species were excluded from these 
analyses, resulting in a total sample of 1,288 resident terrestrial species. BayesTraits 
estimates the eight possible transition rates between potential character states 
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(see Fig. 3c or f), assuming that simultaneous transitions in both brain size and 
environment are so unlikely that they can be ignored42. As both brain size and 
environmental variability are continuous variables, we explored a number of 
different cutoff values to convert them into binary traits suitable for this kind of 
analysis. Specifically, we classified species as having large encephalization values 
when they occurred above the 30th, 50th, 75th and 90th percentile of brain size 
distribution. While a 30th percentile cutoff for encephalization may seem too 
permissive at first glance, we note that this was the minimum possible threshold at 
which all ‘large-brained’ species had a positive brain residual (that is, bigger brain 
than expected from body size) and the number of observed transitions between 
different states was sufficient for the proper estimation of transition rates66. We 
note that the skewed distribution towards more highly encephalized species in our 
sample is due to the effects of phylogenetic correction in the estimation of relative 
brain size, as well as to the subsampling of species from our much larger global 
brain dataset. Exposure to environmental variability was classified as high for 
species above the 50th, 75th and 90th percentiles in either ‘temperature variability’ 
or ‘xeric variability’. Because models of correlated trait evolution have the potential 
to identify spurious correlations when the number of transitions between states 
is low66, we began by confirming that all of our thresholds yielded a reasonable 
number of transitions between states using ancestral character state estimation 
via the R package ‘phytools’67 and averaging the detected number of transitions 
across 1,000 tree topologies. At the 30th percentile threshold we detected an 
average of 29 transitions from small to large encephalization and 65 transitions 
from large to small encephalization. At the 50th percentile threshold we detected 
an average of 102 transitions from small to large encephalization, 112 transitions 
from large to small encephalization, 253 transitions from stable to variable 
environments and 414 transitions from variable to stable environments. At the 75th 
percentile threshold we detected an average of 64 transitions from small to large 
encephalization, 36 transitions from large to small encephalization, 265 transitions 
from stable to variable environments and 195 transitions from variable to stable 
environments. Finally, at the 90th percentile threshold we detected an average of 46 
transitions from small to large encephalization, 15 transitions from large to small 
encephalization, 237 transitions from stable to variable environments and 127 
transitions from variable to stable environments. The 90th percentile threshold 
was therefore ultimately dropped as a criterion for dichotomizing encephalization 
because the low number of transitions it yielded would preclude any meaningful 
estimates of transition rates66.

Rates of evolutionary transition were estimated using rjMCMC analyses. 
Parameter values were first estimated using maximum likelihood analysis to 
inform our choice of priors. For all six combinations of cutoff, we calculated mean 
values of transition rates across our sample of 1,000 trees. Maximum likelihood 
estimates of each parameter value were of a similar magnitude regardless of 
cutoffs and ranged from 0.00002 to 0.34. Next, rjMCMC analyses were performed 
for 200,000,000 iterations with a burn-in of 5,000,000, a thinning interval of 
1,000 iterations and an exponential prior whose mean is seeded from a uniform 
hyperprior ranging between 0 and 0.5. Reversible-jump helps avoid model over-
parameterization by exploring alternative models that can differ in parameter 
number68. Because reversible-jump analyses estimate the posterior probability 
of all possible model configurations along with individual parameter values, 
this algorithm offers the additional advantage of enabling tests of very specific 
hypothesis. Specifically, the posterior distribution of model types obtained through 
rjMCMC can be used to assess the strength of evidence that two particular 
transitions are different or not by comparing the relative sampling frequency of 
models in which the two transition types were constrained to be the same with 
that of models in which these two rates were allowed to vary independently of each 
other69. Statistically, these comparisons are made via BFs, which are calculated as:

= | ∕ | ∕( ) ( ) ( )BF P M D P M D xP M P M( )ij i j j j

where i is the model set where rates are allowed to vary independently, j is a 
reduced model set in which the two rates are constrained to be the same, P(Mn|D) 
is the posterior probability of model set n (computed as the proportion of steps 
in which the chain visited model n) and P(Mn) is the prior probability of model 
set n68,69. For example, when testing the cognitive buffer hypothesis, P(Mi|D) is 
the frequency of all model configurations within the posterior distribution in 
which the transition rate from moderate to large encephalization varied between 
stable and variable environments, whereas j includes all model configurations in 
the posterior distribution where these rates were constrained to be equal in both 
environments. Similarly, when testing the colonization advantage scenario, P(Mi|D) 
is the frequency of all model configurations in which the transition rate from stable 
to variable environments varied between moderate and large encephalization, 
while j includes all configurations where these rates were constrained to be equal in 
both brain size classes. P(Mn) values for this formula are computed by exploring all 
possible model combinations via expanded Stirling numbers69: P(Mj) =  0.9592 and 
P(Mi) =  0.0408. Overall, resulting BF values from 3 to 12 suggest positive support 
for model set i and values above 12 suggest that model set i is strongly supported 
when compared with model set j68. We also report the proportion of steps in our 
model chains (P) in which the difference between two rates of interest was equal to 
zero (that is, the transition rate for the character of interest was independent of the 

state of the second trait). In this case, values of P < 0.014 indicate positive support 
for a difference between rates (that is, BF > 3)69. Because hypothesis testing directly 
assesses the proportion of steps in the posterior distribution where transition rates 
of interest are constrained to be equal, we visualize these results by plotting the 
distribution of ‘rate differences’ calculated across the posterior distribution. These 
rate differences were calculated at each step of the chain as either the difference in 
estimated transition rate from moderate to large brain sizes in variable versus stable 
environments (when testing the cognitive buffer hypothesis), or the difference 
in estimated transition rates from stable to variable environments in species 
with large versus moderate brain sizes (when testing the colonization advantage 
hypothesis). Plotting the distributions of rate differences (Fig. 3) allows us to 
assess both the support for a particular hypothesis (the proportion of steps where 
rate difference =  0) and the directionality of these potential differences. Besides 
explicitly testing the cognitive buffer and colonization advantage scenarios as 
indicated above, we also tested for differences in the rates of colonization of stable 
environments between brain size classes as well as for differences in the rate of 
evolution of small to moderate brain sizes in stable versus variable habitats.

We ran each rjMCMC analysis three times to insure chain convergence and 
assess the consistency of our results. These checks were performed with the ‘coda’ 
package in R58 and included visually inspecting the traces of all of our posterior 
estimates, assuring effective sample sizes were greater than 1,000, and estimating 
PSRF using Gelman and Rubin’s convergence diagnostic59. PSRF values were below 
1.1 for all parameter estimates indicating proper chain convergence properties. 
Effective sample sizes over 1,000 were obtained for all runs, except for analyses 
using the combination of 50th percentile encephalization threshold and 75th 
percentile environment threshold. To ensure consistent results for this cutoff, we 
performed three additional runs for 619,000,000 iterations (the upper limit of our 
current computational resources). While four rate parameters in these models still 
failed to reach target effective sample sizes of 1,000 during the extended runs, their 
effective sample sizes were nevertheless fairly high (range: 371–997). Furthermore, 
the plots of running values across iterations for BFs testing the cognitive buffer 
and colonization advantage hypotheses in these models indicate that these results 
are also highly stable (Supplementary Fig. 2). Posterior distributions of parameter 
estimates from the different chains produced for each threshold were subsequently 
pooled to calculate both the mean values and standard deviations for each 
transition rate (Supplementary Fig. 3).

Ancestral trait reconstruction. The ancestral states reported in Fig. 4 were 
reconstructed for visualization purposes only and estimated with the ‘phytools’66 
package in R. Reconstructions of continuous trait data were based on maximum 
likelihood and a randomly chosen tree within our candidate set. Colour coding in 
Fig. 4b–g is based on results from separate ancestral trait reconstructions for the 
different environmental variables.

Data availability. All data generated or analysed during this study are either 
available through cited sources or included in this published article and its 
Supplementary Information files.
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